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Abstract 

The development of biorenewable resources to substitute for oil-based feedstocks in polymer 

manufacture is essential to address sustainability. Ethylene, propylene, and styrene together 

represent ~90% of the feedstocks used by the polymer industry. Some industries have attempted 

to utilize bio-based ethylene and propylene. However, there are very few known biosynthetic 

pathways to produce styrene and, generally, they are not well understood. The decarboxylation of 

cinnamic acid by ferulic acid decarboxylase (FDC) is one of the few biological pathways known 

that form styrene. The focus of this dissertation is to explore the recently proposed FDC 

decarboxylation mechanisms and cofactor specificity of the enzyme. 

The initially proposed mechanisms for FDC decarboxylation of phenylacrylic acid postulated 

either Michael addition or 1,3-dipolar cycloaddition. 1H NMR analysis, isotope effects and linear 

free-energy analysis were employed to further investigate the proposed mechanisms and determine 

the rate-determining step in the reaction. 1H NMR experiments demonstrated that FDC 

decarboxylation was stereospecific and the source of proton that replaced the carboxylic group of 

phenylacrylic acid was the solvent. Proton inventory experiments suggested that a single proton 

was involved in the transition state. The negative Hammett reaction constant provided evidence 

that the 1,3-cycloelimination step in the 1,3-dipolar cycloaddition mechanism is likely to be rate-

determining in the FDC decarboxylation. This was further supported by secondary kinetic isotope 

effect experiments. 



To investigate the biosynthesis of the prFMN cofactor by prenyl flavin synthase (PFS), a scPFS-

FDC coupled assay was developed and optimized to monitor scPFS prenylation through the 

activation of FDC. With scPFS-FDC coupling assay, we found that scPFS selectively uses 

dimethylallyl pyrophosphate as the substrate for FMN prenylation, in contrast to the bacterial 

enzyme for which dimethylallyl monophosphate was reported to be the substrate. By implementing 

this coupled assay, steady-state kinetic parameters of scPFS prenylation were obtained.  

Commercially available substrate analogs, (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate 

(HMBPP) and geranyl pyrophosphate (GPP), were used to investigate the substrate specificity of 

scPFS prenylation. The apparent first-order rate constants of prenylation were 4.45 ± 0.87 h-1, and 

3.80 ± 0.34 h-1 when HMBPP and GPP were respectively used as substrate under single turnover 

kinetics. Under steady state conditions, FDC was shown to utilize the cofactor synthesized from 

HMBPP to decarboxylate cinnamic acid at Vmax = 5.50 ± 0.37 min-1. However, in the case of GPP 

counterpart, no decarboxylation activity was observed.  

The results presented in this thesis provide better understanding of styrene biosynthesis by FDC. 

In order to be implemented in bioindustry, this system would have to be further optimized, 

especially in terms of enzymatic efficiency. One proposed strategy is the use of cofactor analogs. 

Preliminary investigations here have enabled to establish the procedure that would ultimately lead 

to the discovery of cofactor analogs with enhanced decarboxylation activity. 

 

 

 



Chapter 1 Introduction

1.1 Sustainability and biorenewable resources 

1.1.1 Sustainability 

As the global population continues to grow, perhaps one of the most challenging and imminent 

concerns facing the humanity is that of sustainability. The recent report on World Population 

Prospect by the United Nations (1) lation nearly 7.6 billion. The report 

predicts this number to increase by almost 50% at the end of this century, reaching 11.2 billion 

(Figure 1.1). In the last century and a half, fossil fuels have become one of the most prominent 

resources shaping the innovation and revolution of our society. Billions of tons of oil equivalent 

(toe) of fossil fuel have been consumed every year with positive demand growth predicted over 

next few decades (Figure 1.2) (2). The fate of fossil fuels can be sectionalized into power supply, 

construction, industry, transportation, and non-combusted fuel use such as feedstock in 

petrochemicals. Not only are these resources finite and being depleted, but their increasing demand 

and price lead to international tension and conflict. Utilization of these fuels moves the 

underground reserve of carbon to the atmosphere and is a substantial source of the greenhouse gas 

carbon dioxide (CO2). The large unnatural influx of carbon dioxide has gradually changed the 

biosphere causing serious concern about global warming and climate change. Even though a 

minority may disregard the existence of global warming and climate change, the change in global 

temperature and global sea level have been statistically recorded over the past century and the 

rising trends have been observed (Figure 1.3a,b) (3). Non-coincidentally, these trends are similar 



to the rise in global greenhouse gas concentrations (Figure 1.3c). The political, economic, and 

environmental concerns have driven a need for sustainable solutions to reduce fuel prices, replace 

rapidly depleting fossil fuels, and counteract global warming and climate change. Toward this 

goal, many countries have invested in research and development for substitutes from a renewable 

source, such as biomass. 

Figure 1.1: World population growth model projected by the United Nation. The black line shows 
observed population, the dash red line shows the median of 95% prediction intervals represented 
as grey area. Figure based on reference (1).  

 

Figure 1.2: Projection of the growth in energy demand in industry based on electricity 
consumption (left) and fossil fuel (right). Figure based on reference (2). 



Figure 1.3: Observations of a changing global climate system. (a) Annually and globally averaged 
combined land and ocean surface temperature anomalies relative to the average over the period 
1986 to 2005. Colors indicate different data sets. (b) Annually and globally averaged sea level 
change relative to the average over the period 1986 to 2005 in the longest-running dataset. Colors 
indicate different data sets. All datasets are aligned to have the same value in 1993, the first year 
of satellite altimetry data (red). Where assessed, uncertainties are indicated by colored shading. (c) 
Atmospheric concentrations of the greenhouse gases carbon dioxide (CO2, green), methane (CH4, 
orange) and nitrous oxide (N2O, red) determined from ice core data (dots) and from direct 
atmospheric measurements (lines). Figure taken from reference (3) 



1.1.2 Industrial/conventional manufacturing process of styrene 

With the projected growth in demand as described previously (Figure 1.2), the use of fossil fuels 

as a feedstock for petrochemicals such as styrene is of high concern. While demand growth for 

fossil fuels in other sections gradually decreases over next few decades, the demand growth for 

non-combusted uses of fossil fuels remain consistent, if not increases. The main contributors of 

this sector comprise manufacturing of C2-C4 olefins and aromatics, which are the chemicals 

feedstocks for mass-produced polymers such as polyethylene, polypropylene and polystyrene.  

Styrene production, in particular, has a global share of over 25 million metric tons per year with a 

small but consistent growth rate. The global market for styrene monomer is valued at 

approximately $30 billion and forecasted to grow by roughly an average of 3.6% per year (4,5). 

Despite consistently high demand and a large market for styrene, the current production process is 

unsustainable. Conventional styrene production is a two-step process consuming ethylene and 

benzene as feedstocks. The first step alkylates benzene with ethylene over an acid catalyst to form 

ethylbenzene. The second step converts ethylbenzene to styrene by dehydrogenation reaction over 

an iron oxide catalyst under vacuum at temperature in excess of 600°C (5,6). The conventional 

manufacturing process of styrene not only expends large amounts of energy and consumes 

unsustainable substrates, but also significantly contributes to emission of greenhouse gas such as 

carbon dioxide and methane.   

 

 



1.1.3 Biorenewable resources 

One of the most prominent responses to sustainability is the concept of biorenewable resources. 

Biorenewable resources, are organic materials with biological origins. Biorenewable resources are 

generally classified as waste or dedicated energy crops (7). Waste in this context not only includes 

discarded materials but also refers to low value co-products. Dedicated energy crops are plants 

grown for production of biobased products specifically. In the past decade, biomass research has 

been dedicated to the production of biofuels and the value enhancement of biomass.  

Renewable biofuels are fuels that are produced through biological processes that convert biomass 

to useful fuels. The biomass conversion processes are divided into three different categories: 

thermal conversion; chemical conversion; and biochemical conversion. Biomass conversion can 

result in fuel in solid, liquid, or gaseous fuels. Bioethanol, biobutanol, and algae biodiesel have 

gained global interest as potential alternatives to transportation fuel. Bioethanol, in particular, has 

already been used as gasoline blend for automobiles (8,9). However, the drawback of bioethanol 

biofuel is its low energy content, roughly one-third lower energy content per unit of volume 

compared to gasoline. Therefore, bioethanol based vehicles will consume 30% more fuel 

volumetrically in comparison with petrol vehicle counterparts.  

Biobutanol possesses several significant properties suitable for biofuel. These properties include 

high energy content, immiscibility with water, blending ability, compatibility to combustion 

engines, low corrosion and high octane rating (10,11). Despite these merits, current biobutanol 

production suffers from several problems such as selection of sustainable biomass, low yield, 

butanol inhibition of fermentation cultures and high product recovery costs (12). To make butanol 

biofuel economically feasible, wide spread research has been conducted both academically and 

industrially.  



Biodiesel is produced from oils or fats using transesterification and is a liquid similar in 

composition to petroleum diesel. The common feedstock for biodiesel is plant oil. The major 

concerns with plant oil-derived biodiesel is its economic impact on food price and large area of 

cultivation land required to replace a significant amount of petroleum diesel. Microalgae, which 

are considered to be among the most efficient photosynthetic organisms on earth, become a 

potential source of biomass for second-generation biofuels. However, algal biodiesel economy is 

currently uneconomic due to high production cost. Production process for algal biodiesel includes 

algae cultivation, harvesting, biomass processing, oil extraction and biodiesel production. Biomass 

processing is an energy-intensive process while the oil extraction process can be done using either 

high energy or expensive solvent extraction (13,14). Various studies have been conducted to 

improve production of algae biodiesel in the past few decade. These studies range from 

optimization of algae strains to alternate approaches to process biomass and extract oil.  

Although much smaller scale in comparison to transportation fuel, the polymer industry plays 

another important role shaping research in biorenewable resources. Biorenewable resources in the 

polymer industry are divided into monomers that replace existing counterparts from fossil sources 

and original monomers. Ethylene and propylene are well-known monomers belonging to the first 

group. Biorenewable ethylene is derived by dehydration of bioethanol. Industrial polyethylene 

production using bio-based ethylene was initiated by the Braskem Company starting in September 

2010 with a plant production capacity of 200,000 tons per year. Even though bio-based propylene 

has not yet reached industrial capacity, the Braskem Company has been carrying out an extensive 

program of research and development aimed at optimizing synthesis of propylene from bioethanol 

(15).  



Original monomers are unavailable from fossil resources. They are derived specifically from 

biomass and their polymers are intended to substitute fossil-based polymers. Citric acid and tartaric 

acid are common examples of the monomers in this group. Citric acid is a cheap commodity with 

a yearly industrial production over a million tons. The roles of citric acid in polymer industry 

include the synthesis of biodegradable polyesters and a co-monomer in preparation of isosorbide-

based polyesters to enhance chemical and mechanical stability of bio-based coating polyester (16). 

Tartaric acid is an equally widespread and cheap natural compound. Novel polymers based on 

tartaric acid include the synthesis of biodegradable polycarbonates with anhydroalditols (17), 

optically-active hydrophilic aliphatic polyamides capable of producing supramolecular 

stereocomplexes (18), polyesters with controlled hydrophilicity (19), and polyurethane with a 

unique proneness to degrade hydrolytically upon incubation at low heat (80oC) (20). Aside from 

these two groups of biorenewable monomers, lignin-based polymers have gained increasing 

interest. Appreciable proportions of aliphatic and phenolic OH groups in lignin make lignins useful 

as macromonomers for the synthesis of polyurethanes and polyesters. However, the major 

challenge with regard to lignin is its intrinsic irreproducibility. Rather than using lignin as 

macromonomers, a number of researchers have focused on the preparation of individual monomer 

structures, which can be purified to an adequate level before polymerization (15).  

 

 

 

 

 



1.1.4 Biosynthesis of aromatic compounds and styrene in nature  

Nature employs several strategies to synthesize aromatic compounds. One of the most common 

biosynthesis pathways is the shikimate pathway. The shikimate pathway is the biosynthetic route 

to the aromatic amino acids phenylalanine, tyrosine, and tryptophan. The roles of these compounds 

in biological systems are not limited to protein building blocks, but also serve as precursors for a 

large number of secondary metabolites. The shikimate pathway converts the glycolytic 

intermediate phosphoenol pyruvate (PEP) and the pentose phosphate pathway intermediate 

erythrose-4-phosphate (E4P) to chorismate. Chorismate is a precursor to various primary and 

secondary metabolites such as phenylalanine, tyrosine, tryptophan, quinones, and folates. The 

Shikimate pathway is composed of seven different steps (Figure 4) (21,22). PEP and E4P are first 

condensed to form 3-deoxy-Darabinos-heptulosonate-7-phosphate (DHAP) by DAHP synthase. 

Then the ring oxygen is exchanged for the exocyclic C7 of DHAP to form 3-dehydroquinate. The 

remaining steps introduce a side chain and two double bonds that convert the cyclohexene ring 

into the benzene ring.  

In the context of styrene biosynthesis, the occurrence of styrene in a wide variety of food has been 

reported since the late nineteen century. Several possible origins of styrene had been proposed. 

Through several scientific efforts, the pathway in which certain plants and yeast species synthesize 

styrene from excess L-phenylalanine through the series of reactions has been elucidated (23,24). 

Biosynthesis of styrene is a two-step process. In the first step, phenylalanine-ammonia lyase (PAL) 

deaminates phenylalanine to cinnamic acid. Then, ferulic acid decarboxylase (FDC) performs 

decarboxylation yielding styrene. In yeast this process also serves as detoxification mechanism 

against various aromatic carboxylic acids that are inhibitory to growth.  



 



1.2 Phenylacrylic acid decarboxylase (PAD) and Ferulic acid decarboxylase (FDC) 

1.2.1 Decarboxylase 

Decarboxylation is one of the most fundamental processes in biological systems. Decarboxylases 

are involved with a wide variety of anabolic and catabolic pathways. More than 90 different 

decarboxylases has been identified within the IUPAC classification (25). Enzymatic 

decarboxylation usually utilizes an exogenous cofactor to stabilize the carbanion that transiently 

develops during the elimination of carbon dioxide from the substrate and catalyze the reaction. 

However, a few decarboxylases such as o -monophosphate decarboxylase (OMPDC), 

methylmalonyl CoA decarboxylase (MMCD), and acetoacitate decarboxylase (AAD) develop 

different strategies to decarboxylate their substrates without a cofactor. OMPDC catalyzed 

decarboxylation proceeds by a concerted mechanism with the help of conserved aspartic acid and 

lysine residues; and thus avoids the development of a high energy carbanion intermediate (26). In 

the case of MMCD, a conserved tyrosine orients the substrate in a plane with thioester carbonyl 

group. Then, the extremely hydrophobic characteristic of MMCD active site thermodynamically 

promotes decarboxylation yielding favorable neutral carbon dioxide molecule (27). In the case of 

AAD, the pKa of the lysine residue in the active site is perturbed from 10.5 to 6. This deprotonated 

lysine serves as a nucleophile in active site of AAD. The lysine bond is further oxidized to form 

carboxylate group and nearby glutamate residue facilitate the decarboxylation reaction (28).   



Figure 1.5: Representive mechanistic models of decarboxylases without an exogenous cofactor: 
(a) OMPDC, (b) MMCD and (c) AAD. Figure adapted from reference (25). 

 

 



Cofactors for decarboxylases can be either inorganic or organic. Ferrous iron, manganese (II) and 

magnesium are cofactors for inorganic cofactor-based decarboxylases.  These metals serve as 

electron sinks and Lewis acid centers. Coordination between substrate and the metal center 

stabilizes the buildup of negative charge during decarboxylation, and therefore reduces the energy 

barrier to reaction. Organic cofactor-based decarboxylations often proceed through an oxidation-

reduction mechanism. In this mechanism, the decarboxylation is initiated in the oxidative step, and 

followed by the reduction of the intermediate. Organic cofactors for decarboxylation include 

electron carriers such as flavin, and NAD(P)+ as well as pyridoxal phosphate and thiamin 

pyrophosphate that serve to delocalize -bonds (25).  

Table 1.1: Table summarizes catalytic strategies for biological decarboxylation and their 
examples. 

 

Catalytic cofactor   
 

Representative enzyme 

none 

 

Orotidine monophosphate decarboxylase 

Methylmalonyl CoA decarboxylase 

Acetoacitate decarboxylase 

Inorganic Fe2+/O2 (oxidative) Gallic acid decarboxylase 

CloR decarboxylase 
 

Mn2+/O2 Oxalate decarboxylase 
 

Mg2+ 3-Keto-L-gulonate 6-phosphate decarboxylase 

Organic Flavin 4-Phosphopantethenoyl cysteine decarboxylase 
 

NAD+/NADP+ Methylmalonyl CoA decarboxylase 
 

Pyridoxal 5'-phosphate Glycine decarboxylase 

Ornithine decarboxylase 

DOPA decarboxylase 

  Thiamin diphosphate Phosphonopyruvate decarboxylase 



1.2.2 Phenylacrylic acid decarboxylase (PAD) and Ferulic acid decarboxylase (FDC) 

Phenolic compounds such as coumaric acid and ferulic acid are important components of the plant 

cell wall material, lignocellulose. Breakdown of lignocellulose releases phenolic acids from their 

natural esterified forms. The resulting free phenolic acids are toxic to most microorganisms. 

However, some yeasts and other organisms such as Bacillus Pumilus and Lactobacillus plantarum 

have evolved metabolic pathways capable of transporting and decarboxylating these compounds. 

The enzyme responsible for ferulic acid decarboxylation was first purified from Bacillus Pumilus 

in the late twentieth century (29). The potential of phenylacrylic acid decarboxylases (PAD)/ferulic 

acid decarboxylases (FDC) for styrene biosynthesis has been one driving force for research into 

these enzymes. Since then, PAD/FDCs from different microorganisms such as Lactobacillus 

plantarum, Pediococcus pentosaceus, Brettanomyces bruxellensis, Mycobacterium colombiense, 

Methylobacterium sp., Enterobacter sp., and Saccharomyces cerevisiae have been purified and 

studied (30 35). In order to construct a styrene biosynthesis pathway from glucose, various 

isoenzymes of phenylalanine ammonia lyase (PAL) and PAD/FDC have been screened and tested 

for decarboxylation activity (24). While bacterial PAD can convert coumaric acid to p-

hydroxystyrene, only yeast FDC can catalyze the decarboxylation of cinnamic acid yielding 

styrene.  

1.2.3 Yeast FDC1 and PAD1 

Decarboxylation of phenolic acid in yeast involves with two proteins, early identified as ferulic 

acid decarboxylase1 (FDC1) and phenylacrylic acid decarboxylase1 (PAD1). Subsequent studies 

(36) have found that decarboxylation reaction in yeast requires co-expression of both FDC1 and 

PAD1. However, purified PAD1 does not exhibit decarboxylase activity, while purified FDC1 

alone can convert cinnamic acid and coumaric acid to styrene and hydroxystyrene (24). The result 



suggests that FDC1 is the actual decarboxylase while PAD1 assists FDC1 in some way. The role 

of PAD1 has been proposed to produce flavin-based cofactor that is required by FDC for 

decarboxylase activity (37). Evidence for this comes from an experiment in which active FDC1 

loses its activity after dialyzing against buffer (membrane cutoff = 3,500 Da) for 24 hours. The 

result indicates that FDC1 binds to a small cofactor rather than directly binds to PAD1 enzyme. 

1.2.4 Crystal structure of FDC1 and UbiX 

Recently, the cofactor of FDC1 has been successfully identified through crystal structures of 

Aspergillus niger FDC1 and Pseudomonas aeruginosa UbiX (38 40). The studies have identified 

flavin cofactor to be a novel cofactor derived from prenylation of FMN by UbiX to form additional 

ring between C5 and N6 position of isoalloxazine moiety. Based on crystal structure if UbiX, 

prenylation mechanism has been proposed with FMN and dimethyl allylmonophosphate as 

substrates (Figure 1.6).  

Figure 1.6: Schematic representation of the proposed UbiX mechanism. The first intermediate 
was identified as a sp3 N5-prenyl adduct (PDB: 4ZAV). Figure taken from reference (40). 

 



Two forms of oxidized prFMN isomers were observed from the crystal structure of A. niger FDC1: 

ketamine form and iminium form (Figure 1.7) (38). The enoic acid double bond of phenylacrylic 

acid substrate is found to position directly above the C4 of both oxidized prFMN. The position of 

-unsaturated carbonyl directly above the C4 of prFMN suggests the possibility of 

Michael addition-like chemistry and other flavin-catalysed reactions (41). In the proposed 

mechanism through Michael addition, the N5 secondary ketimine of prFMN could act as a 

probable acid-base catalyst, providing a rationale for both FMN modification and rearrangement. 

Figure 1.7: Isomers of prFMN observed in the crystal structure of A. niger FDC1 (Left) ketamine 
form (right) iminium form. 

However, the subsequent studies using phenylpyruvate as substrate reveals a covalent adduct 

formed between the prenyl-

imply that iminium form of prFMN is the catalytically relevant species. Iminium form of prFMN 

contain distinct azomethine ylide character (a well-known 1,3-dipole) that is positioned directly 

-unsaturated carbonyl (a dipolarophile) by the enzyme. Therefore, a 



1,3-dipolar cycloaddition mechanism has been proposed as an alternative decarboxylation 

mechanism using iminium form of prFMN cofactor.  

Figure 1.8: Insight into FDC1 decarboxylation mechanism. (a) Proposed mechanism based on 
Michael addition-like chemistry using ketamine form of prFMN as cofactor. (b) Proposed 
mechanism based on 1,3-dipolar cycloaddition using iminium form of prFMN as cofactor. Figure 
adapted from reference (38). 



1.3 Goals 

Over the last decade, previous studies by our lab and others have established a firm foundation 

from which we can investigate the mechanism of FDC1 and PAD1 as well as the interaction 

between the two enzymes. We know that FDC1 serves as decarboxylase while PAD1 generates 

the flavin based cofactor. However, the mechanisms by which the cofactor is generated by PAD1 

and the decarboxylation reaction by FDC1 utilizing this cofactor were unknown. In order to utilize 

FDC1-PAD1 toward sustainable production of styrene, understanding of the unusual chemistry 

employed by FDC1 and PAD1 are necessary. 

The research in this thesis seeks to provide further understanding of catalytic mechanism employed 

by FDC1 and PAD1 with regard to yeast phenylacrylic acid decarboxylation. First, in chapter 2, 

linear free energy analysis and isotope effects were employed to explore dearboxylation 

mechanism. Results from Hammett analysis and isotope effects provided evidence supporting a 

1,3-dipolar cycloaddition mechanism as well as identify probable rate limiting step of the reaction. 

Next, several approaches to assay biosynthesis of prFMN cofactor were investigated in chapter 3. 

Dual enzyme assay and HPLC assay were developed in this chapter and utilized to study prFMN 

cofactor analogs in chapter 4. These work serve to expand our mechanistic understanding of 

styrene biosynthesis and provide insight to the identification of non-natural cofactors for FDC that 

exhibit superior decarboxylase activity.   
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Chapter 2 1H NMR, Linear free energy analysis and isotope 

effects on decarboxylation catalyzed by FDC 

The work described in this chapter has been published as: Ferguson KL, Arunrattanamook N, 

Marsh ENG. Mechanism of the Novel Prenylated Flavin-Containing Enzyme Ferulic Acid 

Decarboxylase Probed by Isotope Effects and Linear Free-Energy Relationships. Biochemistry 

(Mosc). 2016 May 24;55(20):2857 63.; 

2.1 Introduction 

Decarboxylation reactions constitute an important class of biological reactions that are ubiquitous 

in both primary and secondary metabolism in living organisms. However, decarboxylation 

reactions usually have very high energy barriers that require enzymes to catalyze the reaction on a 

biologically feasible timescale. Therefore, nature employs a wide variety of catalytic strategies to 

facilitate decarboxylation utilizing an array of prosthetic groups; such as metal ions, pyridoxal 

phosphate and thiamin pyrophosphate (1 4).  

The enzyme that is subject of this thesis is ferulic acid decarboxylase (FDC). This enzyme, and 

several of its analogs are found in yeast strains and a variety of different microbes (5 10). The 

major functions of these enzymes include: detoxifying antimicrobial compounds such as sorbic 

acid and phenylacrylic acid by decarboxylating them to give carbon dioxide and volatile a 

byproduct, and decarboxylation of aromatic carboxylic acid intermediates in the ubiquinone 

biosynthesis pathway (11). Unlike other enzyme-catalyzed decarboxylation reactions, FDC does 



not require the substrate to have an additional activating group such as carbonyl (benzoylformate 

decarboxylase), carboxylate (isocitrate dehydrogenase), hydroxy (bacterial phenylacrylic acid 

decarboxylase), and amino (amino acid decarboxylase). As such, FDC can decarboxylate trans-

phenylacrylic acid derivatives and sorbic acid yielding hydrocarbon products free of heteroatom 

functional groups, in this case styrene and 1, 3-pentadiene, respectively. Thus, it is of great interest 

to use FDC as a model enzyme for biosynthesis of styrene and other valuable monomer feedstocks 

for mass-produced polymers. 

An attempt to construct a styrene biosynthesis pathway in an industrially viable microorganism 

such as Escherichia coli has recently been reported (12). The pathway is composed of two-steps: 

the deamination of phenylalanine by phenylalanine lyase, followed by the decarboxylation of the 

corresponding product, trans-cinnamic acid (tCA), with ferulic acid decarboxylase from 

Saccharomyces cerevisiae (Figure 2.1).  

 

Figure 2.1: Constructed styrene biosynthesis pathway in Escherichia Coli that successfully 
synthesizes styrene from renewable substrates such as glucose. A is phenylalanine lyase and B is 
ferulic acid decarboxylase. Figure taken from reference (12). 
 

The successful construction of this pathway served as a starting point for biosynthesis of styrene; 

however, the mechanism of the enzyme catalyzing the decarboxylation step, FDC, remained 

largely unknown at the time.  Subsequent studies on FDC have identified a new flavin-derived 

cofactor involved in the decarboxylation of phenylacrylic acids (11,13,14). This cofactor, which 



has been termed as prenylated flavin, is a modified form of FMN (prFMN) containing an extra 6-

membered ring formed by the addition of an isopentyl group between the N5 and C6 positions of 

the isoalloxazine moiety. In the same subsequent study, prFMN was shown to be synthesized from 

dimethylallyl phosphate (DMAP) and FMN by UbiX. 

On the basis of crystallographic evidence (15), a mechanism has been proposed for FDC that 

involves an initial 1,3-dipolar cycloaddition between prFMN and the double bond of phenylacrylic 

acid, which is followed by a Grob-type elimination of carbon dioxide (Figure 2.2a). Protonation 

of the substrate by an active site glutamate and finally cyclo-elimination to yield styrene and 

prFMN complete the catalytic cycle. The mechanism of FDC is of considerable interest because 

true thermal pericyclic reactions are extremely rare in enzymes, and 1,3-dipolar cycloadditions are 

unprecedented. A simpler mechanism involving a Michael addition of prFMN to the double bond 

of phenylacrylic acid followed by decarboxylation and elimination of the cofactor was also 

proposed as alternate mechanism (Figure 2.2b). However, this mechanism was disfavored on the 

basis of an X-ray structure of a covalent inhib  inconsistent with 

prFMN reacting in this way. 

This chapter describes a combination of 1H NMR analysis, isotope effects and linear free-energy 

analysis studies, which my colleague Kyle Ferguson and I undertook in order to further investigate 

the proposed mechanisms for phenylacrylic decarboxylation. Isotope effects and linear free-energy 

analysis are informative in identifying intermediate bond formation and bond breakage during the 

chemical limiting step. The presence of these effects may inform on the nature of the rate-

determining step. 



Figure 2.2. Proposed mechanisms for the FDC-catalyzed decarboxylation of phenylacrylic acid 
proceeding through (A) 1,3-dipolar cyclo-addition to the prFMN cofactor and (B) Michael 
addition/elimination of prFMN to the substrate. (C) Details of the active site: active site residues 

-
methylphenylacrylic acid (blue) is shown bound in the active site (PDB ID: 4ZA7). 



2.2 Materials and methods 

2.2.1 Materials 

trans-cinnamic acid, styrene, p-coumaric acid, 4-methoxycinnamic acid, 4-fluorocinnamic acid, 

4-formylcinnamic acid, 4-bromocinnamic acid, 4-chlorocinnamic acid, and 4-methylcinnamic 

acid were purchased from Acros Organic. trans-cinnamic acid, 3-nitrocinnamic acid, and 3-

methoxycinnamic acid were purchased from Sigma-Aldrich. 4-Cyanocinnamic acid was 

purchased from Matrix Scientific. 4-Aminocinnamic acid and 4-nitrocinnamic acid were 

purchased from Tokyo Chemical Industries. 4-(2-Carboxy-vinyl)-benzoic acid methyl ester was 

purchased from Santa Cruz Biotechnology. All other chemicals were purchased from Sigma-

Aldrich. d7-trans-Cinnamic acid and 3-d1-trans-cinnamic acid were purchased from Sigma-

Aldrich; 2-d1-trans-cinnamic acid was synthesized by reaction of benzaldehyde with d6-acetic 

anhydride using standard literature procedures (16). Holo-FDC was recombinantly expressed in 

Escherichia coli and purified as described previously (14). 

2.2.2 1H NMR analysis 

Decarboxylated products of trans-cinnamic acid were prepared by the reaction between 4 mM of 

tran-cinnamic acid and 1 M of FDC1 enzyme in 3 mL of (a) 100 mM phosphate buffer pH 7 (b) 

pH 7 of deuterated HEPES buffer (typical HEPES buffer prepared with deuterated water and 

NaOD).  After 30 minutes of reaction, decarboxylated products were collected and centrifuged at 

7000 rpm for 30 minutes to separate FDC enzyme from the solution. Then, the solutions were 

L of CDCl3 three times. Molecular sieves were added into combined CDCl3 

phase to absorb traces of water in the organic phase. The 1H NMR experiments and data 

acquisitions were carried out using Varian MR400 NMR spectrometer. 



2.2.3 Enzyme Assay  

Assays of FDC activity were routinely performed in 100 mM phosphate buffer (pH 7.4) at 25°C. 

Stock solutions of substrates were prepared in DMSO. Assays contained substrates at various 

initial concen

final concentration between 50 and 500 nM depending on the activity of the enzyme with a 

particular substrate. We followed the activity spectrophotometrically by monitoring depletion of 

the substrates. The wavelengths used to monitor the enzyme activity and extinction coefficients of 

the various substrates are given in Table 2.1. Care was taken to ensure that the assay remained 

linear at the concentrations of substrate and enzyme used. 

Table 2.1: Assay wavelengths and extinction coefficients for phenylacylic acid derivatives used 
in this study 

substituent Assay wavelength (nm) 
substrate 

(M .cm ) 

product 

(M .cm ) 



2.2.4 pH Dependence and Solvent and Secondary Deuterium Isotope Effect Measurements  

 

measurements in deuterated solvents, the buffer components were dissolved in D2O (99.9%) and 

repeatedly lyophilized to exchange protium. pD was corrected using eq 2.

fraction of D2O. 

2   (Equation 2.1) 

To measure the solvent deuterium kinetic isotope effect on styrene formation, the reactions were 

performed in buffers containing various mole fractions of D2O, and the deuterium content of the 

styrene produced was analyzed by GC-MS as described previously (17,18). 

Secondary K and enzyme concentrations 

of 50 nM so that the measurements represent the KIE on Vmax/KM. Experiments were performed 

at a pD and pH of 6.5, where the activity of the enzyme is independent of pH. 

 

 

 

 

 

 

 



2.3 Results and discussion 

At the time research experiments in this chapter started, there was no studies regarding the reaction 

mechanism by which phenylacrylic acid is decarboxylated by FDC. Thus, the first aim of my 

research thesis was to gain a better understanding on the decarboxylation mechanism. The 

analytical tools used in the experiments to elucidate the mechanism include 1H NMR and linear 

free energy correlations (Hammett analysis), along with solvent isotope effect and secondary 

kinetic isotope effect measurements made in collaboration with my colleague, Kyle Ferguson. 

With the release of the crystal structure which allowed proposed mechanisms to be proposed, the 

results in this chapter have been exploited to verify the decarboxylation mechanism used by FDC, 

and describe the nature of this mechanism, as well its rate determining step.  

2.3.1 1H NMR analysis 

The 1H NMR spectrum of styrene product obtained from the reaction performed in deuterated 

HEPES buffer is shown in Figure 2.3a. The 1H NMR spectrum of styrene from reaction in 

phosphate buffer match with the reference spectrum (reference from WinChembase) of styrene 

described in Figure 2.3b. Deuterated styrene product displays two signals from proton on the 

double bond with equal intensity. The signal at chemical shift (horizontal axis) around 5.2 ppm is 

missing, indicating that FDC stereospecifically protonates at hydrogen position D (trans-terminal 

position), which is also the position of carboxylic group of trans-cinnamic acid (Figure 2.3c). 

Without hydrogen at position D, the signal of hydrogen at position B changes from doublet of 

doublets into doublet. The chemical shifts of the remaining signals of deuterated styrene product 

are consistent with the reference styrene spectrum. The result also implies that the source of 

hydrogen used for protonation comes from solvent; and thus, solvent diffusion could play an 



important role in enzymatic activity.  Furthermore, substituents on hydrogen position B or C are 

not likely to be steric effects that could alter substrate binding. 

Figure 2.3. (a) 1H NMR spectrum of deuterated styrene product. Two doublet signals 
corresponding to acrylate protons are observed at 6.7 and 5.7 ppm (b) 1H NMR spectrum of 
styrene with assigned signal. Three acrylate protons are observed at 6.7, 5.7 and 5.2 ppm. (c) 
Decarboxylation reaction of trans-cinnamic acid. The protonation to form styrene product is 
specific at the same position as carboxyl group of trans-cinnamic acid.  



2.3.2 Linear free energy analysis (Hammett analysis) of FDC 

Linear free-energy relationships provide a powerful tool with which to interrogate reaction 

mechanisms (19 21). The narrow substrate range of most enzymes limits the utility of this 

approach for the investigation of enzyme reactions, although for more promiscuous enzymes, 

linear free energy analyses have proved to be highly informative. The broad substrate range of 

FDC made it an excellent candidate to conduct a Hammett analysis of the decarboxylation reaction. 

The linear free energy kinetic analysis was studied for a series of 14 para- and meta-substituted 

phenylacrylic acids covering the range of substituent constants of -0.66 to +1.25, which are 

listed in Table 2.2. 

Table 2.2: kcat/KM Values Measured for FDC-catalyzed decarboxylation of various phenylacrylic 
acid derivatives 

 

 



The resulting Hammett plot for a series of 12 of the substituted phenylacrylic acids listed in Table 

2 is shown in Figure 2.4. The data 

0.5; r2 = 0.65)  

r2 = 0.93). Two substrates, 4-amino- and 4-hydroxyphenylacrylic acid, reacted much slower than 

 values. These substrates are the only compounds that 

contain hydrogen bond-donating functional groups. Although it is unclear why they react so 

slowly, the large deviation of these compounds from the trend line suggests they may react by a 

 

The apparent linearity of the Hammett analysis provides strong evidence that a chemical step is 

rate-determining in the reaction. The negative , which is caused by electron-

releasing groups that increase the rate of reaction, is very unusual. With the exception of some 

metal catalyzed decarboxylations (21,22), decarboxylation reactions (both enzymatic and 

nonenzymatic) involve a buildup of negative charges in the transition state and are therefore 

associated with large posit  indicates that, in addition to 

-system associated with the 

aromatic ring is important in stabilization of the transition state in a step that contributes 

significantly to the overall rate of the reaction. 



Figure 2.4: Hammett plot for the FDC-catalyzed decarboxylation of 14 different para- and meta-
substituted phenylacrylic 
blue were excluded from the analysis. 

2.3.3 pH Dependence and solvent isotope effects 

2.3.3.1 Dependence of rate on pL 

Initial characterization by 1H NMR of the styrene produced in the FDC reaction established that 

the solvent proton is incorporated trans to the phenyl ring of styrene, as described earlier. 

cord 

with the geometry of the active site and the proposed role of Glu282 acting as the proton donor.  



Because solvent isotope effects may be influenced by pH, we first investigated the activity of FDC 

as a function of pH and pD. Under Vmax conditions, the enzyme exhibits a typical bell-shaped pH 

dependence curve with an activity maximum at pH 6.5. The acidic limb is characterized by pKa = 

5.3 ± 0.1, and the basic limb is characterized by pKa = 8.0 ± 0.1. The enzyme activity in deuterated 

buffers was very similar, although the pKa of the acidic limb was shifted to a slightly lower value 

(pKa = 5.0 ±0.1) (Figure 2.5). On the basis of the pL curves, the solvent KIE on Vmax (DVsolvent) 

was measured at pL = 6.5. The value is close to unity (DVsolvent = 0.95 ± 0.05; n = 5), indicating 

that proton transfer to the product is not a kinetically significant step in the overall reaction. 

Figure 2.5: pL-rate profile for decarboxylation of phenylacylic acid by FDC in H2O (blue) and 
D2O (red) buffers. 



2.3.3.2 Proton inventory analysis 

To investigate the protonation step in more detail, we conducted a proton inventory analysis, which 

allowed us to measure the solvent KIE on Vmax/KM (DV/Ksolvent). Reaction mixtures were set up at 

pL 6.5 in buffers contain D2O). The styrene 

styrene) was determined 

by GC-MS. While DV/Ksolvent styrene D2O = 0.5, for 

which DV/Ksolvent = 3.3, we can determine it more accurately by fitting the full proton inventory 

data, shown in Figure 2.6, to eq 2.2. 

Figure 2.6. Proton inventory for FDC. The mole fraction of D2O in the solvent is plotted against 
the ratio of protonated to deuterated styrene. The solid line represents the best fit to eq 2.2. A 
linearized plot of the data is shown in the inset. 



   (Equation 2.2) 

2.3.4 Secondary kinetic isotope effects 

Secondary kinetic isotope effects report on changes in the stiffness of bonds adjacent to the site of 

the reaction. They are particularly informative for an examination of changes in the geometry of 

carbon atoms: the transition from tetrahedral to planar geometry is associated with a normal 

secondary KIE, whereas the transition from planar to tetrahedral geometry is associated with an 

inverse secondary KIE (23 26). To investigate the mechanism of the FDC reaction, we measured 

- -positions of cinnamic acid in both D2O and H2O 

buffers (the commerci -deuterated cinnamic acid was also deuterated on the phenyl 

-position). KIEs were 

determined at 25 °C in 100 mM sodium citrate buffer (pL 6.5) by a direct comparison of reaction 

rates at low substrate concentrations relative to KM so that the measurements represent KIEs on 

Vmax/KM. The data are presented in Table 2.3. 

Table 2.3: Summary of secondary kinetic isotope effects measured for the FDC-catalyzed 
decarboxylation of deuterated phenylacrylic acids in H2O and D2O 

In H2 - -position a large, 

normal 2° KIE was measured (2°DV/K  = 1.10 ± 0.03; n = 9). In contrast, in D2O, the apparent 

-position became significant (2°DV/K  = 1.12 ± 0.03; n = 9), whereas the 2° 

-position was suppressed and was at unity within error. When di-deuterated 



phenylacrylic acid was the substrate, large 2° KIEs were measured in both H2O and D2O. The fact 

- -

carbons from tetrahedral to planar geometry during the reaction. 

2.3.5 Interpretation of linear free energy analysis and isotope effect 

The strong correlation of log(kcat/KM) with the H  parameter (Figure 2.4) points to a 

chemical step in the reaction as rate-determining, rather than a substrate-binding or product release 

precise details of the mechanism, that the decarboxylation step is rate-determining. Otherwise, the 

generally observed in decarboxylation reactions.  

-cycloelimination reaction, which leads to the 

release of styrene from prFMN, is likely to be rate-determining in the FDC decarboxylation. The 

correlation o  is generally discussed in terms of resonance effects. This 

formalism derives from the overlap of p- -systems and is thus correlated 

with the HOMO-LUMO analyses used to rationalize thermal pericyclic reactions. The structure of 

prFMN suggests that its reactivity toward dipolarophiles (substrates in our case) will resemble that 

of an azomethine ylide, which have a nucleophilic character and react increasingly rapidly with 

increasingly electron-withdrawing dipolarophiles (27). Thus, electron-withdrawing substituents 

on the phenyl ring will slow down the final cyclo-elimination reaction leading to product 

formation, consistent with our experimental observations. 



The 2° KIEs measured for FDC provide further evidence that a chemical step, rather than a 

substrate binding or product release step, is rate-determining. The observed normal 2° isotope 

effects are indicative of a change in geometry at the carbon atoms from tetrahedral to planar which 

points to the rate-determining step involving the formation of the styrene double bond in the final 

cyclo-elimination reaction. The change in the apparent 2° KIEs observed when the reaction is 

performed in D2 -carbon undergoes 

rehybridization, it contains an additional deuterium from the solvent. This will introduce a cryptic 

- -carbon. When the enzyme is reacted 

-deuterated phenylacrylic acid in D2 -carbon will contain two deuterium atoms; thus, 

the observed 2° KIE will be further elevated and will appear as a normal KIE. A similar argument 

can be brought -dideuterated substrates are 

used. The pattern of 2° KIEs further suggests that the 1,3-cyclo-elimination reaction that leads to 

the formation of the styrene double bond occurs in a concerted but asynchronous reaction in which 

- -carbon. 

Our results do not definitively rule out a previously considered mechanism in which a Michael 

addition of prFMN to phenylacrylic acid facilitates decarboxylation as shown in figure 2.2. 

However, we consider this possibility as less likely. In this mechanism, the 2° KIEs indicates that 

decarboxylation is rate limiting, concomitant with a change in geometry from tetrahedral to planar 

- -carbons. As discussed above, postulating decarboxylation as the rate-limiting step 

from linear free energy analysis. 

 

 



2.4 Conclusions 

In conclusion, the results presented here provide evidence supporting the proposed mechanism for 

FDC which involves a novel cycloaddition reaction of the substrate with the prenylated flavin 

cofactor. The unusual negative reactivity constant, , and the normal secondary kinetic isotope 

effects suggest that the rate-determining step in the catalytic cycle is resolution of the 

-elimination reaction. Further mechanistic studies would 

be necessary to provide direct evidence for the existence of intermediates of the 1,3-dipolar 

cycloaddition mechanism.  

Subsequently, identification of the key cycloaddition intermediate of FDC decarboxylation has 

been further pursued by my colleague, Kyle Ferguson. His study utilizes native mass spectroscopy 

technique to detect different forms of the cofactor bounded to the enzyme FDC (28). Utilizing 

substrate analog, (Z)-2-Fluoro-2-nitro-vinylbenzene, the decarboxylation step is prevented; and 

thus, it irreversibly inhibits the catalytic activity of FDC. The m/z values of intermediate prior to 

decarboxylation step would be different by one proton due to the lack of proton abstraction step in 

the beginning step of 1,3-dipolar cycloaddition mechanism. The result showed the existence of 

prenyl-flavin adducted with m/z corresponding to the intermediate from 1,3-dipolar cycloaddition 

mechanism (Figure 2.7) in agreement with the conclusion of this chapter. Identification of other 

intermediates is in-progress, utilizing substrate analogs, mutagenesis of active site residues, and 

native mass spectroscopy. 



Figure 2.7: (a) Scheme showing the possible reaction products of the substrate mimic, 2-fluoro-
2-nitrovinylbenzene, with prFMN by either Michael addition or 1,3-dipolar cyclo-addition 
pathways. (b) 2-fluoro-2-nitrovinylbenzene -inactivated holoFDC; the peak at 730.167 
corresponds to the K+ complex of the cyclo-addition adduct. 
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Chapter 3: Kinetic Characterization of Prenyl-flavin 

Synthase from Saccharomyces cerevisiae 

3.1 Introduction 

Ferulic acid decarboxylase (FDC) is found in various strains of yeast where it catalyzes the 

decarboxylation of various substituted trans-phenylacrylic acid derivatives, including ferulic acid 

(4-hydroxy-3-methoxy-phenylacryilic acid) a breakdown product of lignin, to the corresponding 

styrene derivatives (1 7).  The enzyme serves to detoxify these carboxylic acids that are inhibitory 

to the growth of the yeast (8 10).  FDC has recently been shown to require a novel, modified flavin 

mononucleotide (FMN) derivative  prenylated-FMN  in which an isopentyl moiety is appended 

between the C6 and N5 positions of the isoalloxazine flavin nucleus to form an additional 6-

membered ring (11,12).  This modification converts the flavin from a redox cofactor to one capable 

of stabilizing the negatively charged intermediates formed during decarboxylation.   

PrFMN is synthesized by a specialized prenyl transferase that uses dimethylallyl pyrophosphate 

to install the additional 6-membered ring on the reduced form of FMN (13,14).  This enzyme has 

been known as PAD1, an abbreviation for phenylacrylic acid decarboxylase, as a result of early 

genetic studies that linked this gene to decarboxylase activity.  In the manuscript currently 

submitted for Biochemistry in review, the enzyme has been proposed to be referred as prenyl-

FMN synthase (PFS) to reflect its enzymatic activity.  



Homologs of FDC and PFS are found in many microorganisms, indicating that prFMN-dependent 

decarboxylases are likely widespread in nature (15 18).  In many bacteria, they are represented by 

UbiD and UbiX proteins that form part of the ubiquinone biosynthesis pathway (19 25).  UbiX 

has been characterized as a PFS and has been the subject of detailed crystallographic studies.  

UbiD, a homolog of FDC, is believed to catalyze the decarboxylation of ubiquinone biosynthetic 

intermediate 4-hydroxy-3-octaprenyl-benzoate although this activity has yet to be experimentally 

demonstrated.  Recently, a second prFMN-dependent enzyme has been characterized from 

Enterobacter cloacae and Klebsiella pneumoniae that catalyze the reversible decarboxylation of 

3,4-dihydroxybenzoic acid (3,4-DHBA) (17,26,27).   

A mechanism for prFMN synthesis was proposed based on crystallographic studies of the PFS 

represented by UbiX from Pseudomonas aeruginosa (13).  The enzyme catalyzes the reaction of 

reduced FMN with dimethylallylphosphate (DMAP): the first step is proposed to be nucleophilic 

attack of N5 on DMAP to form N5-alkylated FMN with the loss of the phosphate group.  

Formation of the C6 bond occurs next, presumably by a mechanism involving protonation of the 

dimethylallyl double bond.  Finally, oxidation of the flavin nucleus is required to generate the 

active prFMN cofactor (Figure 3.1a).  It is unclear whether, in vivo, this step occurs spontaneously 

or with the assistance of the cognate prFMN-dependent decarboxylase.   



Figure 3.1:  (a) Proposed mechanism for the formation of reduced prFMN from reduced FMN 
and DMAP catalyzed by prenyl-flavin synthase. (b) Overall reaction for the formation of reduced 
prFMN from reduced FMN and DMAP/DMAPP catalyzed by ubiX/sc-PFS. 

This chapter describes studies on the eukaryotic PFS from Saccharomyces cerevisiae, scPFS 

(formerly referred to as PAD1). An assay which couples the production of prFMN to the activation 

of FDC has been developed and utilized to determine steady state kinetic parameters for enzyme. 

Moreover, whereas the previously studied bacterial enzymes use DMAP as a substrate, which is 

not commonly used by prenyl transferase enzymes (28), this chapter finds that scPFS prefers 

dimethylallylpyrophosphate (DMAPP) as a substrate, which is a common intermediate in 

isoprenoid biosynthesis.   



3.2 Materials and methods 

3.2.1 Materials 

FMN, and dithiothreitol were purchased from MP biomedicals; dimethylallyl pyrophosphate was 

purchased from Isoprenoids LC, Tampa FL; potassium ferricyanide was purchased from Acros 

Organics.  All other chemicals were purchased from Sigma-Aldrich. 

Malachite green phosphate assay kit was purchased from Cayman Chemical. 

Pyrophosphate Assay Kit and EnzChek® phosphate assay kit were purchased from ThermoFisher 

Scientific. 

Holo-FDC, apo-FDC and scPFS were recombinantly expressed in Escherichia coli and purified as 

described previously (14). 

3.2.2 Malachite Green Phosphate Assay 

An end-point assay utilizing malachite green to measure orthophosphate concentration was 

conduct in 96 well plates. -FMN, 

 scPFS were prepared in 100 mM Tris-HCl buffer pH 8. Reduced-FMN stock 

solutions were prepared by adding excess amount of sodium dithionite. The reactions were 

quenched every 20 mins over a period of 2 h ided MG acidic 

ution (malachite green stain) were 

added to each well and mixed by gently tapping. After incubation for 20 mins at room temperature 

(20oC), the absorbance of each was recorded using a microplate reader set to 620 nm.  



3.2.3 EnzChek phosphate Assay 

Assay of 730 ction mixture 

contained 100 mM Tris-HCl M FMN and 1 mM DMAP. The mixture was 

reduced by addition of sodium dithionite in slight excess. 

assay reagent premix was added to the cuvette to 1 mL. The spectrum from 300 to 500 nm was 

recorded at various periods of time (20 mins to overnight).  

EnzChek pyrophosphate assay reagent was prepared by 10 mins incubation at 

22°C of the mixture containing 

commercial kit protocol.    

3.2.4 Assay for prFMN formation by scPFS 

100 mM HEPES buffer supplemented with 100 mM MgCl2 pH 8.5 were prepared and purged with 

nitrogen gas overnight, and then equilibrated in a Coy anaerobic chamber. Flavin mononucleotide, 

dimethylallyl pyrophosphate, scPFS, reducing reagents and oxidizing reagents were transferred 

into anaerobic chamber. The volume of scPFS assay is 0.5 mL. The assay contained substrates at 

-FDC as 

secondary enzyme for scPFS-FDC dual enzyme assay. Then, sodium dithionite was added to the 

premix to 1 mM concentration to start the reaction at room temperature (20oC). After time periods 

varying from 30 seconds to 40 minutes, 5 mM potassium ferricyanide was added to quench the 

reaction. 



3.2.5 GC-MS assay 

Routine assays of FDC activity were carried out in diluted quenched scPFS reaction mixture. 125 

, prepared as described in the assay for prFMN formation, was diluted 

 mM MgCl2 100 mM HEPES buffer pH 8.5. The mixture was equilibrated for 45 

min. Then, FDC assays were allowed to proceed at room temperature using a saturated 

concentration of cinnamic acid, 2.5 mM, as substrate.  After 4 min, the mixtures were quenched 

with HCl, fi

undecane as internal standard. Samples were vortexed and centrifuged in a tabletop 

microcentrifuge at 10,000 rpm for 10 min to separate organic and aqueous phases. The amount of 

styrene produced was determined by GC-MS as described previously (14). 

3.2.6 HPLC assays 

conditions as optimized GC-

standard. After quenching, reaction mixtures were centrifuged in a tabletop microcentrifuge at 

10,000 rpm for 10 mins. Then, supernatant was collected for HPLC analysis. Sample analysis was 

performed using a Shimadzu HPLC system with two LC-20AT pumps, and anSPD-M20A UV-

visible diode array detector with monitoring at 450 nm. The stationary phase was a EC 250/4.6 

Nucleodur C18 reverse phase column. The column was equilibrated with 5 mM ammonium acetate 

(A) and analytes eluted with a gradient of increasing acetonitrile (B) under 0.5 mL/min flowrate.  

The solvent composition was held at 100% (A) for 4 min, and then increased linearly to 15% (B) 

over 16 min, followed by isocratic elution at 15% (B) for 25 min, then returned to 100% (A) over 

5 min and held for 5 min for column equilibration. Under these conditions FMN eluted at 24.46 



min and riboflavin eluted at 35.72 min. FMN concentrations were calculated from peak integration 

and normalized with respect to the riboflavin internal standard. 

3.2.7  

Assays were performed in 96-wel ntaining 100 mM Tris-HCl 

pH 8.5 

Amplex® Red reagent/inorganic pyrophosphatase/maltose phosphorylase/maltose/glucose 

oxidase/HRP working solution (WS) prepared as described in commercial protocol was added to 

the mixture. The absorbance of each well was recorded using a microplate reader set to 565 nm 

every 5 mins for the total period of 1 h at 37 °C.   

3.3 Results and discussion 

Initial efforts to develop a quantitative assay for scPFS activity attempted to exploit the fact that 

phosphate or pyrophosphate (Figure 3.1b) is produced during the reaction.  Given that a variety of 

methods have been developed for phosphate and pyrophosphate detection, this appeared to be a 

ate Assay Kit and 

EnzChek® phosphate Assay Kit have been employed to measure orthophosphate. However, I 

encountered problems with these colorimetric assays. The malachite green assay yielded a false 

positive result against DMAP and dithiothreitol (DTT) required in the assay. The EnzChek® 

phosphate Assay utilizes the secondary enzyme, purine nucleoside phosphorylase (PNP), to 

convert 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) to ribose 1-phosphate and 

2-amino-6-merc apto-7-methylpurine in the presence of inorganic phosphate resulting in a spectral 



shift from 330 nm to 360 nm. Nevertheless, I could not to obtain a clear signal attributable to the 

presence of phosphate. Instead, I observed the change of FMN from reduced form to the 

intermediate spectrum similar to that described previously (14), and finally to the oxidized form. 

The transient spectrum of FMN interferes with monitored wavelength. Using the assay for end-

point measurement yielded no significant increase in absorbance at 360 nm. This could indicate 

that either there is no reaction on time scale of the preliminary experiment, or the change in 

spectrum due to phosphate assay is not large enough to be distinguished from FMN. Additionally, 

s been employed to measure pyrophosphate byproduct. The assay 

utilizes the series of enzymes to amplify phosphate/pyrophosphate signal. Unlike malachite green 

id not react with either DMAPP. However, the assay is 

susceptible to reducing and oxidizing agents and yielded false positive signals with DTT or 

ferricyanide at the working concentration of the assay. These experiments are discussed in more 

detail below. 

3.3.1 Malachite green phosphate assay 

My initial efforts to develop a quantitative assay for scPFS activity attempted to exploit the fact 

that phosphate is produced during the reaction.  Given that a variety of methods have been 

developed for phosphate and pyrophosphate detection, this appeared to be a promising strategy to 

assay PFS activity. This chapter first utilized malachite green colorimetric assay to detect 

phosphate. The malachite green assay changes color from yellow to green upon complex formation 

between malachite green molybdate and free orthophosphate under acidic conditions (29). The 

formation of the green molybdophosphoric acid complex measured at 620-640 nm can be directly 

correlated to the free phosphate concentration in the solution. 



Figure 3.2: Chemical reaction describing color change from yellow to green in the malachite green 
assay 

The malachite green end-point assays were conduct in 96 well plates. The reduced FMN is 

prepared as stock using excess amount of sodium dithionite. The final concentration of reduced 

calibration curve in the commercial protocol. The final concentration of DMAP and scPFS were 

ion mixtures were then quenched at every 20 mins for 

the period of 120 mins by addition of commercially provided MG acid reagent. The result of this 

experiment is shown in table 3.1. The absorbance observed from this experiment was much higher 

than the expected value from the calibration curve and precipitation was observed in the well. 

Also, it was strange that the absorbance decreased as the reaction was monitored for a longer time. 

There may be two explanations to this phenomena: first the absorbance is at the very limit of the 

instrument and thus the number obtained here does not reflect the actual absorbance. Second is 

that the sample that was quenched early had more time to react with the dye and thus resulted in 

higher absorbance.  



Next, I inspected the base line shift using water and buffer as negative control. The reaction 

between malachite green assay reagent and water resulted in 620 =0.216 absorbance unit change 

whereas the reaction with pH 8 100 mM Tris-HCl buffer resulted in 620 =0.275 absorbance unit. 

Neither of these negative controls had any precipitation. After that, I suspected that the source of 

precipitation came from side-reaction between FMN and the acid reagent provided from the kit. 

This turned out to be the case as I saw the precipitation from the reaction with just FMN in Tris-

HCl buffer at the quenching step using the provided acid reagent and the final absorbance 

measurement was 1.45. Thus, I tried using 3 M HCl instead of the provided acid reagent. The pH 

of the sample was confirmed to be acidic with pH paper, the solution was slightly green, cleared 

of precipitate and the 620 nm absorbance was dropped to 0.532. However, when I attempted to 

run the full reaction using 3 M HCl, the precipitate appeared again after adding malachite green 

dye. Therefore, I decide to test the remaining components of the reaction by observing color and 

precipitation. It turned out that the malachite green reagent formed a precipitate with dithionite 

and DMAP. DTT substituted in place of dithionite as a reducing reagent; however, the reduction 

efficiency of FMN is low and the reduced FMN obtained from DTT was highly susceptible to re-

oxidation. In addition, the major issue is the precipitation with DMAP since it is one of the required 

substrates.  

Given the difficulties encountered with malachite green phosphate assay, I decided to look for 

another high-throughput assay as well as develop assays to study enzymatic activity of scPFS. 



Table 3.1: Result from quenching experiment using malachite green assay kit 

3.3.2 EnzChek phosphate Assay 

The next phosphate assay kit employed in this study is Enzcheck phosphate assay kit. This assay 

utilizes secondary enzyme purine nucleoside phosphorylase which convert 2-amino-6-mercapto-

7-methylpurine riboside (MESG) to ribose 1-phosphate and 2-amino-6-mercapto-7-methyl-purine 

in the presence of free inorganic phosphate (Figure 3.3) (30). The enzymatic conversion of MESG 

results in a spectrophotometric shift in maximum absorbance from 330 nm for the substrate to 360 

nm for the product. The concentration limitation o M phosphate. 

Thus, the phosphate a Tris-

HCl 

, prepared as described in the Methods 

section, was added to make final volume of 1 mL. The mixture of sodium dithionite and DMAP 

was used as negative control. By continuously measuring the spectrum over 20 minutes, there was 

no significant change in absorbance from these DMAP negative controls (Figure 3.4). However, 

there was constant baseline shift of around 0.4-0.5 absorbance units at 360 nm with reference to 

pH 8 Tris buffer. In contrast, there is slight signal reduction over time from dithionite negative 

control (figure 3.5). The result from the control experiment indicated that dithionite does absorb 



for a certain amount at this wavelength and could be the source of baseline shift observed earlier. 

As dithionite was consumed over time from any oxygen that might have leaked into the system, 

the decreasing absorbance over time was observed. In order to bypass this problem, I came up with 

two solutions: 1) using a no scPFS reaction as reference to correct for absorbance change 2) 

measuring the end-point spectrum after letting the reaction completely re-oxidized. I decided to 

employ both approaches by having two parallel reactions and measuring the end-point spectrum. 

Figure 3.6 shows the spectrum from the reaction with scPFS and without scPFS at different time 

points: beginning (time 0), overnight (roughly 20 h which represented the complete conversion), 

after opening the cap of the cuvette (roughly 10 mins after oxygen was reintroduced to the system), 

and the final re-oxidized stage (after exposure to O2 for 2 h). The spectrum after complete re-

oxidation stage showed no significant increase in absorbance at 360 nM. The expected result would 

be the change in 330 nm due to the secondary reaction and the disappearance of 450 nm due to the 

consumption of FMN. However, no spectral changes were apparent. Replication of the experiment 

yielded similar results. I note that the re-oxidation rate between reference and reaction cuvette 

seemed to be different and thus comparing no scPFS and scPFS reaction at specific time point 

could lead to the wrong conclusion. Thus, the reaction must be completely re-oxidized before valid 

comparisons can be made. 



Figure 3.3: Principle of the Enzcheck phosphate assay. In presence of free phosphate, 2-amino-6-
mercapto-7-methyl-purine riboside (MESG) is converted to ribose 1-phosphate and 2-amino-6-
mercapto-7-methylpurine by purine nucleoside phosphorylase (PNP). The accompanying change 
in absorption at 360 nm allows quantitation of inorganic phosphate consumed in the reaction. 
Figure taken from the Enzcheck phosphate assay manual. 

 



Figure 3.5: Negative control reaction between sodium dithionite and Enzchek phosphate 
reagent. Absorbance at 360 nm was monitor over a period of 20 mins. The result showed 
decrease in absorbance by 0.1 arbitrary unit. 

 

 

Figure 3.6: Spectra comparing reaction with scPFS and without scPFS and different major events: 
starting time, overnight reaction, reintroduction of oxygen and completely reoxidation of FMN. 
Both reactions were prepared 

 in place of the enzyme. Both reactions contain 
EnzCheck secondary enzyme set to monitor the presence of phosphate. pH 8 Tris buffer was used 
as reference spectrum. 



Given the difficulties encountered with measuring phosphate production, which seemed to be 

associated with the very slow turnover rate of scPFS, I next investigated the possibility of coupling 

the production of prFMN to the activation of FDC.  This would allow the formation of one 

molecule of prFMN to be coupled to the production of many molecules of styrene, thereby 

affording a considerable amplification of the signal. 

3.3.3 Development of a scPFS-FDC coupled assay 

In preliminary experiments, 500 L of the reaction mixture was prepared in 1.5 mL 

microcentrifuge tube in the Coy anaerobic chamber using 800 nM scPFS. To ensure complete 

uptake of the generated prFMN cofactor, 17.4 -FDC was added to the reaction mixture. 

Other substrates were added in excess amounts: 500 

ated upon addition of 1 mM sodium dithionite converting 

oxidized FMN to its reduced counterpart. After 1 hour of reaction, the mixture was quenched by 

vigorously shaking in air outside the Coy anaerobic chamber. After equilibrating for 45 mins, 2.5 

mM trans-cinnamic acid (tCA) was added to the sample to start catalytic activity of FDC. At this 

concentration of tCA, FDC catalyzes decarboxylation at a velocity that approaches Vmax. After 4 

mins of reaction, assays were quenched with HCl, final concentration 0.27 M and extracted with 

GC internal standard. Samples were vortexed and 

centrifuged in a tabletop microcentrifuge at 10,000 rpm for 10 min to separate organic and aqueous 

phases. The amount of styrene produced is determined by GC-MS. 



3.3.3.1 pH optimization 

One of the most important aspects when dealing with multiple enzymes in the same reaction 

mixture is the working pH of the buffer. UbiX activity is reported to be optimized at pH9 (13), 

whereas the optimal pH for FDC is 6.5 (31). However, the catalytic activity of FDC significantly 

decreases at pH9 and above. In order to determine suitable pH for analysis of prenylation, 100 mM 

HEPES buffer pH 7, 8 and 8.5 were selected and tested. In addition, Mn2+ was found in the protein 

structure of FDC and serve to stabilize the protein (15). Therefore, 1 mM of MgCl2, which is 

similar divalent metal ion, was added to the buffer to help stabilize protein complex. The addition 

of MgCl2 slightly increased activity of sc-PFS. However, the increase in activity was insignificant, 

relative to the standard deviation of the data as discussed in more detail in the later section. The 

results showed that scPFS catalytic activity increased in high pH buffer (figure 3.7). The activity 

of scPFS at pH 8.5 is almost double the catalytic activity at pH 7. Also, the low activity of FDC at 

this pH allowed amplification of the signal in GC-MS without oversaturation or a need to overly 

dilute the sample. Therefore, pH 8.5 was chosen as optimal for the coupling assay.     

Figure 3.7: Catalytic activity of scPFS at different pH. The assay was conducted in 100 mM 
HEPES buffer supplemented with 1 mM MgCl2. The reaction mixtures also contained 800 nM 
scPFS,  



3.3.3.2 Investigation of the impact of each substrate with preliminary set up 

The impact of each assay component on the catalytic activity of scPFS was further investigated. 

The experiment was conducted by reducing amount of each substrate and enzyme by half. In 

addition, dimethylallylpyrophosphate (DMAPP) was tested in place of DMAP. DMAPP is the 

universal isoprene precursor and is much more common in organisms than DMAP. However, 

previous studies showed that ubiX could not utilize DMAPP.  

The activity of scPFS did not change when the substrate concentrations were lower (table 3.2). 

This indicates that the catalytic activity of scPFS under these conditions was close to maximal. 

Interestingly, styrene production, which represents the catalytic activity of the enzyme, was greatly 

enhanced when DMAPP was used in place of DMAP. The data showed that both DMAPP and 

DMAP could be used as substrates for scPFS with DMAPP as the preferred substrate.  

After optimizing pH and substrate concentrations, an experiment was designed to measure Vmax 

and Km. However, the data were inconsistent and not reproducible. Thus, further investigation was 

required before applying the assay to measure kinetic parameters. 

Table 3.2: Table verified that prenylation by scPFS under preliminary condition was at maximal 
velocity (Vmax) 



3.3.3.3 Investigation of the cause of inconsistency 

In order to troubleshoot the inconsistency in activity measurements, I hypothesized two potential 

causes. First is the delay time due to re-oxidation by oxygen. The other cause of inconsistency 

could be due to heterogeneity in the assay reagents. In order to investigate the first hypothesis, I 

switched oxidizing agent from oxygen to potassium ferricyanide. Adding 5 mM ferricyanide to 

the reaction mixture instantly oxidized FMN, and thus, provided accurate time for the quenching 

of the prenylation reaction. However, the inconsistency still persisted. Another cause may be the 

low stability of the enzyme which I observed during purification. I decided to add dithiothreitol 

(DTT) to reduce any adventitiously formed disulfide bonds on the surface. After pre-incubating 

scPFS with 5 mM DTT for 10 minutes, I obtained the replicable data. Further investigation on the 

significance of DTT toward had been conducted by reducing the concentration of DTT in the 

the catalytic activity of scPFS was 

zero and there was no styrene detected in the assay. This result suggested that excess DTT is 

required to maintain activity of scPFS. Possibly the formation of disulfide bonds prevent substrates 

binding. 

To summarize the protocol for optimal assay conditions

in 1 mM MgCl2 100 mM HEPES buffer pH 8.5 in a Coy anaerobic chamber at 20oC. Initially, 400 

nM scPFS is pre-incubated with 5 mM DTT for 10 min to reduce any disulfide bonds on the surface 

-

mixture. The supplementary NADH is in excess in comparison to enzyme concentration and serves 

and 1 mM sodium dithionite. After certain amount of time varying from 30 seconds to 40 min, 5 

mM potassium ferricyanide is added to the mixture to oxidize FMN and stop scPFS catalytic 



activity. After equilibrating the oxidized mixture for 45 min to ensure complete uptake of prFMN 

by apo-FDC, 2.5 mM trans-cinnamic acid (tCA) is added to 

0.27 M and extracted with 400 ndecane as GC internal standard. 

Samples are vortexed and centrifuged in a tabletop microcentrifuge at 10,000 rpm for 10 min to 

separate organic and aqueous phases. The amount of styrene produced is determined by GC-MS. 

3.3.4 DMAPP vs DMAP 

Guided by reports that the bacterial PFS was specific for DMAP, my initial experiments on the 

eukaryotic enzyme used DMAP as a substrate.  However, the very low levels of activity obtained 

with DMAP caused me to re-evaluate whether the more common prenyl-donor DMAPP might be 

a substrate for scPFS.  This turned out to be the case.  The rate of prFMN formation was compared 

with either 100 M DMAPP or 500 M DMAP present as the prenyl-donor, conditions that 

represent saturating concentrations of these substrates.  Under these conditions, scPFS exhibited 

~20 fold higher activity with DMAPP than DMAP (Figure 3.8).   



Figure 3.8: Monitoring of catalytic FMN prenylation by scPFS by FDC-coupled assay. The signal 
for prFMN formation is amplified by coupling with apo-FDC. scPFS reactions were prepared at 
20°C under anaerobic condition and had a volume of 500 L per reaction. The reaction mixture 
contained 400 nM scPFS pre-incubated with 5 mM DTT for 10 min; 50 -FDC; 

nyl-donor, the mixtures were reduced by 1 mM sodium 
dithionite. In red, the prenyl- -donor is 500 
DMAP. After various amount of time from 30 sec to 40 min, the reactions were quenched with 
5 mM potassium ferricyanide. 2.5 mM cinnamic acid was added as the substrate to reactivated 
FDC. prFMN formation was back-calculated from amount of reactivated FDC. 



3.3.5 Steady state kinetic analysis of scPFS 

Having demonstrated that the FDC-coupled assay gave linear and reproducible results, I 

investigated the kinetics of prFMN formation by scPFS. These assays employed 400 nM scPFS 

that had been pre-reduced with 5 mM DTT for 10 min and a 10-fold molar excess of apo-FDC.  

To determine the KM for DMAPP, the concentration of 

KM for FMN, the concentration of DMAPP was fixed at 500 

concentration of FMN varied between 0.75 an -

Menten equation (Figure 3.9) to obtain apparent KM values for DMAPP, KM
app 

and FMN KM
app cat measured at saturating concentrations of both substrates 

was 12.2 ± 0.2 h-1. The lower concentrations of FMN used in these assays the assumptions of the 

Michaelis-Menten equation are not valid and therefore KM
app determined for FMN should be 

regarded as an upper bound. 

Figure 3.9: Steady state kinetic analysis utilizing FDC coupling assay. The substrate 
concentrations were variable and the data were fitted into Michaelis-Menten equation. (a) 
Saturated FMN (50 ), variable DMAPP from 1 M

app cat 
= 12.2 ± 0.2 h-1. (b) Saturated DMAPP (500 ), variable FMN from 0.75 M

app = 
cat = 12.2 ± 0.2 h-1. 



3.3.6 Single turnover kinetics of FMN consumption 

Taking advantage of the very slow turnover rate exhibited by scPFS, I sought to examine the 

kinetics in more detail under single turnover conditions.  To accomplish these measurements, 

assays were set up with higher concentrations of scPFS, typically 600 nM, and sub-stoichiometric 

concentrations of FMN, typically 300 nM.  Given the fairly high affinity of scPFS for FMN, most 

of the FMN in the assay should be bound to the enzyme.  The other components of the assay were 

present at the same concentrations as for the steady-state measurements.  The reaction was initiated 

us times aliquots were 

withdrawn and the quenched by addition of K3Fe(CN)6.  The amount of prFMN formed was then 

determined from the activity of FDC as described above.  The production of prFMN was well 

described by a first-order kinetic model (Figure 3.10 red) with an apparent first order rate constant 

of 17.5 ± 1.1 h-1. 

The pre-steady state formation of prFMN by scPFS could also be followed more directly by the 

disappearance of FMN.  I initially attempted to detect the formation of prFMN by reverse phase 

HPLC; however, the small amount of product formed and the absence of a strong long-wavelength 

chromophore combined with the instability of the cofactor and interference from contaminating 

analytes prevented me from reliably being able to quantify prFMN by this method.  In contrast, 

consumption of FMN could be followed relatively easily by quantifying the FMN remaining in 

the assay by HPLC.  FMN was detected by chromatography on a C18 reverse phase HPLC column 

equilibrated in 5 mM ammonium acetate and developed with an increasing gradient of acetonitrile, 

with peaks monitored at 450 nm, as described in the Methods section.  The pre-steady state kinetics 

of FMN consumption mirrored that formation of prFMN followed by the discontinuous coupled 

assay described above.  The data were well fitted by a single exponential with an observed rate 



constant, kobs = 20.3 ±3.8 h-1, a result that is in good agreement with the rate constant for prFMN 

formation (Figure 3.10 blue). 

Figure 3.10: Single turnover kinetic analysis of prFMN production by scPFS. (Red) The reaction 
between 600 nM scPFS and 300 nM FMN was monitored by FDC-coupling assay. kobs = 17.5 
±1.1 h-1

through consumption of FMN. kobs = 20.3 ±3.8 h-1. 



3.3.7  

It has been clear that the catalytic activity of scPFS is slow. It is even slower when DMAP was 

used as substrate. This could be one of the reasons causing failure to observe the generation of 

phosphate by-product in the high throughput phosphate detection assay conducted in the 

beginning. Therefore, this section describes another attempt to monitor catalytic activity of scPFS 

given that the preferred DMAPP was used as substrate. 

Previous results, described above, suggested that malachite green assay and Enzchek assay may 

not be suitable phosphate/pyrophosphate detection kit. Here, another commercial available 

hosphate Assay, was employed to monitor 

pyrophosphate generation.  In the PiPe Pyrophosphate Assay (Figure 3.11) (32,33), inorganic 

pyrophosphatase hydrolyzes PPi to two molecules of inorganic phosphate (Pi). In the presence of 

inorganic phosphate, maltose phosphorylase converts maltose to glucose 1-phosphate and glucose. 

Then glucose oxidase converts the glucose to gluconolactone and H2O2. Finally, with horseradish 

peroxidase (HRP) as a catalyst, the H2O2 reacts with the Amplex® Red reagent (10-acetyl-3,7-

dihydroxyphenoxazine) to generate resorufin. The formation of resorufin can be monitored 

through absorbance at 565 nm. 

 



Figure 3.11 pyrophosphatase converts 
pyrophosphate to two equivalents of inorganic phosphate. Next, in the presence of the inorganic 
phosphate, maltose phosphorylase converts maltose to glucose 1-phosphate and glucose. Then, 
glucose oxidase converts the glucose to gluconolactone and H2O2. Finally, with horseradish 
peroxidase (HRP) as a catalyst, the H2O2 reacts with the Amplex Red reagent to generate resorufin, 
which can be monitored through absorbance at 565 nm. F
Pyrophosphate Assay manual. 

Pyrophosphate assays were performed in 96-

standard (5- -

in method section was added to each well and the absorbance at 565 nm was recorded in microplate 

reader at 37 oC over a period of 1 hr. Each components in scPFS catalytic assay including sodium 

dithionite, DTT, ferricyanide, FMN, NADH, and DMAPP were tested with the premixed working 

solution. The experimental results found that some of the reducing agent and oxidizing agent 

interfered with the signal giving false positive result (Figure 3.12). In order to utilize this assay, 

several reducing and oxidizing agents are required to be tested prior to the test of pyrophosphate 

formation from scPFS. Considering the difficulty to optimize the assay that would satisfy both 

ion, the work in this thesis did not 

continue toward the phosphate/pyrophosphate detection strategy.  



Figure 3.12: 
Pyrophosphate Assay working solution. Results showed strong interference with reducing and 
oxidizing agents. 

3.4 Conclusions 

In conclusion, this chapter explored various methods to investigate catalytic activity of scPFS, 

from commercially available high throughput phosphate/pyrophosphate assay to the scPFS-FDC 

coupled assay that ultimately proved successful. The complexity of the reaction including the 

process of reduction and oxidation led to the failure of commercial phosphate/pyrophosphate 

detection kits. However, it proved possible to study kinetic behavior of scPFS through the coupled 

enzyme assay. In coupled enzyme assay, each molecule of prFMN generated from scPFS binds to 

apo-FDC resulting many molecules of styrene. Thus, considerable amplification of the signal is 

achieved.  

The work described here represents the first attempt to explore kinetic parameter of the newly-

discovered FMN prenylation reaction. In this work, the source of prenyl donor was re-evaluated. 

In contrast to the previous publication where the rare prenyl donor DMAP is reported to be prenyl 



source of UbiX, the more common prenyl-donor DMAPP is discovered to be a substrate for scPFS. 

The steady state analysis of scPFS identifies the observed kcat, KM
app (DMAPP) to be 12.2 ± 0.2 h-1 

ver, the results from single turnover kinetics of FMN 

consumption yield an apparent first order rate constant of 17.5 ± 1.1 h-1 for prFMN formation. 
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Chapter 4 Cofactor analogs 

4.1 Introduction 

Cofactors are essential for many enzyme activities. Cofactors function in various roles to enhance 

the activity of an enzyme; such as increasing structural stability, facilitating protein folding, and, 

most importantly, providing additional chemical functionality essential for the catalysis of many 

reactions. In the past few years, cofactor engineering has become of great interest. The term 

s, from metabolic 

engineering to increase biosynthesis of cofactor (1 3) to direct modification of cofactor, such as 

s (4). This chapter focuses on 

the generation of cofactor prFMN variants and the analysis of their catalytic activity with FDC. 

The decarboxylation reaction catalyzed by FDC requires a novel FMN cofactor generated by 

scPFS. The pathway by which scPFS synthesizes prenyl-flavin cofactor was unknown until the 

recent release of a series of crystal structures of the isofunctional enzyme, UbiX (5). Based on 

these crystal structures, a mechanism for the synthesis of prFMN and the function of prFMN in 

the FDC reaction have been proposed as discussed in previous chapters (Figure 4.1). 



Figure 4.1: (a) Proposed 1,3-dipolar cyclo-addition mechanism for the FDC-catalyzed 
decarboxylation of phenylacrylic acid (b) Proposed mechanism for the formation of reduced 
prFMN from reduced FMN and DMAP catalyzed by prenyl-flavin synthase. Figure based on 
references (5,6). 



Cofactor analogs provide a powerful tool to study enzyme specificity as well as identify 

intermediates in the reaction (7 9). This chapter will examine whether scPFS can use structural 

analogs of DMAPP to modify FMN, and if so, whether these serve as cofactors for FDC. In 

addition, given that only C- eactive, it is important to determine 

whether cyclization to the dimethylbenzene ring is required for activity. This could be achieved 

by examining the reaction of analogs that cannot undergo cyclization. These would be expected to 

modulate the reactivity of C- -

natural cofactors for FDC that exhibit superior decarboxylase activity.  

Furthermore, modified flavin analogs have proved valuable probes to study the mechanism of 

flavin- dependent enzymes (10 14). The C-8 methyl group on the isoalloxazine ring can be 

replaced with a variety of electron-withdrawing or donating substituents to systematically fine tune 

the reduction potential of the flavin. For example, using 12 FMN analogs with lactate oxidase, it 

was possible to demonstrate an impressive linear free energy relationship between the Hammett 

- -ortho parameters and the reduction potential of the free and enzyme-bound FMN 

analogs (10). This correlation further extended to the rates of lactate oxidation by the reconstituted 

flavoenzymes.  

Flavin analogs can be applied to probe the mechanism by which prFMN is generated. Based on 

crystallographic data, it was proposed that DMAP reacts with the flavin first at N-5, with the slow 

step being formation of the C-6 C-  (5,15,16). This is proposed to involve formation of a 

carbocation intermediate on the dimethylbenzene ring.  If this step is rate-determining, electron-

donating substituents should stabilize this intermediate and increase the rate of reaction yielding 

negative reaction constant in Hammett analysis as discussed in chapter 2.  



Also, cofactor analogs generated from FMN analogs can be employed to probe the FDC 

decarboxylation mechanism. C-8 substitutions will alter the electrophilicity of the reactive C-

-conjugation. 1,3-Dipolar cycloaddition reactions of 

azomethine ylides (which best represent the chemical characteristics of prFMN) are sensitive to 

the energy difference between the HOMO of the ylide and the LUMO of the dipolarophile (17

19). Therefore, if the decarboxylation reaction does proceed by cycloaddition, electron-donating 

substituents would increase the energy of the HOMO, thereby increasing the rate of 

decarboxylation (assuming this is a kinetically significant step).  In contrast, if the cofactor is 

serving primarily as an electron sink, the opposite trend should be observed and electron-

withdrawing substituents should increase the rate of decarboxylation.  

This chapter employs kinetic assays developed in the previous chapter to investigate whether 

prFMN analogs can be synthesized using scPFS. First, scPFS utilizes DMAPP analogs to modify 

the FMN cofactor. Then, apo-FDC binds the cofactor, allowing it to catalyze decarboxylation. The 

production of cofactor analogs by scPFS can be monitored through the consumption of substrate, 

assuming the reactions turnover and scPFS spontaneously releases cofactor analogs. Therefore, 

the HPLC assay discussed previously in chapter 3 can, in principle, be employed to measure the 

concentration of the generated cofactor analog as well as kinetic parameters for prenylation. Then, 

the kinetic parameters for FDC catalyzing decarboxylation using the cofactor analog can be 

measured by coupling FDC and scPFS as described in the previous chapter.  

In addition, the prenylation reaction of modified flavins provided by Prof. Bruce Palfey at 

University of Michigan will be examined in this chapter. 



Figure 4.2: Diagram describing the synthesis and the use of cofactor analogs to study 
phenylacrylic acid decarboxylation 

4.2 Materials and methods 

4.2.1 Materials 

FMN, and dithiothreitol were purchased from MP biomedicals; dimethylallyl pyrophosphate 

(DMAPP), geranyl pyrophosphate (GPP), and (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate 

(HMBPP) were purchased from Isoprenoids LC, Tampa FL; potassium ferricyanide was purchased 

from Acros Organics.  7,8 dichloro flavin mononucleotide was provided by Prof. Bruce Palfey 

(University of Michigan-Ann Arbor). All other chemicals were purchased from Sigma-Aldrich.  

Holo-FDC, apo-FDC and scPFS were recombinantly expressed in Escherichia coli and purified as 

described previously (20). 

4.2.2 Assay for pr-FMN formation by scPFS 

100 mM HEPES buffer supplemented with 100 mM MgCl2 pH 8.5 were prepared and purged with 

nitrogen gas overnight, and then equilibrated in a Coy anaerobic chamber. Flavin mononucleotide, 

dimethylallyl pyrophosphate, scPFS, reducing reagents and oxidizing reagents were transferred 

into anaerobic chamber. The volume of scPFS assay is 0.5 



1.5 200 prenyl donor  additional 

reducing agent and 10 -FDC as secondary enzyme for GC-MS assay. Then, sodium 

dithionite was added to the premix to 1 mM concentration to start the reaction at room temperature. 

After time periods varying from 30 seconds to 30 minutes, 5 mM potassium ferricyanide was 

added to quench the reaction. In the case of m

modified FMN were used as substrates. 

4.2.3 HPLC assays 

 described in section 4.2.2 

internal standard. After quenching, reaction mixtures were heated at 85oC for 15 mins and 

centrifuged in a tabletop microcentrifuge at 10,000 rpm for 10 mins. Then, supernatant was 

collected for HPLC analysis. Sample analysis was performed using a Shimadzu HPLC system 

with two LC-20AT pumps, and anSPD-M20A UV-visible diode array detector with monitoring at 

450 nm. The stationary phase was an EC 250/4.6 Nucleodur C18 reverse phase column. The 

column was equilibrated with 5 mM ammonium acetate (A) and analytes eluted with a gradient of 

increasing acetonitrile (B) under 0.5 mL/min flow rate.  The solvent composition was held at 100% 

(A) for 4 min, and then increased linearly to 15% (B) over 16 min, followed by isocratic elution at 

15% (B) for 25 min, then returned to 100% (A) over 5 min and held for 5 min for column 

equilibration. Under these conditions FMN eluted at 24.46 min and riboflavin eluted at 35.72 min. 

FMN concentrations were calculated from peak integration and normalized with respect to the 

riboflavin internal standard. 



4.2.4 GC-MS assay 

Routine assays of FDC activity were carried out in diluted quenched scPFS reaction mixture. 125 

-FMN formation with 30 

2 100 mM HEPES buffer pH 8.5. The 

mixture was equilibrated for 45 min. Then, FDC assays were allowed to proceed for 5-40 mins at 

room temperature using a saturating concentration of cinnamic acid, 2.5 mM, as substrate. The 

mixtures were quenched with HCl, final concentration 0.27 M and ext

tabletop microcentrifuge at 10,000 rpm for 10 mins to separate organic and aqueous phases. The 

amount of styrene produced was determined by GC-MS as described previously (8). 

4.2.5 Native mass spectrometry 

-FDC. The prenylation reaction was allowed to 

proceed for 3 hrs in Coy anaerobic chamber and then quenched by exposure to air. Then, samples 

were ~10 fold concentrated in Vivaspin protein concentrators, MWCO 10000. 50-

concentrated samples were buffer exchanged into 500 mM ammonium acetate buffer, pH 6.9, 

using two Micro Bio-Spin P-6 columns (Bio-Rad, Hercules, CA). The final concentration of the 

buffer exchanged protein was 5-  

Mass spectrometry of samples was performed by Chunyi Zhao (in Prof. Ruotolo Lab, University 

of Michigan). Samples were analyzed under native MS conditions using a Synapt G2 ion mobility 

mass spectrometry platform (Waters Inc, Milford MA) (21). The complexes of FDC with in vitro 

synthesized cofactors were ionized using nanoelectrospray ionization. The initial instrument 



settings were set to minimize ion activation; hence, maintaining non-covalent interactions such 

that no significant signals were observed for free FMN-related peaks. The capillary voltage was 

set to 1.5 kV, and the sampling and extraction cones were set to 30 V and 0 V, respectively with 

the trap collision energy at 20 V. For CID experiments, the trap collision energy was raised to 100 

V to dissociate cofactors from FDC. Data was processed in Masslynx (Waters Inc, Milford MA) 

(22).  

4.2.6 Molecular docking 

Docking was achieved using AutoDock 4 program. Ligand PDB files were generated after energy 

minimization using Avogadro software. Protein and ligand files were prepared using AutoDock 

Tools software. Numbers of torsions were set to 3 for dimethylallyl monophosphate (DMAP), 5 

for (E)-4-Hydroxy-3-methyl-but-2-enyl phosphate (HMBP) and 6 for geranyl monophosphate 

(GP).  

Grid bow parameters were set as follows: 

Number of points in the x-dimension = 60 

Number of points in the y-dimension = 58 

Number of points in the z-dimension = 56 

Spacing = 0.375 Å 

Center coordinates x = -5.983, y = 29.720, z = 12.816 

This was chosen to encompass the active site at the interface between three monomers. 

Atomic map files were generated using the AutoGrid4 program. Docking was then run using the 
AutoDock4 program with Lamarckian Genetic Algorithm 4.2 parameters set as follows: 

Number of GA runs = 100 

Population size = 300 

Maximum number of evals = 2,500,000 (medium) 



Maximum number of generations = 27,000 

Maximum number of top individuals that automatically survive = 1 

Rate of gene mutation = 0.02 

Rate of Crossover = 0.8 

GA Crossover mode: twopt 

Mean of Cauchy distribution for gene mutation = 0 

Variance of Cauchy distribution for gene mutation = 1 

Number of generations for picking worst individual = 10 

Solutions were analysed using AutoDock Tools, clustering solutions using an rmsd-tolerance of 

2.0 Å. Binding energies and Ki were automatically calculated by AutoDock Tools. 

 

4.3 Results and discussion 

4.3.1 HPLC Assay 

In order to study cofactor specificity of FDC, cofactor analogs must be synthesized. scPFS was 

employed to catalyze prenylation using substrate analogs. The rate of prenylation and 

concentration of cofactor analogs were indirectly measured through the consumption of substrate 

by HPLC.   

Due to the saturation limit of FMN detection 

HPLC assays were performed under single turnover conditions with 

FMN/FMN analogs  donor. Also, kinetic parameters obtained from these 

experiments can be directly compared with the kinetic parameters obtained in the previous chapter.  

First, 7,8-dichloro flavin mononucleotide provided by Prof. Bruce Palfey was selected to perform 

prenylation. 7,8-dichloro flavin mononucleotide has spectrum similar to FMN; and thus, 



disappearance of this analog can be monitored at 450 nm using the same HPLC set up as the 

protocol developed for original prenylation. The assay with this analog resulted in complete 

disappearance of the signal representing oxidized FMN at 27.50 min. However, there was a new 

peak showing up at 26.10 min with much smaller intensity. Thus, I suspected that 7,8-dichloro 

flavin mononucleotide reacted with the reducing/oxidizing agent to form a different species. This 

seemed to be the case, since a similar result was observed in a mixture containing 7,8-dichloro 

flavin mononucleotide and dithiothreitol. Addition of oxidizing agent could not reverse the signal 

back to that of the original oxidized form. The result suggested that the reactive chloro-substituents 

react with DTT to form a new FMN analog. Therefore, a different disulfide bond reducing agent 

must be used to utilize 7,8-dichloro flavin mononucleotide as a FMN analog. Given the limited 

availability of FMN analogs and the requirement to optimize assay for each analogs and limited 

amount of time, I decided to focus on study of DMAPP analogs for the rest of this section. 

Figure 4.3: Structures of substrate analogs used for synthesis of prFMN analogs by scPFS (a) 7,8-
dichloro flavin mononucleotide was selected as a sample of FMN analog in this experiment (b) 
Structures of (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) and geranyl 
pyrophosphate (GPP) represent analogs of prenyl donor dimethylallyl pyrophosphate (DMAPP)  

The prenylation of FMN with DMAPP analogs was performed using commercially available (E)-

4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) and geranyl pyrophosphate (GPP). The 



data were well fitted by a single exponential with an observed rate constant, kobs = 4.45 ± 0.87 h-1, 

and 3.80 ± 0.34 h-1 for HMBPP and GPP respectively (Figure 4.4). As a negative control, the 

reaction was set up without prenyl donor for 15 mins and the data point was used to represent time 

zero data point. The reduction in observed rate constant when DMAPP analogs were used as prenyl 

donor implied specificity toward DMAPP. Note that the reactions did not go to completion. This 

could indicate that the release of cofactor analog might not be spontaneous. 

Figure 4.4: HPLC analysis of single turnover kinetic of scPFS prenylation utilized (Red) 
dimethylallyl pyrophosphate (DMAPP) as substrate (Blue) (E)-4-Hydroxy-3-methyl-but-2-enyl 
pyrophosphate (HMBPP) as substrate and (green) geranyl pyrophosphate (GPP). Prenylation 
reactions were monitored through consumption of FMN. Observed rate of prenylation were 20.3 
± 3.8 h-1, 4.45 ± 0.87 h-1, and 3.80 ± 0.34 h-1 for DMAPP, HMBPP, and GPP respectively.  



4.3.2 GC-MS Assay 

The routine FDC-scPFS coupling assays were conducted under single turnover kinetics using the 

same concentration of substrates as HPLC assay. Prenylation was allowed to proceed for 30 min 

Then, the decarboxylation of trans-cinnamic was performed at saturating concentration of 

substrate. The reaction mixture without prenyl source was used as negative control, representing 

background activity of apo-FDC. The product of decarboxylation, styrene, was extracted and the 

concentration was determined by GC-MS. The data were well fitted by a linear regression model. 

The observed rates of styrene formation were 1.57 ± 

7.62 ±   

(Figure 4.5). The decarboxylation rate for FDC utilizing cofactor synthesized from GPP was 

indistinguishable from background level; and thus, implied that FDC could not use this cofactor 

analog if indeed scPFS was able to synthesize it. In the case of cofactor synthesized from HMBPP, 

the result yielded observed Vmax of 5.50 ± 0.37 min-1. This observed Vmax is ~25 fold slower than 

original prFMN catalyzed decarboxylation.  

 



Figure 4.5: Decarboxylation activity of FDC utilized cofactor analog generated from HMBPP 
(blue) and GPP (red). Background catalytic activity of apoFDC was represented in (grey). The 
observed rates of styrene formation were 1.57 ± 
7.62 ±   

4.3.3 Native Mass Spectrometry 

Native mass spectrometry has proved to be an informative technique to study prFMN. In the recent 

study of FDC decarboxylation from our lab, the substrate analog (Z)-2-Fluoro-2-nitro-

vinylbenzene was utilized to trap intermediate prior to decarboxylation step. Native mass 

spectrometry was the employed to characterize the intermediate trapped in FDC (22). 

Similar native mass spectrometry techniques performed in collaboration with Chunyi Zhao (in 

Prof. Ruotolo  applied to characterize in vitro synthesized prFMN cofactors and 

analogs. -FDC coupling reactions were conducted in high concentration of 

substrates and enzymes as described in method section. The prenylation reaction was allowed to 

proceed for 3 h, quenched by exposure to air and concentrated. Concentrated samples were buffer 

exchanged into 500 mM ammonium acetate buffer, pH 6.9 and analyzed under native MS 



conditions. In the positive control in which DMAPP was used as prenyl source, a peak 

corresponding to prFMN (m/z = 525.092) was observed (Figure 4.6b). This peak disappeared in 

negative control where no prenyl donor was added into the reaction mixture (Figure 4.6a). These 

results verify that the condition used in the in vitro assay does not interfere with native MS. 

However, when HMBPP and GPP were utilized as prenyl donors, no cofactor was observed. This 

may be due to the low concentration of cofactor analogs generated by scPFS. Unfortunately, this 

experiment was limited by the amount of enzyme available. Precipitation of scPFS was observed 

at the end of 3 h reaction. Note that there was no scPFS detected in native MS and cofactors were 

dissociated from FDC that was added to trap prFMN and analogs. Stable prenyl Flavin synthase 

will be required in order to improve and raise concentration of cofactor analogs. Furthermore, 

cofactor analogs had to bind to apoFDC in order to show up in native MS. Cofactor modification 

might change binding affinity greatly; and thus, lead to low activity and absence of cofactor peaks. 

Figure 4.6: Native MS spectrum of scPFS prenylation when (a) no prenyl source was added (b) 
dimethylallyl pyrophosphate was added as prenyl source. The peak at 525.092 corresponds to 
prFMN. 



4.3.4 Molecular docking 

In order to gain better understanding of prenyl donor specificity, molecular docking was employed 

to computationally fit DMAPP analogs into the active site of prenyl flavin synthase. The UbiX 

crystal structure (PDB: 4ZAF) (5) was used to represent prenyl flavin synthase since it is currently 

the only reported crystal structure with substrates intact. UbiX and scPFS are isofunctional and 

share 50% of amino acid sequence (23 25). However, UbiX was reported to be unable to use 

pyrophosphate prenyl donor (5). Thus, (E)-4-Hydroxy-3-methyl-but-2-enyl monophosphate 

(HMBP) and geranyl monophosphate (GP) were used for modeling instead of their pyrophosphate 

counterparts used in the experiments.  

In the molecular docking experiment, DMAP was removed from the crystal structure of UbiX and 

then DMAP, HMBP and GP were fitted into the active site of UbiX containing oxidized FMN. 

The result showed that HMBP and GP could be fitted into the active site of UbiX (Figure 4.7). The 

overlays between original DMAP position and molecular docking prediction were shown in figure 

4.8. The relative docking energies were -5.61 kcal/mol, -6.56 kcal/mol and -7.83 kcal/mol for 

DMAP, HMBP and GP respectively. These results implied that scPFS can bind to DMAPP analogs 

studied in this chapter. However, in the case of GP, the angle of prenyl transfer  bond was 

significantly altered while the additional (Figure 

4.8c). This would significantly reduce rate of prenylation, if prenylation did still take place, rather 

interactions could stabilize the cofactor analog generated from GPP and prevent it from leaving 

the active site of scPFS; and thereby provided another possible explanation to why FMN was 

consumed by scPFS but no decarboxylation activity was observed when HPLC assay and GC-MS 

dual enzyme assay were conducted using GPP as described above.  



Figure 4.7: Molecular docking simulated the localization and alignment of prenyl source in the 
active site of UbiX containing FMN (a) original DMAP (b) molecular docking DMAP (c) 
molecular docking HMBP (d) molecular docking GP 



Figure 4.8: Overlay pictures between DMAP from the UbiX crystal structure (PDB: 4ZAF) and 

prenyl source simulated by molecular docking. (a) Original DMAP and molecular docking DMAP 

(b) original DMAP and molecular docking HMBP (c) original DMAP and molecular docking GP. 

4.4 Conclusions 

The work described here represents the first attempt to explore substrate specificity of the newly-

discovered FMN prenylation reaction and cofactor flexibility of the phenylacrylic acid 

decarboxylation. 7,8-dichloro flavin mononucleotide was employed as an FMN analog in an 

attempt to probe the mechanism through linear free energy analysis. However, susceptibility of the 

substituent toward DTT resulted in difficulties with this approach. Each analog of FMN will 

require its own optimizations of HPLC profile and assay condition.  

On the other hand, prenylation with commercial DMAPP analogs, HMBPP and GPP, showed 

promising results. Single turnover kinetics of FMN consumption yields an apparent first order rate 

constant of 4.45 ± 0.87 h-1, and 3.80 ± 0.34 h-1 for HMBPP and GPP respectively. Under steady 

state kinetic condition, FDC catalyzed the decarboxylation reaction using cofactor analog 

generated from HMBPP at Vmax of 5.50 ± 0.37 min-1. When GPP was used to produce prFMN 

analog, no significant decarboxylation of trans-cinnamic acid was observed. Molecular docking 



simulations suggested that the prFMN analog synthesized from GPP might be much more stable 

than prFMN and could not migrate out of scPFS active site properly. Steric effects could also be 

another reason to prevent the release of this cofactor. Native mass spectrometry was then employed 

to directly identify the presence of cofactor analog. The technique was first verified to be 

successful in its capability to detect in vitro synthesized prFMN cofactor. However, no cofactor 

could be detected when the technique was applied to cofactor analog. The low concentration of 

cofactor and low binding affinity toward FDC could be the causes. In order to probe the presence 

of cofactor analogs, the more stable and more active prenyl flavin transferase would be required. 

This chapter described preliminary results exploring several options for cofactor engineering of 

prFMN. Even though many of the experiments led to unsuccessful results, some did show promise 

such as the case of HMBPP. The insight into GPP could lead to an experiment where GPP is used 

as the inhibitor to probe the prenylation mechanism, if a more stable prenyl flavin transferase is 

obtained.  
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Chapter 5: Conclusions and outlooks 

5.1 Overview 

In the past decade, phenylacrylic acid decarboxylation has become of great interest as a pathway 

to biosynthesize styrene feedstock for the polymer industry. Originating from investigation into 

spoilage in the food processing industry, where contamination of styrene was observed (1 3), yeast 

ferulic acid decarboxylase (FDC1) and phenylacrylic acid decarboxylase (PAD1) were identified 

as responsible for styrene biosynthesis (4). Both enzymes were originally believed to be 

decarboxylases (5 7), however, the initial investigations by our lab and others have established 

the relationship between the two enzymes in which PAD1 generates modified FMN cofactor for 

FDC1 (8 10). Recent studies of their crystal structures have verified this hypothesis. The novel 

cofactor is identified as prenylated flavin mononucleotide (prFMN). UbiX, an isofunctional 

enzyme of PAD1, has been reported to transfer prenyl group from dimethylallyl monophosphate 

to reduced FMN thereby generating an additional ring on the isoalloxazine moiety of reduced FMN 

(11). The crystal structure of Aspergillus Niger FDC reveals two isomers of oxidized prFMN: a 

ketamine form and iminium form (12). Therefore, two possible mechanisms, Michael addition 

mechanism and 1,3 dipolar cycloaddition mechanism, have been proposed to describe how FDC1 

incorporates prFMN to catalyze decarboxylation.  

Even though the enigmatic presence of styrene in biological systems has been elucidated, a better 

understanding of how FDC1 converts cinnamic acid to styrene is required in order to apply these 

enzymes in industry. A low rate of return in comparison to high production costs is one of the most 



common limitations in the bio-based product industry. The efficiency and specificity of the 

enzyme are often targeted for protein engineering to improve the economics of such industrial 

processes (13). Postulated decarboxylation mechanisms need to be verified in order to study and 

engineer FDC1 to improve styrene biosynthesis activity. Cofactor engineering of prFMN is 

another approach to improve the yield of styrene biosynthesis. The work presented here has 

expanded our current understanding of these enzymes, but just as importantly it has provided new 

insight for studies that may be fruitful in improving the rate of the reaction.  

5.1.1 Probe of decarboxylation mechanism 

The initial proposed mechanisms for FDC decarboxylation of phenylacrylic acid proceed through 

either Michael addition or 1,3 dipolar cycloaddition (12). Through 1H NMR analysis, we found 

that FDC decarboxylation is stereospecific and the source of proton that replaces the carboxylic 

group of phenylacrylic acid is freely exchanged with buffer. Proton inventory experiments 

suggested that this single proton is in motion in the transition state. Linear free energy analysis of 

FDC decarboxylation resulted in unexpected negative reaction constant . This result indicated 

that decarboxylation step, which generally involves a buildup of negative charge in the transition 

stage and is therefore associated with large positive Hammett reaction constant (14,15), is not the 

rate limiting step. Instead, the negative Hammett reaction constant provides evidence that the 1,3-

cycloelimination reaction in the 1,3 dipolar cycloaddition mechanism is likely to be rate-

determining in the FDC decarboxylation. Secondary kinetic isotope measurements showed normal 

V/K isotope effects on the DV/K  = 1.10 ± 0.03; n = 9). This result 

indicated that the vinylic carbons undergo a change from sp3 to sp2 hybridization during the rate 



determining step; and therefore supported the result from linear free energy analysis that the 1,3-

cycloelimination step is rate determining step. 

In addition, secondary kinetic isotope experiments performed in D2O show normal V/K isotope 

-carbon. This could imply that decarboxylation happens prior to cyclo-elimination as 

postulated in the proposed 1,3 dipolar cycloaddition mechanism. When the enzyme is reacted with 

-deuterated phenylacrylic acid in D2O, th -carbon will contain two deuterium atoms; thus, the 

observed secondary kinetic isotope effect will be further elevated and will appear as a normal 

kinetic isotope effect. The pattern of secondary kinetic isotope effects further suggests that the 1,3-

cyclo-elimination reaction that leads to the formation of the styrene double bond occurs in a 

-carbon with 

-carbon. 

5.1.2 scPFS prenylation assay 

Having gained better understanding about FDC decarboxylation and the cofactor used by FDC, 

we investigate mechanism in which this novel cofactor is synthesized. Saccharomyces cerevisiae 

prenyl flavin synthase (scPFS), formerly known as PAD1 was used as the model enzyme to study 

prFMN synthesis. Initially, we attempted to exploit the fact that prenylation generates inorganic 

phosphate or pyrophosphate byproduct. Commercially available high throughput assays such as 

Malachite green phosphate assay, Enzchek phosphat

were utilized to monitor scPFS prenylation. Unfortunately, substrate interference led to the failure 

of commercial phosphate and pyrophosphate detection kits to detect reaction product.  

Next, a scPFS-FDC coupled assay was developed and optimized in order to monitor scPFS 

prenylation through the activation of FDC. This would allow the formation of one molecule of 



prFMN to be coupled to the production of many molecules of styrene, thereby affording a 

considerable amplification of the signal. In the optimized assay, prenylation reaction was 

-incubated with 5mM DTT, 

-

dithionite. The reactions were quenched by addition of 5 mM potassium ferricyanide. Then 

decarboxylation activity of FDC was measure under saturated substrate concentration. Styrene was 

extracted and concentration was measured by GC-MS. Under this condition, the catalytic activity 

of scPFS was close to maximal. 

With scPFS-FDC coupling assay, we found that scPFS selectively used DMAPP as substrate in 

contrast to the publication where DMAP was reported to be substrate for UbiX prenylation. 

Implementing this coupling assay to study steady state kinetic allows us to obtain the observed 

kcat, KM
app (DMAPP) as 12.2 ± 0.2 h-1 In addition, single turnover 

kinetic experiments, which were monitored by either scPFS-FDC coupling assay or HPLC assay 

tracking FMN consumption, yield apparent first order rate constant of 17.5 ± 1.1 h-1. 

5.1.3 Cofactor analogs 

Following the prenylation assay developed as described above, the assays were employed to 

investigate whether prFMN analogs can be synthesized using scPFS and whether FDC can utilize 

prFMN analogs, given that scPFS was able to synthesize them. First, 7,8-dichloro flavin 

mononucleotide was selected as an FMN analog in an attempt to construct linear free energy 

correlation with substituted FMN analogs. However, preliminary results showed the susceptibility 

of the substituent toward the reducing agent used in the assay and suggested that each FMN analog 

will require its own optimizations of HPLC profile and assay condition.  



The synthesis of prFMN analogs was then approached from another direction using DMAPP 

analogs. Single turnover kinetic assays were conducted using commercially available DMAPP 

analogs, HMBPP and GPP. These assays allowed apparent first order rate constant to be calculated 

as 4.45 ± 0.87 h-1, and 3.80 ± 0.34 h-1 for HMBPP and GPP respectively. Assuming consumed 

FMN was converted to cofactor, steady state kinetic decarboxylation allowed Vmax to be calculated 

as 5.50 ± 0.37 min-1 when cofactor analog generated from HMBPP was utilized. In the case of 

cofactor analog generated from GPP, no decarboxylation activity was observed. Molecular 

docking simulations suggested that the prFMN analog synthesized from GPP might have problem 

migrating out of the active site of scPFS.  

Furthermore, native mass spectrometry was employed to directly identify the presence of cofactor 

analog. The technique was first verified to be successful in its capability to detect in vitro 

synthesized prFMN cofactor. However, no modified cofactors could be detected when the 

technique was applied to detect cofactor analogs. The low concentration of cofactor and low 

binding affinity toward FDC could be the causes. In order to probe the presence of cofactor 

analogs, a more stable and more active prenyl flavin transferase would be required. 

 

 

 

 



5.2 Future directions 

Even though the investigations described in this thesis and others have elucidated the pathway of 

styrene biosynthesis in nature, it is still far from ready to be implemented in industry. Further 

experiments are necessary to provide direct evidence for the decarboxylation mechanism and the 

FMN prenylation mechanism. Experiments with regard to cofactor analogs described here serve 

as preliminary results for cofactor engineering. Further investigations are necessary in order to 

achieve cofactor with superior FDC catalytic activity. The proposed experiments described below 

could lead to enhancement of styrene biosynthesis activity or application toward biosynthesis of 

other valuable chemicals. 

5.2.1 Substrate analogs (aromatic and aliphatic) and active site mutagenesis to probe 

mechanism of FDC 

Although the 1,3 dipolar cycloaddition mechanism has been suggested in this thesis to be the 

decarboxylation mechanism employed by FDC1, direct evidence of the formation of the postulated 

intermediate is required to further verify this mechanism. The substrate inhibitor, 2-fluoro-2-

nitrovinylbenzene, has been employed in combination with native mass spectroscopy to probe the 

existence of pre-decarboxylation intermediate by coworker from our lab (16).  

Similarly, native mass spectroscopy could be employed to identify other dicycloaddition 

intermediates. Mutagenesis of active site residues, particularly at glutamic acid residue 282, could 

be employed to cause intermediates to accumulate on the enzyme. Furthermore, manipulation of 

substrate to reduce decarboxylation activity may allow us to detect intermediates in the rate 

limiting step directly. Hammett analysis showed that a nitro substituent at the para position of the 

substrate benzene ring reduced decarboxylation by an order of magnitude (17). An additional 



electron withdrawing group at the ortho position could reduce catalytic activity further. Another 

option would be the addition of a nitro substituent at the -carbon of cinnamic acid. A nitro group 

at this position could prevent substrate-cofactor adduct undergoing cycloelimination, and thereby 

allow us to detect intermediate at the rate determining step. 

5.2.2 Cofactor maturation 

Oxidative maturation of prFMN is one of the least well-understood steps in the formation of the 

active prFMN cofactor. It is unclear how or if an enzyme is involved in the conversion of reduced 

prFMN generated by either UbiX or scPFS to its oxidized form. In the cases of FDC and 3,4-

dihydroxybenzoic acid decarboxylases (AroY), prFMN is successfully oxidized by air exposure 

and thus catalytic activity of FDC and AroY can be reconstituted in vitro (12,18,19). However, 

this is not the case for 3-octaprenyl-4-hydroxybenzoate decarboxylase (UbiD). The crystal 

structure of UbiD reveals that in vitro oxidation to the mature prFMN cofactor stalls at formation 

of a radical prFMN species (20). These results imply that decarboxylases are required for proper 

maturation of prFMN cofactor. 

Unlike prFMN generated from UbiX, there is no evidence that radical prFMN is formed when 

scPFS is employed. This observation suggests that there may be more than one pathway to mature 

prFMN cofactor depending on the enzymes that synthesize this cofactor. It is also possible that 

there may be another enzyme involved in oxidative maturation of prFMN. It is surprising that 

cofactor generated from UbiX cannot be matured and utilized in vitro by UbiD since both are 

known to be in the same operon. Understanding how FDC and scPFS work together to mature 

cofactor and which part of FDC is responsible for this function could prove helpful to further 

engineer this enzyme to enhance its activity.  



5.2.3 Linear free energy analysis, isotope effect and inhibitor complex to probe prenylation 

mechanism and application of cofactor analogs to probe decarboxylation mechanism 

Understanding the prenylation mechanism is no less significant than understanding FDC 

decarboxylation. Linear free energy analysis and isotope effects can be employed to investigate 

mechanism by which prFMN is synthesized. If we can solve the problem of the limited availability 

of substrate analogs for prenylation, linear free energy analysis could provide powerful insight 

toward both prenylation mechanism, as well as phenylacrylic acid decarboxylation mechanism. 

By understanding the nature of prFMN cofactor in FDC decarboxylation, the goal of cofactor 

engineering to achieve cofactor with superior FDC catalytic activity can be advanced.  

Furthermore, given that a more stable scPFS homolog can be identified, a substrate mimic inhibitor 

could be employed in combination with native mass spectroscopy to identify intermediates in the 

reaction. Results from this thesis indicate that geranyl pyrophosphate could be one potential 

candidate. The discovery of FMN prenylation intermediate may not only verify the mechanism in 

which prFMN is synthesized, but may also give insight toward how UbiX and scPFS involve with 

oxidative maturation of this cofactor. 

5.2.4 Active site and cofactor engineering of FDC1 for other functionality 

In addition, we can modify the active site of FDC1 and engineer it towards other substrates 

specifically. FDC is a model enzyme for prFMN-catalyzed decarboxylase. So far, only AroY and 

FDC are reported to be successfully reconstituted in vitro. In contrast to FDC and UbiD, AroY is 

believed to catalyze decarboxylation through a quinoid intermediate similar to bacterial phenolic 

acid decarboxylase (PAD) (18). Thus, FDC1 would be a more suitable as a model enzyme to 

generate UbiD substituted enzyme with ability to reconstitute in vitro.  



Another target for protein engineering of FDC would be substrate specificity. It has been reported 

that FDC can convert sorbic acid to 1,3 pentadiene, a monomer for the rubber industry (6,21). 

However, the catalytic activity is much slower in comparison to cinnamic acid. Degradation of 

sorbic acid is not the primary role of FDC in nature. However, with active site engineering and 

cofactor engineering, FDC could be engineered to be selective toward sorbic acid rather than 

phenylacrylic acid. Thus, further investigation of FDC active site and cofactor could prove 

valuable in biosynthesis industry. 
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