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ABSTRACT 
 

 

Amphiphilic solutions and dispersions represent a key way that low solubility additives 

can be mixed within aqueous systems. While the phase behavior and gel structure of neat micelle 

solutions have been well studied, less is known about the effects of ternary constituents like a 

low solubility additive on micelle structure. In this dissertation, we probe the link between 

amphiphile micelle gels housing other hydrophilic or hydrophobic molecules and the effect on 

permeability and flame retardancy.   

Differential scanning calorimetry was performed on solutions of poly(ethylene oxide)-

poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) (L101, 10% PEO; P104, 40% 

PEO; P105, 50% PEO; and F108, 80% PEO) amphiphiles (0-2% mass/v) to resolve their critical 

micelle concentrations (0.4-3.0% mass/v). Work was done from 2-10% mass/v copolymer 

concentrations and co-formulated methylparaben and cisplatin (0-0.1% mass/v) to resolve any 

deviation in the enthalpy of micelle formation (250-360 kJ/mol). Enthalpy-entropy compensation 

plots revealed combinations of both drug influenced and drug invariant interaction with forming 

micelle structures. P104 was most sensitive with cisplatin over all other amphiphiles, noted as a 

decrease from 302K to 289K when containing up to 0.1% cisplatin. The statistical significance of 

this cisplatin-induced perturbation was a linear regression from the H-S plots and it was 

significant at a 95% confidence interval. Other cisplatin-amphiphile combinations were more 

statistically insignificant.   
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Small-angle x-ray scattering determined temperature dependent colloidal crystal 

formation in 31% amphiphile solutions both neat and co-formulated with cisplatin (up to 0.1% 

mass/v).  Focusing on P104, we noted a ~4.0% rise in crystal expansion over the 25oC 

temperature sweep.  Adding cisplatin results in a 4-5% reduction in the unit cell dimensions, 

which is attributed to decreased water content in the hydrophilic corona by adding cisplatin. 

Upon heating, added drug changed the nucleation behavior within the sample from a 

homogenous process to a more heterogeneous distribution of nucleated species.  

Dynamic diffusion experiments were performed on 20% mass/v micelle gels (F127, 70% 

PEO) mixed with indicator dyes and cisplatin (0.1% mass/v) by UV-visible spectroscopy. Each 

additive was tested neat at room temperature and 40oC, and formulated with F127 at room 

temperature and 40oC. The behavior of the added drug was complicated as the first 5 hours of 

permeation resulted in a burst delivery (6% total release with cisplatin-F127-RT compared to 4% 

cisplatin-RT). The higher fluence at elevated temperature is attributed to coalescing the 

amphiphiles that blocked transport on the tube walls as they formed colloidal gels. There is likely 

a separate factor at higher temperature and higher permeability if the membrane pores also 

expand with temperature.  

Lastly, micelle gels (F127) were used for fire retardants for cotton. Vertical flame tests, 

thermogravimetric analysis (TGA), micro-scale combustion calorimetry (MCC), and microscopy 

were used to assess flammability and coating quality of fire retardant-encapsulated micelle gels. 

After coating, the cotton fabrics were more ignition resistant and, if ignition occurred, the 

coatings self-extinguished. Coated cotton was found to decompose at higher temperatures (150oC 

vs 75oC cotton control). Coating thicknesses resulted in a  >200% mass gain which still requires 

further optimization.  But the combination of flame-retardants packaged in an amphiphilic matrix 
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retarded cotton flame ignition. Overall, polyether based amphiphiles have shown as schemes for 

both cisplatin and combinations of flame retardants both of which either have low solubility with 

flame retardants or high systemic toxicity in vivo like cisplatin.  

 



1 
 

 

CHAPTER I 

 

Background and Motivation 

 

 

1.1  Amphiphilic Triblock Copolymers 

Polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) triblock 

copolymers are amphiphilic block copolymers known commercially as Pluronic surfactants. A 

variety of surfactants are commercially available, with differing hydrophobic block cores (PPO) 

and hydrophilic arm (PEO) lengths ratios. Commercial preparations of Pluronic surfactants often 

contain impurities of the PPO homopolymer, and di- and triblock copolymers with different 

molecular weights and PEO/PPO mass ratio than the desired product [1, 2]. These impurities can 

be removed using gel permeation chromatography (GPC) to selectively filter for polymer chains 

of the desired molecular weight [1, 3].  

1.2  Micellization Process 

Dispersed solutions of Pluronic surfactants will undergo self-assembly, known as 

micellization. Micellization can be achieved by varying concentration at a given temperature, or 

by varying temperature for a given concentration. A schematic of this process is shown in Figure 

1.1 [4].  
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Figure 1.1: Temperature-dependent micellization and gelation of Pluronic surfactants [4].   

 

As the solution crosses the critical micelle temperature (cmt), micelle gels will form and 

an equilibrium balance of micelle gels and dispersed polymer chains will coexist [5, 6]. The 

driving force for micellization is entropic in nature, due to the hydrophobic effect [7], where 

hydrophobic molecules associate with one another in order to dissipate the “water cages” of 

order water molecules that form around each hydrophobic molecule.  

Scientists have previously researched temperature-dependent micellization and ordering 

of PEO-PPO-PEO triblock copolymers in aqueous solutions [8-18]. As the temperature of these 

solutions is increased, the decreasing aqueous solubility of the PPO segments often causes 

micelle formation of hydrophobic (PPO) cores with hydrophilic (PEO) normally forming the 

shells pointed out into aqueous solvent [15]. Lam et al. [17] suggested micelles grow via 

Ostwald ripening and Barba et al. [18] suggested that the volume fraction occupied by the 

micelles in solution rises with increasing temperature. The micelles experience repulsive 

interactions and order into quasicrystalline cubic lattices which give these structures their gel-

like properties [15]. Conventional polymer hydrogels are typically formed via covalent bonding 

formation between adjacent polymer chains (crosslinking), or physical entanglement of multiple 

chains, resulting in a mechanically robust tangled network [19]. In a micelle gel, the lattice 
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ordering of individual micelles offer mechanical stability [20] because there is no covalent 

bonding in micelle gel formation, and the micellization behavior is driven by temperature or 

concentration; thus making the gelation process reversible.  

1.3  Applications of Micelle Gels 

Micelle gels have found multiple industrial applications as emulsifiers, stabilizers 

lubricators, and detergents [21, 22]. Our group has even experimented with micelle gels as a 

potential use in fire retardant applications, which is outlined in Chapter V [23]. However, micelle 

gels are particularly attractive for use in biomedical applications because of the gels reversible 

temperature-dependent gelation behavior. Biomedical researchers are interested in this reversible 

temperature-dependent gelation behavior because one can use ambient metabolic heating to 

trigger gelation if the gel temperatures of these amphiphiles is sufficiently low [24-28]. These 

solutions can be injected as a liquid at low temperatures, which then form gels in situ as the 

solution warms to body temperature [15]. The rigidity of the gel formation allows one to inject 

drug infused copolymers and after gelation the gel regulates the localized permeation of added 

pharmaceuticals, which might lead to a more sustained delivery and longer local residence time 

[28]. Micelle gels are also biocompatible as they can interact with host tissues with minimum 

concern for cytotoxicity [29]. This delivery strategy is more favorable compared to more 

conventional gels that are liquid at high temperatures and gels at low temperatures because the 

heated fluid from conventional gels (which would gel upon cooling to body temperature) may be 

damaging to surrounding tissues or skin [4]. 
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1.4 Micelles Gels for Chemotherapeutic Applications 

One of the main treatments for both localized and metastatic cancer is chemotherapy, 

which is used in conjunction with surgery and radiotherapy [30]. It is ideal to deliver a sufficient 

quantity of drug to tumorous cells, while minimizing systemic side effects and toxicity. 

However, the drug effectiveness is retarded due to the complications with administering them 

such as inefficient distribution, limited chemotherapeutic solubility, an inability to permeate cell 

membranes, rapid clearance, and the lack of selectivity between normal cells and cancer cells 

[30]. Cis-dichlorodiammineplatinum(II) (cisplatin) is one of the most potent and widely-used 

anticancer drugs for treating testicular, ovarian, bladder, cervical, head, neck, oesophageal, and 

small-cell lung cancers [31, 32]. Cisplatin interacts with DNA and interferes with the normal cell 

transcription and replication processes, resulting in apoptosis [31, 33]. Despite its effectiveness, 

the clinical use of cisplatin and its derivatives is limited due to severe systemic side effects 

including nephrotoxicity, neurotoxicity, ototoxicity, nausea, and vomiting [34]. Therefore, 

developing efficient drug delivery systems that selectively increase the concentration of 

chemotherapeutics in diseased cells and tumors are of great significance and value.        

To increase the therapeutic efficacy, chemotherapeutic drugs are often coupled with 

polymeric micelles and surfactants [35-37]. Blocky amphiphilic copolymers with a large 

solubility difference between hydrophilic and hydrophobic segments are known to assemble in 

an aqueous environment into polymeric micelles with a 10-100 nm size range [38-41]. These 

micelles have a narrow size distribution and are characterized by their core-shell architecture, 

where hydrophobic segments are segregated from the aqueous exterior to form a hydrophobic 

inner core surrounded by hydrophilic segments [35]. Interests in applying block copolymer 

micelles as drug delivery systems have increased because of the high drug-loading capacity of 
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the inner core as well as some level of increased tolerance of the drug loaded micelles compared 

to neat drugs [42-46]. The aggregation and surface properties of polymeric micelles in solution 

depend on external factors such as pH, temperature, pressure, and the presence of additives [47]. 

Thus, the properties of polymeric micelles in solution can be effectively tuned to a desired range 

and application by altering these external factors. Mandal et al. [48-50] has conducted various 

physicochemical studies on PEO-PPO-PEO micelles in sodium dodecyl sulfate (SDS) in the 

absence and presence of various micellized drugs, peptides, and additives as a function of 

various molar compositions using various techniques. Moulik et al. [51] have also recently 

reported about the effect of various additives on aqueous normal and reverse pluronic micelles. 

Therefore, even though there are a variety of structures including microspheres [52, 53], 

dendrimers [54], liposomes [55-58], carbon nanohorns [59-61], carbon nanotubes [30], and 

nanoparticles; gold [62], silver [63], Fe3O4 [64, 65], pH-responsive compounds [66, 67] and 

silica [68, 69]; that can be used as drug delivery agents, polymeric micelles’ high drug-loading 

ability and toxicity shield effect [42-46] suggests they are sufficient drug delivery platforms to 

compliment other used drug delivery materials.  

1.5  Previous Research of Micelle Gels for Drug Delivery 

Research on drug-loaded micelles has included rheology [70, 16], DSC [12, 14, 71, 72], 

SAXS [70, 12, 15], SANS [73, 13], and cloud point determinations [10].  From these, 

assessments of how each perturbant affects the micelle formation temperature are related to the 

drug content and interactions of the drug component within the amphiphile matrix.  Functional 

evaluations of drug loaded micelles have focused on drug release and cell culture studies [74]. 

Sharma et al. [12] studied how adding organics affected the evolution of ordered structures 

forming from PEO–PPO–PEO based solutions as resolved by SAXS. 
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Solutes of greater pharmaceutical significance have also been studied including the 

aggregation of neat forms of commercial PEO-PPO-PEO amphiphilic copolymers produced by a 

range of suppliers including Pluronic F127 (~12,000 g mol-1 molecular mass, 70/% PEO content) 

[75], mixed F127 dispersions formulated with naproxen and indomethacin [11], vancomycin 

[76], lecithin [77], pilocarpine [78], methotrexate [79], and separately lidocaine and prilocaine 

formulated into eutectic mixed micelle solutions of F68 and F127 [80]. Sharma et al. [12] has 

previously studied the effects of two anti-inflammatory agents, naproxen and indomethacin, on 

the lower and upper gelation temperature of F127 solutions. They concluded that the drugs 

shifted both the liquid-to-gel and gel-to-liquid boundaries to lower temperatures and the presence 

of the drug molecules promotes self-assembly of F127 [11], suggesting that different drugs were 

influencing the thermodynamic driving to form the micelle. In their later work they examined the 

gelation of F127 in the presence of a series of hydrophobic pharmaceuticals, to identify any 

correlation between gelation and physicochemical parameters of drug solutes [12].  

1.6  Motivation 

Thermodynamics of micelle and gel formation is relatively well known for a variety 

Pluronic surfacnts. Kinetic or transient effects, however, are less known for specific 

combinations of amphiphilic copolymers with varying hydrophilicity and chemotherapeutic 

drugs. There is a large potential to encounter non-equilibrium transition conditions in real-world 

applications, and more work needs to be done under these conditions. There may be transient 

factors in the formation or properties of micelle gels, and these factors need to be studied in order 

to achieve maximum optimization of micelle formation for a given application. Little is known 

about how the presence of a ternary additive affects the gel properties of amphiphilic micelles 
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with varying hydrophilicity or the mechanism by which enhanced release or delivery profiles are 

achieved.  

The aim of this dissertation work was to provide a more comprehensive study of the 

effects, both microscopically and macroscopically, on the gel formation and properties of 

micelles with varying hydrophilicity. The rationale for understanding how ternary additives 

perturb the micelle formation energetics and where within the micelle ternary additives are 

partitioned is key to resolving how formulated micelles perform as drug delivery vehicles. In this 

dissertation, we attempt to better understand the linkage between forming structures of 

amphiphiles housing other molecules and the effect on availability and performance.  Four main 

methods were used to complete this study: differential scanning calorimetry (DSC), small-angle 

x-ray scattering (SAXS), ultraviolet-visible (UV-Vis) spectroscopy, and flammability testing 

methods. The energetics of micellization and gel formation was probed using DSC. Structural 

studies on the micelle lattices were carried out using SAXS. Diffusion studies and release 

characteristics of the micelle gels were measured using UV-Vis. Vertical flame tests (VFT), 

thermogravimetric analysis (TGA), micro-scale combustion calorimetry (MCC), and scanning 

electron microscopy (SEM) were all used to test for flammability and coating quality of fire 

retardant-encapsulated micelle gels. Efforts were made to explore kinetic effects such as 

increasing heating rates, in order to determine if transient effects play a significant role in gel 

formation. By thoroughly studying the effects of ternary additives on micelle gel formation, a 

more complete picture of the molecular interactions taking place will be developed which will 

lead to a better understanding of ternary additives and their interactions with amphiphilic 

copolymer micelles and gels. This understanding may prove useful in the optimization of 

polymer formulations used in pharmaceutical, biomedical, or other applications.   
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CHAPTER II 

 

Thermodynamic Characterization of Micelle Formation 

 

2.1  Introduction 

The rationale for understanding how ternary additives affect micelle formation energetics 

is key to resolving how formulated micelles perform as drug delivery vehicles. The 

thermodynamic analysis of solubility within a micelle has been presented in the form of an 

enthalpy-entropy compensation, first described by Lumry and Rajender [81]. ΔGmicellization is the 

free energy to take one mole of amphiphile dispersed in solution into the micelle phase and is 

given by [82, 83] 

∆Gmicelliation =  RTmicelleln(cmc)      (2.1) 

Where Tmicelle is the micelle formation temperature, and cmc is the critical micelle concentration.  

The enthalpy is the integral of each micelle formation endotherm.  The entropy of micelle 

formation is extracted from rearranging the Gibbs Helmholtz Equation to yield [82, 83]  

∆Smicelle =
(∆Hmicelle− ∆Gmicellization)

Tmicelle
    (2.2) 

resolved at the micelle formation temperature at each concentration of amphiphile used.  From 

the determinations of ΔSmicelle and ΔHmicelle, a direct plot can resolve both the slope, identified as 

the compensation temperature, Tcompensation, and the intercept (identified as ΔH0).  Cornish-

Bowden [84] explained that the name enthalpy-entropy compensation refers to the idea that 

variations in ΔH that accompany variations in the temperature at which each molecule is 
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normally active are “compensated for” by variations in ΔS. The compensation temperature 

represents the driving force for solute-solute and solute-solvent interactions [14, 81-83, 85-96] 

and has been identified for neat amphiphiles in solution [71, 97] and ionic liquids such as the 

Gemini surfactants [98]. According to Jolicoeur et al. [99, 100], since hydrophobic interactions 

contribute largely to micelle stability, a general enthalpy-entropy correlation yields a 

compensation value characteristic of such interactions [90]. Chen et al. [101, 81] explained for a 

compensation phenomenon, the micellization could be described as consisting of a two-part 

process: (a) the “desolvation” part, i.e., the dehydration of the hydrocarbon tail of surfactant 

molecules, and (b) the “chemical” part, i.e., aggregation of the hydrocarbon tails of surfactant 

molecules to form a micelle.   

In terms of probing the origins of what is meant by solute-solute and solute-solvent 

interactions, it might also be worth resolving how micelle formation and subsequent ordering of 

them regulate the solution thermodynamics.  Consider the driving force for forming spherical 

micelles in solution from neat amphiphilic copolymers.  Goldstein has suggested that the driving 

force for forming micelles suggests that it can be idealized as a spherical core (with a volume of 

a sphere) with the hydrophobic sections binding together to form an agglomerate of constant 

density [102].  That suggests that there is an enthalpy for forming this organized structure as 

ΔHmicelle core.  Goldstein also points to the co-location of the hydrophilic sections that are bonded 

to the center blocks and are conveyed to an interface contributing to a core-shell interfacial 

energy [102]. Like Goldstein’s analysis, a more detailed analysis would include contributions 

linked with the lengths of the different blocks [102].  In addition, if the phase separation to 

cluster the hydrophobic sections is the main driving force for micellization, there may be small 

contributions to the free energy associated with the energetics of forming the shell and the 
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interface between the shell and the surrounding aqueous solution.  This would lead to four terms 

contributing to the free energy of micelle formation, as shown in Equation 2.3.  

∆Gmicelliation = Vcore ∆Hmicelle core + SAc−sσc−s +  Vshell∆Hshell + SAshell σshell  (2.3) 

For an amphiphile that forms a sphere, Vcore is the volume of the hydrophobic core and 

the first interface encountered from the micelle center is the core-shell (c-s) interface where the 

hydrophilic ends are pointed out into the aqueous phase. The interface region between the 

hydrophobic and hydrophilic regions will create a surface energy term; called c-s with the total 

energy of this term linked with the surface area (SA) of the interaction, in this instance a sphere. 

The larger the enthalpic payoff for driving these block copolymers together into forming 

micelles, the hydrophobic blocks take their hydrophilic ends with them and there is a need to 

situate the hydrophilic chain ends in the most entropically favorable arrangement, which is much 

more constrained than when dispersed in solution. At the boundary where the shell interacts with 

the aqueous medium, there is a separate interfacial energy, shell term, also linked with the 

surface area of that interaction, SAshell.  

As a function of radial dimensions, Equation (2.3) can be rearranged in the dilute micelle 

region (no micelle-micelle interactions, just discrete micelles in solution) as  

∆𝐺𝑚𝑖𝑐𝑒𝑙𝑙𝑖𝑎𝑡𝑖𝑜𝑛 =
4

3
π𝑟3

 
∆𝐻𝑚𝑖𝑐𝑒𝑙𝑙𝑒 𝑐𝑜𝑟𝑒 + 4π𝑟2𝜎𝑐−𝑠@𝑟 +  

4

3
π(𝑅3 − r3)∆𝐻𝑠ℎ𝑒𝑙𝑙 + 4π𝑅2𝜎𝑠ℎ𝑒𝑙𝑙  (2.4) 

where r is the radius of the hydrophobic core, R is the radius of the entire micelle including the 

swollen shell, c-s corresponds to the surface energy between the core and shell, and 𝜎𝑠ℎ𝑒𝑙𝑙 is the 

surface energy between the micelle and the aqueous medium from which the micelles formed.  

For block copolymers, there is the discrete linkage between the driving force to cluster 

hydrophobic blocks together and the corresponding entropic penalty that arises since the 

hydrophilic ends are constrained by the covalent bonding to the core.  
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Any drug that is absorbed into the micelle core or shell could migrate within the core-

shell structure and probably has its largest effect in regulating the surface energy between the 

core and the shell.  Small molecules that are substantially more hydrophobic might swell the 

micelle core, but large-scale swelling of micelles has not been observed. If the small molecules 

were substantially more hydrophilic, they would be influencing the Hshcll term, which is small, 

or they could swell the shell. The suggestion that there is interplay between the enthalpic driving 

forces to form well-defined structures in solution is offset by the constraint of what volumes the 

tail sections of the block copolymer is the origin of the compensation temperature. That small 

molecules can regulate the compensation temperature is an acknowledgment that their 

distribution controls the contributions to the free energy found in Equation (2.4). 

It is also thought that a deviation in the compensation temperature from neat solutions is 

a useful indicator of drug loading interactions with an amphiphile if the ternary constituent is 

strongly interacting with it. Ravi et al. [103] proposed at the compensation temperature the 

enthalpy and entropy changes fully compensate one another, and there is no change in G upon 

changing the reactant [103]. Similar compensation temperatures for systems may mean that the 

processes occurring in the different systems are the same, but the mechanisms of the processes 

may still be different [103]. Therefore, if the two processes are have identical compensation 

temperatures, then the fraction of the total free energy arising from the enthalpy contribution is 

the same in both processes [103]. If the compensation temperatures are different, then the 

mechanisms of the two processes must be different [103]. Mechanisms meaning the ways in 

which solutes are retained i.e. location of retention or driving force of retention and 

intermolecular forces [103]. Resolving how a drug mimic also affected the compensation 

temperature has been done in our study [72] outlined in this chapter with methylparaben and 
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Pluronic P105. This chapter also outlines our evaluation of the thermodynamics of micelle 

formation using Pluronics L101, P104, P105, and F108 solutions and cisplatin as a ternary 

additive [104].  

Our group has previously evaluated the enthalpy and structural changes in F127 micelles 

by several methods [16, 15] . We showed that neat F127 solutions formed micelles more 

abruptly suggesting a nucleation-based mechanism. Methylparaben, co-formulated as an anti-

fungal constituent in topical creams, was found to soften the transition such that ordered micelle 

formation occurred at lower temperatures and the size of the enthalpy grew more systematically 

with changes in temperature [16, 15]. In an attempt to span a wider range in sequestration 

behavior between strongly hydrophobic and strongly hydrophilic amphiphiles, we report on 

research results on the enthalpy and structural changes that occur in the amphiphiles L101 

(~3,800 g mol-1 molecular mass, 10/% PEO content), P104 (~5,900 g mol-1 molecular mass, 40% 

PEO content), P105 (~6,500 g mol-1 molecular mass, 50% PEO content), and F108 (~14,600 g 

mol-1 molecular mass, 80% PEO content) both in the neat state and when mixed with the 

hydrophilic drug cisplatin [cis-dichlorodiammine-platinum (II)]. 

There has been common interest in resolving how adding other, more potent drugs like 

chemotherapeutics affected micelle structure and formation characteristics.  Among them were 

platinum-based chemotherapeutics such as cisplatin, carboplatin (cis-diammine (1,1-

cyclobutanedicarboxylato)) platinum, and oxaliplatin (cis-[1R,2R-cyclohexanediamine-N,NV] 

[oxalato(2-)-O,OV]) platinum that are often used in treating bladder, cervix, lung, ovarian and 

colorectal cancers [105, 106]. Prior clinical work characterizing the effects of three Pluronic 

triblock copolymers (from hydrophilic F127, through P85, and to the more hydrophobic L61) has 

examined on the cytotoxicity of carboplatin to a rat colorectal carcinoma cell line [107].  Other 
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efforts to package chemotherapeutics directly as drug-infused micelles for vascular delivery have 

also been using cisplatin in F127 [108].  

Other efforts have explored how mixing aqueous polymeric micelles with different drugs 

helps in nanoscale drug delivery [109], polymeric micelles for cancer chemotherapy [110], PC-

14 cells treated with cisplatin-incorporated polymeric micelles [111], drugs in block copolymer 

micelles [112], multidrug-resistant human ovarian carcinoma cells by P85 [113], micelles in 

anticancer drug delivery [114], cisplatin-incorporated polymeric micelles treated on tumors in 

mice [37], polymeric micelles for delivery of poorly water-soluble compounds [115], targeting, 

imaging, and triggered release of micelles in anticancer therapy [116], sized controlled polymeric 

micelles containing cisplatin [117], and hydrogels from cisplatin-loaded block copolymers in 

drug delivery [118]. These studies show the importance of exploring chemotherapeutic drugs 

like cisplatin when mixed with PEO-PPO-PEO copolymers. In this chapter, we look to study 

how cisplatin is partitioned into PEO-PPO-PEO copolymers from the thermodynamic side.   

If the presence of a chemotherapeutic alters the driving force for micelle formation, one 

would naturally conclude that solute-solvent interactions are controlling features in regulating 

micelle formation. As a result, it seems reasonable to probe the impact on the compensation 

temperature by perturbing the thermodynamics through the addition of small molecule 

chemotherapeutics in these structures. We report in this chapter on our efforts to use the 

hydrophilic perturbant cisplatin into a range of PEO-PPO-PEO copolymers of varying 

hydrophilicity, as determined by a calorimetric assessment of both the critical micelle formation 

composition and the size of endotherms measured as temperatures are varied.  
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The experiments, results, and discussion covered in this chapter were submitted and 

published in the Journal of Colloid and Interface Science [72] and Journal of Thermal Analysis 

and Calorimetry [104]. 

2.2  Materials and Methods 

PEO-PPO-PEO (Pluronic P105, Pluronic P104, Pluronic L101, Pluronic F108: BASF 

Wyandotte MI) were obtained and used as received. Aqueous solutions of L101, P104, P105, and 

F108 were each prepared according to “cold” processing methods [29] and formulated in varying 

concentrations to probe the enthalpy of micellization. Methylparaben (Sigma-Aldrich) was added 

to aqueous solutions of varying P105. Two types of formulation protocols were created for P105 

and methylparaben. One fixed the P105 content and varied the amount of methylparaben. The 

other scheme used a fixed amount of methylparaben and varied the P105 content. Cisplatin 

(Sigma-Aldrich) was added to aqueous solutions of varying Pluronics (L101, P104, P105, F108).  

The structures of methylparaben, cisplatin, and the polymers are shown in Figure 2.1 [72, 

104]. Two types of formulation protocols were followed for cisplatin and the copolymers. One 

varied each copolymer (L101, P104, P105, and F108) content in solution from 2% mass v-1 to 

10% mass v-1 in 2% mass v-1 increments. The other scheme fixed each Pluronic (L101, P104, 

P105, and F108) content at 10% mass v-1 and varied the amount of cisplatin in solution from 0% 

mass v-1 to 0.1% mass v-1 in 0.02% mass v-1 increments. 

As dispersions were produced, aliquots were extracted by syringe, deposited into DSC 

pans, and tested using a TA Instruments Q-2000 DSC.  Tests were conducted under nitrogen 

purge while the temperature was ramped from 0-40C at 10C min-1, typical of other heating 

rates measures for other amphiphilic copolymers since the micelle forms between the 20C and 

30C range.  At least three replicates were evaluated per formulation.   



15 
 

The onset and peak temperatures and the size of the endotherm were determined from the 

heat flow curve. As the contents of each Pluronic were lowered (L101, P104, P105, and F108), 

the micellization endotherm shrunk and at some concentration, no endotherm was observed 

indicating the concentration was below the critical micellization concentration (cmc).   

Figure 2.1: (a) Examples of Pluronics F108, P105, P104, and L101 (b) example of PEO-PPO-

PEO micelle structure (c) methylparaben (d) cisplatin [72, 104]. 

 

2.3 Results and Discussion 

2.3.1 DSC Results for Neat Micelles in Aqueous Solution 

The influence of amphiphilic copolymer P105 content by DSC is noted in Table 2.1 and 

Figure 2.2 [72]. The temperature of the peak in the micelle formation is shifted slightly to lower 

temperatures (~2oC) by adding more copolymer to solution. The enthalpy is also reduced with 

less P105 in solution since there are fewer micelles that can form in more diluted mixtures of 

amphiphile in solution above the cmc.  
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Table 2.1: DSC results for 4-10% P105 in H2O. Larger P105 concentrations show both a lower 

Tmicelle and a larger H on a per gram basis [72].  

P105 concentrations 

(%mass v-1 ) 
∆𝐻  
(J/g) 

Micelle Formation Temperature 

(⁰C) 

2.0 0.81 ± 0.06 23.5 ± 0.07 

4.0 1.96 ± 0.05 21.2 ± 0.11 

6.0 3.27 ± 0.29 19.2 ± 0.08 

8.0 3.68 ± 0.14 18.5 ± 0.04 

10.0 4.09 ± 0.18 18.3 ± 0.2 

 

  

Figure 2.2: Increasing the concentrations of P105 in water also increased the enthalpy (H) [72]. 

 

2.3.2  Critical Micelle Concentrations 

As the concentration of amphiphilic copolymer is diluted, there are some minor 

distortions in the H peak shape. At a low enough concentration, the micelle endotherm is not 

observed, as shown in Figures 2.3-2.6. The driving force is insufficient to form micelles below 

some threshold and that demarcation we note here as the cmc.  

Figure 2.3 shows the concentration dependence of P105; the endotherm is suppressed at 

0.4% mass v-1 [72]. The P105 cmc we resolved by DSC is slightly higher than that observed by 

Alexandridis et al. [119, 120] (0.3% mass v-1) using UV-visible absorption spectroscopy at 25oC 
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[119, 120]. For the larger thermodynamic analysis we used the cmc determinations from 

Alexandridis et al. [119, 120] for determining S and G although similar trends arise using the 

cmc resolved by DSC. 

     

 

 

 

 

 

 

 

 

 

Figure 2.3: DSC results at P105 content: the critical micelle concentration (cmc) of neat Pluronic 

P105 was noted between 0.2% and 0.4% mass v-1 [72]. 

 

 Figure 2.4 shows the concentration dependence of P104; the endotherm is suppressed at 

~0.5% mass v-1 at ~24.5oC [104]. The P104 cmc we resolved by DSC is slightly higher than that 

observed by Alexandridis et al. [10, 9] (0.3% mass v-1) using UV-visible absorption spectroscopy 

at 25oC.  
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Figure 2.4: DSC results at low P104 content: the critical micelle concentration (cmc) of neat 

Pluronic P104 was noted at ~0.5% mass v-1 at ~24.5oC by DSC [104]. 

 

 It makes sense that the cmc for P104 is similar to that of P105 because the ratio of 

hydrophilic (40% PEO) to hydrophobic (60% PPO) molecules is similar to that of P105’s ratio 

(50% hydrophobic to 50% hydrophilic). 

Figure 2.5 shows the concentration for L101; the endotherm is suppressed at ~3.0% mass 

v-1 at ~12.5oC [104].   
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Figure 2.5: DSC results at low L101 content: the critical micelle concentration (cmc) of neat 

Pluronic L101 was noted at ~3.0% mass v-1 at ~12.5oC by DSC [104]. 

 

 It makes sense that the cmc for L101 is at a higher concentration than the cmcs of both 

P104 and P105 because there is a larger hydrophobic region (40% PPO) compared to the 

hydrophilic region (10% PEO) that forces the micelle to form at higher concentrations.  

 Figure 2.6 shows the concentration dependence for F108; the endotherm is suppressed at 

~4.0% mass v-1 at ~29.4oC [104]. The F108 cmc we resolved by DSC is slightly lower than that 

observed by Alexandridis et al. [10, 9] (4.5% mass v-1) using UV-visible absorption spectroscopy 

at 25oC.  
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Figure 2.6: DSC results at low F108 content: the critical micelle concentration (cmc) of neat 

Pluronic F108 was noted at ~4.0% mass v-1 at ~29.4oC by DSC [104].  

 

It makes sense that the cmc for F108 occurs at a higher concentration than the cmc’s of 

both P105 and P104 because the ratio of hydrophilic (80/% PEO) to hydrophobic (20/% PPO) 

molecules is so far apart that the micelle is unable to form at lower concentrations. This would 

help explain why the cmc for L101 also occurs at a high concentration of 3.0% mass v-1 because 

the ratio of hydrophilic to hydrophobic is so far apart. We would expect the cmc for the more 

hydrophilic polymer, F108, to have a higher cmc than the more hydrophobic polymer, L101, 

because the aqueous solution in which it is suspended helps create a favorable environment 

where the micelle can form much easier at a higher concentration. 

For the larger thermodynamic analysis, we used our cmc values of each copolymer for 

determining S and G. To address the question of how ternary additives affect the 
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thermodynamics of micelle formation, extractions from the low to high concentration regimes 

allow the determination of G and direct measurements of the enthalpy of micellization. From 

these measurements, thermodynamic plots of H-S can be produced both in a neat state and in 

the presence of methylparaben or cisplatin. Figures 2.8-2.10 show the enthalpy-entropy 

compensation plots for P105 and P104, for their neat states and are compared to each amphiphile 

solution mixed with methylparaben or cisplatin. Two types of behaviors were observed with, a 

cisplatin-influenced compensation temperature profile (P104) and a cisplatin-insensitive 

compensation temperature profile (L101, P105, and F108). 

 

2.3.3  Effect of Methylparaben on Micelle Formation Energetics 

Figure 2.7 shows how adding methylparaben (MP) to 10% P105 solutions with 

increasing amounts of MP affected H, which changed from 350.8 to 318.2 kJ mol-1 when 

increasing amounts of MP was added up to 1% mass v-1 [72]. The presence of MP modulates the 

interaction energy of the mixtures and reduces the size of both the micelle formation endotherm 

and its peak temperature.  A similar suppression was noted by Bouchemal et al. [121] who 

characterized 1,2 propanediol in F127 and noted a ~20% smaller endotherm when added as 

much as 2.3 w/v%.  Kelarakis noted the near athermal micellization in other diblocks [122, 123].  

If ternary compounds raise structural disorder, the enthalpy contribution to micelle formation 

should be reduced. 
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Figure 2.7: Increasing concentrations of MP in 10% P105 reduces both the Tmicelle and H [72]. 

Standard deviation less than 0.05 for all points, therefor error bars are too small to be shown 

given the scale of the y-axis.    

 

At higher concentrations relative to the P105 solution concentration, the presence of MP 

cannot suppress micelle formation. 80% of the original endotherm is still observable in 10% 

P105 with 1% MP.   

The larger question overall is how the relative impact of the ternary additive affects the 

thermodynamics. To address this question, extractions from the low concentration regime allow 

the determination of ΔG and direct measurements of the enthalpy of micellization. From these 

measurements, thermodynamic plots of ΔH-ΔS can be produced both in a neat state and in the 

presence of MP.    

Figure 2.8 is the enthalpy-entropy compensation plot for neat P105 (grey squares) that 

yields a compensation temperature of 294 K [72].  The compensation temperature determined for 
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neat P105 is very similar to that resolved for the 8-series of Pluronic (e.g. F68, F98) of 291.2 K 

[124].  Adding MP to the mixture triggers a rise in the compensation temperature from 294 K to 

328 K (blue circles) treated as a separate dataset.  

Figure 2.8: The enthalpy-entropy (H-S) compensation plot for P105, solutions both neat (grey 

squares) and co-formulated with MP (blue circles) [72]. Upper and lower bounds for neat P105 

(yellow line slope = 297 K, and red line slope = 281 K respectively) and co-formulated with MP 

(blue line slope = 340 K, and green line slope = 317 K) represent 95% confidence intervals.   

 

 If the compensation temperature represents solute-solvent interactions, then the slopes of 

the H-S curves with and without ternary additives should be different. It seems appropriate 

that adding a ternary species might influence the energetics of micelle formation. We compared 

our results to published work by Bouchemal et al. [14] who using 1,2-propanediol with F127 

using Isothermal Titraction Microcalorimetry. Interestingly, by using separate temperature 

compensation slope determinations, we observe from their results a similar rise in the 

compensation temperature from 293.3 to 316.5 K when co-formulated with 1,2-propanediol [14]. 

Their original analysis reported a mean Tcompensation of 298.1 K [14]. 
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2.3.4  Effect of Cisplatin on Micelle Formation Energetics 

 Figure 2.9 is the enthalpy-entropy compensation plot for neat P105 that yields a 

compensation temperature of 289 K [104]. This determination is similar to that resolved for other 

PEO-PPO-PEO micelle structures (F108, F98, F88, F68, F38, and P65) of 291.03 K [71], 294.9 

K for F88 and F68 [92], 293.3 K for F127 [14], 281 K for 12 Pluronics [91], between 280-298 K 

for a range of copolymers [93], 285 K for series of hydrocarbons [81], 293.9 K for neat P105 

determined by an averaging algorithm [72], and 287 K through 319 K on 23 amphiphile systems 

[94].  Here we found that adding cisplatin to P105 was within range of the compensation 

temperature for neat P105. If there is an interaction between P105 and cisplatin, the energetics of 

the new interactions are not influencing the structure. This observation makes sense if the 

cisplatin is more bound in the aqueous solution and not interacting strongly within then micelle. 

We observed similar behavior for other PEO-PPO-PEO copolymers that were both more (F108) 

and less (L101) hydrophilic and found similar statistical insignificance of cisplatin on the 

modified compensation temperature.   
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Figure 2.9: The enthalpy-entropy (ΔH-ΔS) compensation plot for P105, both neat (blue triangle) 

and co-formulated with cisplatin (orange squares) [104]. Upper and lower bounds for neat P105 

(grey line slope = 297 K, and yellow line slope = 281 K respectively) and co-formulated with 

cisplatin (blue line slope = 290 K, and green line slope = 288 K) represent 95% confidence 

intervals.   

 

 Figure 2.10 is the enthalpy-entropy compensation plot for neat P104 that yields a 

compensation temperature of 302 K [104]. The P104 compensation temperature is higher 

compared to the other copolymers investigated as part of this study, but similar to that resolved 

for ionic surfactants of 319 K [90], Tetronic T904 in Na2SO4  (317.9 K) [93], 328.43 K for P105 

co-formulated with methylparaben [72], and 287 K through 319 K on 23 amphiphile systems 

[94]. Adding cisplatin to the mixture reduces the compensation temperature from 302 K to 289 

K, typical of the other PEO-PPO-PEO mixtures [14, 71, 72, 81, 91, 93, 94]. We attribute the 

compensation temperatures decrease in drug-loaded P104 condition to a larger interaction 

between cisplatin and the copolymer structure. Lee et al. [85] indicated that when the addition of 

a solute decreases both the enthalpy and entropy, this indicates a lowering of solution 
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hydrophobicity and is a characteristic of solute-solute and solute-solvent interactions. It is 

conceivable that cisplatin is more situated at the core/shell interface which would likely lead to a 

larger thermodynamic effect. If the cisplatin was less effective at changing the compensation of 

the other mixtures, then we assume that the drug is more fully engulfed in the corona or in 

solution, thus not affecting the hydrophobicity of the overall solution. 

 

Figure 2.10: The enthalpy-entropy (H-S) compensation plot for P104, both neat (blue squares) 

and co-formulated with cisplatin (orange circles) [104]. Upper and lower bounds for neat P104 

(grey line slope = 308 K, and yellow line slope = 296 K respectively) and co-formulated with 

cisplatin upper and lower bounds (blue line slope = 291 K, and green line slope = 287 K 

respectively) represent 95% confidence intervals.   

 

 

A summary of the enthalpy-entropy compensation temperatures for all the PEO-PPO-

PEO copolymers we have studied (P105, P104, F108, L101) in both the neat states and co-

formulated with cisplatin, along with corresponding correlation values (R2), are presented in 

Table 2.2 [104]. A summary of our cmc values compared with others are also included.  
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Table 2.2 Copolymer cmc values, compensation values, and correlation values of neat and co-

formulated with cisplatin [104]. Each compensation temperature was tested to determine whether 

the slopes were statistically significantly different from one another with a 95% confidence 

interval. 

PEO-PPO-

PEO 

Copolymer 

type 

cmc/% mass 

v-1 by DSC 

cmc/% mass v-1 

by Cloud Point  

Neat 

compensation 

temperature (K) 

 

R2 Cisplatin-

modulated 

compensation 

temperature (K) 

R2 

P105 0.4% 0.3% [10] 289 CI [281, 297] 0.9978 289 CI [288, 290] 0.9999 

P104 0.5% 0.3% [10] 302 CI [296, 308] 0.9988 289 CI [287, 291] 0.9998 

F108 4.0% 4.5% [10] 297 CI [292, 298] 0.9998 296 CI [294, 297] 0.9998 

L101 ~3.0%   283 CI [281, 285] 0.9999 284 CI [281, 287] 0.9996 

 

Along with P105, the compensation temperatures for L101 and F108 also showed very 

little changes from the neat states to the cisplatin-loaded states, which suggests that cisplatin 

does not seem to affect the energetics of micelle formation in the copolymers. Cisplatin is likely 

fully contained in the hydrophilic regions of each dispersion.   

Since the compensation temperature represents solute-solvent interactions [14, 81-83, 85-96], 

then the slopes of ΔH-ΔS curves with and without ternary additives should be different if the 

ternary constituent interferes with energetics of micelle formation.  As observed in our previous 

study with methylparaben [72], adding a ternary species influenced the energetics of micelle 

formation. Here, we observe a compensation temperature invariance adding cisplatin to P105, 

F108, and L101. The invariance suggests that the energetics of micelle formation are not being 

influenced by the presence of cisplatin.  Instead, we only observed a change in the energetics of 

micelle formation adding cisplatin to P104, which is more similar to our observations with 

methylparaben and F127 [16, 15].  

A schematic of cisplatin sequestration within micelles is provided in Figure 2.11 [104]. 

Cisplatin is considered to be hydrophilic due to its polarity, but Ng et al. [125] has referred to it 

as being moderately hydrophilic. As such, it is postulated that cisplatin is found both distributed 

within the corona and at the core-shell interface. There have been other efforts to conjugate and 
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alter the cisplatin binding within the micelle, following work by Desale et al. [126], who used an 

anionic glutamic acid block to coerce cisplatin more comprehensively to the core-shell 

interphase separating the hydrophilic and hydrophilic blocks. The moderate hydrophilicity of 

cisplatin might help explain why in the DSC we only observed a variation in the compensation 

temperature with and without cisplatin for P104. There is something about the ratio of 

hydrophilic to hydrophobic segments for P104 that interacts with cisplatin and affects the 

energetics. The key experiment is to perform controlled scattering studies to identify exactly 

where within micelles the platinum beacons are situated on average. The presence of cisplatin is 

essentially a perturbant in the micelle and if it disrupts the organization of the micelle, it seems 

plausible that the energetics of micelle formation might be suppressed if the payoff for forming a 

micelle comes with the penalty of distributing the cisplatin within the formed micelle.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.11: Schematic showing how cisplatin is distributed within micelles portioning between 

the PEO corona and the core-shell interface with PEO-PPO-PEO Pluronic P104 [104]. 
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2.4  Conclusions 

 

We have probed how MP and cisplatin affects PEO-PPO-PEO micelle formation in the 

low concentration regime to identify a critical micelle concentration and at higher concentrations 

co-formulated with MP and cisplatin.  The critical micelle concentrations found for the 

copolymers we tested were similar to those from previous work [72, 10, 9]. Increasing P105 

from 4% to 10% reduced Tmicelle and raised the endotherm. We propose that the enthalpy-entropy 

compensation plot for neat and MP or cisplatin-loaded solutions of amphiphilic copolymers can 

resolve the perturbation in the micelle formation energetics due to the additive. The Tcompensation 

values found here have also been compared to measurements from previous works [14, 71, 72, 

81, 90-94]. The use of temperature compensation plots is an indicator of surfactant quality in 

formulated dispersions coerced into directed assembly.  Tcompensation was essentially invariant 

adding cisplatin to the highly hydrophobic copolymer (L101), the hydrophilic copolymer (F108) 

and had a profound effect on the more amphiphilic P104.  These results might help explain 

where within amphiphilic copolymer micelles various drugs of a certain hydrophilicity are 

situated if cisplatin is partitioned to the core-shell interface of the micelle. The large difference in 

the behavior of Tcompensation between P104 and P105 belied their subtle difference in the structure, 

which was not anticipated as the Tcompensation for P105 was also invariant by adding cisplatin.  Our 

findings present a rationale for explaining how the presence of ternary additives, like MP and 

cisplatin, interacts thermodynamically with forming micelles and the potency of the interaction 

between drug and micelle might regulate drug bioavailability. 
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CHAPTER III 

 

Structural Analysis of Micelle Formation 

 

 

3.1  Introduction 

It is known that ternary additives can influence the aqueous micellization and gelation 

behavior of PEO-PPO-PEO amphiphiles [15, 16, 72, 104]. Methylparaben, for example, lowers 

the gelation temperature of the amphiphile F127 solution by as much as 10-15oC [12, 16]. A 

structural evaluation is important to understand the structure-property relationship that exists in 

these pharmaceutical loaded amphiphile formulations. 

In the previous chapter, we probed how cisplatin affects the PEO-PPO-PEO micelle 

formation in the low concentration regime to identify a critical micelle concentration and at 

higher concentrations co-formulated with cisplatin [104]. We proposed that the enthalpy-entropy 

compensation plots for neat and cisplatin-loaded solutions of amphiphilic copolymers can 

resolve the perturbation in the micelle formation energetics due to the additive [104]. The use of 

temperature compensation plots is an indicator of surfactant quality in formulated dispersions 

coerced into directed assembly [104]. Tcompensation was essentially invariant adding cisplatin to the 

highly hydrophobic copolymer L101, the hydrophilic copolymer F108, and the more amphiphilic 

copolymer P105, but cisplatin had a profound effect on the more amphiphilic P104 [104].  

Our group has previously investigated the effect of heating rate on the gelation of both 

F127 and F127-methylparaben solutions and found that not only does the presence of 

methylparaben lower the gelation temperature; it also accelerates the gel transition [16]. We also 
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previously used small-angle X-ray scattering (SAXS) to investigate the crystalline structure of 

F127 solutions as they are heated through their gelation temperatures both neat and co-

formulated with methylparaben and dexamethasone [15]. We found that the presence of 

methylparaben and dexamethasone facilitates or enhances the structural ordering, allowing 

ordered phases to emerge at lower temperatures and remain at higher temperatures as compared 

to the neat F127 solutions [15]. However, the gelation kinetics of amphiphiles P104, P105, and 

F108 as they interact with a ternary additive like cisplatin is less well known. A more direct 

evaluation of structural evolution is needed to better understand the transition from the 

disordered to the ordered state for P104, P105, and F108.  

SAXS and SANS scattering have been used previously to study the structure and 

organization of micellar systems [1, 5, 127, 128, 15], including P104 [129-141], P105 [142-147], 

and F108 [148-156]. These techniques allow insight into both the structures within the micelles 

and the lattice structures into which they arrange. Svensson et al. [135] noticed SAXS diffraction 

patterns for P104 in the normal micellar liquid crystalline phase, I1, composition 31% mass v-1 at 

25oC. Using DSC, we also noticed P104 was profoundly influenced by the presence of cisplatin 

that must influence the core-shell interface between the hydrophobic and hydrophilic regions of 

the micelle [104]. In this chapter, we use SAXS to investigate the crystalline structure of P104, 

P105, and F108 solutions as they are heated through their gelation temperatures. Our aim is to 

identify changes in quasicrystalline lattice formation as an effect of added pharmaceuticals, and 

resolve whether cisplatin is located within the micelles’ core, shell, core-shell interface, or 

randomly dispersed in solution. We also observe structural changes associated with the presence 

of cisplatin on P104, P105, and F108 and examine the different kinetics of gel formation with 

varying core-shell dimension. With the complications for therapeutic delivery linked with the 
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limited solubility of hydrophobic drugs, key features in bioavailability could be linked to the 

thermodynamic mixing drug and amphiphile combinations.  

The experiments, results, and discussion covered in this chapter are in final preparations 

to be submitted for review [157]. 

3.2  Materials and Methods 

3.2.1  Solution Preparation 

Pluronics P104, P105, and F108 were obtained from BASF (Wyandotte, MI) and used as 

received. Aqueous solutions of 31% mass v-1 P104, P105, and F108 were each prepared 

according to the “cold” processing method of Schmolka [29] by dissolving weighed amounts of 

each amphiphile into distilled water, which were then left to solubilize quiescently at 4oC. At this 

high concentration, repeated cool/mix cycles were needed to fully solubilize the polymers. 

Cisplatin (Sigma-Aldrich) was used as received and added to aqueous solutions of these varying 

Pluronics (P104, P105, F108). 

Two types of formulation protocols were followed. One fixed each Pluronic (P104, P105, 

and F108) content and cisplatin content at 31% mass v-1 and 0.1% mass v-1 respectively, to 

investigate the structures formed in both neat and co-formulated with cisplatin to study both the 

progressive evolution and breakdown of these structures as the temperature is increased from 

10oC to 35oC. To see if cisplatin affects the kinetics of micelle and gel formation temperatures as 

a function of concentration, we also fixed P104 (31% mass v-1) and varied the cisplatin 

concentrations from 0.02% to 0.1% mass v-1 in 0.02% increments through 10oC to 35oC.  
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3.2.2  Small-Angle X-Ray Scattering (SAXS) 

SAXS experiments were conducted at Argonne National Laboratory (Argonne, IL) at the 

Advanced Photon Source (APS) on beamline 12-BM-B operating at 12 keV. Static heating tests 

were used to probe the structure at a series of discrete temperatures between 10oC and 35oC. 

Each sample was aliquoted into thin-walled capillary tubes (0.01 mm wall thickness) and 

simultaneously placed into the heating stage illumination. Each sample was subjected to a 1-

minute equilibration time at 10oC to ensure the sample temperature was uniform and steady. 

Scattering data was collected for each sample for 1 minute. After measuring each sample at the 

corresponding temperature, the heating stage ramped up 2oC, followed by a subsequent 1-minute 

equilibration, then re-exposed again for 1 minute. This process was repeated until 34oC was 

reached. During the heating and equilibration phases, the X-ray shutters were closed to avoid 

unnecessary exposure to the beam. The starting and final temperatures were chosen to be well 

below and above the gelation temperature of the sample, respectively from prior determinations 

of the critical micelle concentrations of P104, P105, and F108 using DSC [72, 104]. 

3.2.3  Data Collection and Analysis 

2D SAXS data were collected. The data was integrated around the azimuthal axis to 

generate 1D plots of the measured intensity as a function of the scattering vector q using 

SASView. Peak positions in the generated I (q) plots were quantified using OriginLab’s peak 

analyzer function. These peaks were then compared to the expected reflections for the various 

known crystal structures in order to identify the structures present in the solution. Table 3.1 [157] 

presents a summary of the first five peaks and their positions relative to the fundamental 

scattering peak for the fcc and bcc crystal systems [15].  
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Table 3.1: Summary of expected peaks and relative peak positions for the bcc and fcc crystal 

systems 

Crystal q0 q1 q2 q3 q4 

bcc (110) (200) (211) (220) (310) 

position q0 21/2 q0 31/2 q0 41/2 q0 51/2 q0 

fcc (111) (200) (220) (311) (222) 

Position q0 (4/3)1/2q0 (8/3)1/2 q0 (11/3)1/2q0 (12/3)1/2q0 

 

The size of a cubic unit cell 𝑎, can be obtained by plotting (q/2π)2, where q is the scattering 

vector, versus the Miller indices (h2 + k2 + l2) of the cubic structures, according to Equation (3.1) 

[140]. 

(q/2π)2 = (1/𝑎)2(h2 + k2 + l2)     (3.1) 

At the APS beamline 12-BM-B, 12 keV of beam energy was used allowing us to solve for 

frequency, ν, in Equation (3.2).  

E = hν       (3.2) 

Where E is energy of the beam and h is Planck’s constant. Using frequency, ν, and speed of light, 

c, Equation (3.3) can be used to solve for the wavelength, λ, of the X-rays.  

λ = 
𝑐

𝑣
        (3.3) 

The relationship between q and theta for SAXS is identified in Equation (3.4) where 2θ is the 

angle between the incident X-ray beam and the detector measuring the scattering intensity. 

q = 
4π sin(θ)

       λ
      (3.4) 

Using Bragg’s law, Equation (3.5) can be used to solve for the spacing, d, between adjacent (hkl) 

lattice planes. 

d = 
λ

2sin(θ)
      (3.5) 
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Finally, using the spacing, d, for cubic crystals as length, L, and the change in temperature, ΔT, 

assuming negligible effect of pressure, the linear thermal expansion coefficient, αL, can be 

calculated with Equation (3.6).  

αL = 
∆L

𝐿∆T
      (3.6)  

where L is the original length, and ΔL/ΔT is the rate of change of the linear dimension per unit 

change in temperature.  

3.3  Results and Discussion 

3.3.1  Phase Structure Identification 

Figure 3.1 [157] compares the presence of ordered phases for neat P104 (31% mass v-1) 

and P104 mixed cisplatin (0.1% mass v-1) at 28oC with peak identifications. Crystal structures 

were determined based on their ratio to the fundamental peak. A full list of peak positions and 

phase structure for neat P104 (31% mass v-1) and cisplatin mixed P104 (0.02%-0.1% mass v-1) at 

28oC is listed in Table 3.2 [157].   
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Figure 3.1: Comparison of peak identifications of neat P104 (31% mass v-1) and P104 mixed 

cisplatin (0.1% mass v-1) at 28oC [157]. 

 

 

Upon analyzing neat P104 at 28oC, it appears the primary peak, (111) at q0, is suppressed 

with added cisplatin, while preserving the higher order peaks. The higher order peaks are also 

enhanced with added cisplatin, evidenced by a sharp rise in the signal to noise ratio. For 

example, for the fcc peak (220) at (4/3)1/2q0 for neat P104, the intensity increased from 0.13:0.18, 

while with added cisplatin, the intensity for the same peak increased from 0.16:0.26. This 

suggests cisplatin either enhances the structural ordering of the fcc phase of micelle formation in 

P104 or the platinum atom, itself  a strong scatterer, and its colocation in organized arrays within 

the micelles enhances the coherence of the scattering when its partitioned within the colloidal 

crystals. Since the higher order peaks are enhanced and no broad scattering is observed once 

cisplatin is added, it is reasonable to consider that cisplatin is situated within the micelle structure 

and not randomly distributed in solution. This adds further evidence to our previous claim (using 
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DSC) that the moderately hydrophilic cisplatin is found both distributed within the corona and at 

the core-shell interface of the micelle structure [104]. There are also slight shifts to higher q 

values with added cisplatin (Table 3.2), which the presence of cisplatin reduces the lattice plane 

spacing [157]. This observation compares to work we have previously discovered using DLS to 

determine micelle size [16]. We concluded the presence of methylparaben increased the micelle 

monodispersity, which led to tighter packing with fewer defects in the lattice, thus producing 

small observed shifts in the lattice parameter [16]. Further studies are needed to better 

characterize the size of P104, P105, and F108 micelles with added cisplatin. The additives may 

play a role in facilitating transitions between regions within the micelle. 

Not shown here, adding cisplatin had little effect on the temperature where ordering 

occurred relative to neat P104 samples. For example, an ordered phase was first seen in the 20oC 

measurement for neat P104, as compared to 17oC-20oC measurement for the cisplatin mixed 

P104 samples. The breakdown of the neat P104 ordered phases were, however, evident at higher 

temperatures. As shown in Figure 3.1 [157], the fcc phase is present at 28oC, but a breakdown of 

the fcc phase occurs between 30oC -34oC. As the concentration of cisplatin increased, however, 

the presence of ordered phases was preserved at slight higher temperatures (29oC-30oC). This 

indicates a cisplatin induced stabilization of the quasicrystalline lattice in P104 gels at slightly 

higher temperatures. Preserving ordered phases with the addition of a ternary additive was 

previously observed with the addition of methylparaben and dexamethasone in F127 gels [15]. 

Figure 3.2 [157] compares the presence of ordered phases for neat P105 (31% mass v-1) 

and P105 mixed cisplatin (0.1% mass v-1) at 28oC with peak identifications. A full list of peak 

positions and phase structure for neat P105 (31% mass v-1) and cisplatin mixed P105 (0.1% mass 

v-1) at 28oC is listed in Table 3.2 [157].   
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Figure 3.2: Comparison of peak identifications of neat P105 (31% mass v-1) and P105 mixed 

cisplatin (0.1% mass v-1) at 28oC [157]. 

 

In this case, for cisplatin mixed P105 at 28oC, it appears the primary peak, (110) at q0, 

was not suppressed, but only the bcc peak (211) at 31/2q0 was enhanced (increase from 0.16:0.23 

to 0.17:0.26). The bcc peak (200) at 21/2q0 is also more defined with added cisplatin which 

suggests cisplatin enhances the structural ordering of the bcc phases of micelle formation in P105 

and the phases are stable. Since the higher order peaks are enhanced and no random scattering is 

observed once cisplatin is added, this also indicates cisplatin is situated within the micelle 

structure and not randomly distributed in solution. There is a slight shift to lower q values with 

added cisplatin (Table 3.2), which indicates cisplatin is increasing the lattice plane spacing by a 

small amount [157]. 

Similar to P104, the presence of cisplatin had little effect on the temperature where 

ordering occurred relative to neat P105 samples. For example, an ordered phase was first seen in 
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the 18oC measurement for neat P105 as compared to 20oC measurement for the cisplatin mixed 

P105 samples. Breakdown of the ordered phases was also evident at higher temperatures for neat 

P105 as the bcc phase with the highest intensity was at 28oC, with decreasing intensity at 30oC, 

and random scattering at 34oC. For cisplatin mixed P105, however, the highest intensity was 

preserved at 30oC, with random scattering at 34oC. Cisplatin helped to stabilize the 

quasicrystalline lattice in P105 gels as well.  

Figure 3.3 [157] compares the presence of ordered phases for neat F108 (31% mass v-1) 

and F108 mixed cisplatin (0.1% mass v-1) at 28oC with peak identifications. A full list of peak 

positions and phase structure for neat F108 (31% mass v-1) and cisplatin mixed F108 (0.1% mass 

v-1) at 28oC is listed in Table 3.2 [157]. 

Figure 3.3: Comparison of peak identifications of neat F108 (31% mass v-1) and F108 mixed 

cisplatin (0.1% mass v-1) at 28oC [157].  
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Similar to cisplatin mixed P104 at 28oC, cisplatin mixed F108 has the primary peak, 

(110) at q0, suppressed significantly. This primary peak suppression was observed previously 

with dexamethasone and F127 [15] and thin films of poly(alkoxyphenylenevinylene-b-isoprene) 

rod-coil copolymers arranged into lamellar structures [158]. In this case, cisplatin reduces the 

higher order peaks (from 0.17:0.21 to 0.16:0.18), which suggests cisplatin destabilizes the 

structural ordering of the bcc phase of micelle formation in F108. Since the higher order peaks 

are compressed and there is evidence of random scattering observed once cisplatin is added, this 

would suggest cisplatin is not fully situated within the micelle structure and it is randomly 

distributed in solution. This would make sense, since cisplatin is moderately hydrophilic and 

F108 is 80% hydrophilic, so the platinum particles are randomly distributed throughout the 

corona and aqueous solution.  Similar to P105, there are also slight shifts to lower q values with 

added cisplatin for F108 (Table 3.2), which indicates cisplatin is expanding the lattice plane 

spacing [157]. 

Similar to P104 and P105, the presence of cisplatin also had little effect on the 

temperature where ordering occurred relative to the neat F108 samples. An ordered phase was 

first seen in the 22oC measurement for neat F108, as compared to 23oC measurement for the 

cisplatin mixed F108 sample. Breakdown of the ordered phases was evident at higher 

temperatures for neat F108 as the phases with the highest intensity was present at 30oC, and 

random scattering at 34oC. For cisplatin mixed F108, the same trend was observed. This 

indicates cisplatin has no effect on the stabilization of the quasicrystalline lattice in F108 gels.  

 Studies have been carried out to measure the localization or interaction of ternary 

additives with PEO-PPO-PEO micelles [159-163]. Desale et al. [164] used an anionic glutamic 

acid block to coerce cisplatin more comprehensively to the core-shell interphase separating the 
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hydrophilic and hydrophobic blocks to conjugate and alter the cisplatin binding within the 

micelle. Based on prior work [104], we believe that the added cisplatin is also localized in the 

core-shell interphase of the micelles for P104, and P105. The moderate hydrophilicity of 

cisplatin might help explain why the enhanced intensity of structural ordering in P104 and P105, 

but not in F108. There is something about the ratio of hydrophilic to hydrophobic segments for 

P104 and P105 that interacts with cisplatin and affects the energetics. 

Table 3.2 [157] shows the identified peak positions for each sample in Figures 3.1, 3.2, 

and 3.3 [157], and the associated crystal structure identified from peaks present at 28oC. Table 

3.2 [157] also shows the calculated size of each cubic unit cell, 𝑎 (Å), using Equation (3.1), and 

the calculated linear thermal expansion coefficient, αL (
oC-1), using Equation (3.6) [157].  

 

Table 3.2: Fundamental (q0) and higher order (qn) peaks (in units of Å-1), identified phase 

structure, fcc (a), bcc (b), unit cell size, 𝑎 (Å), and linear thermal expansion coefficient, αL (
oC-1), 

at 28oC for neat P104, P105, and F108 (31% mass v-1) and mixed cisplatin (0.02% - 0.1% mass 

v-1) [157].  

Sample q0 (Å-1) q1 q2 q3 q4 Phase 𝒂(Å) αL (oC-1) 

Neat P104 .0462 .0541a .0765a .0900a - FCC 232 9.7x10-3 

P104-cisp 0.02% .0463 .0537a .0761a .0891a - FCC 234 8.1x10-3 

P104-cisp 0.04% .0493 .0555a .0785a .0918a - FCC 226 8.6x10-3 

P104-cisp 0.06% .0509 .0535a .0781a .0910a - FCC 227 9.0x10-3 

P104-cisp 0.08% .0492 .0546a .0776a .0909a - FCC 229 9.0x10-3 

P104-cisp 0.1% .0483 .0556a .0787a .0925a - FCC 226 8.8x10-3 

Neat P105 .0478 .0577b .0822b .0962b - BCC 187 3.8x10-3 

P105-cisp 0.1% .0470 .0573b .0813b .0953b - BCC 189 4.4x10-3 

Neat F108 .0410 .0578b .0709b .0820b .0913b BCC 217 1.8x10-4 
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F108-cisp 0.1% .0399 .0565b .0691b .0790b .0890b BCC 223 1.6x10-3 

 

It is interesting to note that the most hydrophobic copolymer, P104, is fcc, while the most 

amphiphilic, P105, and most hydrophilic, F108, is bcc. This may indicate that hydrophilicity 

plays a role in the phase of the micelle structures at these temperatures.  

For P104, the neat copolymer and cisplatin mixed copolymer were all fcc phases with 

identifying peaks (111), (200), (220), and (311) (at q0, (4/3)1/2q0, (8/3)1/2q0, (11/3)1/2q0, 

respectively). Santos et al [140] also reported fcc phase structure in the Fm3m space group for 

30%, 40%, and 34% P104 in 70% H2O, 60% H2O, and 63.4% H2O/2.4% poly(acrylic acid) 

respectively at 25oC. For P105, the neat copolymer and cisplatin mixed copolymer were all bcc 

phases with identifying peaks (110), (200), (211), and (220) (at q0, 2
1/2q0, 3

1/2q0 and 2q0 

respectively). Hossain et al. [145] also reported bcc phase structure in the Im3m space group for 

39% P105 in 61% water at 25oC. Alexandridis et al. [147], however, observed a primitive phase 

structure in the Pm3n crystallographic space group for 40%/60% P105/formamide at 30oC. For 

F108, the neat copolymer and cisplatin mixed copolymer were both bcc phases with identifying 

peaks (110), (200), (211), (220), and (310) (at q0, 2
1/2q0, 3

1/2q0, 2q0, and 51/2q0 respectively). 

Quinn et al. [152], however, reported a reversed “double diamond-type” cubic phase, with a 

Pn3m space group for 0.5 g L-1 F108-graphene dispersions at 25oC.    

3.3.2  Unit Cell Size 

Figure 3.4 [157] shows the effect cisplatin concentration has on the unit cell size of P104 

micelles using Equation (3.1) for neat P104 (31% mass v-1) and cisplatin (0.02%-0.1% mass v -1) 

mixed P104 at 28oC. The calculated unit cell size for each sample is listed in Table 3.2. 
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Figure 3.4: Neat P104 (31% mass v-1) and cisplatin (0.02-0.1% mass v-1) mixed P104 unit cell 

determination (q/2π)2 versus (h2 + k2 + l2) from Equation (3.1) [157].  

 

As shown in Figure 3.4 [157] and calculated unit cell size values in Table 3.2 [157], 

cisplatin has a slight effect on the size of the unit cell for P104. As the concentration of cisplatin 

increases, the size of the unit cell decreases. For example, neat P104 has a unit cell size of 232 Å, 

while 0.02%, 0.04%, 0.06%, 0.08%, and 0.1% each have unit cell sizes of 234 Å, 226 Å, 227 Å, 

229 Å, and 226 Å respectively. This suggests that the volume of the unit cell is decreasing with 

increasing cisplatin concentration. This also suggests there is a decrease in water swelling of the 

PEO block. Kayali et al. [136] observed a similar trend of decreasing interfacial area per PEO 

block with increasing copolymer content in P104.  Our neat P104 unit cell size is larger than  

those by Santos et al. [140] who calcuated 207 Å for 30% P104/70% H2O. When Santos et al. 

[140] increased P104 to 36%, and mixed with 54% H2O and 10% poly(acrylic acid)25, they saw a 

more dramatic decrease in unit cell size from 207 Å to 154 Å. 
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Figure 3.5 [157] shows the plot of determining the size of the unit cell using Equation 

(3.1) for neat P105 (31% mass v-1) and cisplatin (0.1% mass v -1) mixed P105 at 28oC. The 

calculated unit cell size for each sample is listed in Table 3.2 [157].   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Neat P105 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed P105 unit cell 

determination (q/2π)2 versus (h2 + k2 + l2) from Equation (3.1) [157]. 

 

Evidenced by the similar slopes and calculated unit cell size values in Table 3.2 [157], 

cisplatin has no significant effect on the size of the unit cell for P105. Neat P105 has a unit cell 

size of 187 Å, while 0.1% cisplatin mixed P105 slightly increased to 189 Å. The no effect on 

unit cell size with the addition of a ternary additive was previously observed by our group using 

DLS for neat F127 (110 Å) and methylparaben mixed F127 (110 Å) at 90o scattering angle [16]. 

Alexandridis et al. [146] also observed only a slight increase in micelle radius as the volume 
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fraction of P105 was increased at 25oC, but in this case, it was attributed to the increased amount 

of PPO in the system which caused a decrease in the area of the PEO block. 

Figure 3.6 [157] shows the plot of determining the size of the unit cell using Equation (3.1) 

for neat F108 (31% mass v-1) and cisplatin (0.1% mass v -1) mixed F108 at 28oC. The calculated 

unit cell size for each sample is listed in Table 3.2 [157]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Neat F108 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed F108 unit cell 

determination (q/2π)2 versus (h2 + k2 + l2) from Equation (3.1) [157]. 

In this case, the addition of cisplatin has a slighly higher effect on the size of the unit cell for 

F108 compared to P105, as shown in Table 3.2 and Figure 3.6 [157]. Neat F108 has a unit cell 

size of 217 Å, while 0.1% cisplatin mixed F108 increased to 223 Å. This suggests that the 

addition of cisplatin causes a slight swelling of the micelle structure. Santos et al. [140] also 

observed an increase in the unit cell size from 207 Å for 30% P104/70 H2O, to 214 Å for 34.1% 

P104/63.4% H2O/2.4% poly(acrylic acid)6000.  
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It is interesting to note that with the addition of cisplatin, the more hydrophobic P104 saw a 

slight decrease in unit cell size, the more amphiphilic P105 saw no change, and the more 

hydrophilic F108 saw a slight increase in unit cell size. This may suggest that hydrophobicity 

plays a role in the size of the unit cell when a slightly hydrophilic ternary additive is introduced.    

3.3.3  d-spacing and Thermal Expansion 

Figure 3.7 [157] shows the length distance, d (Å), between adjacent (hkl) lattice planes 

for the fcc crystal structure of neat P104 (31% mass v-1) and cisplatin (0.02%-0.1% mass v-1) 

mixed P104 with increasing temperature.   

Figure 3.7:  d-spacing (Å) of neat P104 (31% mass v-1) and cisplatin (0.02%-0.1% mass v-1) 

mixed P104 with increasing temperature [157]. 

As shown in Figure 3.7 [157], as the concentration of cisplatin is decreased, the spacing 

between adjacent lattice planes for P104 is decreasing with increasing temperature. For example, 
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the distance per unit temperature for neat P104 is 0.73 Å/oC. The distance per unit temperature 

for decreasing cisplatin concentration is 0.76 Å/oC, 0.72 Å/oC, 0.68 Å/oC, 0.67 Å/oC, and 0.61 

Å/oC for 0.1%, 0.08%, 0.06%, 0.04%, and 0.02% respectively. This suggests that the distance 

between lattice planes for P104 and cisplatin is concentration dependent. This also suggest that 

without the presence of cisplatin, water has a swelling effect of the PEO block causing the 

distance between adjacent lattice planes to decrease. Santos et al. [140] also observed a similar 

trend as the calculated length of 45.3% P104/54.7% H2O was 129 Å, and with the formulation of 

49% P10/31% H2O/20% PAA6000 and 54.4% P104/20.7% H2O/24.9% PAA25, the distance 

decreased to 119 Å and 109 Å respectively.  

 Using the data in Figure 3.7 [157] and Equation (3.6), the linear thermal expansion 

coefficient, αL, was calculated for neat P104 (31% mass v-1) and cisplatin (0.02%-0.1% mass v-1) 

mixed P104. Results are shown in Table 3.2 [157]. As expected, the linear thermal expansion 

coefficient is decreasing as the concentration of cisplatin is decreasing. For example, the 

coefficient at neat P104 is 9.7x10-3 oC-1, while with added cisplatin, the coefficient decreases to 

8.8x10-3 oC-1, 9.0x10-3 oC-1, 9.0x10-3 oC-1, 8.6x10-3, and 8.1x10-3 oC-1, for 0.1%, 0.08%, 0.06%, 

0.04%, and 0.02% cisplatin respectively. This further indicates that water has a swelling effect 

without the presence of cisplatin which decreases the distance between adjacent lattice planes of 

the fcc P104 crystal structure as the temperature is increased.  

Figure 3.8 [157] shows the length distance, d (Å), between adjacent (hkl) lattice planes for 

the bcc crystal structure of neat P105 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed P105 

with increasing temperature.   
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Figure 3.8: d-spacing (Å) of neat P105 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed P105 

with increasing temperature [157]. 

For P105, it seems cisplatin has the opposite effect compared to P104 for the spacing 

between adjacent lattice planes. As shown in Figure 3.8 [157], the spacing per unit temperature 

in neat P105 is 0.25 Å/oC, while with added cisplatin this length slightly increases to 0.30 Å/oC. 

This suggests that cisplatin has no swelling effect of the PEO block, and overall the structural 

parameter is only slightly influenced by temperature or the addition of cisplatin. Alexandridis et 

al. [146] also reported a slight increase in the lattice paramenters, d (Å), for 60%/40% 

P105/water, but overall the phases are not much influenced by the increase in temperature (from 

20oC to 70oC). Our d-spacing length values for adjacent P105 lattice planes are comparable to 

Hossain et al. [145] that reported between 50 Å and 100 Å for 39:61 P105-water at 25oC. 

Using the data in Figure 3.8 and Equation (3.6) [157], the linear thermal expansion 

coefficient, αL, was calculated for neat P105 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed 
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P104. Results are shown in Table 3.2 [157]. As expected, the linear thermal expansion 

coefficient slightly increased with the addition of cisplatin from 3.8x10-3 oC-1 for neat P105, to 

4.4x10-3 oC-1 for cisplatin mixed P105. This further indicates that cisplatin has no swelling effect 

of the PEO block, and the overall structure is slightly influenced by temperature.  

Figure 3.9 [157] shows the length distance, d (Å), between adjacent (hkl) lattice planes 

for the bcc crystal structure of neat F108 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed 

F108 with increasing temperature.   

  

 

Figure 3.9:  d-spacing (Å) of neat P105 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed P105 

with increasing temperature [157]. 

For F108, it seems cisplatin has a profound effect on the spacing between adjacent lattice 

planes in the bcc F108 crystal structure. As shown in Figure 3.9 [157], the spacing per unit 

temperature in neat F108 is 0.012 Å/oC, while with added cisplatin the length significantly 

increased to 0.13 Å/oC. This suggests that cisplatin has no swelling effect of the PEO block, but 
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the presence of cisplatin does cause the distance between adjacent lattice planes to increase. As 

shown in Figure 3.3 [157], cisplatin destabilizes the structural ordering of the bcc phase of 

micelle formation in F108. As the temperature is increased with added cisplatin, there are fewer 

ordered micelle structures in solution which causes the distance between the adjacent crystal 

lattice planes to increase. 

Using the data in Figure 3.9 and Equation (3.6) [157], the linear thermal expansion 

coefficient, αL, was calculated for neat F108 (31% mass v-1) and cisplatin (0.1% mass v-1) mixed 

F108. Results are shown in Table 3.2. As expected, the linear thermal expansion coefficient 

significantly increased with the addition of cisplatin from 1.8x10-4 oC-1 for neat F108, to 1.6x10-3 

oC-1 for cisplatin mixed F108. This further indicates that cisplatin has no swelling effect of the 

PEO block, and the overall structure is greatly influenced by the addition of cisplatin and the 

change of temperature.  

3.4  Conclusions 

SAXS analysis of P104, P105, and F108 solutions also containing cisplatin has revealed 

several key changes in their phase behavior relative to neat systems. For P104 and P105, the 

presence of cisplatin facilitates or enhances the structural ordering with sharper peaks at the same 

temperatures compared to the neat samples. Unexpectedly, F108 showed the opposite effect as 

the intensity decreased with added cisplatin indicating a destabilization of the ordered phases. 

We have found little evidence to suggest that the presence of cisplatin helps coerce ordering of 

P104 and P105 as they evolve, but it apparently adds to the structural disorder in F108, a more 

hydrophilic colloidal crystal. The presence of cisplatin in the amphiphilic copolymers also 

produced a unique scattering behavior compared with the neat samples in that the fundamental 

scattering peak was suppressed for much of the tested temperature range. 
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The presence of cisplatin stabilized the quasicrystalline lattice in P104 and P105 gels, 

evidenced by the preservation of ordered phases and high scattering intensities at 30oC for 

cisplatin mixed copolymers, but much lower scattering intensities at 30oC for neat copolymers. 

For P104, adding cisplatin reduced the lattice plane spacing by a small amount, shown in Table 

3.2 and Figure 3,7 [157], with increasing temperature suggesting crystal expansion. The linear 

thermal expansion coefficient for neat P104 was 9.7x10-3oC-1. Adding cisplatin tended to lower 

the expansion coefficient in the range of 10-20% over the entire composition range of cisplatin, 

as resolved by SAXS. With F108, the expansion of the neat system was increased significantly, 

evidenced by the over 700% increase in linear thermal expansion coefficient from 1.8x10-4 oC-1 

to 1.6x10-3 oC-1. The P105 crystal expanded slightly (16%) with added cisplatin. 

Increasing cisplatin concentration was also found to have a weak decreasing trend in the 

unit cell dimensions of P104. Above 0.04% cisplatin, there was a pronounced 2-3% reduction in 

then unit cell size suggesting that there is larger shell overlap in the presence of cisplatin.  

Cisplatin had no effect on the size of P105 unit cell and F108, cisplatin increased the unit cell 

size as neat F108 217 Å, while 0.1% cisplatin mixed F108 increased to 223 Å. This indicates that 

cisplatin is influencing the overlap of the hydrophilic segments in the unit cell from where its 

situated in the micelle 

These experiments show how using SAXS coupled with a dynamic heating protocol, 

structural changes in P104, P105, and F108 amphiphilic copolymer solutions (31% mass v-1) can 

be characterized when formulated with the ternary additive cisplatin (0.02% to 0.1% mass v-1). 

We have shown here that the evolution of the fcc or bcc phase in PEO-PPO-PEO solutions 

follow a nucleation and growth mechanism over a range of temperatures (10oC to 35oC). We 

have observed that adding cisplatin as a ternary additive alters the evolution mechanism from a 
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homogenous to a heterogeneous nucleation. Understanding where chemotherapeutic molecules 

as ternary additives are partitioned within micelles and how they influence the evolving structure 

is important to optimize controlled release systems utilizing amphiphilic copolymers as a drug 

delivery system.  
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CHAPTER IV 

 

Diffusion and Controlled Release of Colloidal Gels 

 

 

4.1  Introduction 

 

Our group has previously studied the effects a third component has on the driving force 

to form polyethylene oxide-polypropylene oxide-polyethylene oxide, PEO-PPO-PEO, micelles 

linked with thermodynamics [72, 104], structural evolution [15], and its gelation [16]. We have 

observed that the third species helps as a chaperone to coerce the formation of micelles and 

colloidal crystals, at lower temperature than what forms normally in the neat stage [72, 104, 15, 

16].  It is clear that the driving force to form a gel is influenced by the third component and as 

phase separation arises, the amphiphilic qualities of the additive likely have an effect on where 

within the forming micelles the ternary constituent is found [72, 104]. The location of the drugs 

within the micelle can also affect the permeability and bioavailability of drug elements 

sequestered within a forming colloidal gel [72, 104].   

Our goal is to package cold chemotherapeutic drugs in these dispersions below their 

critical micelle temperatures, and inject them via syringe-intratumoral delivery therefore 

bypassing an IV drip. Latent body temperature equilibration will trigger the micelle and gelation 

of the copolymer and drug within, causing the drug to be sequestered and alter the release 

characteristics over time rather than from solution. In this chapter, we ran a series of diffusion 

experiments using dialysis tubing cellulose membrane on aqueous polymeric micelles (Pluronic 

F127) mixed with ternary additives at two temperatures over time to study the release 
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characteristics of micelles using Ultraviolet-Visible spectroscopy (UV-Vis) to monitor the 

release rate. The ternary additives studied here are cisplatin, malachite green chloride (green 

dye), and erythrosin B (red dye).   

The experiments, results, and discussion covered in this chapter were submitted and 

published in the Journal of Surfactants and Detergents [165]. 

4.2  Materials and Methods 

4.2.1  Materials 

Polyethylene oxide-polypropylene oxide-polyethylene oxide, PEO-PPO-PEO, Pluronic 

F127 (12,600 g/mol molecular mass), malachite green chloride (C23H25ClN2, 364.91 g/mol 

molecular mass), erythrosin B dye (C20H8I4O5, 835.89 g/mol molecular weight) and cisplatin 

([Pt(NH3)2Cl2], 300.05 g/mol molecular mass) were all obtained from Sigma-Aldrich 

(Milwaukee, WI) and were used as received. The structures of each are shown in Figure 4.1 

[165]. The dialysis tubing cellulose membrane, also obtained from Sigma-Aldrich (21 mm 

average diameter, 33 mm average flat width, 110 ml/ft capacity, 14,000 g/mol molecular mass 

cut-off), was soaked in room temperature deionized water for 5 minutes prior to use.   
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Figure 4.1: (a) Pluronic® F127 (b) Example of PEO-PPO-PEO micelle structure (c) Malachite 

green chloride (d) Erythrosin B dye (e) Cis-dichlorodiammineplatinum(II) (Cisplatin) [165]. 

 

4.2.2  Kinetics of Ternary Additives Release from Pluronic F127 

Approximately 15cm of dialysis tubing cellulose membrane was measured and placed 

into 500ml of room temperature deionized water for several minutes until the tube opened. Then, 

one end of the tube was sealed with a rubber band seal, while the other end remained open to 

receive the solution. 20ml of each solution was added to each tube by pipette, and then the other 

end of the tube was sealed with a rubber band (leaving space for a small air bubble between the 

liquid and the tied knot). The outside of the tube was rinsed with deionized water. The tube and a 

magnetic stirrer were placed into a 1000ml beaker of 500ml of water (either at room temperature 

or at 40C) on a hot plate. Aliquots of the receiving solution inside the beaker were measured at 

various times using UV-Vis to track the release rate for each ternary additive. A schematic of 

this setup is provided in Figure 4.2 [166].   
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Figure 4.2:  Setup of dialysis tubing experiment (a) at start of dialysis (b) at equilibrium [165]. 

Neat solutions of malachite green (10mg), erythrosin (20mg), and cisplatin (20mg) were 

each mixed into 20ml room temperature water then aliquoted into the dialysis tubing. Aqueous 

solutions of F127 (4g) were each prepared according to the “cold” processing methods of 

Schmolka [29]. The ternary additives were then mixed into each solution containing F127 and 

aliquoted into the dialysis tubing. Total volume of deionized water was maintained by adding the 

same volume of fresh deionized water. Each cumulative release profile (in the form of increasing 

UV intensity vs time) of the ternary additives was calculated from the absorption vs 

concentration plots (calibration curves) for each neat ternary additive. Our cisplatin release 

values are compared to Cheng et al. [64] whom used porous hollow Fe3O4 nanoparticles for 

controlled release of cisplatin. Their cumulative release profile of cisplatin was obtained via the 

concentration correction (the amount of cisplatin in each aliquot calculated to correct the overall 

cumulative releasing of cisplatin) of released cisplatin based on the following equation [64]:  

𝐶𝑡
′ = 𝐶𝑡 +

𝑣

𝑉
∑ 𝐶𝑡

𝑡−1

0

 

(b) (a) 
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Where 𝐶𝑡
′ is the corrected concentration at time t, 𝐶𝑡 is the apparent concentration at time 

t, v is the volume of the aliquots taken and V is the total volume of the solution.  In this study, 

four separate conditions were tested for each ternary additive: neat additive at room temperature 

(20°C-25°C), neat additive at ~40°C (approx. body temperature), F127 mixed additive at room 

temperature (20°C-25°C), and F127 mixed additive at ~40°C (approx. body temperature). Since 

each ternary additive has a different diffusion release rate, UV-Vis measurements were taken 

between 200nm and 850nm at varying times per each condition for more accurate calculations, 

using a Varian Cary 50 Bio UV-Visible Spectrophotometer (Varian Inc. (Agilent Tech.), Palo 

Alto, CA, USA). All UV-Vis measurements for malachite green were analyzed every 10 minutes 

up to 1 hour for each condition. All UV-Vis measurements with erythrosin were analyzed every 

30 minutes up to 3 hours for each condition. UV-Vis measurements involving cisplatin were 

analyzed for several hours throughout several days for each condition. 

 

4.3  Results and Discussion 

4.3.1  Calibration Curves of Ternary Additives 

To study the release kinetics of the encapsulated ternary additives in F127, we dialyzed 

solutions of malachite green, erythrosine, and cisplatin in 500ml deionized water at room 

temperature and 40°C and compared those results to dialysis of dispersions containing the same 

small molecules with F127 in 500ml deionized water at room temperature and 40°C. The amount 

of ternary additive released from the micelle gels was measured by UV-Vis. Calibration curves 

for all three of the neat ternary additives: malachite green, erythrosin, and cisplatin, were 

calculated. Figure 4.3 [165] shows a graphical example of the calibration curve of neat malachite 
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green. In Table 4.1 [165] , we show a summary of our values of each ternary additives’ 

wavelength ranges, concentration ranges (mg/ml), slopes, y-intercepts, and correlation values 

(R2), and compare our results to the cisplatin complex by Basotra et al [167].   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Neat malachite green absorption vs concentration calibration curve. Absorption 

analysis were measured in 500ml deionized water using UV-Vis at wavelengths 610-620nm 

[165]. Each measurement was analyzed at 60nm/min for most accurate results. Varian, Inc. 

(Agilent Technologies) reports standard deviation for 10 Abs measurements < 0.00030. 
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Table 4.1: Wavelength ranges, concentration ranges, slopes, y-intercepts, and correlation values 

of malachite green, erythrosin, neat cisplatin, dark colored cisplatin, and cisplatin complex [165]. 

Ternary 

Additive 

Wavelength 

range (nm) 

Concentration 

Ranges 

(mg/mL) 

Slope 

(Abs/conc.) 

Y-

intercept 

(Abs) 

R2 

Malachite 

Green 

610-620 0.004 to 0.02 215 0.1 0.9897 

Erythrosin 520-530 0.008 to 0.04 113 0.5 0.9356 

Neat Cisplatin 270-300 0.02 to 0.22 0.3 0.008 0.9877 

Dark Colored 

Cisplatin 

250-270 0.02 to 0.22 17 1.1 0.9011 

Cisplatin 

Complex 

[167] 

700-710 

[167] 

0.0004 to 

0.0014 [167] 

0.00022 [167] 8.0 x 10-7 

[167] 

0.9999 

[167] 

 

As shown in Figure 4.3 [165], as the concentration of malachite green increases, the 

solution progressed from light green to a darker green tint that absorbed in 610-620nm range. 

This linear relationship was true for erythrosin and cisplatin as well at other wavelengths. For 

erythrosin, as the concentration increases, the solution progressed from light pink to a darker 

pink tint that absorbed in 520-530nm range. Basotra et al. [167] mixed o-Phenylenediamine with 

cisplatin to form a green colored complex with wavelength ranges 700-710nm.  For neat 

cisplatin, since the dissociation of the yellow solid colored cisplatin is a clear liquid, direct visual 

observation is not possible hence the importance of UV-Vis to measure absorbance in the UV 

(270-300nm range).  

The dynamic rise in absorption in the receiver solution was used to calculate the 

concentration of the diffused molecules in solution at a given time. During dialysis, aliquots of 

the solution were measured by UV-Vis to resolve a receiving solution concentration. The 

cumulative release of neat ternary additives and ternary additve-F127 at room temperatures and 
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40°C is shown in Figures 4.4, 4.5, and 4.6 [165]. For cisplatin, unexpectedly during our 

experimentation, observable dark black particles formed both inside the dialysis tubing and 

outside the tubing floating around in the receiver solution. This indicates a reaction is occurring 

and forming dark colored precipitates that eventually settled at the bottom of the beaker. Both the 

neat cisplatin trials and the cisplatin-F127 experiments resulted in precipitation occurring faster 

and more obviously in the dispersion than in the neat solution. These observations suggest 

cisplatin is unstable in solution.  The instability is more pronounced at elevated temperatures and 

encapsulating cisplatin in a polymeric micelle might be ineffective in somehow stabilizing 

cisplatin from its transformation potential. We previously opened an old, stored sample of 

unused cisplatin and noticed similar discoloration.  Upon reviewing the literature, Cubells et al. 

[168] concluded cisplatin is unstable in aqueous solutions and the primary mode of 

decomposition involves displacement of the chloride ligand so increasing the chloride ion 

concentration would likely improve the stability of the drug in aqueous solution [168-171]. We 

performed a calibration curve for the dark colored cisplatin and the results are in Table 4.1 [165]. 

Interestingly, the absorbance was much higher at the same concentrations for the dark colored 

cisplatin compared to the normal yellow colored cisplatin at slightly different wavelength ranges 

(250-270 dark colored compared to 270-300 neat cisplatin) which is indicated in Table 4.1 by 

their different slopes (0.3 neat cisplatin compared to 17.1 dark colored cisplatin). Since the dark 

colored particles were observed throughout the experiment for every condition, the calibration 

curve for dark colored cisplatin was used in Figure 4.6 [165] instead of the calibration curve 

results for neat cisplatin to calculate the concentration of diffused cisplatin in solution at a given 

time.  
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4.3.2  Kinetics of Malachite Green 

To study the release kinetics of the encapsulated malachite green in F127, we dialyzed 

neat malachite green in deionized water at room temperature and 40°C and compared those 

results to the dialyzed malachite green-F127 in deionized water at room temperature and 40°C. 

The amount of malachite green released from the micelle gels was measured by UV-Vis at 

wavelengths 610-620 shown in Figure 4.4 [165].  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Release of neat malachite green, MG, and malachite green-F127, MG-F127, at room 

temperature, RT, and 40°C over time. Each condition the malachite green released was measured 

in 500ml deionized water by UV-Vis at wavelengths 610-620nm [165]. 

Probably what is most valuable from this type of analysis is the ability to extract a mass 

diffusion coefficient measurement for each condition, the determinations of which is shown in 

Table 4.2 [165]. The thickness of the membrane and the surface area of the dialysis tube are 

needed to perform the calculation.  Clearly mass transfer is easiest (highest diffusion coefficient) 

for the MG-40oC without the amphiphile.  Adding the amphiphile, MG-F127-40oC, cuts the flux 

in half but as time went on later in this experiment, there was a noted rise in the permeation rate.  

Similar release characteristics were observed in the neat MG-RT sample. The most sluggish 
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diffusion occurred when the amphiphiles were added and diffusion commenced at room 

temperature. 

One observable was that none of these experiments achieved a saturation dose over the 

time scale evaluated. Clearly, the driving force for continued permeation existed for all 

experiments and we cannot comment on whether there was a difference in total release.   

The rationale for why elevated temperature led to higher permeation is clear.  There is 

higher Brownian motion in the solution when the temperature is raised from room temperature to 

40oC, and it is possible that the pore dimensions grow making the membrane more permeable 

with higher temperature as well.  The increased activity of the higher temperature solution 

explains why the neat solutions show higher flux and a higher apparent diffusion coefficient at 

higher temperature.  

The presence of the amphiphile has two likely physical outcomes. At elevated 

temperature, there is clearly enough energy to trigger the formation of the colloidal crystals and 

the more the amphiphiles are organized into bulk structures in solution, the lower the probability 

that the surfactants are bound on the wall of the membrane blocking MG transport.  If the 

amphiphiles organize into hydrophobic cores, those regions are effectively excluded volume for 

aqueous soluble MG which will raise the concentration in the water phase and increase the mass 

flux across the boundary. Of course, if MG was strongly bound to regions of the amphiphiles 

because micelles have larger micellar hydrodynamic radii at elevated temperatures, there might 

be a lower driving force for allowing MG to permeate out of the dispersion. Clearly, lower 

transport was not observed. 

Lower temperature lowers the driving force for forming micelles and gels. Our group has 

pointed out that the typical micelle formation temperatures dropped with higher concentrations 
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of F127 and with some ternary additives that interact with the micelle regulating the energetics 

of micelle formation [72, 104, 15, 16].  If the driving force to form micelles is small, it is quite 

possible that more adsorbed surfactant is blocking pores in the membrane. Clearly, the lower 

temperature is also reducing the Brownian motion as well, but here comparing MG-RT and MG-

F127-RT, the presence of the surfactant is a strong impediment to permeation. Considering F127 

reduced the release rate of malachite green at room temperature and 40oC, this suggests it would 

offer a desired platform for drug delivery and release.  

4.3.3  Kinetics of Erythrosin Release 

To study the release kinetics of the encapsulated erythrosin in F127, we dialyzed neat 

erythrosin in deionized water at room temperature and 40°C and compared those results to the 

dialyzed erythrosin-F127 in deionized water at room temperature and 40°C. The amount of 

erythrosin released from the micelle gels was measured by UV-Vis at wavelengths 520-530nm 

shown in Figure 4.5 [165]. 
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Figure 4.5: Release of neat erythrosin, ER, and erythrosin-F127, ER-F127, at room temperature, 

RT, and 40°C over time. Each condition of the erythrosin released was measured in 500ml 

deionized water by UV-Vis at wavelengths 520-530nm [165]. 

The diffusion coefficient measurements for each erythrosin condition is provided in 

Table 2 [165].. Similar to malachite green, the highest flux for erythrosin is ER-40oC without the 

amphiphile. Adding the amphiphile, ER-F127-40oC, cut the flux in half but as time went on in 

the experiment, there was a noted burst in the permeation rate. There was no observable change 

in release characteristics between the neat ER-RT and ER-F127-RT samples as both showed 

very low release (below 10%). 

Similar to malachite green, none of these experiments achieved a saturation dose over the 

time scale evaluated. The driving force for continued permeation existed for all experiments, but 

we cannot comment on whether there was a difference in total release. At 40oC, once again the 

Brownian motion is higher and that explains why the diffusion coefficient for ER-40oC is the 

highest in the neat conditions for the first 150 minutes.  

The presence of the amphiphile at elevated temperature cut the mass transfer rate in half 

for the first 150 minutes. There was enough energy to form colloidal crystals lowering the 

probability that the surfactants were bound on the wall of the membrane blocking the ER 
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transport. If ER was strongly bound to regions of the amphiphiles, there might be a lower driving 

force for allowing ER to permeate out of the dispersion. This was not observed as a diffusion 

coefficient of 1.0 ± 0.01 x 10-6 cm2sec-1 was found in this condition. After 150 minutes, we 

observed a rising release of ER that was not observed with MG making the overall dynamic 

release curve more non-linear. The molecular mass of ER is larger than that of MG, so it takes 

longer for ER molecules to percolate through the gel and the membrane. This is an indication 

that while F127 does have a diffusion rate limiting effect on ternary additives, the rate at which 

the diffusion is limited varies for each ternary additive due to the molecular mass of the ternary 

additives.  According to Mandal [172], translational and rotational motion diffusion coefficients 

can occur in solution simultaneously either in series or parallel. In congested polymeric micellar 

conditions, there is a possibility of self-diffusion (slow process) and mutual or collective 

diffusion (fast process). These conditions are indistinguishable when the small amount of 

supporting electrolytes and buffer solutions are present in the systems [173-177]. With the 

method used here, a diffusion coefficient can be determined, but the non-linearity of the ER 

release suggests its non-Fickian and a different model is more appropriate.        

Lowering the temperature lowers the driving force for forming micelles and gels. If the 

driving force to form micelles is small, it is possible that more adsorbed surfactant is blocking 

the pores in the membrane. The lower temperature also reduces the Brownian motion. In this 

case, for ER-RT and ER-F127-RT, the driving force for diffusing ER is so low at room 

temperature, that similar results were observed with and without the amphiphile. Considering 

F127 still reduced the release rate of ER in both conditions, this is another indication that 

suggests it would offer a desired platform for drug delivery and release.  
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 Conceptually, erythrosin permeation through the dialysis membranes has a similar profile 

to MG.  The hydrophilic erythrosin is concentrated in the aqueous regions and excluded from the 

hydrophobic cores of the micelles which increases the concentration gradient across the dialysis 

membrane once micelles form.  And at elevated temperature, the pores in the membrane are 

larger.   

4.3.4  Kinetics of Cisplatin Release 

The same protocol was used for dialyzed neat cisplatin in deionized water at room 

temperature and 40°C and compared to that of dialyzed cisplatin-F127 in deionized water at 

room temperature and 40°C. The amount of cisplatin released from the micelle gels was 

measured by UV-Vis at wavelengths 250-270nm shown in Figure 4.6 [165]. The cumulative 

release results in general compares well to previous cisplatin encapsulated drug delivery systems 

[64, 30, 178-180]. Guven et al. [30] reported less than 25% total released cisplatin from their 

Pluronic-F108-wrapped, W-CDDP@US-tubes after 200 hours. Cheng et al. [64] reported less 

than 10% total cisplatin release from their Fe-cisplatin loaded nanoparticles, Pt-PHNPs, at pH 

7.4, 6, and 5 after 70 hours. Reardon et al. [178] reported less than 20% cumulative release of 

cisplatin after 10 hours from their core-shell poly(lactic-co-glycolic acid) (PLGA) nanoparticles. 

Fang et al. [179] reported less than 25% total cisplatin release from their chitosan hydrogels after 

5 hours. Czarnobaj and Lukasiak [180] reported less than 50% cisplatin release after 20 hours 

from their silica (SiO2) xerogels at room temperature and 120oC.  
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Figure 4.6: Release of neat cisplatin and cisplatin-F127 at room temperature, RT, and 40°C over 

time. Each condition of the cisplatin released was measured in 500ml deionized water by UV-

Vis at wavelengths 250-270nm [165]. 

 

The diffusion results were unlike a normal diffusion profile. We observe a burst condition 

for three of the solution conditions including cisplatin neat (cisplatin-RT) in water at 25oC, and 

for both dispersions (cisplatin-F127-RT and cisplatin-F127-40oC)) at ambient temperature and at 

40oC. Reardon et al. [178] and Fang et al. [179] both also observed an initial burst release of 

cisplatin from their core-shell PLGA nanoparticles  and chitosan hydrogels. It is worth noting 

that the size of the initial burst release is on the order of 8-9% while the neat MG and erythrosin 

release substantially more over the 150 hours of experimentation. We calculated a diffusion 

coefficient for the short, initial burst phase, but it is clear that three of the four conditions, there 

is burst followed by a much smaller release, compared with the systematic release of other dye 

molecules.  The diffusion coefficient measurements for each cisplatin condition is provided in 

Table 4.2 [165]. From the analysis, the highest flux observed for cisplatin was cisplatin-F127-

RT. The cisplatin-F127-RT release was slightly higher than cisplatin-RT. 
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There was no observable diffusion for neat cisplatin-40oC in the first 5 hours. However, 

cisplatin was observed at much longer times finally permeating through after 50 hours. More 

Brownian motion should occur in the higher temperature neat systems but maybe there is a larger 

driving force to also transform and precipitate neat cisplatin as opposed to driving it across the 

dialysis membrane.  

The presence of the amphiphile at elevated temperature increased the permeation for the 

first 5 hours relative to the neat system. This is possibly due to F127 interacts with cisplatin as 

we observed the formation of dark colored particles floating around in solution. If cisplatin was 

strongly bound to hydrophilic or hydrophobic regions of the amphiphiles, there might be a lower 

driving force to allow cisplatin to permeate out of the dispersion. This was not observed as a 

diffusion coefficient of 1.2 ± 0.1 x 10-6 cm2s-1 was found in this condition. Continued release past 

the burst period is observed and there are indications of a plateau concentration is evident at ~8% 

drug release at longer times. So a little less than half the release comes in the first 5 hours and the 

rest with longer exposure. 

Lowering the temperature lowers the driving force for forming micelles and gels. The 

lower temperature also reduces the Brownian motion. We observed a slightly higher initial burst 

at room temperature for the dispersion (F127-cisplatin RT) relative to the neat solution 

(cisplatin-RT). Since continued release of cisplatin occurred over time even after the initial burst, 

(3% release after 5 hours compared to 8% release after 144 hours), the presence of the 

amphiphile may aid in transporting cisplatin across a membrane.  

Only with the dispersion at elevated temperature (cisplatin-F127-40oC) is a plateau in 

permeation observed. There is a noted decrease in UV-Vis absorption for the other three 

conditions. Clearly, with black particles forming while conducting the diffusion experiments, one 
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rational for the lower absorption later might be due to the sedimentation of converted cisplatin 

particles that are not suspended in solution. If particles are denser than the fluid medium of the 

receiver solution, it’s possible that the particles drift to the bottom of the receiver solution and 

are not sensed as part of the absorption at later time. If there was a nucleation and growth 

mechanism regulating particle formation, if the particles grew in size with time, they might be 

separated in the two-phase dispersion of particles in the receiver reservoir. We observed 

significant particle accumulation at the bottom of the reservoir as well. If the particle formation 

is linked with the inactivation of cisplatin, perhaps doing the experiments in saline solution 

might preserve the activity of the cisplatin and keep it in solution as opposed to directing its 

formation of a second particle phase as a dispersion.   

Comparing the molecular structures of cisplatin with MG and ER, the two dyes are both 

stable and hydrophilic, while cisplatin is clearly unstable and perhaps more ambiguous in terms 

of its overall hydrophilicity.  If the same mechanism of liberating the pores occurs with the 

amphiphile coalescence and formation of hydrophobic cores, if cisplatin was more drawn to the 

interface between the core and shell, that would reduce the amount available at the membrane 

boundary. With a time dependent stability issue, even if cisplatin was labile outside of the cores 

within the dialysis membrane, the fact that there is a nucleation and growth of the dark 

particulates which quickly grew larger than the pore dimensions of the membrane.   

4.3.5  Comparison to Other Permeation Experiments 

Table 4.2 [165] presents our results and includes a comparison of cisplatin diffusion 

coefficient values in a variety of delivery systems. The table includes references for cisplatin 

released from PLGA nanoparticles [178], PLGA microspheres, solid fibers, and hollow fibers 

[181], and chitosan-alginate nanoparticles [182]. 
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Table 4.2: Diffusion coefficient of each experimental condition: neat malachite green, MG, 

erythrosin, ER, and cisplatin (first 5 hours) and mixed F127 at room temperature, RT, and 40oC 

[165]. Our results are compared to the in vitro release of cisplatin from core-shell poly(lactide-

co-glycolide) (PLGA) nanoparticles [178], PLGA microspheres, solid fibers, and hollow fibers 

[181], and electrostatically cross-linked chitosan-alginate nanoparticles [182]. 

Experimental Condition Diffusion Coefficient (cm2s-1) 

MG-RT 2.6 ± 0.01 x 10-7 

MG-F127-RT 2.6 ± 0.01 x 10-8 

MG-40oC 7.9 ± 0.1 x 10-7 

MG-F127-40oC 5.2 ± 0.01 x 10-7 

ER-RT 4.7 ± 0.01 x 10-8 

ER-F127-RT 3.7 ± 0.1 x 10-9 

ER-40oC 5.2 ± 0.01 x 10-7 

ER-F127-40oC 1.0 ± 0.01 x 10-6 

Cisplatin-RT (5 hours) 6.7 ± 0.01 x 10-6 

Cisplatin-F127-RT (5 hours) 3.0 ± 0.1x 10-7 

Cisplatin-40oC (5 hours) 0 

Cisplatin-F127-40oC (5 hours) 1.2 ± 0.1 x 10-6 

Cisplatin-PLGA nanoparticles (150 hours) 4.1 x 10-17 [178] 

Cisplatin-PLGA microspheres (500 hours) 4.8 x 10-13 [181] 

Cisplatin-PLGA solid fibers (200 hours) 6.1 x 10-10 [181] 

Cisplatin-PLGA hollow fibers (400 hours) 3.3 x 10-10 [181] 

Cisplatin-chitosan-alginate nanoparticles (t < 2 hours) 8.2 x 10-1 (average) [182] 

 

Our diffusion results are higher than Campbell et al. [181] who observed much slower 

cisplatin diffusivity from PLGA microspheres. Campbell’s lower diffusivity of cisplatin was 

caused by the low molecular mobility of the matrices where cisplatin is encapsulated. Campbell 

et al. [181] reported some microspheres engulfed other microspheres with shell-like pores 

surrounding some regions of a microsphere causing droplets of oil phase to disperse in the 

aqueous phase. The low porosity of these microspheres suggests more sluggish drug 
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permeability as there are few aqueous channels to allow paths for drug escape [181]. Campbell 

also observed a cumulative drug release over 500 hours, while our reported diffusion coefficient 

numbers are within the first 5 hours of release. 

Our diffusion results are also higher than Campbell et al. [181] for diffused cisplatin from 

PLGA solid and hollow fibers. Campbell reported during fiber drying, as more solvent is 

extracted during the phase inversion, the oil phase becomes a poorer solvent to the polymer 

chains, and the chains retract and interact more with each other causing the glass transition 

temperature, Tg, to increase [181]. Since the polymer chains are less mobile, the diffusivity of 

the solvent in the oil phase decreases thus reduces the volume of the core, causing lower drug 

release [181]. Campbell also observed a cumulative drug release over 200 hours for solid fibers, 

and 400 hours for hollow fibers [181]. 

Our diffusion coefficients appear quite low, relative to Maan et al. [182] for in vitro 

release of cisplatin from electrostatically cross-linked chitosan-alginate nanoparticles. This 

discrepancy could be due to the differences in our controlled drug release methods. Our 

polymeric micelles form gels at elevated temperatures, which encapsulates cisplatin, thus 

significantly reduces its permeation. Maan et al’s [182] release of the cisplatin complex from the 

nanoparticles involves the absorption of water into the nanoparticles matrix and simultaneous 

release of the drug via diffusion. When Maan’s drug encapsulated nanoparticles are exposed to 

water, the polymer swells causing the Tg of the polymer to drop relative to the experimental 

temperature [182]. The release of the drug is regulated by the process of relaxation of 

macromolecular chains and the diffusion of the entrapped drug molecules into the exterior 

medium [182]. The Maan effort was tied to diffusion on a molecular level and our membrane 

dimensions are on the order of 100 microns, much larger overall. Man et al. [182] also observed 
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a cumulative drug release within 2 hours, while our reported diffusion coefficient numbers are 

within the first 5 hours of release. 

Our diffusion results are also very low compared to Reardon et al. [178] for cisplatin 

release from core-shell PLGA nanoparticles. This discrepancy could be due to Reardon et al. 

[178] observed their cumulative release over 150 hours compared to our calculations after 5 

hours. The Reardon effort also fabricated a drug delivery system on the Nano scale while our 

system is on the micro scale. Reardon et al. [178] also observed their diffusion study in 

Phosphate-buffered saline (PBS) while our study was observed in deionized water.  

 

4.4  Conclusions 

In summary, we demonstrated an approach using amphiphilic polymeric micelles (F127) 

to regulate controlled release of two indicator dyes (malachite green and erythrosin) and one 

chemotherapeutic drug (cisplatin). We tested the release at temperatures that would alter the 

driving force for forming colloidal gels in vivo (room temperature and 40oC). We show the 

process tracking dye or drug collection in a receiver solution through a dialysis membrane from 

the absorbance measurements, via UV-Vis, to the determination of an apparent diffusion 

coefficient where applicable. Our cisplatin results were compared to a number of other studies in 

which permeation in a sequestered nanostructure was evaluated for its fluence [181, 182]. 

Adding the amphiphile lowered the permeability of dye molecules (2.6 ± 0.01 x 10-7 cm2s-1 MG-

RT compared to 2.6 ± 0.01 x 10-8 cm2s-1 MG-F127-RT), but tended to result in a burst delivery 

with cisplatin (6% total release with cisplatin-F127-RT compared to 4% total release cisplatin-

RT). We noted instability with cisplatin in aqueous solution [168-171].  
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CHAPTER V 

 

Micelle Gels as Fire Retardants 

 

 

5.1  Introduction 

 

While Chapters II, III, and IV focused on PEO-PPO-PEO micelles for drug delivery 

applications, this chapter explores a novel concept of using micelle gels for fire retardant 

applications.  

Fire is a useful tool throughout human history, but it can bring disasters if not carefully 

controlled [183]. By inhibiting a voluminous fire, there is a better chance for fire-fighters to 

extinguish it or for people to escape uncontrolled fires before they cause significant damage. 

Cotton is a very important natural textile fiber used to produce clothing, furniture, and industrial 

products, but it has a low limiting oxygen index (18%) [184] and thermal decomposition 

temperature (360 °C to 425 °C) that makes it very flammable [185]. When cotton fabrics are 

ignited, the flame spreads rapidly potentially causing fatal burns within 15 seconds of ignition 

[186]. Various methods have been used to impart flame retardancy to cotton fabrics [187-192]. 

Boron and halogenated containing additives have been widely used that function by liberating 

large volumes of non-flammable gases to starve the flames and forming a glass coating, 

respectively, during thermal decomposition [186, 193]. Boron-based flame retardants are quite 

water soluble and might impart only fleeting flame retardancy on fabrics that undergo numerous 

washing cycles [185].  The effectiveness of the most common halogenated flame retardants in 

general has been compromised by their latent toxicity concerns linked with bioaccumulation and 
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exposure issues to both humans and aquatic species in the environment [194]. While there are 

certainly new halogenated chemistries that might prove somehow better than those compounds 

with documented concerns, our focus here is phosphorus-based flame retardants that have also 

been successful in imparting flame retardancy to cellulosic fabrics [195, 196]. Some 

Phosphorous-based coatings can withstand repeated wash cycles [185], reduce volatile fuel, 

lower pyrolysis temperature, increase carbonaceous char, and decrease afterglow [195]. Leistner 

et al. [196] studied the use of chitosan/melamine polyphosphate as a water-insoluble coating on 

cotton fabric via layer-by-layer assembly.  

Layer-by-layer (LbL) deposition [197-201] is a common technique for fabricating 

thinner, multifunctional flame-retardant films/coatings. These coatings are formed by repeatedly 

depositing alternating layers of oppositely charged materials. The multilayer assembly of the 

coating is self-regulated by electrostatic repulsion within the individual layers and is enabled by 

attractive forces; electrostatic [202], van der Waals [203, 204], and H bonding [205, 206]. LbL 

coatings/films can be applied by either dip coating [207, 208] or spray coating [209, 210]. They 

have range of functionalities that can produce conducting films [211-213], antireflection films 

[214, 215], and oxygen barriers [216, 217]. More recently, researchers have pivoted from layer-

by-layer assembly and are aiming for one-step processes for fabricating a flame retardant coating 

on fabrics [218] and polyurethane foams [219]. Each additional monolayer requires an additional 

depositing and washing step; therefore, these 20 or more monolayer coatings required a total of 

30 or more steps in the fabrication process, considerably more than required for the conventional 

and preferred single bath coatings. In this study we propose using melamine, sodium 

hexametaphosphate (SHMP), and polyethylene oxide-polypropylene oxide-polyethylene oxide, 
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PEO-PPO-PEO, triblock copolymer to form a water-insoluble flame retardant gel that can be 

applied onto cotton fabrics. 

Sodium hexametaphosphate (SHMP) [220], melamine [221], and PEO-PPO-PEO triblock 

copolymers are all relatively non-toxic chemicals in small doses. SHMP is used as a sequestrant 

and as a food additive [222]. Melamine is the starting material for resins used in the production 

of a wide variety of thermosetting plastics [223]. When melamine is mixed with SHMP in 

aqueous solution, they form the water-insoluble flame retardant melamine polyphosphate (MPP) 

[196]. The amphiphilic PEO-PPO-PEO triblock copolymer F127 has surfactant properties that 

make it useful in industrial applications including drug delivery [224, 225].           

  Researchers have studied the mechanism for the gel formation of aqueous dispersions of 

PEO-PPO-PEO triblock copolymers and have attributed the gel formation to the close packing 

and ordering of micelles [6, 8, 226]. The PEO-PPO-PEO triblock copolymer F127 (70% PEO 

content) has been studied extensively as it has the most pronounced gel forming abilities of the 

commercially available polymer surfactants [29]. As the temperature of these solutions is 

increased, the decreasing aqueous solubility of the PPO causes micelle formation with the 

hydrophobic (PPO) cores and hydrophilic (PEO) shells [15]. Lam et al [17] suggested that the 

micelles grow via Ostwald ripening and Barba et al [18] suggested that the volume fraction 

occupied by the micelles in solution rises with increasing temperature. The micelles experience 

repulsive interactions and order into quasicrystalline cubic lattices [15]. The observed lattice 

structure for F127 gels are typically face centered cubic or body centered cubic [227, 228]. This 

lattice structure is believed to give these materials their gel-like properties [15].  

This chapter describes chemical formulations and one-step procedures to yield relatively 

non-toxic, flame retardant coatings for cotton fabrics. The coatings were made with the 
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amphiphilic PEO-PPO-PEO triblock copolymer F127, melamine, and SHMP. The impact of the 

formulations on flammability was determined by measuring ignition resistance combustion heat 

released rate, and decomposition behavior using vertical flame testing (VFT), micro-scale 

combustion calorimetry (MCC), and thermogravimetric analysis (TGA). Scanning electron 

microscopy (SEM) was used to observe surface quality assessments of the coatings on the cotton 

fabrics.  

The experiments, results, and discussion covered in this chapter were conducted at the 

National Institute of Standards and Technology (NIST) as a part of the National Physical Science 

Consortium (NPSC) fellowship. This work was submitted to Advanced Materials Interfaces for 

review [23]. 

 

5.2  Materials and Methods 

 

5.2.1  Materials 

Polyethylene oxide-polypropylene oxide-polyethylene oxide, PEO-PPO-PEO F127 

(12,600 g/mol molecular mass), SHMP (Na6P6O18, 611.77 g/mol molecular mass), and melamine 

(C3H6N6, 126.12 g/mol molecular mass) were all obtained from Sigma-Aldrich (Milwaukee, WI) 

and were used as received. The structures of each are shown in Figure 5.1 [23]. The cotton fabric 

(James Thompson & Co. Inc., 228.6 cm Quilter’s Flannel, double-napped 100% cotton) with 

area density of 102g/m2 was used as received. All solutions were prepared using deionized water 

from a PURELAB Flex (18.2 MΩ·cm, ELGA). 
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Figure 5.1: (a) Pluronic F127 (b) sodium hexametaphosphate (c) melamine [23]. 

 

 

5.2.2  Coating Procedure 

Aqueous solutions of F127 were each prepared according to “cold” processing methods 

[29] and formulated in varying concentrations (10% to 20%) to probe its flame retardant 

properties. Concentrations of melamine (5% to 15%) were mixed in aqueous solutions of F127. 

Lastly, varying concentrations of SHMP (5% to15%) were added. The total volume of the 

mixtures during treatment was held constant as an attempt to control the thickness of the 

coatings. After several hours of mixing at room temperature, the coating gel formed. The white 

gel was coated onto the cotton fabric (10 cm by 10 cm) using a stainless steel laboratory spatula. 

Both sides of the cotton fabrics were coated to ensure a thorough coating. The coated cotton 

fabric was placed in an oven for at least 12 hours at 70oC. If the fabric still felt damp to the touch 

after 12 hours, it was placed back in the oven until moisture was no longer present. Two types of 

coating protocols were followed, one with melamine, SHMP, and F127, and the other without 

F127. The protocol without F127 used aqueous solutions of melamine (5%) and SHMP (5%) all 
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mixed into a single bath. The cotton fabric was manually dipped into the solution and soaked for 

10 minutes to allow complete wetting and good adhesion of the coating to the substrate. The 

coated cotton fabric was then placed in an oven at 70°C for a minimum of 12 hours. The 

resulting color of the cotton fabric turned white due to the melamine polyphosphate. The overall 

hand of the fabric after coating felt stiffer and heavier compared to the soft and stretchy feel prior 

to coating. 

 

5.2.3  Flammability Testing 

Ignition resistance assessments were done on the coated fabric using vertical flame 

testing (VFT) to identify promising formulations. These formulations were reproduced and their 

combustion behavior was measured using micro-scale combustion calorimetry (MCC) from 

100°C to 750 °C under an environment of 20% oxygen and 80% nitrogen with a heating rate of 

1°C s-1 and a sample mass of 5mg; using a ASTM D7309 (Concept Equipment). This test 

revealed the influence of the coating on the fabric’s heat release. Thermogravimetric analysis 

(TGA) was also performed on coated fabrics tested from 90°C to 850°C under nitrogen with a 

constant heating rate of 20°C min-1 and a sample mass of 10 mg, using a NETZSCH STA 449 F1 

(Germany). TGA tests revealed the mass loss of the coated sample due to non-oxidative thermal 

decomposition. A Ziess Ultra 60 Field Emission-Scanning Electron Microscope (FE-SEM, Carl 

Zeiss Inc., Thornwood, NY) was used to acquire surface images of the coatings on the cotton 

fabrics under a 5 kV accelerating voltage. All SEM images were sputter-coated with 8 nm of 

gold/platinum (60%/40% by mass) prior to imaging.  

 The cotton fabrics were used as received. No conditioning was performed prior to testing. 

The vertical flame test was setup as shown in Figure 5.2 [23]. The ignition source was applied to 
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the middle, bottom edge of the sample for 5 seconds. If the sample failed to ignite or it self-

extinguished, the torch was applied again at the same place on the fabric for another 5 seconds. 

This ignition process was repeated no more than three times on the same specimen. The test was 

complete when there were no visible flames or when the specimen was completely consumed 

during combustion. The 100% cotton fabric was used as a control to qualitatively rank the 

formulations. The type of behavior used for ranking included the following: number of 

applications of the torch before ignition, time until flames extinguished, and extent of flame 

propagation across the cotton surface. The results of this test is shown in Table 5.1 [23]. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Example of vertical flame test (VFT) setup [23]. 

 

 

 

5.3  Results and Discussion 

5.3.1  Fabrication and Flammability Screening 
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In a single step coating process, PEO-PPO-PEO F127 (F127), co-formulated with 

melamine, and sodium hexametaphosphate (SHMP) flame retardant were deposited as gel 

coatings on cotton fabrics. The coatings were characterized to determine coating morphology 

(SEM) and ignition resistance (vertical flame testing). Only the coatings that did not ignite were 

evaluated through MCC, TGA, and SEM.  

10 flame retardant-coated cotton fabric were made by applying gel coatings containing 

F127 (0%, 15%, and 20%), melamine (0%, 5%, 10%, and 15%), and SHMP (0%, 5%, 10%, 

15%).  The coating composition, mass gain percent (percentage of mass increase after coating is 

applied), and flammability results are provided below in Table 5.1 [23]. The data in Table 5.1 

[23] reflect the averages of at least three specimens for each formulation. 

Table 5.1: Coating composition, mass gain %, and open flame screening for flame retardant-

coated cotton fabrics.  Mass gain is reported with a 2σ uncertainty [23]. 

Coating Composition (%) 
Mass Gain (%) Flammability observations 

F127 Melamine SHMP 

25 10 10 143  10 Ignition, slow flame spread 

 

20 15 15 238  10 No ignition 

 

20 15 - 143  10 Ignition, slow flame spread 

 

20 - 15 137  10 Ignition, charred 

 

20 - - 105  10 Complete combustion 

 

15 15 15 220  10 No ignition 

 

- 5 5 54  10 No ignition 

 

- 5 - 30  10 Extensive combustion 

 

- - 5 10  10 Ignition, charred 

 

- - - - Complete combustion 
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Flammability of a material is defined by a number of factors, including its ignition 

resistance and by the size of the exotherm formed during combustion. Typically for fabrics, 

ignition resistance is the more important of the two, at least for screening fabrics for a specific 

use. Therefore, in this study, ignition resistance tests were used as initial screens of fabric 

flammability.  

Based on the ignition resistance test results from Table 5.1 [23], all the flame retardant 

formulations for cotton raised its flame resistance. The control and 20% F127 gel coated cotton 

fabrics ignited as soon as the ignition flame source was applied. Within 60 seconds the fabrics 

were completely engulfed in flames. The best performing coatings (no ignition, Table 5.1 [23]) 

were the 5% melamine/5% SHMP, 20% F127/15% melamine/15% SHMP, and 15% F127/15% 

melamine/15% SHMP formulations. Depending on the coating on the cotton fabrics, the overall 

mass gain is dramatically affected. Even though the 20% F127/15% melamine/ 15% SHMP 

coating also did not ignite according to Table 5.1 [23], only the 15% F127/15% melamine/ 15% 

SHMP coating was further explored for testing because of its lower coating weight and higher 

ignition resistance. The lower overall mass gain also attributed to a more flexible and softer 

fabric compared to the higher mass gains. A 10% F127/15% melamine/15% SHMP coating was 

also tried, but a gel did not form a coating because it was below the critical gel formation 

concentration [29]. In this case, adding melamine and SHMP was not a strong enough driving 

force to form a gel at 10% F127. In order to compare the combustion behavior and 

decomposition of the paste itself before applying it onto cotton fabrics to the coated fabrics, a 

20% F127/15% melamine/15% SHMP paste was also analyzed using MCC and TGA. 
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5.3.2  Instrumentation: TGA, MCC, and SEM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3: TGA data for F127/melamine/SHMP gel coating on cotton fabric (blue dots), 

melamine/SHMP (red solid line), uncoated cotton fabric (black dash-dots), and coating paste 

itself without cotton fabric (green dashes) [23]. 

 

Table 5.2: TGA properties of uncoated cotton fabric, melamine/SHMP on cotton, 

F127/melamine/SHMP gel coating on cotton, and F127/melamine/SHMP coating paste itself. 

Data is reported with a 2σ uncertainty.  The slopes correspond to the dehydration of the coated 

fabric (1) followed by the active combustion of the dehydrated composite (2) [23].  

Sample ID 1st Slope  

(%/oC) (R2) 

2nd Slope  

(%/oC) (R2) 

Intermediate Plateau 

Temperature Range (oC) 

Residue (%) 

Cotton Control -0.07  

(0.86) 

-0.5  

(0.95) 

 

- 5 ± 1 

5% Melamine 

5% SHMP 

-0.05  

(0.97) 

-0.3  

(0.94) 

 

275-375 20 ± 2 

15% F127 

15% Melamine 

15% SHMP 

-0.08  

(0.99) 

-0.5 

(0.97) 

 

 

300-375 10 ± 2 

20% F127 

15% Melamine 

15% SHMP  paste 

-0.04  

(0.93) 

-0.6  

(0.97) 

325-425 15 ± 2 

 



85 
 

 

As shown in Figure 5.3 and Table 5.2 [23], TGA results on untreated cotton show some 

level of mass loss below 225oC, but there is a rapid decline in residual mass with rising 

temperature above 225oC. The lower and higher temperature decompositions can be interpreted 

as a two-stage decomposition process with slopes of percent mass loss/oC summarized in Table 

5.2 [23]. Coating cotton with the SHMP/melamine mixtures led to TGA results that show some 

intermediate plateau of mass stability with increasing temperature that makes coated cotton 

degradation more complicated than simply interpreting the two-step degradation model. The 

mass loss at lower temperatures for the coated fabrics is due to the decomposition of melamine 

and SHMP. Both the coating and the cotton contribute to the mass loss of the coated fabrics. 

Despite the 15% F127/15% melamine/15% SHMP coating losing mass at lower temperatures 

than the cotton control, the mass above 400oC for cotton is less than 5% while that for the coated 

cotton is about 15% or less.   

The 5% melamine/5% SHMP, 15% F127/15% melamine/15% SHMP coated cotton, and 

the 20% F127/15% melamine/15% SHMP coating exhibited similar TGA profiles, except the 

coatings had higher mass residues at the end of the test compared to cotton. For neat cotton 

decomposition ended at ~375 °C with 5% 1% of the original mass as char residue.  

Significant mass changes in the TGA residue occurred when the cotton fabric was coated 

with 15% F127/15% melamine/15% SHMP and 5% melamine/5% SHMP. The temperature of 

the onset of degradation occurred at 150oC and 185oC respectively for 15% F127/15% 

melamine/15% SHMP and 5% melamine/5% SHMP, compared to 75oC for cotton control. In 

addition, the char yield increased from 5%  1% for cotton control at 375°C to 10%  2% 

(~100% increase) at 450°C for 15% F127/15% melamine/15% SHMP coating. Since the percent 

mass loss for 20% F127/15% melamine/15% SHMP paste is lower than the percent mass loss for 
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cotton control, the coating is more thermally stable than cotton. Since the 15% F127/15% 

melamine/15% SHMP coating on cotton fabric has a lower percent mass loss than the cotton 

control, this coating on cotton lowers decomposition behavior. The mass loss behavior for 15% 

F127/15% melamine/15% SHMP is similar to that for flame-retardant agent CFR-201 (an 

organophosphorus nitrogen containing compound) reported by Zhu et al [229].  

MCC probed the combustion behavior of the same formulations analyzed by TGA. 

Figure 5.4 [23] shows the heat release rate (HRR) of coated and uncoated cotton with 

temperature (°C). The MCC results are shown in Figure 5.4 and Table 5.3 [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: MCC results of F127/melamine/SHMP gel coating on cotton fabric (blue dots), 

melamine/SHMP (red solid line), uncoated cotton fabric (black dash-dots), and coating paste 

itself without cotton fabric (green dashes) [23]. 
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Table 5.3: Heat release properties of uncoated cotton fabric, melamine/SHMP on cotton, 

F127/melamine/SHMP gel coating on cotton, and F127/melamine/SHMP coating paste itself. 

Data is reported with a 2σ uncertainty [23]. 

Sample ID Residue (%) 

(% increased) 

THR (kJ/g) 

(% reduction) 

PHRR (W/g) 

(% reduction) 

Cotton Control 

 
12  1 11  3 183  3 

5% Melamine 

5% SHMP 
39  1 

(218  1) 

 

4  2 

(62  2) 

70  2 

(62  2) 

15% F127 

15% Melamine 

15% SHMP 

30  1 

(144  1) 

 

 

8  12 

(21  12) 

74  12 

(60  12) 

20% F127 

15% Melamine 

15% SHMP paste 

24  1 8  4 133  4 

 

As shown in Figure 5.4 and Table 5.3 [23], 5% melamine/5% SHMP, 15% F127/15% 

melamine/15% SHMP, and 20% F127/15% melamine/15% SHMP paste all show lower heat 

release rates, THR, and PHRR and higher residue mass values than the cotton control. For 

cotton, thermal decomposition initiated at ~ 300°C. The decomposition, as indicated by rising 

HRR, intensified as the temperature rose. The maximum HRR at ~400oC was 183  3 W/g 

which was identified as the peak heat release rate (PHRR). The decomposition was complete at 

550°C with 12%  1 of the original mass as char residue.  

As a percentage basis, the drop-off in PHRR is more dramatic by coating (reductions as 

much as 2/3 of PHRR cotton) whereas the total heat release was only 20-50% lower overall with 

the same coating conditions.  The released energy measurements compare favorably with other 

MCC type measurements on other cotton coatings shown in Figure 5.6 [218, 192].  

As shown in Figure 5.4 [23], the HRR curve for cotton control has one peak, but cotton-

coated fabrics have two peaks. The additional peaks appear at the early stages (lower 
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temperatures) of cotton’s decomposition as shown in Figure 5.4 [23], are due to the 

decomposition of melamine and SHMP. Such premature decomposition of a flame retardant 

would reduce its effectiveness on the coated cotton fabric, therefore identifying ever more 

effective flame retardants packaged within a gel deserves to be probed more.    

SEM images observed the coating quality (surface morphology) of the coated samples. 

SEM images for 15% F127/15% melamine/15% SHMP, 5% melamine/5% SHMP, and cotton 

control are provided in Figure 5.5 [23]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: SEM images (a) cotton control (b) 15% F127/15% melamine/15% SHMP on cotton 

fabric (c) 5% melamine/5% SHMP on cotton fabric. The 5% melamine/5% SHMP coating is not 

very uniform on the cotton fibers and is randomly dispersed. The 15% F127/15% melamine/15% 

(a) (b) 

(c) 
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SHMP coating shows a more uniform coating on the cotton fibers but there are noticeable cracks 

which indicates insufficient adhesion of the paste onto the cotton fabric [23]. 

 

Some coating was observed on the 5% melamine/5% SHMP, but the coating is randomly 

dispersed as some fibers have more coating on them than others. For the 15% F127/15% 

melamine/15% SHMP coating on cotton fabric, it shows a more uniform mixture of coating 

paste all over the cotton fibers. All of the fibers are coated and completely covered. There are 

some noticeable cracks that appear in the image that indicate insufficient adhesion of the paste 

onto the cotton fabric and varying thickness. A more uniform and thinner coating is required to 

ensure the flame does not touch the fabric directly without dramatically adding to the cotton 

mass. If the flame was more effectively isolated from the flame, the coating will contact the 

flame, causing no ignition. This was a proof in concept and more work is needed to explore a 

more uniform coating thickness, as well as a more stable coating after washing.     

5.3.3  Comparison to Other Technologies 

Figure 5.6 [23] presents other flame retardant strategies, incorporated in or applied onto 

cotton fabrics [192, 196, 218]. These flame retardants were deposited using single bath and LbL 

assembly protocol and constructed using N-methylol dimethylphosphonopropionamide (MDPA) 

and trimethylol melamine (TMM) [192], soaked in a polyethylenimine (PEI)/poly(phosphate 

sodium salt) (PSP) complex [218], polyallylamine/poly(phosphate sodium salt) (PAAm/PSP) 

[218], and PA/CH at PH 4 [218]. The LbL coatings ranged from 10 monolayers to 64 

monolayers and resulted in a mass increase of 2% to 18%.  These deposited coatings gave heat 

release reductions of 42% to 61% (PHRR) and 54% to 76% (THR).   
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Figure 5.6: Comparison of MCC data for F127, melamine, and SHMP coatings to the previously 

reported single bath [218], LbL [218], and MDPA/TMM [192] coatings on or deposits within cotton 

fabrics. Mass gain % (blue), residue % (orange), THR (kJ/g) % reduction (grey), and PHRR 

(W/g) % reduction (yellow) for each recipe is compared. Data is reported with a 2σ uncertainty 

[23]. 

All coatings reduce the cotton flammability by MCC. In terms of total energy of 

combustion, the gel-coating has statistically lower energy released relative to any of the other 

coatings.  That enhancement comes at the cost of a huge increase in coating thickness, primarily 

consisting of amphiphilic copolymer.  The amphiphile is still hydrophilic even after the drying 

process before combustion and its presence probably absorbs energy from the combustion that 

can explain why the THR for the gel coating is so much lower.  Of course, if one could optimize 

the coating thickness to not triple the mass of the fabric, the effectiveness of the coating might be 

diminished.  That same effect could have occurred if the amphiphiles were extracted from the gel 
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coating with subsequent washings.  In terms of a peak combustion rate, there is little difference 

between the coatings and the coating with the lowest PHR is the MDPA/TMM co-mixture which 

is statistically lower than the rest. It is also interesting to note that the presence of more LbL 

layers adds to the mass but doesn't improve the residue or the energy of combustion suggesting 

that the thinnest LbL coatings are more retardant.  

5.4  Conclusions 

Aqueous-based amphiphile solutions have been co-formulated with potentially alternative 

flame retardants in a one-step process to make flame retardant gel coatings for cotton fabrics. 

Coatings containing an amphiphilic block copolymer in aqueous solution and formulated with 

melamine and SHMP on cotton fabrics are self-extinguishing as found by vertical flame testing. 

Coatings with higher compositions of the amphiphile led to lower ignition resistance hence the 

15% F127 composition was used throughout for the subsequent analyses. Coating effectiveness 

was probed with micro-scale combustion calorimetry (MCC) and thermogravimetric analysis 

(TGA). The most successful performing gel formulation was 15% F127/15% melamine/15% 

SHMP which produced 74 W/g 12 W/g in PHRR (a 60% reduction), and 8.0 kJ/g 12 kJ/g in 

THR (a 21% reduction).  The gel coatings are too thick to be commercially viable. The coated 

fabric also turned white due to the melamine polyphosphate. The overall hand of the fabric after 

coating felt stiffer and heavier compared to the soft and stretchy feel prior to coating. SEM 

imaging showed a more uniform coating over all of the cotton fibers for the 15% F127/15% 

melamine/15% SHMP coating compared to less concentrated coatings. The thicker gel coating 

showed evidence of cracks but that alone could have been a function of the large coating film 

thickness. Overall, the scheme for using precursors that result in the formation of a solid phase, 
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insoluble flame retardant in a coating seems valid, although larger amounts of qualification 

testing and better tools to provide for a thinner and more controlled thickness are appropriate.  
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CHAPTER VI 

 

Summary and Future Work 

 

6.1  Summary 

 The aim of this dissertation work was to better understand how ternary additives perturb 

the micelle formation energetics and where within the micelle ternary additives are portioned to 

resolve how formulated micelles perform as drug delivery vehicles. We attempted to better 

understand the linkage between forming structures of amphiphiles housing other molecules and 

the effect on availability and performance. Chapter II was dedicated to showing how the 

presence of methylparaben and cisplatin affect the thermodynamics of micelle formation, and 

resolving where within amphiphilic copolymer micelles various drugs of a certain hydrophilicity 

are situated. Chapter III studied how temperature and the presence of cisplatin affects the 

structural evolution of phase formation in PEO-PPO-PEO solutions. Chapter IV showed how 

temperature and different ternary additives affect the diffusion for controlled release and driving 

force for forming colloidal gels. Finally, Chapter V was a unique study that analyzed how to 

form micelle gels mixed with fire retardants to study flame resistant properties when applied 

onto cotton fabrics.     

In Chapter II, Differential Scanning Calorimetry was performed on a series of aqueous 

solutions of polyethylene oxide-polypropylene oxide-polyethylene oxide, PEO-PPO-PEO, 

(L101, P104, P105, and F108) amphiphiles in the low concentration regime (0-2/% mass v-1) to 

resolve the critical micelle concentrations (cmc) of the neat polymers. We confirmed the cmc for 
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P105 to be ~0.4%w/v at 26.3ºC, which is close to but slightly larger than 0.3%w/v at 25ºC of 

Alexandridis et al. [119, 120]. Increasing Pluronic P105 from 4% to 10% reduced Tmicelle and 

raised the endotherm. Work was done from 2% mass v-1 to 10% mass v-1 (in 2% mass v-1 

increments) amphiphilic copolymer concentrations and co-formulated with cisplatin and 

methylparaben concentrations (0% mass v-1 - 0.1/% mass v-1 in 0.02/% mass v-1 increments) to 

resolve any deviation in the enthalpy of micelle formation. Enthalpy-entropy compensation plots 

for each neat copolymer and each amphiphile solution mixed with drug were obtained. The 

compensation temperature, Tcompensation, was determined from the analyses for neat P105 as 293.9 

K; adding MP raises this to 328.43K. This change was compared to Bouchemal’s Tcompensation of 

293.3K for neat F127 and 316.5K when loaded with 1,2-propanediol [121]. For added cisplatin, 

two types of behaviors were observed; a drug influenced compensation temperature profile 

(P104), and a drug invariant behavior (L101, P105 and F108) where the change in compensation 

temperature was less than 1 K. Only neat P104 was found to be profoundly influenced by the 

presence of cisplatin that must reorganize the core/shell interface between the hydrophobic and 

hydrophilic regions of the micelle. Adding cisplatin lowered Tcompensation from 302.1 to 288.8 K 

for Pluronic P104.  Our findings present a rationale for explaining how the presence of a ternary 

additive, like MP and cisplatin, interacts thermodynamically with forming micelles, and the 

potency of the interaction between drug and micelle might regulate drug bioavailability. 

In Chapter III, the arrangement into cubic lattices of aqueous solutions of PEO-PPO-PEO 

triblock copolymers as their temperature is raised was analyzed. This structural evolution is seen 

macroscopically as a gelation, and the presence of these ordered phases can be controlled 

through both polymer concentration and temperature. The presence of added solutes within the 

dispersions can also affect the onset and kinetics of structure formation. In Chapter III, we 
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investigated the structures formed in the amphiphiles P104, P105, and F108 solutions at 31% 

mass v-1 both neat and co-formulated with the chemotherapeutic drug cisplatin (0.02% to 0.1% 

mass v-1) using small-angle X-ray scattering (SAXS). We observed both the progressive 

evolution and breakdown of these structures as the temperature is increased from 10oC to 35oC. 

The size of the unit cell as well as the thermal expansion coefficients for each system was also 

calculated. As the samples were being heated, added cisplatin changes the nucleation behavior of 

fcc or bcc phases within the sample from a homogeneous process to a more heterogeneous 

distribution of nucleated species. For P104 and P105, added cisplatin enhanced the structural 

ordering with sharper peaks. Unexpectedly for F108, added cisplatin showed the opposite effect 

as the intensity decreased indicating a destabilization of the ordered phases. The presence of 

cisplatin also caused the primary peaks of the F108 structure factor to be suppressed, while 

preserving the higher order peaks. Understanding where chemotherapeutic molecules as ternary 

additives are partitioned within micelles and how they influence the evolving structure is 

important to optimize controlled release systems utilizing amphiphilic copolymers as a drug 

delivery system.  

In Chapter IV, dynamic diffusion experiments were performed on aqueous polymeric 

micelles mixed with the ternary additives: malachite green (0.05% mass v-1), erythrosin (0.1% 

mass v-1), and cisplatin (0.1% mass v-1) to gauge their release from sequestered structures using 

Ultraviolet-Visible spectroscopy. The additives were formulated with 20% mass v-1 aqueous 

solutions of PEO-PPO-PEO (F127). Each additive was tested neat at room temperature, neat at 

40°C, and formulated with F127 at room temperature, and 40oC. After making calibration 

curves, the dynamic release for each ternary additive and corresponding diffusion coefficients 

were calculated.  Results showed F127 retarded permeation at room temperature. In general, the 
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neat additives at 40°C showed the highest permeability for both malachite green and erythrosin.  

Malachite green released almost 90% of the dye by 60 minutes of permeation.  When formulated 

with F127 at 40oC, sizeable release was still noted, but with an induction period of 10-30 minutes 

to register release. The behavior with cisplatin was more complicated as the first 5 hours of 

permeation resulted in a burst delivery with cisplatin (6% total release with cisplatin-F127-RT 

compared to 4% total release cisplatin-RT) but with overall lower release. The higher fluence at 

elevated temperature is attributed to reducing the blocking effect of the amphiphiles on the walls 

of the dialysis tubing as they are directed to form colloidal gels.  There is also likely a correlation 

between higher temperature and higher overall permeability if the membrane pores also expand 

with temperature. Our cisplatin results were compared to a number of other studies in which 

permeation in a sequestered nanostructure was evaluated for its fluence [181, 182]. Adding the 

amphiphile lowered the permeability of dye molecules (2.6 ± 0.01 x 10-7 cm2s-1 MG-RT 

compared to 2.6 ± 0.01 x 10-8 cm2s-1 MG-F127-RT), but tended to result in a burst delivery with 

cisplatin (6% total release with cisplatin-F127-RT compared to 4% total release cisplatin-RT). 

We also noted instability with cisplatin in aqueous solution [168-171].  

In Chapter V, cotton fabrics with flame retardancy were made from gel coatings applied 

from a single bath solution formulated with polymeric micelles and flame retardant amphiphiles. 

The flame retardant coatings were made from aqueous formulations of PEO-PPO-PEO (F127),  

in the low concentration regime (15% w/w), mixed with melamine (5%-15% w/w) and sodium 

hexametaphosphate (SHMP) (5%-15% w/w). After coating, the cotton fabrics were more 

difficult to ignite and, if ignition occurred, the coatings would self-extinguish. Vertical flame 

testing (VFT), micro-scale combustion calorimetry (MCC), thermogravimetric analysis (TGA), 

and scanning electron microscopy (SEM) were used to evaluate the coating quality of the flame 
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retardancy. Coated cotton decomposed at higher temperatures, as shown by MCC and TGA. 

While there is a need to optimize the coating conditions to yield an appropriate thickness 

compared to those reported in Chapter V, the combination of SHMP and melamine packaged in 

an amphiphilic matrix raises cotton flame retardancy. Overall, the scheme for using precursors 

that result in the formation of a solid phase, insoluble flame retardant in a coating seems valid, 

although larger amounts of qualification testing and better tools to provide for a thinner and more 

controlled thickness are appropriate. 

6.2  Future Work 

 The data presented in this dissertation presents a more complete picture of the specific 

interactions of ternary additives and PEO-PPO-PEO micelle structures. In certain situations, 

other additives produced different behavior in the resulting micelle gels. Added hydrophobic 

methylparaben changed the thermodynamics of micelle formation in P105 gels for compensation 

temperature, but added hydrophilic cisplatin showed an invariant behavior where the change in 

compensation temperature was less than 1 K. Only neat P104 was found to be profoundly 

influenced by the presence of cisplatin that must reorganize the core/shell interface between the 

hydrophobic and hydrophilic regions of the micelle. This suggests that differences in the 

molecular interactions between micelles and hydrophilic/hydrophobic ternary additives can lead 

to a different resulting behavior. DSC experiments of solutions containing P104 and 

methylparaben may help interpret how dissolved methylparaben affects the energetics of 

micellization of Pluronic P104. Overall, a more detailed investigation into the specific 

interactions that take place between ternary additives of a certain hydrophobicity is needed to 

offer a molecular explanation for the observed changes. Nuclear magnetic resonance (NMR) 
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may prove useful in determining the types of intermolecular interactions that are being formed 

between molecules of amphiphilic micelles and ternary additives.  

 Although the scattering studies presented here analyze the structural changes in the 

micelle lattice, other techniques are also available. Most notably, Small-Angle Neutron 

Scattering (SANS) as opposed to SAXS may optimize the scattering contrast between the 

micelle core and the micelle shell, which would help better determine if changes in the micelle 

lattice were a result of changing core size, or if the micelle shell was similarly being affected by 

added cisplatin. SANS would be especially useful with added cisplatin because of its high 

neutron scattering capabilities. The platinum, chlorine, and nitrogen atoms each produce high 

neutron scattering data which is shown in Figure 6.1. Similar methods have been carried out 

previously by Sharma et al. [13] using F127 and methylparaben, dibucaine, lidocaine, tetracaine, 

paclitaxel, baccatin III, sulindac, ethyl paraben, and propyl paraben. In addition to SANS, 

Dynamic Light Scattering (DLS) could also be used to see how adding ternary additives affect 

micelle size. Our group previously used DLS to analyze the affect methlyparaben has on the 

micelle size of F127 [16]. 
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Figure 6.1: The variation of neutron scattering lengths as a function of atomic number. 

 

 Efforts to apply these characterization techniques to more hydrophilic or hydrophobic 

additives are also worth further study. Results for more hydrophilic/hydrophobic or high 

molecular weight/low molecular weight additives can be used to generalize observed trends and 

create models for a particular additive and a corresponding amphiphilic micelle. These models 

can be used to help explain the result of a particular ternary additive interacting with a particular 

amphiphilic triblock copolymer. This would allow predictions that are more accurate in the 

micellization and aggregation behavior of amphiphilic copolymers in complex formulations. 

Studying other ternary additives like carboplatin in PBS solution instead of aqueous solutions 

may also help to understand the stability issue as well as the linkage between forming structures 

of amphiphiles housing other molecules and the effect on availability and performance in real 

world applications.    

 To further study the kinetics of gel formation in amphiphilic copolymer solutions, 

Rheology could be used to measure its thermophysical properties at different heating rates. Our 
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group previous used Rheology to study the thermophysical properties of F127 with added 

methylparaben using ramp rates of 0.1-10oC min-1 [16]. An expanded set of Rheology studies 

targeting the kinetics of the gel transition at different heating rates would produce useful 

information on the process of gel formation itself.  

For the fire retardant work in Chapter V, commercialization of this new technology will 

require extensive testing and characterization to ensure the technology complies with 

environmental, health, and safety requirements. This will require a better understanding of how 

the technology deteriorates the routes of exposure and the toxicity of the deterioration products 

and the probability of the deterioration and exposure. Though the risk of exposure at levels that 

can cause harmful effects is quite low, which is why these compounds are still used in a variety 

of commercial products. Additional research is needed to improve the wash durability of these 

coatings and reducing the mass gain and stiffness (hand) of the fabric upon coating. 
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