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PREFACE

Chapters 3-6 have been written as separate manuscripts. For this reason, there may be some
repetition of material, particularly in the motivating material, between Chapters 3 and 4, as
well as between Chapters 5 and 6.
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ABSTRACT

This work sought to determine the extent to which approximations in the constitutive the-
ories and geometric representations of individual soft tissues affected the predictive power
of computational knee models. Two tissue systems were evaluated: articular cartilage and
structural ligaments, particularly focusing on the anterior cruciate ligament (ACL). These
tissues were selected due to the rates and debilitating effects of their associated injuries and
diseases, as well as their ubiquitous inclusion in computational knee models.

The mechanical consequences of various levels of articular cartilage constitutive com-
plexity were investigated during physiologically representative loading. Additional com-
plexity, compared to the common assumption of linear elasticity, was introduced through
the systematic incorporation of nonlinear, directional, and spatially heterogeneous mechan-
ical properties. Failure to include experimentally motivated cartilage material models re-
sulted in overpredictions of joint motion and local tissue deformation. There were some
diminishing returns with increasing complexity. In particular, there was a relatively small
effect corresponding to the specific interpolation method used in the construction of each
spatially heterogeneous mechanical property field. After determining the sensitivity of the
representative computational knee model to cartilage constitutive behavior, the impacts of
articular cartilage focal defect size and location were analyzed. Cartilage focal defects were
shown to have a large effect on deformation in the neighborhood around their perimeters,
though no consistent trends of altered deformation were observed in adjacent and opposing
tissues. A defect of increased size was also shown to alter joint kinematics, while small
defects, independent from their location, were found to have a minimal effect.

There has been a tremendous body of work directed at describing the deformation of
ligaments. This work is largely built on the assumption that ligaments behave as trans-
versely isotropic solids; however, there are limited and conflicting mechanical character-
ization data available for ligaments. Various constitutive theories were assessed on their
ability to represent the stress-strain responses of structural ligaments in multiple loading
configurations. Traditionally and commonly accepted transversely isotropic, hyperelastic
constitutive theories proved incapable of describing the mechanical response of ligaments,
predominantly failing in the transverse direction. Therefore, a new constitutive theory was

xviii



developed and shown to have superior accuracy in describing the breadth of experimen-
tal stress-strain responses from multiple loading directions. With this new understanding
related to the deformation of ligaments, the internal loading and detailed anatomy of the
ACL were evaluated. Specifically, the double bundled, prestrained structure of the ACL
was quantified computationally for the first time, and its effect on joint motion and local
tissue deformation during normal clinical assessments was examined. The incorporation
of prestrain was shown to be an important mechanical feature of knee stability, bringing
predicted joint motions within the acceptable ranges of healthy knees.
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CHAPTER 1

Introduction and specific aims

1.1 Introduction

The knee is an intricate, biarticulating joint whose health is acutely linked to the stability
and mobility of an individual. The use of the knee is prolific in everyday life; walking,
running, jumping, standing, crouching, and even dancing can all require the flexibility pro-
vided by the knee. The joint is composed of a variety of physiological structures, ranging
from stiff to compliant and from macroscopic to microscopic (Goldblatt and Richmond,
2003). These structures work in coordinated and complimentary ways to facilitate normal
knee motion. With so many constituents, from hard bones and soft cartilage to large mus-
cle groups and small extracellular molecules, it is easy to imagine that any one deficiency
might be sufficient to diminish functionality, or even have the power to halt joint function
altogether (Lawrence et al., 2008; Spindler and Wright, 2008). In conjunction with the
initial mechanical implications, the pain typically associated with knee injury can also be
incapacitating (Peat et al., 2001). Furthermore, due to the coupled nature of the structures
in the knee, the failure of one structure may directly contribute to and be the proximate
cause of another (Kessler et al., 2008; Lohmander et al., 2004; Petersson and Jacobsson,
2002; Thorlund et al., 2016).

Osteoarthritis (OA) is one example of a debilitating soft tissue disease that frequently
develops in the knee. It is characterized by a progressive weakening, degeneration, and
eventual failure of articular cartilage. OA is often accompanied by pain and reduced joint
function, drastically affecting the quality of life of the individual (Felson et al., 2000). Ap-
proximately 13% of the adult population in the United States is suffering from diagnosed
OA (Lawrence et al., 2008), and upwards of 25% of adults over 55 experience significant
knee pain each year likely resulting from underlying OA (Peat et al., 2001). The United
States is not singularly affected, with similar percentages of adults touched by OA glob-
ally (Jordan et al., 2013). Confounding the striking rates of OA is that its incidence rate
is increasing. Despite OA already being ranked the sixth leading cause of disability, it is
expected to rise to the fourth by 2020 (Woolf and Pfleger, 2003). In addition to the tremen-
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dous physical effects of OA, its economic costs are staggeringly high. It has been estimated
that the annual costs of OA in the United States exceed $90 billion (Leigh et al., 2001), and
this only makes up a fraction of the over $300 billion spent domestically on arthritic con-
ditions generally (Yelin et al., 2007). The physical and economic challenges associated
with OA are especially stark given that there is no consensus approach for prevention and
treatment, except for total knee replacement. Therefore, understanding the mechanisms
of OA initiation and progression are essential for suppressing the growth and limiting the
effect of this disease. This understanding may also provide insights for new treatments and
strategies to better maintain a lifetime of quality joint function.

Complications related to articular cartilage are not only limited to diseases like OA,
but also manifest as localized tissue degeneration. One such group of these concentrated
abnormalities is called focal defects. Focal defects may solely affect articular cartilage
(chondral) or have some bone involvement (osteochondral) (Brittberg and Winalski, 2003).
As with OA, focal defects can present with significant joint pain and instability (Hangody
and Füles, 2003). The clinical diagnosis of focal defects is still difficult with traditional,
radiographical methods (Oberlander et al., 1993), though the proliferation of magnetic res-
onance imaging (MRI) has significantly increased the potential for early detection (Recht
et al., 1993). However, the clinical advantage of non-invasiveness of MRI is often out-
weighed by its cost, meaning that most focal defects are still diagnosed during arthroscopy
(Hjelle et al., 2002). Focal defects are observed across articular surfaces in the knee (Wong
and Sah, 2010), and, given the constraints of non-invasive clinical diagnosis, they are first
detected in a large distribution of sizes (Widuchowski et al., 2007). Defects have been
found to occur most often in weight bearing regions of the knee, and they may be linked
to the initiation and hasten the progression of diseases like OA (Årøen et al., 2004; Curl
et al., 1997; Hjelle et al., 2002; Widuchowski et al., 2007). Furthermore, cartilage opposing
and neighboring to focal defects has also shown signs of degeneration typical of early OA
(Convery et al., 1972; Lefkoe et al., 1993) and, left untreated, focal defects increase in size
(Wang et al., 2006). That being said, there does appears to be some size threshold under
which a focal defect may remain untreated without any meaningful clinical consequences
(Choi et al., 2009; Magnussen et al., 2008), though the exact relationship between physio-
logical factors, like defect size, location, bone geometry, etc., still remains unclear (Behery
et al., 2014). This means that a more comprehensive knowledge of how focal defects inter-
act with their local environment is critical for devising optimized, patient-specific models
for clinical decision making.

Soft tissue diseases and injuries in the knee are of course not limited to articular carti-
lage. Ligament rupture is a soft tissue injury whose incidence rate is, like OA, also on the
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rise (Kim et al., 2011b). There are four major supporting ligament structures in the knee:
the anterior cruciate ligament (ACL), the posterior cruciate ligament (PCL), the lateral col-
lateral ligament (LCL), and the medial collateral ligament (MCL). Ligaments primarily act
to provide stability during normal activities, while resisting potentially harmful motions
(Goldblatt and Richmond, 2003). The ACL is particularly susceptible to failure (Spindler
and Wright, 2008), though the MCL also fails in substantial numbers (Bollen, 2000). For
many, ligament failure is associated with traumatic sports injury, like when a skier tumbles
or a basketball player lands awkwardly (Krosshaug et al., 2007a; Majewski et al., 2006;
Olsen et al., 2004), but ligaments can fail gradually as well as acutely (Beaulieu et al.,
2015; Lipps et al., 2013). There are more than a quarter of a million ACL injuries every
year in the United States (Griffin et al., 2006). These injuries typically result in decreased
knee stability and abnormal joint kinematics (Butler et al., 2009; Chaudhari et al., 2008;
Deneweth et al., 2010; Salmon et al., 2006; Selmi et al., 2006; Tashman et al., 2004). With
time, these fundamental changes in the knee can lead to early onset, and often severe, OA
(Butler et al., 2009; Chaudhari et al., 2008; Griffin et al., 2006; Lohmander et al., 2004,
2007; McLean et al., 2015; Spindler and Wright, 2008). Notwithstanding these long-term
consequences of ACL, the acute cost of ACL treatment is upwards of $2 billion annually in
the United States (Spindler and Wright, 2008). Women are also disproportionally affected
by ACL rupture, with upwards of a five-fold increased likelihood of injury compared to
men (Agel et al., 2005; Hewett et al., 2005; Waldén et al., 2011). As with OA and fo-
cal defects, understanding the mechanical contributions of ligaments, like the ACL, during
normal activities in healthy knees has the potential to create a new paradigm for clinicians.

Despite the breadth of soft tissue injuries and diseases, they are all linked through fun-
damental changes in joint mechanics precipitated by their presence. With the onset of injury
or the progression of disease, tissues are being damaged, altered, and/or remodeled, and
these local transformations can have detrimental and nonlinear effects across locations and
structures in the knee. One proposed mechanism of OA development is related to shifting
knee mechanics associated with the onset of the disease (Andriacchi et al., 2009; Astephen
et al., 2008; Matsuki et al., 2017; Setton et al., 1999; Tashman et al., 2004; Weidow et al.,
2007) or with collateral injury, like ACL rupture (Bakker et al., 2016; Chouliaras et al.,
2009; Deneweth et al., 2010; Gao and Zheng, 2010; Georgoulis et al., 2010; Haughom
et al., 2012; Papannagari et al., 2006; Salem et al., 2003; Stergiou et al., 2007). This theory
is based on the notion that the presence of the disease leads to alternations in the spatial
distribution of deformation supported by articular cartilage (Andriacchi and Mündermann,
2006; Andriacchi et al., 2009; Carter et al., 2004; Chang et al., 2015; Hinman et al., 2012).
As contact shifts within the joint, new tissues are being loaded, and these tissues may be ill
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equipped to withstand their new mechanical environment (Griffin and Guilak, 2005; Sun,
2010). During dynamic activities, individuals at a high risk for OA tend to display altered
knee kinematics (Chouliaras et al., 2009; Deneweth et al., 2010; Georgoulis et al., 2010;
Stergiou et al., 2007; Tashman et al., 2007), and with increasing OA severity there is an as-
sociated increase in differences in knee motion compared to healthy individuals (Astephen
et al., 2008; Sharma et al., 2001). One fundamental component of this theory is that there
exists regional variation in articular cartilage mechanical properties and/or morphology.
There is strong evidence to support this tenant (Appleyard et al., 2003; Athanasiou et al.,
1991; Briant et al., 2015; Elliott et al., 2002; Froimson et al., 1997; Jurvelin et al., 2000;
Swann and Seedhom, 1993; Thambyah et al., 2006; Young et al., 2007), particularly in
response to dynamic and physiologically relevant loading (Deneweth et al., 2013b, 2015).

Similarly, focal defects may be associated with OA through deviations in intra-joint
loading and contact brought on by the presence of physical changes in cartilage topology
(Brown et al., 1991; Gratz et al., 2009; Wong and Sah, 2010). Defects have been shown
to increase deformation around their perimeter (Braman et al., 2005; Gratz et al., 2008;
Guettler et al., 2004), and these local increases might be sufficient to lead to cascading cell
degeneration and death (Buckwalter and Brown, 2004; Chen and Torzilli, 2015; Kühn et al.,
2004; Kurz et al., 2001; Quinn et al., 2001; Torzilli et al., 1999; van Haaften et al., 2017;
Verteramo and Seedhom, 2007; Wilson et al., 2006). Despite compelling observational ev-
idence, the exact relationship between defect size and location on local tissue deformation,
particularly the effect of defects on surrounding tissues, is still not clear. By understanding
how defects alter joint loading, the next generation of therapies and tissue replacements
may be better positioned to restore native knee function.

In all these cases, the roadblock standing between current clinical methods and improv-
ing patient outcomes is specific knowledge of how individual knee structures respond to
general loading. This is why modeling and simulation have important roles in our under-
standing of injury and disease. The complexity of life makes purely experimental efforts
capable of describing the range of anatomies and physiologies found in nature unrealis-
tic. This is especially true when the area of interest shifts from description to synthesiz-
ing predictions. The knee has been an early target for computation. A large portion of
this work has focused on building models that are representative of healthy joints (Abdel-
Rahman and Hefzy, 1998; Adouni et al., 2012; Beillas et al., 2004; Bendjaballah et al.,
1997; Blankevoort and Huiskes, 1996; Donahue et al., 2002; Gardiner and Weiss, 2003;
Hirokawa and Tsuruno, 2000; Kang et al., 2015; Kiapour et al., 2014a; Klets et al., 2016; Li
et al., 1999a; Limbert et al., 2004; Mononen et al., 2015; Mootanah et al., 2014; Peña et al.,
2006a; Penrose et al., 2002; Quatman et al., 2011; Shelburne et al., 2006; Song et al., 2004;
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Venäläinen et al., 2016a; Xie et al., 2009; Zhang et al., 2008); however, informed models
not only offer a platform for evaluating baseline joint performance, but also for determining
the conditions under which the knee starts to break down, as well as methods for restoring
its function (Atmaca et al., 2013; Bae et al., 2015; Baldwin et al., 2012; D D’Lima et al.,
2009; Godest et al., 2002; Halloran et al., 2005; Hosseini et al., 2014; Huang et al., 2012;
Kim et al., 2011a; Li et al., 2002; Liukkonen et al., 2017; Manda et al., 2011; Marouane
et al., 2014; Mesfar and Shirazi-Adl, 2005; Mononen et al., 2016; Mootanah et al., 2014;
Papaioannou et al., 2010; Peña et al., 2005a,b, 2006b, 2007; Ramaniraka et al., 2007; Shin
et al., 2007; Shirazi and Shirazi-Adl, 2009a,b; Venäläinen et al., 2016b; Wang et al., 2014;
Weiss et al., 1998; Woiczinski et al., 2016). The hope is, that by comparing predictions
from injury and disease models to their healthy counterparts, it will be possible to identify
the fundamental mechanical mechanisms of disease and injury initiation and progression.
Yet, this is only possible when the basic, physical descriptions of each tissue structure are
sufficiently representative.

1.2 Structure of dissertation

A large portion of this dissertation (Chapters 3-6) is composed from four separate in-
vestigations, which have all been published or submitted for publication in peer-reviewed
journals. As such, there may be some redundant information presented in these chapters;
chapters may also appear self-contained. Minor changes from previously published forms
may exist, with most changes reflecting an attempt to maintain consistency throughout this
dissertation. For brevity and clarity, all references have been placed at the end of this
dissertation.

In Chapter 2, background on the knee, its tissues, and their injuries and diseases is
presented. This includes detailed information on the anatomies, physiologies, and func-
tions of soft tissues in the knee, particularly articular cartilage and structural ligaments.
A detailed overview of articular cartilage and ligament mechanics and constitutive model
considerations is also included.

Chapter 3 explores the role of articular cartilage constitutive form on soft tissue defor-
mation and joint motion in the context of a whole knee computational model. Nonlinearity,
directionality, and spatial heterogeneity is shown to be influential mechanical characteris-
tics of articular cartilage. Using the insights from Chapter 3, Chapter 4 examines how a
common articular cartilage injury state, focal cartilage defects, affects joint performance.
Focal defects substantially increase deformation in close proximity to their perimeter. They
also alter the distribution and magnitude of deformation in healthy, opposing cartilages.
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The spatial mechanical heterogeneity of articular cartilage is shown to have significant
implications for the local loading of cartilage, with potential chondrocyte viability impli-
cations.

In Chapter 5, a general framework for determining and evaluating directional consti-
tutive theories is presented and applied to the MCL. Given the form of MCL mechan-
ical characterization data, commonly adapted material models fail to accurately capture
the highly nonlinear and anisotropic response of the tissue. Therefore, a novel constitu-
tive theory is developed and shown to have superior representative performance relative to
comparable theories. Chapter 6 uses the framework presented in Chapter 5 and applies it
to the ACL. With a representative continuum model for the ACL, three commonly simpli-
fied mechanical features of the ligament are explored in the context of clinical assessments
of ACL integrity. The double bundled structure, individual mechanical properties of these
bundles, and their general internal loading for arbitrary knee configurations of the ACL are
evaluated during anterior tibial translation (ATT) and internal tibial rotation (ITR). Chap-
ter 7 summarizes the major outcomes presented in Chapters 3-6, discusses some general
limitations of the work, and provides possible directions for future study in the field.
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CHAPTER 2

Background

2.1 An overview of knee anatomy and function

The knee is a joint located in the lower portion of the body. Its health is vital for maintaining
unassisted mobility, and its injury often corresponds to a diminished overall well-being of
the affected individual. A variety of tissue structures are found in the knee. Figure 2.1
illustrates the various biologic structural features located in the knee. Three major bones—
the tibia, femur, and patella—compose the knee, though, due to its proximity, the fibula is
also often considered a member of the overall joint system. There are two joints in the knee,
between the patella and femur and between the tibia and femur (Goldblatt and Richmond,
2003). Bone is a relatively stiff structure and one of the primary mechanical load transfer
mechanisms in the body (Gomez and Nahum, 2002). Bone itself has an incredibly nuanced
structure (Keaveny et al., 2001), which has spawned an entire field of work dedicated to
investigating its anatomy, physiology, and biomechanics (Frost, 2001; Goldstein, 1987;
Huiskes et al., 2000; Radasch, 1999; Roesler, 1987; Turner et al., 1999).

On the other end of the stiffness spectrum, soft tissues make up the balance of solid
structural components of the knee (Fig. 2.1). Soft tissues provide support and promote
stability in the joint, while enabling joint motion (Bhosale and Richardson, 2008; Fox
et al., 2015; Hungerford and Barry, 1979; LaPrade et al., 2007; McLean et al., 2015).
They tend to undergo relatively large deformations, often well into the finite strain regime
(Holmes and Mow, 1990; Pioletti et al., 1998). Highly aligned collagen structures connect
bones to bones (ligaments) and bones to muscles (tendons) (McLean et al., 2015; Screen,
2009). Ligaments aid in joint coordination, preventing potentially dangerous deformations
(Brantigan and Voshell, 1941). Located on the contacting surfaces of bones, articular car-
tilage provides critical cushioning during load transmission between bones (Mow et al.,
1984). The menisci are semicircle tissues that are situated on the perimeter of the tibial
articular cartilage and are attached to the tibial plateau. Each of these tissues has unique
and multifaceted anatomies, physiologies, and mechanical properties (Brindle et al., 2001).
Despite their diversity, ligaments, tendons, articular cartilage, and menisci do not form a
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Figure 2.1: Anatomy of the knee. Figure from Human Kinetics (2017).

comprehensive list of all the soft tissues in the knee (Blackburn and Craig, 1980), but they
do form a significant fraction of the mechanical foundation of joints and are the main focus
of this work.

2.2 Articular cartilage in the knee

Soft tissues in the knee are particularly vexing. Articular cartilage is a relatively compli-
ant tissue that is often found between contacting bodies in joints. In the knee, articular
cartilage is predominately located on the tibial plateau and distal femoral head, as well as
between the femur and the posterior aspect of the patella (Buckwalter, 1990). Articular
cartilage functions to mitigate intrajoint loads through a nearly frictionless cartilage-to-
cartilage contact surface (Mow et al., 1993). It cushions and distributes loads between
stiff, load-bearing structures, like bones, reducing peak contact deformation localizations
by increasing the effective contact area (Mow and Rosenwasser, 1988; Mow et al., 1995).
Altered loading has been shown to affect cartilage physiology and mechanics (Herzog and
Federico, 2006; Herzog et al., 1998), and these alterations may result in local tissue degra-
dation (Buckwalter, 1990; Mankin, 1974; Sun, 2010). This cartilage deterioration is a
major morphological characteristic of OA (Buckwalter and Mankin, 1997; Felson et al.,
2000), though the precise link between mechanics and OA is still unresolved. A more
detailed understanding of cartilage may prove valuable in elucidating the mechanisms of
OA.
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2.2.1 Articular cartilage physiology

Articular cartilage is primarily composed of extracellular matrix constituents, with a sparse
population of cartilage cells called chondrocytes (Buckwalter and Mankin, 1997). Cartilage
is composed from two primary phases: solid and liquid. The solid phase, approximately 10-
25% of the total tissue mass, contains mostly collagen (largely Type II) and proteoglycans
(Huber et al., 2000; Muir, 1980). Proteoglycans are negatively charged macromolecules,
and they attract and maintain water within the cartilage bulk (Bhosale and Richardson,
2008; Mow et al., 1980). The fluid phase, which is a solution of permeable ions in water,
makes up most of the remaining mass of articular cartilage, approximately 65-80% of the
total tissue mass (Mow and Guo, 2002; Mow et al., 1984). A schematic representation of
articular cartilage is shown in Fig. 2.2.

Water

Negative Charged Groups

Collagen

Hyaluronic 
Acid

Proteoglycan Subunits

Excluded
Volume

Figure 2.2: Schematic of the macromolecular components and phases of articular cartilage
(Lai and Mow, 1980).

The microstructural composition of articular cartilage has been shown to be highly
heterogeneous both depth-wise through its thickness and regionally across its surface.
Through its thickness, articular cartilage is typically characterized by four structurally dif-
ferent layers (Buckwalter et al., 1994). From the articular surface to the bone, the layers
are: the superficial tangential zone, the middle zone, the deep (radial) zone, and the calci-
fied cartilage at the interface of the underlying bone (Bhosale and Richardson, 2008). The
layers of articular cartilage and the orientations of their microstructural constituents can
be seen in Fig. 2.3. In the superficial tangential zone, there is a small, randomly oriented
population of chondrocytes supported by a dense network of collagen fibers (Weiss et al.,
1968). These fibers are predominately oriented in the plane parallel to the articular surface
(Lane and Weiss, 1975). In the middle zone, the directions of collagen fibers are more ran-
domly distributed (Buckwalter et al., 1994; Mow et al., 1984) and the chondrocytes sightly
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larger compared to those in the superficial tangential zone (Eyre et al., 2006). Transitioning
to the deep zone, collagen fibers and chondrocytes are aligned radially in directions normal
to the terminating bone geometry (Minns and Steven, 1977; Poole, 1997).

Figure 2.3: Schematic diagram of chondrocyte and collagen fiber depth-wise configurations
through the four clinical zones of articular cartilage (Buckwalter et al., 1994).

Proteoglycans make up a larger percentage of the total weight of femoral cartilage com-
pared to tibial cartilage (Treppo et al., 2000). Differences between and within the T2 times
of tibial and femoral cartilages have also been observed (Smith et al., 2001)—T2 relaxation
times (acquired with MRI) represent the decay time of proton precession in the plane trans-
verse to the magnetization direction and are directly related to the macromolecular motion
of water (Mosher and Dardzinski, 2004). Within the femoral cartilage, specific proteogly-
can levels have been linked to certain regions throughout the trochlea, with greater con-
centrations in regions in contact with patellar cartilage compared to regions in contact with
tibial cartilage (Froimson et al., 1997). The density and morphology of chondrocytes are
also regionally dependent, with load bearing regions tending to have lower count densities
and higher cell volumes compared to less load bearing regions (Eggli et al., 1988). There is
tremendous spatial variation in the thickness of articular cartilage, with weight bearing re-
gions tending to have larger thickness compared to peripheral tissue (Ateshian et al., 1991;
Buckland-Wright et al., 1995; Cohen et al., 1999). Furthermore, split-line mappings (see
representative images in Fig. 2.4) have shown that surface collagen orientations are highly
heterogeneous (Below et al., 2002; Meachim et al., 1974).

2.2.2 Articular cartilage mechanics

Like many soft tissues in biology, the physics of deformation in articular cartilage are mul-
tifaceted. The deformation mechanics of articular cartilage have been shown to include
elements of time, strain rate, directional, depth, and regional dependencies, as well as non-
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(a)

(b)

Figure 2.4: Split-line patterns of the (a) femoral (Below et al., 2002) and (b) tibial
(Meachim et al., 1974) cartilage articular surface.

linearities in its elasticity and viscoelasticity. There has been significant interest in the
behavior of articular cartilage in the time domain, where classical mechanics techniques,
like creep and stress relaxation, have been used to explore various deformation mechanisms
within the tissue (Ateshian et al., 1997; Hayes and Mockros, 1971; Mow et al., 1980). Time
dependency in articular cartilage manifests from both the frictional drag produced by fluid
flowing through the porous solid cartilage matrix and intrinsic viscoelasticity of the macro-
molecular network of the solid matrix (Hayes and Bodine, 1978; Huang et al., 2001; Lu
and Mow, 2008; Mak, 1986a; Mow et al., 1984; Park and Ateshian, 2006).

Stress-strain behavior of articular cartilage is also sensitive to loading rate. The stress-
strain behavior of articular cartilage appears stiffer with increasing strain-rates (DiSilvestro
et al., 2001a; Lai et al., 1981; Langelier and Buschmann, 2003; Li et al., 2003; Verteramo
and Seedhom, 2004), though the effect becomes saturated at higher strain rates (Oloyede
et al., 1992). For the range of strain-rates seen by articular cartilage during normal, phys-
iological activities, the rate dependency of the tissue is minimal (Mann and Hagy, 1980;
Oloyede et al., 1992). At these loading rates, the response is largely driven by the solid
phase of articular cartilage due to insufficient time for fluid transport (Bader and Kempson,
1994; Mizrahi et al., 1986; Rieppo et al., 2003). Consequently, articular cartilage, during
physiologically interesting events, is typically assumed to be incompressible and strain-rate
insensitive (Armstrong et al., 1984; Bachrach et al., 1998; Eberhardt et al., 1990). In addi-
tion to its strain rate dependency, the stress-strain behavior of articular cartilage has been
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shown to be nonlinear, where larger increments of stress are observed for increasing strains
(Brown et al., 2009; Charlebois et al., 2004; Deneweth et al., 2013b, 2015; Korhonen et al.,
2002a).

The structure and orientations of the macromolecular constituents of articular cartilage
directly contribute to directionalities in its mechanical response. This directional behav-
ior manifests as tissue-level anisotropy (Jurvelin et al., 2003), depth-dependency (Schinagl
et al., 1997), and spatial heterogeneity (Appleyard et al., 2003). Much of the directional-
ity is related to the relative density and orientation of collagen fibers in the solid matrix
(Brama et al., 2000a,b; Hunziker et al., 2007; Jurvelin et al., 2003; Mow and Guo, 2002).
There is a significant asymmetry in the tensile and compressive mechanical responses of
collagen fibers, which typically dictates the preferred material direction(s) (Buehler, 2006;
Huang et al., 2003; Soltz and Ateshian, 2000; Woo et al., 1979). The structure of the solid
matrix also affects fluid flow, and, consequently, the flow-dependent components of the
mechanical behavior of articular cartilage (Federico and Herzog, 2008).

As the composition of the solid phase of articular cartilage varies through its depth,
so too do its mechanical properties (Julkunen et al., 2008; Saarakkala et al., 2010). The
compressive modulus of articular cartilage increases significantly from its articular surface
to bony interface (Klein et al., 2007; Schinagl et al., 1997). There also exists a complex re-
lationship between cartilage depth and its response to shear loading (Buckley et al., 2008;
Motavalli et al., 2014; Silverberg et al., 2013) and hydraulic permeability (Chen et al.,
2001; Federico and Herzog, 2008; Gannon et al., 2012). Similar structural variations re-
sult in the mechanical response of articular cartilage exhibiting a spatial dependency. The
mean stiffness of femoral cartilage has been shown to be greater than the tibial cartilage
(Arokoski et al., 1999; Deneweth et al., 2013b, 2015). Within the femoral cartilage, car-
tilage found on the condyles tends to be stiffer than that located on the trochlea (Jurvelin
et al., 2000; Swann and Seedhom, 1993). Furthermore, cartilage predominately covered by
the menisci on the perimeter of the tibial plateau has been shown to be stiffer than cartilage
more centrally located on the plateau (Barker and Seedhom, 2001; Deneweth et al., 2013b;
Thambyah et al., 2006). Within these zonal generalizations, the exact spatial distribution of
articular cartilage mechanical properties is highly heterogeneous (Deneweth et al., 2013b,
2015; Jurvelin et al., 2000; Young et al., 2007). All this tissue-level directionality tends
to lead to inhomogeneous distributions of deformation within the cartilage bulk, even for
nearly uniform loading (Chan et al., 2009; Lai and Levenston, 2010; Neu et al., 2005).
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2.2.3 Articular cartilage constitutive modeling

Continuum models of articular cartilage have run the gamut of complexities, from basic
linear elastic to nonlinear, multiphysics models. Linear elasticity has proven largely suc-
cessful at describing the small strain instantaneous and equilibrium responses of articular
cartilage (Hayes et al., 1972; Jin and Lewis, 2004; Moshtagh et al., 2016; Sakamoto et al.,
1996; Töyräs et al., 2001), and is still commonly employed in geometrically detailed whole
knee computational models (Donahue et al., 2002; Kiapour et al., 2014a,b; Mootanah et al.,
2014; Peña et al., 2005a, 2006a). Nonlinear elastic theories have also been used to describe
articular cartilage (Brown et al., 2009; Deneweth et al., 2013a, 2015; Robinson et al., 2016;
Schwartz et al., 1994; Świeszkowski et al., 2006). Assuming articular cartilage behaves as
a single phase, a viscoelastic continuum has also been a useful framework for represent-
ing the creep and stress relaxation responses of cartilage (Han et al., 2012; Peters et al.,
2017; Richard et al., 2013; Woo et al., 1980). Single phase theories have been particularly
conducive to problems where an analytical solution, like indentation, is desired (Hori and
Mockros, 1976; Jurvelin et al., 1997; Kiviranta et al., 2008; Lin et al., 2009).

To address the underlying composite phase composition of articular cartilage, multi-
phasic constitutive models have been developed to describe the time dependent behavior
of articular cartilage. These models first assumed cartilage could be represented as an in-
compressible, linear elastic solid matrix permeated with an inviscid, incompressible fluid
(Mow and Mansour, 1977; Mow et al., 1980; Torzilli and Mow, 1976a,b). Within this
theory, stresses evolve as a function of both elastic strain and frictional resistance of fluid
flowing through the solid matrix (Mow et al., 1984). Linear biphasic theory has been
incredibly popular in representing the response of articular cartilage during confined com-
pression (Armstrong and Mow, 1982; Schinagl et al., 1997; Soltz and Ateshian, 1998; Woo
and Kwan, 1991), unconfined compression (Armstrong et al., 1984; Brown and Singerman,
1986; Spilker and Suh, 1990), and indentation (Mak et al., 1987; Miller and Morgan, 2010;
Mow et al., 1989; Spilker et al., 1992). However, as traditionally posed, linear biphasic
theory is limited by its implicit small strain assumption (Ateshian et al., 1997; Holmes and
Mow, 1990) and inability to describe relatively low and high strain-rate deformations (Li
et al., 2003).

Linear biphasic theory has been extended to more accurately capture certain aspects of
real articular cartilage deformation. The solid phase is now more commonly assumed to
be hyperelastic (Holmes and Mow, 1990), and this modification has proven beneficial in a
variety of cartilage loading configurations (Ateshian et al., 1997; Kwan et al., 1990; Suh
and Spilker, 1994). Nonlinearity within the biphasic framework has also been introduced
through strain dependent permeability (Boschetti et al., 2004; Lai et al., 1981; Suh et al.,
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1991). Various other deformation physics have been incorporated into biphasic cartilage
theory, including poroviscoelasticity (DiSilvestro and Suh, 2001, 2002; DiSilvestro et al.,
2001b,c; Ehlers and Markert, 2001; Mak, 1986a,b; Suh and Bai, 1998), fibril-reinforcement
(Fortin et al., 2000; Li et al., 1999b; Soulhat et al., 1999), and tension-compression asym-
metry (Huang et al., 2001; Soltz and Ateshian, 2000), as well as coupled cartilage swelling
and ion transport (Gu et al., 1998; Lai et al., 1991; Lu and Mow, 2008; Wilson et al.,
2005a,b).

Many of these articular cartilage constitutive models have been further generalized to
allow for material directionality. Transversely isotropic, linear biphasic theory has been
used to model the response of articular cartilage during compression (DiSilvestro et al.,
2001c), indentation (Korhonen et al., 2002b), and impact loading (Garcia et al., 1998).
Orthotropy has also been investigated in the context of linear biphasic theory (Bachrach
et al., 1998). There have been a few efforts to consider the depth-wise heterogeneity of
articular cartilage (Chegini and Ferguson, 2010; Li et al., 2000; Shirazi et al., 2008; Wang
et al., 2001; Wilson et al., 2005b; Wu and Herzog, 2002). More recently, constitutive
models that consider the spatial dependency of articular cartilage have also been developed
(Deneweth et al., 2013a, 2015; Marchi and Arruda, 2017a; Mononen et al., 2012; Tanska
et al., 2015).

2.3 Knee ligaments

Another important class of soft tissues in the knee are ligaments. There are four princi-
pal stabilizing ligaments in the knee: the ACL, PCL, MCL, and LCL. These ligaments
connect one bone to another and help to maintain normal knee range of motion (Fu et al.,
1993). Most ligamentous injuries in the knee, over 90% by some estimates (Miyasaka et al.,
1991), involve the ACL and/or MCL (Gianotti et al., 2009). Recent studies have shown that
women are disproportionately affected by ACL injury (Arendt et al., 1999; Hewett et al.,
2005; Waldén et al., 2011). Due to their limited vascularization and innervation, ligaments
tend to lack the ability to self-heal (Arnoczky, 1982; Duthon et al., 2006; Kennedy et al.,
1974; Odensten and Gillquist, 1985; Petersen and Tillmann, 1999); notably, the MCL has
shown some propensity for spontaneous repair following rupture (Frank et al., 1983; Kan-
nus, 1988), however, the healed ligament structure and biochemistry are altered (Niyibizi
et al., 2000; Weiss et al., 1991). In practice, this means that the effects of ligament injuries
can be staggering and widespread. The absence of major ligament structures, in particular
the ACL, is associated with significant secondary soft tissue damage and disease (Aglietti
et al., 1997; Bach et al., 1998; Shelbourne et al., 1995; Yagi et al., 2002). Consequently,
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surgical intervention is commonly required, but reconstruction poses similar adverse long-
term implications for joint health (Andersson et al., 1989; Salmon et al., 2006; Selmi et al.,
2006; Shelbourne et al., 2009). Therefore, the hope is that, with a more comprehensive
understanding of ligament biomechanics, healing, and remodeling, new and innovative so-
lutions for ligament injury prevention and reconstruction can be unlocked.

2.3.1 Knee ligament physiology

Fibroblasts are the predominate cell type found in ligaments (Birk and Trelstad, 1984).
They are situated sporadically throughout and function to maintain a dense network of
highly aligned collagen fiber bundles (Dodds and Arnoczky, 1994). The collagen structure
of ligaments is remarkably hierarchical (Danylchuk et al., 1978; Provenzano and Vanderby,
2006). Individual tropocollagen triple helices group into fibrils, which in turn assemble into
fascicles, and then into macroscopic ligament structures (Kastelic et al., 1978). Various
volume fractions of extracellular tissue are found between and within each hierarchical
level (Amis and Dawkins, 1991; Petersen and Tillmann, 2002). A schematic representation
of the various levels of ligament structural organization can be seen in Fig. 2.5.

Figure 2.5: Hierarchical collagen structure in tendons and ligaments (Weiss and Gardiner,
2001).

Like articular cartilage, a large percentage of ligament total mass is trapped water
(Daniel et al., 1990). Type I collagen makes up approximately 70-80% of the dry mass
of ligaments (Amiel et al., 1983; Weiss and Gardiner, 2001), but other collagen types (II,
III, V, X, XI, and XII) are also found within ligaments (Birk and Mayne, 1997; Fukuta
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et al., 1998; Linsenmayer et al., 1993; Liu et al., 1995; Niyibizi et al., 1996; Visconti et al.,
1996). Throughout a majority of ligaments, collagen has a wavy morphology (Danylchuk
et al., 1978; Ottani et al., 2001). This feature can readily be observed optically or via second
harmonic generation (Cox et al., 2003; Franchi et al., 2007; Williams et al., 2005; Yahia
and Drouin, 1989); a representative image is shown in Fig. 2.6.

Figure 2.6: MCL collagen microstrctural arrangement acquired with second harmonic gen-
eration (Henninger et al., 2015). Arrow indicates the mean collagen fiber direction.

The structural complexities of ligaments are not limited to their bulk. The attachments,
or entheses, of ligaments to bones are characterized by their own unique microstructures.
At its enthesis, a relatively compliant ligament transitions to much stiffer bone (Liu et al.,
2014). Interfaces with a high mechanical mismatch typically lead to the development of
stress concentrations (Williams, 1952), but it has been shown that ligament entheses are
constructed to minimize this effect (Genin and Thomopoulos, 2017; Genin et al., 2009;
Thomopoulos et al., 2006). Within the attachment zone, there exists a distribution of tissues
(Arnoczky, 1982; Cooper et al., 1970), with distributions of mineralizations and macro-
molecular orientations (Benjamin et al., 2002; Moffat et al., 2008; Petersen and Tillmann,
1999; Schwartz et al., 2012; Wopenka et al., 2008). Other attenuating mechanisms exist at
the transition between ligaments and bone, including interdigitation of the bone with the
ligament bulk, smooth geometric transitions from bone to ligament, and optimizing liga-
ment insertion angles (Liu et al., 2011). Ligament entheses can be direct, like that shown
in Fig. 2.7, or indirect (Zhao et al., 2017). Direct attachments are generally well-defined,
with collagen oriented normal to the bone surface (Benjamin and Ralphs, 1998; Iwahashi
et al., 2010). In indirect attachments, there is a more gradual transition from ligament to
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bone, and collagen fibers tend to terminate into the transitional fibrocartilage at more acute
angles (Benjamin et al., 1986; Moulton et al., 2017).

Figure 2.7: Enthesial topology and collagen fiber organization of the ACL, an example of
a direct enthesis (Zhao et al., 2017).

The macroscopic anatomies of the four main stabilizing ligaments have various levels
of spatial configurational intricacies. The MCL is a long, ribbon like structure, which runs
distally from the medial femoral epicondyle to the posteromedial aspect of the metaphysis
of the tibia (Liu et al., 2010b). Geometrically similar, the LCL spans distally from the
lateral femoral epicondyle to the top of the fibular head (Meister et al., 2000). The two
cruciate ligaments cross each other and are located within the center of the joint (Girgis
et al., 1975). The PCL extends from the posterior tibial intercondylar region to the an-
terolateral portion of the femoral intercondylar fossa (Van Dommelen and Fowler, 1989).
With a nearly opposite spatial configuration, the ACL originates from the anterior tibial in-
tercondylar region and ends in the posterolateral region of the femoral intercondylar fossa
(Arnoczky, 1982; Kennedy et al., 1974). Furthermore, the ACL is not a single ligament
structure, but instead composed from two macroscopically identifiable, but coordinated,
fiber bundles (Amis et al., 2005; Dienst et al., 2002; Petersen and Zantop, 2007). The
spatial configurations of the bundles of the ACL, the anteromedial bundle (AMB) and
posterolateral bundle (PLB), can be seen physically separated in Fig. 2.8. Within the gross
attachment areas of the ACL, the AMB emanates from and terminates at the anteroprox-
imal and anteromedial regions of the femur and tibia, respectively (Edwards et al., 2007;
Takahashi et al., 2006). The attachment area of the PLB makes up the balance of the total
ACL bony footprint, originating at the posterodistal region of the femoral attachment and
inserting at the posterolateral region of the tibial attachment (Edwards et al., 2008; Harner
et al., 1999). The individual bundles of the ACL are thought to provide significant con-
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tributions to knee function, with the AMB and PLB playing an important role in limiting
anterior-posterior (A-P) translations and internal tibial rotations, respectively (Yagi et al.,
2002).

Figure 2.8: Representative image of the spatial configurations of the AMB and PLB (Loh
et al., 2003).

2.3.2 Knee ligament mechanics

Like with articular cartilage, the macromolecular structure of ligaments significantly con-
tributes to and dictates their mechanical properties. Differences in the relative densities
and distributions of their constituents can be directly correlated with ligament mechani-
cal properties, driven by the breadth of their functional requirements (Woo et al., 2006).
Factors like collagen fiber diameter (Hart et al., 1992), fibroblast morphology (Lyon et al.,
1991), and collagen type volume fractions (Amiel et al., 1983) vary with ligament type
and directly affect mechanics. There have been countless studies that aim to characterize
the mechanical response of structural ligaments. The primary function of ligaments is to
transmit loads between bones; therefore, most efforts have focused on the apparent uni-
axial behavior of ligaments along their mean collagen fiber direction (Butler et al., 1990;
Chandrashekar et al., 2006; Jones et al., 1995; Ma and Arruda, 2013; Mallett and Arruda,
2017; Noyes and Grood, 1976; Paschos et al., 2010; Quapp and Weiss, 1998; Race and
Amis, 1994; Setton et al., 1994; Smith et al., 1996; Warden et al., 2006; Woo et al., 1983,
1991). The resulting stress-strain relationships of ligaments tend to follow the prototypical
curve shown in Fig. 2.9, where, in the elastic region, an initial nonlinear region is followed
by a more linear response. These experiments are useful tools for quantifying material
properties like terminal stiffness, ultimate stress, and strain at failure. Using these classic
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mechanical characterization techniques, the tangent stiffness of the MCL has been shown
to be approximately twice that of the ACL (Woo et al., 1992). Similarly, the ultimate ten-
sile strength and stiffness of the AMB is greater than the PLB (Butler et al., 1992; McLean
et al., 2015; Skelley et al., 2015, 2016; Wright et al., 2016). However, these methods tend
to be sensitive to geometric (Girgis et al., 1975), environmental (Noyes et al., 1974), and
configurational (Beynnon et al., 1992) factors.

Figure 2.9: Typical observed macroscopic stress-strain behavior of ligaments and tendons
(Wang, 2006).

Given the microstructural arrangement of collagen within ligaments, a certain degree
of anisotropy in their mechanical response is to be expected. Indeed, there has been some
evidence that the response of ligaments is substantially more compliant normal to its mean
collagen fiber direction (Gardiner and Weiss, 2003; Quapp and Weiss, 1998); however,
the relative magnitude of ligament anisotropy is still unclear. There are new data in the
transverse direction that imply an even more compliant response (Henninger et al., 2013,
2015), but, given the limited and conflicting nature of these data, any definitive conclusions
concerning ligament anisotropy are currently premature.

The interactions between ligament macromolecules and between solid and liquid con-
stituents tend to result in time and history dependent deformation physics. Creep and stress
relaxation experiments have been used to help describe the response of ligaments in the
time domain (Abramowitch and Woo, 2004; Grood and Noyes, 1976; Kwan et al., 1993;
Woo et al., 1981). Looking at multiple strain levels during stress relaxation experiments,
it has been shown that there exists a nonlinear relationship between strain and relaxation
in ligaments (Hingorani et al., 2004; Provenzano et al., 2001; Thornton et al., 1997). The
stress-strain behavior of ligaments also depends on the applied rate of loading (Bonner
et al., 2015; Pioletti et al., 1999; Woo et al., 1990), displays hysteresis upon unloading
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(Gillis et al., 1995; Woo et al., 1986b), and is history dependent (Bonifasi-Lista et al.,
2005; Markolf et al., 2002; Quinn and Winkelstein, 2011; Yahia and Drouin, 1990).

2.3.3 Knee ligament constitutive modeling

Ligaments found in the body are real, three-dimensional structures. Yet, it is still com-
mon to find ligaments represented computationally as uniaxial springs (Abdel-Rahman
and Hefzy, 1998; Adouni et al., 2012; Beillas et al., 2004; Bendjaballah et al., 1997;
Blankevoort and Huiskes, 1996; Li et al., 1999a, 2002; Marouane et al., 2014; Mesfar and
Shirazi-Adl, 2005; Shin et al., 2007; Shirazi and Shirazi-Adl, 2009a,b) or two-dimensional
shells (Ellis et al., 2007; Newman et al., 2003). Furthermore, despite all the aspects of
their strain, history, and time dependent biomechanics, a large portion of computational
models that include continuum ligament realizations are constructed assuming transversely
isotropic, hyperelastic material behaviors. There is now a large and ever growing pool of
transversely isotropic, hyperelastic constitutive theories used to describe ligaments, largely
built using the separable strain energy framework developed by Weiss et al. (1996). This
class of material models has enjoyed some success in representing the stress-strain behav-
ior of the MCL along and transverse to its mean collagen fiber direction (Quapp and Weiss,
1998). These theories are extensively detailed and summarized in Chapter 5.

Viscoelasticity has been incorporated into a variety of ligament constitutive models.
Structural elastic theories, like that developed by Lanir (1979), have been extended to in-
clude viscoelastic effects (Decraemer et al., 1980; Lanir, 1983). Viscoelasticity has also
been added to ligament material descriptions using mechanical analogs adopted from rhe-
ology (Bischoff et al., 2004; Ma and Arruda, 2013; Machiraju et al., 2006; Pande et al.,
1977; Sanjeevi, 1982; Zhang et al., 2007), as well as using ideas from the polymer me-
chanics community (Bingham and DeHoff, 1979; Dehoff, 1978). Nonlinear viscoelastic
models have also been developed for and applied to ligaments. In particular, the single in-
tegral finite strain model incorporates fading memory and fiber recruitment (Johnson et al.,
1996; Lakes and Vanderby, 1999). It can be linearized to yield classic linear viscoelasticity
and finite strain elasticity can be recovered for very short and long times (Woo et al., 2006).

2.4 Summary

Soft tissue injuries and diseases are simultaneously prolific, complicated, and debilitating.
Clinicians still do not have general solutions to problems like OA and ligament failure.
Sufficient prevention strategies are lacking, and reconstructive procedures plagued by col-
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lateral effects. Acute and degenerative soft tissue injuries and diseases are on the rise,
relentlessly affecting younger and younger individuals. There are strong indications that
abnormality begets the development and progression of these conditions. When certain
soft tissues are compromised, loading shifts within the joint. These alterations may be the
key to understanding the mechanical bases for injury and disease, and minimizing these
deviations from nominal knee motion and intrajoint contact may provide the opportunity
to devise optimal preventative and reconstructive techniques. Computation has opened
the door to previously unobtainable distributions of individuals, with near infinite permuta-
tions available to investigate the mechanical effects of factors across length and time scales.
However, fundamental to their success is the inclusion of physiologically and mechanically
representative constitutive models.
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CHAPTER 3

A study on the role of articular cartilage soft tissue constitutive form in models of
whole knee biomechanics

This chapter has been previously published and may be referenced as:

B. C. Marchi and E. M. Arruda. A study on the role of articular cartilage soft tissue
constitutive form in models of whole knee biomechanics. Biomechanics and Modeling
in Mechanobiology, 16(1):117–138, 2017a

3.1 Introduction

Computational models of whole joint biomechanics have the potential to be extremely
powerful clinical tools. They provide researchers and clinicians with the opportunity to
investigate the importance of individual tissue structures in the contexts of native and ab-
normal joint motions. Joints are incredibly complex mechanical systems characterized
by their nontrivial geometry and intrinsically coupled behavior, and numerical tools can
offer insights into both local tissue deformation and global joint kinematics with normal
physiology by illustrating the role of each constituent tissue structure in maintaining func-
tionality. Physiological effects corresponding to age, sex, usage, injury, and disease affect
realized joint motion, and this variation may substantially contribute to a cascade of tissue
degeneration, leading to a progression of diminished joint performance. Therefore, under-
standing the normal operating conditions of joints is paramount in building computational
frameworks capable of making meaningful predictions related to factors that precipitate
traumatic injury, like ligament rupture, and degenerative diseases, like OA.

The human knee is a biarticulating lower limb joint whose stability and performance
are maintained by a variety of integral hard and soft biological structures including bones,
ligaments, tendons, muscles, cartilage, and menisci. Soft tissues are particularly vulnera-
ble to injury, both acute and progressive. The ACL is an important translation and rotation
stabilizing tissue, attaching proximally to the distal lateral femoral condyle and terminating
distally on the anterior tibial plateau. The ACL is the most commonly injured and surgi-
cally reconstructed ligament, with an estimated 175,000 reconstructions performed in the
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United States alone with an associated cost of over 2 billion dollars (Spindler and Wright,
2008). Not only is there an exceedingly high incidence of ACL traumatic injury, but the
frequency of rupture is drastically increasing (Kim et al., 2011b) and the mean age is drop-
ping with profound and lasting effects (Ingram et al., 2008; Kessler et al., 2008). Young
women are particularly susceptible ACL injury, with a 4 to 6 times elevated risk compared
to young men, and the preponderance of ACL injuries in young people are noncontact,
without external trauma (Hewett et al., 2005).

While the acute success rate of current surgical interventions for ACL injury are as
high as 87% (Wright et al., 2008), there are potentially significant long-term secondary
effects associated with reconstruction. OA is a degenerative tissue disease that presents
with pain, loss of mobility, and degradation of articular cartilage integrity. Despite the
high incidence of OA, which affects approximately 15% of the adult population in the
United States (Lawrence et al., 2008), the underlying mechanisms of the disease initiation
and progression remain unclear. ACL reconstruction is potentially linked to OA through
associated biomechanical alterations of the knee relative to joints with native physiology
(Kessler et al., 2008; Lohmander et al., 2004; Petersson and Jacobsson, 2002), manifest-
ing in differences between macroscopic kinematics and soft tissue contact within the joint
capsule (Deneweth et al., 2010). Therefore, as the mean age of ACL rupture and other soft
tissue traumas, like meniscal tears, decreases, so to does the onset of degenerative diseases,
seriously threatening the sustained quality of life of an ever increasing patient population.

While it is often difficult for experimental studies to accurately capture a comprehensive
description of joint behavior, they have been instrumental in furthering the understand-
ing of native and deficient joint biomechanics. Various experimental and clinical efforts
have examined the role of physiological and morphological risk factors for ligament injury
(Alentorn-Geli et al., 2009; Beaulieu et al., 2014, 2015; Bedi et al., 2014; Hashemi et al.,
2010a; Krosshaug et al., 2007a; Lipps et al., 2012; Meyer and Haut, 2008; Wall et al., 2012;
Withrow et al., 2006). These works begin to provide possible explanations for soft tissue
injury initiation and disease progression mechanisms, and offer a convenient starting point
for clinical evaluations and diagnostics. However, they are fundamentally limited in their
inability to capture the complex, simultaneous global and local biomechanics starting from
a stress free reference configuration (Amis and Dawkins, 1991; Hirokawa and Tsuruno,
2000; McLean et al., 2015; Yamamoto et al., 1998), information critical for systematic
constitutive evaluation. Additionally, experimental studies are limited by resources. Re-
searchers often find it challenging to obtain cadaveric specimens, and near impossible to
characterize statistically significant sample sizes of tissues that have never been frozen—
especially whole joint specimens. The viability of tissue is critical because the mechanical
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properties of tissues can be significantly altered by freezing and thawing (Gottsauner-Wolf
et al., 1995; Maiden and Byard, 2016; Stemper et al., 2007), though there is still uncer-
tainty related to the magnitude of this effect (Pelker et al., 1983; Woo et al., 1986a). It is
also demanding to collect a clinically representative population of test specimens that accu-
rately captures the breadth of physiologies and anatomies to isolate factors that contribute
to injury and disease.

This is where computational models of whole joint biomechanics enter. Whole knee
models have been used to examine individual soft tissue contributions during physiologi-
cally relevant loading conditions where traditional experimental methods prove impractical
or impossible. Numerical models are uniquely situated to describe individual tissue defor-
mation while quantifying joint motion (Abdel-Rahman and Hefzy, 1998; Adouni et al.,
2012; Beillas et al., 2004; Bendjaballah et al., 1997; Blankevoort and Huiskes, 1996; Don-
ahue et al., 2002; Gardiner and Weiss, 2003; Hirokawa and Tsuruno, 2000; Kang et al.,
2015; Kiapour et al., 2014a; Li et al., 1999a; Limbert et al., 2004; Mootanah et al., 2014;
Peña et al., 2006a; Penrose et al., 2002; Quatman et al., 2011; Shelburne et al., 2006; Song
et al., 2004; Xie et al., 2009; Zhang et al., 2008), to perform parametric studies to analyze
individual tissue constitutive and structural effects (Atmaca et al., 2013; Baldwin et al.,
2012; Donahue et al., 2003; Kiapour et al., 2014b; Li et al., 2002; Marouane et al., 2014;
Mesfar and Shirazi-Adl, 2005; Peña et al., 2005a; Shin et al., 2007; Shirazi and Shirazi-
Adl, 2009a,b; Wang et al., 2014), and to provide a platform for the evaluation of surgical
intervention techniques (Bae et al., 2015; Godest et al., 2002; Halloran et al., 2005; Huang
et al., 2012; Kim et al., 2011a; Ramaniraka et al., 2007). These contributions represent a
substantial effort in the pursuit of elucidating joint biomechanics; however, not fully appre-
ciating the inherent simplifications and approximations within a particular model or study
can lead to potentially spurious conclusions, often with meaningful clinical consequences.

Computational models can be differentiated by their level of anatomic representation,
numeric implementation, physical motivation for constraints and boundary conditions, and
constitutive complexity. Anatomic simplifications usually manifest as the absence of struc-
tures from the model, either hard or soft tissues. It is common practice to remove the
patellofemoral joint entirely (Abdel-Rahman and Hefzy, 1998; Atmaca et al., 2013; Bae
et al., 2015; Bendjaballah et al., 1997; Blankevoort and Huiskes, 1996; Donahue et al.,
2002, 2003; Hirokawa and Tsuruno, 2000; Huang et al., 2012; Limbert et al., 2004; Shi-
razi and Shirazi-Adl, 2009a,b; Song et al., 2004; Xie et al., 2009; Zhang et al., 2008), or
to assume uniaxial representations of critical tissue structures (Abdel-Rahman and Hefzy,
1998; Adouni et al., 2012; Beillas et al., 2004; Bendjaballah et al., 1997; Blankevoort and
Huiskes, 1996; Li et al., 1999a, 2002; Marouane et al., 2014; Mesfar and Shirazi-Adl, 2005;
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Shin et al., 2007; Shirazi and Shirazi-Adl, 2009a,b). Important supporting tissue structures
like the articular cartilage (Abdel-Rahman and Hefzy, 1998; Bae et al., 2015; Baldwin et al.,
2012; Limbert et al., 2004; Song et al., 2004; Xie et al., 2009; Zhang et al., 2008), menisci
(Abdel-Rahman and Hefzy, 1998; Bae et al., 2015; Baldwin et al., 2012; Blankevoort and
Huiskes, 1996; Gardiner and Weiss, 2003; Song et al., 2004; Xie et al., 2009; Zhang et al.,
2008), and ligaments (Atmaca et al., 2013; Bae et al., 2015; Beillas et al., 2004; Donahue
et al., 2002, 2003; Limbert et al., 2004; Song et al., 2004; Xie et al., 2009; Zhang et al.,
2008) are also frequently ignored and removed from the joint model.

Individual tissue material descriptions are also diverse, though representations typically
fall on the simple end of the continuum of constitutive complexity, especially in compre-
hensive computational joint models. In whole knee models, tissue material properties are
usually determined from limited experimental data—see Weiss et al. (2005) for a discussion
of challenges associated with constitutive model construction specifically for ligaments in
the context of finite element (FE) models—explicitly tuned to match expected joint motion
(Mootanah et al., 2014), or adjusted to minimize deviations from experimentally deter-
mined tissue deformation (Donahue et al., 2003).

While there are costs associated with increasing constitutive complexity, they are usu-
ally offset by the gains in model accuracy and the corresponding clinical relevance. How-
ever, these gains tend to have a diminishing marginal rate of return with respect to com-
plexity. This compromise has led to a significant and concerted shift from simple, isotropic
material models for ligaments toward physiologically and experimentally motivated trans-
versely isotropic, hyperelastic descriptions—Kiapour et al. (2014b) offers a brief investiga-
tion into the biomechanical influence of incorporating a transversely isotopic, hyperelastic
ACL constitutive response in a whole knee model. Curiously, the same trend towards com-
plexity in assumptions of articular cartilage constitutive behavior has not been observed
(Atmaca et al., 2013; Beillas et al., 2004; Donahue et al., 2002, 2003; Huang et al., 2012;
Kang et al., 2015; Kiapour et al., 2014a,b; Li et al., 2002; Mootanah et al., 2014; Oh et al.,
2012; Peña et al., 2005a, 2006a; Quatman et al., 2011; Ramaniraka et al., 2007; Shelburne
et al., 2006; Wang et al., 2014; Withrow et al., 2006).

In this study we show the tremendous impact of articular cartilage constitutive assump-
tions, derived from rigorous experimental observations, on predicted localized tissue de-
formation and macroscopic joint kinematics. By illustrating the relationship between com-
plexity and accuracy for articular cartilage it is feasible to construct biomechanical models
that are as accurate as possible in critical regions, while simultaneously using previously
accepted results in the literature to motivate simplifications elsewhere in the model where
the effects are less pronounced. This combination of assumptions yields models that have
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high clinical fidelity and low computational cost.
We explored the role of articular cartilage constitutive assumptions by examining the

relative differences between increasing levels of complexity. Tibial and femoral articular
cartilages have been shown to be mechanically nonlinear and transversely isotropic, and
also, cartilage material properties have a substantial location dependence (Appleyard et al.,
2003, 2001; Athanasiou et al., 1991; Briant et al., 2015; Deneweth et al., 2013a,b, 2015; Ju-
rvelin et al., 2000; Swann and Seedhom, 1993; Thambyah et al., 2006; Young et al., 2007).
The sensitivity of traditional linear elastic, isotropic cartilage models is examined and com-
pared to nonlinear, transversely isotropic articular cartilage definitions; the sensitivity of
this homogeneously applied nonlinear and transversely isotropic constitutive model is also
explored. We also show the importance of the incorporation of cartilage heterogeneity,
highlighting the required level of mathematical complexity necessary to capture the tissue
deformation and joint motion simultaneously.

3.2 Methods

A three dimensional, subject specific FE model was constructed to evaluate the role of
articular cartilage constitutive complexity on local tissue deformation and joint kinematics.
The kinematics were monitored throughout the foot flat portion of the stance phase of gait,
while the maximum tissue deformations were compared at the time within the loading
cycle of maximum ground reaction force. The foot flat portion of the stance phase of gait
was modeled in an explicit FE framework to accurately capture all time dependent and
inertial effects. The model included major tissue and bone structures contained in healthy
knee joints; soft tissues in the joint—ligaments, muscles, tendons, articular cartilage, and
menisci—were modeled based on experimental evidence of constitutive responses.

3.2.1 Geometry and Mesh Generation

The tissue geometries contained within the FE model were obtained from the right knee
of a healthy adult female with no history of lower limb injuries or pathologies using a
combination of computerized tomography (CT) and MRI modalities. The images, in the
axial, sagittal, and coronal planes, were acquired with slice thickness and inplane resolu-
tion equal to 0.35 mm and (527× 527), respectively, with the individual oriented in the
supine position. The image slices were imported into Mimics V17.0 (Materialise, Leuven,
Belgium), allowing for the segmentation of individual tissue structures. The three dimen-
sional surfaces created in Mimics were smoothed and defeatured to minimize geometric
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artifacts generated during the segmentation process—Wittek et al. (2015) provides a thor-
ough review of the current state of the art in geometry extraction specifically for models of
computational biomechanics.
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Figure 3.1: (a) Computational FE model of the right knee of a healthy adult female and its
soft tissue constituents. The geometric accuracies of the articular cartilage (b), menisci (c),
and supporting ligaments (d) are highlighted. In each figure cartilage is displayed in blue,
menisci in orange, ligaments in red, and bones in white.

Smoothed surface representations of tissues were converted into FE meshes using Hy-
permesh 12.0 (Altair HyperWorks, Troy, Michigan, United States). All tissue structures,
hard and soft tissues, were meshed using 4 node tetrahedral elements with linear shape
functions. Soft tissue meshes for ligaments and cartilages were modified to account for
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any gaps or overlaps resulting from segmentation, smoothing, and defeaturing by project-
ing the nodal boundary nearest to the bone surface onto the external perimeter of the bone,
yielding a model with exactly matching mesh boundaries between structures following the
procedure described in Mootanah et al. (2014). Element sizes for bones were selected
to minimize element count, while preserving geometric features. The characteristic ele-
ment size for the ligaments, cartilages, and menisci were determined in a similar manner;
however, element sizes were verified by performing a convergence analysis to ensure that
calculated strains and joint kinematics were mesh density independent. Mesh density inde-
pendence was determined using the criteria outlined in Donahue et al. (2002). The model
was assumed to converge when the next level of mesh refinement—characterized by a re-
duction in the average characteristic element length by approximately 25%—did not yield
deviation in deformation and kinematic quantities outside the Donahue et al. (2002) crite-
ria. Figure 3.1 shows the three dimensional tissue representations incorporated in the knee
joint model.

Absent from Figure 3.1 are the remainder of the knee ligament and muscle structures.
The meniscal ligaments, trans-knee muscles, muscle tendons, and auxiliary ligaments were
modeled using uniaxial elements. Uniaxial elements for these tissue types represent a good
trade-off between the computational burden of the model and maintaining the accuracy
of results in the predominately load carrying tissues (Kiapour et al., 2014a). All meshed
geometries and uniaxial tissues structures were incorporated in a general purpose FE code,
ABAQUS v6.13 (SIMULA, Providence, Rhode Island, United States), and assembled into
the final knee joint FE model.

3.2.2 Constitutive Modeling

Individual tissues were modeled using a combination of experimental data and accepted
numerical models available in the literature. Bones—femur, tibia, patella, and fibula—
were defined as rigid bodies, as their deformation has been shown to have minimal impact
on soft tissue deformation of whole joint biomechanics models (Donahue et al., 2002). The
density of bones was assumed to be constant regardless of bone type (cortical or trabecular)
at 2 g/cm3. This approximation to the true distribution of densities within bones does not
appear to substantially affect tissue deformations within the context of this study, with the
maximum ratio of kinetic to strain energy during the simulations on the order of 0.05.

The menisci were modeled using a transversely isotropic, linear elastic material descrip-
tion; the local material directions were defined cylindrically, with the preferred direction
oriented circumferentially around the menisci. The material parameters for the menisci
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were as follows: Young’s moduli: E1 = 20 MPa, E2 = 120 MPa, and E3 = 20 MPa;
Poisson’s ratios: ν12 = 0.3, ν13 = 0.45, and ν23 = 0.3; density: 1.5 g/cm3, where direction
1 is radial, direction 2 is circumferential, and direction 3 is oriented axially along the bone
(Skaggs et al., 1994; Tissakht and Ahmed, 1995). The menisci were attached to the tibial
plateau using multiple uniaxial representations of the meniscal horn attachment ligaments;
the stiffness of the meniscal ligaments was determined by calculating the total number of
uniaxial elements, total effective area of attachment, and average ligament length to com-
pute force displacement relationships corresponding to an effective Young’s modulus equal
to 111 MPa (Donahue et al., 2002; Villegas et al., 2007).

The four major supporting ligaments in the knee—the ACL, the PCL, the MCL, and the
LCL—provide stability to the joint during normal activity. Knee supporting ligaments are
hierarchical structures composed of highly organized and aligned collagen fibrils embedded
in a compliant extracellular matrix, and this structure directly contributes to the nonlinear,
anisotropic response of the tissues (McLean et al., 2015; Weiss et al., 2005). The supporting
ligaments were modeled using a transversely isotropic extension of an isotropic eight-chain
model for rubber elasticity originally proposed by Arruda and Boyce (1993) (Bischoff et al.,
2002a). The geometric representations of the ACL, LCL, MCL, and PCL can been seen in
Fig. 3.1d. The strain energy density function for the supporting ligaments can be expressed
as
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(3.1)

where the chains are representative of the protein structures present in soft tissues (e.g.,
collagen and elastin networks), U0 is a constant, Cr is the rubbery modulus,

√
N is the root

mean square chain length in the reference configuration, ρ(i) is the deformed chain length
in the current configuration of the ith chain, λa, λb, λc are the stretches along the principal
material axes a, b, c, respectively (depicted in Fig. 3.2), a, b, c are the normalized dimen-
sions of the representative volume element (RVE) (see Fig. 3.2), B is the bulk modulus,
α describes curvature of the relationship between hydrostatic pressure and volume at large
volume changes, and J is the determinant of the deformation gradient. From non-Gaussian
probability density functions of freely jointed chains,

β(i)
ρ = L−1

(
ρ(i)/N

)
(3.2)
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and
βP = L−1 (P/N) , (3.3)

where P is the undeformed chain length, P =
√
N = 1

2

√
a2 + b2 + c2, and L−1 (x) is the

inverse Langevin function. To reduce the orthotropic constitutive equation presented in Eq.
3.1 to describe transversely isotropic continua, two of the nondimensional lengths are set
to be equal (a = b, b = c, or a = c).

b

a

c

b

a

c

x2

x1

x3

Figure 3.2: RVE of orthotropic eigth-chain network model, with material axes a, b, c and
nondimensional lengths a, b, c. Figure adapted from Bischoff et al. (2002a).

The constitutive descriptions for each supporting ligament were determined by fitting
Eq. 3.1 to uniaxial experimental data. The fitting of Eq. 3.1 to experimental data is non-
trivial and involves finding the optimal material parameters within a system of nonlin-
ear, coupled equations at each stretch since no closed form relationship between uniaxial
stretch and stress exists. Constitutive parameters were determined using differential evolu-
tion (Storn and Price, 1997) to maximize the coefficient of determination, R2, for the ex-
perimental data corresponding to each ligament using an approximate form of the inverse
Langevin function (Marchi and Arruda, 2015) by minimizing the error of the fitted model
to the experimental data. The MCL and LCL were modeled identically (Peña et al., 2006a)
using experimental data from Quapp and Weiss (1998). Data for the uniaxial response of
the PCL was obtained from Butler et al. (1990). The ACL is a structurally complex lig-
ament composed of two independent fiber bundles (AMB and PLB), each with discrete
material properties (Ma and Arruda, 2013; McLean et al., 2015). In this work the ACL was
modeled as structurally homogeneous, assuming a continuous tissue bulk, with its consti-
tutive response determined by fitting the average response of the two fiber bundles. Figure
3.3 illustrates the individual ACL fiber bundle constitutive responses (McLean et al., 2015),
the numerically implemented bulk, averaged response, and the ability of Eq. 3.1 to capture
the nonlinearity of this tissue in uniaxial extension. Due to the near incompressibility of
the supporting ligaments α was assumed to be equal to unity. The material parameters of
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Eq. 3.1 for each supporting ligament are presented in Table 3.1. Note the density of each
ligament was assumed to be constant regardless of ligament type (Dhaher et al., 2010), and
the preferred fiber direction, a, was oriented axially along the length of each ligament.
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Figure 3.3: Uniaxial loading curves for AMB and PLB of the ACL, and the corresponding
averaged response assuming equal contributions from each fiber bundle.

Table 3.1: Supporting ligament material properties
ρ
(
g/cm3

)
Cr (MPa) a b = c B (MPa) α

ACL 1 0.13765 1.5532 1.0049 100 1
PCL 1 0.93447 1.5996 0.96781 100 1
MCL/LCL 1 0.44865 1.6172 0.95308 100 1

Given the expected loading rates during normal and injury causing activities, constitu-
tive behavior of the patellar cartilage was assumed to be isotropic and hyperelastic (Oloyede
et al., 1992), with material parameters adopted from Kiapour et al. (2014a) by matching the
small strain behavior from linear elasticity. The force versus displacement relationships
of the trans-knee muscles, muscle tendons, and auxiliary ligaments were obtained from
relevant studies in the literature (Abdel-Rahman and Hefzy, 1998; Atkinson et al., 2000;
Baldwin et al., 2012; Oh et al., 2012; Shin et al., 2007). Each tissue was characterized by a
linear or bilinear response, which did not necessarily have zero force at zero displacement
(McLean et al., 2011) and may contain regions of tension with no load carrying capacity
(Oh et al., 2012). The uniaxial elements were constructed such that their lines of action
corresponded to the appropriate real anatomy of the tissues (Abdel-Rahman and Hefzy,
1998; Kiapour et al., 2014a).
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A large proportion of computational models that investigate whole knee biomechan-
ics assumes isotropic, linear elastic material descriptions of tibial and femoral articular
cartilages (Atmaca et al., 2013; Beillas et al., 2004; Donahue et al., 2002, 2003; Huang
et al., 2012; Kang et al., 2015; Kiapour et al., 2014a,b; Li et al., 2002; Mootanah et al.,
2014; Oh et al., 2012; Peña et al., 2005a, 2006a; Quatman et al., 2011; Ramaniraka et al.,
2007; Shelburne et al., 2006; Wang et al., 2014; Withrow et al., 2006). However, there
is ample experimental evidence to indicate that articular cartilage is not only nonlinear,
but anisotropic, viscoelastic, multiphasic, and spatially heterogeneous (Appleyard et al.,
2003, 2001; Athanasiou et al., 1991; Briant et al., 2015; Deneweth et al., 2013a,b, 2015;
Jurvelin et al., 2000; Mow and Guo, 2002; Mow et al., 1984; Oloyede et al., 1992; Swann
and Seedhom, 1993; Thambyah et al., 2006; Young et al., 2007). In this work the sensi-
tivity of articular cartilage—shown in Fig. 3.1b—to its stiffness was examined by varying
the Young’s modulus in the generally accepted range E = 5− 20 MPa, while holding the
Poisson’s ratio fixed at ν = 0.45. In Deneweth et al. (2013a) and Deneweth et al. (2015),
the ability of an incompressible form of Eq. 3.1 was shown to accurately capture the uni-
axial compression response of articular cartilage across patient populations with only one
spatially varying parameter, the initial stiffness (Cr), while holding the degree of trans-
verse isotropy, a : b, constant throughout the tibial and femoral surfaces at 1 : 1.33 and
1 : 1.348, respectively, where a is oriented normal to the bone surface. Recasting the ex-
perimental moduli distributions from Deneweth et al. (2013b) and Deneweth et al. (2015)
into constitutive descriptions consistent with Eq. 3.1 (the bulk modulus was assumed to
be homogeneously distributed with B = 1 GPa), the average initial stiffness ± one stan-
dard deviation of the tibial and femoral articular cartilage surfaces were determined to be
88.6± 51.7 kPa and 413± 157 kPa, respectively. The range of cartilage responses can be
seen in Fig. 3.4.

The role of spatial heterogeneity in articular cartilage surfaces was also examined. The
heterogeneity was incorporated numerically into the material descriptions of the tibial and
femoral cartilages through spatial initial stiffness distributions such that

Cr,tibia = Cr,tibia (x, y) (3.4)

and
Cr,femur = Cr,femur (z, θ) , (3.5)

where (x, y) and (z, θ) correspond to the coordinates of integration points in the planes par-
allel to the tibial and femoral bone surfaces—note it is convenient to describe the femoral
cartilage in a pseudo-cylindrical coordinate frame where the radial direction is oriented
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Figure 3.4: Comparison of uniaxial, through-thickness compression responses of tibial and
femoral cartilage determined by converting the tangent moduli distributions presented in
Deneweth et al. (2013a) and Deneweth et al. (2015) into the form of Eq. 3.1 and isotropic,
linear elastic cartilage constitutive behavior with E = 5 MPa.

normal to the bone surface and to project through the thickness of the cartilage onto the
z − θ plane to obtain homogeneous through-thickness moduli descriptions consistent with
the curvature of the bony geometry.
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Figure 3.5: Workflow for the construction of sparse heterogeneous moduli fields: (a) from
three dimensional geometry, represented as nodal points, to (b) two dimensional projections
in the planes normal to the respective bone surfaces, to (c) the partitioning of experimental
regions, to (d) the reconstitution of experimental zones of homogeneous moduli.

Applying Eqs. 3.4 and 3.5 to physical cartilage geometries, Fig. 3.5a, yields distribu-
tions of cartilage moduli that are heterogeneous in the planes parallel to the bone surfaces,
Fig. 3.5b, but homogeneous through the thickness of the cartilage. Figure 3.5 depicts
a schematic for the numerical implementation of the sparse heterogeneous experimental
moduli fields for the tibial and femoral articular cartilages described in Deneweth et al.
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(2013a) and Deneweth et al. (2015), respectively, recast in the form of Eq. 3.1. The sub-
stantial variation in the numeric application of the experimental moduli is illustrated by
Fig. 3.5d; it was assumed that experimental regions contained cartilage with homogeneous
initial stiffness throughout each corresponding zone.
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Figure 3.6: Tibial normalized moduli distributions (Cr,tibia/Cr,tibia mean): (a) discontinuous,
(b) continuous, (c) smooth and continuous; and femoral normalized moduli distributions
(Cr,femur/Cr,femur mean): (d) discontinuous, (e) continuous, (f) smooth and continuous

Various interpolation schemes were evaluated to determine the effect of increasing lev-
els of mathematical complexity and neatness on the construction of full field forms of Eqs.
3.4 and 3.5. Physical articular cartilage stiffness distributions were determined by multi-
plying the relative moduli fields, shown in Fig. 6, by the mean initial stiffness, Cr,mean—
88.6 kPa and 413 kPa for the tibial and femoral cartilage, respectively. The moduli fields
were filled through interpolation with either nearest neighbor, linear, or thin-plate spline
radial basis functions resulting in discontinuous, continuous, and smooth and continuous
complete moduli fields, respectively. The interpolations were computed numerically using
Mathematica Version 10.0 (Wolfram Research, Inc., Champaign, Illinois, United States).
The spatially heterogeneous and complete moduli fields corresponding to discontinuous,
continuous, and smooth and continuous interpolations for the tibial and femoral articular
cartilage surfaces are shown in Figs. 3.6a-c and 3.6d-f, respectively. While exact geometric
representations of tissues are always preferred, the material property application technique
described herein is sufficiently robust to tissue edge profile deviations, whether due to un-
usual individual tissue anatomy or errors during image segmentation.
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3.2.3 Boundary Conditions and Constraints

Contact was modeled generally between all bodies and tissues in the joint. Contact in the
direction normal to the surface was prescribed using a penalty contact enforcement method,
allowing for separation of contact surfaces after initial contact. Friction was described be-
tween contact surfaces with an exponential relationship between coefficient of friction and
relative shear slip rate with finite sliding. The relationship was derived from experimen-
tal data representative of the tribological properties of cartilage to cartilage contact (Qian
et al., 2006; Unsworth et al., 1975).

To simulate the foot flat phase of walking gait, a linear time varying load, Fmax = 800 N,
was applied to the tibia at the ankle. This force corresponds to the force of approximately
one body weight acting on the joint. The loading time, tmax = 0.4 sec, was selected to
approximate the total time of the stance phase assuming typical walking speeds (Besier
et al., 2009; Shelburne et al., 2005). Due to the explicit nature of the computation, a short,
tStep 1 = 1× 10-7 sec, simulation step was calculated prior to the simulated gait loading to
allow for the application of muscle and tendon pretension; a second pregait simulation step
was also computed, tStep 2 = 1× 10-2 sec, to allow for the joint motion manifesting from
the muscle and tendon pretension to quiesce—during this simulation step all tissues with
uniaxial representations were assumed to have constant force regardless of displacement.

During all simulation steps all femoral degrees of freedom were kinematically coupled
to a reference point located at the hip, and the displacement of the hip was fixed; all rota-
tional degrees of freedom at the hip were free. Similarly, all the tibial degrees of freedom
were kinematically coupled to a reference point at the ankle; however, only the transla-
tions of the ankle in the A-P/medial-lateral (M-L) plane were constrained to zero, allowing
for axial displacement of the tibia during the gait cycle. The rotations of the ankle were
likewise unconstrained. Soft tissues in the model were attached to the rigid bones by cou-
pling the translational and rotational degrees of freedom on their respective shared mesh
interfaces.

3.3 Results

3.3.1 Linear Elasticity Stiffness Sensitivity of Articular Cartilage

In the context of isotropic, linear elasticity, the stiffnesses of femoral and tibial articular
cartilages affects both local tissue deformation and joint motion significantly. Figures 3.7a
and 3.7b illustrate the contribution of linear elastic cartilage stiffnesses on joint motion,
while Figs. 3.7c and 3.7d show how individual tissue strain states are linked to cartilage
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stiffnesses. From Figs. 3.7a and 3.7b it can be seen that with increasing cartilage stiffness
there is a general decrease in relative ATT (the displacement of the tibia relative to the
femur), relative ITR, and knee flexion angle.
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Figure 3.7: Effect of stiffness on (a) translational and (b) rotational joint motions and (c)
local femoral, tibial and (d) ACL tissue strains with isotropic, linear elastic descriptions of
articular cartilage.

Similarly, with increasing cartilage stiffness there is a general decrease in the observed
soft tissue strains. Figures 3.7c and 3.7d depict the decrease of tibial and femoral cartilage
compressive strains from 37.3% to 19.4% and 62.8% to 13.2%, respectively, and a decrease
in ACL tensile strain from 3.67% to 2.20%, representing a 40.0% reduction in predicted
ACL tensile strain. Not only is there substantial nominal variation in predicted strain with
cartilage stiffness, but also in the location of strain maxima and minima. Figures 3.8a and
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3.8b show the absolute variation in tensile and A-P shear strain, respectively, resulting from
changes in cartilage stiffness—in Figs. 3.8a and 3.8b strain variations were calculated by
subtracting a reference strain distribution, i.e., the strain corresponding to cartilage with
E = 10 MPa, from each strain field. Absolute variations are plotted to describe full-field
differences between two distributions and should not be confused with relative percent
differences; in relative error calculations subtle differences between distributions can be
difficult to appreciate, particularly when accounting for directionality in shear strains. The
tensile and A-P shear strain distributions assuming articular cartilage withE = 10 MPa are
also shown in Figs. 3.8a and 3.8b to provide context for the relative distributions. There
was a slight lateral shift in the point of maximum compressive strain, Fig. 3.8a, and a
large variation in the location of maximum and minimum A-P shear strains, Fig. 3.8b, with
increasing stiffness as the maxima and minima move from locations covered to uncovered
by menisci—the menisci are crescent shaped, Fig. 3.1c, and located on the perimeter of
the joint capsule between the femoral and tibial articular surfaces, Fig. 3.1a. Note the
paths traced by the red and blue arrows in Fig. 3.8b as the maximum and minimum shear
strains, respectively, move medially then posteriorly from the lateral aspect of the medial
tibial cartilage to the uncovered central region of the medial tibial cartilage—note that
arrows show deviations from the reference distribution, E = 10 MPa, extrema, meaning
all matching arrow tails are coincident.

3.3.2 Effect of Homogeneous Nonlinearity and Transverse Isotropy

The incorporation of transversely isotropic, nonlinear descriptions of articular cartilage
contributes to differences in local cartilage deformation. The initial stiffnesses of the tibial
and femoral articular cartilages were applied homogeneously using their mean values—
88.6 kPa or 412 kPa for the tibial or femoral cartilage, respectively. Figures 3.9 and 3.10
show the tensile and A-P shear strain fields for the tibial and femoral articular cartilage
surfaces assuming homogeneous applications of isotropic, linear elastic, E = 5 MPa and
E = 20 MPa (Figs. 3.9a, 3.9g, 3.10a, and 3.10g and Figs. 3.9d, 3.9j, 3.10d, and 3.10j,
respectively), and transversely isotropic, nonlinear (Figs. 3.9b, 3.9e, 3.9h, 3.9k, 3.9b, 3.10e,
3.10h, and 3.10k) material behavior, respectively.

In the tibial cartilage there was a reduction of maximum predicted compressive strain
from 37.3% and 16.8% to 12.4% (Figs. 3.9a-f), and, in the femoral cartilage there was a
reduction in compressive strain from 62.8% and 59.0% to 9.63% (Figs. 3.9g-l) as the car-
tilage constitutive model transitioned from isotropic, linear, E = 5 MPa and E = 20 MPa,
respectively, to transversely isotropic, nonlinear elastic descriptions. The location of maxi-
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Figure 3.8: Effect of stiffness on relative tibial cartilage (a) tensile strain and (b) A-P
shear strain with isotropic, linear elastic descriptions of cartilages on the articular surface.
Red and blue arrows correspond to shifts in locations of maximum and minimum strains
as cartilage stiffnesses are perturbed from E = 10 MPa, respectively; the absence of a
particular arrow indicates no change in the location of the corresponding maximum or
minimum strain.

mum compression on the femoral cartilage—constructed using a homogeneous application
of Eq. 3.1—shifted medially with respect to the cartilage assumed to be linear elastic, mov-
ing from the parameter of the lateral condyle to center of the medial condyle (Figs. 3.9i
and 3.9l). There was also a small variation in ACL tensile strain from 3.67% and 2.33% to
2.53% with the substitution of nonlinear for linear elastic cartilage with moduliE = 5 MPa
and E = 20 MPa, respectively.

As with increasing isotropic, linear elastic stiffness, homogeneous applications of non-
linear Eq. 3.1 to the tibial and femoral articular cartilage altered the location of strain
maxima and minima, shown for A-P shear strain in Figs. 3.10c, 3.10f, 3.10i, and 3.10l.
On the tibial cartilage, strain maxima and minima shifted from regions covered to uncov-
ered by menisci in a manner strikingly analogous to that observed with increasing isotropic
stiffness, illustrated by Fig. 3.8, even when compared to the stiffest application of linear
elasticity (Fig. 3.10f). This similarity can be attributed to the form of Eq. 3.1, which ex-
hibits increasing effective stiffness with stretch. The motion of the joint was also affected
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Figure 3.9: Tensile strain on the articular surface of tibial and femoral cartilage with iso-
tropic, linear elastic, (a, g) E = 5 MPa and (d, j) E = 20 MPa, and (b, e, h, k) transversely
isotropic, nonlinear (Eq. 3.1) constitutive behavior, respectively. Note that (b)–(e) and
(h)–(k) are the same strain distributions, but scaled differently according to the relevant
comparison. (c, f, j, l) Tensile strain variation between (a)–(b), (d)–(e), (g)–(h), and (j)–
(k), respectively—red and blue arrows correspond to shifts in location of maximum and
minimum strains between strain fields in comparison, respectively; the absence of a partic-
ular arrow indicates no change in the location of the corresponding maximum or minimum
strain.

by the experimentally motivated cartilage constitutive descriptions. There was variation in
the observed relative ATT, from 2.33 mm and 0.625 mm to 0.598 mm, relative ITR, from
4.41◦ and 2.74◦ to 3.19◦, and knee flexion, from 4.44◦ and 1.28◦ to 1.42◦, corresponding to
the implementation of transverse isotropy and nonlinearity in articular cartilage compared
to linear elastic cartilage descriptions with E = 5 MPa and E = 20 MPa, respectively.
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Figure 3.10: A-P shear strain on the articular surface of tibial and femoral cartilage with
isotropic, linear elastic, (a, g) E = 5 MPa and (d, j) E = 20 MPa, and (b, e, h, k)
transversely isotropic, nonlinear (Eq. 3.1) constitutive behavior, respectively. Note that
(b)–(e) and (h)–(k) are the same strain distributions, but scaled differently according to the
relevant comparison. (c, f, j, l) A-P shear strain variation between (a)–(b), (d)–(e), (g)–(h),
and (j)–(k), respectively—red and blue arrows correspond to shifts in location of maximum
and minimum strains between strain fields in comparison, respectively; the absence of a
particular arrow indicates no change in the location of the corresponding maximum or
minimum strain.

3.3.3 Sensitivity of Homogeneous Nonlinearity and Transverse Isotropy
in Articular Cartilage

The sensitivity of homogeneous applications of Eq. 3.1 was evaluated by examining local
and global deformation corresponding to articular cartilage with average tibial and femoral
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initial stiffness ± one standard deviation determined from experimental moduli presented
in Deneweth et al. (2013a) and Deneweth et al. (2015), respectively. Figure 3.11b illustrates
the rotational insensitivity of the knee model to variations in cartilage stiffnessl—explicitly
in terms of knee flexion and relative ITR. Interestingly, a local minima in relative ATT was
found when mean experimental cartilage stiffnesses were applied (Fig. 3.11a). A detailed
examination of the sensitivity of cartilage stiffness on local tissue deformations is presented
in Figs. 3.11c and 3.11d.
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Figure 3.11: Effect of homogeneous initial stiffness on (a) translational and (b) rotational
joint motions—relative ATT, knee flexion, and ITR—and local (c) femoral and tibial car-
tilage compressive, A-P shear, and M-L shear strains and (d) ACL tensile strains with
transversely isotropic, nonlinear elastic descriptions of articular cartilage.

As stiffness increased, the compressive strain in both the tibial and femoral articular
cartilage decreased. Similar tends were observed in both A-P and M-L shear strains, save
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for femoral A-P shear strain, which increased with increasing stiffness. A local maxima
in ACL tensile strain was found to correspond to the mean cartilage stiffness material de-
scription, coupled to the observed minima in the relative ATT, though differences between
homogeneous cartilage stiffnesses with respect to ACL tensile strains and ATT—driven by
small deviations in varus/valgus rotations—are likely not significant within the context of
clinical diagnostics and evaluation.

3.3.4 Effect of the Incorporation of Cartilage Mechanical Heterogene-
ity

The addition of experimentally motivated and validated constitutive descriptions of ar-
ticular cartilage further refined predictions of local tissue deformation and macroscopic
joint kinematics. The three heterogeneous mappings—depicted in Figs. 3.6a-c and 3.6d-
e for discontinuous, continuous, and smooth and continuous moduli mappings of tibial
and femoral cartilage, respectively—predicted higher local compressive strains, with the
maximum compressive strains located in the lateral compartment of the tibial cartilage,
as compared to homogeneous cartilages with constitutive behavior described by Eq. 3.1
where homogeneous initial stiffnesses were based on mean experimental moduli data.
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Figure 3.12: (a) Tibial cartilage articular surface tensile strain assuming a smooth and con-
tinuous heterogeneous moduli field. Tensile strain field variations between the smooth and
continuous moduli mapping of (a) and (b) homogeneous, (c) discontinuous, (d) continuous
moduli distributions.

The effect of heterogeneity on compressive strains is illustrated by Fig. 3.12. Figure
3.12b highlights the widespread variation between homogeneous and heterogeneous mod-

42



uli mappings with respect to compressive strain on the tibial cartilage articular surface.
This trend, heterogeneity corresponding to higher predicted strains, is consistent in other
states of deformation within the tibial cartilage, described in detail by Table 3.2, except
for an overprediction of maximum M-L shear strain. For minimum and maximum strain
relative percent error calculations negative values correspond to lower relative strain levels.
Heterogeneity yields the largest A-P and M-L shear strain field variations in the lateral and
medial compartments of the tibial cartilage, respectively.

Table 3.2: Comparison of maximum and minimum relative percent errors,
(

strainmax,min
strainsmooth

− 1
)
× 100, of

various deformation states between homogeneous and heterogeneous moduli distributions
with respect to smooth and continuous mapping on the femoral and tibial cartilages. For the
tibial cartilage, the location of the maximum or minimum percent error, either the lateral
or medial compartment, is indicated by (L) or (M), respectively.

Homogeneous Discontinuous Continuous
Femoral Tibial Femoral Tibial Femoral Tibial

Compressive
strain

Maximum
Strain -0.395 -8.21 (M) 0.793 -2.53 (M) -1.11 -1.71 (M)

A-P
shear
strain

Minimum
Strain -7.34 -7.07 (L) 17.7 1.39 (M) -45.8 1.03 (M)

Maximum
Strain -4.57 10.3 (L) 0.355 -1.46 (L) 0.895 0.505 (M)

M-L
shear
strain

Minimum
Strain -2.02 -8.11 (M) 6.13 1.76 (L) 19.5 0.706 (M)

Maximum
Strain 1.94 -11.3 (M) 0.294 2.05 (M) -0.322 0.953 (M)

Heterogeneity also affects local deformation in the femoral cartilage. Figure 3.13a
shows the M-L shear strain distribution on the articular surface of the femoral cartilage at
the end of the stance phase. The variations in M-L shear strain fields for homogeneous,
discontinuous, and continuous moduli mappings are presented in Figs. 3.13b-d. Heteroge-
neous cartilage descriptions have a much smaller, relative to the tibial cartilage, impact on
compressive strain predictions, see Table 3.2, though the method of heterogeneity applica-
tion does have an effect on inplane shear strain predictions. There was an underestimation
in the minimum A-P and M-L shear strains corresponding to the continuous moduli field
compared to articular cartilage with smooth and continuous constitutive behavior. Simi-
larly, there was an underestimation in the maximum A-P shear strain assuming discontin-
uous mappings. Large deviations of minimum A-P and M-L shear strains were observed
between heterogeneous moduli distributions (Table 3.2).

Table 3.3 describes the role of cartilage constitutive assumptions on macroscopic joint
motion. Nonlinearity and transverse isotropy, implemented homogeneously or heteroge-
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Figure 3.13: (a) Femoral cartilage articular surface M-L shear strain assuming a smooth
and continuous heterogeneous moduli field. M-L shear strain field variations between (b)
homogeneous, (c) discontinuous, (d) continuous moduli distributions and smooth and con-
tinuous moduli mapping.

neously, significantly alters predicted relative ATT, relative ITR, and knee flexion com-
pared to isotropic, linear elastic cartilage descriptions. The incorporation of heterogeneity,
compared to a homogeneous modulus field, appears to have an effect on relative ATT, while
having a minimal effect on joint rotations (internal rotation and flexion); this result is con-
sistent with the low rotational sensitivity of homogeneous nonlinear, transversely isotropic
cartilage with respect to initial stiffness—this characteristic of homogeneous modulus fields
is illustrated by Fig. 3.11b.

Table 3.3: Effect of constitutive complexity on joint motion
Relative ATT

(mm)
Relative ITR

(◦)
Knee flexion

(◦)
E = 5 MPa 2.34 4.41 4.44
E = 20 MPa 0.625 2.74 1.28

Homogeneous 0.598 3.19 1.42
Discontinuous 0.736 3.21 1.43

Continuous 0.733 3.27 1.42
Smooth and Continuous 0.742 3.26 1.42
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The role of mathematical complexity in heterogeneous mappings is more nuanced than
that of general mechanical heterogeneity. Figures 3.14a-d depict the shear strain field vari-
ations among the heterogeneous mappings. Local shear strain artifacts, manifesting from
the physical requirement of continuity in displacement fields, are present on the articular
surface of the tibial cartilage with discontinuous heterogeneity (Figs. 3.14a and 3.14c) that
are not present in the continuous mapping (Figs. 3.14b and 3.14d) in M-L and A-P shear,
respectively. These shear strain artifacts are situated at the boundary between homogeneous
moduli zones in the discontinuous distribution—homogeneous moduli regions in the dis-
continuous mapping of tibial cartilage can be seen in Fig. 3.6a. Multiple A-P shear strain
artifacts are present in the lateral compartment (Fig. 3.14c), and M-L shear strain artifacts
can be observed in the medial compartment (Fig. 3.14a).

This effect is not limited to the tibial cartilage. There is large variation between strains
corresponding to heterogeneous mappings in the femoral cartilage. In Fig. 3.13d, looking
at the lateral aspect of the medial femoral condyle, there is a significant effect of adding
smoothness to the moduli field; variation is also present on the medial and lateral aspects of
the medial condyle of the discontinuous moduli distribution, Fig. 3.13c, though this effect
is more disperse.
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Figure 3.14: M-L and A-P shear strain variations of (a, c) discontinuous and (b, d) contin-
uous moduli mappings compared to a smooth and continuous distribution, respectively.
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3.4 Discussion

Computational models of whole knee biomechanics provide a compelling means to investi-
gate soft tissue injury and disease. They have the potential to be instrumental in advancing
the understanding of the coupling between individual tissue structures during normal activ-
ities, providing insights into how deviations from this normal deformation can contribute
to injury initiation and disease progression. Computational models are also capable of
extending the knowledge of the complex mechanical response of joints, both at the tis-
sue and joint levels, beyond the limits of experimental investigation. FE models excel in
traditionally challenging experimental areas, providing the ability to perform comprehen-
sive parametric studies to investigate geometric, physiologic, and external contributions
within and among patient populations. Specifically in the context of computational mod-
els of whole knee biomechanics, fully three dimensional descriptions of tissues yield the
real inhomogeneous deformation of constituent structures, information concerning contact
pressures and distributions, and the link between physically motivated boundary conditions
and macroscopic joint motion.

While FE models possess impressive potential, cautious skepticism is required when
evaluating their predictive power. The accuracy of FE models is entirely predicated on the
validity of their construction; the applied boundary conditions and constraints, geometric
representations of tissues, and constitutive behavior all affect FE biomechanics models.
There have been significant contributions with respect to the application of geometrically
accurate tissue structures and systematic implementation of physical boundary conditions
in knee FE models (Atmaca et al., 2013; Baldwin et al., 2012; Beillas et al., 2004; Donahue
et al., 2002, 2003; Gardiner and Weiss, 2003; Kang et al., 2015; Kiapour et al., 2014a;
Limbert et al., 2004; Mesfar and Shirazi-Adl, 2005; Mootanah et al., 2014; Peña et al.,
2005a, 2006a; Penrose et al., 2002; Quatman et al., 2011; Shelburne et al., 2006; Song
et al., 2004; Wang et al., 2014; Zhang et al., 2008), but the extent of the effect of individual
tissue material model selection, and the sensitivity of that selection, has not been as fully
explored.

Biological structures generally exhibit complex mechanical behavior—a cursory exam-
ination of tissue microstructure and composition motivates this complexity—but there have
been relatively few numerical studies that investigate the role of constitutive behavior in
the prediction of local deformation and joint motion. There has been a shift from relatively
simple descriptions of ligaments toward material models that are transversely isotropic
and nonlinear; recently Kiapour et al. (2014b) highlighted the corresponding effect on lo-
cal ACL strains, as well as joint motion, under various loading conditions. However, the
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contribution of physically accurate and experimentally validated constitutive behavior of
articular cartilage has not been analyzed rigorously, with most FE models of whole knee
biomechanics incorporating simple, linear elastic material descriptions—there have been
some exceptions to this trend (Adouni et al., 2012; Marouane et al., 2014; Shirazi and
Shirazi-Adl, 2009a,b).

This work fundamentally attempts to understand why articular cartilage has evolved
with the particular mechanical characteristics observed experimentally. Using relatively
simple loading conditions, corresponding to the foot flat phase of gait, the level of con-
stitutive complexity was systematically increased and evaluated in an effort to elucidate
the motivation for the nonlinear, anisotropic, and spatially heterogeneous mechanical prop-
erties of articular cartilage (Appleyard et al., 2003, 2001; Athanasiou et al., 1991; Briant
et al., 2015; Deneweth et al., 2013a,b, 2015; Jurvelin et al., 2000; Swann and Seedhom,
1993; Thambyah et al., 2006; Young et al., 2007)—the response of cartilage was assumed
to be rate independent at loading rates investigated in this work, and more generally during
normal and injury causing activities, due to the low rate dependency at strain rates greater
than 5 %/sec (Oloyede et al., 1992).

With most whole knee computational models assuming isotropic, linear elastic descrip-
tions of articular cartilage, the sensitivity of predicted local tissue deformation and joint
motion were examined. Generally, with increasing stiffness there was a decrease in the
calculated relative ATT, ITR, and knee flexion, as well as decrease in nearly all measures
of local tissue deformation, both in the articular cartilage and the ACL. As cartilage was
assumed stiffer the contact area decreased and the contact pressure increased within the
joint capsule, increasing by 56.6% and 24.0% on the tibial and femoral cartilage surfaces,
respectively. These trends are largely in line with those described by Wang et al. (2014),
in which, over the linear elastic Young’s modulus range E ∈ [8, 12] MPa, the contact area
decreased by approximately 13% and the contact pressure increased by approximately 17%
for a fully extended knee subjected to a 1000 N axial load. Qualitatively, there is also good
agreement between the distribution of contact pressure presented in Wang et al. (2014) and
the distribution of compressive strains on the linear elastic tibial articular surfaces in the
present work.

Peña et al. (2005a) found a maximum contact pressure on the articular cartilage of 3.18
MPa, as compared to 5.38 MPa in the current work, using simple cartilage (E = 5 MPa)
and ligament (neo-Hookean) material properties during joint compression (Faxial = 1000 N).
Similarly, in Donahue et al. (2002), the maximum contact pressure during unconfined joint
compression with Faxial = 800 N was determined to be 2.50 MPa; the deviation can be
explained in part by the incorporation of trans-knee muscles, muscle tendons, and auxiliary
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ligaments, as well as a more complete description of supporting ligaments and the inclu-
sion of patellofemoral joint in the current work, which included structures with nonzero
force at the onset of loading. To put this variation in context, contact pressures between
2.4 − 34 MPa have been reported corresponding to various loading conditions and tissue
constitutive representations (Mootanah et al., 2014; Wang et al., 2014).

The nominal effect of cartilage stiffness was not only apparent locally—the predicted
maximum shear strains of the tibial and femoral cartilage ranged between 18.7 − 50.2%

and 14.6 − 79.5%, respectively—but also with respect to the location and dispersion of
strain experienced during loading. As with increasing isotropic linear stiffness, there was a
shift in the location of maximum shear strains on the tibial cartilage from regions covered
to uncovered by menisci. It is clear that whole knee models are indeed incredibly sensi-
tive to cartilage material behavior, and that an analyst may fall victim to unsubstantiated
conclusions related to tissue injury or disease without a careful examination of cartilage
constitutive descriptions, especially if the relevant failure criteria are strain dependent.

Increasing the constitutive complexity of articular cartilage to numerically describe the
experimentally and microstructurally motivated nonlinearity and bulk transverse isotropy
fundamentally changes soft tissue deformation and joint kinematics. There was a substan-
tial reduction in the amount of relative ATT (2.33 mm to 0.598 mm), ITR (4.41◦ to 3.19◦),
and knee flexion (4.44◦ to 1.42◦) corresponding to the shift from isotropic, linear elastic-
ity. There was also a decrease in the sensitivity of local strains, notwithstanding maximum
femoral A-P shear strains, and knee motion to variation in cartilage stiffness. Increasing
isotropic cartilage stiffness does seem to close gap between joint models built using linear
elasticity with respect to transversely isotropic, nonlinear elastic constitutive behavior or,
more generally, heterogeneously applied transversely isotropic, nonlinear elastic constitu-
tive behavior (Table 3.3), but it is important to note that significantly different local tissue
deformations persist. This means that while computational joint models may appear to be
validated, all predictions, particularly at the tissue level, may not be representative if only
kinematic data is used in the model validation protocol.

The incorporation of nonlinear and transversely isotropic mechanical descriptions of
articular cartilages is instrumental in driving kinematic predictions of joint motion into the
range seen experimentally. In particular, during the predominate weight bearing phases
of gait, the predicted ATT of heterogeneous cartilage is well within the range reported by
Kozanek et al. (2009), while the predicted ATT corresponding to linear elastic cartilage
is not contained within the relevant experimental range. Predicted knee internal rotations
are also supported by experimental observations (Kozanek et al., 2009). Transitioning to
homogeneous, nonlinear cartilage descriptions also shifts the location of maximum A-P
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shear onto the medial condyle (Fig. 3.10), the region consistent with approximately 33%
of focal defects observed clinically (Wong and Sah, 2010). While the kinematics of the
joint are shifted in the experimental range corresponding to normal gait with the inclusion
of transversely isotropic, nonlinear mechanical descriptions, it is important to note that
calculated ACL strains, approximately on the order of 2.5% (Fig. 3.11d), are within the
normal operating range for the tissue and below those seen during potential injury causing
events (McLean et al., 2015; Withrow et al., 2006). It is quite apparent that the form of
constitutive descriptions, particularly the nonlinearity of articular cartilage, though often
neglected in whole knee models, is critical to understanding the expected response of the
joint.

There is a mechanically meaningful contribution corresponding to the incorporation of
spatial heterogeneity, with the method of initial stiffness mapping also of practical con-
sequence. Differences were observed between homogeneous and heterogeneous moduli
fields in articular cartilage with respect to knee motion. The most substantial variation
was in the predicted relative ATT. ATT is an important clinical diagnostic tool for deter-
mining ACL integrity and joint stability. During the corresponding joint motion the ACL
supports up to 87% of the load, making ATT a potentially catastrophic deformation state
(Fukubayashi et al., 1982; Markolf et al., 1976; Noyes and Grood, 1976; Piziali et al.,
1980b; Spindler and Wright, 2008).

Local tissue deformation variations were also found between homogeneous and het-
erogeneous cartilage descriptions, as well as between heterogeneous moduli mappings.
Interestingly, the mathematical neatness of the moduli field had almost no impact on the
joint kinematics. Yet the combination of low and high variation between heterogeneous
mappings with respect to joint kinematic and local deformation predictions, respectively,
imply the importance of some application of heterogeneity in describing the macroscopic
motion of the knee, while continuity, and to some extent smoothness, in the moduli distri-
bution is necessary to accurately predict the distribution of strain without the presence of
strain localization artifacts in articular cartilage.

Halonen et al. (2014) reported mean tibial strains, determined using conical beam CT,
in the lateral and medial compartments during similar loading of 9% and 5%, respectively.
A slightly larger maximum compressive strain (13.5%) was similarly observed in the lateral
compartment of the smooth and continuous tibial cartilage as compared to the medial com-
partment (11.8%)—see Fig. 3.12. The distribution of instantaneous compressive strains
shown in Halonen et al. (2014) is strikingly similar to those shown in Fig. 3.12a, particu-
larly the crescent shape of the high compressive strains in the lateral compartment. Lateral
and medial maximum tibial cartilage compressive strains were also within the ranges ob-
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served by Liu et al. (2010a) during the first phases of gait which most closely correspond
to the loading conditions examined in the present study.

3.5 Conclusions

This work underscores the criticality of individual tissue constitutive modeling, even in
the context of whole joint biomechanical models. A three dimensional FE model was
developed from real, patient specific geometry, resulting in a whole knee model with repre-
sentations of the major mechanical structures in the joint, including the patellofemoral and
tibiofemoral joints and their corresponding soft tissues. The foot flat portion of the stance
phase of gait was used to illustrate how cartilage constitutive behavior manifests locally, in
terms of realized soft tissue deformation, and globally, with respect to relative joint motion;
the model was validated through the comparison of relevant joint kinematic and tissue level
predictions to appropriate experimental joint metrics. Assuming linear elastic material de-
scriptions of articular cartilage, a popular practice in the construction of whole knee FE
models, yields biomechanical predictions that are incredibly sensitive to articular cartilage
stiffness, potentially providing misleading information related to the evaluation of native
and diseased joints. Incorporating physically representative cartilage constitutive behavior
acts to minimize predicted local deformation and relative joint motion compared to linear
elastic tissue, with further refinement of local deformation derived from spatial mechan-
ical heterogeneity, built using representative population distributions of relative cartilage
stiffnesses.

The strength of FE models is not only in their potential to inform the understanding of
joints in normal and injury causing activities, but also to describe how clinical interventions
affect, both locally and globally, the response of joints and to elucidate the initiation and
progression of degenerative diseases, like OA. Biomechanical joint models may be used
to design individual specific surgical procedures and medical devices that minimize post-
surgical complications and maximum positive short and long term patient outcomes. It is
now possible to construct computational frameworks to investigate these questions, but care
must be used in their development and their conclusions must be evaluated judiciously.
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CHAPTER 4

The effect of articular cartilage focal defect size and location in whole knee
biomechanics models

This chapter has been submitted for publication and may be referenced as:

B. C. Marchi, E. M. Arruda, and R. M. Coleman. The effect of articular cartilage focal
defect size and location in whole knee biomechanics models. In Review, 2017a

4.1 Introduction

The knee is a complex biomechanical structure consisting of a variety of hard and soft
tissues. Articular cartilage provides support within the joint by cushioning the contact be-
tween bony geometries, dispersing high impact loads through nearly frictionless surfaces.
Problems arise when cartilages are disrupted by tissue defects and during abnormal load-
ing. Articular cartilage focal defects have been linked to the initiation and progression of
degenerative tissue diseases, like OA, with the preponderance of cartilage arthritic lesions
initially developing in weight bearing and high wear zones (Årøen et al., 2004; Curl et al.,
1997; Hjelle et al., 2002; Widuchowski et al., 2007). Given the limited ability of articular
cartilage to heal and remodel, it has been shown that untreated focal defects tend to grow
(Wang et al., 2006) and collateral healthy cartilage tissues adjacent to or in contact with
the affected cartilage tend to exhibit symptoms of cartilage degeneration, potentially lead-
ing to OA (Lefkoe et al., 1993). These mechanical alterations are coupled to the presence
of abnormal biochemical environments, such as increased expression of proinflammatory
cytokines, potentially leading to a cascade of additional extracellular matrix degradation
(Goldring and Goldring, 2004).

Based on extensive arthroscopic studies, approximately 60% of focal defects are located
in femoral cartilage; patellar cartilage defects also appear in substantial numbers (Årøen
et al., 2004; Curl et al., 1997; Hjelle et al., 2002; Widuchowski et al., 2007). More than half
of all femoral cartilage focal defects occur on the medial femoral condyle. Focal defects
have been reported to have a mean affected area equal to 2.1 cm2 and a corresponding range
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of 0.5 – 4 cm2 (Årøen et al., 2004; Curl et al., 1997; Hjelle et al., 2002; Widuchowski et al.,
2007).

There have been numerous experimental (Brown et al., 1991; Gratz et al., 2009; Guet-
tler et al., 2004; Wong and Sah, 2010) and computational (D D’Lima et al., 2009; Dabiri and
Li, 2015; Dong et al., 2011; Heuijerjans et al., 2017; Manda et al., 2011; Papaioannou et al.,
2010; Peña et al., 2007; Shirazi and Shirazi-Adl, 2009b; Venäläinen et al., 2016b; Weiss
et al., 1998) studies that examine various aspects of how cartilage deformation changes
in the presence of defects, as well as to evaluate potential intervention strategies. These
investigations begin to provide possible explanations for the presence of post-traumatic
OA in the area around the primary defect by showing elevations in cartilage stresses at
the perimeter and in the neighborhood around the defect. These local mechanical met-
rics are important in predicting acute and sustained chondrocyte viability. It is possible
to maximize cartilage integrity by limiting regions of cartilage tissue experiencing defor-
mation above critical thresholds (Chen and Torzilli, 2015; Torzilli et al., 1999; Verteramo
and Seedhom, 2007; Wilson et al., 2006). However, the exact mechanical mechanisms of
progressive cartilage damage, specifically the role of altered tissue deformation associated
with focal defects, has not been comprehensively established and validated. That being
said, there have been some recent phenomenological efforts to computationally represent
progressive cartilage damage in healthy cartilage (Hosseini et al., 2014; Liukkonen et al.,
2017; Mononen et al., 2016).

Computational models, like FE models, are potentially powerful tools for studying the
mechanics of cartilage focal defects. However, the mechanical behavior of articular car-
tilage is challenging to describe and implement computationally due to its nonlinearity,
viscoelasticity, anisotropy, and spatial mechanical heterogeneity (Appleyard et al., 2003,
2001; Deneweth et al., 2013a,b, 2015; Fick et al., 2015; Mow et al., 1984; Oloyede et al.,
1992; Ronkainen et al., 2016; Tomkoria et al., 2004). This often results in approximating
the mechanics of cartilage, either as linear elastic (D D’Lima et al., 2009; Papaioannou
et al., 2010; Peña et al., 2007) or a spatially homogeneous, fiber reinforced composite con-
taining discrete depth-dependency (Shirazi and Shirazi-Adl, 2009b), based on the particular
research focus. We have recently shown the sensitivities of both local tissue deformation
and joint motion to femoral and tibial articular cartilage stiffnesses, with additional spatial
and nominal deformation variability observed when accounting for cartilage mechanical
heterogeneity (Marchi and Arruda, 2017a).

With knee injury and disease, joint loading and tissue geometries may evolve with time
(Chaudhari et al., 2008; Deneweth et al., 2010). As internal loading patterns change, the
local stiffness of the cartilage being loading is likely different compared to a healthy joint
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(Appleyard et al., 2003, 2001; Deneweth et al., 2013b, 2015; Tomkoria et al., 2004), and
this may have implications for local cartilage deformation and, consequently, chondrocyte
viability (Butler et al., 2009; Fick et al., 2015; Ronkainen et al., 2016; Thoma et al., 2017).
Kinetic analyses are well-suited to evaluating problems where kinematic differences be-
tween models are expected; however, they require representative collateral tissues, like
ligaments, to faithfully represent joint motion (Kiapour et al., 2014b).

This work attempts to quantify differences in cartilage deformation and joint kinemat-
ics due to various femoral cartilage focal defects. Defects in both femoral condyles were
examined using a previously validated FE model, which has been used to show the impor-
tance of incorporating experimentally validated spatial mechanical heterogeneity within
whole knee models with healthy physiology (Marchi and Arruda, 2017a). We show how
defect size and location substantially increases maximum femoral cartilage deformation
when subjected to loads typical of the stance phase of gait near full extension. Signifi-
cantly, and previously unexplored, we also show how changes in predicted deformation of
tissues adjacent to and opposing the primary defect are altered, offering insights into how
the biomechanical contributions of defects may lead to post-traumatic OA development.
Local changes in deformation are especially meaningful in the context of the mechani-
cally nonlinear and spatially heterogeneous articular cartilage because small or nonexistent
nominal differences in strain may manifest as large differences in predicted stress.

4.2 Methods

4.2.1 General finite element model construction and considerations

A previously validated, three-dimensional FE model of the knee was used as the basis
for both the intact and focal defect models developed in this work (Marchi and Arruda,
2017a). Bone and soft tissue geometries were constructed using a combination of CT
and magnetic resonance images from a healthy adult female right knee with no history
of lower limb injury or disease. Native tissue FE model construction, grid insensitivity,
and element formulation appropriateness were described in previous work (Marchi and
Arruda, 2017a). Figure 4.1 depicts the three dimensional tissue structures in the knee joint
model, with Fig. 4.1b illustrating the joint capsule tissues. Meniscal ligaments, muscle
tendons, and trans-knee muscles were modeled and included using uniaxial elements (not
shown in Fig. 4.1). Tissue mesh geometries and uniaxial structures were assembled into
a complete computational domain of the joint in ABAQUS v6.14 (SIMULA, Providence,
Rhode Island, United States).
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Figure 4.1: (a) Computational FE model of the right knee of a healthy adult female in-
cluding its bones and soft tissue constituents. (b) The geometric accuracies of the articular
cartilage and supporting ligaments are represented. In each figure cartilage is displayed in
blue, menisci in orange, ligaments in red, and bones in white. Knee model images adapted
from Marchi and Arruda (2017a). Some collateral tissues have be removed for visual clar-
ity.

4.2.2 Focal defect models

Two full-thickness focal defect sizes were considered, small and average, that corresponded
to the lower bound (0.5 cm2) and mean (2.1 cm2) areas of focal defects observed experi-
mentally (Årøen et al., 2004; Curl et al., 1997; Hjelle et al., 2002; Widuchowski et al.,
2007). Figure 4.2 shows the femoral cartilage without (Fig. 4.2a) and with (Figs. 4.2b-
d) focal defects. Small focal defects were constructed on both the lateral (Fig. 4.2b) and
medial (Fig. 4.2c) femoral condyles, while an average sized defect was constructed on the
medial condyle (Fig. 4.2d).

The defects were created by projecting a circular profile normal to the underlying bone
surface through the entire thickness of the cartilage. Following the procedure outlined in
D D’Lima et al. (2009), the center of each defect was positioned such that the center of the
circular profile was coincident with the approximate midpoint of the local condyle cartilage
width in the M-L plane and in the A-P plane to maximize the percentage of the defect within
high weight bearing regions. The accuracy of local deformation around and adjacent to
the perimeter of focal defects, as well as any contribution to the global kinematics of the
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Figure 4.2: Femur and femoral cartilage of an adult female right knee with (a) healthy
cartilage, a small (b) lateral or (c) medial focal defect, and (d) an average medial focal
defect.

joint, was verified for each defect model by doubling the mesh density around the defect.
Computed strains and joint motions were determined to be within the generally accepted
mesh independence criterion (outlined by Donahue et al. (2002) as less than 5% variation
associated with mesh refinement).

4.2.3 Constitutive modeling

Bone geometries were modeled as rigid structures with constant density equal to 2000
kg/m3 due to the minimal influence of bone deformation in models of whole knee biome-
chanics (Beillas et al., 2004; Donahue et al., 2002; Kiapour et al., 2014a). Menisci were
assumed to be transversely isotropic, linear elastic, where the preferred material direction
was oriented circumferentially around each meniscal horn (Skaggs et al., 1994; Tissakht
and Ahmed, 1995). The menisci were attached to the tibial plateau with linear uniaxial
elements representing the meniscal ligaments (Donahue et al., 2002; Marchi and Arruda,
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2017a; Villegas et al., 2007). Total equivalent stiffness of the meniscal ligaments was cho-
sen as Eequiv = 2000 N/mm (Guess et al., 2010; Zielinska and Donahue, 2006).

The major supporting ligaments—the ACL, PCL, MCL, and LCL—were assumed to
have responses represented by a slightly compressible, nonlinear, and transversely isotopic
extension of a freely jointed eight-chain model of rubber elasticity (Arruda and Boyce,
1993; Bischoff et al., 2002a). Details on the constitutive form of supporting ligaments can
be found in Appendix A and ligament material parameters can be found in Table A.1.

Articular cartilage was modeled assuming the same constitutive form as the ligaments
(Deneweth et al., 2013a, 2015), without time dependency due to the low rate sensitivity of
cartilage during active events (Oloyede et al., 1992). In addition to the constitutive behavior
described in Appendix A, articular cartilage was modeled with spatial mechanically het-
erogeneity in accordance with experimental observations (Deneweth et al., 2013a,b, 2015).
The mechanical heterogeneity in cartilage, defined in the plane parallel to the tibial plateau
and in the pseudo-cylindrical surface parallel to the distal end of the femur, was incorpo-
rated through initial moduli distributions calculated using smooth and continuous interpola-
tions of sparse experimental moduli data (Marchi and Arruda, 2017a). Due to the numeric
interpolation framework used in describing the cartilage moduli fields, no modifications
to the fields were necessary to accommodate focal defects—i.e., the moduli of tissue lo-
cated on the rim of a particular focal defect had the exact same initial modulus as similarly
located tissue in the intact cartilage.

4.2.4 Boundary conditions and constraints

Following the boundary conditions outlined in Marchi and Arruda (2017a), an axial, com-
pressive load was applied to the distal tibia at the ankle. Using an explicit FE framework,
the final configuration of the foot flat portion of the stance phase of gait was approximated
by applying a linear time varying load, with Fmax = 800 N and Tloading = 0.4 sec, corre-
sponding to roughly one body weight being entirely supported by the joint. All simulations
were conducted without local mass scaling to minimize inertial errors. The A-P and M-L
translations of the ankle (distal tibia) were constrained, while the hip (proximal femur) was
translationally fixed. All rotational degrees of freedom at the ankle and hip were uncon-
strained. These conditions were selected to approximate the far field boundary conditions
typical of this type of motion, while simultaneously allowing for local joint deformation to
be dictated solely by the tissue structures contained within the knee.

Contact was allowed between all solid structures in the joint. Normal behavior was
modeled using a general penalty enforcement method, and finite strain tangential behavior
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was modeled assuming an exponential relationship between the local relative facet-to-facet
sliding rate and the coefficient of friction; the relationship was constructed from experimen-
tal observations of cartilage-to-cartilage sliding (Marchi and Arruda, 2017a; Qian et al.,
2006; Unsworth et al., 1975). Muscle and tendon pretension was applied prior to the load
step, allowing for any associated knee motion and tissue deformation to equilibrate (Marchi
and Arruda, 2017a; McLean et al., 2011; Oh et al., 2011; Pflum et al., 2004; Withrow et al.,
2006, 2008). All joint kinematics were calculated with respect to a dynamic, nonorthogonal
knee coordinate system (Grood and Suntay, 1983).

4.3 Results

4.3.1 Joint kinematics

Relative translations and rotations between the tibia and femur were found to be tied to the
presence of defects (Table 4.1). In all defect models, the amount of tibial rotation decreased
compared to intact cartilage. A lateral defect increased predicted flexion, while medial
defects (small and average sized) had the opposite effect. All defect models predicted
increased anterior tibial translation relative to healthy cartilage, with the largest difference
corresponding to the average sized medial defect.

Table 4.1: Joint kinematics of native and focal defect models
Anterior

tibial translation
External

tibial rotation
Knee flexion

(mm) (◦) (◦)
Healthy -1.2 3.3 -1.4
Lateral – Small -1.1 2.6 -2.1
Medial – Small -0.76 2.5 -1.1
Medial – Average -0.22 2.2 -0.46

4.3.2 Femoral cartilage mechanics

Variation in joint kinematics associated with cartilage defects corresponded to differences
between tissue-level strain distributions in the femoral cartilages (Fig. 4.3). Compressive
strains increased from 9.7 to 12% with the presence of a lateral defect (Fig. 4.3b). Ad-
ditionally, the location of maximum compression shifted from the medial condyle to the
medial aspect of the lateral focal defect. This shift in the spatial location of maximum
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compressive strain resulted in mechanically different cartilage (9% more compliant com-
pared to the initial modulus of the spatial point of maximum compression in the healthy
cartilage model) supporting the elevated loading environment. In medial defect models,
the maximum compressive strains were similarly observed on the rim of the defect. Maxi-
mum compressive strains increased to 15% (Fig. 4.3c) and 21% (Fig. 4.3d) in knee models
with small and average sized defects, respectively. Similar to the lateral defect model, the
spatial points of maximum compression in medial defect containing models were different
than healthy cartilage. This resulted in 2% reductions in local cartilage initial stiffnesses
compared to the spatial point of maximum compression in the healthy cartilage model.
Medial defects had little effect on deformation on the lateral condyle compared to healthy
cartilage (Figs. 4.3a, 4.3c, and 4.3d).

9%↓ initial
stiffness;

21%↑ strain

2%↓ initial
stiffness;

120%↑ strain

2%↓ initial
stiffness;

50%↑ strain

Figure 4.3: Tensile and compressive through-thickness strains on the articular surface of
femoral cartilage assuming (a) healthy cartilage, femoral cartilage with a small (b) lateral
or (c) medial focal defect, or (d) an average medial focal defect. A magnified view of the
strain field around the perimeter of the defect is shown adjacent to each model containing
a defect (b-d).

Strains evolving from axial rotations and M-L translations of the femur relative to the
tibia (M-L shear strains) were strongly tied to the position of focal defects in the femur (Fig.
4.4). Medial defects eliminated the shear strain localization present on the medial condyle
in healthy cartilage due to the physical absence of cartilage tissue. Larger medial defects
also altered the distribution and location of the M-L shear strains on the lateral condyle
articular surface (Fig. 4.4d). The presence of a small medial defect had no significant
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effect on the maximum absolute M-L shear strain, while increasing the size of the defect
on the medial condyle decreased the maximum absolute M-L shear strain from 14% to
11%. Cartilage containing a lateral defect experienced an increase in maximum absolute
M-L shear strains from 14% to 16% with respect to healthy cartilage.
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Figure 4.4: M-L shear strains on the articular surface of femoral cartilage assuming (a)
healthy cartilage, femoral cartilage with a small (b) lateral or (c) medial focal defect, or (d)
an average medial focal defect. A magnified view of the strain field around the perimeter
of the defect is shown adjacent to each model containing a defect (b-d).

4.3.3 Tibial cartilage mechanics

Femoral cartilage focal defects also influenced compressive strains in the tibial cartilage
(Fig. 4.5). A small defect on the lateral femoral condyle resulted in an increase in the
maximum compressive strain on the lateral tibial plateau from 14% in healthy cartilage
to 17% and resulted in a shift in the spatial point of maximum compression medially and
posteriorly on the lateral plateau (Fig. 4.5b). This locational shift was associated with a 6%
reduction in initial cartilage modulus at the spatial point of maximum compressive strain
compared to healthy cartilage. There were reductions in maximum compressive strains
from 14% in native cartilage to 13% and 11% with small (Fig. 4.5c) and average (Fig.
4.5d) sized medial defects, respectively. Additionally, the large medial defect shifted the
maximum compressive strain laterally.
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6%↓ initial 

stiffness;

25%↑ strain

Figure 4.5: Normal strains on the articular surface of tibial cartilage with (a) healthy
femoral cartilage, a small (b) lateral or (c) medial focal defect, and (d) average medial
focal defect. For each figure the perimeter of the corresponding femoral cartilage defect
is outlined in black and the point of maximum compression is located at the center of the
white dot.

Variations in the distributions of A-P (Fig. 4.6) and M-L (Fig. 4.7) shear strains were
observed on the tibial cartilage; however, there was relatively small nominal deviations
(<1%) in the maximum absolute shear strains. Small and average medial defects reduced
the distance between regions of positive and negative A-P shear strains on the medial tibial
plateau (Figs. 4.6c-d). The presence of medial defects also altered the location of maximum
A-P shear strains anteriorly with respect to healthy cartilage. As the size of the defect
increased on the medial condyle, the A-P shear strain localization on the medial plateau
diffused, and a large positive A-P shear strain emerged on the medial plateau corresponding
to the shifting knee flexion and axial rotation (Fig. 4.6d; Table 4.1). A small medial
defect disturbed the large region of M-L shear strains on the medial plateau compared to
healthy cartilage (Fig. 4.7c), whereas an average medial femoral defect caused widespread
alterations to the M-L shear strain field on the medial plateau (Fig. 4.7d).

The maximum, area-averaged contact stresses on the articular surface of the tibial and
femoral cartilages increased from 16 MPa in healthy cartilage to 21 MPa, 18 MPa, and 18
MPa in small lateral, small medial, and average sized medial defect models, respectively.
Area-averaged values were calculated by identifying the cartilage location supporting the
maximum contact stresses over a region defined by a 1 mm diameter disk. In medial defect
containing models, the location of maximum contact pressure moved from the midsub-
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Figure 4.6: A-P shear strains on the articular surface of tibial cartilage with (a) healthy
femoral cartilage, a small (b) lateral or (c) medial focal defect, and (d) an average medial
focal defect. For each figure the perimeter of the corresponding femoral cartilage defect is
outlined in black and the point of maximum and minimum A-P shear strain is located at
the center of the black and white dots, respectively.

stance of the tibial cartilage to the perimeter of the femoral cartilage defect. As opposed to
strain distributions, contact stresses were found to be highly localized due to the nonlinear-
ity and heterogeneity of the cartilage constitutive models. A complete summary of various
maximum observed strain and stress measures for healthy and defect containing models
can be found in Table 4.2.

Table 4.2: Summary of maximum tissue strains and contact stresses among various carti-
lage models. In defect containing models ↑ and ↓ indicate local increases and decreases
with respect to the healthy cartilage predictions, respectively.

Healthy Small defect Average defect
Lateral Medial Medial

Femoral compressive strain, % (Fig. 4.3) 9.7 12 (↑) 15 (↑) 21 (↑)
Femoral M-L shear strain, % (Fig. 4.4) 14 16 (↑) 14 11 (↓)
Tibial compressive strain, % (Fig. 4.5) 14 17 (↑) 13 (↓) 11 (↓)
Tibial A-P shear strain, % (Fig. 4.6) 10 9.1 (↓) 10 11 (↑)
Tibial M-L shear strain, % (Fig. 4.7) 11 9.5 (↓) 11 10 (↓)
Max contact stress, MPa 16 21 (↑) 18 (↑) 18 (↑)
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Figure 4.7: M-L shear strains on the articular surface of tibial cartilage with (a) healthy
femoral cartilage, a small (b) lateral or (c) medial focal defect, and (d) an average medial
focal defect. For each figure the perimeter of the corresponding femoral cartilage defect is
outlined in black and the point of maximum and minimum M-L shear strain is located at
the center of the black and white dots, respectively.

4.4 Discussion

Cartilage tissue degeneration has been linked to the size and geometry of focal defects po-
tentially precipitated by local changes in the mechanical loading of the area surrounding
defects. It has been shown that focal defects, if left untreated, are detrimental to tissue
viability and integrity (Lefkoe et al., 1993; Wang et al., 2006). The increase in local me-
chanical stresses triggered by the presence of defects near their edges may be indicative of
potentially dangerous mechanical overloading of the cells in the vicinity of injured tissues.
Representative three dimensional joint models provide the ability to quantify the complete
deformation state of tissues, as opposed to simply providing traditional contact parame-
ters, a limitation of many experimental techniques. This was demonstrated in a model
by Venäläinen et al. (2016b), which found that strains throughout the depth of the tissue
adjacent to a tibial cartilage defect exceeded levels shown to induce chondrocyte apoptosis.

The objective of this study was to investigate how local tissue deformation in both
femoral and tibial cartilages was altered as the size and location of femoral condylar de-
fects in an anatomically correct whole knee model that integrates the spatial variability of
cartilage mechanical properties across the bone surfaces (Marchi and Arruda, 2017a) were
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varied. With this model, kinematic motion of the knee was assessed as a function of defect
location and local stress calculated for regions of peak strain. Our model demonstrates
that changes in the local deformation of cartilage due to the presence of defects can trans-
late to new and mechanically different tissues to be loaded during normal activity. To our
knowledge, this is the first model to demonstrate this phenomenon. Accounting for the
regional variation in stiffness can more accurately define the local cell-level deformations
and stresses to predict the risk of cell apoptosis due to traumatic cartilage injuries.

The results presented herein are in agreement with the outcomes of previous computa-
tional studies that have shown femoral cartilage near-field contact stresses and compressive
strains were strongly correlated to defect size in weight bearing regions, particularly at the
perimeter of the defect (D D’Lima et al., 2009; Papaioannou et al., 2010; Peña et al., 2007;
Weiss et al., 1998). Peña et al. (2007) illustrated the contribution of focal defect size and
location in high and low load-bearing regions on the medial femoral condyle. The strain
values in that study were much higher than this work, possibly due to the difference in shape
of the defect and the assumptions of linear elastic cartilage with a relatively low modulus
(E = 5 MPa). As we have previously shown, the assumed linear elastic stiffness of carti-
lage significantly affects cartilage deformation, with increased compliance corresponding
to increased strain (Marchi and Arruda, 2017a). The effect of this relationship can be seen
in D D’Lima et al. (2009), which investigated the effect of chondral defects in a model that
assumed linear elasticity with E = 15 MPa. Similar to their data, the peak strain in healthy
cartilage in our study was 9.7% (compared to∼8%) and 15% (compared to∼13%) with an
8 mm defect (0.5 cm2) on the medial condyle (an approximately 150% increase compared
to healthy cartilage). A larger defect corresponded to an increase of the maximum rim
strain to 21% (an approximately 200% increase compared to healthy cartilage), in good
agreement to the increases found by Peña et al. (2007) of 185% and 200% for 1.76 cm2

and 3.14 cm2 defects, respectively, notwithstanding differences in absolute strain values.
Healthy cartilage compressive strains predicted by Venäläinen et al. (2016b) were elevated
compared to those presented in this study; however, the relative increase between defect
containing and healthy cartilage models is approximately of the same order (roughly a 2-3
fold increase in maximum compressive strains of the defect containing tissue associated
with the inclusion of a focal defect).

The effects of defects are not isolated to the damaged tissue, but have also been shown
to alter joint kinematics and deformation in opposing tissues. Convery et al. (1972) illus-
trated that large focal defects located in weight bearing regions on the femoral cartilage
caused cartilage wear and degeneration on the opposing tibial cartilage articular surface.
The presence of focal cartilage defects has also been correlated with increased incidence
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of OA throughout the joint (Lefkoe et al., 1993; Linden, 1977). Despite experimental ev-
idence of the joint-wide disruption of defects, many computational studies investigating
defects are limited to the cartilage surface that is affected (D D’Lima et al., 2009; Dabiri
and Li, 2015; Dong et al., 2011; Peña et al., 2007; Venäläinen et al., 2016b). The distri-
bution of loads on the tibial plateau assuming healthy cartilage is largely consistent with
previous studies (Ahmed and Burke, 1983; Peña et al., 2006a). In a full knee model similar
to the one presented here, Peña et al. (2006a) found a maximal compressive stress of 4.4
MPa compared to 16 MPa in the current work, with a similar relative distribution of defor-
mation; nominal differences between stress values can be attributed to the assumed forms
of the cartilage constitutive models. Additionally, Papaioannou et al. (2010) measured the
effect of defects located on the medial and lateral femoral condyles under a 700 N load
on contact stresses in tibial cartilage and found that stresses were elevated compared to
baseline measures, similar to the increases in tibial cartilage strains and contact stresses
observed herein (Table 4.2). These studies highlight that investigating the effects of focal
defects on adjacent tissues may contribute to our understanding of the mechanical etiology
of arthritic lesions in healthy cartilage tissue distant from focal defects.

The connection between the shift in location of maximum loading and cartilage me-
chanical properties has not been previously reported. We have previously shown that the
mechanical properties of articular cartilage vary across the surface of the femur and tibia
(Deneweth et al., 2013b, 2015) and integrated these data into a whole knee FE model
(Marchi and Arruda, 2017a). Our model demonstrates that changes in the local deforma-
tion of cartilage due to the presence of defects translates to new and mechanically different
tissues being loaded during normal activity. At the spatial point of maximum compression,
the local initial cartilage moduli decreased by 9%, 2%, and 2% corresponding to small lat-
eral, small medial, and average medial defects, respectively, compared to healthy femoral
cartilage. Therefore, as the locations of high deformation vary with the inclusion of focal
defects, the local mechanical behavior of the chondrocytes may be ill-equipped to support
the new loading distributions. Surprisingly, the relocation of the point of maximum de-
formation medially and posteriorly with the inclusion of a lateral defect resulted in a 25%
increase in compressive strain on the tibial cartilage. This shift corresponded to a decrease
in local tibial cartilage initial modulus at the spatial point of maximum compression by
over 6%. In the context of spatially varying mechanical properties, these predicted carti-
lage strain distributions may prove to have incredible clinical value, potentially being used
to justify the use of one treatment plan over another in an effort to best preserve or restore
local cartilage deformation distributions.

Relative motion between the tibia and femur drives the distributions of deformation in
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knee soft tissues, and focal defects haven been closely tied to deviations from normal joint
motion. Andriacchi et al. (2009) showed that cartilaginous injury may manifest as changes
in gait, potentially linked to the progression of OA. Furthermore, determining changes
in joint kinematics may be valuable for understanding the mechanical causes of OA in
patients with ACL reconstruction, as chondral defects are often found in these patients
(Årøen et al., 2004; Bobić, 1996; Curl et al., 1997; Engebretsen et al., 1993; Hjelle et al.,
2002; Matsusue et al., 1993; Murrell et al., 2001; Widuchowski et al., 2007). Differences
in joint kinematics will likely impact the stress distributions within ligaments and may be
correlated with higher revision rates of ACL repair in patients with concomitant cartilage
damage (Borchers et al., 2011; Cox et al., 2014). The femur rotates internally during stance
phase of gait (Kozanek et al., 2009), similar to the rotations predicted herein (Table 4.1).
Our model predicted 3.3◦ external tibial rotation in joints with intact cartilage, which is
on the order of similar studies (Marouane et al., 2014; Mootanah et al., 2014; Peña et al.,
2006a). Small defects on either condyle resulted in only minor kinematic changes relative
to healthy cartilage, while the largest deviations in joint motion were found when consider-
ing an average medial defect (Table 4.1). Shifts in kinematics corresponding to an average
medial defect increased the magnitude and altered the location of absolute maximum A-P
shear strains on the tibial plateau (Fig. 4.6d), as well as the spatial position of maximum
compressive strain (Fig. 4.5d). This model can be extended to evaluate the complex me-
chanics of joints with injury to multiple tissues, and the kinematic results presented herein
suggest that clinical strategies that minimize medial cartilage damage may minimize the
macroscopic effects of focal defects.

Chondrocyte viability is partially limited by mechanical factors, like strain. Our model
showed that the presence of focal defects did not elevate compressive strains above relevant
strain-based thresholds (∼30%) (Wilson et al., 2006), while predicted stresses were near
the upper end of stress-based thresholds (∼20-25 MPa) (Chen and Torzilli, 2015; Torzilli
et al., 1999; Verteramo and Seedhom, 2007). Native cartilage maximum, area-averaged
contact stresses were observed approaching the critical, stress-based threshold at 16 MPa,
while compressive strains were well below their corresponding strain-based threshold at
14%. Area-averaged contact stresses were calculated in the current work to allow for more
direct comparisons to experimental measurements of contact stress that use pressure sen-
sitive films (Beck et al., 2005). While stress values presented herein may be high relative
to stress-based viability thresholds, it is also important to note that these ranges were de-
termined under the assumption of high rate and uniform impact loading. Additionally,
stress-based viability thresholds were also established without any consideration of funda-
mental mechanical heterogeneity of cartilage or how shifts from normal loading regions to
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unloaded regions may be coupled to biochemical activity and adaptability within chondro-
cytes. Notwithstanding these considerations, the elevated mechanical loading environment
found in defect models could potentially lead to a dangerous cascade of cell damage and
tissue degeneration. This was observed experimentally by Jackson et al. (2001), which
showed the degradation of cartilage at the defect perimeter with time and normal joint use.

This model has several limitations. First, deformation was only considered for the
stance phase of gait (with the joint starting at approximately full extension). As loading sig-
nificantly changes throughout the gait cycle, it would be important to study how different
joint configurations affect cartilage deformation as a function of defect size and location.
In the context of whole joint models, axial tibial loading has been a typical approximation
to the global loading of the knee during the stance phase of gait (D D’Lima et al., 2009;
Donahue et al., 2002; Marchi and Arruda, 2017a; Peña et al., 2007; Shirazi and Shirazi-
Adl, 2009b; Weiss et al., 1998), though there have been some recent computational studies
that have directly incorporated experimentally derived kinematics as simulation boundary
conditions (Halonen et al., 2016; Hosseini et al., 2014; Klets et al., 2016; Mononen et al.,
2015, 2016). Another limitation of this model is that the bone is assumed to be rigid, and
the model does not consider the rapid changes in the subchondral bone that occur soon after
cartilage injury (Gomoll et al., 2010; Radin and Rose, 1986), which is expected to affect
cartilage stresses (Shirazi and Shirazi-Adl, 2009b; Venäläinen et al., 2016a). Computa-
tional joint models also universally struggle with intrinsic variation in the joint anatomy
and soft tissue mechanical properties of individual patients. Finally, this work does not
consider how alterations manifesting from physical changes to the cartilage geometry may
affect expected joint loading.

Despite these limitations, this work provides insights into the mechanical contribution
of femoral cartilage focal defects through their inclusion in whole knee FE models, which
include major tissue structures built with accurate constitutive descriptions. The models
used in this work show how focal defects contribute to deviations in joint kinematics, lead-
ing to altered tissue strains near the defect and on the opposing cartilage surfaces. Even
during normal activity, focal defects disrupt knee motion and the distribution of soft tissue
strains (Elias et al., 1999). During abnormal, injury causing events these perturbations are
likely to be exaggerated, increasing the risk to future soft tissue injuries and diseases. The
framework developed herein provides a step forward in the ability of clinicians to assess pa-
tient specific cartilage susceptibility to OA by accurately predicting full field, tissue level
deformation in the knee. This work also provides a platform for investigating potential
clinical inventions and repair devices aimed at restoring native joint mechanics.
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CHAPTER 5

Evaluating continuum level descriptions of the medial collateral ligament

This chapter has been submitted for publication and may be referenced as:

B. C. Marchi, C. M. Luetkemeyer, and E. M. Arruda. Evaluating continuum level
descriptions of the medial collateral ligament. In Review, 2017b

5.1 Introduction

Ligaments are soft tissue structures that span the gaps between bones, connecting them
together. Macroscopic joint motion and stability are coordinated and maintained by liga-
ments in combination with additional soft tissue structures like muscles, articular cartilage,
menisci, and tendons. Ligaments support and direct normal joint motions, while acting to
resist potentially harmful motions. While ligaments often play a critical role in mitigat-
ing the risk of a traumatic event—either contact or noncontact—from resulting in acute
injury, ligaments do fail. This failure may be catastrophic, as in ligament rupture resulting
in hyper-mobility of the joint. Alternatively, in progressive ligament injuries microscopic
damage accumulates, leading to structural and mechanical changes within the tissue bulk.
These subtle changes in ligament mechanical behavior and structural geometry can have
a significant impact on total joint motion, as well as local deformation in the joint; de-
viations from expected local tissue deformations can potentially lead to collateral tissue
degenerative diseases, like OA.

Ligament failure is both prolific and complex. The ACL is the most commonly injured
supporting ligament in the knee, with over 175,000 surgical reconstructions performed an-
nually in the United States (Spindler and Wright, 2008), and, problematically, the average
age of those affected by soft tissue injury is dropping drastically (Ingram et al., 2008;
Kim et al., 2011b). Yet, even with the nearly 90% short term success rate of ACL re-
construction (Wright et al., 2008), these injuries are linked to increased susceptibility for
collateral soft tissue diseases, like OA (Kessler et al., 2008)—a disease that already affects
over 15% of the adult United States population (Lawrence et al., 2008). The existence
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and frequency of ligament injury, and its contribution to secondary soft tissue injuries and
diseases, has motivated researchers and clinicians to examine their mechanical behavior in
myriad contexts. Experimental studies have explored macroscopic joint motion in healthy
and ligament-deficient knees (Berchuck et al., 1990; Georgoulis et al., 2003; Morrison,
1970; Noyes et al., 1992), ligament injury mechanisms (Boden et al., 2000; Hewett et al.,
2005; Krosshaug et al., 2007b; Olsen et al., 2004), reconstructive techniques (Hughston
and Eilers, 1973; Kurosaka et al., 1987; Yagi et al., 2002), and rehabilitation protocols
(Beynnon et al., 1995; Shelbourne and Nitz, 1990).

Given the fundamental role of ligaments in maintaining joint functionality, a mechanis-
tic understanding of ligaments is critically important. The mechanics of individual ligament
structures can provide insights into the specific contributions of a particular ligament in
preserving joint integrity, minimizing the risk of injury, and potential mechanical pathways
of ligament injury. A mechanical appreciation of ligaments can also be instrumental in
investigating, evaluating, and differentiating between clinical interventions. Experimental
efforts at this low level have indeed furthered our characterization and understanding of lig-
aments; however, experimental studies, particularly related to experimental biomechanics,
have a number of irreconcilable limitations, including structural and geometric specimen-
to-specimen variability, low spatial and temporal resolution, prohibitive specimen acquisi-
tion and storage costs, and an inability to describe deformation states generally.

Where experiments are limited, computational tools and models have the potential to
excel. Computational models, particularly FE models, can provide specific information on
individual tissue contributions with respect to global joint function, as well as the coupling
and coordination among tissues during macroscopic joint motions. Computational models
offer precise, full-field, and complete descriptions of deformation manifesting from normal
motions (Adouni et al., 2012; Beillas et al., 2004; Donahue et al., 2002; Gardiner and Weiss,
2003; Limbert et al., 2004; Marchi and Arruda, 2017a; Mootanah et al., 2014; Peña et al.,
2006a; Shelburne et al., 2006; Song et al., 2004; Xie et al., 2009; Zhang et al., 2008), injury
causing activities (Abdel-Rahman and Hefzy, 1998; Kiapour et al., 2014a; Penrose et al.,
2002; Quatman et al., 2011), injured and diseased joints (Manda et al., 2011; Marchi et al.,
2017a; McLean et al., 2011; Mootanah et al., 2014; Peña et al., 2007; Shirazi and Shirazi-
Adl, 2009b; Weiss et al., 1998), and reconstructive procedures (Bae et al., 2015; Godest
et al., 2002; Halloran et al., 2005; Huang et al., 2012; Kim et al., 2011a; Peña et al., 2005b,
2006b; Ramaniraka et al., 2007; Westermann et al., 2013, 2016). FE models also afford
a convenient platform for the systematic evaluation of relevant geometric and mechanical
properties through parametric studies (Atmaca et al., 2013; Baldwin et al., 2012; Donahue
et al., 2003; Kiapour et al., 2014b; Li et al., 2002; Marouane et al., 2014; Mesfar and
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Shirazi-Adl, 2005; Peña et al., 2005a; Shin et al., 2007; Shirazi and Shirazi-Adl, 2009a,b;
Wan et al., 2013; Wang et al., 2014) and have the potential to conduct clinically meaningful,
individualized joint analyses (Gardiner and Weiss, 2003; Jones et al., 2015).

The accessibility and power of FE models have pushed forward our understanding of
tissue-level contributions to joint mechanics, but with so much available information re-
searchers must be judicious in evaluating the significance of studies. Constitutive mod-
els of individual tissues dictate the basic physics of any structural biomechanics analysis;
however, they are often relegated to minutia of methods sections and rarely examined in a
systematic or forthright manner. Constitutive models need to be evaluated on their ability
to describe observed deformation, while simultaneously predicting deformations not used
in their construction. Often whole joint computational models rely on a single set of exper-
imental data—which may or may not sufficiently describe all the relevant physics—and the
weight of precedent to build soft tissue material behaviors. This approach is convenient,
but not very elastic to new or conflicting experimental observations.

With an eye towards adaptability and implementation, this work seeks to test the hy-
pothesis that the commonly employed family of invariant-based transversely isotropic, ex-
ponential models is capable of capturing the bulk mechanical response of knee supporting
ligaments. Specifically, the appropriateness of various transversely isotropic, hyperelastic
constitutive models containing a single material direction are examined, using the com-
monly adopted Holzapfel-Gasser-Ogden (HGO) model as a benchmark. Constitutive forms
are assessed in the context of their ability to describe historic and current quasi-static ex-
perimental stress-strain behaviors of the MCL. The HGO model is evaluated on its ability
to capture both longitudinal and transverse deformations and compared to alternative trans-
versely isotropic, hyperelastic material models. This work shows that the traditional HGO
model is largely able to capture the response of the MCL based on historic data. How-
ever, the model, as it is traditionally posed, is less flexible to data that are more anisotropic
and nonlinear, like those found in recent efforts. Therefore, the HGO model, and those of
its type, may be ill-suited to describe the complete physics of the ligament. Representative
constitutive theories are critically important when building descriptive models that incorpo-
rate real deformations, which potentially include multi-axis loading and shear. This failure
motivates the need to systematically assess the appropriateness of a larger pool of candi-
date constitutive theories, including novel theories, for describing ligaments. In addition to
gauging their descriptive performance, candidate theories were incorporated into a simple,
three-dimensional FE model to evaluate how constitutive form affects bulk deformation.
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5.2 MCL experimental characterization

The addition of directionality in constitutive models requires knowledge of the material re-
sponse in multiple loading configurations. This need has led to the application of traditional
mechanical characterization techniques to capture the stress-strain behavior of tissues as-
sumed to be transversely isotropic, like ligaments (Butler et al., 1990; Henninger et al.,
2013, 2015; Lujan et al., 2007; Quapp and Weiss, 1998). In particular, tension experiments
have been used to determine the bulk response of ligaments along (longitudinal) and nor-
mal (transverse) to the preferred material direction. In the case of ligaments, the material
orientation is typically assumed to be aligned with the mean orientation of collagen fibers
(Debski et al., 2003; Weiss et al., 2005).
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Figure 5.1: The quasi-static stress-strain response of human MCL (a) along and (b,c) nor-
mal to the preferred material direction. Experimental data extracted from Henninger et al.
(2015), Lujan et al. (2007), and Quapp and Weiss (1998).

In this work, both historic (Quapp and Weiss, 1998) and recent (Henninger et al., 2013,
2015; Lujan et al., 2007) experimental efforts were used as the foundation of the assessment
of each candidate constitutive theory. Figure 5.1 illustrates the unidirectional mechanical
response of cadaveric human MCLs along (Fig. 5.1a) and normal to (Figs. 5.1b-c) the
highly aligned collagen fibers of the ligament. Typically, the preferred stress-strain re-
sponse of soft tissues is characterized by two physiologically relevant domains: the toe and
linear regions. The toe region is associated with initial nonlinearity observed at relatively
small stretches, while the linear region is said to occur beyond some transition stretch af-
ter which the stress-strain response is nearly linear. For example, a visual inspection of
the longitudinal stress-strain behavior presented in Quapp and Weiss (1998) (Fig. 5.1a)
might lead one to conclude a transition between the toe and linear regions at approximately
λ11 = 1.02 in the longitudinal direction.
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5.3 Methods

5.3.1 Constitutive modeling: Phenomenological theories

5.3.1.1 Constitutive theory preliminaries

There has been a recent trend over the last two decades in describing macroscopic lig-
ament mechanical behavior using transversely isotropic, hyperelastic constitutive models
constructed with exponential behavior along the preferred fiber direction (material descrip-
tions containing a single fiber family) in combination with a neo-Hookean matrix phase
(Bae et al., 2015; Dhaher et al., 2010; Gardiner and Weiss, 2003; Guo et al., 2009; Kiapour
et al., 2014a,b; Kim et al., 2011a; Limbert et al., 2004; Orsi et al., 2015; Peña et al., 2005b,
2006a,b, 2007; Quapp and Weiss, 1998; Wan et al., 2013, 2014; Westermann et al., 2013,
2016; Zhang et al., 2008). This movement towards more accurate tissue-level constitutive
models in ligaments has been shown to have a meaningful effect on both tissue deforma-
tion and joint motion (Kiapour et al., 2014b). Models of this form—transversely isotropic
hyperelasticity—also have the benefit of generally being physiologically motivated by the
macromolecular organization of ligaments, where aligned collagen fibrils are situated in a
more compliant, isotropic extracellular matrix (McLean et al., 2015; Weiss et al., 2005).

In particular, strain energy density functions for ligaments have taken the compressible,
decoupled form adopted from Weiss et al. (1996)

U
(
C̃, a0

)
= Ũ1

(
Ĩ1

)
+ Ũ2

(
Ĩ4

)
+ Ũ3

(
J
)
, (5.1)

where J is the determinant of the deformation gradient (F), C̃ is the isochoric Cauchy-
Green tensor (C̃ = F̃T F̃ = J−2/3C = J−2/3FTF), Ĩ1 is the first deviatoric invariant of
C̃ (Ĩ1 = tr

(
C̃
)

), and Ĩ4 is the fourth deviatoric invariant (Ĩ4 = a0C̃a0, where a0 is the
preferred fiber direction in the reference configuration).

These isochoric invariant-based descriptions of ligament anisotropy have been largely
successful in describing the bulk uniaxial behavior along the preferred material direction—
see fitting data from either Kiapour et al. (2014a) or Gardiner and Weiss (2003). However,
decoupled, transversely isotropic strain energy functions have recently been shown to be
incapable of describing true compressible, anisotropic material behavior due to their non-
physical response to volumetric deformation (Vergori et al., 2013).
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5.3.1.2 Isotropic strain energy contributions

Due to the fundamental issues related to constitutive models with isochoric anisotropic
invariants (Eq. 5.1), anisotropic strain energy functions evaluated in this work will take the
general, coupled form,

U (C, a0) = U1 (I1) + U2 (I4) + U3 (J) , (5.2)

where I1 and I4 are the first invariant
(
I1 = tr (C) = tr

(
FTF

))
and fourth invariant

(I4 = a0Ca0), respectively. The stretch, λ, along the preferred material direction is re-
lated to I4 by the following:

λ2 = I4, (5.3)

assuming a0 is a unit vector; in this work, a0 is assumed to be a unit vector.
In the context of ligaments, the isotropic contribution of Eq. 5.2 (U1) has been predom-

inately assumed to have the form

U1 = C1

(
J−2/3I1 − 3

)
(5.4a)

or
U1 = C1 (I1 − 3)− 2C1 ln (J) , (5.4b)

representing an isotropic neo-Hookean solid (Quapp and Weiss, 1998). Note that Eqs.
5.4a-b are not strictly dependent on I1, but also J . This is a common notational quark
from traditional decoupled, isotropic strain energy functions and the choice of form has no
practical consequence.

The volumetric component of the general strain energy function, U3 in Eq. 5.2, has
taken a variety of forms in the description of ligaments, though their forms, particularly
for physiologically relevant loading ranges, have relatively little impact on the overall con-
stitutive performance (Nolan and McGarry, 2015). Based on the insensitivity shown in
Nolan and McGarry (2015), volumetric strain energy contributions examined herein are
predominately assumed to have the form

U3 =
B

2
(J − 1)2, (5.5)

where B is the bulk modulus.
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5.3.1.3 Anisotropic strain energy contributions

For ligaments, the directional component of strain energy functions has been assumed to
take a number of forms. Preferred material behavior has been described in terms of its
derivatives (Chatelin et al., 2013; Quapp and Weiss, 1998; Weiss et al., 1996), as polyno-
mial functions (Feng et al., 2013), and exponentials (Gasser et al., 2006; Holzapfel et al.,
2000, 2002; Kiapour et al., 2014a,b; Weiss et al., 1996). It naturally follows from Eq. 5.2
that total strain energy functions may be constructed by adding isotropic and volmetric
strain energy contributions with any particular directional strain energy contribution (U2).

Nolan et al. (2014) proposed a coupled, compressible form of the HGO (cHGO) model,
with the anisotropic strain energy contribution described as

U2 =
k1
2k2

{
exp

[
k2(I4 − 1)2

]
− 1
}
, (5.6)

to address the volumetric deficiencies of isochoric, anisotropic strain energy functions,
where k1 and k2 control the degree of anisotropy (the ratio of the magnitude of the stress-
strain response in the preferred direction to the transverse direction) and magnitude of
nonlinearity along the preferred material direction, respectively.

Similarly, other previously employed, decoupled anisotropic strain energy functions
may be written in terms of total strain invariants. The derivative based description of
anisotropy first presented by Weiss et al. (1996) can be recast as

λ
∂U2

∂λ
= 0, λ ≤ 1;

λ
∂U2

∂λ
= C3 {exp [C4 (λ− 1)]− 1} , 1 < λ ≤ λ∗;

λ
∂U2

∂λ
= C5λ+ C6, λ∗ ≤ λ,

(5.7)

where Ci are fitting parameters, λ∗ is the linear region transition stretch, and continuity
constraints are typically placed on C6:

C6 = C3 {exp [C4 (λ− 1)]− 1} − C5λ. (5.8)

Note, Eq. 5.7 contains an explicit definition for the toe region, 1 < λ ≤ λ∗. Alternatively,
a slightly reduced form of the model proposed in Feng et al. (2013) may be posed as

U2 = C1ζ (I4 − 1)2 , (5.9)
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where ζ represents the relative contribution of the fiber to the total material response. In
the same vein as Eq. 5.6, both simplified,

U2 = C3 (exp [I4 − 1]− I4) , (5.10)

and expanded,

U2 =
k1
2k2

{
exp

[
k2 (κI1 + (1− 3κ) I4 − 1)2

]
− 1
}
, (5.11)

exponential-based strain energy functions have been used to describe ligaments by Weiss
et al. (1996) and Gasser et al. (2006), respectively. Equation 5.11 offers the flexibility
for the existence of distributed fiber orientations around the preferred material direction,
introduced into the anisotropic strain energy function through the scaling parameter κ.

5.3.1.4 Anisotropic, total invariant strain energy functions

Due to the fundamental issues related to constitutive models with anisotropic isochoric in-
variants, anisotropic strain energy functions evaluated in this work will take the general,
coupled form shown in Eq. 5.2, where the isotropic, volumetric, and anisotropic strain
energy functions are expressed with respect to total invariants. The resulting strain en-
ergy functions for the coupled Feng (Eq. 5.9), WeissA (Eq. 5.10), cHGO (Eq. 5.6) and
distributed HGO (dcHGO; Eq. 5.11) models may be expressed as

U (C, a0) = C1

(
J−2/3I1 − 3

)
+ C1ζ (I4 − 1)2 +

B

2
(J − 1)2, (5.12)

U (C, a0) = C1

(
J−2/3I1 − 3

)
+ C3 (exp [I4 − 1]− I4) +

B

2
(J − 1)2, (5.13)

U (C, a0) = C1

(
J−2/3I1 − 3

)
+

k1
2k2

{
exp

[
k2(I4 − 1)2

]
− 1
}

+
B

2
(J − 1)2, (5.14)

and

U (C, a0) =C1

(
J−2/3I1 − 3

)
+
B

2
(J − 1)2

+
k1
2k2

{
exp

[
k2 (κI1 + (1− 3κ) I4 − 1)2

]
− 1
}
,

(5.15)
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respectively. The total strain energy function for the coupled WeissB model must be ex-
pressed piecewise, and follows naturally from Eq. 5.7.

5.3.2 Constitutive modeling: Mechanistic theories

5.3.2.1 Generalized, orthotropic eight-chain network models

Statistical mechanics models offer an attractive alternative to phenomenological constitu-
tive theories. They can provide insights to the underlying mechanisms driving observed
mechanical behavior (Ma et al., 2010), and can often describe and predict finite defor-
mations using relatively few material parameters (Boyce and Arruda, 2000). Using a mi-
cromechanical, network based model, solid continua can be represented using a network of
flexible molecular chains (Arruda and Boyce, 1993). The assembly of these macromolec-
ular chains in a representative volume element (RVE) dictates the mechanical response of
the material.

This network-based approach can be extended to a generalized orthotropic framework
to describe continua with RVEs built using arbitrary chain descriptions (Bischoff et al.,
2002b). For a general chain, the strain energy of an eight-chain orthotropic RVE is given
by

Ustat (C, a,b, c) = U0 +
n

4

{[
4∑
i=1

uchain
(
ρ(i)
)]
− 1

P

(
duchain (ρ)

dρ

)∣∣∣∣
ρ=P

ln
(
λa

2

a λ
b2

b λ
c2

c

)}
+
B

α2
{cosh [α (J − 1)]− 1} ,

(5.16)

with n reflecting chain density, ρ(i) the deformed chain length in the deformed configura-
tion of the ith chain, λa-c the stretches along the principal material axes (a,b, and c), a,
b, c the normalized dimensions of the RVE, α the curvature of the relationship between
hydrostatic pressure and volume at large volume changes (given the small expected vol-
ume changes during physiological deformations, α is assumed to be unity), uchain

(
ρ(i)
)

the strain energy of the ith chain, and
(
duchain(ρ)

dρ

)∣∣∣
ρ=P

the derivative of the chain strain en-
ergy function evaluated at the reference chain length. The orthotropic constitutive equation
presented in Eq. 5.16 can be simplified to describe transversely isotropic materials by pre-
scribing two of the nondimensional lengths to be equal (a = b, b = c, or a = c); in this
work, transverse isotropy was enforced by specifying b = c. The strain energy of a particu-
lar chain, equivalent to the chain work, can be determined by integrating its force-extension
relationship,

uchain =

∫
Fchaindr. (5.17)
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5.3.2.2 Specific, orthotropic eight-chain network models

Specific forms of the orthotropic eight-chain model (Eq. 5.16) can be determined by in-
corporating different chain realizations. One such definition involves freely jointed chains
(FJCs). This form has been shown to accurately describe the mechanical behavior of bio-
logical structures (Bischoff et al., 2002a; Deneweth et al., 2013a, 2015; Marchi and Arruda,
2017a). In particular, the strain energy density function for the orthotropic, freely jointed
eight-chain (oFJC) model may be written as

UoFJC (C, a,b, c) = U0 +
Cr
4

(
N

4∑
i=1

[
ρ(i)

N
β(i)
ρ + ln

β
(i)
ρ

sinh β
(i)
ρ

]

− βP√
N

ln
[
λa

2

a λ
b2

b λ
c2

c

])
+
B

α2
{cosh [α (J − 1)]− 1} ,

(5.18)

where U0 is a constant, Cr is the rubbery modulus, and
√
N is the root mean square chain

length in the undeformed configuration. From non-Gaussian probability density functions
of FJCs,

β(i)
ρ = L−1

(
ρ(i)/N

)
(5.19)

and
βP = L−1 (P/N) , (5.20)

where P is the reference chain length
(
P =

√
N = 1

2

√
a2 + b2 + c2

)
and L−1 (·) is the

inverse Langevin function
(
L (x) = cosh (x)− 1

x

)
. Eq. 5.18 has been shown to be capable

of capturing the bulk mechanical response of ligaments in tension along the preferred mate-
rial direction and has been successfully implemented in whole knee computational models
(Marchi and Arruda, 2017a).

One alternative to FJCs are wormlike chains (WLCs). WLCs are flexible rod structures
with contour length L, persistence length A, and normalized contour length Λ = L/A.
Bischoff et al. (2002b) incorporated WLCs into the general framework shown in Eq. 5.16
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to yield

UoWLC (C, a,b, c) = U0 +
Cr
16

{[
4∑
i=1

(
Λ2

Λ− ρ(i)
+

2ρ(i)
2

Λ
− ρ(i)

)]

−

(
8 + 6Λ− 9

√
2Λ
)

Λ
(√

2−
√

Λ
)2 ln

(
λa

2

a λ
b2

b λ
c2

c

)
+
B

α2
{cosh [α (J − 1)]− 1} ,

(5.21)

representing the total orthotropic strain energy function using approximate realizations of
WLCs.

Similar in formulation to the WLC model, the MacKintosh chain (MAC) model was
proposed to address the intermediate space between soft and stiff structures. MacKintosh
chains are semi-flexible macromolecular chains that are highly resistant to bending, with
the persistence length on the order of the contour length (MacKintosh et al., 1995), and
have been successful in describing the mechanics of biological macromolecules (Palmer
and Boyce, 2008). The force-extension relationship of a MacKintosh chain can be de-
termined explicitly, though its form strongly depends on the particular of inverse Langevin
function approximation used in its construction. Palmer and Boyce (2008) used a Padé-type
approximation from Cohen (1991) to approximate the inverse Langevin function, though
other, more accurate approximations have recently been proposed (Darabi and Itskov, 2015;
Jedynak, 2015; Marchi and Arruda, 2015). Using the Cohen (1991) approximation for the
inverse Langevin, Palmer and Boyce (2008) expressed the chain force-extension relation-
ship in terms of the end-to-end chain length, r, as

FMAC =
kΘL2 (L2 + 6A (r − L))

4A(L− r)2 (L2 + 2A (r − L))
, (5.22)

where k is Boltzmann’s constant and Θ is the absolute temperature (nkΘ = Cr). Again
normalizing model parameters with respect to A, the normalized chain strain energy for a
MAC chain follows from applying Eq. 5.17 to Eq. 5.22 yielding

uMAC =
kΘ

4

(
Λ2

Λ− ρ
+ ln

[
(Λ− ρ)4

A4(Λ2 + 2ρ− 2Λ)4

])
+ u0. (5.23)

Note that for the MAC model the persistence length is not completely eliminated from the
chain strain energy function. Operating within the general orthotropic framework, Eq. 5.16
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takes the form

UoMAC (C, a,b, c) = U0 +
Cr
16

{[
4∑
i=1

(
Λ2

Λ− ρ(i)
+ ln

[ (
Λ− ρ(i)

)4
A4(Λ2 + 2ρ(i) − 2Λ)

4

])]

− Λ2 (Λ2 + 6 (P − Λ))

P (P − Λ)2 (Λ2 + 2 (P − Λ))
ln
(
λa

2

a λ
b2

b λ
c2

c

)}
+
B

α2
{cosh [α (J − 1)]− 1}

(5.24)

when using MacKintosh chains in the construction.

5.3.3 Constitutive modeling: A Novel hybrid approach

While there are advantages to both mechanistic and phenomenological material models, it
is possible to construct hybrid models with elements derived from each constitutive frame-
work where they fail individually. For example, Kuhl et al. (2005) proposed combining
a transversely isotropic eight-chain realization of the model from Bischoff et al. (2002a)
with an isotropic bulk material to describe the anisotropic behavior of skin. In the case of
ligaments, the highly nonlinear and initially concave shape of the stress-strain response in
their transverse direction is potentially inconsistent with neo-Hookean solids (Henninger
et al., 2013, 2015), the material description traditionally assumed to dominate the mate-
rial response in this deformation state. Instead, these mathematical features of the trans-
verse stress-strain behavior closely resemble the physics illustrated by MacKintosh chain
networks (Palmer and Boyce, 2008). Therefore, we propose a hybrid constitutive model
constructed by adding a slightly compressible form of an isotropic, eight-chain model built
using MacKintosh chains to any of the previously described phenomenological, anisotropic
strain energy functions (Eqs. 5.6-5.11).

5.3.3.1 The isotropic contribution

Using the same eight-chain construction presented in Arruda and Boyce (1993), an
isotropic, eight-chain network model composed from MacKintosh chains can be formu-
lated; see Palmer and Boyce (2008). However, ligaments are rarely modeled as incom-
pressible within the context of FE; this is done both to model the real physics of ligaments,
as well as for numerical conditioning. Compressibility can be introduced into the isotropic,
incompressible eight-chain strain energy function,

UMAC,incomp = U0 +
Cr
4

(
L2

A (L− r)
+ 4 ln

[
L− r

L2 + 2A (r − L)

])
, (5.25)
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by adding a volumetric dependency and ensuring that there is zero stress in the unloaded
configuration. In particular, an energy term of the form

UMAC,comp = − CrL
2r0 (L2 + 6A (r0 − L))

12A(L− r0)2 (L2 + 2A (r0 − L))
ln (J) , (5.26)

where r0 is the chain end-to-end length in the reference configuration, can be added to Eqs.
5.5 and 5.25 to yield the total isotropic strain energy. For isotropic eight-chain models of
the form presented in Arruda and Boyce (1993), r may be expressed in terms of I1 as

r = r0
√
I1/3. (5.27)

Therefore, the total isotropic, compressible eight-chain MacKintosh network model can be
expressed as a function of I1 and J ,

UMAC,iso = U (I1, J) , (5.28)

with the explicit form

UMAC,iso (C) = Cr

(
3L2

12AL− 4Ar0
√

3I1
+ ln

[
L− r0

√
I1/3

L2 − 2AL+ 2Ar0
√
I1/3

]

− L2r0 (L2 + 6A (r0 − L))

12A(L− r0)2 (L2 + 2A (r0 − L))
ln (J)

)
+
B

2
(J − 1)2.

(5.29)

5.3.3.2 The anisotropic function

It is now possible to construct a transversely isotropic, hybrid model of the form presented
in Eq. 5.2 using Eq. 5.29 as the isotropic and volumetric contributions to the total strain
energy function, in combination with any of the previously described anisotropic strain en-
ergy functions (Eqs. 5.6-5.11). In the current work, the anisotropic contribution to the total
strain energy function was assumed to have the form of Eq. 5.6. The resulting anisotropic
MacKintosh (aMAC) strain energy function may be written as

UaMAC (C, a0) = Cr

(
3L2

12AL− 4Ar0
√

3I1
+ ln

[
L− r0

√
I1/3

L2 − 2AL+ 2Ar0
√
I1/3

]

− L2r0 (L2 + 6A (r0 − L))

12A(L− r0)2 (L2 + 2A (r0 − L))
ln (J)

)
+

k1
2k2

{
exp

[
k2(I4 − 1)2

]
− 1
}

+
B

2
(J − 1)2.

(5.30)
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5.3.4 Constitutive theory evaluation methods

5.3.4.1 The assessment optimization problem

The effectiveness of each transversely isotropic model (the coupled Feng (Eq. 5.12), cou-
pled WeissA (Eq. 5.13), coupled WeissB, cHGO (Eq. 5.14), dcHGO (Eq. 5.15), oFJC (Eq.
5.18), oWLC (Eq. 5.21), oMAC (Eq. 5.24), and aMAC (Eq. 5.30)) was evaluated by its
ability to describe the mechanical behavior of the MCL in multiple deformation states. In
particular, tensile responses parallel and normal to the primary collagen axis were used to
fit the models, assuming uniaxial loading. Experimental stress-strain curves for the MCL
were obtained from the literature (Henninger et al., 2013, 2015; Quapp and Weiss, 1998).
Discrete stress-strain observations, 25 points in each loading case, were obtained by resam-
pling experimental curves. Optimal material parameters for each model were determined
by solving the general constrained minimization problem

minimize
p

{∑
(σexp,T11i − σmodel,T11i (CT11i , a0,p))2∑

(σexp,T11i − σ̄exp,T11)
2

+

∑
(σexp,T22i − σmodel,T22i (CT22i , a0,p))2∑

(σexp,T22i − σ̄exp,T22)
2

}
,

(5.31)

where p is an array containing all material parameters for a particular constitutive model,
σexp,T11i and σexp,T22i are the ith experimental (Cauchy) stresses along the longitudinal and
transverse directions, respectively, σ̄exp,T11 and σ̄exp,T22 are the mean stress responses, and
σmodel,T11i (CT11i , a0,p) and σmodel,T22i (CT22i , a0,p) are the ith predicted stresses. The ob-
jective function shown in Eq. 5.31 may be written equivalently in terms of the coefficients
of determination, r2, in each of the loading directions as

minimize
p

{
2− r2T11 − r

2
T22

}
. (5.32)

5.3.4.2 Stress functions

Solving the optimization problem specified in Eq. 5.31, or Eq. 5.32, requires an explicit
definition for the stress corresponding to each constitutive model. For a general hyperelastic
material, the second Piola-Kirchhoff (PK) stress at finite strains may be obtained directly
from the strain energy function through differentiation,

S = 2
∂U (C, a0)

∂C
, (5.33)
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where S is the second PK stress tensor. For transversely isotropic hyperelastic materials
with a single fiber family in the form of Eq. 5.2, S may be rewritten in terms of strain
invariants as

S = 2

[
∂U

∂I1
I + I3

∂U

∂I3
C−1 +

∂U

∂I4
a0 ⊗ a0

]
, (5.34)

where I is the identity matrix and I3 is related to J via I3 = J2. S can be pushed forward
into the current configuration to determine the Cauchy stress,

σ = J−1FSFT, (5.35)

which can similarly be expressed in terms of strain invariants as

σ = 2J−1
[
I3
∂U

∂I3
I +

∂U

∂I1
B +

∂U

∂I4
a⊗ a

]
, (5.36)

where B is the left Cauchy-Green strain tensor
(
B = FFT

)
and a is the fiber orientation

in the current configuration (a = Fa0). The Cauchy stress is related to the nominal stress,
N, through

N = JF−1σ. (5.37)

Specific forms of stress functions corresponding to phenomenological (Eqs. 5.12-5.15, as
well as the WeissB model), mechanistic (Eqs. 5.18, 5.21, and 5.24), and hybrid (Eq. 5.30)
models can be found in B.

For each material model and experimental stress-strain curve, the optimization prob-
lem described by Eq. 5.31 was solved using differential evolution (Storn and Price, 1997).
For compressible materials, particularly the statistical mechanics models, no closed form
expression exists between the applied stretch and resulting uniaxial stress; therefore, for
each applied stretch, a second optimization (root-finding) problem must be solved to deter-
mine the magnitudes of the stretches normal to the applied stretch. Once optimal material
parameters for each model type were determined, the corresponding r2 for each loading
direction was calculated. The resulting values were compared to determine the ability of a
particular constitutive form to describe the bulk deformation of the MCL.

5.3.5 An example ligament deformation

The contribution of constitutive form assumptions on continuum deformation was exam-
ined within the context of a simplified, yet clinically applicable, loading situation. A ge-
ometrically simplified FE ligament model was stretched and twisted into a configuration
similar to the native ACL macroscopic spatial orientation (McLean et al., 2015). In par-
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ticular, one end of a cylindrical specimen (original diameter: 10 mm) was fixed, while
displacing the opposing end to 10% end-to-end nominal strain. During the load increment,
displacements in the radial direction were unconstrained at the ends of the specimen. Con-
current with the applied displacement, the displacement surface was rotated 90◦ about the
centerline of the cylinder. This was accomplished by kinematically coupling the nodes
on the displacement boundary condition surface to a reference point located at the center
of the circular section. Tissue level strains and macroscopic configuration changes were
quantified for each constitutive model form.
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Figure 5.2: Directionality of structural elements corresponding to different locations and
constitutive formulations. Example RVEs are shown in blue and material structural ele-
ments are shown in red.

The cHGO, dcHGO, oFJC, and aMAC models were numerically implemented using
the algorithmic structure described in C. For each model type, transverse isotropy was
defined both in a Cartesian and cylindrical sense. This was done to highlight fundamental
structural differences between model formulations. Figure 5.2 shows RVEs extracted from
two locations within the cylindrical specimen. The RVEs of the cHGO and dcHGO models,
which contain a single fiber family, are insensitive to the description of transverse isotropy;
however, the formulation of the oFJC model is not independent of coordinate frame. For
the oFJC model, this dependence manifests as a local rotation of the RVE when comparing
Cartesian and cylindrical bases with respect to the RVE structural elements. Notice in the
cylindrical implementation the chains in the RVE are oriented at an angle with respect to
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the Cartesian basis (Fig. 5.2)—the Cartesian basis has been superimposed for reference on
the cylindrical oFJC RVE.

5.4 Results

5.4.1 Determining an optimal constitutive model

The appropriateness of particular constitutive forms was predominately driven by the shape
of the stress-strain behavior normal to the preferred material orientation. Assuming data
of the form presented by Quapp and Weiss (1998), the coefficient of determination, r2,
was found to be strictly greater than 0.97 for any loading direction (Table 5.1). However,
data of the form presented in Henninger et al. (2013, 2015) were not well captured by all
constitutive model forms (Table 5.1). In particular, models that contain preferred material
descriptions compatible with high initial concavity (see Fig. 5.1c) provided more accurate
representations of the experimental behavior. Complete material parameter sets can be
found in Table 5.2.

Table 5.1: Constitutive model coefficients of determination
Quapp and Weiss (1998) data Henninger et al. (2013, 2015) data

Constitutive model r2T11 r2T22 r2T11 r2T22
Feng 0.97 0.97 0.76 0.78
WeissA 0.98 0.97 0.78 0.78
WeissB – No linear region 0.99 0.97 0.99 0.79
WeissB 1.0 0.97 1.0 0.79
cHGO 0.99 0.97 0.98 0.78
dcHGO 0.99 0.97 0.98 0.78
oFJC 0.99 0.97 0.95 0.78
oWLC 0.99 0.97 0.98 0.78
oMAC 0.99 0.97 0.98 0.77
aMAC 0.99 1.0 0.98 1.0

When transverse behavior is approximately linear, like those in Quapp and Weiss
(1998), neo-Hookean type models, or models that behave nearly linearly at small stretch,
can generally capture the experimental response in both loading directions. The optimal
constitutive model fits, assuming stress-strain behavior consistent with Quapp and Weiss
(1998), are shown in Fig. 5.3. Figures 5.3a-c show the relative insensitivity of model form
in describing the stress-strain behavior along the preferred material direction, while Figs.
5.3d-f illustrate how nearly linear stress-strain behavior is well represented by nearly linear
models.
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Table 5.2: Best fit constitutive parameters of various transversely isotropic, hyperelastic
material models

Feng C1 (MPa) B (MPa) ζ
Quapp and Weiss (1998) 1.87 100 12.8
Henninger et al. (2013, 2015) 0.0339 100 108
WeissA C1 (MPa) B (MPa) C3 (MPa)
Quapp and Weiss (1998) 1.87 100 43.5
Henninger et al. (2013, 2015) 0.0339 100 6.74
WeissB - No linear region C1 (MPa) B (MPa) C3 (MPa) C4

Quapp and Weiss (1998) 2.30 100 11.1 11.9
Henninger et al. (2013, 2015) 0.0435 100 0.153 36.6
WeissB C1 (MPa) B (MPa) C3 (MPa) C4 C5 (MPa) λ∗

Quapp and Weiss (1998) 2.30 100 2.91 27.5 335 1.05
Henninger et al. (2013, 2015) 0.0435 100 0.0589 49.7 120 1.07
cHGO C1 (MPa) B (MPa) k1 (MPa) k2
Quapp and Weiss (1998) 1.87 100 38.9 5.73
Henninger et al. (2013, 2015) 0.0339 100 2.72 33.1
dcHGO C1 (MPa) B (MPa) k1 (MPa) k2 κ
Quapp and Weiss (1998) 1.87 100 38.9 5.73 0.00
Henninger et al. (2013, 2015) 0.0339 100 2.72 33.1 0.00
oFJC Cr (MPa) B (MPa) a b, c
Quapp and Weiss (1998) 4.99 100 2.11 0.734
Henninger et al. (2013, 2015) 0.228 100 2.204 0.406
oWLC Cr (MPa) B (MPa) a b, c
Quapp and Weiss (1998) 1.79 100 4.33 1.67
Henninger et al. (2013, 2015) 0.0180 100 4.13 1.23
oMAC Cr (MPa) B (MPa) a b, c Λ
Quapp and Weiss (1998) 1.08 100 8.44 3.40 6.00
Henninger et al. (2013, 2015) 0.0174 100 4.59 1.45 2.81
aMAC Cr (MPa) B (MPa) Λ ρ0/Λ k1 (MPa) k2
Quapp and Weiss (1998) 10.3 100 0.771 0.878 39.3 5.41
Henninger et al. (2013, 2015) 0.0289 100 0.260 0.958 2.74 32.9

In the case Henninger et al. (2013, 2015) type data, nearly all constitutive models have
equivalent suboptimal performance in the transverse direction (r2T22

∼= 0.78 for all but
the aMAC model). The nonlinearity in the stress-strain behavior in the preferred material
direction of the MCL is again well-captured and largely independent of model type (Figs.
5.4a-c), except for the Feng (Eq. 5.12) and WeissA (Eq. 5.13) models. However, the high
initial nonlinearity in the transverse direction forces nearly linear constitutive models to be
equally non-descriptive (Figs. 5.4d-f). This failure provides an opportunity for constitutive
models with alternative transverse behavior formulations to favorably model the multi-
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Figure 5.3: Best constitutive model fits along (a-c) and normal to (d-f) the preferred mate-
rial direction assuming stress-strain data from Quapp and Weiss (1998).

directional stress-strain behavior. The aMAC model has excellent agreement with stress-
strain data in both loading directions (r2T11 = 0.98, r2T22 = 1.0 (Table 5.1); Figs. 5.4c,f),
with the nonlinearities well captured by the physics of the model.

Independent from the form of the stress-strain behavior, differences between the cHGO
and dcHGO were not discernable (Table 5.1). Specifically, the fiber dispersion parameter,
κ, was determined to be zero within numerical precision (Table 5.2). Both sets of exper-
imental data—from Quapp and Weiss (1998) and Henninger et al. (2013, 2015)—appear
to lack sufficient power to justify the full complexity of the constitutive model proposed
by Weiss et al. (1996) (WeissB; Table 5.1). Finally, differences between the chain based
models—oFJC, oWLC, and oMAC—were virtually negligible.

5.4.2 Physiological ligament loading

A representative deformation was applied to a model ligament to highlight the structural
nuances of the various constitutive forms. Figures 5.5 and 5.6 show the final configurations
of a cylindrical specimen subjected to an unconstrained axial displacement and rotation.
Results in Figs. 5.5 and 5.6 are shown assuming Cartesian and cylindrical assignments of
material bases (see Fig. 5.2 for visualizing the differences between these two implemen-
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Figure 5.4: Best constitutive model fits along (a-c) and normal to (d-f) the preferred mate-
rial direction assuming stress-strain data from Henninger et al. (2013) and Henninger et al.
(2015).

tations). Figures 5.5a,b,e,f show the insensitivity of the cHGO and aMAC models to the
material basis construction, with the Cartesian sense on the left and cylindrical on the right
within each subfigure. Figures 5.5c,g and 5.6d,h assume a Cartesian material basis with
the oFJC model, while Figs. 5.5d,h and 5.6c,g contain a cylindrical implementation. From
Figs. 5.5c,g and Figs. 5.6d,h the importance of implicit material structure becomes appar-
ent. By assuming Cartesian local material orientations there is a loss of complete radial
symmetry in the predicted deformation field. Total radial symmetry can be preserved with
the oFJC model by using a cylindrical mapping of material bases (Figs. 5.5d,h and 5.6c,g).

5.5 Discussion

The constitutive theory of ligaments is, paradoxically, both well-researched and incom-
plete. Material descriptions of ligaments are, and must be, constructed and tested with
respect to experimental observations. Typically this takes the form of stress-strain behav-
ior, but these experimental observations are often difficult to obtain repeatably and reliably.
This is further complicated by data for soft tissues taking numerous and potentially con-
flicting forms, including quasi-static extension (unidirectional and bidirectional) and com-
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Figure 5.5: Central cross-sections of FE maximum principal strains assuming best fit (a,e)
cHGO, (b,f) aMAC, (c-d,h-g) oFJC models assuming data from Quapp and Weiss (1998)
and Henninger et al. (2013, 2015), respectively. Cart. and Cyl. refer to Cartesian and
cylindrical local material bases, respectively.

pression, dynamic/impact loading, and indentation. Moreover, increasingly there are new
data in the time domain in the form of creep, stress relaxation, and fatigue loading, and
these experiments are performed across length scales—from the cellular scale up through
joint level mechanics.

Constitutive theories are critically important in evaluating deformable biological struc-
tures and systems. They represent the link between deformation and internal loading, in-
trinsically driving the response of their system. General, physiologically representative,
and accurate constitutive theories are crucial for describing biological systems because
the loading states of tissues tend to be complex. Even during simple activities, individ-
ual tissues may undergo significant amounts of shear, bending, tension, and compression,
which may be further complicated by the existence of the deformation manifesting het-
erogeneously. This means that sufficiently robust constitutive theories are necessary for
predicting real loading and deformation within and among tissues. Once established, con-
stitutive theories afford a practical means for validating and justifying FE models of tissues;
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Figure 5.6: FE maximum principal strains assuming best fit (a,e) cHGO, (b,f) aMAC, (c-
d,g-h) oFJC models assuming data from Quapp and Weiss (1998) and Henninger et al.
(2013, 2015). For the oFJC model (c,g) cylindrical and (d,h) Cartesian bases are shown.
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they also provide a platform for evaluating, in a parametric sense, factors that may predis-
pose individuals to injury or disease.

In this work, we reexamined the mechanisms for evaluating constitutive models of lig-
aments. In the context of quasi-static stress-strain of the MCL along and normal to the
preferred material (collagen) direction (Henninger et al., 2013, 2015; Quapp and Weiss,
1998), we investigated the ability of a variety of material models to capture those observa-
tions. Commonly employed transversely isotropic, exponential-type material models were
recast in terms of total strain invariants and compared to generalized orthotropic statisti-
cal chain-based and hybrid theories. Both historic (Quapp and Weiss, 1998) and recent
(Henninger et al., 2013, 2015) stress-strain behaviors were used in the determination of
optimal material parameters for each candidate material model. Once determined, optimal
material parameters were implemented in an FE framework to illustrate the ability of each
constitutive theory to describe generalized deformation in soft tissues.

5.5.1 Assessing model performance: Quapp and Weiss (1998) data

An elementary criterion for differentiating between competing constitutive theories is the
number of material parameters used in their construction. Minimizing the number of ma-
terial parameters necessary to describe observed deformations increases the power of the
model; a constitutive theory with a smaller number of material parameters reduces the
chances of nonuniqueness in the fitting and generally improves confidence that the model
is actually motivated by the physics of deformation, not a result of overfitting. Material de-
scriptions evaluated in this study used between 3 and 6 parameters, with varying degrees of
success. Each material model contained parameters that describe the small stretch (either
C1 or Cr) and volumetric (B) behaviors.

From the explicit I4 models, the Feng and WeissA modles each have an additional pa-
rameter, ζ and C3, respectively, that describes the nonlinearity of material along the pre-
ferred direction. The WeissB, without a linear region, (a reduced form of Eq. 5.7) and
cHGO models each add an additional parameter (4 total) to better control the nonlinearity
along the preferred material direction. The dcHGO model adds one more parameter over
the cHGO model, bringing the total up to 5, allowing for directionality to be distributed
over a range of orientations. Finally, the general WeissB model contains 6 material param-
eters, with the additional two unique parameters describing the transition point and slope
of the linear region of the stress-strain response in the preferred material direction.

The chain-based models are formulated differently than the explicit invariant-based
models, though their material parameters can be similarly described in terms of the ba-
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sic physics they represent. The oFJC and oWLC models each contain 2 additional material
parameters over the initial and volumetric stiffnesses (for a total of 4 parameters): one
that describes the nonlinearity (a) and the other the relative transverse isotropy (a : b).
The oMAC adds an additional parameter (5 total) to allow for arbitrary chain loading in
the reference configuration. The proposed hybrid, aMAC, model has 6 material parame-
ters, which offer more control over nonlinearity along and normal to the preferred material
direction.

In addition to the number of required material parameters within a particular model,
the ability of the model to describe the observed stress-strain behavior of the MCL is fun-
damental in determining its appropriateness. Quapp and Weiss (1998) presented stress-
strain behavior of the MCL along and normal to the preferred material direction that is
nearly linear in the transverse (typically assumed as the pure matrix response of the tis-
sue) direction (Fig. 5.1b), which has been prolific in its adoption by the knee modeling
community that uses anisotropic MCL representations (Doweidar et al., 2010; Ellis et al.,
2006; Gardiner and Weiss, 2003; Halloran et al., 2005; Huang et al., 2012; Kiapour et al.,
2014a,b; Marchi and Arruda, 2017a; Marchi et al., 2017a; Mootanah et al., 2014; Peña
et al., 2005a,b, 2006a,b, 2007; Quatman et al., 2011; Wan et al., 2013; Weiss et al., 2005).

For data of this type, the material models presented herein all generally capture the
experimental stress-strain data—the minimum r2 in either loading direction was 0.97. Ma-
terial models with 3 material parameters (Feng and WeissA) performed marginally worse
than those containing 4 or more parameters (Table 5.1); differences were found in the di-
minished ability to describe the nonlinearity in the preferred material direction, with no
noticeable differences in the description of the transverse behavior. Material models with 4
parameters predicted the variance in the experimental data identically (Table 5.1; r2T11 and
r2T22 equal to 0.99 and 0.97, respectively). This performance and parameter equivalency
complicates differentiating and selecting an appropriate material model for a particular
analysis.

Five material parameters did not improve performance over their 4 material parameter
equivalents; neither fiber distribution in the dcHGO nor arbitrary chain loading the oMAC
models adds, for these data, descriptive power over the aligned cHGO or implicitly de-
fined oFJC/oWLC models, respectively. Similarly, adding the linear region to the WeissB

model adds only a small marginal benefit—rT11 = 0.99 → rT11 = 1.0 (Table 5.1)—in
model/experiment agreement along the preferred material direction (Fig. 5.3a and Fig.
5.4a), albeit at the cost of two additional material parameters (C5 and λ∗).

While the proposed hybrid model does allow for the most accurate representation of the
Quapp and Weiss (1998) experimental data (r2T11 = 0.99 and r2T22 = 1.0; Table 5.1) and is a
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slight improvement over the full WeissB model (comparable in number of material parame-
ters), the real benefit comes from its ability to precisely describe the concavity, even in this
nearly linear case, of the transverse stress-strain behavior (Fig. 5.3f). Notwithstanding the
hybrid model, constitutive theories explored herein assume explicit or pseudo neo-Hookean
small stretch behavior in the transverse direction. This fundamental difference, driven by
the compressible, eight-chain MacKintosh chain network in the material matrix phase of
the hybrid (aMAC) model, affords model flexibility and increased adaptability in describ-
ing a larger family of stress-strain responses.

5.5.2 Assessing model performance: Henninger et al. (2013, 2015)
data

Stress-strain data of the form presented in Henninger et al. (2013, 2015) (Fig. 5.1b,c) illus-
trates this difference in the basic model physics more drastically. In the context of these data
there are two new obstacles to tackle: another order of magnitude difference—compared to
data in Quapp and Weiss (1998)—between the longitudinal and transverse responses and
increased concavity in both loading configurations, particularly in the transverse direction
at small stretch.

Increased longitudinal concavity and nonlinearity are handled well by nearly all the
candidate constitutive theories (r2T11 > 0.95; Figs. 5.4a-c), save for the 3 material parameter
Feng (r2T11 = 0.76) and WeissA (r2T11 = 0.78) models. This limitation can be explained by
understanding that, for the assumption of uniaxial extension along the preferred material
direction, the Feng model is linear in I4 (quadratic in applied stretch), while for the range
of applied stretches the WeissA model is approximately linear in I4; for the range of applied
stretches (λ ∈ [1, 1.1]), functions linear in I4 are also approximately linear in stretch.

So while there is a clear distinction in the ability to describe the longitudinal stress-
strain behavior, the same matrix phase limitation, namely assuming a neo-Hookean form,
fails to differentiate between models in the transverse direction. However, this model equiv-
alency now, as opposed to that observed with Quapp and Weiss (1998) experimental data,
comes with comparably poor performance (r2T22 ∈ [0.77, 0.79]; Table 5.1; Figs. 5.4e-f). It
is interesting to note that there is again only a similarly small gain in adding a linear region
within the WeissB model assuming Henninger et al. (2013, 2015) data. The consistency of
this particularly small marginal benefit of including a linear region is illustrative and brings
up some reasonable reservations about its appropriateness in modeling the MCL.

This suboptimal performance parity opens the door for improvement. High nonlinear-
ity and initial concavity in the transverse direction are well suited to the underlying physics
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of the MacKintosh chain network in the matrix phase of the aMAC model. Data of this
form highlights the adaptability of the proposed aMAC model, characterized by similarly
descriptive behavior along the preferred material direction (r2T11 = 0.98) and superior pre-
dictive ability in the transverse direction (r2T22 = 1.0).

Despite the descriptive successes of the constitutive theories presented in current work,
they must be tempered and placed in the appropriate context. There are some limitations
that are implicit to the forms of the candidate material models, though some of the most
vexing challenges manifest from the data themselves. For the MCL there are only limited
quasi-static experimental data that describe the stress-strain behavior of the tissue in mul-
tiple orientations with respect to the preferred material direction, and these data are at best
inconsistent and at worst contradictory (Henninger et al., 2013, 2015; Lujan et al., 2007;
Quapp and Weiss, 1998).

Moreover, all constitutive theories examined in this work were fitted and their perfor-
mance evaluated with respect to the available experimental data, and not tested against
additional data not used in their formulation. If significant variation and limited quantities
of basic characterization data are accepted as immutable, any predictions made using a fit-
ted constitutive model are necessarily limited to the range of data used in its construction.
Extrapolation outside the bounds defined by the underlying experimental data should only
be done with caution—inherent nonlinearity and anisotropy further complicate this issue.

Additionally, none of the theories presented herein include elements of ligament plas-
ticity or damage. These factors are likely to be important in analysis related to the pre-
diction of ligament injury or rupture during excessive loading events. It should also be
noted that theories involving chain-based mechanics proved computationally more costly
to determine best fit constitutive parameters than explicit invariant models with an equiv-
alent number of material parameters. It is unclear the extent to which this increase was
due to the complexity of the stress-strain behavior or the shape of the solution space of the
corresponding objective function.

5.5.3 Idealized ligament deformation

Once a sufficiently representative constitutive theory has been determined, the next step
in the analysis workflow is typically its incorporation into a FE model. Various best fit
material models were examined in the context of an example ligament deformation. The
extension and twisting of a cylindrical specimen were selected to highlight differences be-
tween material models, particularly with respect to implicit structural elements. In material
models with a single fiber family, like the cHGO and aMAC models, there exists total
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rotational symmetry of the RVE with respect to the fiber preferred material direction.
These implicit symmetries manifest as consistency between FE models constructed

with Cartesian and cylindrical local coordinate bases (Fig. 5.2 and 5.5a-b,e-f). While
this may be the desired result, many systems are structured such that stiffening elements
interact to varying degrees. If this is the case, single fiber models may fail to be repre-
sentative; however, chain based network models that have been extended to an orthotropic
setting, like the oFJC model, contain structure (Fig. 5.2). Now the orientation of local
material bases in the cross-sectional plane of the specimen has real consequences for the
expected deformation (Fig. 5.6). This implicit material structure is not necessarily a short-
coming of the model, but may be an asset in explaining ligament deformation through a
readily accessible micromechanical analog, as long as there is a strong foundation for its
appropriateness.

5.6 Conclusion

For soft tissues, and in solid mechanics generally, there is an ongoing balance between de-
scribing the observed deformations and simultaneously motivating the underlying physics
of the deformation process. Continuum approaches in structural biomechanics with clini-
cal applications have made previously inaccessible problems possible and have the power
to be at the center of incredibly valuable descriptive and predictive tools. Theoretical de-
scriptions of the basic physics of deformation are at the heart of continuum mechanics.
Constitutive theories describe deformation, and they can be constructed in myriad ways.
They are approximations designed to faithfully represent the actual mechanical response to
loading. In this work we examine the ability of various transversely isotropic, hyperelas-
tic constitutive theories to represent the breadth of stress-strain responses of the MCL. We
provide a detailed discussion of the requisite form of slightly compressible constitutive the-
ories, and outline a straightforward procedure for their implementation in commonly used
FE solvers. In the case of the MCL, when constitutive theories fail to be representative it
tends to be due to the nature of the stress-strain response transverse to the preferred mate-
rial direction. To address this shortcoming, a novel hybrid model is proposed and shown to
superiorly describe both nearly linear and highly nonlinear data in the transverse direction.
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CHAPTER 6

Stability in computational knee models driven by physiologically and anatomically
representative ligaments

This chapter has been submitted for publication and may be referenced as:

B. C. Marchi and E. M. Arruda. Stability in computational knee models driven by
physiologically and anatomically representative ligaments. In Review, 2017b

6.1 Introduction

The ACL is one of the four major stabilizing ligament structures in the knee, two that span
collaterally and two internally. The ACL has a significant role in preventing excessive
ATT and ITR. There is a large and ever growing consensus that under the application of
an anterior tibial load the ACL is the primary restraint to ATT (Brantigan and Voshell,
1941; Butler et al., 1980; Draganich et al., 1990; Fukubayashi et al., 1982; Furman et al.,
1976; Haimes et al., 1994; Kondo et al., 2014; Loh et al., 2003; Markolf et al., 1976;
Piziali et al., 1980b; Sakane et al., 1997; Takai et al., 1993; Torg et al., 1976; Woo et al.,
1999; Zantop et al., 2007a). The anatomy of the ACL motivates this stabilizing feature; its
attachments, located proximally on the femoral condyle and distially on the tibial plateau,
are oriented such that ATT causes them to separate, resulting in increased ACL tension and
resistance to motion (McLean et al., 2015; Woo et al., 2006). It has been shown that the
ACL can carry up to 90% of the applied anterior load during ATT, and that by completely
sectioning the ACL ATT can increase by more than a factor of two (Draganich et al., 1990;
Fukubayashi et al., 1982; Haimes et al., 1994; Kondo et al., 2014; Markolf et al., 1976;
Piziali et al., 1980b; Zantop et al., 2007a). While the resistive role of the ACL to ATT is
easily visualized and well-established, the exact mechanisms by which the ACL regulates
ITR are still unclear. There seems to be an effect of ACL transection on internal/external
rotational stability (Amis et al., 2005; Andersen and Dyhre-Poulsen, 1997; Gabriel et al.,
2004; Kanamori et al., 2000; Kondo et al., 2014; Lipke et al., 1981; Noyes et al., 2017;
Zantop et al., 2007b), though the extent of this effect is still disputed (Draganich et al.,
1990; Lane et al., 1994; Reuben et al., 1989).
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The integrity of soft tissues in the knee is critical for maintaining normal joint function-
ality and performance. Problematically, ACL injury is common, typically with associated
pain and diminished mobility. It is estimated that there are over 200,000 ACL reconstruc-
tions performed annually in the United States, with an associated cost of more than two
billion dollars (Gasser and Uppal, 2006; Griffin et al., 2006; Spindler and Wright, 2008).
ACL injuries range from sprains to partial tears and full-thickness ruptures. Though the
morphologies of ACL injuries are complex, it has been shown that significant numbers
of ACL tears and ruptures initiate in the posterior aspect of the proximal third of its PLB
(Beaulieu et al., 2014, 2015; Kennedy et al., 1974; Lipps et al., 2013; Meyer and Haut,
2008; Meyer et al., 2008; Wojtys et al., 2016). Physical examination, in particular the Lach-
man (Torg et al., 1976) and pivot shift tests, is still the predominate method for determining
ACL injury (Griffin et al., 2006; McLean et al., 2015; Spindler and Wright, 2008; Woo
et al., 1999). These macroscopic assessments use knee laxity as an indicator of ligament
health. After a positive joint laxity examination, magnetic resonance imaging has become a
popular confirmation diagnostic modality (Spindler and Wright, 2008). The effects of ACL
injuries are not only acute, but are also associated with an elevated risk of secondary soft
tissue diseases, like OA (Griffin et al., 2006; Lohmander et al., 2004; Spindler and Wright,
2008).

Given the importance of the ACL in joint stability and its frequency of injury, there has
been a concerted effort to learn how it responds to knee loading. Understanding the native
and injury causing biomechanics of the ACL is complicated, however, by the real, non-
trival anatomy of the ligament. The ACL is a hierarchical structure composed primarily of
aligned collagen, encapsulated in a complaint extracellular matrix (Petersen and Tillmann,
1999; Petersen and Zantop, 2007; Weiss and Gardiner, 2001). The ACL has a location
dependent cross-section (Harner et al., 1999), with a large, discernible macroscopic lat-
eral twist (McLean et al., 2015; Moghaddam and Torkaman, 2013; Petersen and Zantop,
2007). Its attachments have a unique structure that can be characterized by the flattening
and fanning of collagen fibers at the bony entheses (McLean et al., 2015).

This bulk anatomical description of the ACL is, however, also incomplete. In addition
to the gross ACL complexity, it has been well-established that the ACL contains two in-
dependent fiber bundles, the AMB and PLB (Arnoczky, 1982; Duthon et al., 2006; Girgis
et al., 1975; Petersen and Zantop, 2007). The bundles twist around each other through-
out the ligament bulk, contributing to the observed macroscopic ligament twist (McLean
et al., 2015; Petersen and Zantop, 2007). The AMB has been shown to be significantly
longer than the PLB, and there does not exist a physiological configuration in which both
of the bundles are completely unloaded (ACL prestrain) (Beynnon et al., 1992, 1995; But-
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ler, 1989; Fleming et al., 1994; Howe et al., 1990; McLean et al., 2015). All this anatomical
complexity is further complicated by the mechanics of the ACL, which potentially includes
elements of nonlinear elasticity, viscoelasticity, anisotropy, and spatial heterogeneity. It has
been shown that these features can manifest at the bundle-level, with the AMB and PLB
exhibiting independent constitutive behaviors (McLean et al., 2015).

Taken together, the intricacy of the ACL makes reconstruction seem like a daunting
task. ACL reconstruction typically involves replacing the injured ligament with some graft
material, which is secured in place within tunnels drilled into the femur and tibia approx-
imately coincident with their native ACL attachment sites (Spindler and Wright, 2008).
Currently there are two primary graft types used in ACL reconstruction (patellar tendon
and hamstring tendon), and they are usually either allo- or autografts (Anderson et al.,
2001; Freedman et al., 2003; Han et al., 2008; Jackson et al., 1993; Marder et al., 1991).
Presently, ACL reconstruction techniques focus on restoring native ligament anatomy in an
effort to reestablish joint stability. Modern ACL reconstruction has proven to be successful
in reducing joint instability and decreasing the likelihood of secondary soft tissue trauma
(Andersson et al., 1989; George et al., 2007).

Despite the successes of ACL reconstruction, there are still a number of challenges
associated with surgical intervention. Most of these shortcomings, in particular acceler-
ated secondary OA development (Griffin et al., 2006; Lohmander et al., 2004; McLean
et al., 2015; Spindler and Wright, 2008) and increased risk of ligament reinjury (Shelbourne
et al., 2009), manifest from the fundamental change in local tissue mechanics associated
with replacing one tissue type with another. It has been shown that individuals who have
undergone ACL reconstruction exhibit divergent joint kinematics and local tissue deforma-
tion compared to healthy joints (Deneweth et al., 2010; Tashman et al., 2004) and report
increased knee laxity with time (Salmon et al., 2006; Selmi et al., 2006).

These challenges have motivated investigations into ACL structure/function relation-
ships. Most notably, researchers have employed sequential sectioning procedures in
an attempt to experimentally quantify the mechanical contributions of individual tissue
structures (Brantigan and Voshell, 1941; Diermann et al., 2009; Draganich et al., 1990;
Fukubayashi et al., 1982; Furman et al., 1976; Haimes et al., 1994; Kanamori et al., 2000;
Kondo et al., 2014; Loh et al., 2003; Markolf et al., 1976; Nielsen et al., 1984; Noyes et al.,
2017; Piziali et al., 1980a,b; Zantop et al., 2007a,b). These studies have the ability to show
general kinematic effects and can be used to approximate average tissue-level mechanical
contributions, but are limited in their capacity to describe detailed, full-field deformations
and important structural features across length scales.

To address some of the weaknesses of experimental techniques, FE methods have
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been employed to investigate both healthy (Kiapour et al., 2014a,b; Limbert et al., 2004;
Mootanah et al., 2014; Song et al., 2004; Wan et al., 2013; Xie et al., 2009; Zhang et al.,
2008) and reconstructed (Bae et al., 2015; Huang et al., 2012; Kim et al., 2011a; Peña et al.,
2005b; Ramaniraka et al., 2007; Wan et al., 2017; Westermann et al., 2013, 2016) ACL
physiologies. These studies provide some context for the role of the ACL in joint stability,
but often overpredict knee translations and rotations with respect to clinical assessments
of stable knees. They also tend to overestimate local tissue strains relative to comparable
experimental studies. Furthermore, while there have been some attempts to understand the
role of the double bundled structure of the ACL, these efforts have largely been focused
on idealized reconstructive ligament geometries without any consideration of the differ-
ences between the mechanical properties of the AMB and PLB (Huang et al., 2012; Kim
et al., 2011a; Ramaniraka et al., 2007). What has been missing from this body of work is
an investigation into the specific contributions of native ACL double bundled structure in
combination with intrinsic, native ACL prestrain and unique bundle constitutive behavior
on healthy joint motions.

We hypothesize that ACL prestrain is an important stabilizing feature that will result
in joint motions consistent with clinical observations of knees with healthy ACLs, and that
without prestrain knee motions will not be within relevant clinical ranges. Starting from
a healthy, representative model of an adult knee, we computationally reconstruct the indi-
vidual bundle domains of the ACL. From this nonphysiological, stress-free configuration,
in which each bundle is assumed to be truly unloaded, the AMB and PLB are deformed
back into their physiological configurations through a series of macroscopic joint and tis-
sue manipulations. This procedure establishes an estimate of the heterogeneous internal
loading of the ACL. This double bundle model—both with and without predicted prestrain
fields—is compared to a traditional, single bundle ACL representation using two clinical
assessments of ACL integrity, the Lachman and pivot shift tests. Within the clinical as-
sessment framework, we also explore the effects of incorporating experimentally observed,
independent bundle mechanical properties. We show how the inclusion of ACL prestrain
brings predicted joint kinematic and macroscopic strain measures into clinically observed
ranges, and how failure to consider ACL prestrain drastically decreases predicted joint sta-
bility. ACL prestrain may also help to explain the small relative changes in local tissue
strain observed during clinical assessments, and provides insights into individual bundle
contributions during different loading conditions.
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6.2 Methods

6.2.1 ACL constitutive theory

Given the composition of structural ligaments, it is typically assumed that they behave
mechanically like transversely isotropic continua (Bae et al., 2015; Dhaher et al., 2010;
Gardiner and Weiss, 2003; Guo et al., 2009; Huang et al., 2012; Kiapour et al., 2014a,b;
Kim et al., 2011a; Limbert et al., 2004; Orsi et al., 2015; Peña et al., 2005b, 2006a,b, 2007;
Quapp and Weiss, 1998; Wan et al., 2013, 2014, 2017; Westermann et al., 2013, 2016;
Zhang et al., 2008). Within this mechanical framework, the preferred material direction is
assumed to be oriented along the mean collagen direction. Useful descriptions of deforma-
tion rely on accurate and representative mechanical characterization experiments. Mechan-
ical characterization data in the preferred direction for the AMB and PLB were acquired
from the relevant tissues (McLean et al., 2015); however, given the limited mechanical data
in the transverse direction, transverse stress-strain data of the AMB and PLB were assumed
to be similar to that observed in the medial collateral ligament (Quapp and Weiss, 1998).
In addition to considering unique bundle mechanics, an averaged ACL response was also
approximated and examined. Experimental data in both loading directions are shown in
Fig. 6.1.
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Figure 6.1: Experimental (∗: McLean et al. (2015); †: Quapp and Weiss (1998)) and consti-
tutive model fits of transversely isotropic average ACL and individual bundle mechanical
responses.

A simplified form of a general, orthotropic hyperelastic constitutive theory was used
to describe each realization of the ACL or its bundles. The constitutive theory used herein
is an extension of an isotropic, freely jointed eight-chain model originally developed with
applications in rubber elasticity (Arruda and Boyce, 1993; Bischoff et al., 2002a,b) and has
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been shown to faithfully describe soft tissues assumed to be transversely isotropic (Bischoff
et al., 2002c; Kang et al., 2008; Kuhl et al., 2005; Ma and Arruda, 2013; Ma et al., 2010;
Marchi and Arruda, 2017a; Marchi et al., 2017a,b). The exact form of the strain energy
function assuming transverse isotropy, as well as details regarding the determination of
optimal constitutive model material parameters and its implementation in FE models, can
be found in Marchi et al. (2017b). Best fits for each set of mechanical characterization data
(AMB, PLB, and average ACL) are plotted in Fig. 6.1 and optimal material parameters are
presented in Table 6.1.

Table 6.1: ACL and bundle material parameters
Cr

(kPa)
B

(MPa)
a b/a

AMB 83.9 100 1.278 0.887
PLB 70.2 100 1.218 0.959
Average ACL 80.6 100 1.255 0.914

6.2.2 Construction of FE geometries

Individual ACL bundles and their associated prestrain distributions were determined by
computationally reconstructing their domains from a homogeneous segmentation of mag-
netic resonance images from a healthy adult ACL. The methodology for bundle separation
and prestrain calculation is shown in Fig. 6.2. From the healthy, homogeneous segmen-
tation (typically assumed to be representative of true ACL anatomy in FE studies), the
ligament was manipulated at the joint-level to approximately unload the bulk of the struc-
ture. This unloading predominately involves untwisting and translating the bulk ACL about
an axis of rotation approximately aligned with the expected volume of the PLB (McLean
et al., 2015; Petersen and Zantop, 2007). Next, the bundles were separated in accordance
with experimental observation (Kopf et al., 2009; Luites et al., 2007; McLean et al., 2015;
Petersen and Zantop, 2007). To account for the longer mean length of the AMB compared
to the PLB (Butler, 1989; McLean et al., 2015), the AMB was further extended, resulting
in an additional 5% nominal end-to-end strain after the bundles were separated.

In this configuration, with individual AMB and PLB domains, the complete deforma-
tion histories associated with the model creation were cleared. This stress and strain free
configuration served as the basis for all prestrain calculations; it represents an approxima-
tion of the true reference configurations of the AMB and PLB to which they would return if
unloaded and unconstrained. ACL prestrain was calculated by applying equal and opposite
boundary conditions relative to those used in the unloading procedure. That is, the AMB
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Figure 6.2: Workflow for constructing a double bundle, prestrained ACL FE model. (a) A
physiologically twisted and strained ACL (constructed from magnetic resonance images) is
unloaded into its (b) bulk untwisted configuration. (c) Individual bundles are isolated. (d)
The AMB is extended and the deformation history is cleared. In this configuration, both
bundles of the ACL are assumed to be completely unloaded and strain-free. (e) Final double
bundle configuration and associated prestrain calculated by applying untwisting boundary
conditions in reverse. This produces an estimate for the physiological configurations and
associated strains of the AMB and PLB.

was first compressed from its unloaded configuration, then the joint manipulated such that
the bundles of the ACL wound around each other and the bone positions are coincident
with their original locations (Fig. 6.2e). Bundle prestrain distributions were determined
assuming both homogeneous (average ACL) and individual bundle mechanical properties.
To account for loose connective tissue usually found between and around the AMB and
PLB, the volume between the bundles was filled with a compliant material (not shown in
Fig. 6.2) (Petersen and Zantop, 2007). This tissue structure, assumed to behave like a neo-
Hookean solid with initial modulus on the order of the ligament transverse stiffness, helped
to coordinate bundle motion during macroscopic joint manipulation, while preventing the
AMB and PLB from separating in a nonphysical manner during the prestraining procedure.

6.2.3 Computational approximations to clinical assessments

The role of ACL prestrain was examined in the context of two common clinical assessments
of ACL integrity: the Lachman (ATT) and pivot shift (ITR) tests. In each assessment two
geometric models were evaluated: single and double bundle ACL representations. For the
single bundle ACL model, average ACL material properties were assumed, with the pre-
ferred material direction following the bulk centerline of the tissue. In the double bundle
models, two cases were considered: with prestrain and without prestrain. In each of these
models both homogeneous and individual bundle mechanics were assessed. As with the
single bundle ACL model, preferred material directions for the AMB and PLB were as-
sumed to follow their respective bulk centerlines. Therefore, a total of five models were
analyzed in each of the clinical assessments: single bundle ACL with homogeneous (aver-
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age) ACL properties (SBH), double bundle without prestrain and with homogeneous bundle
properties (DBH), double bundle with prestrain and with homogeneous bundle properties
(DBPH), double bundle without prestrain and with individual bundle properties (DBI), and
double bundle with prestrain and with individual bundle properties (DBPI). During the clin-
ical assessments, the proximal (femoral) attachments of the ACL bundles—in either single
or double bundle representations—were tied to a rigid representation of the femur, while
the distal ACL bundle (tibial) attachments were fully constrained. All computations were
performed in Abaqus/Standard v6.14 (SIMULA, Providence, Rhode Island, United States).
Contact between all bodies was modeled generally, without friction.

6.2.3.1 Lachman (ATT) test

The Lachamn test has been commonly modeled as an anterior tibial load of 134 N rel-
ative to a fixed femur (Gabriel et al., 2004; Loh et al., 2003; Torg et al., 1976; Yasuda
et al., 2006; Zantop et al., 2007a). Computationally, this assessment was implemented
by applying a posterior femoral load, while constraining all rotations and medial-lateral
and superior-inferior translations. The distal attachments of the AMB and PLB—the tibial
attachments—were fixed during the application of load.

6.2.3.2 Pivot shift (ITR) test

To determine the role of the ACL in internal tibial rotational stability, an incremental ex-
ternal rotational displacement was applied to the femur up to 30◦. While the femur was
rotated, all translations and all other rotations of the femur were constrained. As with the
ATT test, during the assessment the distal ACL bundle attachments were fixed throughout
the load step.

6.2.4 Tissue-level strain measures

Maximum tissue-level strain measures—like the maximum tensile and principal strain ob-
served in a particular tissue—were calculated at the 99th percentile of nodal strain distribu-
tions. Maximum strain measures were presented at the 99th percentile to account for any
spurious deformation that may have occurred artificially due to geometric, boundary, or
discretization inaccuracies. Due to the prestrain of the ACL, it is typically only possible
to calculate strains relative to some general, deformed configuration during a real clinical
assessment. This limitation of experimental studies means that the strains presented are
often not representative of the true strain state of the tissue, but are, in reality, only strain
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differences from the physiological, deformed configuration. Therefore, in simulations in-
volving ACL prestrain, maximum tissue-level measures were calculated through a two step
procedure. First, the appropriate ACL prestrain strain field was subtracted from the final
strain distribution of the corresponding clinical assessment. Then, the relevant maximum
tissue-level strain measure was determined from the resulting difference strain field. This
approach provides a more realistic mapping of computational strain predictions to experi-
mental data due to the nonzero strain fields present in assumed reference configurations of
the ACL.

6.2.5 Macroscopic deformation metrics

Joint-level kinematics were calculated as relative displacements and translations between
the tibia and femur. ATT was computed by measuring the amount of anterior tibial dis-
placement relative to the femur and was established directly from femoral displacements.
Similarly, ITR was determined from femoral rotations due to the rigid body assumption
of the bones. Macroscopic ACL strains were determined by quantifying changes in the
end-to-end distance from the centroid of the tibial attachment to the centroid of the femoral
attachment.

6.2.6 Statistical methods

Statistical methods were employed to parse the contribution of individual bundle mechan-
ics on predicted deformation within the AMB and PLB. For each tissue structure (AMB
or PLB) during an assessment (prestraining, ATT, or ITR), strain distributions assuming
homogeneous and independent mechanical properties were compared to identify if signif-
icant differences existed. Three statistical tests were used to explore the role of individual
bundle mechanics in either the AMB or PLB: a Kolmogorov-Smirnov (KS) goodness-of-
fit test (Massey Jr, 1951), a Mann-Whitney (MW) test (Mann and Whitney, 1947), and a
Signed Rank (SR) test (Wilcoxon, 1945) on matched nodal pairs.

The KS test was used to test the null hypothesis that the homogeneous and individual
mechanical property strains belonged to the same population, with the alternative hypoth-
esis that they belonged to different population distributions. The MW test was used to
test the null hypothesis that there was no difference between the medians of the strain dis-
tributions, with the alternative hypothesis that the medians were not equal. The SR tests
were performed on distributions of locationally matched nodal strain differences between
homogeneous and individual bundle mechanical property ACL models. This distribution
was calculated by subtracting the strains predicted in homogeneous models from the cor-
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responding individual bundle mechanics models at each node. The SR test was then used
to test the null hypothesis that the median of the resulting distribution was zero, with the
alternative hypothesis that it was not. In each statistical test the threshold for significance
was set at α = 0.05.

Physically, the KS test was used to determine if significant differences existed between
strains predicted using homogeneous and individual bundle properties. If the form of con-
stitutive behavior resulted in different strain predictions, the MW test was used to determine
if there was a corresponding median shift. Finally, the SR test on matched nodal strain data
pairs was used to investigate if there were any spatial changes in the distributions of pre-
dicted strain—i.e., to determine if there existed significant differences in the locations of
predicted strains.

6.3 Results

6.3.1 ACL prestrain

Prestrain in both bundles of the ACL was calculated at full extension. The macroscopic
ACL strain associated with the prestrain procedure, calculated with respect to the tibial
and femoral attachment centroids, was approximately 1%. Tensile strain and maximum
principal strain distributions are shown in Figs. 6.3a-b and 6.3c-d, respectively. Prestrain
in the AMB and PLB were determined assuming homogeneous (Figs. 6.3a,c) and individ-
ual (Figs. 6.3b,d) bundle mechanical properties. 99th percentile tensile strains in the ACL
(AMB/PLB) were 17.3%/18.4% and 16.5%/19.7% assuming homogeneous and individ-
ual bundle mechanics, respectively; 99th percentile maximum principal strains in the ACL
(AMB/PLB) were 17.6%/19.9% and 17.1%/20.3% assuming homogeneous and individual
bundle mechanics, respectively. Qualitatively, there is not a large difference between the
distributions of strain—either tensile or maximum principal—assuming homogeneous or
individual bundle mechanics (Fig. 6.3), though nominal increases in predicted strains were
observed with individual bundle mechanics. In both bundle formulations, high strains were
predicted on the posterior aspect of the proximal third of the PLB near the femoral attach-
ment. High strain regions were also observed in the midsubstance, both on the posterior
aspect of the PLB and anterio-medial aspect of the AMB.

While qualitatively large differences between bundle formulations were not apparent
(Fig. 6.3), statistical methods were employed to attempt to quantify the role of individual
bundle mechanical properties. p-values for the KS, MW, and SR tests for the AMB and
PLB are shown in Table 6.2. The incorporation of individual mechanical properties re-
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Figure 6.3: ACL tensile and maximum principal prestrain assuming (a,c) homogeneous
and (b,d) individual bundle mechanical behaviors, respectively.

sulted in significantly different distributions, medians, and spatial variations of tensile and
maximum principal strains in the PLB (Table 6.2). The distributions and medians of max-
imum principal strains corresponding to the AMB failed to provide sufficient evidence to
reject the null hypotheses. Additionally, the medians of the tensile strain distributions in the
AMB failed to provide sufficient evidence to reject the null hypothesis. The distributions
of tensile strains, as well as the spatial variations of tensile and maximum principal strains,
assuming homogeneous and individual bundle mechanical properties were determined to
be significantly different in both the AMB and PLB (Table 6.2).

6.3.2 Anterior tibial translation

The geometry, mechanical behavior, and inclusion of prestrain all had effects during ante-
rior tibial loading. Their effects on joint motion and macroscopic ACL strains are shown
in Fig. 6.4a and Fig. 6.4b, respectively. Without prestrain, both double bundle models
(DBH and DBI) predicted increased joint motion and, consequently, larger macroscopic
tissue strains compared to the single bundle (SBH) ACL geometric model (Fig. 6.4). By
considering prestrain (DBPH and DBPI), predicted ATT was drastically reduced compared
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Table 6.2: Summary of statistical analyses to determine the specific differences between as-
sumed constitutive models (built with either homogeneous or individual mechanical prop-
erties) in each ACL bundle associated with prestrain. Bold values indicate p < 0.05. For
MW tests, if significant differences are present an (H) or (I) denotes a larger median as-
suming homogeneous or individual bundle mechanical properties, respectively.

KS Test
(Distributions)

p value

MW Test
(Medians)
p value

SR Test
(Spatial variation)

p value
Max

principal Tensile
Max

principal Tensile
Max

principal Tensile

AMB 0.195 0.019 0.217 0.603 <0.001 <0.001
PLB <0.001 <0.001 <0.001 (H) <0.001 (H) <0.001 <0.001

to models without prestrain (Fig. 6.4a). ATT slightly increased in double bundle mod-
els when considering individual bundle mechanical properties both with (0.305 to 0.392
mm) and without (2.35 to 2.49 mm) prestrain at 134 N. Given the rigid bone assumption
and the character of the boundary conditions, similar trends were observed with respect to
macroscopic strains as with ATT. Even including the approximately 1% macroscopic ACL
strain associated with the addition of prestrain, prestrained models predicted lower total
macroscopic ACL strain than all ACL models without prestrain (Fig. 6.4b).
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Figure 6.4: (a) Joint kinematics and (b) macroscopic tissue-level strains corresponding to
anterior tibial loading.

Similar to the macroscopic measures, prestrain and bundle geometry, and to a lesser
extent bundle mechanical properties, had noticeable effects on tissue-level deformation.
A detailed breakdown of 99th percentile tensile and maximum principal strain differences

105



is shown in Fig. 6.5a and Fig. 6.5b, respectively. The inclusion of prestrain reduced
both tensile and maximum principal strain differences an order of magnitude, from over
7.5% to below 0.75% (Fig. 6.5). As with joint motion and macroscopic ACL strains,
considering the AMB and PLB geometrically separate without prestrain led to increases in
predicted local tissue strains (Fig. 6.5). In agreement with the observed macroscopic trends,
predicted deformation also increased with the inclusion of individual bundle mechanical
properties. This increase was most noticeable in the PLB without prestrain, where local
strain differences increased from 10.9% to 12.0% (Fig. 6.5).
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Figure 6.5: 99th percentile tissue-level maximum (a) tensile and (b) principal strain differ-
ences at maximum tibial displacement during anterior tibial loading.

Without prestrain, significant differences were found between the distributions, medi-
ans, and spatial variations of tensile and maximum principal strains in both bundles during
ATT (Table 6.3). With prestrain in the PLB, significant differences between mechanically
homogeneous and independent models were observed in every test, save for a failure to
reject the null hypothesis of no difference between the medians of the maximum principal
strain distributions (Table 6.3). There appears to be some effect of bundle mechanics in
the AMB with prestrain, though the exact nature of the relationship is more complicated.
Significant differences in the distributions of tensile strain and in the spatial variation of the
maximum principal strains were observed in the AMB. However, there was insufficient ev-
idence to reject the null hypotheses that the distributions of maximum principal strains, the
tensile and maximum principal strain medians, and the spatial variation of tensile strains
between homogeneous and independent mechanical bundle models in the AMB were not
different (Table 6.3).
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Table 6.3: Summary of statistical analyses to determine the specific differences between as-
sumed constitutive models (built with either homogeneous or individual mechanical prop-
erties) in each ACL bundle associated with ATT. Bold values indicate p < 0.05. For MW
tests, if significant differences are present an (H) or (I) denotes a larger median assuming
homogeneous or individual bundle mechanical properties, respectively.

KS Test
(Distributions)

p value

MW Test
(Medians)
p value

SR Test
(Spatial variation)

p value
Max

principal Tensile
Max

principal Tensile
Max

principal Tensile

AMB (Prestrain) 0.728 0.003 0.748 0.267 <0.001 0.177
PLB (Prestrain) <0.001 <0.001 0.215 <0.001 (I) <0.001 <0.001
AMB <0.001 <0.001 <0.001 (I) <0.001 (I) <0.001 <0.001
PLB <0.001 <0.001 <0.001 (I) <0.001 (I) <0.001 <0.001

6.3.3 Internal tibial rotation

The joint-level torque response, 99th percentile tissue-level tensile strains, and 99th per-
centile tissue-level maximum principal strains are presented as a function of joint angle in
Fig. 6.6a, Fig. 6.6b, and Fig. 6.6c, respectively. As with anterior tibial loading, including
prestrain resulted in drastically increased joint stability (Fig. 6.6a) and reductions in lo-
cal tissue deformation (Figs. 6.6b-c) compared to ACL models without prestrain. Double
bundle ACL models without prestrain (DBH and DBI) yielded noticeably less rotational
stiffness compared to a single bundle (SBH) ACL (Fig. 6.6a). While there were not consis-
tently large differences in the tissue-level strains between the AMB and PLB during ATT
(Fig. 6.5), ITR resulted in decidedly more strain predicted in the PLB compared to the
AMB (Figs. 6.6b-c); this trend was consistent across all double bundle models and rota-
tional angles (dashed compared to solid lines of the DBH, DBPH, DBI, and DBPI models
in Figs. 6.6b-c). During ITR, individual mechanical properties in prestrained ACL bundles
had an obvious effect on predicted joint laxity (3.45 N·m and 5.35 N·m at ITR = 15◦ with
individual and homogeneous mechanical properties, respectively (Fig. 6.6a)), compared to
anterior tibial loading where the effect was negligible (Fig. 6.4a).

Without prestrain, significant differences were observed between the distributions, me-
dians, and locations of tensile and maximum principal strains assuming homogeneous and
individual mechanical properties in the PLB (Table 6.4). Significant differences were sim-
ilarly observed between the distributions, medians, and locations of tensile strains in the
AMB without prestrain; however, there was insufficient evidence to reject the null hypothe-
ses of no differences between the distributions and medians of maximum principal strains
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Figure 6.6: (a) Internal tibial torque-angle predicted responses, with associated 99th per-
centile tissue-level maximum (b) tensile and (c) principal strain differences as a function
of tibial rotation angle. In (b,c) solid and dashed lines refer to 99th percentile maximum
tissue-level strains in the AMB and PLB, respectively.

(Table 6.4). The distributions and existence of spatial variation in tensile strains between
homogeneous and independent bundle property models were found to be significantly dif-
ferent in both the AMB and PLB with prestrain, but there lacked enough evidence to reject
the null hypothesis that the medians of the tensile strain distributions were different (Table
6.4). In the AMB with prestrain, significant differences were also observed with respect
to the medians and spatial variation in maximum principal strain distributions (Table 6.4).
The distributions of maximum principal strains in the PLB with prestrain were found to be
significantly different (Table 6.4).

Table 6.4: Summary of statistical analyses to determine the specific differences between as-
sumed constitutive models (built with either homogeneous or individual mechanical prop-
erties) in each ACL bundle associated with ITR. Bold values indicate p < 0.05. For MW
tests, if significant differences are present an (H) or (I) denotes a larger median assuming
homogeneous or individual bundle mechanical properties, respectively.

KS Test
(Distributions)

p value

MW Test
(Medians)
p value

SR Test
(Spatial variation)

p value
Max

principal Tensile
Max

principal Tensile
Max

principal Tensile

AMB (Prestrain) 0.095 0.001 0.043 (H) 0.223 <0.001 <0.001
PLB (Prestrain) <0.001 0.021 0.154 0.053 0.066 <0.001
AMB 0.069 0.002 0.767 0.044 (H) <0.001 <0.001
PLB <0.001 <0.001 <0.001 (H) 0.028 (H) <0.001 <0.001

108



6.4 Discussion

The ACL is critical in providing translational and rotational stability to the knee. In this
work, the roles of specific ACL geometric features, mechanical properties, and intrinsic
prestrain distributions were examined in the context of their respective effects on predicted
joint motions during common clinical assessments of ACL integrity. Prestrain and double
bundle geometric realizations of the ACL were developed from a homogeneous segmen-
tation of the ACL at full extension. This procedure allows for a more general and faithful
approximation of the true strain state within the ACL for arbitrary knee configurations. In
addition to the response of the joint throughout the clinical assessments, macroscopic and
tissue-level deformations of the ACL, or its constituent bundles, were also monitored.

6.4.1 ACL prestrain

Prestrain in the ACL exists for arbitrary, physiological knee configurations (Beynnon et al.,
1992, 1995; Butler, 1989; Fleming et al., 1994; Howe et al., 1990; McLean et al., 2015).
Previous attempts to quantify the exact nature of this deformation have been limited to
bulk strain estimates (Beynnon et al., 1992, 1995; Fleming et al., 1994; Howe et al., 1990).
Beynnon et al. (1992) found macroscopic ACL strains slightly less than 1% at full exten-
sion, in good agreement with approximately 1% attachment-to-attachment strains observed
herein. Measurements of this type provide some broad context for the range of expected
deformation in the ACL, but potentially fail to capture the true distribution of strain within
each bundle. Understanding the locations of high deformation in the ACL may provide in-
sights on mitigating ligament injury or designing improved reconstructive procedures. Pre-
strain predictions assuming both homogeneous and independent bundle mechanical prop-
erties showed elevated strains near the proximal attachment of the PLB and on the posterior
aspect of the midsubstance (Fig. 6.3), coincident with a significant number of ACL failures
(Beaulieu et al., 2014, 2015; Kennedy et al., 1974; Lipps et al., 2013; Meyer and Haut,
2008; Meyer et al., 2008).

The assumption of individual AMB/PLB mechanical properties led to an increased in-
equality between the maximum strains (both tensile and maximum principal) supported
by each bundle (Fig. 6.3). Individual bundle mechanical properties also affected the dis-
tribution of strains within the bundles. There were significant differences in the distribu-
tions, medians, and spatial locations of strains (tensile and maximum principal) in the PLB
assuming homogeneous and individual bundle mechanical properties (Table 6.2). In the
AMB, significant locational shifts in both tensile and maximum principal strains were ob-
served; however, there was insufficient evidence to reject the null hypothesis of differences
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in the tensile and maximum principal median strains (Table 6.2). This suggests that while
the locations of strains changed in the AMB with the introduction of individual bundle
mechanical properties, there was no associated change in the median strains.

In all cases, the maximum strains manifesting from the prestrain procedure were largely
aligned with the preferred material basis, with only small differences between the magni-
tudes of maximum tensile and maximum principal strains. Predicted strain fields were also
highly heterogeneous (Fig. 6.3); this feature may contribute to large deviations in joint
motion observed after ACL reconstruction (Deneweth et al., 2010; Salmon et al., 2006;
Selmi et al., 2006; Tashman et al., 2004), especially given that traditionally graft prestrain
is introduced via axial, end-to-end tensioning (Spindler and Wright, 2008).

While the prestrain quantification procedure outlined in Fig. 6.2 may have substantial
implications with respect to understanding general ACL mechanics and optimizing surgical
reconstruction, maximum prestrain values presented herein are high and potentially outside
the physiological range. High predicted strain values were concentrated and predominately
located near the attachments to rigid bones. In the body, there exist several mechanical
strategies for mitigating the deformation concentrations that develop at the interface of
bonded dissimilar materials. In real soft tissues, like ligaments and tendons, there exists
a complex continuum of tissues spanning from ligament proper to calcified bone (Genin
and Thomopoulos, 2017; Genin et al., 2009). These functionally graded tissues act to alle-
viate stress concentrations that might manifest from sharp gradients in material properties
between bones and ligaments (Genin and Thomopoulos, 2017; Genin et al., 2009; Tho-
mopoulos et al., 2006). Similarly, interdigitation of the bone with the ligament, gradual
morphological transitions from bone to ligament, and optimal ligament insertion angles all
contribute to suppressing potentially damaging free-edge deformations (Liu et al., 2011).
Additionally, local strains observed in the prestrain distributions exceeded the range of the
experimental data used in the fitting of the constitutive behavior of the ACL or its bundles
(Fig. 6.1). Therefore, any nominal conclusions based on local tissue deformation may be
limited.

6.4.2 Lachman (ATT) test

In general, failure to include prestrain resulted in significantly more joint motion and tissue-
level strain differences. During ATT, predicted joint motions without prestrain increased
by over 350% (Fig. 6.4a). These large increases in joint motion resulted in substantially
more macroscopic and relative tissue-level deformation in ACL models without prestrain.
Maximum strain differences increased by over a factor of 10 in ACL models without pre-
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strain during ATT (Fig. 6.5). The individual mechanical properties of ACL bundles were
shown to have a meaningful effect in certain loading configurations on the distribution of
deformation within the bundles of the ACL (Table 6.3).

There is a large body of work investigating the resistive contribution of the ACL to
anterior tibial displacements experimentally. At full extension, Furman et al. (1976) and
Markolf et al. (1976) found that intact cadaver knees were limited—in the clinical sense—
to 1.8 ± 0.2 mm and 2.0 ± 0.5 mm anterior drawer, respectively. Similarly, Haimes et al.
(1994) observed approximately 1 and 7 mm ATT with the application of 100 N anterior
tibial load in whole cadaver and ACL sectioned knees, respectively. Approximately 3 mm
of ATT was observed by Draganich et al. (1990) at 50 N of anterior tibial load in intact
knees. At 90 N, intact knee ATT has been reported at 1.8 ± 1.3 mm (Kondo et al., 2014).
Also, at anterior tibial loads of 134 N, ATT of 2.9 ± 1.2 mm and 4.0 ± 1.7 mm have been
found by Zantop et al. (2007b) and Zantop et al. (2007a), respectively. It is clear that there
is tremendous variability in the anterior-posterior laxity of the knee. The findings presented
herein are by no means comprehensive, but are representative of the range of ATT during
anterior tibial loading.

Computational models of anterior tibial motion have been used to expand upon these
experimental efforts. They have largely focused on predicting the consequences of ACL
reconstructive procedures (Peña et al., 2005b; Suggs et al., 2003; Wan et al., 2017; Wester-
mann et al., 2013, 2016), though the contributions and load sharing of the AMB and PLB
during ATT have also been explored (Song et al., 2004). Suggs et al. (2003), using uni-
axial spring approximations for ligaments, predicted 3.5 mm ATT at 134 N anterior tibial
loading; Peña et al. (2005b) predicted slightly more ATT at 134 N, finding 5.8 mm ATT at
full extension in a healthy joint using continuum ligament representations. In single bundle
grafts, ATT at 89 and 134 N has been observed between 4.0 to 9.2 mm (Westermann et al.,
2013, 2016) and 2.3 to 2.5 mm (Wan et al., 2017), respectively. In most cases, models that
include grafts apply a pretensioning step (Suggs et al., 2003; Wan et al., 2017; Westermann
et al., 2013, 2016); however, they often fail to make the same considerations in the native
tissue (Song et al., 2004; Suggs et al., 2003).

Compared to previous computational efforts, models with and without prestrain pre-
dicted smaller amounts of ATT. At 134 N, the double bundle model without prestrain and
with individual bundle mechanical properties produced the highest ATT at 2.5 mm. While
within the range of ATT predicted by some graft based models (Wan et al., 2017), even at its
most compliant, the ACL models examined herein all fall outside the previously reported
numerical ATT range of native ACLs (Peña et al., 2005b; Suggs et al., 2003).

In the context of experimental investigations, comparisons of joint motion become more
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complicated. Clinical evidence of limits on ATT suggest that maximum observable ATT
should be less than 2 mm at full extension (Furman et al., 1976; Markolf et al., 1976). Only
double bundle models with prestrain yielded predicted ATT within that limit at appropriate
force levels. On the other hand, force-based, robotic measurements seem to indicate more
compliance in the joint. Even considering only the low range of observed displacements in
force-based experiments (1.8 mm at 90 N (Kondo et al., 2014) and 2.9 mm at 134 N (Zantop
et al., 2007b)), prestrain in the ACL results in an overprediction of anterior joint stiffness;
compared to double bundle models without prestrain, however, ATT predictions at 90 and
134 N (DBH: 2.0/2.3 mm; DBI: 2.1/2.5 mm) are in much better agreement. Even though
the ACL supports a vast majority of the load during ATT (Haimes et al., 1994; Kondo
et al., 2014; Loh et al., 2003; Zantop et al., 2007a,b), the high predicted joint stiffness of
prestrained models was produced without the inclusion of numerous collateral structures.
This feature may need to be considered when comprehensively assessing the exact role of
prestrain in preventing excessive ATT.

Markolf et al. (1976) also provided data on the slope of the force-displacement curve
associated with ATT. At 100 N and full extension, the anterior stiffness of the joint was
reported at 118± 70 N/mm. The relevant measure can be obtained by taking the inverse of
the slope of the displacement-force curves shown in Fig. 6.4a evaluated at 100 N. Similar
to the comparison of displacements in the force-based experiments, ACLs with prestrain
resulted in higher predicted anterior stiffness (DBPH: 452 N/mm; DBPI: 354 N/mm) com-
pared to models without prestrain (DBH: 95 N/mm; DBI: 90 N/mm), which fall within the
observed experimental range.

There also might be an overprediction of ligament-level deformation associated with
the absence of prestrain. Though not in native tissue, Draganich et al. (1990) measured
macroscopic ACL graft strains of approximately 1% at 50 N anterior tibial load. Both
double bundle models without prestrain predicted macroscopic ACL strain greater than
3%, while prestrained models appeared substantially stiffer (Fig. 6.4b). The single bundle
representation most closely matched graft strains (Draganich et al., 1990), with 1.7% ACL
strain at 50 N.

Without prestrain, significant differences were observed with the incorporation of in-
dependent bundle mechanical properties between the distributions, medians, and locations
of tensile and maximum principal strains in both the AMB and PLB (Table 6.3). The same
ubiquitous effect of individual bundle mechanics was not present when considering models
with prestrain. While significant differences between homogeneous and individual me-
chanical property assignments in the PLB were largely present, the same was not true in
the AMB (Table 6.3). Similar to comparisons in the strain manifesting from the prestrain
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procedure (Table 6.2), significant differences were not observed in the medians of tensile
and maximum principal strains (Table 6.3). Therefore, in the case of ATT, the decision to
include prestrain has direct consequences on assessing the role of tissue specific material
properties with respect to tissue-level deformation predictions. It also shows an increased
sensitivity of individual bundle mechanical properties in nonprestrained ACL models. This
can also be observed at the joint-level, with increased variability between ATT and macro-
scopic strain comparing DBH and DBI, as opposed to DBPH and DBPI, model predictions
(Fig. 6.4).

6.4.3 Pivot shift (ITR) test

Similar to ATT, lack of prestrain resulted in a reduction of predicted joint stiffness by at
least 150% during ITR (Fig. 6.6a). This increased motion of nonprestrained models con-
tributed to 2-fold increases in maximum strain differences overs prestrained ACL models
during ITR (Fig. 6.6b-c). There were also increased disparities between maximum tissue-
level strains within ACL bundles during ITR, with the PLB sustaining higher strains than
the AMB (Fig. 6.6b-c). The influence of bundle-level mechanical properties during ITR
on bundle strain distributions was more scattered compared to ATT (Tables 6.3-6.4), sug-
gesting a more nuanced connection between joint loading and the evolution of tissue-level
strains.

Again, similar to investigations into the role of the ACL in mitigating against excessive
ATT, there is an enormous breadth of observed joint-level responses of the knee to ITR.
For example, at an internal tibial torque of 3 N·m, ITR of approximately 12◦ was reported
by Draganich et al. (1990), while under similar conditions Nielsen et al. (1984) observed
ITR of less than 5◦. With the application of 5 N·m internal tibial torque, Kondo et al.
(2014) found 10.4 ± 7.1◦ ITR, and Kanamori et al. (2000) observed 12.9 ± 2.1◦ with 10
N·m internal tibial torque at full extension in intact cadaver knees; at 15 N·m internal tibial
torque, mean ITR has also been reported at approximately 13◦ (Kiapour et al., 2014a,b).

There is some limited evidence of good agreement between experimental and compu-
tational investigations into the response of the knee to ITR. Kiapour et al. (2014a) showed
a numerical prediction (approximately 12◦) within the experimental range using a com-
prehensive, subject-specific FE model at full extension and 15 N·m internal tibial torque.
However, other computational efforts have predicted substantially more rotational compli-
ance. At 2 N·m internal tibial torque, Ramaniraka et al. (2007) found approximately 12◦

ITR at full extension with a native ACL. Examining various ACL grafts, Wan et al. (2017)
observed ITR between 13-14◦ at full extension with 4 N·m applied internal tibial torque.
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The inclusion of prestrain drastically increases the predicted rotational stiffness of the
knee; this trend is consistent across internal tibial angles (Fig. 6.6a). Double bundle mod-
els without prestrain fail to produce greater than 2 N·m internal torque through 30◦ of ITR
(Fig. 6.6a), with prestrained models achieving 2 N·m internal torque at 7.2 and 9.8◦ assum-
ing homogeneous and individual bundle mechanical properties (Fig. 6.6a), respectively. At
increasing torques, the importance of prestrain in matching experimental joint kinematics
becomes more apparent. Prestrained ITR predictions at 5 N·m (14.3 and 19.3◦ for DBPH
and DBPI, respectively) both fall within or just above the equivalent experimental range
presented by Kondo et al. (2014). At even more severe internal tibial torques, even pre-
strained ACL models start to fall outside comparable experimental ranges (Kanamori et al.,
2000; Kiapour et al., 2014a,b). ITR predictions assuming individual mechanical bundle
properties increase past 20◦ for torques greater than 5 N·m, and homogeneous models sur-
pass 20◦ ITR above 9 N·m internal tibial torque (Fig. 6.6a). The lack of supporting tissue
structures, especially in this loading configuration, may be a significant contributor to re-
duced rotational joint compliance compared to experimental, intact knee observations.

Supporting tissues may have also provided increased joint stiffness in previous compu-
tational efforts. Using a single bundle ACL (assumed unloaded at full extension), the 12◦

ITR found by Ramaniraka et al. (2007) is less than the 19.1◦ predicted in the equivalent
single bundle ACL model without prestrain and homogeneous mechanical properties (Fig.
6.6a). However, with prestrain, predicted joint ITR was significantly reduced, even without
the presence of collateral tissues. Also, tension in grafts seems to drive predicted ITR into
the same range as prestrained ACL models at 4 N·m (Fig. 6.6a, Wan et al. (2017)). This
may indicate that graft tensioning, even if applied homogeneously, may act to replicate the
innate, prestrained mechanics of the ACL more faithfully.

As with ATT, Markolf et al. (1976) provided data on the slope of the torque-angle curve
associated with ITR. With approximately 8 N·m internal tibial torque and at full extension,
the terminal internal stiffness of the knee was measured as 2.3 ± 0.6 N·m/◦. Using Fig.
6.6a, the comparable quantities are the slopes of the curves shown and can be calculated
directly. As opposed to anterior joint stiffness, all ACL models presented herein are more
compliant than the range proposed by Markolf et al. (1976); only double bundle models
with prestrain were sufficiently stiff to make the appropriate comparison. At 8 N·m, the
rotational stiffness of prestrained ACLs (DBPH: 0.72 N·m/◦; DBPI: 0.60 N·m/◦) fell below
the bottom of the experimental range. Again, collateral structures, like the medial/lateral
collateral ligaments and capsule tissues, might be providing significant stiffening during
ITR, potentially accounting for differences from cadaveric studies at large rotations.

While assigning independent bundle mechanical properties had a limited effect on both
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joint motion and, consequently, macroscopic strain during ATT (Fig. 6.4), the same was
not true during ITR. Clear differences in joint-level performance were observed between
the homogeneously and individually defined bundle mechanics models (Fig. 6.6a). In
particular, the addition of individual mechanical properties reduces joint resultant torques
by 26.6% and 35.2% at 15◦ ITR in ACL models without and with prestrain, respectively.

During ITR, increased maximum tissue-level strain differences in double bundle mod-
els were observed in the PLB compared to the AMB (Fig. 6.6b-c). In all cases, not only
were maximum strain values greater, but median tensile and maximum principal strains
in the PLB were also found to be significantly greater than in the AMB—MW tests for
significant differences in medians performed and in all cases p < 0.001. This agrees with
previous evidence that the PLB is the primary resistive structure (Gabriel et al., 2004) and
supports a larger fraction of total ACL load during ITR (Song et al., 2004). As with ATT,
tissue-level strain difference predictions were substantially smaller in models incorporat-
ing prestrain (Figs. 6.5 and 6.6b-c). This implies that assuming the ACL is in its reference
configuration at full extension, or some other physiological position, may lead to spurious
and inflated conclusions regarding the true strain state of the tissue.

Bundle specific material properties significantly affected tissue-level strains during
ITR. Differences in the strain distributions in the PLB without prestrain lead to significantly
greater median tensile and maximum principal strains assuming homogeneous mechanical
properties (Table 6.4). These increases were present even though the PLB was stiffer when
considering it with averaged mechanics, and likely contributed to the increased torque of
homogeneous over bundle specific models at a given angle (Fig. 6.6a). In nearly every bun-
dle configuration, save for maximum principal strain in the prestrained PLB, significant
variation in the spatial positions of strains were observed (Table 6.4). These differences
were often found in the absence of significantly different strain distributions or medians.
Therefore, the ability of the ACL bundles to rearrange strains spatially appears to be some-
what robust to variation in local mechanical properties during ITR.

6.5 Conclusion

The response of the knee to various assumptions of ACL geometry and mechanical prop-
erties was analyzed using representative, three-dimensional FE models. A commonly im-
plemented, single bundle ACL was compared to more physiologically motivated, double
bundle geometries. Differences in the mechanical properties of the ACL bundles were
also considered in double bundle models. Given the inhomogeneous native loading of the
ACL, prestrain distributions in the ACL were calculated and were used to assess the role of
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ACL geometry, mechanical behavior, and prestrain in maintaining joint stability. Stability
was quantified using two clinical procedures, the Lachman and pivot shift tests. Prestrain
distributions, independent from bundle mechanical properties, showed high local strains in
regions typically associated with ACL failure. Prestrain also had a substantial effect on pre-
dicted joint stability, with prestrained ACL models exhibiting increased translational and
rotational stiffnesses. Prestrain also provides reasonable context for tissue-level strains.
Since some portion of the ACL is always loaded during normal function, the effect of as-
suming the current configuration is the reference configuration is pronounced. Tissue-level
strains that evolved during the clinical assessments in ACL models without prestrain were
considerably higher then the prestrained equivalents. Individual bundle mechanical prop-
erties were also shown to have a meaningful impact on the distributions, medians, and
locations of strains within each of the ACL bundles, although the exact relationship be-
tween macroscopic joint motion and the deformation within individual bundle structures
as a function of assumed constitutive behavior is complex. It is clear that prestrain is an
important, and often neglected, feature of ACL mechanics.
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CHAPTER 7

Conclusions and future work

7.1 General conclusions

Soft tissue injuries and diseases are conspicuously common (Griffin et al., 2006; Peat
et al., 2001) and often have substantial personal wellness (Butler et al., 2009; Elias et al.,
1999; Hangody and Füles, 2003; Lawrence et al., 2008) and economic (Leigh et al., 2001;
Spindler and Wright, 2008; Yelin et al., 2007) ramifications. There is compelling evidence
suggesting a link between knee mechanics (both at the joint and tissue levels) and soft tis-
sue injuries and diseases (Andriacchi et al., 2009; Astephen et al., 2008; Gao and Zheng,
2010; Griffin and Guilak, 2005; Setton et al., 1999; Tashman et al., 2004). Computational
models can bridge the gap between the diversity of patient physiologies and anatomies and
the physical limitations of experiments to explore the mechanical contributions of various
healthy and abnormal tissue structures, but these models rely on accurate and representa-
tive material descriptions. In the abstract, these descriptions would be designed to provide
a comprehensive picture of the real physics of the body; however, the sheer complexities of
relevant biological structures are such that approximations are required. Yet, without fun-
damental knowledge of how tissues deform to general loading, critical insights into these
mechanical mechanisms of injuries and diseases may remain out of reach. With the fre-
quencies of conditions like OA and ligament rupture on the rise (Kim et al., 2011b; Woolf
and Pfleger, 2003), there is a clear and present need for the development and validation
of representative and implementable soft tissue constitutive theories, which may prove in-
valuable in delineating the mechanical pathways of injury and disease. The work presented
herein begins to address some consequences of soft tissue constitutive theory selection in
the context of computational investigations of knee mechanics.

In Chapter 3, the contributions of articular cartilage constitutive form on local tissue
deformation and predicted joint motion were assessed. Specifically, increasing mechani-
cal complexity was introduced into the constitutive descriptions of articular cartilage, from
linear elasticity to directional, nonlinear, and spatially dependent elasticity. The sensitiv-
ities of each constitutive complexity level were also investigated. Joint kinematics and
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tissue deformation were found to be sensitive to their assumed stiffness within the con-
text of linear elastic cartilage constitutive models. With the inclusion of nonlinear and
transversely isotropic cartilage constitutive models, local deformation was reduced com-
pared to linear elastic models; joint kinematics and local cartilage deformations were also
brought within physiologically reasonable ranges. Finally, with experimentally motivated,
spatially heterogeneous cartilage constitutive models, the spatial distributions of local de-
formation predictions were refined compared to spatially homogeneous material models.
With increased smoothness in the articular cartilage constitutive model property field, joint
kinematics were minimally effected, while strain artifacts within the cartilage bulk were
largely eliminated.

Chapter 4 used the insights gained from Chapter 3 to investigate the mechanical ef-
fects of full-thickness focal defects within the femoral cartilage. Defects of various sizes
and locations were introduced into the femoral condyles. Regardless of defect size or lo-
cation, the magnitudes of maximum compressive strains and contact stresses supported by
the articular cartilage increased. Highest femoral cartilage compressive strains in defect
containing models were observed near the perimeters of their defects. Substantial vari-
ations in predicted deformation were also found in the opposing, and unaffected, tibial
cartilage. The relationship between femoral defects and tibial cartilage deformation has
largely been unexplored. Maximum compressive strains increased with a small lateral de-
fect, but decreased with medial defects. Even in cases where nominal differences between
defect containing and healthy cartilage predicted strain fields were small, there existed
meaningful differences in the spatial distributions of deformation. Variations in the loca-
tions of maximum loading are especially consequential in the context of heterogeneous
articular cartilage mechanical properties, as these newly loaded tissues may be unsuited to
withstand their altered mechanical environment.

Chapter 5 explored the directional mechanical behavior of structural ligaments. Within
continuum soft tissue computational models, it is commonly assumed that knee ligaments
can be represented by transversely isotropic constitutive theories. Various frequently em-
ployed transversely isotropic, hyperelastic constitutive theories were evaluated on their
ability to describe two sets of quasi-static stress-strain data obtained in orthogonal direc-
tions. A general procedure for determining optimal material model parameters was devel-
oped using a stochastic, genetic optimization framework. Nonlinearity in the transverse
direction (the direction normal to the mean collagen direction) was not faithfully repre-
sented by the pool of candidate phenomenological and mechanistic theories. Therefore,
a novel constitutive theory was developed and applied to directional stress-strain data of
the MCL. The new theory was built by augmenting an isotropic and compressible eight-
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chain MacKintosh network model with stiff nonlinear fiber elements. This hybrid theory
was shown to have superior performance in the representing the quasi-static stress-strain
behavior of the MCL, particularly in the transverse direction.

Finally, in Chapter 6, lessons learned concerning the directional behavior of ligaments
from Chapter 5 were applied to the ACL. Specifically, contribution of the ACL to knee
stability was assessed. In the knee, understanding the role of the ACL is complicated by
its nontrivial mechanics and geometry. These gross ACL features are complicated by the
presence of the two macroscopic fiber bundles of the ACL (the AMB and PLB), which
do not exist completely unloaded in any physiological knee configuration. Therefore, to
understand the mechanical contribution of the ACL to knee stability, FE models containing
various ACL bundle geometries, mechanical properties, and prestrain distributions were
subjected to two clinical assessments of ACL integrity: the Lachman and pivot shift tests.
Predicted prestrain distributions were found to be heterogeneous, with strain localizations
in the posterior aspect of the proximal third and midsubstance of the PLB. The inclusion of
prestrain resulted in decreased knee laxity compared to ACL models without prestrain. This
resulted in large reductions of macroscopic joint motion and tissue-level strains, bringing
levels within the expected bounds of healthy joints during clinical assessments.

7.2 Limitations

While the work presented herein represents a significant advancement in the understanding
of soft tissue constitutive models in the context of knee FE models, there are a number of
important limitations that should be considered when analyzing its specific outcomes.

First, with respect to the whole knee computational framework, only a single, repre-
sentative knee geometry was investigated. There exists significant variation between the
anatomies and physiologies of individuals (Boden et al., 1992; Hashemi et al., 2010b; Liu
et al., 2010b); therefore, further work may be required to determine the appropriateness
of applying the conclusions of the current work to a more general population. This lim-
itation is somewhat mitigated by the comparison to results from other experimental and
computational investigations, which used either real or different knee soft tissue geomet-
ric representations. Furthermore, only a single loading configuration was analyzed for the
whole knee models. While the maximum loading observed during the stance phase of
gait may be sufficient to differentiate between various constitutive and geometric features
within the knee, diseases and injuries likely occur during abnormal activities (Maly, 2008;
Powers, 2010). Additionally, the sensitivities and appropriateness of the constitutive forms
of collateral soft tissues, like the menisci and collateral ligaments, were not investigated.
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These tissues are important for maintaining healthy knee function (Kannus, 1988; Meister
et al., 2000), and understanding the implications of constitutive assumptions certainly war-
rants further study, as there may be significant mechanic and geometric variation among
populations (Gardiner and Weiss, 2003). Due to the loading configuration and the time
scales over which deformations were occurring, intrinsic viscoelasticity of tissues was not
considered. This will likely be a critical feature when investigating more dynamic, injury
inducing events (Hayes and Mockros, 1971; Ma et al., 2010). There is also new evidence to
suggest that bone deformation may be important even during low impact, repetitive loading
(Venäläinen et al., 2016a), though the magnitude of this effect is still questionable (Don-
ahue et al., 2002). Therefore, the assumption of rigid bones might need to be revisited.
Additional limitations of the cartilage mechanical heterogeneity framework are discussed
in Chapter 3.

When considering articular cartilage focal defects, only idealized, circular geometries
were considered. The real morphologies of focal defects are complex and their size range
vast (Ali et al., 2010; Bredella et al., 1999; Wong and Sah, 2010). While real defect
anatomies are certainly an interesting direction to pursue in the future, it is important to note
that the cartilage deformation trends around the defect perimeters observed in the current
work are similar to those derived from a single, patient specific focal defect (Venäläinen
et al., 2016b). Defects were also only considered in the midsubstance of weight bearing
regions on the femoral condyles. The sensitivity of the current work to the construction
of defects in this region was not assessed, but relative differences between various carti-
lage geometries is likely to be preserved independent from small locational deviations of
focal defects. Additionally, loading was assumed to remain consistent between healthy
and defect containing models. While knee loading has been shown to change with injury
(Elias et al., 1999), identical loading conditions were incorporated as a first approximation
to better understand the specific mechanical contributions of focal defects on the knee. Ad-
ditional limitations of the investigation into the contributions of focal defects are discussed
in Chapter 4.

Shifting to aspects of ligament constitutive theories and their implications, there are a
number of limitations that should similarly be addressed. The most potentially problematic
of these issues is the absence, or more appropriately the inability, of testing the efficacy
of ligament constitutive theories against data not used in their construction. The lack of
reliable mechanical characterization data in configurations other than along the mean col-
lagen direction is a serious issue facing the ligament modeling community. While the
availability of experimental data in new loading directions is certainly required, a more
fundamental issue still needs to be addressed. Namely, whether experimental conventions
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like the assumption of uniaxial deformation are of value. Ligaments are highly anisotropic
(Henninger et al., 2013, 2015; Lujan et al., 2007; Quapp and Weiss, 1998), and speci-
men test geometry of ansiotropic materials has been shown to significantly affect apparent
moduli (Choi and Horgan, 1977; Folkes and Arridge, 1975; Raumann, 1962). There are
also important structural aspects of ligaments that further call into question the reliability
of previous mechanical characterization data (Mallett and Arruda, 2017). Therefore, while
there is clearly a need for a rigorous reexamination of ligament mechanical characterization
methodologies, the directional stress-strain data used in the determination and evaluation of
various transversely isotropic, hyperelastic constitutive theories in the current work provide
an adequate platform for elucidating their differences and potential deficiencies. Additional
limitations of the analysis of directional, hyperelastic constitutive models for ligaments are
discussed in Chapter 5.

Finally, when assessing the role of the ACL in maintaining knee stability, again only
a single individual served as the basis for the analysis. This geometry is an example of
typical, healthy joint; however, as with many biological structures, significant anatomic
variation at the population level may exist (Beaulieu et al., 2016; Hovinga and Lerner,
2009; Kopf et al., 2009). Similarly, only a single reconstruction of the individual bundle
geometries of the ACL was performed. Specific realizations of the AMB and PLB are
likely to affect prestrain distributions and local tissue deformation during joint motion, but
the relative effects of the presence of prestrain are expected to be consistent independent
from bundle geometries. There is some evidence to suggest that it may be possible to indi-
vidually identify and segment each bundle directly from MRI (Steckel et al., 2006), which
has the potential to reduce the uncertainty associated with AMB and PLB creation. Addi-
tional limitations of determining the roles of specific ACL bundle geometries, mechanical
property assumptions, and prestrain distributions are discussed in Chapter 6.

7.3 Future work

As previously discussed, there is a clear opportunity to move the analyses performed herein
to populations of individuals. The relative heterogeneity of articular cartilage has been
shown to be consistent across patients (Deneweth et al., 2013a,b, 2015); therefore, apply-
ing the cartilage mechanical property mapping framework shown herein to a larger pool
of knee geometries would be valuable in confirming current observations at the population
level. A larger population of knee geometries would also prove invaluable in understanding
the consequences of specific anatomic and physiologic features on the internal loading of
soft tissues and joint motion. For example, increased tibial slope has been shown to be
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correlated to ACL injury (Hashemi et al., 2010b; Marouane et al., 2014; McLean et al.,
2011). Knee models containing various tibial slopes can potentially be used to determine
mechanisms of and critical thresholds for ligament failure. There is also interesting work
related to the building of joint mechanics statistical models to study the sensitivities of
computational predictions to various input parameters (Guo et al., 2015, 2017). Creating
a population of knee anatomies would be a critical first step in establishing these types of
models. Potential applications include, but are not limited to, quantifying the sensitivities
of local cartilage deformation to specific property mappings and building low-cost, predic-
tive computational tools for use in clinical settings. Another interesting extension of the
current work would be to investigate the response of the knee to more dynamic, injury-
causing loading configurations. Understanding the consequences of cartilage mechanical
heterogeneity during abrupt landings or large rotations may offer new insights into ligament
injury.

Another meaningful and previously unexplored avenue would be to quantify the ef-
fects of including ligaments, like the ACL, with physiologically representative prestrain
throughout the joint. When ligament prestrain is considered in computational models, it
has largely been limited to homogeneous strain fields (Limbert et al., 2004; Peña et al.,
2005b); however, the current work shows that assumption may not be representative. Com-
paring predictions from knee models containing ligaments without prestrain to both those
with homogeneous and heterogeneous prestrain would be instrumental in determining the
need of prestrain for faithfully representing the knee in computational models. Promising
theoretical developments (Maas et al., 2016) have opened the door for including general
prestrain distributions to arbitrary geometries in their physiologically imaged configura-
tions. While previous work has investigated the effects of ligament reconstruction on joint
mechanics (Bae et al., 2015; Huang et al., 2012; Kim et al., 2011a), the results presented
herein show the importance of cartilage heterogeneity in predictions of local tissue de-
formation. Therefore, building computational models containing various ligament recon-
structive procedures might provide new insights into the link between reconstruction and
OA development. There have also been some recent efforts to include phenomenological
approximations of cartilage wear in whole knee models to study the mechanisms of OA
progression (Hosseini et al., 2014; Liukkonen et al., 2017; Mononen et al., 2016). It would
be interesting to see how wear, in combination with spatially heterogeneous articular carti-
lage and ligament prestrain, manifests during normal and abnormal loading environments.

Finally, the defect containing knee models analyzed in the current work readily afford
a platform for investigating possible interventions. Again, cartilage heterogeneity is likely
an important consideration. During cartilaginous autograft transplantation procedures, car-
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tilage tissue is relocated from elsewhere in the joint to the affected area (Brittberg et al.,
1994; Magnussen et al., 2008). Consequently, the local mechanical properties of these
transplanted tissues may be meaningfully different and may result in unexpected and detri-
mental knee motions and cartilage deformations.
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APPENDIX A

Cartilage and ligament constitutive theory in defect models

The nonlinear, anisotropic strain energy density function used for articular cartilage, as
well as the supporting ligaments, can be expressed as
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where U0 is a constant, Cr is the rubbery (or initial) modulus,
√
N is the root mean square

chain length in the reference configuration, ρ(i) is the deformed chain length in the current
configuration of the ith chain, λa, λb, λc are the stretches along the principal material axes
a, b, c, respectively, a, b, c are the nondimensional edge lengths of the representative
volume element, B is the bulk modulus, α describes curvature of the relationship between
hydrostatic pressure and volume at large volume changes, and J is the determinant of the
deformation gradient. From the properties of freely jointed chains,

β(i)
ρ = L−1

(
ρ(i)/N

)
(A.2)

and
βP = L−1 (P/N) , (A.3)

where P is the undeformed chain length, and L−1 (·) is the inverse Langevin function—
note: L (x) = coth (x)− 1/x.

The general orthotropic form of the strain energy shown in Eq. A.1 can be reduced to
describe transverse isotropic continua by setting two of the nondimensional lengths of the
representative volume element to be equal (a = b, a = c, or b = c). Assuming that b = c

for transversely isotropic materials, the remaining ratio of nondimensional lengths, a : b,
represents the degree of anisotropy in the material.

Using an approximate form of the inverse Langevin function (Marchi and Arruda,
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Table A.1: ACL, MCL, PCL, and LCL material properties
ρ (g/cm3) Cr (MPa) a b = c B (MPa) α

ACL 1 0.13765 1.5532 1.0049 100 1
PCL 1 0.93447 1.5996 0.96781 100 1
MCL/LCL 1 0.44865 1.6172 0.95308 100 1

2015), the material constants for each ligament type were determined using appropriate
experimental data (Butler et al., 1990; Ma and Arruda, 2013; McLean et al., 2015; Quapp
and Weiss, 1998). Due to the macromolecular construction of supporting ligaments (highly
aligned collagen fibers in an extracellular matrix), the preferred material direction of each
ligament emanated from and terminated at its bony attachments and followed its bulk geo-
metric centerline.

The relative transverse isotropy in the cartilage constitutive model, where the material
direction a was oriented parallel to the underlying bone surface normals, remained constant
at 1 : 1.33 and 1 : 1.348 for the tibial and femoral cartilages, respectively (Deneweth
et al., 2013a, 2015). Deneweth et al. (2013a, 2015) showed the ability of transversely
isotropic, network based models to describe the continuum response of articular cartilage
during physiologically relevant loading conditions. The model is also motivated by and
contains physics representative of the various structural regions of articular cartilage. For
the native tibial and femoral cartilages the mean initial moduli ± one standard deviation
were determined to be 88.6 ± 51.7 kPa and 413 ± 157 kPa, respectively. The bulk moduli
of tibial and femoral cartilages were assumed to be 1 GPa (Marchi and Arruda, 2017a).
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APPENDIX B

Specific stress functions

Using Eqs. 5.34-5.36 it is possible to construct stress descriptions for each transversely
isotropic constitutive model. Specifically, the Cauchy stresses for the Feng, WeissA,
WeissB, cHGO, and dcHGO models are given by
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where E = (κI1 + (1− 3κ) I4 − 1), respectively.
Closed form solutions for the Cauchy stress corresponding to the oFJC, oWLC, and

oMAC models are complex, and it is often convenient to calculate the second PK stress
component-wise. Applying Eq. 5.33 to Eq. 5.16 yields an explicit definition of the sec-
ond PK for an orthotropic RVE with arbitrary chain descriptions (Bischoff et al., 2002b).
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Specifically, the second PK stress may be written as
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ε is the permutation tensor, and δ is the Kronecker delta. Following Eq. B.6, the second
PK stresses for the oFJC, oWLC, and oMAC models can be expressed using index notation
as,
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respectively, which can readily be pushed forward numerically using Eq. 5.35 to obtain the
Cauchy stress. It is important to note that while the total strain energy of the orthotropic
eight-chain model built using MacKintosh chains contained a dependence on A (Eq. 5.24),
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the stress (Eq. B.10) reduces to a function of only normalized parameters.
The Cauchy stress for the aMAC model can be obtained through a direct application of

Eq. 5.36 as

σaMAC =
9Crρ0Λ

2
(√

3Λ (Λ− 6) + 6ρ0
√
I1
)

4
√
I1J
(
ρ0
√

3I1 − 3Λ
)2 (

3Λ (Λ− 2) + 2ρ0
√

3I1
)B

+

{
B (J − 1)− Crρ0Λ

2 (Λ2 + 6 (ρ0 − Λ))

12J(Λ− ρ0)2 (Λ2 + 2 (ρ0 − Λ))

}
I

+ 2k1J
−1 (I4 − 1) exp

[
k2(I4 − 1)2

]
a⊗ a,

(B.11)

where Λ = L/A and ρ0 = r0/A. Again, note that the compressible MacKintosh strain
energy function shown in Eq. 5.30, which is a function of both the contour, persistence,
and reference lengths, reduces to depend simply on the ratio between the chain parameters
in the description of the Cauchy stress (Eq. B.11).
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APPENDIX C

FE implementation of directional materials

Once the constitutive form of a particular ligament has been determined, the next step is
usually the integration of that description into a numerical framework. This section will
summarize a simplified workflow that can be used to implement anisotropic, hyperelastic
material models in the commonly used commercial FE code ABAQUS/Standard (SIM-
ULA, Providence, Rhode Island, United States), an implicit FE code. User-defined mate-
rials in ABAQUS/Standard, UMAT subroutines, require determining the current consistent
material Jacobian, Cauchy stress, and state variables at the end of each solution increment
(Hibbett et al., 2016). To calculate these quantities, the deformation gradient is available,
in a corotated basis, at the beginning and end of load increment, as well as any material
state variables passed from the previous load increment.

While calculating the stress in the corotated basis at a particular F may be readily
implemented, a closed form expression for the consistent material Jacobian may be sub-
stantially more complex or simply nonexistent. There has been some discussion related
to the exact objective stress rate required by ABAQUS/Standard; however, there is now a
clear consensus that the Juamann rate of the Kirchhoff stress,

∇
τ , is required (Hibbett et al.,

2016). Specifically, the objective rate may be written as

∇
τ = τ̇ −Wτ − τWT = c

τJ : D, (C.1)

where τ is the Kirchhoff stress (τ = Jσ), W is the spin tensor, D is the rate of deformation
tensor, and cτJ is the tangent modulus tensor corresponding to the Jaumann rate of the
Kirchhoff stress. The consistent tangent moduli required for an ABAQUS/Standard UMAT,
C
J , are related to the tangent modulus tensor corresponding to the Jaumann rate of the

Kirchhoff stress through
C
J = J−1cτJ . (C.2)
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Numeric approximations of tangent moduli

It is possible to numerically approximate the tangent modulus tensor required by
ABAQUS/Standard, CJ , through a linearization of Eq. C.1 using a combination of as-
sociated perturbations of the deformation gradient—note that detailed derivations of the
following linearization procedure of Eq. C.1 can be found in Miehe (1996) and Sun et al.
(2008). In particular, Eq. C.1 can be linearized as

∆τ −∆Wτ − τ∆WT = c
τJ : ∆D, (C.3)

and through six independent perturbations of ∆D—which has six independent components
due to structural symmetries—an approximation of cτJ can be obtained; each perturbation
of ∆D, ∆D(ij), represents a perturbation along the (i, j)th component of ∆D. Expressing
the perturbations in terms of the deformation gradient, following Miehe (1996),

∆F(ij) =
ε

2
(ei ⊗ ejF + ej ⊗ eiF) , (C.4)

where ∆F(ij) is a perturbation of F along its (i, j)th component, ε is a small scalar pertur-
bation factor, and e is the current configuration basis. Note that in ABAQUS/Standard
e is coincident with the corotated basis used within the UMAT framework; therefore,
e1 = {1, 0, 0}, e2 = {0, 1, 0}, e3 = {0, 0, 1} in the current configuration with respect
to the corotated basis.

Sun et al. (2008) proposed a forward difference method, and later a central difference
method (Liu and Sun, 2015), based on a total, perturbed deformation gradient,

F̂(ij) = F + ∆F(ij), (C.5)

and major tensoral symmetries, to approximate the consistent tangent moduli tensor as

C
J(ij) ≈ 1

Jε

(
τ
(
F̂(ij)

)
− τ (F)

)
, (C.6)

where J is the determinant of F and CJ(ij) are the components of the consistent tangent
moduli tensor corresponding to the perturbation ∆F(ij). Due to the major symmetries of
C
J , it can be shown, using the indexing conventions of ABAQUS/Standard, to have the
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Figure C.1: Numerical algorithm for the implementation of anisotropic hyperelastic con-
stitutive models within an ABAQUS/Standard UMAT.

following structure:

C
J ≈ 1

Jε
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. (C.7)

While Eq. C.6 provides a convenient approach for determining consistent tangent mod-
uli, a pair of major limitations are unavoidable in finite difference methods, like the one
used in the construction of Eq. C.6. Namely, the accumulation of floating pointing errors
due to limited numerical precision for small perturbations, ε, and insufficient accuracy for
large ε. The complex-step derivative approximation (CSDA)—originally proposed by Ly-
ness (1968)—avoids floating pointing error accumulation by directing perturbations along
the imaginary axis, and, for sufficiently small ε, directional derivatives of a tensor valued
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tensor function may, to nearly the accuracy of the precision of the arithmetic, be approxi-
mated as

∂f

∂A
: Z ≈ = [f (A + iεZ)]

ε
, (C.8)

where the derivative of the tensor valued function f is evaluated at the point A in the
direction of Z and = [·] is the imaginary component of a complex argument.

Tanaka et al. (2014) provides a rigorous derivation of consistent tangent moduli in a
variety of spatial settings, though there is no explicit discussion of the form of the per-
turbation scheme required to determine the consistent tangent moduli tensor specified by
ABAQUS/Standard in an efficient manner. A close reading of Hürkamp et al. (2015),
in combination with an adaptation of some results for hyper-dual numbers presented in
Tanaka et al. (2015), begins to clearly define the requisite mathematical formulation for
C
J . In particular, it can be shown that

C
J(ij) ≈ 1

Jε
=
[
τ
(
F + iε∆F(ij)

)]
, (C.9)

where ∆F(ij) takes the form of Eq. C.4. With Eq. C.9 it is possible to algorithmically
define a general anisotropic, hyperelastic material within the ABAQUS/Standard UMAT
framework. Figure C.1 details a possible step-by-step procedure for defining UMAT calcu-
lations. In Fig. C.1 |·| refers to the determinant of the argument matrix and R is the rotation
associated with the deformation.
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of biomechanical engineering, 123(2):198–200, 2001b.

143



M. R. DiSilvestro, Q. Zhu, M. Wong, J. S. Jurvelin, and J.-K. F. Suh. Biphasic porovis-
coelastic simulation of the unconfined compression of articular cartilage: IâĂŤsimulta-
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on knee joint mechanicsâĂŤa 3d finite element analysis. Journal of Biomechanics, 45
(3):579–587, 2012.

M. E. Mononen, J. S. Jurvelin, and R. K. Korhonen. Implementation of a gait cycle loading
into healthy and meniscectomised knee joint models with fibril-reinforced articular car-
tilage. Computer methods in biomechanics and biomedical engineering, 18(2):141–152,
2015.

M. E. Mononen, P. Tanska, H. Isaksson, and R. K. Korhonen. A novel method to sim-
ulate the progression of collagen degeneration of cartilage in the knee: Data from the
osteoarthritis initiative. Scientific reports, 6, 2016.

R. Mootanah, C. Imhauser, F. Reisse, D. Carpanen, R. Walker, M. Koff, M. Lenhoff,
S. Rozbruch, A. Fragomen, Z. Dewan, et al. Development and validation of a computa-
tional model of the knee joint for the evaluation of surgical treatments for osteoarthritis.
Computer Methods in Biomechanics and Biomedical Engineering, 17(13):1502–1517,
2014.

J. Morrison. The mechanics of the knee joint in relation to normal walking. Journal of
biomechanics, 3(1):51–61, 1970.

T. J. Mosher and B. J. Dardzinski. Cartilage mri t2 relaxation time mapping: overview
and applications. In Seminars in musculoskeletal radiology, volume 8, pages 355–368.
Copyright© 2004 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York,
NY 10001 USA., 2004.

P. R. Moshtagh, B. Pouran, N. M. Korthagen, A. A. Zadpoor, and H. Weinans. Guidelines
for an optimized indentation protocol for measurement of cartilage stiffness: The effects
of spatial variation and indentation parameters. Journal of biomechanics, 49(14):3602–
3607, 2016.

M. Motavalli, O. Akkus, and J. M. Mansour. Depth-dependent shear behavior of bovine
articular cartilage: relationship to structure. Journal of anatomy, 225(5):519–526, 2014.

163



S. G. Moulton, B. D. Steineman, T. L. H. Donahue, C. A. Fontboté, T. R. Cram, and R. F.
LaPrade. Direct versus indirect acl femoral attachment fibres and their implications on
acl graft placement. Knee Surgery, Sports Traumatology, Arthroscopy, 25(1):165–171,
2017.

V. Mow and M. Rosenwasser. Articular cartilage: biomechanics. Injury and Repair of the
Musculoskeletal Soft Tissues, 1:427–463, 1988.

V. Mow, L. Setton, F. Guilak, and A. Ratcliffe. Mechanical factors in articular cartilage
and their role in osteoarthritis. Osteoarthritic disorders, pages 147–171, 1995.

V. C. Mow and X. E. Guo. Mechano-electrochemical properties of articular cartilage: their
inhomogeneities and anisotropies. Annual Review of Biomedical Engineering, 4(1):175–
209, 2002.

V. C. Mow and J. M. Mansour. The nonlinear interaction between cartilage deformation
and interstitial fluid flow. Journal of Biomechanics, 10(1):31–39, 1977.

V. C. Mow, S. Kuei, W. M. Lai, C. G. Armstrong, et al. Biphasic creep and stress relaxation
of articular cartilage in compression: theory and experiments. J Biomech Eng, 102(1):
73–84, 1980.

V. C. Mow, M. H. Holmes, and W. M. Lai. Fluid transport and mechanical properties of
articular cartilage: a review. Journal of Biomechanics, 17(5):377–394, 1984.

V. C. Mow, M. Gibbs, W. M. Lai, W. Zhu, and K. A. Athanasiou. Biphasic indentation
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