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ABSTRACT 

 

Atmospheric aerosols have significant impacts on climate and human health. Particle 

physicochemical properties including chemical composition, distribution of chemical species 

(i.e. mixing state), morphology, and phase have been tied to their climate and health-related 

effects, yet our understanding of these properties is still limited. In this dissertation, aerosol 

particles from the southeastern U.S. were collected and studied using single particle microscopy 

and spectroscopy methods. In addition, new methods were developed to improve our 

understanding of their chemical composition and to better predict climate-relevant properties.  

The Southern Oxidant and Aerosol Study (SOAS), completed in the summer of 2013, 

was held at a rural, forested location in Alabama impacted by regional pollution. Particles 

collected during SOAS were analyzed using scanning electron microscopy with energy 

dispersive X-ray spectroscopy (SEM-EDX), Raman microspectroscopy, and scanning 

transmission X-ray microscopy with near edge X-ray absorption fine structure (STXM-

NEXAFS) to identify particle sources and degree of chemical aging during transport. Although 

mixed organic carbon with ammonium sulfate particles dominated number concentrations during 

SOAS, time periods with high concentrations of mineral dust and sea spray aerosol (SSA) were 

identified. Chemical mixing state calculations for submicron and micron-sized particles 

quantified the degree of internal mixing during three distinct time periods, showing that the 

degree of aerosol aging varied throughout SOAS. Additionally, during two SSA-rich events, 

SSA was frequently aged by reactions with nitric acid and sulfuric acid leading to chloride 

depletion within particles, though 24 % of SSA still contained chloride. The frequent observation 

of SSA at this inland site and the range of chloride depletion observed suggest that SSA may 

represent an underappreciated inland sink for NOx/SO2 oxidation products and source of halogen 

gases that can act as oxidants.  

To more thoroughly characterize organic aerosol from SOAS, a Raman fingerprint was 

identified for organosulfates derived from isoprene oxidation products, a significant component 



xx 

 

of secondary organic aerosol (SOA) in the southeastern U.S. In this analysis, the vibrational 

modes of key organosulfates were identified using Raman microspectroscopy and density 

functional theory (DFT), allowing organosulfates to be distinguished from inorganic sulfate 

within complex ambient SOA. Complementary to Raman microspectroscopy which provides 

molecular information for particles > 1 µm, atomic force microscopy-infrared spectroscopy 

(AFM-IR) was applied to aerosol particles for the first time to detect trace organic and inorganic 

species and probe chemical variation within individual particles down to 150 nm in diameter. 

With its high spatial resolution, AFM-IR has the potential to advance our understanding of 

aerosol impacts on climate and health for particles < 500 nm in diameter by improving analytical 

capabilities to study water uptake, heterogeneous reactivity, and viscosity. Finally, organic-

sulfate SOA particles collected during SOAS were observed to have liquid-liquid phase 

separation with a range of internal morphologies, including core-shell and more complex internal 

morphologies. Backward air mass trajectory modelling indicated that SOA morphology was 

dependent on aerosol lifetime, as well as temperature and relative humidity history. Taken 

together, these analyses of aerosol particle sources, atmospheric aging, internal morphologies, 

and chemical compositions provide an increased understanding of particle chemistry, mixing 

state, and internal structure in the southeastern United States. 
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Chapter 1.  

Introduction

1.1. Characteristics of Atmospheric Aerosols 

Atmospheric aerosols can have global effects by scattering or absorbing solar radiation, 

through the modification of cloud properties, or by impacting concentrations of trace gases in the 

atmosphere (2005; Prather et al., 2008). From a human health perspective, high concentrations of 

aerosols have been linked to cardiovascular disease and mortality, with 10 % of deaths 

associated with air pollution globally (Kennedy, 2007; Dominici et al., 2006). Aerosols have also 

been shown to significantly influence climate, however there is significant error associated with 

quantifying the magnitude of these effects (Forster, 2007). 

The size distribution of aerosols in the atmosphere ranges from 1 nm – 100 µm, with 

particle number concentrations peaking with diameters at 100 nm, and mass distribution 

diameters peaking at 500 nm and 6 µm (Seinfeld, 2006; Heal et al., 2012). Coarse particles 

(diameter > 2.5 µm), accounting for the majority of particle mass, are generated by mechanical 

processes and consist of mineral dust, sea salt, and primary biological particles such as pollen. 

Fine particles (diameter < 2.5 µm), accounting for the largest number concentrations of particles 

in the atmosphere, are generally produced from combustion sources and the low volatility 

products formed from gas-phase precursors  (Seinfeld, 2006). While large airborne particles are 

generally deposited within hours to days, fine particles can remain airborne for weeks (Poschl, 

2005; Prather et al., 2008). Size is a key factor determining particle health and climate impacts. 

For example, particles < 1 µm can penetrate deeply into the alveoli while larger particles are 

filtered out (Hinds, 1999). Furthermore, particles larger than 120 nm can act efficiently as cloud 

condensation nuclei (CCN), modifying the properties of clouds, while particles < 40 nm require 

unrealistically high supersaturation for activation (Dusek et al., 2006). In addition to size, 

chemical composition can affect particle impacts on health and climate. Work by Petters and 

Kreidenweis (2007), Hatch et al. (2011) and Estillore et al. (2016) suggest the presence of 
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hygroscopic organic compounds in aerosols, such as organosulfates, could enhance the cloud-

formation ability of submicron organic aerosol.  

Aerosols originate from a variety of natural (biogenic) and human-influenced 

(anthropogenic) sources. Primary particles such as mineral dust, soot, or sea spray aerosol are 

emitted directly from a source. Secondary particles such as secondary organic aerosol (SOA), are 

formed from the oxidation and condensation of volatile species emitted to the atmosphere as 

gases. One of the challenges in determining the effects of aerosols on climate and health is that 

particles are constantly changing after emission. Throughout their lifetime, aerosols can undergo 

heterogeneous reactions or coagulation, modifying their size, chemical composition, cloud-

forming ability, or optical properties. As aerosol impacts are closely tied to the properties of 

individual particles, understanding the chemical composition and distribution of species within 

populations is essential to learning the extent of aerosol influences. Currently, a comprehensive 

understanding of aerosol particle composition, morphology, phase and internal structures, and 

transformations through atmospheric aging remains insufficient to fully predict aerosol impacts 

on the environment. Aerosol particles can undergo numerous reactions in the atmosphere with 

gaseous and condensed phase species including inorganic and organic acids, and oxidized 

nitrogen, sulfur, and organic species (Bondy et al., 2017b; Wang et al., 2015; Ravishankara, 

1997). Although atmospheric chemical and physical processes are complex, recent work has 

advanced considerably in the past decade (Laskin et al., 2016).  

The southeastern United States is ideal for studying biogenic-anthropogenic interactions 

due to the high natural emissions of organic compounds and proximity of natural emissions to 

anthropogenic pollution sources. Recently isoprene, the most abundant non-methane volatile 

organic compound, has been shown to contribute significantly to SOA in the region through 

oxidation and formation of gas-phase products with lower volatility that partition to the particle 

phase (Glasius and Goldstein, 2016). Additionally, organosulfates, many which have isoprene as 

the precursor, have been estimated to contribute up to 10 % of the total organic aerosol mass in 

the southeastern United States (Tolocka and Turpin, 2012), increasing the hygroscopicity of 

organic aerosol. The exact contribution of key species such as isoprene-derived organosulfates, 

as well as their formation pathways are currently an active area of research, as there are large 

uncertainties related to chemistry in the region. In order to evaluate aerosol impacts, a deeper 

understanding of aerosol chemical composition is needed  
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1.2. Particle Chemical Mixing State 

 The distribution of chemical species within an aerosol population is referred to as its 

chemical mixing state, which can be described in terms of external and internal mixtures (Figure 

1.1). An external mixture consists of particles that contain only one pure species per particle, 

while an internal mixture describes a population where each particle contains equal amounts of 

each species (Riemer and West, 2013; Posfai and Buseck, 2010). Multiple researchers examining 

particle chemical mixing state have observed externally and internally mixed particles, primarily 

at urban locations, with more internally mixed particles formed during stagnated air masses, 

during serious pollution events, as particles were transported away from their sources, and at 

higher altitudes (Moffet et al., 2010b; Fu et al., 2012; Pratt and Prather, 2010). However, ambient 

aerosols cannot typically be categorized into either external or internal mixtures, but rather have 

complex mixing states that can vary as a function of particle size, altitude, and age. As changes 

in chemical composition affect particle properties such as reactivity, hygroscopicity, toxicity, and 

optical properties, it is important to understand the chemical mixing state of individual particles 

in a population (Jacobson, 2001; Chung and Seinfeld, 2005; Zaveri et al., 2010).  

 

Figure 1.1. Representations of particle composition in external mixtures, internal mixtures, and a 

particle population with a complex mixing state. Chemical mixing state provides information on 

primary versus secondary components, but does not provide information concerning the 

distribution of chemical components within individual particles or other physical properties. 

Note that the locations of the colors in the chemical mixing state particles are not meant to 

convey spatial distribution, only the presence of both primary and secondary components. 

Concept derived from a figure in Ault and Axson (2017). 

 

In 2013, Riemer and West proposed a metric to quantify aerosol population mixing state 

using entropy and diversity measures. This method, using single particle mass fractions of 



4 

 

individual chemical components to calculate average particle-specific diversity, bulk population 

diversity, and a mixing state index, has been applied to five aerosol studies, to date (Dickau et 

al., 2016; Giorio et al., 2015; Healy et al., 2014; O'Brien et al., 2015a; Fraund et al., 2017). The 

volatile mixing state of soot, particle composition and particle chemical mixing state from 

anthropogenic sources in London and Paris, and the mixing state of biogenic and anthropogenic 

particles during aging and transport in California and the Amazon were all quantified, resulting 

in populations with complex mixing states. Although there have been recent advancements to 

better understand and quantify the chemical mixing state of aerosols, since mixing state matters 

when modeling climate-relevant properties, more studies quantifying mixing state are needed to 

more accurately describe the chemical mixing state of complex, ambient particles.  

 

1.3. Single Particle Microscopy and Spectroscopy Methods 

 Spectroscopy and microscopy have long been used to probe individual aerosol particles 

(Fletcher et al., 2011). Particularly within the past 15-20 years, the use of microscopy methods 

has dramatically increased due to instrument improvements and an increasing desire to analyze 

the chemical mixing state of particles (Ault and Axson, 2017). Individually, single particle 

microscopy allows particle size and morphology to be studied, useful measures when identifying 

sources and particle evolution during transport. Single particle spectroscopy yields detailed 

chemical information concerning functional groups or elemental composition of particles, 

depending on the type of transition being probed (vibrational or electronic). As single particle 

microscopic and spectroscopic methods provide complementary information, often tandem 

analysis methods or multiple techniques are used to more thoroughly characterize particle 

populations (Ault and Axson, 2017; Bondy et al., 2017b; Bondy et al., 2017a; Craig et al., 2017a; 

Creamean et al., 2016; Ault et al., 2012; Ault et al., 2013; Sobanska et al., 2014; Sobanska et al., 

2012). The microscopy and spectroscopy methods used in this work are described in the 

following sections.  

 

1.3.1. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-

EDX) 

 Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) 

has been extensively used in the past to characterize the size, morphology, phase, and elemental 
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composition of individual particles collected from field campaigns and laboratory studies (Ault 

and Axson, 2017; Fletcher et al., 2011; Bondy et al., 2017b; Ghorai et al., 2014; Hopkins et al., 

2008; Laskin et al., 2006a; Laskin et al., 2016; Laskin et al., 2002, 2003; Laskin et al., 2005; 

Laskin et al., 2012; O'Brien et al., 2014; O'Brien et al., 2015a; O'Brien et al., 2015b; Wang et al., 

2016; Wang and Laskin, 2014; Wang et al., 2015; Sobanska et al., 2003; Sobanska et al., 2014; 

Axson et al., 2016b; Creamean et al., 2016; Shen et al., 2016; Axson et al., 2016a; Kim et al., 

1987; Andreae et al., 1986). SEM is an analytical technique that has been primarily used to study 

atmospheric aerosol particles down to 50 nm. SEM uses an electron beam with an accelerating 

voltage between 5 and 25 kV to image particles collected on a substrate. Depending on the 

particle composition and substrate, different electron-sample interactions can be used for 

imaging. Backscattered electrons and secondary electrons provide Z-dependent contrast or 

detailed morphology, respectively, useful for aerosols containing heavy metals or detailed 

surface features. Scanning transmission electron microscopy (STEM), used with a high angle 

annular dark field detector (HAADF), has been used increasingly as the STEM image is also Z-

dependent, thickness dependent, and its use improves detection of submicron particles. To 

chemically characterize aerosol particles, SEM is typically coupled with EDX. EDX measures 

the elemental composition of particles via the detection of energy-specific X-rays which 

correspond to particular elements. Elemental mapping with EDX (Figure 1.2) can yield chemical 

mixing state information, as heterogeneity of elements within individual particles can be probed 

with sub-100 nm resolution (Conny and Norris, 2011).  

 

Figure 1.2. Electron images and elemental maps of a a) sea spray aerosol particle, b) mineral 

dust particle, and c) primary biological particle collected in the southeastern U.S during the 

SOAS field campaign.  
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 Computer controlled SEM (CCSEM), an automated analysis method, has been developed 

to improve the throughput of this technique (Laskin et al., 2006a). CCSEM, which automatically 

detects individual particles based on a light-to-dark threshold followed by EDX spectral 

acquisition, has been used in a number of diverse applications ranging from detection of sea 

spray aerosol in coastal and inland locations (Bondy et al., 2017b; Laskin et al., 2012; Laskin et 

al., 2006b), to analysis of transported mineral dust (Axson et al., 2016b), to detection of lead-

containing aerosols from illegal battery recycling operations in an urban center (Shen et al., 

2016). To analyze large CCSEM data sets, clustering algorithms such as k-means have been used 

in several studies (Axson et al., 2016b; Shen et al., 2016; Allen et al., 2015; Bondy et al., 2017b; 

Ault et al., 2012; Axson et al., 2016a; Craig et al., 2017a). K-means clustering groups particles 

with similar elemental composition (from EDX spectra) unique to sources, thus particles can be 

grouped into source-based classes such as sea spray aerosol, mineral dust, and organic aerosol. 

Furthermore, particle classes such as fresh sea spray aerosol and aged sea spray aerosol can be 

distinguished, providing information concerning particle evolution (Bondy et al., 2017b; Laskin 

et al., 2002).  

 

1.3.2. Scanning Transmission X-ray Microscopy with Near Edge X-ray Absorption Fine 

Structure Spectroscopy (STXM-NEXAFS) 

 Scanning transmission X-ray microscopy with near edge X-ray absorption fine structure 

(STXM-NEXAFS) has been used to probe different atmospheric or lab-generated particles 

(Laskin et al., 2016) including sulfur-containing SSA (Hopkins et al., 2008), soil-derived organic 

aerosol (Wang et al., 2016), and carbonaceous particles transported from cities (Moffet et al., 

2010b; Moffet et al., 2013; O'Brien et al., 2015a). While SEM uses electrons to generate images, 

STXM microscopy is a synchrotron technique that utilizes “soft” X-ray radiation in the range of 

~100-1000 eV. NEXAFS spectra with spatial resolution of 25 nm can probe bonding within 

particles by focusing on the carbon K-edge, the oxygen K-edge, the nitrogen K-edge, or the L-

edges of sulfur and chlorine (Kilcoyne et al., 2003). STXM-NEXAFS is a complementary 

technique to SEM-EDX because it provides detailed information concerning chemical bonds 

within particles. Using STXM-NEXAFS, spectra and chemical maps can be collected identifying 

features such as sp
2
-bonded carbon (i.e. soot), COOH groups, potassium in biological particles, 

and the oxidation states of sulfur in marine aerosol (Hopkins et al., 2008; Moffet et al., 2010b; 
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Moffet et al., 2010a; Moffet et al., 2013; Pöhlker et al., 2012). Additionally, as NEXAFS is a 

purely photon-based technique, Beer-Lambert’s Law can be used to determine the optical 

density, or intensity, of peaks in the NEXAFS spectra. Using the ratio of the pre-edge absorption 

to the post-edge absorption, the ratio of inorganic to organic material can be determined for each 

pixel, allowing differentiation of inorganic and organic phase-separated regions within particles 

(Figure 1.3). In this work, STXM-NEXAFS was primarily used to map organic versus inorganic 

components and identify soot (sp
2
 carbon) inclusions within organic aerosol particles. 

 

 

Figure 1.3. a) STXM-NEXAFS images and spectra of an organic-inorganic particle from SOAS. 

Singular value decomposition maps combining sp
2
 carbon (red), organic (green), and inorganic 

(blue) are depicted in b). The NEXAFS spectra at the carbon K-edge is shown in c). 

 

 

1.3.3. Raman Microspectroscopy 

 In the past decade, Raman microspectroscopy of aerosol particles has expanded greatly 

due to instrument improvements (Ault and Axson, 2017). Raman spectroscopy probes molecular 

vibrations rather than electronic transitions, yielding information primarily for covalently bonded 

species. Vibrational methods, such as Raman microspectroscopy, have great potential to provide 

insight into chemical processes within aerosols (Ault and Axson, 2017), as Raman has been used 

in recent studies to provide detail on functional groups including ν(SO4
2-

), ν(NO3
-
), ν(C-H), and 
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ν(O-H) (Craig et al., 2015, 2017a; Ault et al., 2013; Laskina et al., 2013; Deng et al., 2014; 

Sobanska et al., 2014; Sobanska et al., 2012). Raman microspectroscopy has the potential to 

probe the chemical species present within individual particles, it can differentiate between bound 

and free ions (i.e. NaNO3 vs. NO3
-
) (Ault et al., 2014), and recent work by Craig and Rindelaub 

used Raman microspectroscopy to determine the pH of individual particles (Figure 1.4) (Craig et 

al., 2017b; Rindelaub et al., 2016). Raman microspectroscopy is useful for aerosol studies 

because unlike SEM-EDX and STXM-NEXAFS, this technique is performed at ambient 

pressure. This allows liquid-liquid phase separations to be readily analyzed (Ciobanu et al., 

2009), and coupled with relative humidity-controlled cells, the hygroscopic growth of particles 

can be studied (Estillore et al., 2016; Laskina et al., 2015; Rindelaub et al., 2016). Furthermore, 

Raman spectroscopy can distinguish species that are challenging for EDX, such as inorganic 

sulfate and organic sulfate. However one challenge with Raman microspectroscopy is analysis is 

typically limited to particles > 1 μm due to the diffraction limit of visible light. To probe smaller 

particles, methods such as surface-enhanced Raman spectroscopy (SERS) (Craig et al., 2015) 

and tip-enhanced Raman spectroscopy (TERS) (Ofner et al., 2016) have been used to increase 

Raman signal by coating a substrate surface or tip, respectively, with metal, however uneven 

signal enhancements require further development. Due to the unique advantages offered by 

Raman spectroscopy, in this work Raman microspectroscopy was used as a complementary 

analysis method to other methods such as SEM-EDX and infrared spectroscopy (IR). 
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Figure 1.4. Raman microspectroscopy has been used to probe functional groups within 

individual aerosol particles, yielding information such as the pH of a single particle. Reprinted 

with permission from Rindelaub, J. D.; Craig, R. L.; Nandy, L.; Bondy, A. L.; Dutcher, C. S.; 

Shepson, P. B.; Ault, A. P., Direct measurement of pH in individual particles via Raman 

microspectroscopy and variation in acidity with relative humidity. J. Phys. Chem. A 2016, 120 

(6), 911-917. Copyright (2016) American Chemical Society.  

 

 

1.3.4 Atomic Force Microscopy Infrared Spectroscopy (AFM-IR) 

 Atomic force microscopy infrared spectroscopy (AFM-IR) has the potential to overcome 

size limitations of traditional vibrational spectroscopy methods, such as Raman 

microspectroscopy. The AFM-IR technique is based on the photothermal expansion of a sample 

detected by an AFM probe, allowing for IR detection with spatial resolution ~50 nm, limited 

only by the radius of the AFM tip (Dazzi and Policar, 2011; Dazzi and Prater, 2016; Dazzi et al., 

2012; Dazzi et al., 2007; Marcott et al., 2012). AFM-IR, a recently developed method, was 

applied to the analysis of aerosol particles for the first time in this work (Figure 1.5) (Bondy et 

al., 2017a). Previously, this method has been applied to the analysis of polymer blends and 

composites (Dazzi et al., 2012), imaging and spectroscopic analysis of single cells (Baldassarre 

et al., 2016), analysis of tissue (Marcott et al., 2013), and other diverse areas including 

investigation of metal organic frameworks (Katzenmeyer et al., 2014), perovskite solar cells 

(Dong et al., 2015), and cultural heritage materials (Dazzi and Prater, 2016; Latour et al., 2016). 
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This method combines simultaneous single particle imaging with AFM, yielding information on 

phase, morphology (Krueger et al., 2005), hygroscopicity (Morris, 2016; Hritz et al., 2016), and 

surface tension (Morris et al., 2015), with chemical functional group information obtained by IR 

absorption. The subdiffraction limit capability of AFM-IR has the potential to advance 

understanding of particle impacts on climate and health by improving our ability to study 

heterogeneous reactivity and chemical mixing state of submicron aerosol particles near the peak 

of the number size distribution in the atmosphere. 

 

Figure 1.5. AFM-IR combines single particle imaging with vibrational chemical information, 

yielding size, morphology, and chemical composition for submicron particles. Originally 

published in Bondy et al. (2017a). 

 

 

1.4. Research Objectives and Scope of Dissertation  

In this dissertation, ambient and laboratory-generated aerosol particles were studied using 

single particle microscopy and spectroscopy methods to improve our understanding of their 

chemical mixing state and better predict particle impacts on health and climate. Chapter 2 

identifies particle sources and quantifies the chemical mixing state of particles collected during 

the Southern Oxidant and Aerosol Study (SOAS) in a forested region influenced by transported 

pollution. Chapter 2 was submitted to Atmospheric Chemistry and Physics in January, 2018. 

Chapter 3 probes the varying degrees of atmospheric processing experienced by one particular 

class of particles from SOAS, sea spray aerosol (SSA), which were transported hundreds of 

kilometers inland. Chapter 3 was published in Environmental Science & Technology in 2017. 
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Chapter 4 fundamentally characterizes the vibrational modes of isoprene-derived organosulfates, 

an important class of organic aerosol in the southeastern United States, using Raman 

microspectroscopy. This vibrational mode information is then used to identify organosulfates 

within organic aerosol from SOAS. This work was published in the Journal of Physical 

Chemistry A in 2017. Chapter 5 applies AFM-IR to the analysis of aerosol particles for the first 

time, detecting trace organic and inorganic species in individual particles down to 200 nm. 

Chapter 5 was published in Analytical Chemistry in 2017. Chapter 6 describes the 

physicochemical mixing state of SOA from SOAS, illustrating that the separation of organic and 

inorganic material within particles is dependent on aerosol lifetime and relative humidity history. 

This work is currently being prepared for submission to Nature Geoscience. Combined, these 

chapters strengthen our understanding of the chemical mixing state of single particles from a 

variety of sources.    
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Chapter 2. 

Diverse Chemical Mixing State of Aerosol Particles at SOAS in the 

Southeastern United States 

 

Amy L. Bondy, Daniel Bonanno, Ryan C. Moffet, Bingbing Wang, Alexander Laskin, Andrew 

P. Ault. Diverse Chemical Mixing State of Aerosol Particles at SOAS in the Southeastern United 

States. Submitted to Atmospheric Chemistry and Physics. 

 

2.1. Introduction  

The southeastern United States has experienced neutral to cooling shifts in regional 

climate over the past century (Portmann et al., 2009; Saxena and Yu, 1998), in contrast to 

warming observed in the rest of the United States. This has been attributed to increased 

formation of secondary organic aerosol (SOA) with largely cooling effects due to efficient light 

scattering and activity in cloud formation (Goldstein et al., 2009; Portmann et al., 2009). 

Regionally, the main SOA source is oxidation of biogenic volatile organic compounds (BVOCs), 

followed by condensation onto preexisting particles containing ammonium, sulfate, and nitrate 

(Chameides et al., 1988; Carlton et al., 2010; Lee et al., 2010; Weber et al., 2007; Anttila et al., 

2007; Budisulistiorini et al., 2015a; Xu et al., 2015b; Boyd et al., 2015; Hodas et al., 2014; 

Nguyen et al., 2015). Most studies of aerosol climate impacts in the southeast have focused on 

the effects of SOA, as this region has high concentrations of organics, which along with 

ammonium sulfate, contribute 60-90 % of fine particulate matter (PM2.5) (Attwood et al., 2014; 

Cerully et al., 2015; Nguyen et al., 2014; Boone et al., 2015). However, despite the importance 

of SOA, the mixing of secondary species (SOA, sulfate, nitrate, etc.) with primary particles is not 

fully known, particularly for forested locations impacted by regional anthropogenic emissions. 

The form and extent of mixing between chemical species in individual particles, i.e. mixing state, 

is critical for climate-relevant properties including light scattering, water uptake, and particle 

acidity (Artaxo and Orsini, 1987; Metternich et al., 1986; Kunkel et al., 2012; Violaki and 
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Mihalopoulos, 2010; Cong et al., 2010; Xu et al., 2015a). Therefore, it is important to identify 

the sources of aerosol particles present in the southeastern United States, as well as their size and 

mixing state in order to accurately assess their impact on aerosol direct and indirect effects (Li et 

al.; Posfai and Buseck, 2010; Moise et al., 2015). 

Mixing state is described in terms of external and internal mixtures: an external mixture 

consists of particles that contain only one pure species per particle, while an internal mixture 

describes particles that contain equal amounts of all chemical species (Riemer and West, 2013; 

Posfai and Buseck, 2010; Ault and Axson, 2017). The mixing states of ambient aerosol 

populations are complex and can vary as a function of size, altitude, and particle age (Moffet et 

al., 2010b; Fu et al., 2012; Healy et al., 2014a; Pratt and Prather, 2010). Aging, or atmospheric 

processing such as coagulation, condensation of secondary species, and heterogeneous reactions 

leads to internal mixing, while freshly emitted particles are more externally mixed (Weingartner 

et al., 1997; Schutgens and Stier, 2014). Here, mixing state is used to describe the distribution of 

chemical species in a population and is purely based on composition, not including particle 

morphology or other physical properties (Ault and Axson, 2017). Although the representation of 

mixing state in models is still an open research question (Riemer and West, 2013), an appropriate 

description of mixing state is critical for modeling the optical properties (Jacobson, 2001; Chung 

and Seinfeld, 2005; Zaveri et al., 2010) and cloud condensation nuclei (CCN) activity of  

particles (Zaveri et al., 2010). 

Riemer and West (2013) introduced the mixing state index (χ) to quantify aerosol mixing 

state. This parameterization uses single particle mass fractions of individual components to 

calculate the average particle-specific diversity and the bulk population diversity, from which the 

mixing state index can then be determined. This methodology has been applied to a handful of 

laboratory and field studies, to date. In the laboratory, Dickau et al. (2016) used aerosol sizing 

and mass instrumentation to quantify the volatile mixing state of soot. Single particle mass 

spectrometry data from field studies in London (Giorio et al., 2015) and as part the MEGAPOLI 

campaign in Paris (Healy et al., 2014b) found mixing state was dependent both upon time of day 

and air mass origin. Similarly, mixing state parameters were applied to computer controlled 

scanning electron microscopy/energy dispersive X-ray spectroscopy (CCSEM-EDX) and 

scanning transmission X-ray microscopy/near edge X-ray absorption fine structure spectroscopy 

(STXM-NEXAFS) during the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 
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the Central Valley, CA (O'Brien et al., 2015) and in the Amazon during the GoAmazon 

campaign (Fraund et al., 2017), finding changes in mixing state were associated with a buildup 

of organic matter and particle clusters were less diverse at remote sites, respectively. However, 

additional studies are needed to quantify the chemical mixing state of aerosols, particularly for 

rural locations. 

In this study, we analyzed individual atmospheric particles collected in a rural location 

influenced by regional pollution in the southeastern United States during the 2013 Southern 

Oxidant and Aerosol Study (SOAS) to identify their size-resolved chemical composition and 

mixing state. CCSEM-EDX was used to determine the size, elemental composition, and number 

fraction of particles containing nonvolatile cations. STXM-NEXAFS was used to characterize 

chemical bonding of carbonaceous components, specifically distinguishing soot from organic 

carbon. Mass estimates of particle elemental composition from CCSEM-EDX were calculated 

using a modified version of the method from O’Brien et al. (2015) to quantify the mixing state 

parameters for both submicron and supermicron particles during time periods dominated by 

SOA/sulfate, dust, and sea spray aerosol (SSA), respectively. Additionally, the variability in the 

mixing state index during these three time periods of interest, showed that submicron aerosol 

varied between more internal and external mixing states, while supermicron particles were 

mostly internally mixed. The variety of particle classes, varying extent of secondary processing, 

and diverse chemical mixing states at this rural, forested site may impact climate-relevant 

properties of aerosols in the southeastern United States. 

 

2.2. Experimental 

2.2.1. Aerosol Sample Collection 

Samples of atmospheric particles were collected at the SOAS Centreville, AL site 

(32.9030 N, 87.2500 W, 242 m AMSL) between June 5
 
and July 11, 2013 (Hidy et al., 2014; 

Bondy et al., 2017b). The site was located in a rural forested region near Talladega National 

Forest, at a location that is part of the SouthEastern Aerosol Research and Characterization 

Network (SEARCH). Meteorological and filter sample data analyzed from the SEARCH 

network were used to aid selection of samples for analysis (Figures 2.1 and A.1). Particles were 

collected near ground level (1 m) using a micro-orifice uniform deposit impactor (MOUDI, MSP 

Corp. Model 110) sampling at 30 lpm with a PM10 cyclone (URG Model 786) to exclude 
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particles larger than 10 µm. The 50 % size cut-points for the MOUDI used in this analysis had 

aerodynamic diameters (Da) of 3.2, 1.8, 1.00, 0.56, 0.32 0.18, 0.10, and 0.056 µm (Marple et al., 

1991). Throughout SOAS, particles were impacted onto Cu 200 mesh TEM grids with Carbon 

Type B thin film (Ted Pella Inc.) for analysis with SEM-EDX and STXM-NEXAFS. Substrates 

in the MOUDI were collected daily from 8:00-19:00 CST and 20:00-7:00 CST (with 1 hour for 

substrate exchange), except during intensive periods from June 10
th

-12
th

, June 14
th

-16
th

, June 

29
th

-July 1
st
, and July 7

th
-9

th
 when the sampling schedule was 8:00-11:00, 12:00-15:00, 16:00-

19:00, and 20:00-7:00 CST (Table A.1). Samples were collected more frequently during 

intensive time periods, which were determined by meteorological and gas phase concentrations 

(Budisulistiorini et al., 2015a). In Figure 2.1, the MOUDI stages analyzed using CCSEM are 

noted for each sample. After collection, all substrates were sealed and stored at -22°C prior to 

analysis. 

 

Figure 2.1. SEARCH filter sample data for Centreville, AL during SOAS with purple boxes 

overlaid for time periods in which CCSEM was run, and the corresponding MOUDI stages that 

were analyzed. SOA-rich periods denoted with green boxes (June 14-17 and July 7-11, 2013) 

were studied by Xiong et al. (2015), Pye et al. (2015), Xu et al. (2015c), Hu et al. (2015), and 

Rattanavaraha et al. (2016); dust-rich periods marked with brown boxes (June 12-13 and June 
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26-28, 2013) were identified by Allen et al. (2015); and SSA-rich periods marked with blue 

boxes (June 10-11 and July 3-6, 2013) were identified by Bondy et al. (2017b). Note, due to 

sample damage and identification of mutually exclusive time periods, only 29 % of SOA-

dominant periods, 40 % of dust periods, and 51 % of SSA periods identified in previous studies 

were analyzed here. 

 

2.2.2. CCSEM-EDX Analysis 

Particles on MOUDI stages 4-11 (Da = 0.056-1.8 µm, Figure 2.1) were analyzed using 

CCSEM (FEI Quanta environmental SEM) equipped with a field emission gun operating at 20 

kV and a high angle annular dark field (HAADF) detector (Laskin et al., 2002; Laskin et al., 

2012; Laskin et al., 2006). The SEM was equipped with an EDX spectrometer (EDAX, Inc.) 

which was used to quantify X-rays of elements with atomic numbers > C (Z = 6). A total of 

~34,000 particles were analyzed during time periods denoted in Table A.2, which constitute a 

representative cross section of the campaign. CCSEM analysis captured particle physical 

parameters including projected area diameter, projected area, and perimeter. Projected area 

diameter, which is equivalent to the diameter of a circle with the same area as the particle 

silhouette, is typically larger than aerodynamic diameters measured by other analytical 

techniques (Hinds, 1999; Bondy et al., 2017a). For a more accurate representation of particle 

size, projected area diameters were converted to volume equivalent diameter using a conversion 

factor of 0.49 for SOA/sulfate and biomass burning particles and 0.66 for SSA, determined from 

atomic force microscopy (AFM) volume calculations of particles from SOAS (Tables A.3 and 

A.4). EDX spectra from individual particles were analyzed to determine the relative abundance 

of 14 elements: C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, and Fe. Note, the Cu signal in the 

EDX spectra is primarily due to the Cu grid from the substrate and was not included in CCSEM-

EDX analysis. 

The CCSEM-EDX data sets were analyzed using k-means clustering of the elemental 

composition following the method described in Ault et al. (2012) using codes written in Matlab 

R2013b (MathWorks, Inc.). Clusters were grouped into source-based classes by elemental 

composition, including mineral dust (Sobanska et al., 2003; Laskin et al., 2005; Coz et al., 2009; 

Axson et al., 2016; Creamean et al., 2016), SSA (Bondy et al., 2017b; Laskin et al., 2002; 

Hopkins et al., 2008), SOA/sulfate (Sobanska et al., 2003; Moffet et al., 2013; O'Brien et al., 

2015), biomass burning aerosol (Li et al., 2003; Posfai et al., 2003), fly ash/metals (Ault et al., 

2012; Shen et al., 2016), biological particles (Huffman et al., 2012), and fresh soot (Li et al., 



24 

 

2003). Soot forms fractal aggregates of graphitic carbon (C) which contain tens to hundreds of 

small spherical aggregates (Li et al., 2003). However the intense carbon signal due to the carbon 

film substrate made chemical identification of soot difficult, resulting in false positives from the 

substrate. Because of their unique morphology, the size distribution of fresh soot particles 

without a large, secondary organic carbon coating altering the fractal morphology, was manually 

determined. Then, a scaling factor based on the SEARCH network elemental carbon mass 

concentrations was applied to the size distribution and this factor was used in the subsequent 

analysis. More information on this correction for soot can be found in Appendix A, specifically 

Table A.5. 

 

2.2.3. Mass Calculations and Mixing State Parameters 

Mole percent of elements analyzed using CCSEM-EDX were converted to mass fractions 

using the method described by O’Brien et al (2015) and detailed in Appendix A. Briefly, particle 

volumes were calculated from projected area diameters assuming the volume of a hemisphere. 

Particle masses were then calculated (µi = density x volume) assuming the following densities for 

each class: 1.3 g/cm
3
 for SOA/sulfate, biomass burning aerosol, and primary biological particles 

(Nakao et al., 2013; Li et al., 2016; Manninen et al., 2014); 2.0 g/cm
3
 for SSA particles (O'Brien 

et al., 2015); 2.6 g/cm
3
 for dust particles (Wagner et al., 2009); and 3.0 g/cm

3
 for fly ash particles 

(Buha et al., 2014). To calculate the mass of each element, the elemental mole percent was 

converted to a weight percent, which was multiplied by the estimated particle mass.  

Diversity parameters were calculated using two different methods in this work: elemental 

diversity was calculated from CCSEM-EDX results similar to O'Brien et al. (2015), and mixing 

state parameters due to aging were calculated as described below (which use only two diversity 

species: the mass fraction of elements associated with externally-mixed particles and the mass 

fraction of secondary species). To calculate elemental diversity parameters, the mixing entropy 

of each particle (Hi) and average particle mixing entropy (Hα) were calculated for each particle 

class as described in detail by Riemer and West (2013): 

𝐻𝑖 =∑𝑝𝑎𝑖ln⁡𝑝𝑖
𝑎

𝐴

𝑎=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.1) 

𝐻𝛼 =∑𝑝𝑖𝐻𝑖⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.2)

𝑁

𝑖=1
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where pi is the mass fraction of particle i in the population and p
a

i is the mass fraction of element 

a in particle i. The particle diversity (Di) was then calculated by taking the exponent of the 

particle-specific entropy Hi, and the average particle-specific diversity (Dα) was calculated by 

taking the exponent of Hα. Dα was used as an indicator of elemental diversity for each particle 

class: SOA/sulfate, biomass burning particles, fly ash, dust, SSA, and biological particles. 

In addition to elemental diversity, diversity parameters were calculated to quantify the 

extent of particle aging. To calculate the mixing state aging parameters for the three time periods 

of interest, two final mass values were calculated: the mass of single particles in a class based on 

the sum of elements characteristic to that class, and the mass of secondary species. The elemental 

mass fractions as a function of size are depicted in Figure A.2. Due to the semi-quantitative 

nature of the lower Z elements (Laskin et al., 2006) and substrate interferences, we excluded C, 

N, and O from mixing state calculations, similar to O’Brien et al. The mass associated with 

SOA/sulfate was solely accounted for by S (if present), and therefore was either ignored or 

severely underestimated. Fresh biomass particles consisted of K and Cl, fly ash particles 

contained Al and Si, unreacted dust particles consisted of Na, Mg, Al, Si, K, Ca, Ti, and Fe, fresh 

SSA particles contained Na, Mg, Cl, K, and Ca, and biological particles contained P, Cl, and K. 

As a metric for aging, all sulfur was assumed to be secondary within particles, though trace 

primary sulfur is present in SSA and possibly other classes. Thus, each particle contained 

between one and two components: a primary source-based composition and secondary aging due 

to sulfur. Using the mass fractions of only these two components, Hi, Hα, and the population bulk 

mixing entropy (Hγ) were calculated for each particle class 

𝐻𝛾 = ∑−𝑝𝑎𝑙𝑛𝑝𝑎
𝐴

𝑎=1

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.3) 

 

where p
a
 is the mass fraction of element a in the population. The bulk population diversity (Dγ) 

was then calculated by taking the exponent of Hγ. The mixing state index (χ) is then defined as  

𝜒 =
𝐷𝛼 − 1

𝐷𝛾 − 1
⁡x⁡100⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2.4) 

where χ can range from 0 % for an external mixture to 100 % for an internal mixture. 
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2.2.4. STXM-NEXAFS Analysis 

STXM-NEXAFS measurements of two MOUDI samples (stage 9, 50 % size cut-point of 

0.18 µm, 100-200 particles analyzed per sample), June 10 and July 7, 2013 were performed at 

the carbon K-absorption edge (280-320 eV) to characterize chemical bonding of carbonaceous 

components, specifically distinguishing soot from organic carbon. STXM was conducted at the 

Advanced Light Source at Lawrence Berkeley National Laboratory on beamline 5.3.2. The 

operation of the microscope has been explained in detail by Kilcoyne et al. (2003). The software 

programs Matlab and Axis 2000 were both used for spectral analysis of the STXM-NEXAFS 

data as described by Moffet et al. (2010a); (Moffet et al., 2016). Stacks of images taken at 

sequentially increasing photon energies were used to obtain spatially resolved spectroscopic data 

at the carbon K-edge. For organic identification, pixels were identified where the post-edge 

minus the pre-edge (optical density (OD) at 320 eV minus OD 278 eV) was greater than 

zero. For the inorganic component, particles with a ratio of the pre-edge to the post-edge (OD 

278 / OD 320) greater than 0.5 were identified. To identify soot inclusions within particles, 

individual pixels of STXM images were analyzed and if a pixel contained 35 % or greater C=C, 

a peak which was identified as soot using graphitic carbon as a standard, then that pixel was 

identified as a soot region. Additional details on identification of SOA-containing soot inclusions 

are provided in Appendix A. 

 

2.3. Results and Discussion 

2.3.1. Overview of Particle Classes at SOAS 

Although SOAS took place in a rural forested region, a variety of particle classes were 

observed, and SOA/sulfate was not always the dominant individual particle class. Based on the 

chemical composition, seven main particle classes were identified: SOA/sulfate, biomass burning 

particles, soot, and fly ash, which are typically present in the submicron (< 1 µm) regime, and 

mineral dust, SSA, and primary biological particles with characteristic sizes > 1 µm. Figure 2.2 

shows SEM images of representative particles from each class and their corresponding EDX 

spectra. SOA/sulfate particles were identified by the elemental composition of C and O, along 

with either S, N, or both S and N. As all SOA particles contained inorganic species in addition to 

organic carbon (based on STXM ODpre/ODpost = 0.5, ~20 % by weight), this class is referred to 

as SOA/sulfate. EDX spectra of SOA/sulfate particles on Si wafers (Figure A.3) confirmed C 
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and O in the particles, since the carbon film substrate on TEM grids contributes to the signal for 

C and O in the CCSEM-EDX analysis. The presence of S and/or N in addition to C and O is 

likely NO3
-
 or SO4

2-
, based on Raman microspectroscopy (Craig et al., 2017), or organonitrate or 

organosulfate compounds, which are ubiquitous in the southeastern U.S. (Froyd et al., 2010; 

Carlton et al., 2009; Ayres et al., 2015). SOA/sulfate particles were typically circular (circularity 

ranging from 0.95-1, where 1 is perfectly circular, equation A.10), though some SOA/sulfate 

exhibited liquid-liquid phase separation (LLPS), such as core-shell or more complex 

morphologies, which will be explained in a future publication. Biomass burning aerosol particles 

were often circular as well (0.96 circularity), with high concentrations of K and frequently S and 

Cl, in addition to C and O (organic carbon) (Li et al., 2003; Posfai et al., 2003). Fly ash particles 

were identified primarily by their spherical morphology (0.93 circularity) since fly ash is 

generated through high temperature processes (Ault et al., 2012; Chen et al., 2012), in addition to 

high EDX signals from O along with either Si or Al, likely in the form of SiO2 or Al2O3 

respectively. A final class comprised primarily of submicron particles was soot. Fresh soot 

particles were identified primarily by their morphology consisting of agglomerated spheres, 

which had substantially smaller diameters than fly ash (Li et al., 2003). Fresh soot was not very 

prevalent at SOAS, however, but present more frequently within other particles such as SOA, 

which will be detailed later. 

In addition to submicron classes, three classes of particles predominately in the 

supermicron size range were observed at SOAS. Dust particles were identified by strong signals 

from O, Al, and Si (aluminosilicates), often along with other elements such as Na, Mg, K, Ca, Ti, 

and Fe (Sobanska et al., 2003; Laskin et al., 2005; Coz et al., 2009). EDX spectra of SSA 

particles contained a strong Na signal (Na
+
) and weaker Mg signal (Mg

2+
) in a ~10:1 ratio, as 

found in seawater (Pilson, 1998), small contributions from K (K
+
) and Ca (Ca

2+
), and counter-ion 

elements such as N, O, S, or Cl, (NO3
-
, SO4

2-
, or Cl

-
), depending on whether the SSA was fresh 

or aged (Bondy et al., 2017b). Finally, biological particles typically contained primarily C due to 

organic macromolecules, along with lesser amounts of N, O, P, and K, likely in the form of 

amines, phosphate, and K
+
 (Huffman et al., 2012), as seen in Figure 2.2. Overall, various particle 

classes were detected at SOAS using CCSEM-EDX based on unique chemical composition, 

morphology, and size. 
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Figure 2.2. SEM images and corresponding EDX spectra for each of the main particle classes 

identified during SOAS within the submicron: (a) SOA, (b) biomass burning aerosol particles, 

(c) fly ash, (d) soot, and supermicron: (e) dust, (f) SSA, (g) primary biological, sizes. Note the 

elements with an asterisk are not quantitative due to interference from the substrate or detector. 
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STXM-NEXAFS was used to investigate carbonaceous particles since these particles 

were prevalent at SOAS. The carbon K-edge was probed using this technique, and high spatial 

resolution information was obtained regarding sp
2
 C inclusions within SOA/sulfate, which were 

identified as soot at 285 eV (Moffet et al., 2010a). In two samples analyzed using STXM-

NEXAFS, 6.9 % and 9.9 % of particles by number contained sp
2
 C inclusions, suggesting that a 

small fraction of SOA/sulfate contained soot. In comparison, organic carbon/elemental carbon 

(OC/EC) bulk analysis by the SEARCH network detected ~2 % elemental carbon by mass, 

suggesting that although little soot was present overall, a sizeable fraction was present as small 

inclusions within SOA/sulfate. It is important to consider the mixing state of aerosols when 

modelling radiative forcing in the region, because internally mixed particles behave differently 

than pure components. For example, soot coated with secondary organic material may have an 

enhanced absorption compared to fresh soot or soot-less SOA, though recent work has suggested 

that soot coatings may not always increase absorption (Ramanathan and Carmichael, 2008; 

Moffet et al., 2009; Zhang et al., 2008; Healy et al., 2015). These spectra highlight that although 

seven main particle classes were identified, many of the particles, such as SOA and soot, were 

partially internally mixed. 

 

2.3.2. Diversity within Particle Classes 

Using SEM-EDX elemental mapping, morphology and the spatial distribution of species 

within individual particles was examined. In Figure 2.3, particles (a-d) were identified as dust 

based on their morphology and elemental composition. However, only (b-d) are aluminosilicate 

dust particles; (a) contains high concentrations of Ca and S instead. Based on its chemical 

composition, this dust particle is most likely gypsum (CaSO4·2H2O) (Hashemi et al., 2011). The 

elemental map highlights that elements present within the dust class are not homogeneously 

distributed among all particles. Rather, the dust class consists of externally mixed particles with 

varying compositions. In addition to dust, two other particle classes are represented in the 

elemental map in Figure 2.3. Particles (e-f) were identified as aged SSA due to the high 

concentration of Na and Mg along with S and N (likely SO4
2-

 and NO3
-
) (Bondy et al., 2017b), 

and particle (g) is a primary biological particle, possibly coagulated with a small calcium oxide 

particle based on the morphology and distinctly different elemental compositions of the two 

components. In addition to differentiating particles among the seven particle classes identified, 
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SEM-EDX mapping allowed investigation into whether coagulation or chemical aging of 

particles has occurred within particles due to the presence of localized regions of elements or 

surface-layer coatings (Conny and Norris, 2011). As seen in Figure 2.3, very few of the particles 

have a homogeneous distribution of elements, though vacuum analysis and drying can modify 

internal composition of particles. Rather, Na, Ca, S, and Cl often appear in only a few distinct 

regions within particles, which can likely be attributed to heterogeneous reactions or limited 

diffusion. The aluminosilicate dust particle (b) in particular, has localized regions of Ca
 
and S 

(SO4
2-

) on the edges of the particle, signifying that this particle has undergone aging, resulting in 

a more diverse chemical mixing state. Complex mixing states like this have been observed 

previously for SSA and dust, showing that these classes of particles can be externally mixed or 

have surface coatings and inclusions leading to internal mixing, thereby altering their physical 

and chemical properties (Deboudt et al., 2012; Sobanska et al., 2012; Fitzgerald et al., 2015; 

Kandler et al., 2011; Sullivan et al., 2007; Sullivan et al., 2009; Kim and Park, 2012; Gantt and 

Meskhidze, 2013).   
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Figure 2.3. SEM image (dark field) and EDX elemental maps of particles indicated that these 

particle classes had various mixing states. Each of the elemental map panels corresponds to two 

elements overlaid to show the elemental distributions from the SEM image. The following 

particle classes are shown: (a-d) dust, (e-f) aged SSA, (g) primary biological. 

 

To probe the chemical diversity of each particle class, Figure 2.4 shows the average EDX 

elemental percentages for each particle class. The digital color histogram height shows the 

number fraction of particles in a class containing a specific element, while the color represents 

the mole % of the element. For example, 100 % of SOA/sulfate by number contain between 50-

100 % C (mole %). To quantify elemental diversity of particles, Dα, representing the average 
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number of elements within particles in each class, was calculated. Dα ranges from 1 (when a 

particle contains only one element) to A number of elements. Note, due to interference from the 

substrate or detector, C, N, and O were not included in Dα calculations. CCSEM-EDX results 

suggest that SOA/sulfate particles were elementally the least diverse, with Dα = 1.00. However, 

other studies from SOAS that used an aerosol mass spectrometer (AMS) (Guo et al., 2015; Xu et 

al., 2015c) or ultra-performance liquid chromatography/electrospray ionization high-resolution 

quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) (Riva et al., 2016; 

Budisulistiorini et al., 2015b) discovered that a wealth of sources contribute to SOA, resulting in 

hydrocarbon-like organic aerosol, isoprene-derived organic aerosol, as well as more-oxidized 

and less-oxidized oxygenated organic aerosol. Their analyses also showed that SO4
2-

 is the most 

abundant component aside from organic carbon, with significant concentrations of NH4
+ 

followed by NO3
-
, consistent with our observations of 92 % of SOA by number containing S and 

68 % containing N (mole %) (Guo et al., 2015; Xu et al., 2015c; Xu et al., 2017; Budisulistiorini 

et al., 2015b; Riva et al., 2016).
 
 

The composition of biomass burning particles was elementally more diverse than SOA 

(Dα = 1.92), with large contributions from K
+
 (1-30 % by mole %) as well as organic carbon (C 

20-100 % and O 2-50 % by mole %). However, in addition to these three components, 

approximately 60 % of particles by number also contained SO4
2-

 (1-15 % S by mole %), 45% 

contained NO3
-
/NH4

+
 (1-10 % N by mole %), and 15 % by number contained 1-30 % Cl (mole 

%). The presence of Cl suggests that some of the biomass burning particles were fresh. However, 

because sulfate and nitrate, which are indicative of aging (Li et al., 2003), were present more 

frequently, biomass burning particles detected during SOAS likely had sufficient time during 

transport for multiphase reactions to occur. The final submicron particle class, fly ash (Dα = 

1.92), showed two distinct compositions in addition to aging: fly ash from SOAS consisted of 

primarily SiO2, although approximately 15 % by number contained aluminosilicates. Low 

concentrations of SO4
2-

 and NO3
-
 (1-5 % S and N by mole %) suggest acidic species such as 

sulfuric and nitric acid reacted with 25 % of fly ash by number. 
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Figure 2.4. Average histograms and digital color histograms of different particle classes from 

SOAS: (a) SOA, (b) biomass burning, (c) fly ash, (d) dust, (e) SSA, and (f) primary biological. 

Average spectra are shown on the left as the average mole percent of each element analyzed by 

CCSEM-EDX (C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Fe). On the right the digital color 

histogram heights represent the number fraction of particles containing a specific element, and 

the colors represent the mole percent of that element. The average particle specific diversity (Dα), 

representing the average number of elements in each particle, is calculated for each submicron 

and supermicron class. Note the elements with an asterisk are not quantitative due to interference 

from the substrate or detector and are not included in Dα. 

 

Within the supermicron particle classes, a range of elemental compositions were 

observed for dust and SSA (Figure 2.4b). Dust  was primarily composed of aluminosilicates (10-

100 % O, 1-50 % Si, and 1-50 % Al by mole %), with minor contributions from other chemical 

species, including CO3
2-

 or organic coatings (5-100 % C by mole %), NO3
- 
(1-10 % N by mole 

%), SO4
2-

 (1-10 % S by mole %), Mg
2+

 (1-10 % by mole %), K
+
 (1-5 % by mole %), Na

+
 (1-10 

% by mole %), Ca
2+

 (1-10 % by mole %), and Fe
2+

/Fe
3+

 (1-30 % by mole %). The frequency of 
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these minor elements in dust particles varied widely resulting in a high average particle species 

diversity (Dα = 4.43), with nitrate present in approximately 75 % of the dust population by 

number, and titanium present in less than 5 %. The diversity of dust indicates various sources 

and processing throughout SOAS, which likely contributed to time periods with distinct dust 

compositions due to wind speed, direction, and pollution levels. Allen et al. (2015) detected two 

high coarse nitrate events during SOAS, the first corresponding to high levels of SSA and dust, 

and the second primarily dust. The first event exhibited a higher percent of Na
+
, not all of which 

was attributed to SSA due to the low Mg
2+

 to Na
+
 molar ratio, while the second event had a 

higher percent composition of Ca
2+

. Back trajectory analysis of the air mass origin during the 

two coarse particle events indicate that although the overall pattern in wind trajectories was 

similar, slight differences in wind patterns at the beginning of each event may have contributed 

to the observed differences in composition of the aerosol, suggesting a relatively local origin of 

the dust during the second event. The elements of SSA were more homogeneously distributed 

throughout the population than dust (Dα = 2.94), with 100 % of particles by number containing 

C, O, and Na, 75 % by number containing S, and ~70 % by number containing > 1 % (mole %) 

N and Mg. SSA particles also showed various degrees of aging with respect to the anions, since 

chloride can be liberated through multi-phase reactions with acidic species such as HNO3, 

H2SO4, and organic acids (Bondy et al., 2017b). Partially aged SSA comprised approximately 20 

% of particles by number, indicated by Cl
-
 (1-10 % Cl by mole %) in addition to nitrate and 

sulfate. Complete chloride depletion and aging by nitrate (1-30 % N by mole %) and sulfate (1-

30 % S by mole %) was more ubiquitous though, with each secondary species present in ~90 % 

of SSA by number. A thorough discussion of the degree of reactive processing of SSA 

transported inland to Centreville can be found in Chapter 3.  

Primary biological particles contained primarily organic carbon (50-100 % C and 5-20 % 

O by mole %) with minor contributions from PO4
3-

, SO4
2-

, K
+
, in addition to other minor 

elements (Dα = 6.24). The minor constituents (P, K, S) were not detected in all particles, but only 

in about 20 % by number. The absence of these minor constituents from EDX spectra is likely 

the result of low concentrations compared to carbon, and signal below the 1 % detection 

threshold. Although sulfate is typically an indication of aging by H2SO4 in aerosol particles, it is 

also naturally present in biological particles. Furthermore, because the sulfur signal intensity is 

on the same scale as the other minor constituents, it is not necessarily from secondary species. 
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Overall, throughout both the submicron and supermicron particle regimes, particle diversity 

varied, indicating sources of long and short range transport, and various degrees of aging of 

particles within each class. 

 

2.3.3. Particle Class Contributions during Events throughout SOAS 

 Three main time periods (SOA, dust, and SSA) were identified during SOAS that had 

distinctly different sources and processing (Figure 2.5).  Figure 2.5a depicts the size-resolved 

chemical composition averaged over two SOA-dominated time periods (June 14-17, 2013 and 

July 7-11, 2013), two dust events (June 11-13, 2013 and June 26-28, 2013), and two SSA events 

(June 10-11, 2013 and July 3-6, 2013), though only select MOUDI stages were analyzed for each 

sampling period. During each time period depicted, SOA/sulfate averaged > 60 % of 

accumulation mode (0.2-1.0 µm), and 2 % of the supermicron (1.0-5.0 µm) particles by number 

fraction. However, the number fraction of SOA/sulfate was highly variable between the SOA, 

dust and SSA periods. During the two periods dominated by SOA/sulfate depicted in Figure 

2.5a, the number fraction of SOA/sulfate reached up to 95 % in the accumulation mode and up to 

70 % of supermicron particles. Because Centreville, AL is a forested site and BVOC emissions, 

such as isoprene, are high in this region, it is not surprising that SOA/sulfate dominated 

throughout the majority of the campaign, particularly at small particle sizes. However the 

fraction of SOA/sulfate > 1 µm is noteworthy, as SOA/sulfate particles are typically considered 

submicron in size.   
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Figure 2.5. Size distributions for specific particle-rich time periods: (a) SOA-rich periods (June 

14-17 and July 7-11, 2013), (b) dust-rich periods (June 12-13 and June 26-28, 2013), and (c) 

SSA-rich periods (June 10-11 and July 3-6, 2013). SOA periods were dominant throughout 

SOAS (61 % of study), high dust periods occurred 24 % of the time (Allen et al., 2015), and SSA 

periods dominated 19 % of the time (Bondy et al., 2017) based on literature-defined periods 

noted in parentheses in the figure. *Literature-identified SSA periods and dust periods overlap 

from 6/11-6/13, 2013, thus the percentage of high SOA, dust, and SSA periods ≠ 100 %. Only 

particles with volume equivalent diameters between 0.2 - 5 µm are shown due to too few 

particles present at larger sizes for quantitative analysis. 
 

Dust was the dominant particle source during two coarse-mode nitrate events (Figure 

2.5b) detailed previously by Allen et al. (2015) and defined more narrowly herein as June 11-13 

and June 26-28, 2013 to differentiate from SSA transport time periods and account for available 

CCSEM data. During the dust-dominated time periods analyzed, dust constituted > 55 % of 

supermicron particles (1.0-5.0 µm) by number, but also contributed, on average, 26 % of 

accumulation mode particles (0.2-1.0 µm) by number. Similar to dust, SSA contributed 
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significantly to the overall particle population multiple times throughout the study, comprising 

approximately 35 % of particles, by number, analyzed during an event in the middle of June 

(June 10-11, 2013), and at the beginning of July (July 3-6, 2013). Both of these SSA events were 

also characterized by high number fractions of dust, as observed in Figure 2.5c. During these 

SSA-rich periods, SSA particles were predominately larger than 1 µm (38 % by number), 

although notable contributions to accumulation mode number fractions of SSA were also 

observed (22 % by number from 0.2-1.0 µm). During these two events the degree of atmospheric 

processing varied, with a considerable number fraction of partially aged SSA present during the 

second event compared to the first event, which was primarily fully-aged SSA (Bondy et al., 

2017b).  

 

2.3.4. Nonvolatile Cations at SOAS 

Recently, the presence of soluble nonvolatile cations such as Na
+
, Mg

2+
, K

+
, and Ca

2+
 

have been predicted to improve thermodynamic modelling results of aerosol acidity when 

included as inputs (Guo et al., 2017) and assuming all species are internally mixed. As CCSEM-

EDX can readily detect metals within individual particles, the number fraction of particles 

containing Na, Mg, K, Ca, and Fe at sub- and supermicron sizes during the SOA, dust, and SSA 

events is shown in Figure 2.6. In addition to these metals, Mn was detected within < 3 % 

particles by number during SOAS, and, given its low fraction, Mn was not included in further 

analysis. During all events, the number fraction of particles containing nonvolatile cations 

increased as a function of particle size, with a higher number fraction of metal-containing 

particles at supermicron sizes (19-94 %) compared to submicron sizes (1-50 %). During all the 

time periods depicted, Na was present most frequently, closely followed by Mg, indicative of 

SSA particles. Fewer particles contained K and Ca by comparison, and Fe was present within the 

lowest number fraction of particles, except for during the dust period when Fe was more 

frequent. The number fraction of metal-containing particles was not consistent throughout 

SOAS, but varied dramatically between the SOA, dust, and SSA periods. In general, particles 

during the dust and SSA events contained higher number fractions of all nonvolatile cations, 

particularly Na and Mg. However, the variation between specific metals was largely dependent 

on the dominant particle class during each period.  
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Figure 2.6. (Left) Size-resolved compositions indicate the number fraction of particles 

containing non-volatile cations Na, Mg, K, Ca, and Fe during the (a) SOA period, (b) dust 

period, and (c) SSA period. (Right) The number fraction of submicron and supermicron particles 

during each period containing each non-volatile cation. 

 

Figure 2.7 focuses on the SOA time period and shows the number fraction of particles 

within each particle class that contains Na, Mg, K, Ca, or Fe (dust and SSA periods are shown in 

Figure A.4). Within both submicron and supermicron particles, the nonvolatile cations within 

each class are consistent, though a marginally larger number fraction of supermicron particles 

contained nonvolatile cations, likely due to detection limits for smaller particles. Less than 5 % 

of SOA/sulfate particles by number contained any Na, Mg, K, Ca or Fe. Conversely, all other 

particle classes contained metals within a substantial number of particles. Specifically, all 

biomass burning particles contained K and fly ash most frequently contained Na, though most fly 

ash contained Al or Si instead (Figure 2.4). Additionally, a considerable fraction of dust particles 

contained Na, Mg, K, Ca, or Fe, all SSA contained Na and many contained Mg, and most 
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primary biological particles contained Na, Mg, and K. Comparing the nonvolatile cations within 

each class during the SOA, dust, and SSA periods (Figures 2.7 and A.4), the number fractions of 

metal-containing particles are consistent for each particle class, suggesting than an internal 

mixing assumption for nonvolatile cations does not accurately represent overall particle 

composition.  

 

Figure 2.7. Size-resolved particle class compositions indicate the number fraction of particles in 

each class containing non-volatile cations Na, Mg, and Fe during the SOA period in the (a) 

submicron and (b) supermicron size range. 

 

 

2.3.5. Particle Aging 

In contrast to nonvolatile cations, the contribution of secondary components within each 

class varied drastically throughout SOAS. Due to atmospheric reactions and transport of gases 

from nearby cities, many of the particles analyzed from SOAS were likely not “fresh” from their 

source, but had undergone secondary processing by species such as HNO3, SO2/H2SO4, or 

organic acids. Secondary processing of particles is important because changing their chemical 

composition can impact light scattering and CCN properties (Giordano et al., 2015; Sedlacek et 

al., 2012; Chi et al., 2015; Ghorai et al., 2014; Robinson et al., 2013; Chang et al., 2010; Lu et 

al., 2011; Hiranuma et al., 2013; Moise et al., 2015; Tang et al., 2016). As the chemical 

composition of particles varied over time, the mixing state index was used to quantify the degree 

of aging. The degree of secondary processing for each particle class was calculated as the 

average mass fraction of sulfur per particle, see Figure A.5 and details in Appendix A. Only 
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sulfur was used as an indicator of aging in this study since carbon had interference from the 

background and nitrogen is only semiquantitative with CCSEM-EDX (Laskin et al., 2006). 

From STXM-NEXAFS, we know that most SOA particles are mixtures of organic and 

inorganic (mostly ammonium sulfate) components and there are almost no externally mixed 

organic or ammonium sulfate particles present. As such, based on elemental composition shown 

in Figure 2.4 and the fact that C, O, and N could not be quantified in this study, particles 

containing only S in our mixing state analysis are presumed to be SOA/sulfate. A large fraction 

of sulfur in SOA was likely in the form of sulfate, since sulfate was identified as the major 

inorganic component within SOA (24 % wt. in fine aerosol) (Budisulistiorini et al., 2015a). 

Additionally, IEPOX-derived organosulfates and other organosulfates, known to contribute to 

the organic aerosol fraction in Centreville (Budisulistiorini et al., 2015a; Boone et al., 2015; Xu 

et al., 2015b; Riva et al., 2016), also contributed to the EDX sulfur content of SOA. The other 

five particle classes contained substantially less sulfur than SOA; SSA (20-30 wt. % S), biomass 

burning particles (15-25 wt. % S), dust (5-15 wt. % S), fly ash (2-10 wt. % S), and biological 

particles (15-25 wt. % S). SSA and biomass burning particles are both readily aged by sulfuric 

acid forming Na2SO4 and K2SO4 respectively (Li et al., 2003; Chen et al., 2017; Hopkins et al., 

2008), although up to 8 % of sulfate in SSA may have marine origins (Pilson, 1998). 

Aluminosilicate dust, the most common type of mineral dust detected at SOAS, is also aged by 

sulfuric acid (Perlwitz et al., 2015; Song et al., 2007; Sullivan et al., 2007). Fly ash detected at 

SOAS did not contain much sulfur, indicating that it was relatively fresh, or was aged more by 

other species such as organics, relative to sulfuric acid (Li et al., 2017). Primary biological 

particles also contained low mass fractions of sulfur. However, as heterogeneous chemistry of 

this class of particles has not been explored as extensively as the other classes and the sulfur 

mass fractions did not follow the same trends for the three time periods (Figure A.5), the sulfur 

content in biological particles may have been, but was not necessarily the result of aging 

(Estillore et al., 2016). 

In addition to differences in aging by sulfur for each particle class, the average mass 

fraction of sulfur within each class varied during the SOA-rich, dust-rich, and SSA-rich time 

periods (Figure A.5). Specifically, the average mass fraction of sulfur was significantly higher 

during the SOA-dominated time period compared to the dust and SSA periods at the 95 % 

confidence interval for all particle classes aside from biological (Table A.6-A7). However, the 
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mass fraction of sulfur was not statistically different between the dust and SSA periods for any 

particle classes (Table A.8). Stagnant air masses, indicated by slower average wind speed at 

Centreville during the SOA/sulfate period (1.62 ± 0.72) compared to the dust period (2.34 ± 

0.95) and SSA period (2.10 ± 0.97), may have led to more aging during the SOA events. 

 

2.3.6. Quantification of Mixing State 

To quantify the differences in aging during three described events, the mixing state index 

was calculated for the SOA, dust, and SSA time periods (Figure 2.8). Because the particle 

classes present at sub- and supermicron sizes vary dramatically, mixing state indices were 

calculated separately for the two size ranges. From calculations of the average particle diversity 

and the bulk diversity (Figure 2.8a), the mixing state index, a ratio measuring how close the 

population is to an external or internal mixture, could be determined for each time period (Figure 

2.8b). The mixing state indices for supermicron particles were generally the highest (χ = 19 %, 

15 %, and 11 % during the SSA, dust, and SOA periods, respectively), signifying that 

supermicron particles were less diverse than submicron particles. The mixing state index for 

accumulation mode particles during the SOA period was comparable (χ = 10 %), suggesting that 

submicron particles were more internally mixed during this time period compared to the dust and 

SSA periods.  Overall, Figure 2.8a demonstrates that time periods with low bulk diversity, which 

contain fewer particle classes, have mixing state indices closer to 100 % (more internally mixed). 

The supermicron SOA period though, is more internally mixed than expected because although it 

contains the most individual particle classes (largest bulk diversity, ~5), the particle-specific 

diversity is highest as well, indicating that this period has a lot of aging by sulfur, contributing to 

the relatively high mixing state index.  
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Figure 2.8. (a) Mixing state diagram showing the bulk diversity and average particle-specific 

diversity and (b) mixing state indices for sub- and supermicron particles during the SOA, dust, 

and SSA periods. For submicron particles, contributions by different sources impact mixing 

state. 

 

Mixing state indices of this work are lower than previous reports by Fraund et al. (2017) 

and O'Brien et al. (2015) (χ > 80 % and χ > 40 %, respectively), who used CCSEM-EDX and 

STXM-NEXAFS to analyze particles collected in the Amazon and Central Valley, CA. In both 

studies, calculations using STXM-NEXAFS resulted in low diversity and high mixing state 
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indices, likely due to the inclusion of organic carbon, which increased particle homogeneity. 

O’Brien et al. also calculated mixing state indices using solely CCSEM-EDX, similar to our 

study. From this method, O’Brien found lower mixing state indices using CCSEM-EDX (χ = 41-

90 %) compared to mixing state index calculations from STXM-NEXAFS results (χ > 60 %). 

However, the mixing state index in this previous work increased during high SSA periods and 

periods characterized by increased mass fractions of K, Ca, Zn, and Al, suggesting that periods 

with higher average particle-specific diversity were more homogeneous, simply because they 

contained more elements than periods dominated by carbonaceous particles. To improve upon 

this inherent challenge associated with quantifying mixing state using CCSEM-EDX, in the 

current study we calculate mixing state based on the number of particle classes and secondary 

species (in this study, sulfur) rather than the number of elements within particles. Quantifying 

mixing state parameters using this approach is consistent with our concept of atmospheric aging 

since the mixing state index increases as bulk diversity decreases and the mass fraction of 

secondary species increases, signifying aging increases the degree of internal mixing in a 

population. This method quantifying aerosol mixing state using single particle methods can be 

used to show the varying impact of sources and aging between different air masses at the same 

location. 

 

2.4. Conclusions 

Even at rural locations, a variety of particle classes with complex chemical mixing states 

can contribute to the aerosol population, impacting climate direct and indirect effects. During the 

SOAS field campaign in Centreville, Alabama, CCSEM-EDX analysis identified the following 

particle classes: biological, mineral dust, SSA, fly ash, biomass burning aerosol particles, 

SOA/sulfate, and fresh soot. Although SOA/sulfate dominated the overall aerosol distribution, 

especially in the accumulation mode (0.2-1.0 µm), it was found to be present at supermicron 

sizes as well. Additionally, while biological particles, mineral dust, and SSA dominated the 

supermicron regime, mineral dust and SSA were also observed as significant particle fractions in 

the accumulation mode. While some of the particle classes indicate nearby regional sources, such 

as fly ash transported from nearby cities and SOA/sulfate formed from the interaction of 

biogenic VOCs and anthropogenic pollutants, other classes point toward longer range transport 

such as SSA transported from the Gulf of Mexico. From the single particle chemical analysis 
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conducted, complex chemical mixing states of particles with secondary processing by sulfur 

were observed. Finally, even though the sampling site in Centreville was located in a relatively 

remote region, long and short range transport of particles was evident based on not only the wide 

variety of particle classes and degrees of aging within each class, but also on the variation in 

number concentration over time. The average mass fraction of sulfur within every particle class, 

aside from primary biological particles, was greater during more stagnant conditions, leading to 

more internally mixed particle populations. 

These findings provide quantitative metrics of the diversity in particle composition and 

their mixing states characteristic of the southeastern United States, suggesting that many factors 

and classes of particles beyond SOA/sulfate contribute to the atmospheric aerosol in this region. 

Submicron mineral dust and SSA may be previously underrepresented sources of CCN in this 

region, though they are not effectively measured by instruments that only measure non-refractory 

particles. Although not highly prevalent, ~8 % of SOA by number were found to contain soot 

inclusions, indicating that some SOA/sulfate may actually absorb in addition to scattering solar 

radiation, a factor which needs to be considered to accurately model radiative transfer. 

Additionally, since most of the particles in this region have been chemically aged with sulfuric 

acid/SO2, their hygroscopicity and propensity to form CCN will be altered compared to their 

fresh counterparts. With this information detailing the particle classes and the mixing states 

during SOAS, further studies can be conducted and inputs for models can be generated to more 

accurately assess effects of aerosols on climate in this unique region. 
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Chapter 3. 

Inland Sea Spray Aerosol Transport and Incomplete Chloride Depletion: 

Varying Degrees of Reactive Processing Observed during SOAS 

 

Adapted with permission from Bondy, A. L., Wang, B., Laskin, A., Craig, R. L., Nhliziyo, M. 

V., Bertman, S. B., Pratt, K. A., Shepson, P. B., and Ault, A. P.: Inland sea spray aerosol 

transport and incomplete chloride depletion: Varying degrees of reactive processing observed 

during SOAS, Environ. Sci. Technol., 51, 9533-9542, 2017. Copyright 2017 American Chemical 

Society. 

 

3.1. Introduction 

Reactions of sea spray aerosol (SSA) with inorganic acids (HNO3 and H2SO4) have long 

been observed in the polluted marine atmosphere and through controlled laboratory experiments 

(Ault et al., 2013a; Gard et al., 1998; Hopkins et al., 2008; De Haan et al., 1999; Ravishankara 

and Longfellow, 1999; Reid and Sayer, 2002; Rossi, 2003; Gibson et al., 2006; Finlayson-Pitts, 

2009; Allen et al., 1996; Ault et al., 2014; Duce, 1969; Robbins et al., 1959; Martens et al., 1973; 

Clarke and Radojevic, 1984; Okada et al., 1978; Mamane and Gottlieb, 1990; Mamane and 

Mehler, 1987; McInnes et al., 1994; Sievering et al., 1991; Cadle, 1972; ten Brink, 1998; 

Pakkanen, 1996; Odowd et al., 1997; Ravishankara, 1997; Keene et al., 1990). Through 

multiphase reactions with key pollutants (NOx and SO2) and their oxidation products, SSA can
 

impact nitrogen, sulfur, and oxidant budgets (Rossi, 2003; Ravishankara, 1997; Pakkanen, 1996; 

De Haan et al., 1999; Finlayson-Pitts, 2009; Schroeder and Urone, 1974; Pósfai et al., 1994). In 

addition to acting as a sink, particle phase SSA reactions are also a source of halogen gases (HCl, 

Cl2, ClNO2, etc.) (Finlayson-Pitts et al., 1989; Eldering et al., 1991; Roberts et al., 2008; Clegg 

and Brimblecombe, 1985; Robbins et al., 1959; Dasgupta et al., 2007; Keene et al., 1990). A 

generalized acid reaction leading to the release of HCl(g) is shown in Reaction 1 where HA 

denotes atmospheric acids such as HNO3, H2SO4, or CH3SO2OH. 
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                            𝐻𝐴(𝑔,_𝑎𝑞) + 𝑁𝑎𝐶𝑙(𝑎𝑞,𝑠) → 𝑁𝑎𝐴(𝑎𝑞,𝑠) + 𝐻𝐶𝑙(𝑔)     (1) 

Chloride displacement by liberation of HCl(g) in individual SSA has been observed from 

heterogeneous reactions of SSA with nitric acid (Gard et al., 1998; Clegg and Brimblecombe, 

1985; Robbins et al., 1959; Eldering et al., 1991). This prominent SSA multiphase reaction has 

been widely studied and modeled (Roth and Okada, 1998; Kerminen et al., 1998; Pakkanen, 

1996; Zhuang et al., 1999; McInnes et al., 1994; Eldering et al., 1991; Liu et al., 2007; Mamane 

and Gottlieb, 1990; Saul et al., 2006; ten Brink, 1998; Cadle, 1972; Robbins et al., 1959; Gard et 

al., 1998). Aged SSA may also contain sulfur species (in excess of seawater concentrations) due 

to reactions with H2SO4 or CH3SO2OH, formed from the oxidation of SO2 or dimethyl sulfide 

(DMS) (Gaston et al., 2010; Hopkins et al., 2008; McInnes et al., 1994). While not 

thermodynamically favored for bulk aqueous chemistry, SO2 can be oxidized to H2SO4 in SSA 

because the oxidation of SO2 occurs considerably faster than in pure water due to other oxidants 

(H2O2) or chloride ion catalysis (Clarke and Radojevic, 1984). More recently, laboratory and 

field studies have shown that NaCl can react with weak organic acids, such as malonic and citric 

acid, in addition to inorganic acids, releasing HCl(g) (Ghorai et al., 2014; Laskin et al., 2012; 

Wang et al., 2015). Furthermore, SSA can undergo reactions with other reactive nitrogen gases 

such as N2O5 to form NO3
-
(aq) and ClNO2(g) (Finlayson-Pitts et al., 1989; Thornton and Abbatt, 

2005; Woods et al., 2013; Ryder et al., 2014; Roberts et al., 2008; Allen et al., 1996; Bertram and 

Thornton, 2009; Bertram et al., 2009). As SSA can react with a variety of species during 

transport, understanding the extent of processing by identifying the particle-phase reaction 

products formed when HCl is liberated, is necessary for a thorough understanding of the 

multiphase chemistry experienced by SSA during transport to sites far from coastal 

environments. 

While SSA has been shown to act as an important sink for oxidized forms of NOx and 

SO2 in coastal regions, relatively few measurements have focused on SSA transported inland. 

Thus, the potential for inland SSA to have regional impacts after multiphase reactions, such as 

acting as a sink for HNO3 and H2SO4 impacting nitrate deposition patterns (Matsumoto et al., 

2009), is poorly understood (Gantt et al., 2015). To date, inland SSA has been detected with 

concentrations ranging from 1-20 µg/m
3
 at locations 100 to > 1000 km from their source in Israel 

(Foner and Ganor, 1992), Buenos Aires (Dos Santos et al., 2012), Ecuador (Giannoni et al., 

2016), Arkansas (Chalbot et al., 2013), California (O'Brien et al., 2015; Laskin et al., 2012; 



58 

 

Moffet et al., 2013), Alaska (Shaw, 1991), Antarctica (Udisti et al., 2012; Hara et al., 2004), 

Spain (Silva et al., 2007), Sweden (Gustafsson and Franzen, 2000), and across the European 

continent (Manders et al., 2010) (Figure B.1, Table B.1). However, most sites are still somewhat 

close to the ocean (100-250 km) or in areas that are typically downwind of the ocean. Studies 

have relied primarily on bulk analysis methods, which use Cl
-
 or Na

+
 concentrations, the ratio of 

Cl
-
/Na

+
, or the ratio of Cl

-
/ Mg

2+
 to identify SSA (Foner and Ganor, 1992; Dos Santos et al., 

2012; Chalbot et al., 2013; Shaw, 1991; Silva et al., 2007; Giannoni et al., 2016; Hara et al., 

2004; Manders et al., 2010; Udisti et al., 2012). While some studies only detected fresh SSA 

(since Cl
-
 was used as a marker) (Foner and Ganor, 1992), aged SSA were detected in the 

majority of the studies using the Cl
-
/Na

+
 mass ratio which ranged from 0-1.8 (Gustafsson and 

Franzen, 2000; Ueda et al., 2014; Silva et al., 2007; Udisti et al., 2012; Shaw, 1991; Chalbot et 

al., 2013; Giannoni et al., 2016; Dos Santos et al., 2012) (Cl
-
/Na

+
 = 1.81 in seawater) (Pilson, 

1998).  Since HCl(g) can be released from SSA by the reactions discussed above, ratios involving 

Cl
-
 can lead to an underestimation of inland SSA concentrations (Pakkanen, 1996). Additionally, 

Na
+
, Mg

2+
, and Cl

-
 can also be present from other sources, such as mineral dust(Sullivan et al., 

2007) and incineration (Moffet et al., 2008), further complicating the use of these ion ratios in 

bulk samples to accurately identify SSA.  

Single particle analysis overcomes challenges related to bulk average concentrations and 

ion ratios and allows for particle-by-particle comparison of SSA to seawater ion ratios, such as 

Na
+
/Mg

2+
 (Ault and Axson, 2017; Noble and Prather, 1997; Gard et al., 1998; Ault et al., 2013a; 

Ault et al., 2013c; Gaston et al., 2010; Guasco et al., 2014; Prather et al., 2013; Hopkins et al., 

2008; Laskin et al., 2002; Laskin et al., 2012; Ghorai et al., 2014; Ault et al., 2014; Ault et al., 

2013b). By not using chloride to identify SSA, more detailed analysis of the extent of multiphase 

reactions that individual particles have undergone can be conducted. Scanning electron 

microscopy with energy dispersive x-ray spectroscopy (SEM-EDX) has been used extensively to 

identify fresh and aged SSA (SSA depleted in chloride), measure particle size and morphology, 

and analyze distributions of elements within individual particles (Laskin et al., 2002; Ault et al., 

2013a; Ghorai et al., 2014; Hopkins et al., 2008; Geng et al., 2014; Sobanska et al., 2003; Prather 

et al., 2013; Laskin et al., 2012; Liu et al., 2007; Ali et al., 2014; Laskin et al., 2006b; Laskin et 

al., 2003; Ault et al., 2013b). SEM-EDX also has potential to provide a wealth of information 

regarding concentrations of SSA and extent of aging at inland locations where few single particle 
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studies have been conducted (Allen et al., 2015; Moffet et al., 2013; Laskin et al., 2012; O'Brien 

et al., 2015). 

In this study, individual SSA particles were analyzed to determine the degree of aging as 

a function of particle size during the Southern Oxidant and Aerosol Study (SOAS) in 2013 near 

Centreville, Alabama. Computer controlled SEM-EDX (CCSEM-EDX) was used to identify and 

analyze particles to determine elemental composition, size, and morphology. Computer 

controlled Raman microspectroscopy (CC-Raman) (Craig et al., 2017a) was used to identify 

secondary species (nitrate and sulfate) and trace organics. A previous SOAS publication 

investigated the impact of mineral dust aerosol on nitrate, but only briefly mentioned SSA 

influence (Allen et al., 2015). Herein, two chemically distinct time periods with high SSA 

concentrations and different extents of aging were identified. Backward air mass trajectory 

analysis, in conjunction with weighted potential source contribution function analysis (WPSCF), 

and local meteorological data were used to investigate differences in atmospheric processing 

between these two SSA events. The presence of partially aged SSA transported inland may serve 

as sinks for HNO3 and SO2/H2SO4, as well as a source of oxidants in inland locations.  

 

3.2. Methods 

3.2.1. Field Site Description and Sample Collection 

Aerosol samples were collected as part of SOAS near Centreville, AL (32.9030 N, 

87.2500 W, 242 m above mean sea level) (Hidy et al., 2014). Centreville is located in a rural, 

forested region near Talladega National Forest approximately 320 km north of the Gulf of 

Mexico. Samples for single particle analysis were collected between June 5 and July 11, 2013 

near ground level (1 m) using a micro-orifice uniform deposit impactor (MOUDI, MSP Corp. 

Model 110) sampling at 30 lpm with a PM10 cyclone (URG Model 786). The 50 % aerodynamic 

diameter size cut-points for the MOUDI sampling stages used in this analysis were 1.8, 1.0, 0.56, 

and 0.32 µm (Marple et al., 1991). Particles were impacted onto 200 mesh carbon-type-B 

Formvar grids and quartz substrates (Ted Pella Inc.) for analysis with SEM-EDX and Raman, 

respectively. Samples were collected from 8:00-19:00 Central Standard Time (CST) and 20:00-

7:00 CST, except during intensive periods when the schedule was 8:00-11:00, 12:00-15:00, 

16:00-19:00, and 20:00-7:00 CST. Intensive time periods were scheduled based on predicted 
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meteorological parameters and gas phase concentrations (Budisulistiorini et al., 2015). After 

collection, all substrates were sealed and stored at -22 °C prior to analysis.  

 

3.2.2. Computer-Controlled Scanning Electron Microscopy with Energy Dispersive X-ray 

Spectroscopy Analysis 

Particles were analyzed using a FEI Quanta environmental SEM equipped with a field 

emission gun operating at 20 kV and a high angle annular dark field (HAADF) detector (Laskin 

et al., 2002; Laskin et al., 2006a). The SEM is equipped with an EDX spectrometer (EDAX, 

Inc.). The CCSEM automated analysis captured single-particle physical parameters including 

projected area diameter and perimeter. EDX spectra from individual particles were analyzed to 

determine the relative abundance of 15 elements: C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Fe, 

and Zn. For SOAS, a total of 34,266 particles were analyzed, including 4,047 SSA particles. 

Single-particle data from the CCSEM-EDX analysis was examined in Matlab R2013b 

(MathWorks, Inc.) using k-means clustering of individual particle EDX spectra following a 

previously described method (2012; Shen et al., 2016). Clusters were grouped by elemental 

composition into source-based classes, including SSA (Hopkins et al., 2008; Laskin et al., 2012; 

Ault et al., 2013b). The particles identified as SSA in this study are unlikely to be influenced by 

other species such as dust, since the SSA particles contained negligible amounts of common soil 

elements such as Si and Al. SSA data from two samples (July 4 20:00-July 5 7:00 and July 5 

8:00-19:00) were excluded from analysis due to possible influence from fireworks (Liu et al., 

1997; Li et al., 2013; Martin-Alberca and Garcia-Ruiz, 2014). 

 

3.2.3. Computer-controlled Raman Microspectroscopy  

Raman microspectroscopy was performed using a Horiba LabRAM HR Evolution Raman 

spectrometer coupled with a confocal optical microscope (100x long working distance objective, 

Olympus, 0.9 numerical aperture). The instrument was equipped with a Nd:YAG laser source 

(50 mW, 532 nm), a charge-coupled device (CCD), and a 600 groove/mm diffraction grating (1.8 

cm
-1

 spectral resolution). The instrument was calibrated daily using the Stokes Raman signal of 

pure Si at 521 cm
-1

. The laser power was adjusted with a neutral density filter, and four 

accumulations each with 15 s acquisition time were used to collect spectra for the range of 500 to 

4000 cm
-1

. Approximately 200 particles (0.8-6.4 µm projected area diameter) from each SSA 
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event (June 12, 2013 12:00-15:00 and July 4, 2013 8:00-19:00) were analyzed using CC-Raman 

to investigate secondary species, including nitrate, sulfate, and organics, using the method 

described by Craig et al. (2017a).  

 

3.2.4. Hybrid Single Particle Lagrangian Integrated Trajectory Model and Weighted 

Potential Source Contribution Function Analysis 

The NOAA HYSPLIT model (Draxler and Rolph, 2003) was run hourly at 100, 200, 500, 

1000, and 3000 m (120 hours backwards) in conjunction with WPSCF receptor modeling (Wang 

et al., 2009) to examine the air mass histories of SSA during two SSA events: June 10-13, 2013 

and July 3-8, 2013. PSCF values for each grid cell were calculated by counting the number of 

trajectories that ended at each grid cell, n(i,j). The number of samples with trajectories that end at 

a grid cell that exhibit concentrations higher than an arbitrary criterion value is defined as m(i,j). 

The PSCF value for the ij
th

 cell is defined as:  

                                                                 𝑃𝑆𝐶𝐹(𝑖, 𝑗) =
𝑚(𝑖,𝑗)

𝑛(𝑖,𝑗)
                                     (3.1) 

Since small values of nij are likely to produce high uncertainties in PSCF analysis, an empirical 

weight function W(i,j) was applied for low nij values. In this analysis, a criterion of 6 % SSA (the 

median SSA number fraction during SOAS) was applied, and an arbitrary weight function was 

used (Polissar et al., 2001): 

                                                        𝑊(𝑛𝑖𝑗) = {

1.0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑛𝑖𝑗>120⁡⁡

0.7⁡⁡⁡⁡⁡40<𝑛𝑖𝑗<120⁡⁡

0.42⁡⁡20<𝑛𝑖𝑗<40⁡⁡⁡⁡⁡

0.17⁡⁡⁡⁡⁡0<𝑛𝑖𝑗<20⁡⁡⁡⁡

                                    (3.2) 

 

3.3. Results and Discussion 

3.3.1. SSA Partially-Aged Classes at SOAS 

 Individual SSA particles were identified during SOAS by the presence of sodium and 

magnesium in a ~10:1 ratio (by atomic percent), which is equivalent to their molar ratio in 

seawater (Pilson, 1998). This fingerprint has been used to identify SSA in both laboratory and 

field studies using SEM-EDX, including both fresh and aged (depleted in chloride) SSA (Laskin 

et al., 2002; DeMott et al., 2016; Ault et al., 2014; Ault et al., 2013b). For EDX analysis it is 

typical to report atomic percentages of specific elements, which are equivalent to the mole 

percent of a specific element within the total particle. To facilitate comparison to bulk analyses, 
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we report mole percentages and mole ratios in the analysis below. Details on identification of 

SSA through molar ratios are given in Appendix B and Table B.2. Though primary biological 

and other organic particles have been observed to be emitted from marine environments 

(Orellana et al., 2011; Guasco et al., 2014), due to their relatively smaller contributions and 

challenges differentiating these types of particles from organic or biological particles emitted 

from terrestrial sources at SOAS, only salt-containing SSA are discussed hereafter. Using 

CCSEM-EDX to identify SSA helps avoid misclassifying particles where Cl
-
 has been fully 

depleted via multiphase reactions. SSA particles identified during SOAS were classified into two 

categories: 1) partially aged (Cl/Na mole ratio > 0.1) and 2) aged or fully processed (Cl/Na mole 

ratio < 0.1). There is no “fresh” category of SSA, as no SSA particles were observed without 

some chloride depletion. Chloride enrichment factors, calculated by dividing the Cl
-
/Na

+ 
mass 

ratio of the aerosol sample by the Cl
-
/Na

+
 ratio of seawater, are commonly used in ion 

chromatography to differentiate aged and fresh SSA (Newberg et al., 2005). However, the 

complete Cl loss in many particles made this approach impractical, and the simpler ratio of 

Cl/Na frequently used in EDX analysis (Laskin et al., 2012), is used herein. A molar threshold of 

0.1 Cl/Na (1.16 in seawater) is used where particles with this ratio contain > 10 % of the chloride 

content (molar) of fresh SSA, and are therefore < 90 % depleted in chloride. 

Within the fully aged category, particles were sub-classified into sulfate-dominated 

(aged-sulfate, mole % S > 1, mole % N < 1%) and mixed (aged-nitrate/sulfate, mole % S > 1, 

mole % N > 1). These thresholds were selected to minimize false positives due to background 

interferences. Figure 3.1 shows example images and EDX spectra of SSA particles from each of 

these three categories (partially aged, fully aged (aged-sulfate), and fully aged (aged-

nitrate/sulfate), with all three particles showing varying degrees of chloride depletion and the 

presence of nitrate and/or sulfate. For the elements Cl, N, and S associated with key anionic 

species (Cl
-
, NO3

-
, SO4

2-
), in the representative particle from the partially aged class more Cl (9 

%) was present than N (2 %) and S (2 %) by mole %. In comparison, the two aged classes 

contain substantially less Cl, with the particle from the aged-sulfate class containing 0 % Cl, 13 

% S, and 1 % N, and the particle from the aged-nitrate/sulfate class containing 0 % Cl, 3 % S, 

and 2 % N by mole %. Although EDX only measures elemental composition, whenever nitrogen 

and sulfur were present in the EDX spectra, elemental maps always showed collocation with 

oxygen, suggesting that these elements were present in the form of nitrate and sulfate (Figure 
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3.1a). Raman microspectroscopy of particles from the same time period also showed frequent 

nitrate and sulfate vibrational modes, supporting this assignment (Figure B.2). A future 

publication will focus on Raman mode analysis of particles from all sources at SOAS.  

 

Figure 3.1. a) SEM images and elemental maps of particles representing the three SSA classes 

observed during SOAS: partially aged, aged-sulfate, and aged-nitrate/sulfate, b) corresponding 

EDX spectra, and c) bar graph depicting the abundance of each SSA class by number fraction. 

*Note, these elements are not quantitative due to interference from the substrate or detector. 

Standard error for the abundance of each class is below 0.01. A table with error values is located 

in Appendix B (Table B.2). 

 

Elemental maps of particles representative of the three SSA classes in Figure 3.1a show 

the distribution of elements within each individual particle after impaction. In agreement with 

prior results (Ault et al., 2013a; Hoffman et al., 2004; Ziemann and McMurry, 1997), the 

partially aged and aged SSA particles did not have elements homogeneously distributed spatially 

or a cubic efflorescence pattern typical of NaCl(s), suggesting the structures were not due to 

analysis under vacuum. Rather, spherical structures, some of which were core-shell, were 
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observed. The distribution of elements with sodium, chloride (represented by Cl), and sulfate 

(represented by S) on the interior and magnesium and nitrate (represented by N) on the exterior 

is particularly apparent for the partially aged particle. In this particle, nitrate may have been 

enhanced at the surface, with chloride present within the core, due to reactions on an effloresced 

particle with a solid core. The enhancement of sodium rather than magnesium within the core 

suggests, unlike aged-nitrate/sulfate particles with the opposite cation organization, that the 

reaction is incomplete since cation rearrangement had not occurred (Ault et al., 2013a). Although 

three main classes of SSA were identified, a large variety of compositions and spatial 

distributions, even within a single particle category, were observed necessitating an investigation 

of compositional variability.  

The average EDX elemental percentages for all three types of SSA were observed to be 

depleted in chloride, although the extent of depletion varied, as seen in Figure 3.2. The partially 

aged class (24 % of SSA by number) contained chloride in all the particles, with mole 

percentages of Cl ranging from 1-44 %, with averages of 5 % Cl, 2 % S, and 5 % N. Aged-

sulfate particles (15 % of SSA by number) were completely depleted in chloride and did not 

contain nitrate, but contained up to 15 % S with an average of 6 % S (mole %). Aged-

nitrate/sulfate particles, which accounted for the majority (61 % by number) of SSA analyzed, 

had minimal chloride (Cl/Na mole fraction < 0.1) with nitrate and sulfate present in all particles 

(up to 15 % N and S with an average of 5 % N and 4 % S by mole %). Less than 1 % by number 

of SSA particles contained more than 10 % Cl (with fresh SSA particles containing 49 % Cl by 

mole percentage), indicating a substantial degree of processing during transport from the Gulf of 

Mexico.  
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Figure 3.2. Average mole percent per particle and digital color histograms of three different 

particle classes of SSA: a) partially aged, b) aged-sulfate, and c) aged-nitrate/sulfate. Average 

histograms are shown on the left as the elemental mole fraction across the elements analyzed by 

CCSEM-EDX. On the right, the digital color histogram heights represent the number fraction of 

particles containing a specific element, and the colors represent the mole percent of that element. 

Since analysis was conducted under vacuum, these mole percentages do not include moles of 

water. *Note these elements (C, O) are not quantitative due to interference from the substrate or 

detector, and † may have interfering signal from the carbon and oxygen EDX peaks.  

 

 

3.3.2. Comparison of Two SSA Events 

During SOAS two events (Event 1: June 10
th

-13
th

 and Event 2: July 3
rd

-8
th

) were 

identified that had high number percentages of SSA in the accumulation and coarse modes, 11 % 

and 35 %, respectively, compared to the 6 % median number percentage of SSA for all of the 

SOAS samples analyzed (Figure B.3). During these events SSA are a substantial fraction of total 

PM2.5 mass. The highly aged character from Figure 3.2 is supported by the mean pH of 0.9 ± 0.6 

reported for PM2.5 at the site (Guo et al., 2015; Weber et al., 2016). When compared to the pH 

range of 7.0 to 9.0 which is typical for freshly-emitted SSA (Keene et al., 1990), HCl 

volatilization is predicted under these highly acidic conditions at Centreville (Keene et al., 1990), 

though limited methods for direct pH determination are available (Rindelaub et al., 2016; Craig 

et al., 2017b). To compare SSA aging during these events, the number fraction of SSA in each 

particle class was analyzed as a function of projected area diameter (Figure 3.3a). For 

comparison, the composition of SSA during the rest of the campaign, which accounted for 

approximately 20 % of SSA by number, is also shown. For all SSA detected during SOAS, size 

plays an important role in chemical composition: sulfate-containing particles were present from 
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0.5 to 5 µm (stats were poor < 0.5 µm), particles containing nitrate were mostly > 1 µm, and 

partially aged particles containing chloride were generally > 2 µm. Figure 3.3b shows the 

number fraction of particles containing any Cl, N, or S (mole percent > 1 %) in the particle. 

These data further support that within partially aged and aged SSA categories sulfate is 

concentrated in submicron particles, while chloride and nitrate are primarily in the supermicron 

size range. In addition to quantifying the number fraction of particles that contain nitrate, sulfate, 

and chloride, the average mole percent relative to sodium of each element was analyzed to 

determine their per particle concentrations as a function of size. Figure 3.3b shows that for all 

SSA, the number fraction of particles containing Cl increased with diameter with similar mole 

fractions of Cl (~0.2) within the largest particles analyzed. On the other hand, the mole fractions 

of N and S in SSA are inversely related. While submicron particles are very S-rich, as diameter 

increases, the mole fraction of S within particles decreases and the mole fraction of N increases. 

 

Figure 3.3. a) Aged-sulfate, aged-nitrate/sulfate, and partially aged SSA depicted as a function 

of size during two SSA-rich periods: June 10-13
th

 (Event 1), July 3-8
th

 (Event 2), and throughout 

the rest of SOAS (other). During these two events, SSA is present at both submicron and 

supermicron sizes. b) Size-resolved SSA composition indicates the number fraction of SSA 

containing Cl, N, and/or S. The solid line corresponds to the number fraction containing the 

element, while the dashed line corresponds to the mole fraction per particle relative to sodium. 

 

The size dependence of nitrate and sulfate within SSA particles provides insight into the 

mechanism for the uptake of HNO3 and SO2. In general, the accumulation of sulfate in SSA by 
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reaction with SO2 is diffusion limited. Therefore, it occurs most readily in PM2.5, particularly 

accumulation mode particles (diameters 0.1-1.0 µm) (Kerminen et al., 1998; Zhuang et al., 1999; 

Ueda et al., 2014; Gurciullo et al., 1999). Additionally, sulfate may accumulate in small particles 

because H2SO4, formed from the aqueous-phase or gas-phase oxidation of SO2 in deliquesced 

particles and droplets, dissociates instantly to HSO4
-
, H

+
, and SO4

2-
 and stays in the particle 

phase after uptake or formation, as opposed to the higher vapor pressure HNO3 (Skinner and 

Sambles, 1972). Over time, the accumulation of sulfate will acidify the particles, and more 

HNO3 volatilization will lead to a “distillation effect” where more sulfate accumulates within the 

smaller particles and any pre-existing nitrate is displaced. Thus, NO3
-
 will be present primarily in 

supermicron SSA (Kerminen et al., 1998; Pakkanen, 1996; Zhuang et al., 1999), preferentially 

particles ~1 µm since the net uptake for nitric acid onto NaCl is highest for micron-sized 

particles with large surface areas (Liu et al., 2007). However, the reaction may not go to 

completion for large SSA since the uptake of HNO3 is diffusion-limited above 1 µm (Liu et al., 

2007), leading to partially aged SSA particles. In short, the irreversible uptake of SO2 on SSA is 

kinetically limited while the uptake of HNO3 is kinetically limited for large particles and 

thermodynamically controlled for small particles, resulting in sulfate accumulation in submicron 

particles, and nitrate accumulation in supermicron particles.  

 In addition to composition varying as a function of size, SSA composition was different 

for the two events. During Event 1 in June, aged-nitrate/sulfate SSA account for the majority of 

SSA particles by number, consistent with work by Allen et al. (Allen et al., 2015), who showed 

coarse particle nitrate was high from June 9-13
th

 during SOAS. In contrast, during Event 2 the 

partially aged SSA particles accounts for the majority of SSA by number. For particles (> 4 µm), 

chloride is present in > 70 % of particles during both events. However, during Event 1, only 6 % 

of submicron SSA, by number, contain chloride, while 33 % of submicron SSA contain chloride 

during Event 2, showing different extents of chloride depletion. This high fraction of particles 

that are not fully depleted in chloride may have important implications for the nitrogen budget, 

with partially aged SSA acting as an inland sink for NOx oxidation products.  

Ternary diagrams (Figure 3.4) show percentages of Cl, N and S with respect to the sum 

of Cl + N + S in individual particles by mole percent, as in Equations 3.1-3.3 shown below: 

𝐶𝑙⁡% =
𝐶𝑙

𝐶𝑙+𝑁+𝑆
× 100⁡%                        (3.3) 
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 𝑁⁡% =
𝑁

𝐶𝑙+𝑁+𝑆
× 100⁡%                        (3.4) 

    𝑆⁡% =
𝑆

𝐶𝑙+𝑁+𝑆
× 100⁡%                        (3.5) 

These plots highlight differences in aging processes between the SSA events. During Event 1 

two populations are observed: 1) particles containing varying amounts of N and S with complete 

Cl depletion, and 2) particles containing varying amounts of N and Cl with minimal S. As also 

shown in Figure 3.3b, Cl is in the largest particles and the largest S enrichments are in the 

smallest particles, with lower relative mole fractions of S (1-2 %) observed in particles > 2.5 µm 

(although all particles 0.5-5 μm contained some amount of S). High relative percentages of N (> 

60 %) are found in all SSA > 1 µm, suggesting particles were within a favorable size range for 

maximal uptake of HNO3. In comparison, during Event 2, particles were smaller than the first 

event with average diameters < 2.5 µm, and contained less N relative to S and Cl. To highlight 

the variation of N, the average relative percent of N, S, and Cl were calculated for each event, 

represented by the asterisks in Figure 3.4. The average N % is much higher during Event 1 (65 

%) than during Event 2 (36 %), indicating that SSA during this event were aged to a greater 

extent by HNO3. Conversely, the average mole percentage of S increased (21 % during Event 1 

to 56 % during Event 2), and Cl remained approximately constant (13 % during Event 1, 8 % 

during Event 2), even though the particles were much smaller during Event 2. The presence of 

chloride in a higher number fraction during Event 2, particularly in SSA < 2.5 µm, may suggest 

an inhibition of multiphase reactions due to the particles not behaving as ideal aqueous droplets 

(e.g. effloresced particles or particles coated with organic material inhibiting uptake) (McNeill et 

al., 2006) or transport at higher altitudes with lower HNO3 and SO2 concentrations.  
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Figure 3.4. Ternary plots showing the relative percent of sulfate (S), chloride (Cl), and nitrate 

(N) in individual SSA particles collected from SOAS as a function of particle diameter for a) 

Event 1 and b) Event 2. Only every 5
th

 (Event 1) or 3
rd

 (Event 2) particle, respectively, is shown 

on the plots above to better show trends. The asterisk shows the average SSA composition during 

each event, with SSA from Event 1 containing substantially more nitrogen than SSA from Event 

2.  

 

To examine the air mass history during the two high-SSA events, HYSPLIT analysis with 

WPSCF was used. Shown in Figure 3.5, the SSA collected at rural, forested Centreville 

originated from the Gulf of Mexico and were transported inland. However, throughout these two 

SSA events, the particles arrived at Centreville via different transport routes, speeds, and 

altitudes. During Event 1, the air mass arrived from the southwest after passing over Louisiana 

and Mississippi; while during Event 2, the air mass approached Centreville directly from the 

south after travelling over Alabama and the Florida panhandle. Figure 3.5c shows example 

HYSPLIT backward air mass trajectories from Event 1, where the air mass spends ~24 h over 

land, while the backward air mass trajectories for Event 2 only spent ~10 h over land.  The air 
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masses from Event 1 travelled within the boundary layer over land, but due to differences in 

chemical composition from aerosol emitted from freshwater (Axson et al., 2016; May et al., 

2016), we are confident these particles are of marine origin and not from lakes or rivers the air 

mass passes over en route to Centreville. In contrast to Event 1, the air mass influencing Event 2 

was primarily in the free troposphere until the last few hours prior to arrival at Centreville. 

Although the transport time from the Gulf of Mexico was 2-3 times longer for the more aged 

SSA Event 1, exposure to different pollutant levels on the two trajectories, rather than diffusion-

limited reactions over the transport time scale, likely led to the differences in SSA composition. 

To support this, the theoretical uptake of HNO3 onto SSA completely aging particles was 

calculated to take ~4 hours (Table B.3), which is much shorter than the transport times of 

particles during SOAS, particularly during Event 1. Meteorological data indicated that 

immediately preceding Event 2, Centreville experienced heavy rainfall (Nguyen et al., 2014; 

Xiong et al., 2015) leading to a reduction of gaseous HNO3 (Allen et al., 2015),  while Event 1 

SSA experienced no precipitation. Specifically, Event 2 gas-phase measurements of NOy (0.51 

ppb) and HNO3 (0.03 ppb) were much lower compared to concentrations of NOy (1.28 ppb) and 

HNO3 (0.23 ppb) during Event 1 (Figure B.4), which may be indicative of changes in regional 

NOy and HNO3 concentrations along the transport paths though values likely vary along the 

trajectory to the site. The high concentrations of HNO3 and NOy during Event 1 may account for 

the highly nitrate-aged SSA analyzed during that period, compared to the high concentrations of 

partially aged SSA detected during Event 2.  
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Figure 3.5. WPSCF trajectory analysis of SSA a) Event 1 and b) Event 2 ending at Centreville, 

AL. WPSCF data is shown for SSA > 6 % (median % SSA during SOAS) by number according 

to CCSEM-EDX analysis and clustering. Example HYSPLIT 120 h backward air mass 

trajectories during Event 1 ending at Centreville on c) June 11, 2013 at 8:00am and Event 2, d) 

July 3, 2013 at 8:00pm. The red trajectory corresponds with trajectories ending at 100 m AGL, 

blue with 500 m AGL, and green with 1000 m AGL. *Circles on trajectory are spaced 12 h apart. 

Map data for 5C and 5D: © Google, Image Landsat/Copernicus; Data SIO, NOAA, U.S. Navy, 

NGA, GEBCO. 

 

 

3.3.3. Chloride Depletion within Inland SSA 

 The importance of transport time for predicting whether chloride has been fully depleted 

from a particle is shown in Figure 3.6 by the average chloride depletion in SSA (mole %) as a 

function of air mass transport time from the Gulf (% Cl depletion calculations in Appendix B). 

During Event 1, SSA experienced much longer transport times, with 30 h median transport times 

from the ocean based on backward air mass trajectories 500 m above ground level (Figure 3.5a). 

Air masses that were transported for 20-29 h contained slightly more chloride (98 % Cl depleted, 
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by mole %) compared to air masses that had transport times of 30-68 h (99 % Cl depleted), 

although the difference is not statistically significant (Table B.4), suggesting the reactions were 

not diffusion-limited on these time scales. By comparison, SSA during Event 2 had a median 

transport time of 10 h over land and contained substantially more chloride. Air masses with 

transport times of 7-8 h were on average 87 % chloride depleted (mole %), which is statistically 

different at the 90 % confidence interval from the 95 % chloride depletion of SSA that travelled 

over land for more than 10 h. Thus, the combination of transport time and heavy precipitation 

leading to wet deposition of NOy species likely caused differing chloride levels during the two 

SSA events.  

 

Figure 3.6. Average mole % of chloride depleted from SSA particles after transport from the 

ocean during Event 1 and Event 2. Five sampling times were averaged for each category during 

Event 1, and two and three sampling times were averaged for the Event 2 categories, 

respectively. Error bars represent one standard deviation from the mean. The time from the coast 

is calculated in hours using HYSPLIT. 

 

To estimate the maximum contribution of SSA chloride depletion on the atmospheric 

oxidant budget, the mass of chlorine released during transport during Event 1 was calculated. 

First, the SSA mass concentration was calculated based on the Na
+
 concentration (μmol/m

3
) 

measured using a Monitor for Aerosols and Gases (MARGA) at the Centreville site (Allen et al., 

2015), shown by CCSEM-EDX to be SSA. The seawater Cl
-
/Na

+
 ratio (1.81) (Pilson, 1998) was 

applied to calculate the original Cl
-
 concentration, and an average of 98 % (mole) chloride 

depletion, as determined by CCSEM-EDX (Figure 3.6), was applied to calculate moles of 

chlorine that partitioned to the gas-phase during transport. During Event 1, when most chloride 

was depleted, a maximum of ~620 ppt of HCl (17 µmol/m
3 

Cl; from 15 µmol/m
3
 of Na

+
) is 

released into the atmosphere. Since much lower concentrations of HCl (~180 ppt during this 
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same time period) were measured at the Centreville site (Allen et al., 2015), most HCl (or Cl2, 

ClNO2) was likely released during transport from the ocean. These results indicate that under 

specific conditions, SSA may act as a source of Cl inland modifying the oxidant budget, and, if 

complete depletion does not occur during transport, SSA may exist as a source of HCl and a sink 

for oxidized NOx species at inland locations. 

 

3.4. Conclusions 

SSA impact atmospheric chemistry and climate as they undergo multiphase reactions in 

the atmosphere, thereby acting as sinks for NOx oxidation products and SO2 as well as a source 

of gaseous halogen species (e.g. HCl and ClNO2) (Finlayson-Pitts, 2009; De Haan et al., 1999; 

Gibson et al., 2006; Reid and Sayer, 2002; Rossi, 2003; Ravishankara and Longfellow, 1999; 

Gantt and Meskhidze, 2013). During the summer 2013 SOAS field campaign in Centreville, 

Alabama, SSA particles comprised up to 81 % of supermicron (1-10 µm) and 48 % of submicron 

(0.2-1.0 µm) particles, by number, during two multi-day events. Since Centreville, AL is an 

inland site located approximately 320 km from the coast, most of the SSA was depleted in 

chloride and enriched in nitrate and sulfate due to transport and reactions with acidic species.  

Still, 24 % of all SSA particles sampled, by number, contained detectable chloride (Cl/Na mole 

ratio > 0.1), suggesting that complete chloride depletion frequently did not occur. During Event 

2, shorter transport times and subsidence from aloft during periods of low HNO3(g) led to 

particles where less than 90 % of chloride had been depleted, although additional factors, such as 

the presence of an organic coating, could have impacted SSA reactivity during transport.  

The findings suggest chloride-containing SSA exist at inland sites may have important 

implications for the nitrogen and oxidant budgets in the southeastern U.S or other inland sites, as 

these SSA will likely undergo further reactions during continued transport inland. Thus, SSA 

may act as an underappreciated inland sink for NOx and SO2 oxidation products, and source of 

reactive halogen-containing gases. Additionally, SSA could act as an inland cloud condensation 

nuclei source, indirectly impacting climate through cloud formation. The outcomes of this study 

provide insight regarding secondary chemistry involving aerosols in the southeastern U.S. 

Additional studies at inland sites, particularly less-polluted ones, are needed to examine effects 

on oxidation products of NOx, SO2, and the oxidant budget from halogen production. 
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Chapter 4. 

Isoprene-Derived Organosulfates: Vibrational Mode Analysis by Raman 

Spectroscopy, Acidity-Dependent Spectral Modes, and Observation in 

Individual Atmospheric Particles 

 

Adapted with permission from Bondy, A. L., Craig, R. L., Zhang, Z., Gold, A., Surratt, J. D., 

Ault, A. P. Isoprene-derived organosulfates: Vibrational mode analysis by Raman spectroscopy, 

acidity-dependent spectral modes, and observation in individual atmospheric particles, Journal of 

Phys. Chem. A, DOI: 10.1021/acs.jpca.7b10587. Copyright 2017 American Chemical Society. 

 

4.1. Introduction 

Isoprene is a biogenic volatile organic compound (BVOC) emitted by broadleaf trees and 

is the largest global emission of all non-methane VOCs (~600 Tg y
–1

) (Guenther et al., 2006). 

Atmospheric oxidation of isoprene leads to lower volatility products that partition to the particle 

phase, forming secondary organic aerosol (SOA) (Hallquist et al., 2009; Martin et al., 2010; 

Carlton et al., 2009; Glasius and Goldstein, 2016), which has been estimated to constitute 30 % 

to 50 % of the global SOA budget (Carlton et al., 2009). SOA-containing particles impact 

climate by scattering and absorbing solar radiation or acting as cloud condensation nuclei (CCN) 

(Jacobson et al., 2000). Recent work has also shown that exposure of human lung cells to 

atmospherically relevant isoprene-derived SOA induces oxidative stress (Kramer et al., 2016; 

Lin et al., 2016; Lin et al., 2017). Furthermore, chronic obstructive pulmonary disease (COPD), 

which can worsen due to oxidative stress in the human respiratory system (Barnes et al., 2003; 

Repine et al., 1997), is higher in the southeastern United States where isoprene-derived SOA 

contributes large mass fractions (up to 40 %) of submicron organic aerosol (Dominici et al., 

2006; Budisulistiorini et al., 2016; Rattanavaraha et al., 2017). Therefore, understanding the 

formation and evolution of isoprene-derived SOA is important for understanding the overall 

impact of aerosols on climate and health. 
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Organosulfates are a major class of compounds in SOA, estimated to contribute 5-10 % 

of the total organic aerosol mass over the continental U.S. (Tolocka and Turpin, 2012). Due to 

their high polarity and water solubility, these hygroscopic compounds could enhance the CCN 

activity of organic aerosol (Estillore et al., 2016). Isoprene-derived organosulfates formed from 

reactions of sulfate with isoprene oxidation products in the particle phase are often reported as 

the most abundant organosulfates in ambient aerosols (Hatch et al., 2011a, b; Froyd et al., 2010; 

Surratt et al., 2008), with mass concentrations of up to 8 % of organic matter (He et al., 2014; 

Lin et al., 2013; Liao et al., 2015; Budisulistiorini et al., 2015). The isoprene-derived 

organosulfates detected in ambient aerosol formed under low-NOx conditions are the 

diastereomeric methyltetrol sulfate ester racemates (Froyd et al., 2010; Hatch et al., 2011a, b; 

Gomez-Gonzalez et al., 2008; He et al., 2014; Stone et al., 2012; Lin et al., 2013; Lin et al., 

2012; Riva et al., 2016; Surratt et al., 2008; Liao et al., 2015; Surratt et al., 2007a), while under 

high-NOx conditions, racemic 2-methylglyceric acid sulfate ester is also detected (Hatch et al., 

2011a, b; Surratt et al., 2008; He et al., 2014; Lin et al., 2013; Gomez-Gonzalez et al., 2008; 

Surratt et al., 2007a). A simplified scheme of reactions leading to the formation of isoprene-

derived organosulfates under low- and high-NOx conditions is shown in Figure 4.1. The sulfate 

esters form via a nucleophilic oxirane ring-opening reaction by sulfate. Sulfate attacks δ-

isoprene epoxydiol (δ-IEPOX), an isomer of IEPOX formed in significant proportion (Bates et 

al., 2014), under low-NOx conditions at the primary carbon (C1) to yield racemic 3-

methylerythritol sulfate ester ((2S,3R)/(2R,3S)-2,3,4-trihydroxy-3-methylbutyl sulfate) and 

racemic 3-methylthreitol sulfate ester ((2R,3R)/(2S,3S)-2,3,4-trihydroxy-3-methylbutyl sulfate) 

(Darer et al., 2011; Surratt et al., 2010; Minerath and Elrod, 2009). Two high NOx isoprene-

oxidation products, methacrylic acid epoxide (MAE; 2-methyloxirane-2-carboxylic acid) and 

hydroxymethyl-methyl-α-lactone (HMML), yield racemic 2-methylglyceric acid sulfate ester (2-

carboxyl-2-hydroxylpropyl sulfate). Methyltetrol sulfate esters have been observed in more than 

65 % of particles in the southeastern U.S and are among the most abundant individual organic 

compounds in atmospheric aerosol (Froyd et al., 2010; Hatch et al., 2011a). Although previous 

studies in China and the southeastern United States showed that 2-methylglyceric acid sulfate 

ester is not as abundant in ambient aerosol as the methyltetrol sulfate esters, it nevertheless 

accounted for ~0.5 % of organic matter by mass (He et al., 2014; Lin et al., 2013). Isoprene-

derived organosulfates have long atmospheric lifetimes and thus are substantial contributors to 
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ambient organic aerosol (Darer et al., 2011). The sulfate esters can undergo hydrolysis within 

particles (hydrolysis lifetime, 60 to 460 h, depending on particle acidity) (Darer et al., 2011; Hu 

et al., 2011), leading to the formation of the diastereomeric 2-methyltetrol racemates (erythritol 

and threitol) and racemic 2-methylglyceric acid (2,3-dihydroxy-2-methylpropanoic acid) (Surratt 

et al., 2006; Darer et al., 2011; Hu et al., 2011; Gomez-Gonzalez et al., 2008; Lin et al., 2013; 

Surratt et al., 2010; Nguyen et al., 2015). The prevalence of these organosulfates and their 

hydrolysis products as well as their continuing chemistry in the aerosol phase, has recently 

elicited considerable research interest (Surratt et al., 2007a; Chan et al., 2010; Ebben et al., 2014; 

Lin et al., 2012; Surratt et al., 2008; Surratt et al., 2006; Glasius and Goldstein, 2016; Upshur et 

al., 2014). 
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Figure 4.1. Scheme leading to the formation of isoprene-derived SOA compounds: 3-

methyltetrol sulfate esters, 2-methyltetrols, 2-methylglyceric acid sulfate ester, and 2-

methylglyceric acid. Both the high- and low-NOx pathways are shown (Lin et al., 2013; Surratt et 

al., 2010; Nguyen et al., 2015). For simplicity, only one isomer of each respective compound is 

shown. 2-Methylglyceric acid, 2-methylglyceric acid sulfate ester, 2-methyltetrols, and the 3-

methyltetrol sulfate esters are present in the particle phase, while the epoxides are in the gas 

phase. 

 

Currently, identification and quantitation of isoprene-derived organosulfates in individual 

aerosol particles has been limited due to the complexity of SOA particles (thousands of species 
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are often present in attoliter volumes), instrumental difficulties in differentiating organosulfates 

from inorganic sulfate, and a lack of authentic standards. Most methods currently used to detect 

organosulfate species have been offline mass spectrometry-focused, relying on filter extractions 

followed by ultra-performance liquid chromatography/electrospray ionization high-resolution 

quadrupole time-of-flight mass spectrometry (UPLC/ESI-HR-QTOFMS) (Surratt et al., 2008; 

Gomez-Gonzalez et al., 2008; Yassine et al., 2012; Hettiyadura et al., 2015; Boone et al., 2015; 

Budisulistiorini et al., 2015; Riva et al., 2016; Lin et al., 2013; Lin et al., 2012; Stone et al., 

2012; He et al., 2014; Surratt et al., 2007a; Iinuma et al., 2009; Nguyen et al., 2015; Surratt et al., 

2007b; Surratt et al., 2010). Online analysis has been attempted by Farmer et al. (2010), who 

used an online aerosol mass spectrometer (AMS) to analyze an isoprene organosulfate surrogate 

standard, though due to extensive fragmentation, this compound could not be differentiated from 

inorganic sulfate in ambient aerosol. Some spectroscopic analysis has been done on 

organosulfates using Fourier transform infrared spectroscopy (Takahama et al., 2011; Schwartz 

et al., 2010; Maria et al., 2003; Frossard et al., 2011; Russell et al., 2009), but identification has 

focused on a single lower frequency vibration (C-S of methane sulfonic acid at 876 cm
–1

), rather 

than the entire fingerprint region, making interpretation challenging. Although bulk methods are 

typically used to detect and quantify organosulfates, they provide information limited to average 

aerosol composition and do not provide information concerning the abundance of organosulfate-

containing particles.  

Single particle mass spectrometry methods have been used to provide information 

regarding the mixing state of organosulfates. Hatch et al. detected isoprene-derived 

organosulfates using aerosol time-of-flight mass spectrometry (ATOFMS), and observed high 

fractions during two field studies in Atlanta, Georgia (Hatch et al., 2011a, b). Froyd et al. (2010) 

detected significant levels of isoprene-derived organosulfates in the free troposphere by particle 

ablation laser mass spectrometry (PALMS). These studies revealed that isoprene-derived 

organosulfates not only account for a sizeable fraction of organic aerosol mass, but are 

ubiquitous, present in more than 70 % of aerosols over the continental U.S. (Froyd et al., 2010; 

Hatch et al., 2011a). However, issues such as fragmentation and shot-to-shot variability for laser 

desorption/ionization in both the ATOFMS and PALMS make quantifying organosulfates 

particularly challenging (Froyd et al., 2010; Hatch et al., 2011a; Liao et al., 2015).  
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In contrast to bulk analysis and single particle mass spectrometry methods, Raman 

microspectroscopy is a nondestructive technique that can be used to analyze the vibrational 

modes of functional groups within individual particles (Ault and Axson, 2017; Ault et al., 2013; 

Craig et al., 2015, 2017a; Craig et al., 2017b; Ivleva et al., 2007; Popovicheva et al., 2012; 

Rindelaub et al., 2016; Deng et al., 2014; Baustian et al., 2012; Lee and Chan, 2007; Lee and 

Chan, 2010; Reid et al., 2007; Schweiger, 1990; Ivleva et al., 2013; Catelani et al., 2014). In 

addition to identifying vibrational modes, Raman microspectroscopy is sensitive to changes in 

bonding and molecular environment, such as aqueous versus solid particles (Ault et al., 2014) or 

acidity-dependent protonation states (Craig et al., 2017b; Rindelaub et al., 2016). Since Raman 

scattering, unlike mass spectrometry, is not dependent on particle ionization and fragmentation 

patterns (Farmer et al., 2010; Froyd et al., 2010), it can be used to differentiate classes of 

compounds within SOA, such as inorganic sulfate and organosulfates, since each class exhibits 

unique vibrational modes. Previous Raman studies of ambient SOA identified nitrates, sulfates, 

carbonates, alcohols/water, silicates and aluminosilicates, soot, hydrocarbons, and humic like 

substances within individual particles (Craig et al., 2015; Ivleva et al., 2007; Popovicheva et al., 

2012; Deng et al., 2014; Baustian et al., 2012). However, despite the rich vibrational spectra that 

Raman can provide, the complexity of ambient SOA makes unambiguous identification of 

specific constituents challenging. In order to identify isoprene-derived organosulfates within 

ambient SOA particles using Raman spectroscopy, a thorough analysis of their vibrational modes 

is therefore necessary. 

Herein, the Raman vibrational spectra of the atmospherically-relevant 3-

methylerythritol/3-methylthreitol sulfate ester mixture derived from δ-IEPOX and 2-

methylglyceric acid sulfate ester derived from MAE and HMML are recorded and observed band 

frequencies are compared to calculated frequencies. Raman spectra of the organosulfate 

hydrolysis products, 2-methyltetrols and 2-methylglyceric acid, were examined to assist in the 

identification of the organosulfate-related modes. Density functional theory (DFT), in 

conjunction with published frequencies of small-molecule organosulfates, was used to predict 

optimized structures of the isoprene-derived organosulfates and to assign vibrational modes in 

experimental Raman spectra. Acidity-dependent shifts of key modes were identified. 

Furthermore, key organosulfate-related Raman modes were observed in ambient atmospheric 

aerosol particles collected from the southeastern United States. This study identifies signature 
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Raman vibrational modes for isoprene-derived organosulfates that can be used to identify these 

compounds in chamber studies and ambient particles.  

 

4.2. Methods 

4.2.1 Reagents 

2-Methylglyceric acid, racemic 2-methylglyceric acid sulfate ester potassium salt (81 %), 

a diastereomeric mixture of racemic 2-methyltetrols (racemic 2-methylerythritol and racemic 2-

methylthreitol), and sodium salts of the 3-methyltetrol sulfate esters (86 %) (racemic 3-

methylerythritol sulfate ester and racemic 3-methylthreitol sulfate ester) were synthesized by the 

Surratt group and used without further purification (Budisulistiorini et al., 2015; Rattanavaraha et 

al., 2016; Hettiyadura et al., 2015; An et al., 1992). Synthetic details for the 3-methyltetrol 

sulfate esters and 2-methyltetrols are given in Appendix C. 2-Methylglyceric acid was 

synthesized by a published method (An et al., 1992). 2-Methylglyceric acid sulfate ester 

potassium salt was synthesized with a slight modification of the published method (Hettiyadura 

et al., 2015) using methylglyceric acid as the starting material. Trace quantities of inorganic 

sulfate are present in the 3-methyltetrol and 2-methylglyceric acid sulfate esters. Target 

structures were verified by proton nuclear magnetic resonance spectroscopy (
1
H NMR), Fourier 

transform infrared spectroscopy (FTIR) and energy dispersive X-ray spectroscopy (EDX) 

(Figures C.1-C.8). 

   

4.2.2. Raman Microspectroscopy 

Aqueous 0.05 M solutions of 2-methylglyceric acid, 2-methylglyceric acid sulfate ester, 

2-methyltetrols, and 3-methyltetrol sulfate esters were prepared by dissolution in 18.3 MΩ Milli-

Q water. For Raman analysis, 2 µL droplets (~1 mm diameter) were deposited onto quartz 

substrates (Ted Pella). Additionally, aerosol particles were generated by nebulizing aqueous 0.05 

M solutions of 2-methylglyceric acid sulfate ester and 3-methyltetrol sulfate esters onto quartz 

using a concentric glass nebulizer (TR-30-A1, Meinhard). Particles from aerosolized 

compounds, with projected area diameters ranging from ~3.5 to 9 µm, produced identical, but 

lower intensity Raman spectra as large droplets of the aqueous solutions, therefore only Raman 

spectra of the organosulfate solutions are shown in the subsequent analysis. See Appendix C for 

Raman spectra of aerosolized compounds and pure crystals/liquids (Figures C.9-C.12).  
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The standards were probed using a Raman microspectrometer (LabRAM HR Evolution, 

HORIBA, Ltc.) at ambient temperature and relative humidity. The Raman spectrometer was 

coupled with a confocal optical microscope (100x long working distance Olympus objective, 0.9 

numerical aperture) and equipped with a Nd:YAG laser source (50 mW, 532 nm) operated with a 

neutral density (ND) filter at 100 % and CCD detector. The 1800 g/mm diffraction grating 

yielded a spectral resolution of ~0.7 cm
–1

. The instrument was calibrated daily using a silicon 

wafer standard against the Stokes Raman signal of pure Si at 520 cm
–1

. Spectra were collected 

with three accumulations at 60-second acquisition times for the following spectral ranges: 500-

4000 cm
–1

 (2-methylglyceric acid sulfate ester and 2-methyltetrols), 500-2200 cm
–1 

and 2200-

4000 cm
–1 

(2-methylglyceric acid), 500-1800 cm
–1 

and 2500-4000 (3-methyltetrol sulfate esters). 

For 2-methylglyceric acid and the 3-methyltetrol sulfate esters, the lower frequency ranges (500-

2200 cm
–1 

and 500-1800 cm
–1

, respectively) and the higher frequency range (2500-4000 cm
–1

) 

were collected separately using the same number of accumulations and acquisition time 

described previously to minimize water evaporation. 

To explore the nature of the carboxylic acid vibrational mode and identify the cause of 

spectral variation between 2-methylglyceric acid sulfate ester and 2-methylglyceric acid, the 

effect of pH was studied. Assuming a similar pKa for 2-methylglyceric acid compared to glyceric 

acid (pKa glyceric acid ~3.5), the pH of an aqueous solution of 2-methylglyceric acid was 

adjusted from 1.3 to approximately 1.8, 3, and 10 through the addition of NaOH, measured using 

pH paper. Raman spectra were collected of the aqueous solutions of 2-methylglyceric acid at 

each pH from 500 to 4000 cm
–1 

using three accumulations, 10-second acquisition times, and a 

600 g/mm diffraction grating with a spectral resolution of ~1.7 cm
–1

. 

 

4.2.3. Density Functional Theory Calculations 

Geometry optimization, Raman shift, and Raman scattering activity calculations were 

performed using Gaussian 09W (Frisch et al., 2009). Initial geometry optimizations were 

performed using DFT with the CAM-B3LYP functional and 3-21G basis set. An additional 

geometry optimization was performed and Raman vibrational mode frequencies were calculated 

at the DFT CAM-B3LYP level of theory with the 6-311 ++ G(2d,p) basis set, using an ultrafine 

pruned grid and tight optimization criteria. All calculations are unscaled and run using water as a 

solvent. Calculated Raman frequencies and activity were used, in conjunction with literature 
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(Okabayashi et al., 1974; Koda and Nomura, 1985; Kato and Kurimoto, 1977; Chihara, 1960; 

Larkin, 2011; Picquart, 1986; Kartha et al., 1984), to assign vibrational modes to the 

experimental Raman spectra collected for each compound. The DFT calculations for 2-

methylglyceric acid sulfate ester, 3-methylerythritol sulfate ester, and 3-methylthreitol sulfate 

ester were performed with a -1 charge on the compounds. Since the DFT calculated frequencies 

for the sulfate functional group-related modes deviate from literature frequencies, multiple 

functionals and basis sets were tested for methyl sulfate, a model compound (Table C.1), and 

CAM-B3LYP was selected for the following analysis as a compromise between accuracy and 

calculation expense. 

 

4.2.4. Ambient Aerosol Collection  

Ambient particles from the Southern Oxidant and Aerosol Study (SOAS) during the 

summer of 2013 were analyzed for isoprene-derived organosulfate Raman signatures. 

Description of the site and particle collection is provided elsewhere (Bondy et al., 2017; Allen et 

al., 2015; Hidy et al., 2014). Briefly, particles were impacted on quartz substrates (Ted Pella 

Inc.) using a micro-orifice uniform deposit impactor (MOUDI, Model 110, MSP Corp.) in 

Centreville, AL, a rural, forested region near Talladega National Forest with high isoprene 

emissions. After collection, all substrates were sealed and stored at -22 °C prior to analysis. 

Individual particles were analyzed using computer controlled-Raman microspectroscopy (CC-

Raman), according to the method described previously by Craig et al. (2017a). 

 

4.3. Results and Discussion 

4.3.1. Signature Raman Modes for Isoprene-Derived Organosulfates 

To identify Raman signatures for isoprene-derived organosulfates, differences between 

the experimental spectra of the organosulfates and their hydrolysis products were noted. Figure 

4.2 shows experimental Raman spectra of the organosulfates and their hydrolysis products 

overlaid with intensities normalized to the modes at 1460 cm
–1 

and 2950 cm
–1 

(the most intense 

modes in the low- and high-frequency regions, respectively, excluding possible sulfate modes). 

Distinct modes present in the spectra of both organosulfates at ~1065 cm
–1 

and ~850 cm
–1

, 

assigned to the organosulfate functional group, are highlighted. Aside from the sulfate modes, 

key spectral differences include a very intense inorganic sulfate mode (from synthesis or 
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hydrolysis) present in the spectrum of the 3-methyltetrol sulfate ester mixture at 982 cm
–1

, and 

differences in the carbonyl stretching region (1400-1750 cm
–1

) for 2-methylglyceric acid sulfate 

ester and 2-methylglyceric acid which will be explored in more detail below.  

 

Figure 4.2. Experimental Raman spectra of a) the 3-methyltetrol sulfate esters overlaid with 2-

methyltetrols, and b) 2-methylglyceric acid sulfate ester overlaid with 2-methylglyceric acid. 

 

 

4.3.2. Experimental Raman Spectra and DFT Calculated Frequencies for the 3-

Methyltetrol Sulfate Esters and 2-Methyltetrols 

To correlate the spectral differences observed in Figure 4.2 with the presence of the 

organosulfate functional group, quantum chemical calculations were performed for the 3-

methyltetrol sulfate esters, 2-methyltetrols, 2-methylglyceric acid sulfate ester, and 2-

methylglyceric acid. Figure 4.3a shows experimental Raman modes within the fingerprint region 

(500-1500 cm
–1

) and at higher frequencies (2700-3500 cm
–1

) for the mixture of diastereomeric 3-

methyltetrol sulfate esters in an aqueous solution. Using DFT, the Raman activity (Figure 4.3b) 

was calculated for the minimum-energy geometry of each diastereomer (Figure 4.3c and 4.3d). 

The optimal geometries, with the terminal (C4) hydroxyl group twisted toward the sulfate group, 
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were used in the subsequent analysis, although the energies were not substantially different for 

other conformers (difference < 0.2 kcal)  

 

Figure 4.3. Aqueous phase a) experimental and b) calculated Raman spectra of the 3-

methyltetrol sulfate esters. In panel a, the sulfate bending mode is highlighted in blue, and the 

sulfate stretching modes in yellow. DFT optimized structures of c) 3-methylerythritol sulfate 

ester and d) 3-methylthreitol sulfate ester. Note that the intensity scale of the lower frequency 

modes in the DFT spectra (500-1800 cm
–1

) is 10x less intense than that of the higher frequency 

modes (2500-4000 cm
–1

). 

 

Comparison of the calculated spectra of the 3-methyltetrol sulfate esters with the 

experimental spectrum shows general qualitative agreement between calculated and observed 

Raman shifts and intensities (Table 4.1, Table C.2). However, some discrepancies were observed 

within the fingerprint region, in addition to the blue-shifted ν(C-H) and ν(O-H) modes due to 

anharmonicity associated with light atoms (Siebert and Hildebrandt, 2008). Table 4.1 lists 

tentative Raman assignments for the experimentally observed modes and the DFT-calculated 

frequencies, assigned by comparing the observed modes to those predicted via DFT, as well as 

published Raman measurements of alkyl sulfates, discussed later in detail (Chihara, 1960; 

Okabayashi et al., 1974; Kartha et al., 1984; Kato and Kurimoto, 1977; Picquart, 1986; Larkin, 

2011; Koda and Nomura, 1985). Bands assigned to the organosulfate stretching modes are ν(RO-

SO3) at 842 cm
–1 

and νs(SO3) at 1063 cm
–1

. Additionally, a very strong band at 982 cm
–1 

in the 

observed spectrum likely corresponds to the νs(SO4
2–

) of aqueous sulfate (Vargas Jentzsch et al., 

2013; Ben Mabrouk et al., 2013), a residual species from the synthesis. A very weak mode at 584 
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cm
–1 

may be related to δ(SO3); however, this assignment is ambiguous because of low intensity 

and interfering background signal from the quartz substrate. All the observed sulfate-related 

modes are blue-shifted from the calculated frequencies, likely due to issues associated with DFT 

predicting frequencies for charged species (electron density is localized within the sulfate group). 

As the differences between calculated and observed frequencies were significant for the sulfate-

related functional group, published Raman measurements of alkyl sulfates and spectral 

differences between the 3-methyltetrol sulfate esters and 2-methyltetrols were used to assign 

these modes, discussed later in detail. In addition to the modes related to the sulfate functional 

group, Raman intensity at 920 cm
–1 

and 1462 cm
–1 

correspond to δ(CH2) and δ(CH3) (Avzianova 

and Brooks, 2013; De Gelder et al., 2007; Larkin, 2011; Furić et al., 1992; Lee and Chan, 2007; 

McLaughlin et al., 2002). Raman modes in the observed spectrum at 2741, 2899, 2950, and 2992 

cm
–1 

correspond to νs(CH2), νs(CH3), νa(CH2) and νa(CH3) (Craig et al., 2015; Larkin, 2011), 

respectively, and bands at 3243 and 3454 cm
–1 

correspond to ν(O-H) (Furić et al., 1992).  
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Table 4.1. Experimentally observed Raman modes, DFT calculated frequencies, and tentative 

assignments for the 3-methyltetrol sulfate esters. 

 

Observed (cm
-1

) 

Calculated: 3-

methylerythritol 

sulfate ester (cm
-1

) 

Calculated: 3-

methylthreitol 

sulfate ester (cm
-1

) 

Assignment 

584 (vw)
a,b 

561
a

 546
a

 

δ(SO3) (Picquart, 1986; Chihara, 1960; 

Kartha et al., 1984; Kato and Kurimoto, 

1977; Okabayashi et al., 1974) 

842 (m)
a
 727

a

 732
a

 

ν(RO-SO3) (Picquart, 1986; Kartha et al., 

1984; Okabayashi et al., 1974; Larkin, 

2011) 

920 (w) 939 954 δ(CH2 & CH3) (De Gelder et al., 2007) 

982 (vs)
c 

  

νs(SO4) (salt) (Vargas Jentzsch et al., 2013; 

Ben Mabrouk et al., 2013) 

1063 (s)
a
 1047

a

 1054
a

 

νs(SO3) (Chihara, 1960; Kartha et al., 1984; 

Koda and Nomura, 1985; Okabayashi et 

al., 1974; Larkin, 2011) 

1462 (m) 1500 1503 

δ(CH2 & CH3) (McLaughlin et al., 2002; 

De Gelder et al., 2007; Furić et al., 1992; 

Avzianova and Brooks, 2013; Larkin, 

2011; Lee and Chan, 2007) 

2899 (s) 3055 3048 νs(CH3) (Craig et al., 2015; Larkin, 2011) 

2950 (vs) 3066 3066 νa(CH2) (Larkin, 2011; Craig et al., 2015) 

2992 (s) 3097 3110 νa(CH3) (Larkin, 2011; Craig et al., 2015) 

3243 (s) 3786 3795 ν(O-H) (Furić et al., 1992) 

3454 (vs) 3877 3878 ν(O-H) (Furić et al., 1992) 
a 

Frequencies highlighted in blue correspond to bending modes associated with the organosulfate 

group, while frequencies highlighted in yellow correspond to organosulfate-related stretching 

modes. 

b 
Possible δ(SO3) mode, difficult to differentiate from background. 

c
 Contamination in sample. 

 

Assignment of the sulfate modes was confirmed by comparison of the experimental and 

calculated modes of the sulfate esters with the experimental and calculated modes (using DFT-

optimized conformations) of the mixture of diastereomeric 2-methyltetrols (Figure 4.4, Table 

4.2, Table C.3) (Darer et al., 2011; Hu et al., 2011). This approach is based on the assumption 

that the sulfate group will not cause major perturbation of other structural modes. In accord with 

this premise, the experimental spectrum of the 2-methyltetrols (Figure 4.4a) contained modes in 

the fingerprint region at 914 and 1462 cm
–1 

indicative of δ(CH2) and δ(CH3) (Furić et al., 1992; 

Larkin, 2011; Lee and Chan, 2007; De Gelder et al., 2007; Avzianova and Brooks, 2013; 

McLaughlin et al., 2002). In the high frequency region, modes at 2751, 2895, 2942, and 2983 

cm
–1 

correspond to νs(CH2), νs(CH3), νa(CH2) and νa(CH3) (Craig et al., 2015; Larkin, 2011), 
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respectively, closely corresponding to similar modes identified in the spectrum of the sulfate 

ester mixture. Modes at 3262 and 3435 cm
–1 

correspond to ν(O-H) (Furić et al., 1992). In 

addition, the spectrum of the 2-methyltetrols showed moderate intensity Raman modes at 799 

cm
–1 

(δ(C-OH)) (Larkin, 2011) and 1048 cm
–1 

(ν(C-O)) (De Gelder et al., 2007; Avzianova and 

Brooks, 2013), and a weak mode at 1125 cm
–1 

(ν(C-OH), Table 4.2) (Avzianova and Brooks, 

2013; Larkin, 2011). As observed for 3-methyltetrol sulfate ester, the DFT calculated frequencies 

and intensities for the polyol and carbon backbone-related modes δ(C-H, CH2, & CH3), δ(C-

OH), ν(C-C), ν(C-O) had generally good agreement with the experimentally observed 

frequencies in the fingerprint region. The calculated frequencies for the high frequency region 

however, were blue-shifted as in the 3-methyltetrol sulfate esters. 

 

Figure 4.4 Aqueous phase a) experimental and b) DFT calculated Raman spectra of the 2-

methyltetrols (2-methylerythritol and 2-methylthreitol). DFT optimized structures of c) 2-

methylerythritol and d) 2-methylthreitol. Note, the lower frequency modes in the DFT spectra 

(500-1800 cm
-1

) are on an intensity scale 10x lower than the higher frequency region (2500-4000 

cm
-1

). 
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Table 4.2. Experimentally observed Raman modes, DFT calculated frequencies, and tentative 

assignments for the 2-methyltetrols. 

 

Observed (cm
-1

) 
Calculated: 2-

methylerythritol (cm
-1

) 

Calculated: 2-

methylthreitol (cm
-1

) 
Assignment 

545 (m) 550 566 δ(C-H) (Leyton et al., 2008) 

799 (s) 792 814 δ(C-OH) (Larkin, 2011) 

878 (w) 902 883 ν(C-C) (Avzianova and Brooks, 2013) 

914 (m) 942 946 δ(CH2 & CH3) (De Gelder et al., 2007) 

1047 (m) 
1069 1078 

ν(C-O) (Larkin, 2011; De Gelder et al., 

2007; Avzianova and Brooks, 2013) 

1125 (w) 
1159 1142 

v(C-OH) (Avzianova and Brooks, 2013; 

Larkin, 2011) 

1462 (s) 1498 1505 

δ(CH2 & CH3) (Avzianova and Brooks, 

2013; McLaughlin et al., 2002; De 

Gelder et al., 2007; Furić et al., 1992; 

Larkin, 2011; Lee and Chan, 2007) 

2895 (s) 
3054 3035 

νs(CH3) (Larkin, 2011; Craig et al., 

2015) 

2942 (vs) 
3067 3069 

νa(CH2) (Larkin, 2011; Craig et al., 

2015) 

2983 (s) 
3110 3088 

νa(CH3) (Larkin, 2011; Craig et al., 

2015) 

3262 (s) 3785 3777 ν(O-H) (Furić et al., 1992) 

3435 (s) 3875 3873 ν(O-H) (Furić et al., 1992) 

 

 

4.3.3. Experimental Raman Spectra and DFT Calculated Frequencies for 2-Methylglyceric 

Acid Sulfate Ester and 2-Methylglyceric Acid 

The molecular geometry of the high-NOx isoprene-derived organosulfate, 2-

methylglyceric acid sulfate ester, was optimized and Raman modes assigned in a manner 

analogous to that for the 3-methyltetrol sulfate esters (Figure 4.5, Table 4.3, Tables C.4-C.5). 

Unlike the 3-methyltetrol sulfate esters, neither the C2-OH nor the carboxyl-OH is oriented 

toward the sulfate group in the lowest energy structure. Rather, both hydroxyl groups are 

oriented to allow hydrogen bonding with the carbonyl oxygen. General agreement was observed 

between the DFT calculated frequencies and intensities and the experimentally observed mode 

frequencies, aside from shifting related to the sulfate functional group. Similar to the 3-

methyltetrol sulfate esters, modes related to the sulfate functional group were identified for 2-

methylglyceric acid sulfate ester at 850 cm
–1 

(ν(RO-SO3)) and 1066 cm
–1 

(νs(SO3)). An additional 

weak mode at 587 cm
–1 

may be δ(SO3); however, background interference from the substrate 

makes this assignment ambiguous. Although much less intense relative to νs(SO3) tentatively 
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associated with inorganic sulfate in the Raman spectrum of the 3-methyltetrol sulfate esters, a 

mode at 979 cm
–1 

may also be due to inorganic sulfate (Ben Mabrouk et al., 2013; Vargas 

Jentzsch et al., 2013). A mode at 1008 cm
–1 

was assigned to the ν(C-O) vibration, red-shifted 

from the 1047 cm
–1 

mode observed in the 2-methyltetrols. As the frequency was substantially 

lower in 2-methylglyceric acid sulfate ester and in a region where inorganic sulfate modes are 

present, EDX verified that the mode was not related to inorganic sulfate with divalent cations 

(Ca
2+

 or Mg
2+

) (Figure C.8) (Vargas Jentzsch et al., 2013).  

 

Figure 4.5. Aqueous phase a) experimental and b) DFT-calculated Raman spectra of 2-

methylglyceric acid sulfate ester. The blue region corresponds to a sulfate-related bending mode, 

while yellow regions correspond to sulfate-related stretching modes. c) DFT-optimized structure 

of 2-methylglyceric acid sulfate acid, a high-NOx particle-phase isoprene oxidation product. 

Note that the lower frequency modes in the DFT spectra (500-1800 cm
–1

) were less intense than 

the higher frequency region (2500-4000 cm
–1

), and are magnified 10x. 
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Table 4.3. Experimentally observed Raman modes, DFT-calculated frequencies, and tentative 

assignments for 2-methyglyceric acid sulfate ester. 

 

 
a
 Frequencies highlighted in blue correspond to bending modes associated with the organosulfate 

group, while frequencies highlighted in yellow correspond to organosulfate-related stretching 

modes. 

b 
Possible δ(SO3) mode, however difficult to differentiate from background. 

c
 Indicates contamination. 

d
 Experimental results indicate carboxylate ion rather than carboxylic acid group is present. 

 

Figure 4.6 shows measured and computed Raman spectra and the DFT lowest-energy 

structure for 2-methylglyceric acid. As expected, ν(C-O) (1053 and 1056 cm
–1 

respectively) (De 

Gelder et al., 2007; Avzianova and Brooks, 2013), δ(CH2) and δ(O-H) (1112-1116 cm
–1

) 

(Larkin, 2011; Avzianova and Brooks, 2013), δ(CH2 and CH3) (940-941 and 1460-1462 cm
–1

) 

(Larkin, 2011; Avzianova and Brooks, 2013; Lee and Chan, 2007; De Gelder et al., 2007; Furić 

et al., 1992), ν(C-H) (2731-2737 cm
–1

, 2894-2896 cm
–1

, 2947-2946 cm
–1

, and 2992-2994 cm
–1

) 

(Craig et al., 2015; Larkin, 2011), and ν(O-H) (3212-3259 cm
–1 

and 3436-3465 cm
–1

, Tables 4.3 

and 4.4) (Furić et al., 1992) are present in the sulfate esters and their hydrolysis products. As in 

Observed (cm
-1

) Calculated (cm
-1

) Assignment 

587 (w)
a, b 

564
a

 
δ(SO3) (Picquart, 1986; Chihara, 1960; Kartha et al., 1984; Kato and 

Kurimoto, 1977; Okabayashi et al., 1974) 

608 (w) 580 δ(O-H) (Cooney et al., 1994) 

788 (m) 
 

δ(C-OH), δ(O-H) (Larkin, 2011) 

850 (s)
a
 748

a

 
ν(RO-SO3) (Larkin, 2011; Picquart, 1986; Kartha et al., 1984; 

Okabayashi et al., 1974) 

979 (m)
c 

 
νs(SO4) (salt) (Vargas Jentzsch et al., 2013; Ben Mabrouk et al., 2013) 

1008 (m)
 

973 
ν(C-O) (Okabayashi et al., 1974; Koda and Nomura, 1985; Kartha et 

al., 1984; Chihara, 1960)  

1066 (vs)
a
 1031

a

 
νs(SO3) (Larkin, 2011; Chihara, 1960; Kartha et al., 1984; Koda and 

Nomura, 1985; Okabayashi et al., 1974) 

1365 (m) 1310 δ(CH2 & CH3) (Avzianova and Brooks, 2013; De Gelder et al., 2007) 

1413 (m)
d 

 
νs(COO

-
) (Fayer, 2013) 

1460 (s) 1491 
δ(CH2 & CH3) (Larkin, 2011; McLaughlin et al., 2002; De Gelder et 

al., 2007; Furić et al., 1992; Avzianova and Brooks, 2013) 

1595 (vw)
d 

 
νas(COO

-
) (Fayer, 2013) 

2894 (s) 3072 νs(CH3) (Craig et al., 2015; Larkin, 2011) 

2947 (vs) 3146 νa(CH2) (Craig et al., 2015; Larkin, 2011) 

2994 (s) 3160 νa(CH3) (Craig et al., 2015; Larkin, 2011) 

3259 (vs) 3745 ν(O-H) (Furić et al., 1992) 

3465 (vs) 3761 ν(O-H) (Furić et al., 1992) 
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the 2-methyltetrols, the frequencies of the experimentally-observed modes in the fingerprint 

region agreed with the DFT calculated frequencies. Other distinctive Raman modes specific to 2-

methylglyceric acid sulfate ester and 2-methylglyceric acid include modes related to the 

carboxylic acid functional group (1595 and 1724 cm
–1

) and the acidic δ(C-OH) at 788 cm
–1

 

(Larkin, 2011). 

Figure 4.6. Aqueous phase a) experimental and b) DFT-calculated Raman spectra of 2-

methylglyceric acid, the hydrolysis product of 2-methylglyceric acid sulfate ester. c) DFT-

optimized structure of 2-methylglyceric acid. Note that the lower frequency modes in the DFT 

spectra (500-1800 cm
-1

) were less intense than the higher frequency region (2500-4000 cm
-1

), 

and are magnified 10x. 
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Table 4.4. Experimentally observed Raman modes, DFT-calculated frequencies, and tentative 

assignments for 2-methyglyceric acid. 

 
Observed (cm

-1
) Calculated (cm

-1
) Assignment 

551 (m) 531 δ(C-H) (Leyton et al., 2008) 

599 (m) 602 δ(O-H) (Cooney et al., 1994) 

764 (vs) 769 δ(O-C-O) (Avzianova and Brooks, 2013; Zhou et al., 2014) 

788 (vs) 794 δ(C-OH), δ(O-H) (Larkin, 2011) 

893 (m) 912 ν(C-C) (Avzianova and Brooks, 2013) 

940 (m) 958 δ(CH2 & CH3), ν(C-C) (De Gelder et al., 2007) 

1056 (m) 1072 ν(C-O) (De Gelder et al., 2007; Avzianova and Brooks, 2013) 

1112 (m) 1136 v(C-OH) (Avzianova and Brooks, 2013; Larkin, 2011) 

1462 (s) 1491 
δ(CH2 & CH3) (Larkin, 2011; McLaughlin et al., 2002; De Gelder 

et al., 2007; Furić et al., 1992; Avzianova and Brooks, 2013) 

1724 (s) 1794 ν(C=O), δ(O-H) (Zhou et al., 2014) 

2896 (s) 3067 νs(CH3) (Craig et al., 2015) 

2946 (vs) 3116 νa(CH2) (Craig et al., 2015) 

2992 (s) 3147 νa(CH3) (Craig et al., 2015) 

3212 (vs) 3759 ν(O-H) (Furić et al., 1992) 

3436 (vs) 3778 ν(O-H) (Furić et al., 1992) 

 

 

4.3.4. pH-Dependent Raman Modes for 2-Methylglyceric Acid Sulfate Ester and 2-

Methylglyceric Acid 

In 2-methylglyceric acid, the ν(C=O) present at 1724 cm
–1 

is consistent with the COOH 

functional group (Zhou et al., 2014; Fayer, 2013),
 
while 2-methylglyceric acid sulfate ester 

modes at 1595 cm
–1 

and 1413 cm
–1 

correspond to νs(COO
–
) and νa(COO

–
), respectively (Fayer, 

2013). As the pKa of 2-methylglyceric acid, similar to glyceric acid, is ~3.5 (Pure et al., 1979), 

the aqueous 2-methylglyceric acid pH of ~1.3 was below and the 2-methylglyceric acid sulfate 

ester pH of ~5 was above the pKa. To explore the effect of the carboxylic acid protonation state 

on the vibrational spectra, Raman spectra of 2-methylglyceric acid were acquired as a function of 

pH and compared to the Raman spectrum of the sulfate ester (Figure 4.7). At pH 1.3 the initial 

Raman spectrum of 2-methylglyceric acid showed a medium-intensity ν(C=O) mode at 1724 cm
–

1
. As pH increased (1.3-10), this mode disappeared and a weak mode due to νa(COO

–
) appeared 

at ~1594 cm
–1

, the same frequency observed for 2-methylglyceric acid sulfate ester. 

Additionally, as pH increased the emergence of a medium-intensity mode in 2-methylglyceric 

acid at ~1415 cm
–1 

(1413 cm
–1 

in 2-methylglyceric acid sulfate ester) shows that 2-
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methylglyceric acid and 2-methylglyceric acid sulfate ester adopt a carboxylate structure rather 

than a carboxylic acid at higher pH (Fayer, 2013). Methods using Raman peak ratios of acids and 

conjugate bases have shown promise in laboratory studies (Rindelaub et al., 2016; Craig et al., 

2017b), but additional laboratory and chamber studies are necessary to extrapolate this metric to 

additional systems and ultimately, ambient aerosol.  

 

Figure 4.7. Aqueous phase experimental Raman spectra of 2-methylglyceric acid sulfate ester 

(2-MGS) and 2-methylglyceric acid (2-MG) at varying pH. Note the δ(OH) emergence ~1640 is 

primarily due to the addition of NaOH (Lappi et al., 2004).  

 

 

4.3.5. Comparison of Experimental Calculated Organosulfate Frequencies to Literature 

Modes 

In general, the DFT calculated modes appear to be red-shifted from experimental values 

for the sulfate functional group stretching modes, likely due to shortcomings using DFT for ionic 

compounds, making the calculated Raman activities difficult to interpret with respect to the 

experimental values. Due to the differences between DFT-calculated frequencies and 

experimentally observed values, frequencies associated with δ(SO3), ν(RO-SO3), and νs(SO3) in 

previous experiments on small-molecule organosulfates were used to verify the assignment of 

the sulfate functional group-related modes in the isoprene-derived organosulfates (Table 4.5). 

One mode likely associated with the δ(SO3) vibration had strong enough intensity to be observed 

experimentally at 584 cm
–1 

(DFT 546 and 561 cm
–1

) and 587 cm
–1 

(DFT 564 cm
–1

) in the 3-
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methyltetrol sulfate esters and 2-methylglyceric acid sulfate ester, respectively. These modes 

correspond to δs(SO3) Raman modes reported for sodium and potassium methyl sulfates (559-

561 cm
–1

) (Chihara, 1960; Okabayashi et al., 1974), sodium, potassium, and lanthanum ethyl 

sulfates (565-574 cm
–1

) (Okabayashi et al., 1974; Kato and Kurimoto, 1977), sodium propyl 

sulfate, sodium butyl sulfate, sodium hexyl sulfate, sodium octyl sulfate, sodium decyl sulfate, 

and sodium dodecyl sulfate (580-598 cm
–1

) (Okabayashi et al., 1974; Picquart, 1986), and 

sodium, potassium lithium, ammonium, and cesium palmityl sulfates (583-601 cm
–1

) (Kartha et 

al., 1984). The ν(RO-SO3) modes in the isoprene-derived organosulfates were assigned at 842 

and 850 cm
–1 

for the 3-methyltetrol sulfate esters and 2-methylglyceric acid sulfate ester, 

respectively, compared to the calculated modes at 727 and 732 and 748 cm
–1

. Although the 

experimentally assigned ν(RO-SO3) modes do not closely match the calculated modes, the 

experimentally-observed vibrational modes correlate well with reported modes observed 

experimentally. Particularly good agreement was observed with long chain alkyl sulfates such as 

sodium dodecyl sulfate (838-841 cm
–1

) (Picquart, 1986; Larkin, 2011) and the palmityl sulfate 

compounds (792-856 cm
–1

) (Kartha et al., 1984), as increasing chain length tends to blue-shift 

the frequencies.  

Finally, the νs(SO3) mode was assigned to the 3-methyltetrol sulfate esters at 1063 cm
–1 

(DFT-calculated 1047 and 1054 cm
–1

) and 2-methylglyceric acid sulfate ester at 1066 cm
–1 

(calculated 1031 cm
–1

). The frequency of the νs(SO3) mode experimentally observed for the 

isoprene-derived organosulfates is in agreement with previous observations of other 

organosulfates by Larkin (2011), Chihara (1960), Okabayashi et al. (1974), Picquart (1986), 

Kartha et al. (1984), and Koda and Nomura (1985) (1050-1095 cm
–1

), though Kato and 

Kurimoto (1977) reported modes with lower frequencies for potassium and lanthanum ethyl 

sulfate (1006-1010 cm
–1

). The similar frequencies observed between the isoprene-derived 

organosulfates and the small-molecule organosulfates suggest that these organosulfate-related 

modes could be used to identify isoprene-, terpene-, or other VOC-derived organosulfates in 

atmospheric particles.  
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Table 4.5. Literature Raman mode frequencies related to the sulfate-functional group for small 

molecule organosulfates. 

 
Organosulfate 

compound 

δ(SO3) (cm
-1

) δ(SO3) 

(cm
-1

) 

ν(RO-SO3) 

(cm
-1

) 

νs(SO3) 

(cm
-1

) 

νa(SO3) 

(cm
-1

) 

νa(SO3) 

(cm
-1

) 

3-methyltetrol sulfate 

esters
a 584 

 
842 1063 

  

2-methylglyceric acid 

sulfate ester
a 587 

 
850 1066 

  

sodium methyl sulfate 

(Okabayashi et al., 1974; 

Koda and Nomura, 1985) 

561 
591, 

617 
785 1063-1064 

  

potassium methyl sulfate 

(Chihara, 1960; 

Okabayashi et al., 1974) 

559 615 781 1063 1221 1257 

sodium ethyl sulfate 

(Okabayashi et al., 1974) 
574 622 795 1063 

  

potassium ethyl sulfate 

(Kato and Kurimoto, 

1977) 

574 621 
 

1010 1110 1200 

lanthanum ethyl sulfate 

9H2O (Kato and 

Kurimoto, 1977) 

565-570 612-615 
 

1006-1008 1105-1109 1203-1225 

sodium propyl sulfate to 

sodium dodecyl sulfate 

(Okabayashi et al., 1974)
, b

 

580-584 619-625 822-839 1062-1065 
  

sodium dodecyl sulfate 

(Picquart, 1986; Larkin, 

2011) 

598 635 838-841 1086 
  

sodium palmityl sulfate 

(Kartha et al., 1984) 
593 623-629 828-838 1084 1197-1218 

1220-1235, 

1261 

potassium palmityl sulfate  

(Kartha et al., 1984) 
583 632 810 1067 1220 1248, 1276 

lithium palmityl sulfate 

(Kartha et al., 1984) 
601 631 856 1095 1196 1270 

ammonium palmityl 

sulfate (Kartha et al., 

1984) 

587 629 814 1063 1196 1276 

cesium palmityl sulfate 

(Kartha et al., 1984) 
584 626 792 1050 1204, 1239 1254, 1276 

a 
Gray shading indicates the experimental organosulfate results from this study. 

b
 Includes sodium propyl sulfate, sodium butyl sulfate, sodium hexyl sulfate, sodium octyl 

sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. 

 

In addition to the three sulfate-related modes experimentally observed in the isoprene-

derived organosulfates, a δ(SO3) mode (591-635 cm
–1

) and two νa(SO3) modes (1105-1239, 

1200-1276 cm
–1

) too weak to be distinguished from background noise were identified in some of 

the previous organosulfate studies (Okabayashi et al., 1974; Chihara, 1960; Kato and Kurimoto, 

1977; Picquart, 1986; Kartha et al., 1984). These corresponding modes, calculated for 3-
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methylerythritol sulfate ester and 3-methylthreitol sulfate ester, were 596/602 cm
–1 

for δ(SO3), 

and 1188/1184 and 1245 cm
–1 

for νa(SO3) (Table C.2). Though these modes were observed in 

some of the other studies, the more complex polyol structures for the isoprene-derived 

organosulfates made observation and identification of these modes challenging since multiple 

ν(C-O), ν(C-C), and δ(CH2) vibrations were present in the spectra from 1100-1300 cm
–1

. 

Additionally, the DFT-calculated modes were present at 556 cm
–1 

for δ(SO3), and at 1211 and 

1235 cm
–1 

for the νa(SO3) modes of 2-methylglyceric acid sulfate ester (Table C.4). Because a 

range of frequencies related to the sulfate functional group vibrational modes were observed in 

previous studies, and because mode shifting was observed based on molecular environment, 

alkyl chain length, and associated cation, additional Raman analysis of organosulfates in both 

chamber and ambient SOA is necessary to identify key vibrational modes. 

 

4.3.6. Organosulfate Raman Signatures in Ambient Particles 

In addition to the analysis of authentic isoprene-derived standards, Raman organosulfate 

signatures were identified in atmospheric particles. During the Southern Oxidant and Aerosol 

Study (SOAS) in summer 2013, ambient concentrations of organosulfates were on average 100-

200 ng m
–3

, with concentrations up to 1 μg m
–3

 (Budisulistiorini et al., 2017; Rattanavaraha et 

al., 2016). As organosulfates were a significant component of bulk organic aerosol sampled 

during SOAS, organosulfates in spectra of individual particles could be identified in a 

preliminary Raman microspectroscopy study using the vibrational modes identified in this study. 

The Raman spectrum of an ambient organic/sulfate particle is shown in Figure 4.8. Modes at 

2848, 2883, 2898, and 2928 cm
–1 

characteristic of ν(CH2) and ν(CH3) and a strong mode at 980 

cm
–1 

characteristic of νs(SO4
2–

) were used to identify the particle as organic/sulfate. Furthermore, 

modes at 1064 cm
–1 

and a shoulder at 847 cm
–1 

consistent with the νs(SO3) and ν(RO-SO3) modes 

of isoprene-derived organosulfates were observed. Although ambient particles may contain tens 

to hundreds of chemical species making identification of specific species challenging, these two 

modes suggest isoprene- or terpene-derived organosulfates are likely present within this ambient 

particle. We have demonstrated here that the strong νs(SO3) mode could be used in future 

studies, particularly alongside the ν(RO-SO3) mode, to identify organosulfates in aerosols from 

chamber studies or ambient measurements. 
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Figure 4.8. Raman spectrum of an organic/sulfate ambient particle with projected area diameter 

of 3.4 μm (volume equivalent diameter ~2 μm) from Centreville, Alabama. The medium-

intensity modes at 1064 cm
-1

 and shoulder at 847 cm
-1

 (highlighted in yellow) likely correspond 

to the organosulfate νs(SO3) and ν(RO-SO3) and modes, respectively. 

 

 

4.4. Conclusions 

Raman microspectroscopy and DFT computations were used to investigate vibrational 

mode assignments for 2-methylglyceric acid sulfate ester and 3-methyltetrol sulfate esters, along 

with their hydrolysis products, 2-methylglyceric acid and 2-methyltetrols. The frequencies 

assigned to the sulfate functional group-related modes of the 3-methyltetrol sulfate esters and 2-

methylglyceric acid sulfate ester are similar, and agree well with previous assignments made for 

simpler alkyl sulfates. Two strong organosulfate modes, ν(RO-SO3) at 842-850 cm
–1 

and νs(SO3) 

at 1063-1066 cm
–1 

were observed. An additional weak mode at 584-587 cm
–1 

was observed for 

these compounds; however, due to background noise the organosulfate mode assignment is not 

conclusive. For 2-methylglyceric acid, the presence of a carbonyl stretch was observed at pH 

values below the pKa, while anti-symmetric and symmetric carboxylate group stretches were 

observed above the pKa for 2-methylglyceric acid sulfate ester. Raman spectra of ambient 

particles from the southeastern United States showed peaks at frequencies consistent with the 

intense ν(RO-SO3) and νs(SO3) modes, suggesting the presence of isoprene- and terpene-derived 

organosulfates. The Raman peak assignments determined in this study by combining 

experimental measurements, literature reports, and theoretical calculations can be used in future 
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studies to identify these species within individual SOA particles, which will assist in improving 

understanding of the abundance and atmospheric implications of these key SOA constituents.   
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Chapter 5. 

Atomic Force Microscopy-Infrared Spectroscopy of Individual Atmospheric 

Aerosol Particles: Sub-Diffraction Limit Vibrational Spectroscopy and 

Morphological Analysis 

 

Adapted with permission from Bondy, A. L., Kirpes, R. M., Merzel, R. L., Pratt, K. A., Banaszak 

Holl, M. M., and Ault, A. P.: Atomic force microscopy-infrared spectroscopy of individual 

atmospheric aerosol particles: Subdiffraction limit vibrational spectroscopy and morphological 

analysis, Anal. Chem., 89, 8594-8598, 2017. Copyright 2017 American Chemical Society. 

 

5.1. Introduction 

Atmospheric aerosol particles < 1 µm in diameter impact climate by scattering and 

absorbing solar radiation, nucleating cloud droplets and ice crystals, and acting as surfaces for 

heterogeneous reactions in the atmosphere (Poschl, 2005). Additionally, through inhalation, 

these particles can penetrate deeply into the lungs, depositing in the alveoli (Hinds, 1999). This 

has large consequences as air pollution accounts for 10 % of global deaths annually (Evaluation-

IHME, 2016). The size, chemical composition, and physical structure (e.g. well-mixed, core-

shell, partially engulfed) of individual particles is critical for determining their climate and health 

impacts (Zhang and Thompson, 2014; Laskina et al., 2015; Fierce et al., 2016). However 

methods that can provide detailed molecular information at ambient pressure, allowing detection 

of volatile components for individual particles near the mode of the atmospheric number size 

distribution (~100 nm), are limited (Ault and Axson, 2017). 

Vibrational spectroscopy has great potential to provide insight into chemical processes 

within aerosols (Ault and Axson, 2017), as it has been used to provide detail on functional 

groups, such as ν(SO4
2-

), ν(NO3
-
), ν(C-H), and ν(O-H) (Ault et al., 2013). Vibrational methods 

provide molecular information that complements elemental information and electronic 
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transitions from energy dispersive X-ray spectroscopy and near edge X-ray absorption fine 

structure spectroscopy, respectively (Laskin et al., 2016; Moffet et al., 2010). Additionally, 

vibrational modes are sensitive to surrounding molecular environments, such as whether ions are 

free or bound to specific cations (NO3
-
(aq)

 
vs. NO3

-
(s)). These peak shifts can probe processes like 

phase separation and hydrogen bonding (Ault et al., 2013). 

The greatest challenge of using optical microscopy-based vibrational spectroscopy for 

analysis of submicron particles has been the diffraction limit of visible and infrared (IR) light. 

Both Raman microspectroscopy and micro-IR spectroscopy of individual atmospheric particles 

provide insights for particles > 1 µm (Ault and Axson, 2017; Craig et al., 2017; Ghorai et al., 

2014; Baustian et al., 2012), but have limited ability to probe accumulation mode particles (< 1 

µm) and the atmospheric surface area mode (Seinfeld and Pandis, 2016). To probe smaller 

particles, surface-enhance Raman spectroscopy (SERS) (Craig et al., 2015) and tip-enhanced 

Raman spectroscopy (TERS) (Ofner et al., 2016) have been used, but uneven enhancements 

require further development for quantification. To understand the relationship between chemical 

composition and morphology in a critical size range for aerosol impacts, vibrational methods are 

needed that chemically analyze particles < 500 nm at atmospheric pressure and probe intra-

particle compositional variability. 

Atomic force microscopy with infrared spectroscopy (AFM-IR) has the potential to 

overcome size limitations with imaging capabilities on the scale of nanometers, and ~50 nm 

chemical resolution (Dazzi et al., 2012). This combines simultaneous single particle 

measurements of physical properties (hygroscopicity (Morris, 2016), surface tension (Morris et 

al., 2015; Hritz et al., 2016), phase, morphology (Krueger et al., 2005) by AFM) with chemical 

composition (functional groups by IR absorption). In this study, AFM-IR was used to analyze 

accumulation mode aerosol particles (> 150 nm) for the first time. Inorganic and organic 

functional groups were characterized for laboratory-generated standards and ambient particles. 

Several substrates commonly used for AFM and Fourier transform IR spectroscopy (FTIR) were 

tested to determine the best substrate for aerosol particle analysis. Phase separation and spatial 

variation of chemical species were observed on spatial scales of 100 nm, demonstrating that 

AFM-IR can analyze particles below the diffraction limit. 

 

 



118 

 

5.2. Methods 

5.2.1. AFM-IR Technique Overview 

A nanoIR2 system (Anasys Instruments, Santa Barbara, CA) was used to test single-

component, atmospherically-relevant standards in contact mode. The principle of AFM-IR, 

shown in Figure 5.1, is explained in detail by Dazzi et al. (2012). Briefly, the sample is pulsed 

with a tunable IR source (2.5-12 µm, 1 kHz) over a frequency range of 900-3600 cm
-1

. Upon 

absorption of IR radiation, thermal expansion of the sample occurs, causing the AFM probe in 

contact with the surface to oscillate at its resonant frequency. The oscillations are detected by the 

deflection laser’s position on the photodiode, and the amplitude of oscillation is proportional to 

IR absorbance, yielding an IR spectrum as a function of wavelength with 4 cm
-1

/point resolution 

(instrument limit is 4 cm
-1

) (Dazzi et al., 2012).  

 

Figure 5.1. Schematic of AFM-IR operation. Local thermal expansion from the IR laser is 

detected by the cantilever, allowing IR spectra with ~50 nm resolution to be collected. IR spectra 

were collected from individual ammonium sulfate particles using AFM-IR (this study) and 

micro-FTIR (Liu et al., 2008). 

 

 

5.2.2. Laboratory Standard Aerosol Generation and Impaction  

Laboratory-generated aerosol samples were created by atomizing and impacting particles 

from 0.05 M standard solutions of ammonium sulfate (Alfa Aesar, 99 %), sodium nitrate (Sigma 

Aldrich 99.0 %), succinic acid (Alfa Aesar, 99 %), and D-sucrose (Fisher Scientific 99.9 %) onto 

substrates using a microanalysis particle sampler (MPS-3, California Measurements, Inc.). 
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Particles were impacted on stage 3 of the MPS (70-400 nm equivalent aerodynamic diameter). 

Succinic acid was generated via dissolution of succinic anhydride in Millipore water. Generated 

aerosols were passed through two diffusion dryers (drying to ~15 % relative humidity) prior to 

impaction. Core-shell particles were generated by atomizing a 1 % by weight solution of 

ammonium sulfate and polyethylene glycol 400 (Fluka) in a 1:1 ratio. Before impaction, 

ammonium sulfate-polyethylene glycol particles were not passed through diffusion dryers, 

resulting in liquid-liquid phase separation. Particles with AFM heights < 250 nm were used in 

the subsequent analysis. 

 

5.2.3. AFM-IR Imaging and Spectral Acquisition 

AFM-IR was performed on a nanoIR2 system (Anasys Instruments) with room relative 

humidity varying seasonally from 10-40 %. AFM height/deflection images and IR spectra of 

ammonium sulfate, sodium nitrate, succinic acid, and sucrose particles were collected in contact 

mode (IR power 21.27 %, filter in) at a scan rate of 1 Hz using a gold-coated contact mode 

silicon nitride probe (Anasys Instruments, 13 ± 4 kHz resonant frequency, 0.07-0.4 N/m spring 

constant). AFM height/phase images of phase separated ammonium sulfate and polyethylene 

glycol particles were collected in tapping mode at a scan rate of 0.4 Hz using a dual-purpose 

gold-coated silicon nitride tapping probe for NIR2 (Anasys Instruments, 75 ± 15 kHz resonant 

frequency, 1-7 N/m spring constant). To collect IR spectra, the dual-purpose tapping probe was 

put in contact mode (since on the nanoIR2 this is required to detect the sample photothermal 

expansion). The amplitude of cantilever oscillations was mapped using 128 co-averages, with a 

resolution of 4 cm
-1

/point. Eight spectra with an IR power of 38.46 % (filter in) were averaged 

for the PEG reference spectrum, and four spectra collected with an IR power of 21.27 % (filter 

in) were averaged for IR spectra collected from both the core and shell of the phase separated 

ammonium sulfate/PEG particle. For the IR spectral maps of an ambient aerosol particle, maps 

were collected in contact mode using a gold-coated contact mode probe at 1476 cm
-1

 and 1580 

cm
-1

 with a trace rate of 0.1 Hz and retrace rate of 1 Hz so that the update of the IR-peak, IR-

amplitude and frequency data approximated the pixel rate of the image. The amplitude of 

cantilever oscillations was mapped using 16 co-averages, 300 pt. resolution for X and Y, and IR 

power at 1.03 %. 
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The IR ratio map was generated in Analysis Studio (Anasys analysis software) by cross-

correlating the spatial distribution of the two AFM height images and calculating the ratio 

between the two IR intensities at each point. Since the ratio map correlates the IR maps with the 

height image, changes in intensity due to topography are normalized. Furthermore, thermal drift 

is accounted for in this analysis, hence the resulting ratio map is an accurate representation of the 

particles. Thermal drift of the sample between IR frequency maps is noted by the solid purple 

regions along the top and right edge of the image. 

 

5.3. Results and Discussion 

5.3.1. Single-Component Aerosol Particles 

Aerosol particles were generated from single-component solutions to evaluate AFM-IR 

for model aerosol particles. Two inorganic salts (sodium nitrate and ammonium sulfate), and two 

organic compounds (succinic acid and sucrose), were aerosolized, dried, and impacted onto Si 

substrates using a microanalysis particle sampler (MPS-3, California Measurements Inc.). 

Particles with volume equivalent diameters (Dve) ~200-350 nm were selected for IR analysis 

(Table D.1), where Dve corresponds to the diameter of a sphere with volume equivalent to the 

impacted particle. Measured IR peak positions in submicron particles were compared to 

conventional FTIR mode frequencies, with good agreement observed. Ammonium sulfate was 

chosen as it is ubiquitous in aerosols and frequently used as a benchmark compound in aerosol 

studies (Seinfeld and Pandis, 2016), while NaNO3 is readily formed in the atmosphere from 

reactions of HNO3 with sea spray aerosol and mineral dust (Weis and Ewing, 1999). Succinic 

acid was chosen as dicarboxylic acids are the most abundant organic species in aerosols 

(Kawamura and Bikkina, 2016), while sucrose is used as a model compound for glassy 

secondary organic aerosol in lab studies (Zobrist et al., 2011).  

In Figure 5.2, representative AFM height and deflection images and IR spectra are shown 

for individual particles generated from the four standards. The spectrum for ammonium sulfate 

particles showed ν(SO4
2-

) at 1091 cm
-1

 and δ(NH4
+
) at 1422 cm

-1
, which agree with spectra of ~1 

µm particles observed by Liu et al. (2008) in a micro-FT-IR study. Although less intense, a weak 

mode at 3139 cm
-1

 consistent with ν(NH4
+
) (Liu et al., 2008; Weis and Ewing, 1996) was also 

observed. In the sodium nitrate particles, the sharp ν(NO3
-
) at 1356 cm

-1
 aligns well with 
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literature νa(NO3
-
) for particles at low relative humidity (Liu et al., 2008). Table D.2 comparing 

observed AFM-IR modes with FTIR literature modes is available in Appendix D. 

 

Figure 5.2. AFM height, deflection, and IR spectra of single-component particles: a) (NH4)2SO4, 

b) NaNO3, c) succinic acid, and d) sucrose. Dve of analyzed particle from each standard: 346 nm, 

303 nm, 335 nm, and 202 nm (further information in Table D.1). 

 

For the more complex organic particle spectra, IR mode assignments also matched prior 

IR studies, particularly in the fingerprint region (Table D.2). Peaks at 1201, 1308, and 3049 cm
-1

 

consistent with ν(C-C), ν(C-O), and ν(CH2), were observed in succinic acid particles (Larkin, 

2011; Miñambres et al., 2010). A strong vibrational mode at 1691 cm
-1

, ν(C=O), and a very 

strong vibration at 1404 cm
-1

, δ(CH2), were also observed (Miñambres et al., 2010; Larkin, 

2011). For the sucrose particles, a variety of functional groups were observed including ν(C-O) 

at 1057 cm
-1

, δ(C-O-H) at 1439 cm
-1

, ν(CH2) at 2913 cm
-1

, and an intense ν(O-H) mode at 3345 

cm
-1

 (Max and Chapados, 2001). Aside from the ν(O-H) stretch in sucrose, the IR intensity of the 

vibrational modes in the fingerprint region were most intense for all compounds. Although many 

vibrational modes are possible in this region, these results indicate that the fingerprint region 

could be used to make tentative assignments in multi-component particles.  
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5.3.2. Substrate-Dependent Spectral Response 

The potential for substrate-dependent spectral responses was examined using ammonium 

sulfate particles (Dve ~150-350 nm, Table D.3)  impacted onto common microscopy and IR 

substrates: Si wafers, Ge, ZnSe, and chemical vapor deposition (CVD) diamond windows, and 

TEM grids, consisting of Formvar (polymer) coated copper grids (Figure 5.3). Particle spreading 

ratios were also calculated for each substrate to determine how substrate affected particle 

thickness (Figure D.1). Si, Ge, ZnSe, and CVD diamond provided good surfaces for imaging 

since these substrates are flat. However, the Cu grid bar on the TEM grid was rough, making 

particles difficult to distinguish from the surrounding substrate. Spectroscopically, particles on 

Si, Ge, ZnSe, and CVD diamond yielded strong IR signal and had minimal background 

interference, with average vibrational modes for ν(SO4
2-

) at 1103 ± 5 cm
-1

 and δ(NH4
+
) at 1427 ± 

3 cm
-1

. In contrast, the TEM grid had sizeable background interferences including a Formvar 

out-of-plane bend δ(-CH) at 1020 cm
-1

 and the acetate carbonyl stretch at 1732 cm
-1

 (Hossain et 

al., 2014). One challenge observed for single particle AFM-IR data, was variation in the peak 

ratio and full width half maximum between the δ(NH4
+
) and ν(SO4

2-
) modes, which is discussed 

in Appendix D (Figures D.2 and D.3). Si was found to be the best substrate for this AFM-IR 

analysis because it is microscopically flat and has minimal IR background, is inexpensive, and is 

nontoxic (unlike Ge and ZnSe). 
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Figure 5.3. AFM height and deflection images, as well as IR spectra of individual ammonium 

sulfate aerosol particles (red trace) collected on the following substrates: a) Si, b) Ge, c) ZnSe, d) 

CVD diamond, and e) Cu grid bar from a TEM grid. An IR spectrum of each substrate from a 

region without particles is the background (black trace). Dve of analyzed particle from each 

substrate: 283 nm, 352 nm, 189 nm, 238 nm, 160 nm (Table D.3). 

 

 

5.3.3. Core-Shell Aerosol Particles  

To examine capabilities for more complex morphologies, core-shell particles were 

generated similar to prior microscopy studies (You et al., 2014; Veghte et al., 2013). Particles 

with an ammonium sulfate core and a polyethylene glycol (PEG) shell were impacted onto Si 

and analyzed by AFM (tapping mode). Although the height images appear similar to the single-

component particles, the phase images clearly show two distinct phases (Figure 5.4a-b). AFM 

phase imaging has been used previously to detect phase separation of submicron particles 

including partially engulfed and core-shell morphologies (Laskina et al., 2015; Freedman et al., 

2010), however chemical characterization of each phase in this size range has been limited due to 

the optical diffraction limit. Since AFM-IR has spatial resolution on the scale of 50-100 nm, 
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dual-purpose AFM tips were used to collect images (tapping mode) and IR spectra (tapping 

mode; probe in contact with sample) from each phase. Spectra collected from the core and shell 

of the 550 nm particle (Dve) show two distinct compositions (Figure 5.4c). The core has an 

intense vibrational mode at 1090 cm
-1

, ν(SO4
2-

) of ammonium sulfate (Liu et al., 2008; Cziczo et 

al., 1997; Weis and Ewing, 1996), while the shell shows two modes at 1105 cm
-1

 and 1256 cm
-1

, 

the ν(C-O-C) and CH2 twisting modes in PEG (Larkin, 2011; Lu et al., 2014). Since the PEG 

shell covers the particle, a small mode at 1266 cm
-1

 in the “core” spectrum is observed from PEG 

located on the top of the impacted particle. Similarly, the shoulder at 1090 cm
-1

 is likely due to a 

less intense PEG vibration ~1105 cm
-1

. Thus, AFM-IR chemically distinguished the core and 

shell for a 550 nm particle. 

 

Figure 5.4. a) AFM height and b) phase images, as well as c) IR spectra of a submicron core-

shell morphology particle consisting of (NH4)2SO4 coated with polyethylene glycol (PEG) The 

blue traces are AFM-IR spectra for (NH4)2SO4 and PEG. d) Optical image, e) Raman spectral 

map, and f) Raman spectra of a supermicron (NH4)2SO4/PEG particle. Black and red traces were 

collected from the core and shell, respectively. (NH4)2SO4 modes (yellow), and PEG modes (red) 

are highlighted. 

 

To compare AFM-IR results to more traditional vibrational spectroscopy techniques, 

Raman microspectroscopy was used to collect spectra and chemical maps of supermicron core-

shell ammonium sulfate/PEG particles (Figure 5.4d-f). The resulting Raman spectra agree with 

the AFM-IR results, with the shell containing solely PEG, while the “center” of the particles has 

both ammonium sulfate and PEG. The Raman map (Figure 5.4e), with regions corresponding to 
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the PEG modes at 1465 cm
-1 

and 2874 cm
-1

, and  the sulfate and ammonium modes at 974 cm
-1 

and 3150 cm
-1

, clearly depict a core-shell morphology, similar to the AFM phase image. 

However while Raman microspectroscopy can analyze particles > 1 µm, the greatest advantage 

of AFM-IR is that it can investigate submicron particles. One limitation of the ammonium 

sulfate/PEG system studied here is that an IR spectral map could not be collected because PEG is 

a liquid, necessitating AFM analysis in tapping mode. As contact mode is currently needed for 

collecting IR spectra with the nanoIR2, only discreet point spectra could be collected.  

   

5.3.4. Ambient Aerosol Particles 

To demonstrate spatial resolution for spectral mapping of ambient particles with 

numerous chemical components, ambient aerosol particles were collected on Si substrates in Ann 

Arbor, MI (August 2016). IR spectral maps were collected for particles with Dve
 
< 800 nm 

(Figure 5.5). Two modes, 1476 cm
-1

 and 1580 cm
-1

 suggestive of δ(CH2) (Larkin, 2011) and 

ν(C=C) (Larkin, 2011; Miñambres et al., 2010), respectively, were observed for these particles, 

with different spatial distributions (Figure 5.5d-f). The ratio map (Figure 5.5f) most clearly 

highlights differences in spatial distribution of these two modes, as areas enriched in CH2 (1476 

cm
-1

) appear red, while those enriched with C=C (1580cm
-1

) appear blue. Within the smaller 

particles (P1-P2), approximately half the particle contains significant IR intensity from 1476 cm
-

1
, while the other half contains signatures from the 1580 cm

-1
 mode. Additionally, the two large 

agglomerate particles (P3-P4) exhibit chemical heterogeneity within localized regions. These 

results show that AFM-IR can effectively and simultaneously determine particle physical 

parameters, chemical composition, and distribution of chemical species within individual 

atmospheric particles, with a focus on organic functional groups. 
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Figure 5.5. AFM height (a) and deflection images (b), IR spectrum (c), as well as IR spectral 

maps at 1476 cm
-1

 (d) 1580 cm
-1

, and the ratio of 1476/1580 cm-1 shown for an ambient aerosol 

particle from Ann Arbor, MI. Four particles (P1-P4) exhibiting chemical heterogeneity are 

identified (e). Purple edge on (e) represents thermal drift between each map. 

 

 

5.4. Conclusions 

The simultaneous spectroscopic and morphological analysis of accumulation mode 

aerosol particles (< 1 µm) is challenging since techniques that are currently available either do 

not provide the detailed vibrational analysis necessary to identify distinct moieties, such as 

organic functional groups, or are diffraction limited and cannot investigate particles in this size 

range. Traditionally, AFM has been limited by its lack of chemical information, and micro-FTIR 

is limited by the diffraction of light to > 3 µm particles. AFM-IR however, has great potential to 

analyze submicron aerosol particles by imaging and providing vibrational information for 

species within < 500 nm particles at ambient pressure. As shown in this study, AFM-IR was 

applied to the study of single-component model systems, phase-separated particles, and ambient 

aerosol particles for the first time, detecting functional groups in particles concurrently imaged, 

so that particle diameter, height, morphology, phase, and chemical composition were all 

discerned. The novel application of this analytical method to atmospheric particles enabled 

detection of organic and inorganic vibrational modes in standards and ambient particles, as well 

as identified the composition of phase-separated components within a particle size range that has 

previously been unstudied by vibrational spectroscopy. The enhanced spatial scale for analysis of 
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atmospheric particles using AFM-IR has the potential to provide key insights regarding size-

dependent phase-separated atmospheric particles within an atmospherically critical size range. 
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Chapter 6. 

Phase Separated Secondary Organic Aerosol Internal Structure Is 

Determined By Temperature and Relative Humidity History 

6.1. Introduction 

Secondary organic aerosol (SOA), formed from the oxidation of volatile organic 

compounds (VOCs), contribute substantially to aerosol mass globally, with estimates of 20-380 

Tg y
-1

 (Hallquist et al., 2009; Glasius and Goldstein, 2016). SOA impact climate directly by 

scattering/absorbing solar radiation or indirectly by modifying cloud properties, and the potential 

toxicity of organic particles has made them a point of study (Jacobson et al., 2000). Despite its 

ubiquitous presence, models struggle to replicate SOA concentrations and distributions, in part 

due to uncertainties related to particle phase state, acidity, and internal structure (McNeill, 2015; 

Pye et al., 2017; Zuend and Seinfeld, 2012). Traditionally, SOA particles have been depicted as 

well-mixed aqueous droplets in models (Shiraiwa et al., 2017). However, as the study of phase 

separated and viscous organic-inorganic particles has expanded rapidly in the past decade, 

increasingly complex liquid-liquid phase separation (LLPS) structures, such as partially 

engulfed, have been observed (Veghte et al., 2014; Reid et al., 2011; Veghte et al., 2013; Fraund 

et al., 2017; Rachel E. O'Brien, 2015). Furthermore, numerous studies have recently focused on 

the role of viscosity and glass transition phase states, improving our understanding of how O:C 

elemental ratios, relative humidity (RH), and temperature affect LLPS (Bateman et al., 2015; 

Hosny et al., 2016; Rothfuss and Petters, 2016, 2017; Song et al., 2016; Dette and Koop, 2015; 

Koop et al., 2011; Shiraiwa et al., 2017). In order to more accurately predict SOA formation and 

minimize discrepancies between models and measurements, additional studies are needed to 

determine, quantify, and parameterize the factors involved in SOA formation and LLPS. 
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Herein, microchemical analyses (scanning electron microscopy with energy dispersive X-

ray spectroscopy – SEM-EDX and scanning transmission X-ray microscopy with near edge X-

ray absorption fine structure spectroscopy– STXM-NEXAFS) are used to probe LLPS and 

complex structure within ambient SOA-inorganic particles. Image processing was used to 

quantify the extent of complex phase separation relative to homogeneous and core-shell 

structures as a function of size, RH, temperature, and atmospheric age during the Southern 

Oxidant and Aerosol Study (SOAS) in the southeastern U.S. during the summer of 2013. The 

variation of complexity throughout the study suggests that complex structures are dependent on 

multiple factors including aerosol lifetime, as well as temperature and RH history. 

 

6.2. Methods 

6.2.1. SOAS Field Site Description and Sample Collection  

 Sampling was conducted at Centreville, AL in a heavily forested area from June 5, 2013 to 

July 11, 2013 as part of the SOAS field campaign (Bondy et al., 2017). Aerosol particles were 

collected on 200 mesh Carbon Type B with Formvar TEM grids (Ted Pella Inc.) and silicon 

wafers (Ted Pella Inc.) using a micro-orifice uniform deposit impactor (MOUDI, MSP Corp., 

Model 110) with a flow rate of 30 L/min. In order to exclude collection of particles > 10 µm, a 

PM10 cyclone (URG model 786) was paired with the MOUDI. The 50 % aerodynamic diameter 

size cut-points for the MOUDI stages used in this analysis were 0.56, 0.32 0.18, 0.10, and 0.056 

µm (Marple et al., 1991).  

 Sampling was conducted daily from 8:00-19:00 Central Standard Time (CST) and 20:00-

7:00 CST, with one hour for substrate exchange, aside from intensive periods on June 10-12, 

June 14-16, June 29-July 1, and July 7-9, 2013. Sampling during intensive periods, scheduled 

based on predicted gas-phase concentrations and meteorological parameters (Budisulistiorini et 

al., 2015), was conducted from 8:00-11:00, 12:00-15:00, 16:00-19:00, and 20:00-7:00 CST. 

Following collection, substrates were stored in a freezer at -22°C prior to analysis.  

 

6.2.2. Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-

EDX)  

 The majority of the SEM-EDX analysis was conducted at the Michigan Center for 

Materials Characterization (MC)
2
 at the University of Michigan. For this analysis, a FEI Helios 
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NanoLab SEM/FIB equipped with a field emission gun operating at 15 kV and a high angle 

annular dark field detector (HAADF) was used to analyze particles on TEM grids. On silicon 

substrates, the SEM was operated at 10 kV with an Everhart-Thornley secondary electron 

imaging detector (ETD). An EDAX X-ray spectrometer (Si) was coupled with the SEM to 

determine elemental composition of particles. A portion of the SEM analysis of particles from 

SOAS was conducted at the Pacific Northwest National Laboratory (PNNL) using a FEI Quanta 

environmental SEM equipped with a field emission gun operating at 20 kV and a HAADF 

detector (Bondy et al., 2017; Laskin et al., 2006). The SEM was also equipped with an EDX 

spectrometer (EDAX, Inc.).  

 

6.2.3. Image Segmentation  

 Particles in SEM images were automatically identified by segmenting each image using 

thresholds determined from Otsu's method (Figure 6.6) (Otsu, 1979). After segmentation, the 

area and perimeter of each particle larger than eight pixels was calculated using the regionprops 

function of Matlab's Image Processing Toolbox. To obtain a quantitative metric for particle 

complexity, each particle was extracted from the image and individually segmented and analyzed 

using the methods previously described to quantify the area and perimeter of the particles sub-

structure, which are subsequently referred to as the inner area and inner perimeter respectively. 

The ratio of the inner perimeter to particle perimeter was used to quantify the complexity of each 

particle in the image. Both the SEM image and images of randomly selected particles were 

manually compared to thresholded images to verify proper performance of the automated 

threshholding algorithm. 

 

6.2.4. Scanning Transmission X-ray Microscopy/Near Edge X-ray Absorption Fine 

Structure (STXM-NEXAFS)  

 STXM-NEXAFS measurements of two MOUDI samples, June 10, 2013 16:00-19:00 

CST and July 7, 2013
 
8:00-19:00 were taken at the carbon (C) (280-320 eV), nitrogen (N) (395-

430 eV), and oxygen (O) (525-550 eV) K-absorption edges and at the sulfur (S) (168-176 eV) L-

absorption edge. STXM instruments at the Advanced Light Source at Lawrence Berkeley 

National Laboratory on beamlines 5.3.2 and 11.0.2 were used for this analysis. The operation of 

the microscope has been explained in detail by Kilcoyne et al. (2003) The soft X-ray beam was 
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focused to a spot size of 40 nm using a Fresnel zone plate and was raster scanned. X-rays 

transmitted through the samples and the TEM grid-substrates were detected using a phosphor-

coated Lucite pipe coupled to a photomultiplier for single photon counting. As described by 

Moffet et al. (2010), Matlab and Axis 2000 were both used for spectral analysis of the STXM-

NEXAFS data. Stacks of images taken at sequentially increasing photon energies were used to 

obtain spatially resolved spectroscopic data at the K-absorption edges. At the C K-edge, organic 

regions were identified where the post edge minus the pre-edge (optical density (OD) at 320 eV 

minus OD 278 eV) was > 0. For the inorganic identification, particles with a ratio of the pre edge 

and the post edge (OD 278 / OD 320) > 0.5 were identified. To identify soot inclusions within 

particles, individual pixels of a particle were analyzed and if a pixel contained 35 % or greater 

C=C, a peak identified as soot using graphitic carbon as a standard, then that pixel was identified 

as a soot region. For inorganic material identification, peak energies at the O K-edge, N K-edge, 

and S L-edge identified the composition as (NH4)2SO4 (Hopkins et al., 2008; Zelenay et al., 

2011). Based on STXM-NEXAFS analysis of organic and inorganic regions, particle internal 

complexity was identified as phase separation of these two components. 

 

6.2.5. HYSPLIT Backward Air Mass Trajectory Analysis 

  NOAA’s Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model 

(Draxler and Hess, 1997) was run at 500 m above ground level (48 h backward) to model the 

sources of air masses for samples collected during SOAS, air mass transport times, temperature, 

and relative humidity along the air mass trajectories. HYSPLIT backward air mass trajectories 

were run at the middle of each sampling time point (i.e. June 11 2:00 CST for a sample collected 

June 10 20:00-June 11 7:00) for June 10-June 17, 2013 and July 9, 2013. 

 

6.2.6. Calculations of RH-Dependent Glass Transition Temperature (Tg) During SOAS 

As the glass transition temperature (Tg) can vary substantially due to RH, the RH-

dependent Tg for SOA during SOAS was estimated using the Gordon-Taylor approach (Koop et 

al., 2011; Wang et al., 2015):   

𝑇𝑔(𝑅𝐻) =
𝑇𝑔,𝑤∗𝑘𝐺𝑇+𝑓(𝑅𝐻)∗𝑇𝑔,𝑜𝑟𝑔

𝑘𝐺𝑇+𝑓(𝑅𝐻)
                                                      (6.1) 

where Tg,w is the glass transition temperature of water; kGT is the Gordon-Tayler constant for the 

specific organic material representing the interaction between water and organic solute; Tg,org is 
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the glass transition temperature of the pure organic component, and f(RH) was calculated as 

expressed below. 

𝑓(𝑅𝐻) =
100−𝑅𝐻

𝑅𝐻

1

κ𝑜𝑟𝑔

𝜌𝑜𝑟𝑔

𝜌𝑤
                                                          (6.2)  

where korg is the hygroscopicity parameter of the organic component; ρorg is the density of the 

organic component; and ρw is the density of water. Tg,w, kGT, κorg, ρorg, and ρw of 136 K (Wang et 

al., 2015), 2.5 (± 1.0) (Wang et al., 2012; Wang et al., 2015; Koop et al., 2011), 0.05 (0-0.3) 

(Brock et al., 2015), 1.4 (± 0.2) g cm
-3

 (Shilling et al., 2008), and1.0 g cm
-3

 were used, 

respectively. As the organic material within ambient SOA contains more than a single 

component, Tg,org (~308 K) was estimated using an equation derived from the organic aerosol 

module ORACLE, based on a computationally efficient description of primary and secondary 

organic aerosol sources, phase-partitioning and chemical evolution (Shiraiwa et al., 2017). 

⁡𝑇𝑔 =⁡−21.57(±13.47) + 1.51(±0.14)𝑀 − 1.7⁡𝑥 + 131.4(±16.01)(𝑂: 𝐶) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−0.25(±0.085)𝑀(𝑂: 𝐶)                                            (6.3) 

where the average O:C ratio during SOAS was 0.58 (± 0.06) (Cerully et al., 2015) and the molar 

mass of biogenic SOA was estimated as 293 g mol
-1

 (Shiraiwa et al., 2017). 

 

6.3. Results and Discussion 

6.3.1. Complexity of Internal Structures within SOA-AS  

The most abundant type of particle observed at the rural, forested sampling site during 

SOAS was SOA mixed with inorganic sulfate, particularly at small sizes near the mode of the 

ambient size distribution. Though these particles often had inorganic material homogeneously 

distributed throughout, phase separation between organic and inorganic material was frequently 

observed (Figure 6.1). Examples of different phase-separated internal structures observed from 

STXM-NEXAFS and SEM included: homogeneous, core-shell, and complex (Figure 6.2a-c). 

Furthermore, some particles contained inclusions identified as soot by NEXAFS (Figure 6.2d), 

although these particles accounted for < 10 % of SOA.   
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Figure 6.1. STXM particle maps with different spectral components for two SOAS samples: a) 

June 10 and b) July 7, 2013. The ratio of the optical density (OD) of the pre-edge to the post-

edge (ODpre/ODpost) indicates inorganic material (cyan), the ODCOOH is a map of carboxylic acid 

groups indicating organic material (green), and sp
2 

> 0.35 indicates elemental carbon, or soot 

inclusions (red). 

 

 

Figure 6.2. a) Homogeneous, b) core-shell, c) complex, and d) complex with soot morphologies 

were observed using STXM-NEXAFS and SEM performed on SOA-AS particles sampled on 

6/10/2013 and 7/7/2013. STXM-NEXAFS singular value decomposition maps show inorganic 

(blue), organic (green), and sp
2
 carbon (red). No complex particle with soot was available from 

the SEM analysis.  
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 The blue inorganic regions (Figure 6.2) were identified through NEXAFS and atomic 

force microscopy-infrared spectroscopy (AFM-IR) as ammonium sulfate (Figures 6.3-6.4), 

which is likely aqueous for the RH range observed during SOAS (~60-90 %) (Guo et al., 2015) 

as the RH was above the efflorescence RH of ammonium sulfate. Although recent modelling 

incorporated phase separation into predictions to more accurately predict the role of aerosol 

water during SOAS (Pye et al., 2017), LLPS has not been examined during SOAS. Laboratory 

measurements predict a liquid organic component because a large fraction of the  organic aerosol 

is from isoprene SOA (Xu et al., 2015), which are liquids at RH > 60 % (Song et al., 2015). 

Additionally, measurements of aerosol bounce during SOAS indicate that at typical ambient RH 

and temperature, organic-dominated particles stay mostly liquid (Pajunoja et al., 2016), 

potentially allowing for LLPS to occur. However, the initial observation of phase separation, 

specifically forming complex internal structures (Figure 6.2c-d), was unexpected. Subsequent 

analysis of samples from a range of field sites, both forested and urban (Figure 6.5), suggest that 

these structures are not unique to SOAS and isoprene SOA, but are prevalent in ambient aerosol 

populations. Therefore, further analysis of SOA-ammonium sulfate (SOA-AS) structure and 

properties are needed as structure and morphology of organic aerosol affect the reactive uptake 

of important gas-phase species (McNeill et al., 2006) and influence the ice nucleation properties 

of particles (Schill and Tolbert, 2013). 

 

Figure 6.3. a) Sulfur L-edge NEXAFS spectrum, b) nitrogen K-edge spectrum, and c) oxygen K-

edge spectrum collected from inorganic regions within phase-separated SOA-AS particles from 

SOAS. 
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Figure 6.4. AFM a) height and b) deflection images and c) IR spectrum of an SOA-AS particle 

from SOAS exhibiting complex structure. IR maps collected at d) 1100, e) 1420, f) 1270, and g) 

1700 cm
-1

 show the distribution of inorganic and organic species with inorganic (ammonium 

sulfate) on the interior and organic on the particle exterior. Modes at 1100 cm
-1

 likely 

corresponds to ν(SO4
2-

), 1420 cm
-1

 corresponds to δ(NH4
+
), 1270 cm

-1
 corresponds to δ(CH2), 

and the mode at 1700 cm
-1

 corresponds to ν(C=O). 

 

 

Figure 6.5. Evidence of complex structures from other field and chamber studies from samples 

not frozen during storage. SEM images of ambient SOA-inorganic particles from a) Pellston, MI 

and b) Atlanta, GA, and c) generated ammonium bisulfate and α-pinene from a chamber study. 

 

To quantify the internal structure of SOA-AS particles from SEM images, an image 

processing method was developed to analyze a statistically significant number of particles 

(Figure 6.6), which was corroborated through extensive manual checking. Briefly, brightness to 

contrast was automatically adjusted and the external perimeter and internal perimeter(s) were 

traced. The brighter portion of complex particles (Figures 6.2 and 6.7a,f) results from the higher 

atomic number (Z) of sulfur versus oxygen and carbon in the darker portion. Based on analysis 

of multiple images such as Figures 6.7a and f, the ratio of inner perimeter to outer perimeter was 
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used to classify particles by internal structure (Figures 6.7b,g). Homogeneous particles, with 

mixed organic and inorganic material, had no inner perimeter and thus a perimeter ratio of 0. The 

delineation between complex and core-shell was based on an inner perimeter > outer perimeter, 

thus a ratio > 1. Though some particles could have a complex inner structure despite an inner 

perimeter < outer perimeter, this was rarely observed during manual classification and spot 

checking of the image processing code.   

 

 

Figure 6.6. Image processing of example SEM images differentiates SOA-AS particles with 

homogeneous, core-shell, and complex structures and calculates outer and inner perimeter(s) for 

each particle analyzed. 
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Figure 6.7. SOA-AS structure from two days during SOAS, June 13 and July 9, 2013. a) and f) 

SEM images with structures identified –complex (red), core-shell (blue) and homogeneous 

(green). b) and g) Particle inner perimeter versus outer perimeter was used for classification. c) 

and h) Size distributions of SOA-AS particles as a function of structure. The pie chart insets 

show SOA on June 13 (34 % homogeneous, 11 % core-shell, 55 % complex) and July 9 (51 % 

homogeneous, 14 % core-shell, 35 % complex). HYSPLIT backward air mass trajectories at 500 

m on d) June 13, 2013 14:00 CST and i) July 9, 2013 18:00 CST (sample collection midpoints). 

The RH (%) is shown in the color scale where cooler colors represent lower RH and warmer 

colors represent higher RH values. e) and j) Altitude from HYSPLIT as a function of RH (color). 

 

 

6.3.2. Effect of Particle Size on Structure Complexity 

The relationship between particle size (volume equivalent diameter) and complexity is 

shown in Figures 6.7c,h for two days with differing PM2.5 mass loadings of organic carbon (13 

June 2013 – 2.9 μg/m
3
 and 9 July 2013 – 1.7 µg/m

3
). Because particles often spread upon 

impaction, volume equivalent diameters for SOA were calculated in this study by dividing the 
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projected area diameter obtained from SEM by a factor of 2. Accounting for particle spreading to 

represent diameters of particles before impaction, the number fraction of homogeneous particles 

is the highest at the smallest sizes measured in Figures 6.7c,h (~200 nm), similar to observations 

of laboratory-generated aerosol focused on core-shell and partially-engulfed morphologies 

(Veghte et al., 2013; Veghte et al., 2014). Furthermore, although core-shell particles are 

observed at all sizes, increasing numbers of complex particles are observed at the largest sizes. 

The size range where core-shell and complex particles are a large fraction of SOA-AS particles 

is where the surface area size distribution peaks (~300 nm during SOAS) (Seinfeld, 2006), which 

is a critical size for heterogeneous reactivity (Thornton and Abbatt, 2005; Ravishankara, 1997). 

In addition to variation in SOA-AS complexity as a function of size, the two case study days 

show differing relative abundances of complex particles, with much higher number fractions on 

June 13, 2013 (55 % complex, 34 % homogeneous) compared to July 9, 2013 (35 % complex, 51 

% homogeneous), which is related to temperature and RH history, discussed below.  

 

6.3.3. Temporal Variation of Structure Complexity 

To determine whether the fraction of complex (and core-shell) particles observed in 

Figure 6.7 can be explained primarily by the RH lifetime experienced by aerosols, HYSPLIT 

backward air mass trajectories were run for June 13, 2013 and July 9, 2013. 48 hour HYSPLIT 

backward air mass trajectories (Draxler and Hess, 1997) at 500 m (with additional checks at 

other altitudes) showed slow moving air masses, barely reaching the Gulf of Mexico within 36 h, 

which is only 320 km from the sampling site (Figure 6.7d,i). The RH from the back trajectories 

was modelled for each sample, with the hourly average RH shown in color in Figures 6.7d,e,i,j 

as a function of time and air mass altitude. In both cases aerosols experienced a range of RH 

values (60-95 % and 63-89 %), varying temporally, across which LLPS has been observed to 

occur (Bertram et al., 2011; You et al., 2014; Song et al., 2012; Marcolli and Krieger, 2006; 

Ciobanu et al., 2009; Song et al., 2013; You et al., 2013). The RH values never decrease below 

the efflorescence RH (35 %) of ammonium sulfate (Ciobanu et al., 2010), and because the 

efflorescence RH is lower (or may be completely absent) for particles with a sufficient volume 

fraction of organic material (Smith et al., 2012; Smith et al., 2013), the aqueous phase is not 

expected to crystallize. However, the constant diurnal variation of RH alone, does not explain the 
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differences in SOA-AS structures observed. While the air mass on July 9, 2013 “cycled” RH 

more frequently, particles sampled from this air mass were less complex. 

 

6.3.4. Temporal variation of structure complexity 

To further explore the temporal variation of LLPS structure complexity and elucidate 

meteorological effects on SOA structure, the number fraction of particles with homogeneous, 

core-shell, and complex structures was evaluated for a single size cut (MOUDI, stage 7, 

aerodynamic diameter 50 % cut-point of 0.56 µm) (Marple et al., 1991) over a week period 

(Figure 6.8a). Relative number fractions of homogeneous (22 - 67 %), core-shell (0 – 65 %), and 

complex (0 – 46 %) particles all varied dramatically indicating that complex particles are 

frequently, but not always, a significant fraction of SOA-AS particles. To explain the variation in 

SOA-AS complexity observed, the phase state and glassy or viscous nature of SOA-AS at SOAS 

was investigated. As previous studies have shown that SOA-AS may adopt liquid, semisolid, and 

solid states (Kidd et al., 2014; You et al., 2014) under ambient conditions which could affect 

separation of inorganic and organic material, the phase state and role of liquid water are 

important to understand in order to predict organic aerosol mass in the southeastern U.S. (Pye et 

al., 2017). 
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Figure 6.8. a) Week-long time series of SOA-AS particle complexity during SOAS. b) RH 

experienced by particle air masses and c) inverse ambient temperature (1/T) scaled by the RH-

dependent glass transition temperature (T
g
/T) modelled from HYSPLIT backward air mass 

trajectories. T
g
/T is an indicator of the particle phase state—T

g
/T > 1, solid; 0.8 < T

g
/T < 1, semi-

solid; T
g
/T < 0.8, liquid. d) Schematic of SOA-AS particle structure as a function of particle 

lifetime, altitude, particle drying rate, RH, and temperature. 

 

 

6.3.5. Effect of Tg on SOA-AS structure complexity 

To investigate particle phase states, the RH-dependent glass transition temperature (Tg) 

was used to estimate whether particles were liquids, solids, or semi-solids (Dette and Koop, 

2015; Koop et al., 2011). Figure 6.8b shows the HYSPLIT-modelled RH experienced by particle 

air masses and Figure 6.8c shows the Tg calculated from HYSPLIT backward air mass 

trajectories from June 10, 2013 through June 16, 2013. When the ambient temperature is below 

Tg (Tg/T > 1), a particle behaves as a solid and kinetic limitations occur. In contrast, when Tg/T < 
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1, a particle exists as a semisolid (0.8 < Tg/T < 1) or a liquid (Tg/T < 0.8) (Shiraiwa et al., 2017). 

Tg of aerosol particles is affected by both water content (RH) and temperature (Wang et al., 

2012). As water acts as a plasticizer, decreasing the viscosity of the organic material (Koop et al., 

2011), we hypothesize that the initial loss of water causes a LLPS below the Tg of the organic 

material, resulting in a viscous organic phase surrounding an aqueous ammonium sulfate core. 

As the RH increases again leading to temperatures above the Tg of the organic material, the 

organic material can flow and begin to mix, but does not fully mix before the RH drops again 

due to its diurnal cycle. When the next cycle begins, the flow is again random, and insufficient 

for full mixing to a core-shell or homogeneous morphology (Figure 6.8d). 

While previous laboratory studies have shown with simple model systems that an 

increasing number of factors including particle size, chemical composition, drying rate, and RH 

affect LLPS (Altaf and Freedman, 2017; Losey et al., 2016; Veghte et al., 2013; Dette and Koop, 

2015; Koop et al., 2011; Smith et al., 2013; You et al., 2013; You et al., 2012; You et al., 2014; 

O'Brien et al., 2015), our results suggest that additional factors affected the structure of ambient 

SOA-AS particles during SOAS. One additional factor that needs to be considered that could 

also affect LLPS structure is the amount of time organic material can freely flow as a liquid with 

low viscosity. Previous work in the laboratory by Wang et al. (2015) showed for organic-

inorganic particles of NaCl with secondary organic carbon from ozonolysis of limonene and α-

pinene that the extent of reaction of secondary organic carbon with NaCl was influenced by the 

phase state and viscosity, temperature, and RH with more complex structures observed for 

particles in a liquid-like state for longer periods of time prior to dehydration. As ambient 

particles in the current work collected on June 13, 2013 during SOAS experienced more time 

above the estimated separation RH (SRH, 84 %) (Song et al., 2012) and with a liquid-like 

organic component (Tg ~308 K, estimated Tg during SOAS) (Shiraiwa et al., 2017) than on July 

9, 2013 and exhibited more complex structures, these results suggests that the time spent in a 

liquid-like state could also have significant effects on SOA internal structure.  

 

6.4. Conclusion 

This work shows that in addition to homogeneous and core-shell morphologies, ambient 

SOA/inorganic aerosol particles frequently adopt complex internal morphologies. These 

structures vary as a function of size, with homogeneous particles present at the smallest sizes and 
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complex particles dominating at larger sizes. Additionally, the fraction of complex, core-shell, 

and homogeneous particles is not constant, but varies over time as a function of temperature, RH, 

and length of time the organic material spends as a liquid versus a glassy solid. These internal 

structures could affect the reactive uptake of important gas-phase species and influence the ice 

nucleation properties of particles. Thus, if each type of particle (homogeneous - no effect, core-

shell – inhibitory, and complex – unknown) has a different effect on heterogeneous uptake and 

ice nucleation properties, a method needs to be derived that can be parameterized for inclusion in 

models. 
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Chapter 7. 

Conclusions and Future Directions 

 

7.1. Conclusions 

Understanding single particle chemical composition and mixing state of aerosol particles 

generated from a variety of sources is critical for determining the effect of these particles on 

climate and human health. This dissertation has focused on the development and use of single 

particle microscopic and spectroscopic methods to study the chemical composition of fresh and 

aged primary and secondary atmospheric aerosols, particularly in the southeastern United States. 

During SOAS in 2013, electron microscopy was used to identify classes of particles aside from 

SOA present at the rural, forested sampling site in Centreville, Alabama. Additionally, the 

degree of chemical mixing was calculated during time periods influenced by specific particle 

classes using diversity measures developed for aerosol populations by Riemer and West (2013). 

One particular class, SSA, was studied in further detail as it was found to contribute significantly 

to aerosol number concentrations at Centreville during two events with varying degrees of 

reactivity. In addition to SSA observed at Centreville, an important class of compounds present 

in organic aerosol in the southeastern United States is isoprene-derived organosulfates. As these 

compounds are ubiquitous, Raman microspectroscopy and DFT calculations were used to 

determine a spectral fingerprint for organosulfates, allowing identification within individual 

particles from SOAS. Though electron microscopy and Raman microspectroscopy are valuable 

techniques for analyzing the size, morphology, and chemical composition of individual particles, 

a new method, AFM-IR, was applied to the analysis of aerosol particles for the first time in this 

work, allowing physicochemical characterization of submicron particles in particular. Using 

AFM-IR in addition to electron microscopy and STXM-NEXAFS, the physicochemical mixing 

state of liquid-liquid phase separated SOA was investigated, illustrating the separation of organic 

and inorganic material is dependent on aerosol lifetime, as well as temperature and relative 

humidity history. These findings have strengthened our understanding of the physicochemical 

mixing state of aerosol particles and provided motivation for additional future studies. 



152 

 

Chapter 2 discussed the chemical mixing state of primary and secondary particles both 

generated and transported from regional sources during the summer 2013 SOAS field campaign. 

Particles that were dominated by secondary organic aerosol (SOA) mixed with inorganic salts, 

such as ammonium sulfate, were the majority of particles by number fraction from 0.2-5 microns 

with an average of ~65 % SOA at submicron sizes. However, important contributions by other 

particle classes such as SSA, mineral dust, primary biological particles, fly ash, and biomass 

burning aerosol led to more external mixing and distinct chemical compositions per class, 

particularly at sizes below one micron. In addition to temporal variability of particle classes, 

secondary processing of particles by NOx and SO2 led to heterogeneity within particle classes. 

To quantify population diversity during periods with significant influence from SSA and dust, 

mixing state indices were calculated from mass estimates of the aerosol elemental components, 

determined using CCSEM-EDX. The mixing state indices for supermicron particles were 

generally the highest (χ = 19 %, 15 %, and 11 % during SSA, dust, and SOA periods, 

respectively), signifying that supermicron particles were less diverse than submicron particles. 

The mixing state index for accumulation mode particles during the SOA period was comparable 

(χ = 10 %), suggesting that submicron particles were more internally mixed during this time 

period compared to the dust and SSA periods.   

Chapter 3 delved further into one particular class of particles, SSA, collected during 

SOAS at a site > 320 km from the Gulf of Mexico. SSA was observed in 93% of 42 time periods 

analyzed. During two marine air mass periods, SSA represented significant number fractions of 

particles in the accumulation (0.2-1.0 μm, 11 %) and coarse (1.0-10.0 μm, 35 %) modes. 

Chloride content of SSA particles ranged from fully to partially depleted, with 24 % of SSA 

particles containing chloride (mole fraction of Cl/Na > 0.1, 90 % chloride depletion). Both the 

frequent observation of SSA at an inland site and the range of chloride depletion observed, 

suggest that SSA may represent an underappreciated inland sink for NOx/SO2 and source of 

halogen gases. 

Chapter 4 further develops our understanding of the basic molecular structure and 

spectroscopic properties of isoprene-derived organosulfates, a significant component of SOA. 

Raman microspectroscopy and density functional theory (DFT) at the CAM-B3LYP level of 

theory were combined to analyze the vibrational modes and molecular structure of key 

organosulfates, 3-methyltetrol sulfate esters (two isomers) and 2-methylglyceric acid sulfate 
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ester, as well as hydrolysis products, 2-methyltetrols and 2-methylglyceric acid. Two intense 

vibrational modes were identified, ν(RO-SO3)  (846 ± 4 cm
-1

) and νs(SO3) (1065 ± 2 cm
-1

), as 

well as a lower intensity δ(SO3) mode (586 ± 2 cm
-1

). For 2-methylglyceric acid and its sulfate 

ester, deprotonation of the carboxylic acid group above the pKa (3.5) decreased the carbonyl 

stretch (1724 cm
-1

) and increased carboxylate modes νs(COO
-
) and νa(COO

-
) at 1594 and 1413 

cm 
-1

, respectively. The ν(RO-SO3) and vs(SO3) modes were observed in individual atmospheric 

particles and can be used in future studies of complex SOA mixtures to distinguish 

organosulfates from inorganic sulfate or hydrolysis products. 

In Chapter 5, we showed the first application of AFM-IR to detect trace organic and 

inorganic species and probe intraparticle chemical variation in individual particles down to 150 

nm. By detecting photothermal expansion at frequencies where particle species absorb IR 

photons from a tunable laser, AFM-IR provided vibrational spectroscopy information about 

particles smaller than the optical diffraction limit. Combining strengths of AFM (ambient 

pressure, height, morphology, and phase measurements) with photothermal IR spectroscopy, the 

potential of AFM-IR was shown for a diverse set of single-component particles, liquid-liquid 

phase separated particles (core-shell morphology), and ambient atmospheric particles. The 

spectra from atmospheric model systems (ammonium sulfate, sodium nitrate, succinic acid, and 

sucrose) had clearly identifiable features that correlated with absorption frequencies for infrared-

active modes. Additionally, molecular information was obtained with < 100 nm spatial 

resolution for phase separated particles with a ~150 nm shell and 300 nm core. The sub-

diffraction limit capability of AFM-IR has the potential to advance understanding of particle 

impacts on climate and health by improving analytical capabilities to study water uptake, 

heterogeneous reactivity, and viscosity. 

Chapter 6 discussed the morphology and structure of ambient SOA during SOAS. As 

previous work has indicated that SOA are frequently present in a glassy state in the atmosphere, 

not the well-mixed aqueous conditions parameterized in models, measurements are needed to 

improve our understanding of structure and better model particle properties. Ambient SOA-

inorganic particles observed in a remote, isoprene-rich site, had liquid-liquid phase separation 

with a range of internal structures, including core-shell and more complex internal morphologies. 

Complex structures were frequently observed and determined to be dependent on aerosol lifetime 

and RH and temperature history often with complex internal structures, which has important 
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implications for heterogeneous reactions and SOA formation. The presence of complex organic-

inorganic structures challenges the traditional picture of aqueous SOA particles, indicating a 

more detailed picture of SOA structure may be needed to accurately predict atmospheric SOA 

concentrations. 

 

7.2. Future Directions 

The research experiences described in this dissertation provide insight into the chemical 

mixing state of aerosol particles using existing single particle microscopy and spectroscopy 

methods, though the results have led to further questions that can be investigated. In Chapter 2, 

our mixing state indices from SOAS derived from CCSEM-EDX mass fractions were 

significantly lower than previous studies which used both CCSEM-EDX and STXM-NEXAFS 

to quantify mixing state (O'Brien et al., 2015; Fraund et al., 2017). Though our method differs 

from the previous CCSEM-EDX analyses in that we quantify the mass fraction of sulfur due to 

aging rather than the mass fraction of each individual element (since particle classes such as SSA 

and dust contain inherently more elements than SOA, regardless of aging), our analysis omits 

carbon, nitrogen, and oxygen due to quantitation limitations. Additional STXM-NEXAFS 

analysis of particles from SOAS and mixing state indices calculated from these results would 

allow a more direct comparison of our method to previous studies. Furthermore, instead of using 

solely sulfur as a metric of aging, aging due to organic carbon can also be quantified, leading to 

more accurate mixing state results as significant aging by secondary organic carbon is expected 

at this rural, forested site. 

In Chapter 3, our single particle characterization of particles from SOAS detected large 

number fractions of SSA at this inland location during distinct events. Furthermore, SSA with 

varying degrees of chloride depletion were observed within particles, with partially-aged SSA 

potentially serving as an inland sink for NOx and source of oxidants. As few single particle 

methods capable of identifying aged and partially aged SSA have been utilized at inland 

locations, additional single particle studies are needed to determine whether partially-aged SSA 

are prevalent elsewhere. In particular, studies > 300 km from the coast (comparable to 

Centreville which is ~320 km from the Gulf of Mexico) would be interesting to determine how 

far inland partially-aged SSA can be transported before complete reaction occurs, as Chapter 3 

was the first single particle study that analyzed SSA so far inland. 
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The identification of a Raman fingerprint for isoprene organosulfates and the application 

of AFM-IR to aerosol particles in Chapters 4 and 5 provide the foundation for numerous research 

projects utilizing these methods to analyze ambient and chamber-generated aerosols. Using the 

Raman organosulfate fingerprint modes identified in Chapter 4, future work could involve a 

thorough analysis of organosulfates within single particles from SOAS. As our study only 

examined a few ambient particles to demonstrate the capability of the method, extensive analysis 

of the dataset and collection of additional Raman spectra would be useful to determine the 

number fraction of particles containing organosulfates at this isoprene-rich site. This dataset 

could be compared to mass spectrometry organosulfate mass fractions measured during SOAS 

(Budisulistiorini et al., 2015; Boone et al., 2015; Hu et al., 2015; Hettiyadura et al., 2015; Riva et 

al., 2016; Budisulistiorini et al., 2017; Rattanavaraha et al., 2016), linking organosulfate mass 

and number concentrations to better understand organosulfate abundance in the southeastern 

U.S. Furthermore, these organosulfate number fraction results could be compared to previous 

single particle mass spectrometry studies by Hatch et al. (2011a, b) to understand the prevalence 

of organosulfates at a rural location (Centreville, SOAS) compared to an urban site (Atlanta). 

Work is ongoing in our lab to further characterize the Raman modes of additional organosulfates 

from standards and chamber studies, as dialkyl sulfates may also be an important component 

within organic aerosol in the southeastern U.S.  

While the application of AFM-IR to aerosol particles described in Chapter 5 successfully 

characterized a range of organic and inorganic particles and studied the effect of substrate on 

AFM image and IR signal, further characterization of standards would be useful to understand 

the diameter/height of particles necessary for sufficient IR signal intensity. A simple and 

interesting experiment could involve impacting various size poly styrene latex spheres or size 

selecting ammonium sulfate particles of varying diameters on substrates and collecting AFM 

images and IR spectra for particles of decreasing size. The IR signal intensity could then be 

examined as both a function of particle diameter and height, allowing the IR limit of detection to 

be determined for a simple system. In addition to this systematic analysis of standards, AFM-IR 

characterization of submicron ambient particles from SOAS would be interesting, as it would 

provide detailed molecular information for individual particles near the mode of the atmospheric 

number size distribution. A key starting place would be analyzing particle sizes that overlap with 

particles analyzed by Raman, comparing the two techniques. Additionally, characterizing 
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particles near the IR detection limit would allow for vibrational analysis of the complete size 

range of particles from SOAS. Particular vibrational modes of interest would include 

organosulfate modes, using previous IR studies of small molecule organosulfates to identify 

these frequencies. 

The analysis and discussion of organic-inorganic SOA internal structure in Chapter 6 

leaves open many possibilities to improve the automated image processing method and confirm 

the presented hypotheses through laboratory experiments. One way to improve the Matlab script 

for differentiating homogeneous, core-shell, and complex SOA to minimize false identification 

(i.e. script classifies complex or core-shell particle as homogeneous and does not trace inner 

perimeter) is to develop a machine learning algorithm based on a hand-sorted data set. This 

would reduce the time involved hand-sorting particles into each respective class, and would 

reduce the false identification rate, which currently necessitates modification of the script 

threshold so that inner perimeters are calculated for all complex and core-shell particles. In 

addition to modification of the image processing method, additional analysis of the ambient 

particles would be useful to improve our understanding of the liquid-liquid phase separation 

properties. An additional step would involve collecting AFM phase images of homogeneous, 

core-shell, and complex particles at ambient pressure, determining whether differences in 

properties between the inorganic and organic components (i.e. differences in viscosity) result in 

images similar to those collected using SEM and STXM under vacuum. Finally, an additional 

experiment that would be difficult, but potentially very interesting would involve RH cycling 

using ambient SOA from SOAS. The number of RH cycles and length of time above the glass 

transition temperature would be studied to understand the length of time necessary in liquid-like 

state before dehydration, and the number of RH cycles needed to achieve changes in internal 

structure. For this experiment, samples composed of primarily homogeneous SOA from SOAS 

would undergo changes in RH to understand whether resulting changes in organic-inorganic 

internal structure support the hypotheses presented in Chapter 6. 

This thesis sought to address limitations in the current understanding of the chemical 

composition and mixing state of primary and secondary aerosol particles through single particle 

microscopic and spectroscopic investigations. The five data chapters highlight the need for 

additional laboratory studies and studies of ambient particles at diverse locations to fully 

understand the mixing state of particles to better predict particle properties. Future work in the 
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field will continue to focus on quantifying chemical mixing state and connecting 

physicochemical composition to properties to minimize discrepancies between models and 

measurements. 
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Appendix A. 

Diverse Chemical Mixing State of Aerosol Particles at SOAS in the 

Southeastern United States Supplemental Information 

 

A.1. SEARCH Network PM2.5 and Meteorological Measurements  

  The SouthEastern Aerosol Research and Characterization Network (SEARCH) is a multi-

pollutant network designed to address regulatory and scientific questions related to ozone and its 

precursors, particulate matter mass and composition, and atmospheric visibility in addition to 

other research concerns. Active since 1992, Centreville, AL is one of a handful of sites that is 

part of SEARCH. During SOAS, meteorological conditions including wind direction, wind 

speed, solar radiation, precipitation, and relative humidity were monitored from the SEARCH 

network, plotted in Figure A.1. The box green boxes overlaid on the meteorological data in 

Figure A.1 identify the two SOA-rich time periods analyzed in this study. Similarly, tan boxes 

indicate the dust-rich time periods and blue boxes the SSA-rich time periods which were 

analyzed in this study. 
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Figure A.1. SEARCH meteorological data for Centreville, AL during SOAS with green boxes 

overlaid for the two SOA-rich time periods, tan boxes for the dust-rich time periods, and blue 

boxes overlaid for the SSA-rich time periods.  

 

 

A.2. CCSEM-EDX Analysis 

  SOAS intensive time periods, selected based on meteorological conditions, had shorter 

MOUDI collection times (3 hours rather than 11 hours.) The intensive dates are shown in Table 

A.1 below, with the sample times highlighted in blue showing periods where CCSEM-EDX was 

run. 
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Table A.1. Intensive sample collection times. Samples highlighted in blue were analyzed using 

CCSEM-EDX. 

 
Intensive Date Time (CST) 

6/10/13 8:00-11:00 

6/10/13 12:00-15:00 

6/10/13 16:00-19:00 

6/10/13 20:00-7:00 

6/11/13 8:00-11:00 

6/11/13 12:00-15:00 

6/11/13 16:00-19:00 

6/11/13 20:00-7:00 

6/12/13 8:00-11:00 

6/12/13 12:00-15:00 

6/12/13 16:00-19:00 

6/12/13 20:00-7:00 

6/14/13 8:00-11:00 

6/14/13 12:00-15:00 

6/14/13 16:00-19:00 

6/14/13 20:00-7:00 

6/15/13 8:00-11:00 

6/15/13 12:00-15:00 

6/15/13 16:00-19:00 

6/15/13 20:00-7:00 

6/16/13 8:00-11:00 

6/16/13 12:00-15:00 

6/16/13 16:00-19:00 

6/16/13 20:00-7:00 

6/29/13 8:00-11:00 

6/29/13 12:00-15:00 

6/29/13 16:00-19:00 

6/29/13 20:00-7:00 

6/30/13 8:00-11:00 

6/30/13 12:00-15:00 

6/30/13 16:00-19:00 

6/30/13 20:00-7:00 

7/1/13 8:00-11:00 

7/1/13 12:00-15:00 

7/1/13 16:00-19:00 

7/1/13 20:00-7:00 

7/9/13 8:00-11:00 

7/9/13 12:00-15:00 

7/9/13 16:00-19:00 

7/9/13 20:00-7:00 

 

All sampling periods that were analyzed using CCSEM-EDX are indicated in Table A.2 below. 

The MOUDI stage(s) that were analyzed, in addition to the number of particles per sample, are 
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also indicated. The aerodynamic diameter 50 % cut points, detailed in Marple et al (1991), are as 

follows: stage 5 (1.8 µm), stage 6 (1.00 µm), stage 7 (0.56 µm), stage 8 (0.32 µm), stage 9 (0.18 

µm), stage 10 (0.100 µm), and stage 11 (0.056 µm). Not every sample collected was analyzed 

due to time/funding constraints and damaged substrates. 
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Table A.2. Sampling times of all CCSEM-analyzed MOUDI samples and the number of 

particles analyzed per stage.  

 
Sample Date Time (CST) Stage(s) # of particles 

6/5/13 10:00-19:00 7 145 

6/6/13 20:00-7:00 6 / 7 23 / 43 

6/7/13 8:00-19:00 7 305 

6/7/13 20:00-7:00 6 222 

6/8/13 8:00-19:00 6 167 

6/10/13 8:00-11:00 6 / 8 395 / 580 

6/10/13 12:00-15:00 6 / 8 518 / 497 

6/10/13 16:00-19:00 8 281 

6/10/13 20:00-7:00 7 567 

6/11/13 8:00-11:00 7 431 

6/11/13 16:00-19:00 7 450 

6/11/13 20:00-7:00 7 553 

6/12/13 8:00-11:00 6 / 8 305 / 151 

6/12/13 12:00-15:00 5 / 7 / 8 129 / 474 / 1314 

6/12/13 16:00-19:00 6 / 7 365 / 220 

6/12/13 20:00-7:00 7 / 9 581 / 2313 

6/13/13 8:00-19:00 5 / 8 / 10 462 / 653 / 688 

6/13/13 20:00-7:00 7 122 

6/14/13 8:00-11:00 6 / 7 101 / 355 

6/14/13 12:00-15:00 6 / 7 / 8 22 / 343 / 402 

6/14/13 16:00-19:00 8 512 

6/14/13 20:00-7:00 6 100 

6/15/13 8:00-11:00 7 / 8 384 / 380 

6/15/13 20:00-7:00 6 / 7 / 8 84 / 532 / 2304 

6/16/13 8:00-11:00 7 239 

6/16/13 16:00-19:00 7 338 

6/16/13 20:00-7:00 6 / 8 514 / 791 

6/17/13 8:00-19:00 7 2707 

6/20/13 8:00-19:00 6 / 7 134 / 938 

6/26/13 20:00-7:00 6 / 7 295 / 539 

6/28/13 20:00-7:00 7 95 

7/1/13 12:00-15:00 7 392 

7/3/13 20:00-7:00 7 711 

7/4/13 8:00-19:00 7 1826 

7/5/13 8:00-19:00 7 448 

7/6/13 8:00-19:00 6 / 10 / 11 369 / 64 / 342 

7/7/13 8:00-19:00 7 / 10 209 / 690 

7/7/13 20:00-7:00 9 153 

7/8/13 8:00-19:00 6 / 9 / 11 137 / 755 / 1246 

7/8/13 20:00-7:00 9 260 

7/9/13 16:00-19:00 5 / 6 / 10 / 11 527 / 446 / 846 / 879 

7/11/13 8:00-19:00 9 1262 
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A.3. Calculation of Particle Volume Equivalent Diameters 

To describe the impact of size on aerosol chemical diversity during SOAS, projected area 

diameters (Dpa) measured using CCSEM-EDX were converted to volume equivalent diameters 

(Dve) using a conversion factor determined from atomic force microscopy (AFM) height images 

of organic particles from SOAS collected on silicon substrates (Ted Pella Inc.). As particles can 

undergo spreading upon impaction on substrates, Dve represents the size of particles before 

impaction. AFM images from organic aerosol particles collected during SOAS on June 14, 2013 

were used in the subsequent analysis to calculate a conversion factor between Dpa
 
and Dve for 

SOA and biomass burning particles. As SSA during SOAS was predominately aged by HNO3 

leading to NaNO3 in the particle phase (Bondy et al., 2017b), a SSA spreading conversion factor 

was calculated using laboratory-generated NaNO3 (Bondy et al., 2017a). Though organic aerosol 

particles and SSA are expected to spread upon impaction as they are generally liquids at the 

temperatures and relative humidities presented, mineral dust, fly ash and primary biological 

particles are not expected to spread as they are solid. Thus, Dpa is equivalent to Dve for mineral 

dust, fly ash and biological particles.  

AFM was performed on a nanoIR2 system (Anasys Instruments). AFM height/deflection 

images were collected in contact mode (IR power 21.27 %, filter in) at a scan rate of 1 Hz using 

a gold-coated contact mode silicon nitride probe (Anasys Instruments, 13 ± 4 kHz resonant 

frequency, 0.07-0.4 N/m spring constant). Volumes of particles were measured using SPIP 

software (v6.2.6, Image Metrology, Hørsholm, Denmark), and from these volumes, Dve was 

calculated for each particle. Table A.3 shows the measured height and diameter, calculated 

volume, and calculated Dve for select organic particles from SOAS (~100 particles were actually 

used to calculate the conversion factor). From these results, SOA and biomass burning particles 

were multiplied by a conversion factor of 0.49 to convert Dpa to Dve. 
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Table A.3. AFM-measured and volume-calculated diameters of organic aerosol collected during 

SOAS on June 14, 2013. *Note, the physical characteristics of ~100 particles were analyzed in 

the volume calculations, however only a fraction are shown here for brevity. 

 

Particle # D
pa

 (nm) Height (nm) Volume (nm
3

) D
ve

 (nm) 

1 437 61 6947798 237 

2 959 154 71964608 516 

3 814 52 23869656 357 

4 1030 85 52498328 465 

5 368 40 3808314 194 

6 354 67 5322988 217 

7 332 44 2505523 169 

8 367 48 3452574 188 

9 519 62 6793956 235 

10 551 60 7362516 241 

11 1092 133 43055348 435 

12 559 51 8345108 252 

13 513 57 7491997 243 

14 227 2 519373.6 100 

15 431 46 4841927 210 

16 500 83 8957392 258 

17 495 50 6785424 235 

18 499 56 5260008 216 

19 444 43 4814164 210 

20 414 54 4637069 207 

21 296 40 2351715 165 

22 393 79 5153589 214 

23 329 44 3074541 180 

24 483 51 5008449 212 

 

Similarly, volumes were calculated for NaNO3 particles representative of SSA from SOAS in 

Table A.4. From these results, SSA particles were multiplied by a conversion factor of 0.67 to 

convert Dpa to Dve. 
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Table A.4. AFM-measured and volume-calculated diameters of NaNO3 particles impacted on 

silicon substrates, representative of SSA. 

 

Particle # D
pa

 (nm) Height (nm) Volume (nm
3

) D
ve

 (nm) 

1 448 84 8981224 258 

2 68 17 102174 58 

3 171 29 821752 116 

4 136 19 435493 94 

5 100 13 205804 73 

6 105 12 228540 76 

7 250 58 2467066 168 

8 258 77 2776954 174 

9 153 29 648760 107 

10 284 72 3454101 188 

11 251 51 2288227 164 

12 217 24 1243357 133 

13 265 57 2718737 173 

14 89 15 169364 69 

15 320 67 4208101 200 

16 745 108 24432611 360 

17 273 55 2854158 176 

18 217 40 1542059 143 

19 458 79 8608666 254 

20 199 33 1133683 129 

21 319 69 4500131 205 

22 383 64 5131053 214 

23 187 9 676804 109 

24 250 50 2184633 161 

 

 

A.4. Fresh Soot Calculation 

  Soot was difficult to detect using CCSEM-EDX due to interference from the Formvar B 

coating on the TEM grid. Therefore, the size distribution for soot was manually calculated from 

SEM images using samples on various stages from one day, and then a correction factor was 

applied to each sampling period based on the SEARCH network mass concentrations of 

elemental carbon (EC). This method likely overestimates the contribution of fresh soot since 

organic carbon/elemental carbon (OC/EC) SEARCH measurements include both fresh and aged 

soot, however the EC mass was used as an approximation of soot’s contribution. To calculate the 

size distribution of soot particles during SOAS, all SEM images from July 9, 2013 4pm-7pm 



168 

 

CST were inspected for soot agglomerates. This sample was chosen for analysis because stages 

7-11 of the MOUDI (0.056-0.56 µm 50 % size cut; relevant sizes for soot) were available for 

imaging. Once a soot particle was identified, the particle was traced in ImageJ software to 

calculate the area. From this area, similar to the CCSEM software output, the projected area 

diameter (Dpa) was calculated and a size distribution using all soot Dpa was generated, shown 

below.   

 

Table A.5. Size distribution for fresh soot calculated for July 9, 2013 stages 7-11.  

 
Projected Area Diameter 

(µm) 

Frequency Fraction of soot per bin 

0.133352 0 0 

0.177828 0 0 

0.237137 5 0.065789474 

0.316228 14 0.184210526 

0.421697 27 0.355263158 

0.562341 18 0.236842105 

0.749894 11 0.144736842 

1 0 0 

1.333521 0 0 

1.778279 1 0.013157895 

2.371374 0 0 

3.162278 0 0 

4.216965 0 0 

5.623413 0 0 

7.498942 0 0 

10 0 0 

Total 76  

 

The fraction of soot per size bin was then used with the SEARCH network EC mass 

concentrations, measured using oxidative combustion, to calculate an approximate number of 

soot particles within each size range. First, the average EC mass was calculated for each time 

period of interest during SOAS. Then, the average PM2.5 mass, measured using a tapered element 

oscillating microbalance (TEOM), was calculated for each time period. A scaling factor was 

generated by dividing EC mass/TEOM mass. The scaling factor calculated for each time period 

is: SOA (0.022), mineral dust (0.018), and SSA (0.029). This scaling factor was then multiplied 
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by the size distributions in Table A.5, giving results for the fraction of soot within the designated 

size bins for each of the three time periods. 

 

A.5. Mass Calculations and Mixing State Parameters 

  To calculate the mixing state parameters, atomic percentages were converted to mass 

fractions as described in the experimental section. To calculate elemental diversity, the mass of 

each element was used in the mixing state calculations shown below. To calculate mixing state 

due to aging during the SOA-rich, dust-rich, and SSA-rich time periods, elemental masses were 

assigned to specific source-based particle classes with the compositions described below. The 

elemental mass fractions for each of the three time periods are shown in Figure A.2 depicting 

each element’s contribution as a function of size. For the source-based elemental assignments, 

SOA particles consisted of solely S, biomass burning particles contained K and Cl, fly ash 

particles consisted of Si and Al, dust particles contained Na, Mg, Al, Si, K, Ca, Ti, and Fe, SSA 

particles contained Na, Mg, Cl, K, and Ca, and biological particles consisted of P, Cl, and K. 

Secondary species in this study were represented by S in every particle class, since organic (C, 

O) and nitrogen-containing species (N) are not quantitative using SEM-EDX (Laskin et al., 

2006). 

In addition to mass calculations, mixing state parameters were calculated for each 

elemental class to quantify diversity, and for the SOA, dust, and SSA time periods to quantify 

aging. The experimental section describes the equations used to calculate the entropy and mixing 

state index. Below are the definitions and equations for aerosol mass and mass fraction used to 

calculate the entropy along with equations for particle, species, and bulk population diversity 

(Riemer and West, 2013). The mass of species a in particle i is termed µ
a

i where a = 1,…, A and 

i = 1,…, N. The total mass of particle i (µi) is given by  

                                                             µ𝑖 =⁡∑ µ𝑖
𝑎𝐴

𝑎=1                                                                (A.1) 

The total mass of species a in the population (µ
a
) is given by   

                                                             µ𝑎 =⁡∑ µ𝑖
𝑎𝑁

𝑖=1                                                                (A.2) 

The total mass of the population (µ) is given by  

                                                             µ = ∑ µ𝑖
𝑁
𝑖=1                                                                    (A.3) 

The mass fraction of species a in particle i (p
a

i) is given by 
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                                                             𝑝𝑖
𝑎 =

µ𝑖
𝑎

µ𝑖
                                                                         (A.4) 

The mass fraction of particle i in the population (pi) is given by  

                                                             𝑝𝑖 =
µ𝑖

µ
                                                                           (A.5) 

The mass fraction of species a in the population (p
a
) is given by 

                                                             𝑝𝑎 =
µ𝑎

µ
                                                                         (A.6) 

The particle diversity of particle i (Di) is given by 

                                                             𝐷𝑖 = 𝑒𝐻𝑖                                                                        (A.7) 

where Hi is the mixing entropy of particle i. The average particle species diversity (Dα) is given 

by 

                                                             𝐷𝛼 = 𝑒𝐻𝛼                                                                       (A.8) 

where Hα is the average particle mixing entropy. The bulk population species diversity (Dγ) is 

given by 

                                                               𝐷𝛾 = 𝑒𝐻𝛾                                                                     (A.9) 

where Hγ is the population bulk mixing entropy. Dα was used as a quantitative measure of 

elemental diversity for each particle class during SOAS (SOA, biomass burning particles, fly 

ash, dust, SSA, and biological particles.) However to quantify particle aging due to S during 

SOAS, the mixing state index (χ), a ratio between the average particle species diversity and bulk 

population species diversity, was calculated. While Dα is a useful metric to quantify elemental 

diversity, χ quantifies the degree of internal versus external mixing present within particle 

populations.  
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Figure A.2. Mass fractions as a function of volume equivalent diameter for particle-rich time 

periods: (a) SOA-rich periods (June 14-17 and July 7-11, 2013), (b) dust-rich periods (June 12-

13 and June 26-28, 2013), and (c) SSA-rich periods (June 10-11 and July 3-6, 2013.) C and O are 

not included in element quantification due to substrate interferences. *Only particles with a 

diameter between 0.2 - 5 µm are shown due to too few particles present at larger sizes for 

quantitative analysis. 

 

 

A.6. STXM-NEXAFS Soot Identification 

  Two samples, June 10 and July 7, 2013, were analyzed using STXM-NEXAFS. In order 

to calculate the number fraction of particles from each sample that contained sp
2
 C in the form of 

soot, Matlab was used to visualize every particle in the sample. Each particle was screened on a 

per pixel basis for regions of high C=C content (> 35 % C=C). If a pixel contained > 35 % C=C, 

then the script rendered a red pixel, stating that it was safe to call that region soot. The same was 

performed for the other colors (i.e. blue=inorganic, green=organic). Using this data, 6.9 % of 
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particles by number contained soot collected June 10, 2013 and 9.9 % of particles collected July 

7, 2013 contained soot.  

 

A.7. EDX of SOA on Silicon 

  Most of the CCSEM-EDX analysis in this study was conducted on Formvar-coated TEM 

grids. However, since Formvar (a polymer) interferes with particle carbon and oxygen X-ray 

signals, additional EDX spectra of SOA particles were collected on Si substrates. EDX spectra 

from 61 particles (June 15, 2013 8pm-7am St. 8 sample) were collected and quantified with 

respect to C, N, O, and S. Figure A.3 shows an example spectrum of an SOA/sulfate particle 

collected on Si. Note, the signal for Si extend beyond 80 counts, however the y-axis range shown 

here was selected to view the elements of interest (C, N, O, S). The average weight % of 

elements within SOA/sulfate from this analysis was 40 % C, 11 % N, 28 % O, and 20 % S. 

Though SOA/sulfate only contained 20 % sulfur from this analysis, the mixing state indices for 

aerosol populations were calculated based on SOA/sulfate containing only sulfur, since CCSEM-

EDX is not quantitative for C, N, and O.  

 

Figure A.3. Example EDX spectrum of an SOA/sulfate particle collected on a silicon substrate.  
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A.8. Circularity Equation 

  To determine the average circularity for SOA, biomass burning aerosol, and fly ash 

classes, the mode circularity was averaged across the k-means clusters assigned to that class in 

Equation A.10: 

                                                          C = 4𝜋𝐴/𝑝2                                                                   (A.10) 

where C is circularity, A is area of the particle, and p is the particle perimeter.  

 

A.9. Nonvolatile Cations 

  The number fraction of particles containing nonvolatile cations (Na, Mg, K, Ca, Fe) in 

sub- and supermicron sizes is shown in Figure A.4 for the dust and SSA periods. In general, the 

number fraction of metal-containing particles is consistent for each class across the different 

periods (although there are minor differences between the sub- and super micron size ranges), 

suggesting that nonvolatile cations don’t vary with processing, but are inherent to each class. 

 

Figure A.4. Size-resolved particle class compositions indicate the number fraction of particles in 

each class containing non-volatile cations Na, Mg, K, Ca, and Fe during the (a) dust period and 

(b) SSA period in the submicron and supermicron size range. 
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A.10. Significance of Aging by Sulfur during Three Events 

  The degree of secondary processing for each particle class was calculated as the average 

mass fraction of sulfur per particle (Figure A.5). This parameter was used to calculate average 

sulfur diversity and along with the bulk population diversity, mixing state indices could be 

quantified. However, the mass fraction calculations here exclude C, N, and O since low Z 

elements are only semiquantitative with CCSEM. Excluding C, N, and O, SOA/sulfate have 

average sulfur mass fractions of 0.98 ± 0.08, 0.96 ± 0.13, 0.96 ± 0.16, during the SOA-

influenced, dust-influenced, and SSA-influenced events, respectively. However, analysis of SOA 

on a non-carbonaceous substrate, which allowed C, N, and O to be quantified, demonstrated that 

the average mass fraction of sulfur in SOA was actually 0.20 ± 0.04. This “actual” mass value 

for SOA was used to scale the average mass fraction of sulfur for each period and is portrayed in 

Figure A.5 by red markers. Using this scaled mass fraction of sulfur, the “actual” mass of sulfur 

was 0.197 during the SOA-influenced events, 0.193 during the dust periods, and 0.192 during the 

SSA periods. 

 

Figure A.5. The secondary processing of particles by sulfate was calculated for each class during 

the three time periods of interest as the average mass fraction of sulfur per particle. Red markers 

indicate the scaled “actual” mass fraction of sulfur for SOA including mass contributions from 

C, N, and O.  
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  A student’s t-test was used to compare the average mass fraction of sulfur per particle for 

six main particle classes (SOA/sulfate, biomass burning aerosol, fly ash, dust, SSA, and 

biological) during the SOA events, dust events, and SSA events. The standard deviation, spooled, 

was calculated using the following equation, 

                                                                     𝑠𝑝𝑜𝑜𝑙𝑒𝑑 = √
s1

2(n1-1)+s2
2(n2-1)

n1+n2-2
                           (A.11) 

where s1 and s2 are the standard deviations from the two samples, and n1 and n2 are the number 

of samples in each category. Then the student’s t-test was calculated, 

                                                                    𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑 =
 x1-x2 

spooled

√
n1n2

n1+n2

                                 (A.12) 

where x1 and x2 are the mean mass fraction of sulfur per particle class. The results of the student 

t-tests are located in Table A.6, Table A.7, and Table A.8. The student’s t-test was calculated to 

compare the aging of particle classes during the SOA vs. dust events, SOA vs. SSA events, and 

dust vs. SSA events. The difference in average sulfur mass fractions for all particle classes was 

found to be significant for the SOA vs. dust events and SOA vs. SSA events, but the difference 

was not statistically significant for the dust vs. SSA events at the 95 % confidence interval. 

 

Table A.6. Student’s t-test comparing average sulfur mass fractions among particle classes for 

the SOA vs. dust events 
 SOA Biomass Fly Ash Dust SSA Biological 

x1 0.985 0.260 0.070 0.169 0.306 0.140 

x2 0.964 0.177 0.022 0.072 0.199 0.168 

s1 0.081 0.221 0.091 0.179 0.235 0.096 

s2 0.134 0.214 0.051 0.114 0.156 0.119 

spooled 0.095 0.048 0.006 0.128 0.194 0.099 

degrees of freedom 120 120 120 120 120 120 

tcalculated 10.97 3.95 5.67 19.82 13.49 2.50 

95 % CI ttable 1.98 1.98 1.98 1.98 1.98 1.98 

significantly different? yes yes yes yes yes yes 
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Table A.7. Student’s t-test comparing average sulfur mass fractions among particle classes for 

the SOA vs. SSA events 
 SOA Biomass  Fly Ash Dust SSA Biological 

x1 0.985 0.260 0.070 0.169 0.306 0.140 

x2 0.962 0.163 0.029 0.077 0.209 0.193 

s1 0.081 0.221 0.091 0.179 0.235 0.096 

s2 0.155 0.202 0.053 0.104 0.173 0.156 

spooled 0.098 0.047 0.083 0.132 0.193 0.108 

degrees of freedom 120 120 120 120 120 120 

tcalculated 10.71 3.98 3.50 16.56 13.62 5.04 

95 % CI ttable  1.98 1.98 1.98 1.98 1.98 1.98 

significantly different? yes yes yes yes yes yes 

 

Table A.8. Student’s t-test comparing average sulfur mass fractions among particle classes for 

the dust vs. SSA events 
 SOA Biomass  Fly Ash Dust SSA Biological 

x1 0.985 0.177 0.022 0.072 0.199 0.168 

x2 0.964 0.163 0.029 0.077 0.209 0.193 

s1 0.081 0.214 0.051 0.114 0.158 0.119 

s2 0.134 0.202 0.053 0.104 0.173 0.156 

spooled 0.144 0.209 0.052 0.111 0.168 0.142 

degrees of freedom 120 120 120 120 120 120 

tcalculated 0.568 0.57 0.94 1.63 1.78 1.29 

95 % CI ttable  1.98 1.98 1.98 1.98 1.98 1.98 

significantly different? no no no no no no 
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Appendix B. 

Inland Sea Spray Aerosol Transport and Incomplete Chloride Depletion: 

Varying Degrees of Reactive Processing Observed during SOAS 

Supplemental Information 

 

B.1. Inland SSA Studies 

  Numerous locations impacted by transported SSA have been previously studied (Figure 

B.1, Table B.1) (Gard et al., 1998; Noble and Prather, 1997; Ueda et al., 2014), however in this 

work only SSA detected at locations ranging from 100-1100 km from the coast are considered 

inland (O'Brien et al., 2015; Moffet et al., 2013; Laskin et al., 2012; Foner and Ganor, 1992; 

Giannoni et al., 2016; Silva et al., 2007; Gustafsson and Franzen, 2000; Dos Santos et al., 2012; 

Manders et al., 2010; Chalbot et al., 2013; Shaw, 1991; Hara et al., 2004; Udisti et al., 2012). 

Although most of these studies have used bulk analysis methods, studies during CARES 

(Carbonaceous Aerosols and Radiative Effects Study) (O'Brien et al., 2015; Moffet et al., 2013; 

Laskin et al., 2012) in Sacramento and Cool, CA used single particle techniques including 

computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy 

(CCSEM-EDX) and scanning transmission x-ray microscopy with near edge X-ray absorption 

fine structure (STXM-NEXAFS) to study SSA. Of the bulk analysis studies, a variety of methods 

were used including electrical conductivity (Gustafsson and Franzen, 2000), which detects the 

mass of all salts, and ion chromatography or inductively coupled plasma spectroscopy, which 

detect SSA using chloride content, sodium content, or a ratio of SSA containing species (Ueda et 

al., 2014; Foner and Ganor, 1992; Giannoni et al., 2016; Dos Santos et al., 2012; Chalbot et al., 

2013; Udisti et al., 2012; Hara et al., 2004; Manders et al., 2010; Silva et al., 2007). In most of 

the inland studies, the mass fraction or number fraction (denoted by #) of SSA was quantified. 

However particles which have undergone complete chloride depletion would not be recognized 

as SSA using these methods, necessitating single particle analysis. 
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Figure B.1. Previous SSA studies use primarily bulk techniques and have sampled particles at 

distances ranging 70-1100 km from the coast (Gard et al., 1998; Noble and Prather, 1997; Moffet 

et al., 2013; O'Brien et al., 2015; Laskin et al., 2012; Ueda et al., 2014; Foner and Ganor, 1992; 

Giannoni et al., 2016; Silva et al., 2007; Gustafsson and Franzen, 2000; Dos Santos et al., 2012; 

Manders et al., 2010; Chalbot et al., 2013; Shaw, 1991; Hara et al., 2004; Udisti et al., 2012). In 

this work, only studies > 100 km are considered “inland.” (Moffet et al., 2013; O'Brien et al., 

2015; Silva et al., 2007; Udisti et al., 2012; Manders et al., 2010; Gustafsson and Franzen, 2000; 

Dos Santos et al., 2012; Chalbot et al., 2013; Shaw, 1991; Foner and Ganor, 1992; Giannoni et 

al., 2016; Hara et al., 2004; Laskin et al., 2012) 
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Table B.1. Previous studies of transported SSA depicted in Figure B.1. 

 

Letter Author (Year) Location(s) 
Distance from 

coast (km) 

Single particle 

(S.P) or Bulk 

SSA 

composition 
Fraction of SSA 

A Gard et al. (1998) 
Upland, CA and 

Tanbark Flats, CA 
70, 80 S.P. 

0.3-0.5 mole 

fraction NO3
- -- 

B Noble et al. (1997) Riverside, CA 70 S.P. -- 12-80 % (#) 

C 

Moffet et al. (2013) 

O’Brien et al. (2015) 

Laskin et al. (2012) 

Sacramento, CA 

Cool, CA 
160, 240 

 

S.P. 

 

Cl/(Na+0.5Mg) 

= 0-0.9 
40-50 % (#) 

D Ueda et al. (2014) Mt. Oyama, Japan 80 Bulk Cl/Na = 0-0.35 0-89 % (#) 

E 
Foner and Ganor 

(1992) 
Arad, Israel 100 Bulk -- 

3-18 % TSP 

(mass) 

F 
Giannoni et al. 

(2016) 
Ecuador 100 Bulk Na/Cl = 0-2 3-30 % (mass) 

G Silva et al. (2007) Galicia, Spain 160 Bulk 
Cl/Na = 0.56-

0.67 
0.1-0.14 meql

-1 

H 
Gustafsson and 

Franzen (2000) 
Southern Sweden 170 Bulk Cl/Na = 1.8 1-3 µg/m

3 

I 
Dos Santos et al. 

(2012) 
Buenos Aires 250 Bulk 

Cl/Na = 1.38-

1.81 

PM2.5-10 = 3-20 

% (mass) 

PM2.5 = 4-10 % 

(mass) 

J Manders et al. (2010) Across Europe 200-300 Bulk -- 2-5 µg/m
3 

K Chalbot et al. (2013) Little Rock, AR 640 Bulk Cl/Na = 0.1 10 % (mass) 

L Shaw (1991) Central AK 900 Bulk 
Cl/Na = 0.46-

0.94 
800-1300 ng Na

+ 

M Hara et al. (2004) 
Dome Fuji, 

Antarctica 
1000 Bulk Cl/Na = 0.48 

0.44-2.7 nmol/m
3
 

Na
+ 

N Udisti et al. (2012) 
Dome C, 

Antarctica 
1100 Bulk 

2-3 ng/m
3
 ssNa

+
 

(summer) 

15.6-24.7 ng/m
3
 

ssNa
+
 (winter) 

11-85 % (mass) 

 

 

B.2. Identification of SSA 

  The molar ratio of Na:Mg, approximately 10:1 (actual 10.1:1 ± 2.1) (Pilson, 1998), was 

used to identify SSA using SEM-EDX with k-means clustering. This ratio of Na:Mg is the same 

in particles as that found in seawater since the seawater cations are not volatile and unlikely to be 

displaced (Pilson, 1998; Laskin et al., 2012; Hopkins et al., 2008; Ault et al., 2013). SSA 

particles were separated into three categories based on their chemical composition. Partially aged 

SSA had Cl/Na molar ratios > 0.1 (approximately 10 % of the ratio present within seawater, 

1.16) (Pilson, 1998). Particles in the aged categories had little chloride, Cl/Na molar ratio < 0.1, 

and nitrate and/or sulfate. Particles in the aged-sulfate class contained sulfate (mole % S > 1, 
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mole % N < 1 %), while particles in the aged-nitrate/sulfate contained sulfate (mole % S > 1) and 

nitrate (mole % N > 1). The number fraction of particles belonging to each SSA class IS detailed 

in Table B.2. 

 

Table B.2. Number fractions and standard error associated with SSA classes.  

 

Class Particles per class Number Fraction Standard Error 

Partially aged 977 0.241 0.007 

Aged-S 594 0.147 0.006 

Aged-N/S 2476 0.612 0.008 

 

 

B.3. Raman Microspectroscopy: Analysis of Secondary Species within SSA Particles 

  Computer-controlled Raman microspectroscopy (CC-Raman) was used to analyze 

secondary species in aerosol particles (Craig et al., 2017). Divisive clustering analysis (DCA) 

was used to cluster and classify particles based on distinct features in their Raman spectra. 

Raman spectra and morphological parameters, such as particle diameter and circularity, were 

measured for 209 particles from June 12, 2013 12:00-15:00 CST (Event 1), and 198 particles 

from July 4, 2013 8:00-19:00 (Event 2). These SSA-rich time periods were selected in order to 

identify whether CCSEM results showing sulfur and nitrogen in SSA corresponded to secondary 

species such as sulfate and nitrate. Although Raman spectroscopy cannot differentiate SSA from 

other particle types since it cannot detect sodium or magnesium, this technique can identify 

nitrate and sulfate. Because SSA-rich time periods were selected for Raman analysis, likely most 

of the supermicron particles analyzed are SSA. Representative average Raman spectra of the 

nitrate- and sulfate-containing DCA clusters (37 % of particles, by number, analyzed for Event 1, 

and 36 % of particles, by number, analyzed for Event 2) are shown in Figure B.2. During Event 

1, all of the particles which were likely SSA contained nitrate, while < 2 % of the particles, by 

number, contained sulfate. Conversely, during Event 2, 33 % of the particles analyzed, by 

number, contained nitrate, 56 %, by number, contained nitrate and sulfate, and 11 %, by number, 

contained solely sulfate. Additionally the presence of organic functionalities, indicative of an 

organic coating which may inhibit the rate of chloride depletion, were detected within all nitrate- 

and sulfate-containing particles. 
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Figure B.2. a) Average Raman spectra of DCA clusters from Event 1 and Event 2 containing 

nitrate and/or sulfate. The vibrational modes highlighted in red correspond to sulfate, blue to 

nitrate, and green to organic functional groups. b) Percent of particles, by number, containing 

nitrate and/or sulfate vibrational modes from Event 1 and Event 2 using CC-Raman.  

 

 

B.4. Two SSA Events Identified 

  Two SSA events, June 10, 2013 8:00 – June 13, 2013 19:00 CST and July 3, 2013 20:00 

– July 8, 2013 7:00 CST were identified by high number fractions of SSA compared to particles 

analyzed during other times throughout SOAS (Figure B.3). During these two events, SSA 

comprised a significant fraction of both the submicron (up to 48 %, by number, with an average 

of 11 %) and supermicron (up to 81 %, by number, with an average of 35 %) size ranges. Data 

from July 4 20:00 - July 5 7:00 and July 5 8:00-19:00 were excluded due to possible influence 

from fireworks. Data from June 19- 26 were not analyzed because the samples were damaged 

during transport. 
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Figure B.3. SSA contributes substantially to the total number fraction of particles in both the a) 

submicron (0.2-1.0 µm) and b) supermicron (1.0-10.0 µm) projected area diameter size ranges. 

Two time periods, June 10-13 and July 3-8 highlighted with red boxes, contain a high number 

fraction of SSA. Data from July 4 20:00 – July 6 8:00 UTC were excluded due to possible 

influence by fireworks. 

 

 

B.5. Estimation of Theoretical Uptake of HNO3 onto SSA 

The theoretical uptake of HNO3 on SSA particles was calculated based on experimental 

results by Liu et al. (2007) to examine whether the observed chloride depletion during the two 

SOAS events occurred slower than diffusion-limited kinetics would predict. This calculation 

involves numerous assumptions including: HNO3 is in excess over NaCl over the entire time of 

transport, the HNO3 concentration remains constant in the entire region as particles are 

transported, the relative humidity remains constant throughout transport, and the rate constant for 

the reaction is valid for the size of SSA and concentration of HNO3 from SOAS. The following 

equation was used to predict the reaction time at which chloride was 99 % depleted (aged-SSA 

category): 
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𝑡 = ⁡−
1

𝑘
ln

[𝐶𝑙]𝑡

[𝐶𝑙]0
                                    (B.1) 

where t is transport time in seconds and k is the first order rate constant under specified 

conditions. The rate constant was selected for the experimental conditions that most closely 

matched those during SOAS. The conditions selected compared to average conditions during 

SOAS are listed in Table B.3. Using these conditions and a rate constant (k) of 3.4 x 10
-4 

s
-1

, the 

time needed for 99 % chloride depletion is ~3.8 hours, much less than average transport times 

from the Gulf during SOAS. The results of this calculation suggest that the particles were likely 

not diffusion limited, particularly during Event 1, but rather were thermodynamically limited by 

inorganic and organic acids. 

 

Table B.3. Reaction conditions for theoretical HNO3 uptake compared to the actual conditions 

during SOAS 

 

 Liu et. al. (2007) SOAS average 

Dp (µm) 0.83 ± 0.02 1.64 ± 1.23 

RH (%) 80 82 

[HNO3] (ppb) 3.0 0.15 

Particle surface density (cm
-2

) 2.0 ± 0.5 x 10
-3 

-- 

 

 

B.6. HNO3 and NOy Concentrations during SOAS 

  HNO3 and NOy gas phase concentrations were measured by the SEARCH monitoring 

network. Data was obtained from the SEARCH monitoring network in Centreville, AL and 

downloaded from the site for the National Oceanographic and Atmospheric Administration 

(NOAA): 

https://esrl.noaa.gov/csd/groups/csd7/measurements/2013senex/Ground/DataDownload/. HNO3 

and NOy gas phase measurements during SOAS are plotted in Figure B.4. Event 1 and Event 2, 

highlighted in the red boxes, show drastically different concentrations of nitrogen-containing 

gas-phase species. During Event 1, the concentration of HNO3 was 0.23 ppb on average and the 

NOy concentration was 1.28 ppb, which was very high compared to the concentrations of HNO3 

(0.03 ppb) and NOy (0.51 ppb) during Event 2. The high concentrations of HNO3 and NOy 

during Event 1 may account for the highly nitrate-aged SSA analyzed during that period, 

compared to the high concentrations of partially aged SSA detected during Event 2.  

https://esrl.noaa.gov/csd/groups/csd7/measurements/2013senex/Ground/DataDownload/
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Figure B.4. NOy and HNO3 continuous gas phase measurements from SEARCH using 

chemiluminescence with 10 minute resolution. Red boxes highlight concentrations during the 

two SSA events. Data was obtained from the National Oceanic and Atmospheric Agency’s Earth 

System Research Laboratory. 

 

 

B.7. Chloride Depletion within SSA Particles 

  To determine the aged character of SSA particles in Figure 3.6, the molar % chloride 

depletion was calculated from the CCSEM-EDX data according to the following equation: 

%⁡𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒⁡𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 =
[𝐶𝑙]0−[𝐶𝑙]𝑡

[𝐶𝑙]0
∗ 100               (B.2) 

 where [Cl
-
]0 is the original mole % of chloride in the particle, and [Cl

-
]t is the concentration, in 

mole %, of chloride in the particle at time t measured using EDX. Although [Cl
-
]0 cannot be 

measured directly, it can be inferred from [Na
+
]t. Since cations in sea water remain constant as a 

particle is aged and the molar ratio of Cl
-
 : Na

+ 
in sea water is 1.164 (Pilson, 1998), the original 

concentration of chloride in an SSA particle, in mole %, is equal to the concentration of 

sodium*1.164 at time t. Thus, equation B.3 was used in this study to determine the molar % 

chloride depletion in SSA: 

%⁡𝑐ℎ𝑙𝑜𝑟𝑖𝑑𝑒⁡𝑑𝑒𝑝𝑙𝑒𝑡𝑖𝑜𝑛 = ⁡
([𝑁𝑎]𝑡∗1.164)−[𝐶𝑙]𝑡

[𝑁𝑎]𝑡∗1.164
∗ 100     (B.3) 

where [Na]t is the mole % of sodium in an SSA particle at time t. 
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B.8. Student T-test: Significance of Cl
-
 Depletion Due to Air Mass Transport Time 

  A student’s t-test was used to compare the % depletion of Cl in SSA during Event 1 with 

20-29 h and 30-68 h of transport from the ocean (median 30 h), and during Event 2 with 7-8 h 

and 10-14 h of transport from the ocean (median 10 h). The results of the student t-test are 

located in Table B.4. The difference in % Cl depletion for 20-29 h and 30-68 h was found to not 

be significant for Event 1, but the difference in % Cl depletion for Event 2 7-8 h and 10-14 h was 

statistically significant at the 90 % confidence interval with a ttable value of 2.57. 

 

Table B.4. Student t-test results for % Cl remaining in SSA after transport. 

 

 Event 1 Event 2 

x1 98.63 87.48 

x2 99.54 95.37 

s1 1.62 5.43 

s2 0.82 2.24 

spooled 1.28 3.63 

degrees of freedom 8 3 

tcalculated 1.11 2.66 

90 % CI ttable 1.86 2.35 

significantly different? no yes 

 

Two samples from Event 1, June 12
th

 8:00-19:00 and June 13
th

 8:00-19:00 were excluded from 

this analysis because these time periods were statistical outliers according to Grubb’s test 

compared to the other 8 samples. Additionally as mentioned previously, samples from July 4
th

 

20:00-7:00 and July 5
th

 8:00-19:00 were excluded from all analysis due to possible influence by 

fireworks. 
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Appendix C. 

Isoprene-Derived Organosulfates: Vibrational Mode Analysis by Raman 

Spectroscopy, Acidity-Dependent Spectral Modes, and Observation in 

Individual Atmospheric Particles Supplemental Information 

 

C.1. Synthesis of the 3-Methyltetrol Sulfate Esters (from δ-IEPOX) 

2-Methyl-2-vinyloxirane (~1 g) was dissolved in acetonitrile (ACN)/H2O (50:50, 30 mL), 

a few drops of trifluoroacetic acid was added and the mixture was stirred at room temperature. 

The reaction was monitored by NMR spectroscopy until the complete disappearance of the 

oxiranyl proton signals. The mixture was distilled under reduced pressure on a rotary evaporator 

to remove the solvent. The resulting residue was dissolved in ACN (~30 mL) and cooled on ice 

water while mCPBA (1.2 equivalent based on the starting isoprene monoepoxide) was added. 

The mixture was allowed to warm to ambient temperature, stirred, and monitored by thin layer 

chromatography (TLC) until the reaction was complete. Precipitate that had formed was filtered 

off, the filtrate concentrated, and the residue purified by column chromatography (silicon 

gel/ether) to afford δ-IEPOX.  

The δ-IEPOX was dissolved in anhydrous acetonitrile and cooled on ice water and 

Bu4NHSO4 (1 eq.) was added followed by a small amount of potassium bisulfate. The reaction 

was stirred and allowed to warm to room temperature overnight. The solvent was removed under 

reduced pressure on a rotary evaporator and the residue purified on an ion exchange column 

(Dowex 50 W x 4-100) neutralized with 1 N K2CO3 before being packed. The column was eluted 

with water and monitored by TLC. The fractions containing product were pooled and lyophilized 

to give the product as a white powder.  

 

Scheme S1. Synthesis of the 3-methyltetrol sulfate esters. 
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C.2. Synthesis of the 2-Methyltetrols 

To the aqueous solution of δ-IEPOX, a catalytic amount of trifluoroacetic acid was added 

and the mixture was allowed to stir at room temperature or heated under reflux until the NMR 

indicated the absence of oxiranyl protons. The reaction mixture was then concentrated under 

reduced pressure on a rotary evaporator and the concentrated solution lyophilized to yield the 2-

methyltetrol mixture. 

 

C.3. Nuclear Magnetic Resonance Spectroscopy (
1
H NMR) of Organosulfate Esters and 

Polyols  

1
H NMR spectra (400 MHz, D2O) were acquired for the 3-methyltetrol sulfate esters, the 

2-methyltetrols, 2-methylglyceric acid sulfate ester, and 2-methylglyceric acid. Spectra were 

collected using a 400 MHz Varian spectrometer. NMR spectra are consistent with previously 

reported spectra (Budisulistiorini et al., 2015; Rattanavaraha et al., 2016). 
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Figure C.1. 
1
H NMR spectrum (400 MHz, D2O) of the 3-methyltetrol sulfate esters formed from 

δ-IEPOX. 
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Figure C.2. 
1
H NMR spectrum (400 MHz, D2O) of the 2-methyltetrols formed from δ-IEPOX. 
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Figure C.3. 
1
H NMR spectrum (400 MHz, D2O) of 2-methylglyceric acid sulfate ester. 
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Figure C.4. 
1
H NMR spectrum (400 MHz, D2O) of 2-methylglyceric acid. 

 

 

C.4. Fourier Transform Infrared Spectroscopy (FTIR) of Organosulfate Esters 

  Attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) spectra 

were collected for the 3-methyltetrol sulfate esters and 2-methylglyceric acid sulfate ester. 

Spectra were collected using a Shimadzu IRTracer-100, from 600-4700 cm
-1

 with 2 cm
-1

 

resolution and 25 scans. Characteristic infrared absorption bands of organic sulfate esters 

appeared at 1212-1217cm
-1

 (νas(SO3) 1200-1220 cm
-1

), 1063-1065 cm
-1

 (νs(SO3) 1040-1070 cm
-

1
), and 767-780 cm

-1
 (ν(S-O-C) 750-800 cm

-1
), consistent with previous results (Chihara, 1958; 

Chihara, 1960; Larkin, 2011).  
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Figure C.5. FTIR spectrum of the solid (crystalline) 3-methyltetrol sulfate esters. 



196 

 

 

Figure C.6. FTIR spectrum of solid (crystalline) 2-methylglyceric acid sulfate ester. 

 

 

C.5. Energy Dispersive X-Ray Spectroscopy (EDX) of Organosulfate Esters  

  EDX spectra were collected for crystals of the 3-methyltetrol and 2-methylglyceric acid 

sulfate esters to verify the identity of the counter-ions associated with the organosulfates. 

Crystals of each organosulfate were deposited on Si wafers and analyzed using a FEI Helios 

scanning electron microscope equipped with an EDX spectrometer (EDAX, Inc.). X-ray energies 

corresponding to carbon, oxygen, sodium, and sulfur were detected for the 3-methyltetrol sulfate 

esters. Similarly, X-ray energies corresponding to carbon, oxygen, sulfur, and potassium were 

detected for 2-methylglyceric acid sulfate ester. As the frequency of ν(C-O) in 2-methylglyceric 

acid sulfate ester was significantly lower than the modes in the 2-methyltetrols and 2-

methylglyceric acid (1008 cm
-1

 compared to 1047 and 1056 cm
-1

, respectively), EDX verified 

that the mode at 1008 cm
-1

 was not related to CaSO4 (νs(SO4
2-

) at  1005 cm
-1

) (Vargas Jentzsch et 
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al., 2013). These results, with sodium associated with the 3-methyltetrol sulfate esters and 

potassium associated with 2-methylglyceric acid sulfate ester, are consistent with expected 

results based on the synthetic procedure. Note, the silicon signal is due to the substrate. 

 

 

Figure C.7. EDX spectrum of the 3-methyltetrol sulfate esters. Note, the Si signal is due to the 

substrate. 

 

 

Figure C.8. EDX spectrum of 2-methylglyceric acid sulfate ester. Note, the Si signal is due to 

the substrate. 
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C.6. Experimental Raman Spectra of Compounds  

Sample compounds were prepared for Raman analysis using the following three methods:  

1. Crystals (3-methyltetrol sulfate esters, 2-methylglyceric acid sulfate ester, 2-

methylglyceric acid) or a 2 µL droplet (2-methyltetrols) were placed on quartz substrates 

without further preparation for Raman analysis.  

2. Aqueous droplets (2 µL) of 0.05 M solutions of each compound were placed on quartz 

substrates for Raman analysis. 

3. Aerosol particles were generated on quartz substrates from liquid (2-methyltetrols and 2-

methylglyceric acid) and aqueous 0.05M solutions (3-methyltetrol sulfate esters and 2-

methylglyceric acid sulfate ester) for Raman analysis. 

Raman spectra were collected for each compound, the 3-methyltetrol sulfate esters, 2-

methylglyceric acid sulfate ester, 2-methyltetrols, and 2-methylglyceric acid using all three 

methods listed above. For this analysis, spectra were collected using the 600 g/mm diffraction 

grating (~1.7 cm
-1

 spectral resolution), a ND filter operated at 100 %, 30 second acquisition 

times, and 3 accumulations. 
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Figure C.9. Experimental Raman spectra collected for a crystal, a 1 mm diameter droplet of 

aqueous solution, and a 5 µm diameter aerosol particle of the 3-methyltetrol sulfate esters. Due 

to differences in Raman intensity between the three spectra, the intensity of the aqueous solution 

was multiplied by a factor of three and the intensity of the aerosol particle was multiplied by a 

factor of 10. 
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Figure C.10. Experimental Raman spectra collected for a 1 mm droplet of pure liquid, a 1 mm 

diameter droplet of aqueous solution, and a 8 µm diameter aerosol particle of the 2-methyltetrols. 

Due to differences in Raman intensity between the spectra, the intensity of the aerosol particle 

was multiplied by a factor of 10. 
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Figure C.11. Experimental Raman spectra collected for a crystal, a 1 mm diameter droplet of 

aqueous solution, and a 4 µm diameter aerosol particle of 2-methylglyceric acid sulfate ester. 

Due to differences in Raman intensity between the three spectra, the intensity of the aqueous 

solution was multiplied by a factor of three and the intensity of the aerosol particle was 

multiplied by a factor of 10. 
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Figure C.12. Experimental Raman spectra collected for a crystal, a 1 mm diameter droplet of 

aqueous solution, and a 4 µm diameter aerosol particle of 2-methylglyceric acid. Due to 

differences in Raman intensity between the three spectra, the intensity of the aqueous solution 

was multiplied by a factor of three and the intensity of the aerosol particle was multiplied by a 

factor of 10. 

 

 

C.7. Computed Raman Frequencies 

  Initially, molecular structures and vibrational spectra were computed for the 

organosulfates and their hydrolysis products using density functional theory (DFT) at the B3LYP 

level of theory. However, as calculated frequencies had large errors compared to the anticipated 

experimental modes based on published studies of small-molecule organosulfates, we evaluated 

the predicting performances of different functionals and basis sets using methyl sulfate as a 

surrogate. In Table C.1, the frequencies for the νs(SO3) mode of methyl sulfate calculated using 

different parameters are shown. Based on these results, the DFT CAM-B3LYP level of theory 

was chosen for the work presented to compromise between prediction performance and 

computer-time requirement.  



203 

 

Table C.1. Computed Raman frequencies for the νs(SO3) mode in methyl sulfate. 

Experimental 

B3LYP 

(solvated) 

6-311 ++ G(2d,p) 

CAM-B3LYP 

6-31 ++ G(d) 

CAM-B3LYP 

(solvated) 

6-311 ++ G(2d,p) 

M06-2X 

6-31 ++ G(d) 

MP2 

6-31 ++ G(d) 

1063 999 1023 1027 1039 1017 

 

 

C.8. Raman Modes, Detailed DFT Frequencies, and Tentative Assignments 

  For each compound analyzed in this study, the 3-methyltetrol sulfate esters, 2-

methyltetrols, 2-methylglyceric acid sulfate ester, and 2-methylglyceric acid, experimental 

Raman spectra were collected and the DFT Raman spectra were calculated at the CAM-

B3LYP/6-311 ++ G(2d,p) level of theory. In Tables C.2-C.5 below, detailed analysis of the 

Raman modes are presented for each of the compounds. The experimental Raman shift and 

relative intensity is given, as well as the DFT-calculated frequency and Raman activity. 

Furthermore, assignments were made for the DFT Raman modes based on motions observed 

from 3D vibration animations and comparison to literature Raman mode assignments (Matyas et 

al., 2016; Cassanas et al., 1993; Leyton et al., 2008; Larkin, 2011; Avzianova and Brooks, 2013; 

De Gelder et al., 2007; McLaughlin et al., 2002; Furić et al., 1992; Lee and Chan, 2007; Craig et 

al., 2015; Cooney et al., 1994; Zhou et al., 2014; Fayer, 2013).   
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Table C.2. Detailed Raman modes for the 3-methyltetrol sulfate esters. The relative intensity and 

frequency of each vibration are given for the experimental spectrum, and the frequencies and 

Raman activities of the tentative DFT calculations are listed. Organosulfate-related stretching 

modes are highlighted in yellow and bending modes in blue. 

 

 

 

DFT Raman modes: 

3-methylerythritol sulfate 

ester (cm
-1

) 

DFT Raman modes: 

3-methylthreitol sulfate 

ester (cm
-1

) 

Assignment 

 547
a
 (6) 531

a
 (1) SO

3
 scissor 

584 (vw)
a,b

 561
a
 (3) 546

a
 (5) SO

3
 wag 

  
563 (3) O-H bend 

 596
a
 (5) 602

a
 (4) SO

3
 wag 

619 (vw) 639 (1) 579 (1) O-H bend 

  681 (12)  C-C-O wag 

842 (m)
a

 727
a
 (6) 732

a
 (6) RO-SO

3
 stretch 

 672
a
 (7) 827 (22) C-C-O wag 

 
803 (26) 890 (4) C-C bend 

895 (sh) 903 (3) 944 (8) C-C stretch, CH
2
 twist 

920 (w) 939 (7) 954 (5) C-C stretch, CH
2
 rock 

 975 (5) 978 (5) CH
2
 rock, CH

3
 rock 

 
997 (4) 

 
CH

2
 & CH

3
 rock, C-C stretch 

982 (vs)
c

   SO4 sym. Stretch (salt) 

 1003 (40)  CH
2
 & CH

3
 rock 

1047 (sh) 
 

1006 (47) C-O stretch 

1063 (vs)
a

 1047 (31) 1054 (27) SO
3
 sym. Stretch 

 1066
a
 (13) 1063

a
 (12) C-O stretch 

 1107 (8) 1117 (4) C-O stretch 

 1131 (3) 1128 (1) C-O stretch, C-C stretch 

 1161
a
 (7)  

CH
3
 wag, CH

2
 wag 

 1174 (10) 1167 (11) CH
3
 wag, C-C stretch 

 1184 (10) 1188 (12) SO
3
 asym. Stretch 

 1206
a
 (7) 1211

a
 (8) CH

3
 wag, C-C stretch 

 
1245 (12) 1245 (13) SO

3
 asym. Stretch 

 1262 (5) 1266 (3) CH
2
 twist 

 1278 (14) 1285 (7) CH
2
 twist, C-H bend 

 1300 (7) 1297 (15) CH
2
 twist, C-H bend 

 
1346 (8) 1345 (4) CH

2
 twist, C-H bend 

 
1367 (3) 1372 (6) C-H bend 

 
1385 (3) 1386 (2) CH

2
 and CH

3
 wag 

 
1409 (3) 1407 (5) CH

2
 wag, C-H bend, CH

3
 wag 

 
1415 (5) 

 
CH

2
 wag 

 
1451 (2) 1419 (1) CH, CH

2
, &CH

3
 wag 
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1447 (2) CH and CH

2
 wag 

 
1484 (7) 1481 (8) CH

2
 and CH3 wag 

 
1500 (3) 1497 (1) CH

3
 scissor 

1462 (m) 1500 (3) 1503 (27) CH
3
 scissor 

 
1510 (15) 1510 (4) CH

2
 scissor 

 
1516 (3) 1517 (4) CH

2
 scissor 

2741 (w) 3018 (222) 3017 (170) CH
2
 sym. Stretch 

2899 (s) 3055 (184) 3048 (175) CH
2
 sym. Stretch 

2950 (vs) 3066 (366) 3066 (391) C-H stretch 

2992 (s) 3097 (205) 3110 (213) CH
3
 sym. Stretch 

 3114 (118) 3134 (109) CH
2
 asym. Stretch 

 
3136 (117) 3138 (143) CH

2
 asym. Stretch 

 
3141 (115) 3145 (97) CH

3
 asym. Stretch 

 
3158 (104) 3167 (110) CH

3
 asym. Stretch 

 
3549 (227) 3562 (243) O-H stretch 

3243 (s) 3786 (136) 3795 (137) O-H stretch 

3454 (vs) 3877 (160) 3878 (158) O-H stretch 

 

 

 

 

  

a 
Frequencies highlighted in blue correspond to bending modes associated with the 

organosulfate group, while frequencies highlighted in yellow correspond to organosulfate-

related stretching modes. 

b 
Possible δ(SO3) mode, however difficult to differentiate from background. 

c
 Indicates contamination. 
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Table C.3. Detailed Raman modes for 2-methyltetrols. The relative intensity and frequency of 

each vibration are given for the experimental spectra, and the frequencies and Raman activities 

of the tentative DFT calculations are listed. 

Experimental Raman 

modes (cm
-1

) 

DFT Raman modes: 

2-methylerythritol (cm
-1

) 

DFT Raman modes: 

2-methylthreitol (cm
-1

) 
Assignment 

545 (m) 550 (1) 566 (2) CH2 rock  

611 (w) 669 (1) 682 (4) O-H bend  

730 (w) 
  

CH2 bend  

799 (s) 792 (21) 814 (20) C-OH bend  

878 (w) 902 (3) 883 (4) C-C stretch  

914 (m) 942 (7) 946 (6) CH2 & CH3 rock  

940 (sh) 975 (5) 972 (4) CH2 & CH3 rock  

 
997 (5) 980 (5) CH2 & CH3 rock  

1022 (sh) 1032 (3) 1040 (4) C-O stretch, CH2 rock  

1047 (m) 1069 (25) 1078 (19) C-O stretch  

 
1094 (3) 1099 (3) C-O stretch, C-C stretch  

 
1111 (3) 1110 (2) CH2 twist  

1125 (w) 1159 (9) 1142 (18) C-OH stretch  

1157 (vw) 1165 (14) 1185 (6) C-C stretch, CH2 wag  

1192 (vw) 1204 (7) 1201 (6) CH3 wag, C-C stretch  

 
1224 (2) 1235 (3) CH3 wag, C-C stretch  

 
1254 (5) 1257 (8) CH2 twist  

 1274 (13) 1265 (4) CH2 twist, C-H bend  

 1280 (9) 1287 (20) CH2 twist, C-H bend  

 1331 (6) 1320 (2) CH2 twist, C-H bend  

 1363 (4) 
  

 1392 (6) 1382 (5) C-H bend  

 1407 (2) 1391 (2) CH2 & CH3 wag  

 
1434 (7) 1421 (2) CH2 wag, C-H bend  

 
  1435 (4) CH2 & CH3 wag  

 
1454 (3) 1464 (3) CH2 wag  

 
1474 (2) 1468 (2) CH2 & CH bend 

1462 (s) 1498 (13) 1505 (16) CH3 bend 

 
1504 (12) 1492 (9) CH3 bend 

 
1514 (1) 1517 (1) CH2 scissor  

 
1515 (9) 1519 (8) CH2 scissor  

2751 (w) 3020 (236) 3027 (12) CH Stretch  

2895 (s) 3054 (215) 3035 (418) CH2 sym. Stretch  

 3061 (57) 3061 (105) CH2 sym. Stretch  

2942 (vs) 3067 (523) 3069 (436) CH3 sym. Stretch  

2983 (s) 3110 (156) 3088 (137) CH2 asym. Stretch  

 3112 (59) 3113 (95) CH2asym. Stretch  

 
3138 (113) 3138 (117) CH3 asym. Stretch  

 3142 (119) 3153 (113) CH3 asym. stretch  

3262 (s) 3785 (123) 3777 (172) O-H stretch  

 
3809 (131) 3786 (77) O-H stretch  

 
3872 (153) 3871 (156) O-H stretch  

3435 (s) 3875 (159) 3873 (159) O-H stretch  
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Table C.4. Detailed Raman modes for the 2-methylglyceric acid sulfate ester. The relative 

intensity and frequency of each vibration are given for the experimental spectrum, and the 

frequencies and Raman activities of the tentative DFT calculations are listed. Organosulfate-

related stretching modes are highlighted in yellow and bending modes in blue. 

 

Experimental Raman modes (cm
-1

) DFT Raman modes (cm
-1

) Assignment 

543 (w) 521 (2) C-H bend 

 556
a
 (4) S-O scissoring 

587 (m)
a,b

 564
a
 (3) S-O scissoring 

608 (m) 580 (4) O-H bend 

788 (m)   C-OH wag, O-H bend 

834 (sh) 593 (4) O-H bend 

 664
a
 (7) C-OH wag, R-OSO3 stretch 

850 (s)
a
 748

a
 (5) RO-SO3 stretch 

905 (w) 788 1) CH3 rock 

941 (vw) 815 (41) C-C stretch, CH2 rock, CH3 wag 

 
916 (5) CH3 rock, C-C stretch 

979 (m)
c 

  SO4
2-

 sym. stretch 

1008 (m)
 

973 (4) C-O stretch 

 
1006 (6) CH3 rock 

1066 (vs)
a
 1031

a
 (51) SO3 sym. stretch 

1116 (vw) 1092 (12) C-OH stretch 

1158 (vw) 1146 (6) C-C stretch, CH3 rock 

 1168 (5) C-C stretch, CH2 twist 

 
1204 (13) SO3 asym. stretch 

1271 (w) 1211
a
 (7) CH2 & CH3 twist 

 1235
a
 (12) SO3 asym. stretch 

1347 (sh) 1249 (10) C-O stretch, CH2 twist, CH3 wag 

1365 (m) 1310 (9) CH2 twist,  

 1347 (5) C-H bend 

1413 (m)
d
  COO

-
 sym. stretch 

 
1404 (1) CH2 & CH3 wag 

 
1427 (5) CH2 & CH3 wag 

 
1442 (3) CH2 wag 

1460 (s) 1491 (13) CH3 bend 

 
1495 (6) CH3 bend 

 
1512 (7) CH2 bend 

1595 (vw)
d 

 

COO
- 
asym. stretch 

 1792 (33) C=O stretch 

2731 (vw) 3067 (108) CH2 sym. stretch 

2894 (s) 3072 (404) CH3 sym. stretch 

 
3126 (74) CH2 asym. stretch 

2947 (vs) 3146 (118) CH3 asym. stretch 

2994 (s) 3160 (113) CH3 asym. stretch 

3259 (vs) 3745 (102) O-H stretch 

3465 (vs) 3761 (165) O-H stretch 
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a 
Frequencies highlighted in blue correspond to bending modes associated with the organosulfate 

group, while frequencies highlighted in yellow correspond to organosulfate-related stretching 

modes. 

b 
Possible δ(SO3) mode, however difficult to differentiate from background. 

c
 Indicates contamination. 

d 
Experimental results indicate carboxylate ion rather than carboxylic acid group is present. 
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Table C.5. Detailed Raman modes for 2-methylglyceric acid. The relative intensity and 

frequency of each vibration are given for the experimental spectrum, and the frequencies and 

Raman activities of the tentative DFT calculations are listed. 

 

Experimental Raman 

modes (cm
-1

) 

DFT Raman modes 

(cm
-1

) 
Assignment 

551 (m) 531 (2) C-H bend 

599 (s) 602 (1) O-H bend 

 
656 (2) C-OH wag 

764 (vs) 769 (26) O-C-O bend 

788 (vs) 794 (3) C-OH wag, O-H bend 

893 (m) 912 (3) C-C stretch 

940 (m) 958 (4) C-C stretch, CH2 rock, CH3 wag 

977 (vw) 997 (6) CH3 wag, C-O stretch 

1056 (m) 1072 (5) C-O stretch 

1112 (m) 1136 (9) C-OH stretch 

1143 (w) 1152 (10) C-O stretch, CH2 twist 

 
1190 (3) C-C stretch, CH3 wag 

1190 (w) 1222 (5) C-C stretch, CH2 twist 

1246 (vw) 1269 (5) CH2 wag 

1307 (vw) 1299 (8) CH2 twist 

 
1340 (9) CH2 twist 

 
1404 (1) CH3 wag 

 
1442 (5) CH3 wag 

1430 (vw) 1455 (3) CH2 wag 

1462 (s) 1491 (10) CH3 bend 

 
1501 (8) CH3 bend 

 
1516 (5) CH2 bend 

1724 (s) 1794 (23) C=O stretch 

2737 (w) 3061 (108) CH2 sym. stretch 

2896 (s) 3067 (426) CH3 sym. stretch 

2946 (vs) 3116 (109) CH2 asym. stretch 

 
3143 (118) CH3 asym. stretch 

2992 (s) 3147 (123) CH3 asym. stretch 

3212 (vs) 3759 (166) O-H stretch 

3436 (vs) 3778 (118) O-H stretch 

 
3875 (144) O-H stretch 
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Appendix D. 

Atomic Force Microscopy-Infrared Spectroscopy: Sub-Diffraction Limit 

Spectroscopy and Morphological Analysis of Individual Atmospheric Aerosol 

Particles Supplemental Information 

 

D.1. Calculations of Volume 

  Volumes of particles were measured using SPIP software (v6.2.6, Image Metrology, 

Hørsholm, Denmark), and from these volumes, volume equivalent diameters (Dve) were 

calculated for each particle analyzed in Figure 5.2 and Figure 5.3. 

 

Table D.1. Diameter, height, calculated volume, and calculated volume equivalent radii and 

diameters for particles of varying composition impacted on Si. The particles listed correspond to 

the circled particles in Figure 5.2. 

 
Compound Diameter (nm) Height (nm) Volume (nm

3
) r (nm) Dve (nm) 

(NH4)2SO4 535 188 2.17 x 10
7 

173 346 

NaNO3 496 114 1.45 x 10
7
 151 303 

Succinic acid 556 149 1.97 x 10
7
 167 335 

Sucrose 425 55 4.31 x 10
6 

101 202 

 

The Dve for the four particles shown in Figure 5.2 range from 202 nm to 346 nm.  
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Table D.2. Identification and comparison of AFM-IR vibrational modes in aerosol particles 

generated from standards compared to FTIR modes from previous studies. 

 

 Mode 
Experimental AFM-

IR modes (cm
-1

) 

Literature FTIR 

modes (cm
-1

) 
Reference 

(NH4)2SO4 

ν(SO4
2-

) 1091 1095 (Liu et al., 2008) 

δ(NH4
+
) 1422 1415 (Liu et al., 2008) 

ν(NH4
+
) 3139 2800-3300 

(Liu et al., 2008) 

(Weis and Ewing, 1996) 

NaNO3 ν(NO3
-
) 1356 ~1350 

(Liu et al., 2008) 

(Weis and Ewing, 1999) 

Succinic acid 

ν(C-C) 1201 1204 
(Larkin, 2011) 

(Miñambres et al., 2010) 

ν(C-O) 1308 1310 
(Larkin, 2011) 

(Miñambres et al., 2010) 

ν(CH2) 3049 2926 
(Larkin, 2011) 

(Miñambres et al., 2010) 

ν(C=O) 1691 1696 
(Larkin, 2011) 

(Miñambres et al., 2010) 

Sucrose 

δ(CH2) 1404 1419 (Max and Chapados, 2001) 

ν(C-O) 1057 1052 (Max and Chapados, 2001) 

δ(C-O-H) 1439 1431 (Max and Chapados, 2001) 

ν(CH2) 2913 2933 (Max and Chapados, 2001) 

ν(O-H) 3345 3290 (Max and Chapados, 2001) 

PEG 

ν(C-O-C) 1105 1130 
(Larkin, 2011) 

(Lu et al., 2014) 

ν(CH2) 1256 1244 
(Larkin, 2011) 

(Lu et al., 2014) 

 

 

Table D.3. Diameter, height, calculated volume, and calculated volume equivalent radii and 

diameters for ammonium sulfate particles impacted on various substrates. The particles listed 

correspond to the circled particles in Figure 5.3. 

 
Substrate Diameter (nm) Height (nm) Volume (nm

3
) r (nm) Dve (nm) 

Si 453 119 1.19 x 10
7 

142 283 

Ge 440 125 2.29 x 10
7 

176 352 

ZnSe 312 75 3.53 x 10
6 

94 189 

Diamond 341 101 7.03 x 10
6 

119 238 

TEM grid 290 57 2.16 x  10
6 

80 160 

 

The Dve for the five ammonium sulfate particles shown in Figure 5.3 range from 160 nm to 352 

nm.  
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D.2. Substrate-Dependent Spreading Ratios 

  Ammonium sulfate particles impacted on the five various substrates were examined to 

determine the spreading ratio, a factor which was substrate-dependent. To calculate the spreading 

ratio, the projected area diameter (Dpa) was divided by the height.  

𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔⁡𝑟𝑎𝑡𝑖𝑜 =
𝐷𝑝𝑎

ℎ
                        (D.1) 

The TEM grid and Ge were shown to cause the least particle spreading, Si caused intermediate 

spreading, and particles impacted on diamond and ZnSe spread the most. While substrate 

spreading proved to play a minor role in the study, the spreading (and hence Dve) is important to 

consider when selecting particles for IR analysis since thicker samples can lead to a deterioration 

in spatial resolution, and features less than 100 nm in height are difficult to measure since the 

magnitude of sample thermomechanical expansion decreases with decreasing feature size, 

although the exact relation between particle size and IR spectral intensity requires further study. 

 

Figure D.1. Average spreading ratios (diameter/height) for ammonium sulfate particles on the 

following substrates: Ge, TEM grid, Si, Diamond, and ZnSe.  

 

 

D.3. IR Spectral Resolution 

The maximum IR spectral resolution that can be achieved for the nanoIR2 system is 4 

cm
-1

/point. Lower spectral resolution can result in less noise, but the peak full width half 

maximum (FWHM) tends to broaden and the peak shape is less defined (Figure D.2). 
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Figure D.2. AFM-IR spectra of ammonium sulfate particles show the peak FWHM increase as 

spectral resolution decreases and the peak shape becomes less defined.  

D.4. IR Peak Ratios 

 

One challenge observed with AFM-IR was peak ratio variation, such as ammonium 

sulfate peaks (1427 and 1103 cm
-1

), as a function of particle analyzed (even within a single 

particle, Figure D.3.) We hypothesize that this results from material heterogeneity or IR 

photothermal response variation between spectra, however the exact cause this phenomenon 

requires further investigation. In the 99 % pure ammonium sulfate particles possible 

contaminants that could lead to variation in NH4
+
 (1427 cm

-1
) and SO4

2-
 (1103 cm

-1
) include Na

+
 

and Cl
-
 ions. Furthermore differences in FWHM of NH4

+
 and SO4

2-
 were likely due to 

differential hydration levels.  
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Figure D.3. AFM-IR spectra collected from one ammonium sulfate particle demonstrates 

variability in δ(NH4
+
) and νa(SO4

2-
) peak ratios. 
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