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Preface 

This thesis summarizes the research projects I participated in while working in Dr. Daniel 

J. Klionsky’s laboratory since January 20013. Through these projects we gain a better 

understanding of how autophagy-related (ATG) genes are regulated through post-translational 

modifications (PTMs), in particular phosphorylation and ubiquitination of Atg9.  

Chapters 1 contains parts of two review papers published in Cell Research 

(doi:10.1038/cr.2013.168) and Trends in Cell Biology (doi: http://dx.doi.org/10.1016/j.tcb.2015.02.002) 

with some modifications. Ding He, Zhiyuan Yao and I contributed equally to the first. Zhiyuan 

Yao and I contributed equally to the second. 

Chapter 2 characterizes of the molecular machinery of how phosphorylation of Atg9 

facilitates autophagosome formation and increase autophagy activity. It is published in the journal 

Autophagy (doi: 10.1080/15548627.2016.1157237). Kai Mao and Ke Wang prepared samples for 

SILAC. Jin-mi Heo from J. Wade Harper’s lab in Harvard Medical School did SILAC analysis. 

Misuzu Baba from Kogakuin University did electron microscopy. Steven K. Backues generated 

strains in Figure 4C. I generated all other data. 

Chapter 3 characterizes of the molecular machinery of down-regulation of autophagy 

through Atg9 ubiquitination-mediated proteasome degradation. This manuscript is submitted and 

under revision. I designed and performed most experiments. Erpan Ahat helped with strain 

construction in E3 screen. 
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Chapter 4 summarizes the major implications of my thesis research and future directions. 

It contains part of review paper Trends in Cell Biology (doi: http://dx.doi.org/10.1016/j.tcb.2015.02.002) 

Zhiyuan and I contributed equally. 
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Abstract 

 
Macroautophagy/autophagy is primarily a self-eating process that recycles cytosolic 

components such as misfolded or aggregated proteins and dysfunctional organelles for 

homeostasis and survival in unfavorable conditions. This highly conserved and constitutive 

pathway has to be tightly regulated; either too much or too little autophagy can be detrimental. 

Dysregulation of this pathway is related to various diseases that include neurodegeneration, cancer 

and infection, as well as aging-related disorders. Autophagy is stringently regulated at different 

levels including transcriptionally, post-transcriptionally, translationally and post-translationally. A 

thorough understanding of the mechanisms involved is crucial to allow the manipulation of 

autophagy for the treatment of diseases. Although 41 autophagy-related (ATG) genes have been 

identified, we have a limited understanding of the complex network of regulatory factors that 

control this process.  

Atg9 is the only transmembrane protein in the core autophagy machinery (and one of only 

two Atg membrane proteins in fungi), which is absolutely required for autophagosome biogenesis 

and autophagy activity. Unlike other Atg proteins, Atg9 has a distinctive feature with regard to its 

subcellular localization: This protein travels between peripheral sites and the phagophore assembly 

site (PAS) where the autophagosome is formed, presumably delivering membranes from different 

donors to the PAS for autophagosome biogenesis. 

Post-translational modifications (PTMs) including phosphorylation, ubiquitination, 

glycosylation, methylation, represent a subset of regulatory mechanisms that are critical for 
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modulating autophagy in order to adapt to different types of environmental stress. Atg9 is a 

phosphoprotein that is regulated by the Atg1 kinase. We used stable isotope labeling by amino 

acids in cell culture (SILAC) to identify phosphorylation sites on this protein and identified an 

Atg1-independent phosphorylation site at serine 122. A nonphosphorylatable Atg9 mutant showed 

decreased autophagy activity, whereas the phosphomimetic mutant enhanced activity. Electron 

microscopy analysis suggests that the different levels of autophagy activity reflect differences in 

autophagosome formation, correlating with the delivery of Atg9 to the PAS. Finally, this 

phosphorylation regulates Atg9 interaction with Atg23 and Atg27. 

Besides, we identified a second novel mechanism of Atg9 regulation in autophagy through 

ubiquitination. In growing conditions, Atg9 is synthesized at a basal level and cells are primed for 

autophagy. We show that in this situation Atg9 is ubiquitinated and targeted for degradation in a 

proteasome-dependent manner, thereby limiting autophagy to a basal level. However, when cells 

are deprived of nutrients, autophagy is highly induced, necessitating an increase in the amount of 

Atg9; the proteasome-dependent reduction of Atg9 protein levels is subsequently reduced to 

facilitate the increase in autophagy. Thus, the post-translational ubiquitination of Atg9 provides 

an additional mechanism that allows cells to maintain appropriate levels of autophagy, and—by 

ending this modification—to rapidly respond and adapt to environmental stresses. 
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Chapter 1 Introduction1 

 

1.1 Overview of Autophagy 

1.1.1 Definition 

Autophagy is a cellular process in which cytoplasmic contents are degraded within the 

lysosome/vacuole, and the resulting macromolecular constituents are recycled [1]. 

Macroautophagy is one type of autophagic process in which the substrates are sequestered within 

cytosolic double-membrane vesicles termed autophagosomes. The substrates of macroautophagy 

include superfluous and damaged organelles, cytosolic proteins and invasive microbes. Following 

degradation, the breakdown products are released back into the cytosol in order to recycle the 

macromolecular constituents and to generate energy to maintain cell viability under unfavorable 

conditions, and to protect the cell during various conditions of stress [1-3]. Autophagy is highly 

conserved from yeast to mammals, both morphologically and with regard to the protein 

constituents that make up the core autophagy machinery. 

1.1.2 Terms and structures 

The most readily identifiable feature of macroautophagy is the sequestration of cargo 

within cytosolic double-membrane vesicles, and many researchers still consider the analysis of 

                                                
1 This chapter is reprinted partly from Yuchen Feng, Ding He, Zhiyuan Yao, Daniel J Klionsky 
(2014) Cell Research (doi:10.1038/cr.2013.168), and partly from Zhiyuan Yao, Daniel J Klionsky 
(2015) Trends in Cell Biology (doi: http://dx.doi.org/10.1016/j.tcb.2015.02.002), with minor 
modifications. 
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macroautophagy by electron microscopy to be the “gold standard” for verifying macroautophagy 

activity. Below, I present some of the most common terms describing the principle structures of 

macroautophagy (Figure 1.1).  

Autophagic body: The inner-membrane-bound structure released into the vacuole lumen 

after the outer membrane of the autophagosome fuses with vacuolar membrane [4]. Note that 

autophagic bodies only appear in yeast and plants due to the large size of the vacuole, and are not 

found in mammalian lysosomes. 

Autophagosome: The completed double-membrane bound compartment, the product of 

phagophore expansion and closure, which sequesters cytoplasmic cargos during macroautophagy 

[5, 6].  

PAS: The phagophore assembly site; a peri-vacuolar location or compartment where the 

nucleation of the phagophore initiates. Most components of the macroautophagy core machinery 

locate at least transiently at the PAS in yeast; however, a mammalian equivalent of the PAS has 

not been identified [7-9].  

Phagophore: The double-membrane structure that functions in the initial sequestering of 

cargo, and thus the active compartment of macroautophagy. The phagophore further 

elongates/expands and ultimately closes, generating a completed autophagosome [10]. 

1.1.3 Origin of the phagophore membrane 

Atg8 was the first Atg protein characterized to mark the phagophore and autophagosome 

[11, 12]. Immunofluorescence microscopy revealed that in rich conditions, Atg8 is primarily 

dispersed in the cytoplasm as small puncta, while it forms larger puncta in the vicinity of the 

vacuole when yeast cells are switched to starvation conditions; the nature of the smaller puncta is 

not known, whereas the larger puncta correspond to nascent autophagosomes. Subsequent studies 
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with green fluorescent protein (GFP)-tagged chimeras demonstrated that most of the Atg proteins 

reside at this location, at least transiently [8]. Accordingly, this site is proposed to be where the 

phagophore assembles, and is thus termed the phagophore assembly site, or PAS [8, 9]. The precise 

nature of the PAS with regard to its protein and membrane composition, or the reason for its peri-

vacuolar localization, is not known, but assembly of the Atg proteins at the PAS occurs in a 

hierarchical manner [13]. The PAS forms constitutively, and in vegetative conditions a key 

component that marks this site is Atg11; upon autophagy induction, the structure transitions into 

an autophagy specific PAS and the function of Atg11 is replaced by a ternary complex of Atg17-

Atg31-Atg29 that assembles at the PAS along with Atg1 and Atg13 [14, 15]. Atg9, which shuttles 

between the PAS and peripheral sites, plays an important role in directing membrane to the PAS 

that is needed for autophagosome formation, and it localizes to the PAS at a similar time as the 

Atg1 kinase complex. Subsequently, the PtdIns3K and Atg12–Atg5-Atg16 complexes are 

recruited to the PAS; the latter acts in part as an E3 ligase to facilitate the formation of Atg8– PE, 

one of the last proteins that are recruited to the PAS. In mammalian cells, the colocalization of 

ATG proteins is observed at multiple sites [16-18], instead of a single PAS as in yeast. 

Until recently, the dogma was that the phagophore and autophagosome formed de novo, 

meaning that the sequestering membrane does not form in “one step” from a pre-existing organelle 

already containing its cargo as occurs throughout the secretory pathway [19, 20]. Regardless of 

the specific mechanism, autophagosome formation is thought to occur by the expansion of the 

phagophore, that is, a sheet of membrane that would correspond to the size of a complete 

autophagosome does not separate from the endomembrane system and simply curl up to form an 

autophagosome. Rather, after nucleation the phagophore grows through the addition of membrane 

from one or more donor sources [1, 21]; however, the origin of the phagophore membrane is still 
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under debate. Various lines of data suggest a role for almost every membrane compartment in 

contributing to formation of the autophagosome, including the ER, mitochondria, the Golgi 

apparatus and the plasma membrane [22-26]. As discussed above, there is no absolute equivalent 

of the yeast PAS in mammalian cells. Instead, there is evidence that there may be at least two 

separate mechanisms for generating autophagosomes. One mechanism would involve the delivery 

of membrane from various organelles, as is thought to occur in yeast, and the second utilizes an 

omega-shaped membrane structure or cradle, derived from phosphatidylinositol-3-phosphate 

(PtdIns3P)-enriched ER subdomains, termed an omegasome [27]. 

1.2 Types of Autophagy 

There are three primary types of autophagy: microautophagy, macroautophagy and a 

mechanistically unrelated process, chaperone-mediated autophagy that only occurs in mammalian 

cells. Both micro and macroautophagy can be selective or nonselective and these processes have 

been best characterized in yeast [28] (Table 1.1). As noted above, the most distinguishing feature 

of macroautophagy is the formation of the double-membrane bound phagophore and 

autophagosome (Figure 1.1). In contrast, during microautophagy the cargos are sequestered by 

direct invagination or protusion/septation of the yeast vacuole membrane [29]. Nonselective 

autophagy is used for the turnover of bulk cytoplasm under starvation conditions, whereas 

selective autophagy specifically targets damaged or superfluous organelles, including 

mitochondria and peroxisomes, as well as invasive microbes; each process involves a core set of 

machinery, as well as specific components, and accordingly is identified with a unique name — 

mitophagy for selective mitochondria degradation by autophagy, pexophagy for peroxisomes, 

xenophagy for microbes, etc. [30, 31]. In this chapter, I will mainly focus on macroautophagy, 

since the molecular or physiological studies of nonselective microautophagy are limited, and 
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selective microautophagy shares most of the same machinery with macroautophagy (hereafter 

autophagy).  

1.3 Core molecular machinery of autophagosome formation 

The transition of autophagy studies from morphology to molecular machinery relied on the 

identification of the ATG gene. As mentioned above, genetic screens for autophagy-defective 

mutants in yeast have led to the identification of over 40 ATG genes [32-35], many of which have 

known orthologs in higher eukaryotes. 

Among these ATG genes, one subgroup, consisting of approximately 18 genes (Table 1.2), 

is shared among the various types of autophagy including nonselective macroautophagy, the 

cytoplasm-to-vacuole-targeting (Cvt) pathway (a biosynthetic autophagy-like pathway), 

mitophagy and pexophagy. More specifically, the corresponding gene products of this subgroup 

are required for autophagosome formation, and thus are termed the core autophagy machinery. 

The core Atg proteins can be divided into different functional subgroups: (A) the Atg1/ ULK 

complex (Atg1, Atg11, Atg13, Atg17, Atg29 and Atg31) is the initial complex that regulates the 

induction of autophagosome formation; (B) Atg9 and its cycling system (Atg2, Atg9 and Atg18) 

play a role in membrane delivery to the expanding phagophore after the assembly of the Atg1 

complex at the PAS; (C) the PtdIns 3-kinase (PtdIns3K) complex (Vps34, Vps15, Vps30/Atg6, 

and Atg14) acts at the stage of vesicle nucleation, and is involved in the recruitment of PtdIns3P-

binding proteins to the PAS; (D) two ubiquitin-like (Ubl) conjugation systems: the Atg12 (Atg5, 

Atg7, Atg10, Atg12 and Atg16) and Atg8 (Atg3, Atg4, Atg7 and Atg8) conjugation systems play 

roles in vesicle expansion [13, 36-38]. 
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1.3.1 Yeast Atg1 kinase complex 

The Atg1 kinase complex regulates the magnitude of autophagy [39-43]. This complex 

also plays a role in mediating the retrieval of Atg9 from the PAS [44]. The Atg1 kinase complex 

is extensively regulated, receiving input from several signaling pathways. In yeast, much of the 

regulation centers around nutrient signaling and involves kinases that sense the nutritional status 

of the cell including the target of rapamycin (TOR), protein kinase A (PKA), Gcn2 and Snf1. The 

yeast Atg1 kinase complex includes Atg1, a Ser/Thr protein kinase, Atg13, a regulatory subunit, 

and the Atg17-Atg31-Atg29 complex, which may function in part as a scaffold (Figure 1.2). Atg1 

is the only kinase of the core autophagy machinery; however, despite the fact that it was the first 

Atg protein to be identified, the key physiological substrate of yeast Atg1 is not known. Atg1 

kinase activity is required for autophagosome formation and the Cvt pathway, although there are 

conflicting data concerning the changes in kinase activity when yeast cells shift from vegetative 

growth to autophagy-inducing conditions [45-47]. Atg1 recruitment to the PAS may be regulated 

by PKA-dependent phosphorylation [48]. TOR also phosphorylates Atg1, and 

autophosphorylation is important in regulating Atg1 kinase activity [49, 50]. 

Atg13 is required for Atg1 kinase activity. Atg13 is hyperphosphorylated under nutrient-

rich conditions, and its phosphorylation is regulated by TOR complex 1 (TORC1) [51] and/or PKA 

[52]. Atg13 is rapidly, but only partially, dephosphorylated upon autophagy induction [53]. These 

data, coupled with affinity isolation studies, led to a model suggesting that the interaction between 

Atg1 and Atg13 is controlled by Atg13 phosphorylation — dephosphorylation would lead to the 

formation of an Atg1-Atg13 complex, and subsequent activation of Atg1 kinase activity [42]. 

Recent data, however, suggest that Atg1 and Atg13 interact in a constitutive manner [54], which 

is similar to the situation in other organisms. Atg17-Atg31-Atg29 exists as a stable complex under 
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both vegetative and starvation conditions, suggesting that formation of the complex is not involved 

in autophagy induction. Atg31 bridges Atg17 and Atg29, Atg17 binds Atg13, and Atg29 binds 

Atg11; the latter is a scaffold protein that may also be considered part of the Atg1 kinase complex 

because it binds Atg1 and is involved in the transition of the PAS that occurs during the switch 

from vegetative to starvation conditions [14, 15, 39, 55-57]. Both Atg29 and Atg31 are 

phosphoproteins. The phosphorylation of Atg29 appears to be involved in regulation and is 

proposed to alter the conformation of an inhibitory C-terminal peptide to allow the protein to 

become active [15]. 

1.3.2 Yeast Atg9 

In yeast cells, Atg9 is a transmembrane protein that transits between the PAS and peripheral 

sites (Figure 1.3); the latter have been termed Atg9 reservoirs or tubulovesicular clusters, and are 

proposed to represent sites from which membrane is delivered to the forming phagophore [23, 44, 

58], although the exact role of Atg9 in this process is not clear. Atg9 is proposed to consist of six 

transmembrane domains, with both the amino and carboxyl termini exposed in the cytosol. Atg9 

self-interacts and may exist in a complex [59]. Atg9 localization to the PAS from the peripheral 

sites (referred to as anterograde transport) depends on Atg11, Atg23 and Atg27 [44, 60-62]. Return 

to the peripheral sites (retrograde movement) requires Atg1-Atg13, Atg2 and Atg18; PAS 

recruitment of the latter involves binding to PtdIns3P and thus necessitates the function of Atg14 

and the class III PtdIns3K complex [44]. Atg27 is a type I integral transmembrane protein, while 

the other components involved in Atg9 movement are soluble and/ or peripherally associated with 

membranes. 

Atg9 was the first identified transmembrane protein in the Atg protein family, but detailed 

structural information is not available. Similarly, no structural information has been published for 



 8 

the Atg11, Atg23 and Atg27 proteins, which are involved in Atg9 localization to the PAS [44, 60-

62] (Figure 1.3). Atg18, together with Atg2, helps Atg9 cycle from the PAS to peripheral sites. 

Although the structure of Atg18 has not been solved, a paralog, Hsv2, which shares high sequence 

similarity with Atg18, has been studied in different yeast strains [63-65]. Both proteins belong to 

the “PROPPINs” family, which are defined by β propeller structures and the existence of 

phosphoinositide binding sites [65, 66]. Hsv2 displays the typical propeller fold that consists of 

seven β blades. In addition, Hsv2 (and Atg18 along with a second paralog, Atg21) harbor an FRRG 

motif, which is required for phosphoinositide binding. Detailed analysis indicates that Hsv2 

possesses two PtdIns3P binding sites, located in blade 5 and blade 6. Mutations in the 

corresponding sites in Atg18 result in loss of Atg18 localization. Moreover, the blade 6 β3-β4 loop 

of Hsv2 proves to be important for protein docking to the membrane. When several hydrophobic 

residues in this region, or the corresponding residues in Atg18, are mutated, the binding of the 

protein to liposomes is eliminated [65]. These results suggest a potential Atg18-docking model: 

the disk-like Atg18 touches the membrane with its edge; two binding sites interact with PtdIns3P 

on the membrane surface and the hydrophobic loop penetrates the membrane to stabilize the 

interaction.  

The Atg18 β1-β2 loop and β2-β3 loop in blade 2 are important for PAS targeting [64]. 

Blade 2 is located at the opposite position to blade 5 and blade 6, and thus is not involved in 

membrane docking. Additional studies indicate that the loops in blade 2 are important forAtg18-

Atg2 interaction [64, 67], allowing a refinement of the model for Atg18 membrane binding. While 

Atg18 binds to the membrane through blades 5 and 6, blade 2, which is located on the opposite 

side of the protein, interacts with Atg2. The structural data further suggest that the Atg18-Atg2 

interaction is independent of membrane docking. Detailed information about the Atg18-Atg2 
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interaction awaits progress on the crystallization of Atg2, which may also provide insight into their 

interdependent localization to the PAS. 

1.3.3 Yeast PtdIns3K complexes I and II 

In yeast, Vps15 (a putative regulatory protein kinase that is required for Vps34 membrane 

association), Vps30/Atg6, Vps34 (the PtdIns3K), Atg14 and Atg38, form the autophagy-specific 

class III PtdIns3K complex I (Figure 1.4), which localizes at the PAS [68-70]. One key role of the 

PtdIns3K complex, the generation of PtdIns3P, is presumably to recruit PtdIns3P-binding proteins 

such as Atg18 to the PAS. Vps15, Vps34 and Vps30 are generation of PtdIns3P, is presumably to 

recruit PtdIns3P-binding proteins such as Atg18 to the PAS. Vps15, Vps34 and Vps30 are present 

in a second complex that includes Vps38 instead of Atg14. Thus, the latter protein appears to 

determine the specificity of the PtdIns3K complex I for macroautophagy. 

1.3.4 Yeast Ubl conjugation systems 

There are two Ubl protein conjugation systems that participate in macroautophagy [48]. 

These include two Ubl proteins, Atg8 and Atg12, which are used to generate the conjugation 

products Atg8–PE and Atg12–Atg5, respectively (Figure 1.5). The Ubl conjugation systems 

participate in phagophore expansion, although their functions are not fully understood. The Atg12–

Atg5 conjugate, along with a third component, Atg16, may act in part as an E3 ligase to facilitate 

the conjugation of Atg8 to PE, and the amount of Atg8 can regulate the size of autophagosomes 

[71]; however, Atg8 also functions in cargo binding during selective autophagy [72]. Yeast Atg8 

is initially synthesized with a C-terminal arginine residue that is removed by Atg4, a cysteine 

protease [38, 100]. During autophagy, Atg8 is released from Atg8–PE by a second Atg4-dependent 

cleavage referred to as deconjugation [73], whereas there is no similar cleavage that separates 

Atg12 from Atg5. Both of the Ubl protein conjugation systems share a single E1-like activating 
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enzyme, Atg7 [74-77]. The E2-like conjugating enzymes are Atg3 for Atg8, and Atg10 for Atg12 

[75, 78]. 

1.4 Selective autophagy 

In selective autophagy, the overall morphology is largely the same as during nonselective 

autophagy with one primary distinguishing feature; in selective autophagy, the membrane-bound 

vesicle targets specific cargos, instead of random cytoplasm. In addition to the core machinery, a 

cargo ligand (a molecular entity on the surface of the cargo that is recognized by a receptor), 

receptor and scaffold are involved; the latter act to specifically bind the cargo and provide a bridge 

between the cargo and the core machinery [79, 80]. Accordingly, during selective autophagy the 

phagophore is close to the cargo, and the completed autophagosome excludes bulk cytoplasm. As 

noted above, there are different types of selective autophagy according to the cargo types. Here I 

will describe Cvt pathway as an example (Table 1.1). 

1.4.1 Cvt pathway 

With regard to the details of cargo recognition, the Cvt pathway was the first well-studied 

type of selective autophagy in yeast; it is also the primary example of a biosynthetic rather than 

degradative use of autophagy [80-83]. The double-membrane sequestering vesicle is termed a Cvt 

vesicle rather than an autophagosome; as noted above, this vesicle contains selective cargos of the 

Cvt pathway, but excludes bulk cytoplasm, in accordance with the biosynthetic and constitutive 

nature of the Cvt pathway compared to starvation-induced autophagy. The Cvt pathway delivers 

precursor forms of hydrolases, such as Ape1 (aminopeptidase I), Ape4 and Ams1 (α-

mannosidase), from the cytoplasm to the vacuole, where they carry out their functions. The 

formation of the Cvt vesicle at the PAS is driven by the formation of a cargo complex, composed 

primarily of oligomerized precursor (prApe1) along with a few other resident vacuolar hydrolases 
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[84, 85]. Atg19 acts as a cargo receptor that binds the ligand (the prApe1 propeptide) and is thus 

recruited to the complex [86]. Subsequently, the interaction between Atg19 and Atg11, a key 

scaffold that functions in most or all types of selective autophagy in yeast, mediates the delivery 

of the cargo complex to the PAS [72, 87]. Atg19 also interacts with Atg8, which might play a role 

in tethering the Cvt complex to the phagophore [88] and in directing the selective sequestration of 

the cargo during vesicle formation [72]. 

1.5 Regulation of Autophagy 

Macroautophagy is involved in various aspects of cell physiology, and its dysregulation is 

associated with a range of diseases. The regulation of macroautophagy is complex, in part 

reflecting the fact that this process, if not properly modulated, can result in cell death. In this 

chapter we focus on the current state of knowledge concerning transcriptional and post-

transcriptional regulation of macroautophagy in yeast and mammals. 

1.5.1 Transcriptional regulation 

TOR kinase has long been known as the master regulator of macroautophagy, and as part 

of TOR complex 1, it controls a range of transcription factors; however, the relevant downstream 

targets with regard to autophagy regulation have not been well understood. Only recently have 

researchers started to identify an entire network of transcription factors that are involved in 

controlling autophagy (summarized in Table 1.3).  

Several transcription factors including TP53, STAT3 and NFKB play a dual role in 

autophagy regulation, through both transcriptional (nuclear interaction) and transcriptional-

independent (cytoplasmic interaction) mechanisms, acting as both activators and repressors [89-

91]. Thus, it will be interesting to understand the complex transcriptional network involved in 



 12 

autophagy regulation and to determine precisely what governs the switch between adaptation to 

stress and the promotion of cell death. 

1.5.2 Post-transcriptional regulation of autophagy 

Autophagy can be regulated by various post-transcriptional mechanisms, including the 

action of noncoding microRNAs (miRNAs; summarized in Table 1.4) [92-95]. miRNAs are a class 

of small endogenous regulatory RNAs that control gene expression at the post-transcriptional 

level, typically by translational arrest or mRNA cleavage, through interaction mainly at the 3'-

untranslated regions (UTRs) of the target mRNAs. miRNAs play important roles in the regulation 

of development, growth, and metastasis of cancer, and in determining the response of tumor cells 

to anticancer therapy. Here, we highlight some of the recent data concerning miRNAs and their 

involvement in regulating different steps of the autophagy core machinery. 

The ULK1/2 (yeast Atg1) kinase complex plays a key role in the induction of autophagy. 

Mir20a and Mir106b, two members of the Mir17 microRNA family, may participate in regulating 

leucine deprivation-induced autophagy via suppression of ULK1 expression in C2C12 myoblasts 

[96]. There is a putative recognition sequence for MIR885-3p in the 5'-UTR of ULK2, and this 

miRNA contributes to the regulation of autophagy via the downregulation of ULK2 [97]. 

Nucleation of the phagophore involves the phosphatidylinositol 3-kinase complex that 

includes PIK3C3/VPS34-PIK3R4/VPS15-BECN1-ATG14. Mir195 inhibitor treatment increases 

autophagy activation and suppresses neuron inflammation in vivo and in vitro, which suggests a 

repressive role of this miRNA [98]. Furthermore, Atg14 was identified as the functional target of 

Mir195. MIR205 inhibits BCL2 expression, thus modulating a key negative regulator of BECN1 

function in autophagy [99]. The BECN1 3'-UTR binds MIR30A, negatively regulating BECN1 

expression, resulting in decreased autophagic activity   
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MIR30D regulates multiple genes in the autophagy pathway including BECN1, BNIP3L, 

ATG2, ATG5, and ATG12 based on bioinformatics and miRNA target prediction. MIR30D directly 

suppresses the expression of the corresponding core proteins in the autophagy pathway, inhibiting 

autophagosome formation and conversion of LC3B-I (a proteolytically processed form) to LC3B-

II (a lipidated form) [100]. MIR376B controls autophagy by directly regulating intracellular levels 

of two key autophagy proteins, ATG4C and BECN1 [101]. MIR101 is a potent inhibitor of basal, 

etoposide- and rapamycin-induced autophagy, at least in part through downregulation of RAB5A, 

STMN1 and ATG4D [102].  

ATG9 is a transmembrane protein required for expansion of the phagophore. Studies in 

yeast suggest that this protein traffics between donor membranes and the site of phagophore 

formation [44, 60, 61, 103]. C. elegans atg-9 contains a binding sequence for mir-34, and this 

miRNA inhibits ATG-9 expression at the post-transcriptional level in vitro [104]. The C. elegans 

mir-34 mutation extends life span by enhancing autophagic flux, and in mammalian cells MIR34A 

represses autophagy by directly inhibiting the expression of ATG9A. MIR130A reduces 

autophagosome formation, an effect mediated by downregulation of the ATG2B and DICER1 

genes [105]; DICER1 is a key component of the cellular miRNA machinery, suggesting that its 

downregulation is part of a feedback loop that maintains optimal levels of autophagy. MIR130A 

thus modulates cell survival by controlling autophagic flux. 

Besides the miRNA regulation of autophagy, it should also be noted that autophagy, in turn, 

regulates the biogenesis of miRNAs. DICER1 and AGO2, components involved in miRNA 

biogenesis, are targeted for selective autophagic degradation through the action of the receptor 

protein CALCOCO2/NDP52 and the adaptor protein GEMIN4 [106]. Thus, autophagy maintains 

functional miRNA synthesis by facilitating the removal of inactive DICER1-AGO2 complexes. 
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Besides miRNA targeting, mRNAs are tightly regulated through other mechanisms, 

including decapping and degradation of unwanted mRNAs, and storing mRNA in an 

inaccessible/inactive state in P-bodies. However, it has not been determined whether these post-

transcriptional mechanisms regulate autophagy. 

1.5.3 Post-translational regulation 

Post-translational regulation is essential for modulating autophagy in order to adapt to 

different types of environmental stress. With regard to autophagy post-translational modifications 

(PTMs) can be classified into three categories: phosphorylation, ubiquitination and acetylation 

[107]. These modifications help to regulate autophagy on multiple levels. For example, Atg core 

components can be directly modified, either being activated or inhibited. In addition, PTMs can 

also indirectly regulate autophagy by modulating regulators upstream of the Atg proteins. Here, 

we focus on the direct post-translational regulation of proteins that are part of the Atg core 

machinery. 

1.5.3.1 Phosphorylation 

 
Phosphorylation of Atg proteins is the most well studied PTM. Phosphorylation of Atg 

proteins either alters the protein’s functional activity or changes the protein’s structure to modulate 

the affinity to binding partners. The regulation of the Atg1/ULK1 complex, which is important for 

autophagy initiation, is a good example where protein function is altered by PTM. 

In mammalian cells ULK1 is part of a complex that contains ATG13, RB1CC1 and 

ATG101 [108]. Previous studies have established that TOR kinase is as a negative regulator of 

Atg1/ULK1 in nutrient-rich conditions [109, 110]. MTOR phosphorylates ULK1 on Ser757, 

inhibiting ULK1 activity. Under stress conditions, AMPK phosphorylates ULK1 at Ser317 and 
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Ser777, thus activating kinase activity and inducing autophagy [111]. AMPK is thus upstream of 

MTOR and negatively regulates MTOR activity indirectly [112]. In glucose-replete conditions, 

AMPK is inhibited. Moreover, Ser757 phosphorylation of ULK1 by MTOR results in a weaker 

interaction between ULK1 and AMPK [111], Thus, the AMPK-MTOR system can regulate ULK1 

kinase activity to finely tuning the autophagy process.  

In yeast, the Atg1 complex consist of the Atg1 kinase, its regulatory partner Atg13, and the 

Atg17-Atg31-Atg29 complex [113], TOR participates in the regulation of Atg1 through the direct 

phosphorylation of the regulatory Atg13 subunit, which is also inhibited by the cAMP-dependent 

protein kinase A (PKA). Under nutrient-rich conditions Atg13 is phosphorylated at distinct sites 

by PKA and TOR [48, 51]. The phosphorylation of Atg13 affects both the nature of its interaction 

with Atg1 and its localization to the phagophore assembly site (PAS). Atg1 is also a direct substrate 

of PKA, and phosphoryalation also regulates its localization to the PAS. The Atg17-Atg31-Atg29 

complex also modulates Atg1 kinase and autophagy activity. Atg29 is phosphorylated along its C 

terminus and this modification is necessary for interaction with the scaffold protein Atg11, PAS 

localization and function [15]. 

Phosphorylation of the phosphatidylinositol (PtdIns) 3-kinase (PtdIns3K) complex, 

another autophagy core machinery, which is responsible for producing PtdIns3P, also regulates 

autophagy [107, 114]. In mammals, PIK3C3/VPS34 is the catalytic subunit of a class III PtdIns3K 

that provides the core function of the complex. PIK3C3 is functional in autophagy when it interacts 

with BECN1, which in turn is inhibited by anti-apoptotic proteins such as BCL2 [113]. Thus, any 

PTM that disrupts the interaction between BECN1 and its inhibitory partners has the potential for 

stimulating autophagy and vice versa. For example, DAPK phosphorylates BECN1 and 
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MAPK8/JNK1 phosphorylates BCL2 [107, 115, 116]. In both cases the interaction between 

BECN1 and BCL2 is disrupted, allowing BECN1 to associate with PIK3C3 and induce autophagy.           

The protein kinase AKT is also involved in BECN1 phosphorylation. AKT enhances the 

interaction of BECN1 with YWHA/14-3-3 proteins, thus negatively regulating autophagy [117]. 

There are multiple PtdIns3K complexes that function in various pathways including autophagy, 

both stimulating and inhibiting, and their regulation is complex. For example, AMPK 

phosphorylation inhibits the non-autophagic function of PIK3C3; whereas under glucose 

starvation conditions, ATG14 functions to decrease the AMPK-dependent phosphorylation of 

PIK3C3 and increase the phosphorylation of BECN1, which lead to autophagy induction [118]. 

This differential regulation acts in part to promote activation of the autophagy-specific PIK3C3 

complex under stress conditions. 

Many other ATG proteins are phosphorylated. For example, LC3-II can be phosphorylated 

by protein kinase A or protein kinase C [119]. The phosphorylated form has reduced function in 

autophagosome formation. Yeast Atg9 is a direct target of Atg1 [120]. Phosphorylation of Atg9 is 

required for recruitment of Atg8 to the PAS, thus ensuring normal expansion of the phagophore. 

Atg18, a protein involved in Atg9 cycling, is also phosphorylated [121], affecting its affinity for 

phosphoinositides. 

1.5.3.2 Ubiquitination 

 
Ubiquitination is another type of PTM that regulates autophagy. In general ubiquitination 

can affect the stability of Atg proteins and their upstream regulators. However, ubiquitin can also 

serve as a signaling molecule, recruiting autophagy receptors. In either case, specific E3 ligases 

play an important role in ubiquitin function [122]. 
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PARK2/parkin, an E3 ligase that is important for mitochondrial homeostasis, is involved 

in mitophagy (the selective autophagic degradation of mitochondria) [122, 123]. Once activated 

by PINK1, PARK2 ubiquitinates multiple mitochondrial proteins on the surface of depolarized 

mitochondria [124]. Although the precise mechanism is not clear, these events may initiate a 

cascade that results in the clearance of damaged mitochondria. Conversely, PARK2 has a negative 

role in non-selective autophagy. PARK2 stabilizes BCL2 via mono-ubiquitination, which 

strengthens the interaction between BCL2 and BECN1, thus suppressing autophagy [125]. 

Ubiquitination of the autophagy core machinery can either affect protein function or 

stability. TRAF6, a RING finger-containing ligase, can ubiquitinate both BECN1 and ULK1 [126, 

127]. The K63 linked ubiquitination of BECN1 by TRAF6 is required for TLR4-induced 

autophagy. In contrast, the deubiquitinating enzyme TNFAIP3/A20 antagonizes the TRAF6 

regulation by deubiquitinating BECN1 and repressing autophagy. TRAF6 also ubiquitinates K-63 

of ULK1 when interacting with AMBRA1. The ubiquitination of ULK1 leads to the stabilization 

and activation of the protein. RNF5, another E3 ligase, controls ATG4B; ubiquitination promotes 

its degradation [128]. Decreased levels of ATG4B result in limited proteolytic processing of LC3 

and autophagy suppression. 

Although E3 ligases regulate autophagy primarily through their ligation function, these 

proteins may also regulate autophagy in a ligase-independent manner. A recent study shows a 

general role of tripartite motif (TRIM) protein family. TRIM proteins contain a, N-terminal RING 

domain; however, these proteins regulate autophagy mainly through the C-terminal substrate-

binding domain [129]. TRIM proteins can bind ATG proteins such as BECN1, ULK1, and LC3 

family proteins, as well as receptors including SQSTM1/p62. These findings suggest that TRIM 

proteins serve as a platform for the association of different ATG proteins. 
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1.5.3.3 Acetylation 

In addition to the epigenetic regulation of autophagy by histone acetylation (discussed 

below), ATG proteins are also regulated by direct acetylation [130]. During serum starvation, 

acetyltransferase KAT5/TIP60 is activated by GSK3 and directly acetylates ULK1 [131]. This 

acetylation is required for ULK1 activation and autophagy initiation. Either inhibition of KAT5 or 

the presence of an acetylation-insensitive ULK1 mutant will reduce autophagy activity. KAT5 has 

a yeast ortholog, Esa1, which acetylates Atg3 on K19 and K48 [132]. Blocking this acetylation 

attenuates Atg8-Atg3 interaction and Atg8 lipidation. The Rpd3 deacetylase counters the effect of 

Esa1. Rpd3 deletion results in increased acetylation of Atg3 and upregulated autophagy.  

Another example of regulatory acetylation/deacetylation in autophagy is seen with 

EP300/p300 and SIRT1. The EP300 acetyltransferase acetylates a variety of autophagy proteins 

including ATG5, ATG7, LC3 and ATG12. However, acetylation appears to inhibit the function of 

these proteins because reduced EP300 stimulates autophagy activity [133]. Conversely, the NAD-

dependent deacetylase SIRT1 deacetylates ATG5, ATG7 and LC3 [134]. Deletion of Sirt1 results 

in increased acetylation of ATG proteins, negatively affecting autophagosome formation. In 

addition to the core machinery, acetylation also regulates autophagy by modulating transcription 

factors upstream of the ATG genes. One example is seen with FOXO3, which activates several 

ATG genes as discussed above [135, 136]. Acetylation of FOXO3 cause its dissociation from DNA 

[137]. SIRT1/2 deacetylate FOXO3 under stress conditions, and this is coordinated with the 

induction of autophagy [134, 138].  

1.5.3.4 Epigenetic regulation 

PTMs can also modulate histones and epigenetically regulate autophagy. Histone H3 

hyperacetylation on lysine 9, 14 and 18 is accompanied by the repression of ATG gene transcription 
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and autophagic defects [139, 140]. Acetylation on histone H4 lysine16 (H4K16) by KAT8/hMOF 

downregulates ATG genes transcription [141, 142]. Combining those data suggests that acetylation 

on histones generally interferes with ATG gene transcription. Another modification on histone, 

methylation, also regulates the outcome of ATG gene transcription. EHMT2/G9a associates with 

ATG gene promoters and methylates histone H3 in nutrient-rich conditions [143]. This methylation 

leads to repression of ATG gene transcription. During starvation, these marks are removed 

allowing the induction of ATG gene expression. Inhibition of EHMT2 therefore results in 

upregulated expression of ATG genes. 

1.5.5 Regulation through protein–protein interactions 

Other than by directly modifying ATG proteins, many regulators can also regulate 

autophagy by interacting with these proteins to modulate their function [114]. One example is 

TP53. As discussed above, cytosolic TP53 is a negative regulator of autophagy. This population 

of TP53 interacts with RB1CC1, inhibiting the function of the ULK1 complex in normal conditions 

[144]. Because TP53 can be translocated to the nucleus, phosphorylation of TP53 decreases the 

amount in the cytosolic pool, and permits autophagy induction under stress conditions.  
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Table 1.1 The main types of autophagy in yeast 
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Table 1.2 Atg/ATG proteins in the core machinery of autophagosome formation 
 

 
 Yeast Mammals Characteristics and functions 

 

 

 

 

 

 

Atg1/ULK 

complex 

Atg1 ULK1/2 Ser/Thr protein kinase; phosphorylated 

by M/TORC1; recruitment of Atg 

proteins to the PAS 

Atg13 ATG13 Regulatory subunit through 

phosphorylation by M/TORC1 and/or 

PKA, linker between Atg1 and Atg17 

Atg17 RBICCI/FIP200 

(functional homolog) 

Scaffold protein, ternary complex with 

Atg29 and Atg31. Phosphorylated by 

ULK1; scaffold for ULK1/2 and 

ATG13 

Atg29  Ternary complex with Atg17 and 

Atg31 

Atg31  Ternary complex with Atg17 and 

Atg29 

Atg11  Scaffold protein in selective autophagy 

for PAS organization 

 C12orf44/Atg101 Component of the conplex with 

ATG13 and RB1CC1 

Atg2 ATG2 Interacts with Atg18 
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Atg9 and its 

cycling system 

Atg9 ATG9A/B Transmembrane protein, directs 

membrane to the phagophore 

Atg18 WIPI1/2 PtdIns3P binding protein 

 

 

PtdIns3K 

complex  

Vps34 PIK3C3/VPS34 PtdIns 3-kinase 

Vps15 PIK3R4/VPS15 Ser/Thr protein kinase 

Vps30/Atg6 BECN1 Component of PtdIns3K complex I and 

II 

Atg14 ATG14 Component of PtdIns3K complex I 

 

Atg8 ubiquitin-

like conjugation 

system 

Atg8 LC3A/B/C, 

GABARAP, 

GABARAPL1/2 

Ubl, conjugated to PE 

Atg7 ATG7 E1-like enzyme 

Atg3 ATG3 E2-like enzyme 

Atg4 ATG4A/B/C/D Deconjugating enzyme, cysteine 

proteinase 

 

 

Atg12 ubiquitin-

like conjugation 

system 

Atg12 ATG12 Ubl 

Atg7 ATG7 E1-like enzyme 

Atg10 ATG10 E2-like enzyme 

Atg16 ATG16L1 Interacts with Atg5 and Atg12 

Atg5 ATG5 Conjugated by Atg12 
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Table 1.3 Transcriptional factors of mammalian autophagy 
 
Transcription 

factor 

Target Effect Reference 

ATF4 ATG5, LC3 and ULK1 + [145-148] 

ATF5 MTOR - [149] 

CEBPB BNIP3, LC3 and ULK1 + [150] 

DDIT3/CHOP ATG5 and LC3 + [145] 

E2F1 ATG5, BNIP3, LC3 and ULK1 + [151-153] 

FOXO1 ATG5, ATG12, ATG14, BECN1, BNIP3, 
LC3 and PIK3C3/VPS34 

+ [115, 152, 
154] 

FOXO3 ATG4, ATG12, BECN1, BNIP3, LC3, 
ULK1, ULK2 and PIK3C3/VPS34 

+ [135, 155-158] 

GATA1 LC3 + [159] 

JUN BECN1 and LC3 + [160-162] 

NFKB BCL2, BECN1 and BNIP3 + or - [152, 163, 

164] 

TP53 ATG2, ATG4, ATG7, ATG10, BCL2 and 
ULK1 

Cytosol-; 
nucleus + 

[71, 165] 

SOX2 ATG10 + [166, 167] 

SREBF2/SREBP2 LC3 and ATG4 + [168] 

STAT1 ATG12 and BECN1 - [169] 

STAT3 ATG3, BCL2, and BNIP3 - [170, 171] 

TFEB ATG4, ATG9, BCL2, LC3 and WIPI + [172] 

ZKSCAN3 LC3, ULK1 and WIPI - [173] 
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Table 1.4 miRNAs involved in regulating the autophagy core machinery 
 

miRNA Target 

Mir20a, Mir106b Ulk1 Autophagy  

induction MIR885-3p ULK2 

MIR10A RB1CC1 

Mir195 Atg14 Phagophore 

nucleation MIR30A, MIR30D, MIR376B, MIR519A BECN1 

MIR101, MIR376B ATG4  

 

Phagophore 

elongation 

MIR30A, MIR30D, MIR181A, MIR374A ATG5 

MIR17, MIR375  ATG7 

MIR519A ATG10 

MIR30D, MIR630 ATG12 

MIR519A, MIR885-3p ATG16L1 

MIR204  LC3 

MIR30D, MIR130A ATG2 Cycling 

system MIR34A ATG9A 
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Figure 1.1 Schematic depiction of the two main types of yeast autophagy.  
In macroautophagy, random cytoplasm and dysfunctional organelles are sequestered by the 
expanding phagophore, leading to the formation of the autophagosome. The autophagosome 
subsequently fuses with the vacuole membrane, releasing the autophagic body into the vacuole 
lumen. Eventually, the sequestered cargos are degraded or processed by vacuolar hydrolases. In 
microautophagy, cargos are directly taken up by the invagination of the vacuole membrane, 
followed by scission, and subsequent lysis, exposing the cargo to vacuolar hydrolases for 
degradation. 
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Figure 1.2 Yeast Atg1 kinase complex.  
The yeast Atg1 kinase complex includes Atg1, a Ser/Thr protein kinase, Atg13, a regulatory 
subunit required for Atg1 kinase activity, and the Atg17- Atg31-Atg29 complex, which 
mayfunction in part as a scaffold. Atg31 bridges Atg17 and Atg29, Atg17 binds Atg13, and Atg29 
binds Atg11. 
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Figure 1.3 Trafficking of yeast Atg9. 
In yeast cells, Atg9 is a transmembrane protein that transits between the PAS and peripheral sites 
(Atg9 reservoirs). Atg9 localization to the PAS from the peripheral sites depends on Atg11, Atg23 
and Atg27. Return to the peripheral sites requires Atg1-Atg13, Atg2 and Atg18; PAS recruitment 
of the latter involves binding to PtdIns3P, the product of the class III PtdIns3K complex. 
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Figure 1.4 Yeast PtdIns3K complex I.  
In yeast, Vps15 (a putative regulatory protein kinase that is required for Vps34 membrane 
association), Vps30/Atg6, Vps34 (the PtdIns3K), Atg14 and Atg38 form the autophagy-specific 
class III PtdIns3K complex, which localizes at the PAS. Vps15, Vps34 and Vps30 are present in 
the second class III PtdIns3K complex that includes Vps38 instead of Atg14. 
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Figure 1.5 Yeast Ubl conjugation systems.  
There are two Ubl protein conjugations systems, involving Atg8 and Atg12, whichare used to 
generate the conjugation products Atg8–PE and Atg12–Atg5, respectively. Atg8 is initially 
processed by Atg4, a cysteine protease, and during autophagy, Atg8 is released from Atg8–PE by 
a second Atg4-dependent cleavage. The Atg12–Atg5 conjugate, along with Atg16, facilitates the 
conjugation of Atg8 to PE. Both of the Ubl protein conjugation systems share a single activating 
enzyme, Atg7. The conjugating enzymes are Atg3 for Atg8, and Atg10 for Atg12. 
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Figure 1.6 Coordinated regulation of ULK1 
(unc-51 like autophagy activating kinase 1) by AMPK (AMP-activated protein kinase) and MTOR 
(mechanistic target of rapamycin). Phosphorylation-dependent regulation of ULK1 by AMPK and 
MTOR plays crucial roles in modulating autophagy activity. Arrows and bars indicate stimulation 
and inhibition, respectively. Green or red arrows and bars (or proteins) indicate events (or 
components) that promote or inhibit autophagy, respective. 
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Chapter 2 Phosphorylation of Atg9 Regulates Movement to the Phagophore Assembly Site 

and the Rate of Autophagosome Formation2 

2.1 Abstract 

 
Macroautophagy is primarily a degradative process that cells use to break down their own 

components to recycle macromolecules and provide energy under stress conditions, and defects in 

macroautophagy lead to a wide range of diseases. Atg9, conserved from yeast to mammals, is the 

only identified transmembrane protein in the yeast core macroautophagy machinery that is 

required for formation of the sequestering compartment termed the autophagosome. This protein 

undergoes dynamic movement between the phagophore assembly site (PAS), where the 

autophagosome precursor is nucleated, and peripheral sites that may provide donor membrane for 

expansion of the phagophore. Atg9 is a phosphoprotein that is regulated by the Atg1 kinase. We 

used stable isotope labeling by amino acids in cell culture (SILAC) to identify phosphorylation 

sites on this protein and identified an Atg1-independent phosphorylation site at serine 122. A non-

phosphorylatable Atg9 mutant showed decreased autophagy activity, whereas the phosphomimetic 

mutant enhanced activity. Electron microscopy analysis suggests that the different levels of 

autophagy activity reflect differences in autophagosome formation, correlating with the delivery 

of Atg9 to the PAS. Finally, this phosphorylation regulates Atg9 interaction with Atg23 and Atg27. 

                                                
2 This chapter is reprinted from Feng Y, Backues SK, Baba M, Heo JM, Harper JW, Klionsky DJ 
(2016) Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the rate 
of autophagosome formation. Autophagy;12(4):648-58. doi: 10.1080/15548627.2016.1157237. 
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2.2 Introduction 

Autophagy refers to a group of highly conserved cellular processes in which cytoplasmic 

components are degraded within the lysosome in most of the higher eukaryotes or the vacuole in 

yeast and plants. The resulting macromolecular constituents are recycled and used as building 

blocks for anabolic pathways or to generate energy through catabolism.[1] Autophagy in yeast can 

be divided into 2 main types, macroautophagy and microautophagy. Macroautophagy (hereafter 

called autophagy) is the major process in which random cytoplasm is sequestered within a double-

membrane structure, the phagophore, which eventually matures into a vesicle termed the 

autophagosome; generation of the autophagosome is a distinguishing feature between 

macroautophagy and microautophagy because the latter process involves direct uptake at the 

vacuole limiting membrane without the use of a phagophore or autophagosome. After fusion of 

the autophagosome with the vacuole, and degradation in the vacuole lumen, the breakdown 

products are released back into the cytosol.[113] Autophagy can be selective or nonselective. 

Nonselective autophagy is used for the turnover of bulk cytoplasm, whereas selective autophagy 

specifically targets damaged or superfluous organelles, including mitochondria and 

peroxisomes.[30, 31]  

Over the past 2 decades, 41 AuTophaGy-related (ATG) genes have been identified in 

fungi.[34] Among them, one subset including 18 genes is shared by both nonselective and selective 

autophagy and is required for autophagosome formation, and thus the corresponding gene products 

are termed the core machinery of autophagosome formation; these proteins can be divided into 

different functional groups.[113, 174] Although our understanding of the molecular mechanism of 

autophagy has increased tremendously since the discovery and initial characterization of the Atg 

proteins, the complex mechanisms involved in the regulation of autophagy are still unclear. 
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Transcriptional, post-transcriptional and post-translational regulation are all used to modulate 

autophagy in order to adapt to different types of environmental stress,[107, 175, 176] and several 

Atg proteins are phosphorylated.[15, 48, 51, 120, 177] 

Atg9, conserved from yeast to mammals, is the only transmembrane protein identified in 

the yeast autophagy core machinery.[178] One of the unique features of Atg9 concerns its 

subcellular distribution. Whereas most Atg proteins are localized to the PAS, in addition to a 

cytosolic pool, Atg9 has multiple punctate populations in a yeast cell. Atg9 is detected at the PAS 

along with most of the other Atg proteins; however, Atg9 is additionally present at peripheral sites, 

also termed Atg9 reservoirs and tubulovesicular clusters.[44] The Atg9 peripheral sites are found 

adjacent to mitochondria, but are not directly associated with this organelle, and newly synthesized 

Atg9 is delivered to these sites through part of the secretory pathway.[23] Studies using high-

sensitivity microscopy have shown that most of the punctate Atg9 structures are highly mobile in 

the cytoplasm.[103] Thus, Atg9 may move between these peripheral sites and the PAS, and earlier 

studies have suggested that this cycling of Atg9 is required for autophagosome formation, 

functioning in some manner to direct membrane to the expanding phagophore.[44, 58, 62, 179] In 

mammalian cells, ATG9 also displays dynamic cycling, moving between the trans-Golgi network 

and endosomes in response to nutritional changes. A subpopulation of ATG9 colocalizes with both 

LC3, a mammalian homolog of Atg8, and RAB7, a late endosomal protein.[18]  

Several Atg proteins have important roles in regulating Atg9 cycling. The anterograde 

movement of Atg9 from peripheral sites to the PAS requires Atg23, Atg27 and Atg11 (the latter 

is required primarily in selective types of autophagy).[62] The retrograde trafficking of Atg9 from 

the PAS depends on the Atg1-Atg13 complex, the Atg2-Atg18 complex and the 

phosphatidylinositol 3-kinase complex.[44, 58] Self-interaction of Atg9 is also important for its 
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PAS localization.[59] 

Recent studies have shown that the Atg1 kinase directly phosphorylates Atg9 in an early 

step of regulation.[120] In this study, we identified Atg9 serine 122 (S122), a site that is not a 

direct target of Atg1, as being important for Atg9 function in autophagy activity. Phosphorylation 

of S122 regulates Atg9 anterograde trafficking by mediating its interaction with Atg23 and Atg27. 

These findings provide new evidence of the importance of post-translational modification of Atg9 

and regulation of autophagy activity. 

2.3 Results 

2.3.1 Determination of Atg9 phosphorylation sites 

Atg1 is the only protein kinase of the core autophagy machinery,[42] and as such it has 

received considerable attention. Several of the Atg proteins are phosphorylated, but until recently 

it was not known if any of these proteins were Atg1 substrates. Many other protein kinases (i.e., 

proteins that are not part of the autophagy core machinery) also modulate autophagy activity,[180-

183] but in most cases the relevant targets have not been identified. Atg9 plays a key role in 

autophagy, and we recently demonstrated that the amount of the Atg9 protein correlates with the 

rate of autophagosome formation.[184] The functional pool of Atg9—the part of the population 

actively engaged in phagophore expansion—is presumed to be that at the PAS. We carried out a 

SILAC analysis to identify phosphorylation sites on Atg9 that might affect its movement to the 

PAS, and decided to focus on modifications that were independent of direct Atg1 kinase function, 

because recent studies have already identified Atg1-dependent sites in this protein.[120] 

To identify Atg1-independent phosphorylation sites we performed the SILAC analysis 

comparing wild-type and atg1∆ strains. Phosphorylation scores were defined as mean log2 

(atg1∆/wild type [WT]); potential Atg1 targets should have a score <-1, reflecting a decrease in 
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phosphorylation, whereas changes in phosphorylation that were not directly dependent on Atg1 

would have positive scores. From this analysis we identified 4 putative sites in Atg9 that 

demonstrated alterations in phosphorylation under conditions of nitrogen starvation: S864, T794, 

S792 and S122 (Fig. 2.1A). Among these sites, only S864 showed a negative enrichment score 

suggesting it was a direct substrate of Atg1. This site was identified in the study by Papinski et 

al.,[120] but was relatively unaffected by Atg1 kinase activity. This previous analysis also 

identified S792 and S122 as being phosphorylated independent of Atg1. 

2.3.2 Phosphorylation of Atg9 S122 is important for nonselective autophagy 

To determine if any of these phosphorylation sites plays a role in autophagy we generated 

3 nonphosphorylatable Atg9 mutants, S122A, S792A/T794A, and S864A, and 3 phosphomimetic 

mutants, S122D, S792D/T794D and S864D, through site-directed mutagenesis.[185] We then 

transformed an atg9∆ strain with a plasmid encoding either WT Atg9 fused to the green fluorescent 

protein (Atg9-GFP), the Atg9 mutants or an empty vector, and monitored autophagy activity using 

the Pho8∆60 assay.[186] Pho8 is a cytosolic derivative of a vacuolar phosphatase. The truncated 

version, Pho8∆60, lacking its N-terminal transmembrane domain, resides in the cytosol and can 

only be delivered to the vacuole through autophagy, where a propeptide is removed to generate 

the active enzyme. The atg9∆ strain with an empty vector displayed a significant block in 

autophagy in nitrogen starvation conditions (Fig. 2.1B and 2.6C). In contrast, the strain expressing 

Atg9-GFP restored the autophagy activity to ~60% of the wild-type strain (Fig. 2.6A and 2.6E); 

the activity of this strain was set to 100% and used for normalization (Fig. 1B and S1C). Out of 

the 6 mutants tested, changes at S792, T794 and S864 did not result in significant differences 

relative to the WT. In contrast, S122A displayed an ~20% decrease, and S122D an ~30% increase, 

of Pho8∆60 activity, suggesting that the phosphorylation of Atg9 S122 is important for autophagy.  
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Atg9 T119 was not identified as a phosphosite in the previous SILAC analysis [120] or in 

our present study. We decided to mutate this site due to its proximity to S122, in particular to 

determine whether the addition of a negative charge in this part of the protein would result in a 

phenotype similar to that seen with the S122D mutation. In contrast to the latter, the T119D mutant 

did not display an increase in activity, but instead resulted in a slight decrease in Pho8∆60 activity, 

suggesting the specificity of the S122D phenotype (Fig. 2.1C and 2.6D). Atg9 homologs have been 

previously identified in other organisms including plants and humans, [17, 187] and the serine at 

position 122 is highly conserved among fungi (Fig. 2.6B); similarly, human ATG9A has a serine 

at position 123. Thus, regulation of Atg9 through post-translational modification at this site might 

correspond to a conserved mechanism. 

2.3.3 Phosphorylation of Atg9 S122 is important for selective autophagy 

Atg9 is one of the key proteins in the core machinery that is shared between nonselective 

and selective autophagy.[83] Accordingly, we next decided to examine the requirement for 

phosphorylation at S122 in selective types of autophagy. Aminopeptidase I (Ape1), a vacuole 

resident hydrolase, is initially synthesized as a cytosolic precursor (prApe1), and is delivered to 

the vacuole through either nonselective autophagy or the cytoplasm-to-vacuole targeting (Cvt) 

pathway, depending on nutrient conditions;[81, 188-190] in either case delivery is a selective 

process depending on a receptor protein, Atg19.[34, 86, 191] Upon delivery to the vacuole, the 

propeptide of prApe1 is enzymatically removed generating the mature hydrolase. This processing 

event is easily detected as a change in molecular mass following SDS-PAGE. To simplify our 

analysis, we took advantage of the Cvt pathway phenotype of the vac8∆ background to monitor 

selective autophagy; in the vac8∆ strain only prApe1 accumulates in rich conditions, but there is 

rapid vacuolar delivery following the induction of autophagy.[53] Thus, a shift from rich to 
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starvation conditions essentially corresponds to a pulse-chase analysis, and prevents the 

complicating accumulation of mature Ape1 that would otherwise be present. In the atg9∆ vac8∆ 

strain only prApe1 could be detected even after the induction of autophagy (Fig. 2.2A). The block 

of prApe1 maturation during starvation was rescued by integration of WT ATG9 back into the 

chromosome. This maturation was partially blocked in cells expressing Atg9S122A after 2 h 

starvation. At this same time point we could not detect a difference between the strain expressing 

WT Atg9 and Atg9S122D, because essentially all of the protein was in the mature form. Therefore, 

we examined earlier time points and found accelerated maturation in the Atg9S122D cells relative to 

the WT (Fig. 2.2B). 

2.3.4 Phosphorylation of Atg9 S122 regulates autophagy by mediating autophagosome 

formation 

At a mechanistic level there are 2 fundamental ways to modulate the magnitude of 

autophagy: changing the number or the size of autophagosomes. In yeast, the large size of the 

vacuole makes it possible to accumulate autophagic bodies, which correspond to the single-

membrane compartments that result from the fusion of an autophagosome with a vacuole, when 

their degradation is blocked. The size and number of the accumulated autophagic bodies can then 

be determined through morphometric analysis by transmission electron microscopy (EM). To 

carry out this analysis we utilized strains harboring deletions in the PEP4 gene to prevent 

autophagic body breakdown. The WT (pep4∆ Atg9) and mutant S122A (pep4∆ Atg9S122A) and 

S122D (pep4∆ Atg9S122D) strains were grown to mid-log phase and then shifted to nitrogen 

starvation conditions for 4 h, before being processed for imaging by EM (Fig. 2.3A); the size and 

number of autophagic bodies were quantified and estimated as described previously.[179]  
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The average size of the autophagic bodies in both mutants was not significantly different 

compared to the WT (Fig. 2.7). However, the Atg9S122A strain had fewer autophagic bodies per 

cell, whereas Atg9S122D displayed an increase (Fig. 2.3B). This result suggests that autophagosome 

formation was partially impaired in the strain expressing the S122A mutant; there were fewer 

autophagosomes formed, which corresponds to the lower Pho8∆60 activity (Fig. 2.1C and 2.6D). 

In contrast, the higher Pho8∆60 activity of the S122D mutant (Fig. 2.1C and 2.6D) may be 

explained by the observation that more autophagosomes were formed. The EM analysis thus 

suggests that the phosphorylation of Atg9 at S122 is important to maintain an appropriate rate of 

autophagosome formation, and hence overall level of autophagy. 

2.3.5 Phosphorylation of S122 affects autophagy through regulating Atg9 anterograde 

trafficking 

Atg9 cycles between the PAS and other cytosolic punctate structures (the peripheral sites), 

and has been proposed to be involved in membrane delivery to the PAS for autophagosome 

formation.[61, 178] To monitor the trafficking of Atg9, we examined cells expressing Atg9 WT, 

S122A or S122D under the control of the native ATG9 promoter, and tagged with GFP. We 

quantified the colocalization of the Atg9 chimeras with red fluorescent protein (RFP)-tagged 

prApe1 (RFP-Ape1), which serves as a marker for the PAS. In rich conditions (+N) Atg9 localized 

to multiple puncta, and the abundance of these puncta was increased after cells were shifted to 

starvation (-N) conditions for 30 min (Fig. 2.4A, B and 2.9A). In rich conditions, ~21% of the WT 

cells displayed Atg9-GFP colocalized with RFP-Ape1, which represents the distribution of Atg9 

during basal autophagy. After starvation for 30 min to induce autophagy this colocalization 

doubled to ~47%. The colocalization in cells expressing Atg9S122A-GFP was less than half that 

seen in the WT, and was not substantially elevated after starvation (Fig. 2.4A, B and 2.9A), 
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suggesting that the trafficking of Atg9S122A was impaired. In contrast, cells expressing Atg9S122D 

showed the opposite phenotype; these cells displayed ~42% colocalization of Atg9S122D-GFP with 

RFP-Ape1 in rich conditions, and this increased to ~64% after starvation (Fig. 2.4A, B and 2.9A), 

suggesting that the constitutive phosphorylation of Atg9 as mimicked by the phosphomimetic 

mutation promotes the anterograde movement of Atg9 to the PAS during autophagy. These results 

further indicate that Atg9 S122 phosphorylation plays an important role in regulating autophagy 

activity by controlling Atg9 trafficking.  

Atg9 cycling between peripheral sites and the PAS can be split into 2 steps, corresponding 

to anterograde and retrograde trafficking.[58] We wanted to determine whether phosphorylation 

of S122 specifically affects one of these steps. To address this point, we took advantage of a strain 

developed previously, the multiple-knockout (MKO) strain, which lacks 24 different ATG genes 

that are required for autophagosome formation.[55, 192] The re-addition to this strain of specific 

genes in various combinations allows the “in vivo reconstitution” of autophagy, and the definition 

of the minimal set of proteins necessary for a specific step of this process.[193] Recently we 

showed that the MKO strain expressing Atg9, Atg11, Atg23 and Atg27 was sufficient to promote 

the anterograde movement of Atg9.[193] We transformed this strain with the RFP-Ape1 plasmid 

and again examined colocalization. Similar results were observed with the MKO strain as seen as 

in the WT background; Atg9S122A was partially defective in PAS localization, whereas Atg9S122D 

had a higher percentage of localization at the PAS, in particular under nutrient-rich conditions 

(Fig. 2.4C, D and 2.9B). This consistent localization of Atg9 between the WT and MKO (Atg11-

Atg19-Atg23-Atg27) strains, where the latter can only carry out anterograde movement, suggests 

that S122 phosphorylation affects Atg9 anterograde trafficking.  
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2.3.6 Phosphorylation of S122 regulates Atg9 through its interactions with Atg23 and Atg27 

Having determined that S122 phosphorylation affects Atg9 anterograde trafficking, we 

next wanted to address the question of mechanism. Because of the known role of Atg11, Atg23 

and Atg27 in regulating Atg9 movement,[62, 194] and based on our finding that the MKO strain 

expressing these proteins recapitulates the Atg9 localization phenotype seen with the mutant forms 

of Atg9, we hypothesized that the interaction of Atg9 with Atg23 and/or Atg27 might be affected 

in the Atg9 mutants (Atg11 is not essential for nonselective autophagy and the deletion of ATG11 

has little effect on Phho8∆60 activity[87]). To test this hypothesis, we used the bimolecular 

fluorescence complementation (BiFC) assay. Briefly, in the BiFC assay, the Venus yellow 

fluorescent protein (vYFP) is split into 2 fragments, VN (corresponding to the N terminus of vYFP) 

and VC (the C terminus of vYFP).[195, 196] We fused VN to Atg9 and VC to either Atg23 or 

Atg27 on the genome. Fluorescence from these 2 chimeras can only be detected when the 2 

proteins interact and bring the 2 fragments of vYFP proximal to each other. A plasmid of RFP-

Ape1 was transformed into these strains to mark the PAS.   

A vYFP signal was observed both before and after N starvation (30 min), indicating that 

interactions between WT Atg9 and Atg23 or Atg27 exist during both basal and nonselective 

autophagy (Fig. 2.5). No vYFP fluorescence was detected in VN-Atg9, VC-Atg23 or VC-Atg27 

alone (Fig. 2.8), which suggested that the vYFP puncta seen with combinations of these proteins 

(Fig. 2.5) represented an interaction between Atg9 and Atg23 or Atg27. vYFP signals were also 

observed in S122A and S122D, suggesting that these interactions were not abolished in either 

mutant; however, the mutants displayed different numbers of vYFP dots per cell (Fig. 2.5). 

Calculation of the number of puncta was performed automatically using CellProfiler. Upon 

nitrogen starvation, with Atg23, Atg9S122A cells had ~20% fewer vYFP dots than WT, whereas 
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Atg9S122D cells contained almost 50% more puncta (Fig. 2.5B and 2.10A). A similar, but more 

dramatic, trend was found with Atg27, where the Atg9S122D cells displayed almost 3 times more 

puncta per cell than WT upon starvation (Fig. 2.5D and 2.10B). These results suggest that 

phosphorylation of S122 is important for the interaction of Atg9 with Atg23 and Atg27; in 

particular, this interaction was partially reduced with the S122A mutant and was substantially 

enhanced with S122D.  

 We could barely detect the interaction of Atg9 with either Atg23 or Atg27 by co-

immunoprecipitation, even with the wild-type proteins, suggesting that the binding may be weak, 

transient or unstable during the immunoprecipitation procedure. 

2.4 Discussion 

In this study, Atg9 S122 was identified through a SILAC assay as showing altered 

phosphorylation during autophagy induction. Among several sites of Atg9 that showed a change 

of phosphorylation level, S122 was the only one that showed a defect in autophagy activity when 

altered to a non-phosphorylatable mutant, S122A, and enhanced autophagy activity when 

constitutive phosphorylation was mimicked with S122D.  In addition to nonselective autophagy, 

our data also showed that the phosphorylation of S122 is important for selective autophagy. 

However, based on the SILAC results, S122 displayed a 1.45-fold increase of phosphorylation 

level in the atg1∆ strain compared to the WT, which means that it is not a direct target of Atg1 

kinase, which was previously shown to phosphorylate Atg9.[120]  

We attempted to determine the effect of altering phosphorylation at S122, and the 

mechanism behind any such effect. We found that the S122A and S122D mutations had opposing 

effects on autophagy activity, which may be explained by changes in autophagic body (and hence 

autophagosome) number. That is, more Atg9 at the PAS, as seen with Atg9S122D, correlated with 
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an increased rate of autophagosome formation. This result agrees with findings from a recent study 

where the absolute Atg9 levels correspond to the number, but not the size, of autophagosomes 

generated during autophagy.[184] With the Atg9S122D mutant we altered the amount of Atg9 at the 

PAS, rather than the total amount of the Atg9 protein. Thus, the present results suggest that it is 

this pool of Atg9 in particular that accounts for autophagosome formation. 

Considering that the PAS-localized pool of Atg9 is the critical one with regard to 

autophagy activity, how does phosphorylation affect the localization of Atg9? Using fluorescence 

microscopy, we found that Atg9S122A was defective in PAS localization, whereas Atg9S122D 

displayed a higher level of localization. Furthermore, using the MKO strain, we determined that 

anterograde movement was altered with the mutant version of Atg9. Finally, our data suggest that 

the S122D mutation results in an enhanced interaction between Atg9 and Atg27, one of the 

components required for efficient anterograde trafficking of Atg9.[179, 193] We note, however, 

that Atg23 and Atg27 do not appear to be conserved in higher eukaryotes, so different components 

my take the place of these proteins if this regulatory aspect of Atg9 trafficking is conserved beyond 

fungi. 

In summary, the phosphorylation-dependent regulation of Atg9 anterograde trafficking 

reveals another mechanism through which autophagy activity can be regulated. At present, the 

kinase or phosphatase that directly modifies Atg9 S122 remains to be identified, but these studies 

are currently underway. 

2.5 Materials and Methods 

2.5.1 Strains, media, and growth conditions 

Yeast strains used in this paper are listed in Table 1. Gene deletions or integrations were 

performed using a standard method.[53] Cells were cultured in rich medium (YPD; 1% [w/v] yeast 
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extract [ForMedium, YEM04], 2% [w/v] peptone [ForMedium, PEP04], and 2% [w/v] glucose) or 

synthetic minimal medium (SMD; 0.67% yeast nitrogen base [ForMedium, CYN0410], 2% 

glucose, and auxotrophic amino acids and vitamins as needed) as indicated. Autophagy was 

induced through nitrogen starvation by shifting cells in mid-log phase from YPD (or SMD) to SD-

N (0.17% yeast nitrogen base without ammonium sulfate or amino acids [ForMedium, CYN0501], 

and 2% [w/v] glucose) for the indicated times.  

2.5.2 Plasmids 

Integrating plasmids encoding Atg9-GFP[184] and a centromeric plasmid encoding RFP-

Ape1 have been published previously.[197] Plasmids encoding Atg9-GFP with mutations S122A, 

S122D, T119D were generated by site-directed mutagenesis[198] from Atg9-GFP.  

2.5.3 Fluorescence microscopy 

For fluorescence microscopy, yeast cells were grown to OD600 ∼0.5 in SMD and shifted to 

SD-N for autophagy induction. Images were collected on a Deltavision Elite deconvolution 

microscope (GEHealthcare/Applied Precision) with a 100× objective and a CCD camera 

(CoolSnap HQ; Photometrics).  

For quantification of Atg9-GFP colocalization with RFP-Ape1, stacks of 15 image planes 

were collected with a spacing of 0.2 µm to cover the entire yeast cell. Analysis was performed on 

an average projection of the imaging planes.  

2.5.4 Mass spectrometry 

WT and atg1D strains were grown in heavy and light lysine-supplemented SMD media, 

respectively. Upon reaching OD600 = 1.0, WT and atg1D cells were shifted to nitrogen starvation 

by culturing in SD-N media supplemented with light and heavy lysine, respectively, for 2 h. Cells 
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were then harvested and equal numbers of cells were mixed prior to protein extraction, 

trypsinization, enrichment of phosphopeptides by strong cation exchange chromatography, and 

purification of phosphopeptides using IMAC columns.[199] Desalted peptides were dissolved in 

5% formic acid and analyzed on an LTQ Orbitrap Velos mass spectrometer as described 

previously.[199] The following instrument parameters were employed: fully tryptic or LysC 

digestion, up to 2 missed cleavages, precursor mass tolerance of ±25 ppm, 1.0 Da product ion mass 

tolerance, a static modification of carbamidomethylation on cysteine (+57.0214); and dynamic 

modifications for phosphorylation on serine, threonine, and tyrosine (+79.9663), methionine 

oxidation (+15.9949), and 13C6 15N2-lysine (+8.0142).  Spectra were searches using SEQUEST 

and matched to peptides with a 1% FDR using the target decoy approach[200] and subsequently 

analyzed using linear discriminant analysis to derive Xcorr, DCn’, precursor mass error, and charge 

state. The Ascore method[201, 202] was used to assign phosphorylation sites and peptides 

quantified as described previously.[199] 

2.5.5 Transmission electron microscopy 

Two separate EM preparations were performed in 2 different labs. The first set of samples 

was prepared by Dr. M. Baba as described previously[203] with slight modifications: In pre-

fixation, the final fixative contained 0.1 M HEPES, pH 6.8, 0.1 M sorbitol, 1 mM MgCl2, 2% 

glutaraldehyde and 0.5% formaldehyde. 2x fixative was added directly into the starvation medium, 

and incubated for 5 min at room temperature (RT). Cells were collected by centrifugation and 1x 

fixative was added, followed by incubation at 4°C for 2.5 h. In post-fixation, 2% KMnO4 was 

added to the cells for 5 min at RT. Cells were collected by centrifugation and the fixative solution 

was removed. 2% KMnO4 was added and incubated for approximately 1 h at RT. After washing 

the cells, 2% low melting agarose was added followed by mixing. Subsequent steps were 
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performed as described previously.[203] The second set of samples was prepared in our lab as 

described previously.[179] 

2.5.6 Additional assays 

Pho8∆60 assays, western blot, prApe1 processing and EM were performed as described 

previously.[179, 196, 204, 205] Antibodies against Atg9, Ape1 and Pgk1 (a generous gift from Dr. 

Jeremy Thorner, University of California, Berkeley), and a commercial antibody that reacts with 

protein A (no longer available) were used as described previously.[81, 178] Anti-Dpm1 was from 

Molecular Probes/Invitrogen (A-6429). 

2.5.7 Statistical analysis 

Two-tailed Student’s t test, two-tailed paired Student’s t test and ANOVA F-test was used 

to determine statistical significance. 
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Table 2.1 Yeast strains used in this study. 
 

Name Genotype Reference 

SEY6210 MATα leu2-3,112 ura3-52 his3-∆200 trp1-∆901 suc2-∆9 lys2-

801 GAL 

[206] 

SKB257 MKO RFP-APE1 ATG9-GFP pATG11-19-23-27 This study 

SKB259 MKO RFP-APE1 ATG9-GFPS122A pATG11-19-23-27 This study 

SKB260 MKO RFP-APE1 ATG9-GFPS122D pATG11-19-23-27 This study 

WLY176 SEY6210 pho13∆ pho8∆60 [207] 

YKF001 WLY176 atg9∆::LEU2  ATG9-GFP::URA3 This study 

YKF002 WLY176 atg9∆::LEU2 ATG9-GFPS122A::URA3 This study 

YKF003 WLY176 atg9∆::LEU2 ATG9-GFPS122D::URA3 This study 

YKF004 WLY176 atg9∆::LEU2 ATG9-GFPT119D::URA3 This study 

YKF008 SEY6210 RFP-APE1::LEU2 atg9∆::HIS3 ATG9-GFP::URA3 This study 

YKF009 SEY6210 RFP-APE1::LEU2  atg9∆::HIS3 ATG9-

GFPS122A::URA3 

This study 

YKF010 SEY6210 RFP-APE1::LEU2  atg9∆::HIS3 ATG9-

GFPS122D::URA3 

This study 

YKF080 SEY6210 pep4∆::LEU2 atg9∆::HIS3 ATG9-GFP::URA3 This study 

YKF081 SEY6210 pep4∆::LEU2 atg9∆::HI3S ATG9-GFPS122A::URA3 This study 

YKF082 SEY6210 pep4∆::LEU2 atg9∆::HIS3 ATG9-GFPS122D::URA3 This study 

YKF109 BY4742 RFP-APE1::LEU2 ATG9-GFP::URA3 This study 

YKF110 BY4742 RFP-APE1::LEU2 ATG9-GFPS122A::URA3 This study 
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YKF111 BY4742 RFP-APE1::LEU2 ATG9-GFPS122D::URA3 This study 

YKF096 SEY6210 vac8∆::KAN atg9∆::LEU2  This study 

YKF396 SEY6210 vac8∆::KAN atg9∆::LEU2 ATG9-GFP::URA3 This study 

YKF397 SEY6210 vac8∆::KAN atg9∆::LEU2 ATG9-GFPS122A::URA3 This study 

YKF398 SEY6210 vac8∆::KAN atg9∆::LEU2 ATG9-GFPS122D::URA3 This study 

YKF417 SEY6210 Atg9-VNWT::TRP1 Atg23-VC::HIS3 RFP-

APE1::LEU2 

This study 

YKF413 SEY6210 Atg9S122A-VN::TRP1 Atg23-VC::HIS3 RFP-

APE1::LEU2 

This study 

YKF414 SEY6210 Atg9S122D-VN::TRP1 Atg23-VC::HIS3 RFP-

APE1::LEU2 

This study 

YKF415 SEY6210 Atg9S122A-VN::TRP1 Atg27-VC::HIS3 RFP-

APE1::LEU2 

This study 

YKF416 SEY6210 Atg9S122D-VN::TRP1 Atg27-VC::HIS3 RFP-

APE1::LEU2 

This study 

YKF418 SEY6210 Atg9WT-VN:TRP1 Atg27-VC::HIS3 RFP-

APE1::LEU2 

This study 
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Figure 2.1 Phosphorylation of Atg9 S122 is important for nonselective autophagy.  
(A) Wild-type (WT; SEY6210) and atg1∆ cells were collected after 2 h nitrogen starvation and 
subjected to SILAC analysis. A phosphorylation enrichment score was identified for 4 sites of 
Atg9. (B, C) WLY176 cells were transformed with empty vector (pRS406) or a plasmid containing 
WT or different phosphorylation mutants of Atg9-GFP as indicated. Cells were cultured in YPD 
(+N) to midlog phase, and shifted to SD-N (-N) for 4 h. The Pho8∆60 assay was performed as 
described in Materials and Methods. Error bars correspond to the standard deviation and were 
obtained from 3 independent repeats. Two-tailed t test was used for statistical significance; ∗p < 
0.05. 
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Figure 2.2 Phosphorylation of Atg9 S122 is important for selective autophagy.  
(A, B) Processing of prApe1 was monitored. atg9∆ vac8∆ cells, transformed with empty vector or 
a plasmid containing WT Atg9 and either (A) Atg9S122A or (B) Atg9S122D, were cultured in YPD to 
early log phase (0D600 = 0.5) and shifted to SD-N for 0-2 h as indicated. Cells were collected and 
protein extracts were analyzed by western blot with anti-Ape1 antibody and either anti-Pgk1 or 
anti-Dpm1 (loading control) antiserum or antibody. The ratio of Ape1: total Ape1 (preApe1 + 
Ape1) was measured and normalized to that of WT cells, which was set to 100%.  
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Figure 2.3 Phosphorylation of Atg9 S122 regulates the number of autophagosomes 
formed/formation rate.  
(A) Representative TEM images of cells of WT and mutant Atg9 after 4 h of nitrogen starvation. 
Autophagic bodies are outlined on the right. Scale bar: 500 nm. (B) Estimated average number of 
autophagic body numbers per cell in WT and mutant Atg9 after 4 h of nitrogen starvation. 
Estimation was based on the number of autophagic body cross sections observed by TEM in 2 
independent experiments done by 2 different labs of more than 100 cells each for each strain.   
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Figure 2.4 Phosphorylation of S122 is important for Atg9 anterograde trafficking.  
(A) Representative florescence microscopy images of atg9∆ cells transformed with a plasmid 
expressing WT or mutant Atg9-GFP. A plasmid expressing RFP-Ape1 was also used to provide a 
PAS marker. Cells were cultured in YPD, shifted to SD-N and collected at both 0 and 30 min 
nitrogen starvation. The single z-stack images are displayed at equal intensity for comparison. 
Scale bars: 5 µm. (B) Quantification of colocalization between Atg9-GFP and RFP-Ape1. Error 
bars correspond to the standard deviation and were obtained from 3 independent repeats. (C) 
Representative florescence microscopy images of the MKO strain expressing Atg11-Atg19-
Atg23-Atg27 and RFP-Ape1, and transformed with a plasmid expressing WT or mutant Atg9-
GFP. Cells were cultured, collected and imaged as in (A). (D) Quantification of colocalization 
between Atg9-GFP and RFP-Ape1 was performed as in (B). ANOVA F test was used for statistical 
significance. ∗,	p < 0.05; ∗∗,	p < 0.01 
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Figure 2.5 Phosphorylation of Atg9 S122 is important for the interaction of Atg9 with Atg23 
and Atg27.  
(A, B) Representative florescence microscopy images (A) of WT or mutant Atg9-VN expressed 
with Atg23-VC. RFP-Ape1 was used as a PAS marker. Cells were cultured and collected as in 
Figure 4. Scale bars: 5 µm. (B) Quantification of vYFP puncta/cell was performed using 
CellProfiler. (C, D) Representative florescence microscopy images (C) of WT or mutant Atg9-
VN expressed with Atg27-VC. (D) Quantification of vYFP puncta/cell was performed using 
CellProfiler. ANOVA F test was used for statistical significance. ∗,	p < 0.05; ∗∗,	p < 0.01. 
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Figure 2.6 Phosphorylation of Atg9 S122 is important for nonselective autophagy.  
(A) Untransformed WLY176 (WT) or WLY176 atg9∆ cells transformed with an empty vector or 
a pRS406 plasmid expressing either untagged Atg9 or Atg9-GFP, and assayed for Pho8∆60 
activity after 4 h nitrogen starvation as described in Materials and Methods. Error bars correspond 
to the standard deviation and were obtained from 3 independent repeats. (B) Alignment of the N 
terminus of Atg9 throughout different species. (C-E) Results of (C) Figure 1B, (D) Figure 1C and 
(E) Figure S1 are displayed, showing 3 independent repeats as scatterplots. 
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Figure 2.7 Phosphorylation of Atg9 S122 does not affect the size of autophagosomes.  
Estimated average radius of autophagic bodies in WT and mutant Atg9 after 4 h of nitrogen 
starvation. The estimation was based on the radius of autophagic body cross sections observed by 
TEM in 2 independent experiments done by 2 different labs of more than 100 cells each for each 
strain.   
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Figure 2.8 Phosphorylation of S122 is important for the interaction of Atg9 with Atg23 and 
Atg27.  
Representative florescence microscopy images of cells expressing only WT Atg9-VN，Atg23-
VC or Atg27-VC. Cells were cultured, collected and imaged as in Figure 5. Scale bars: 5 µm.  
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Figure 2.9 Phosphorylation of S122 is important for Atg9 anterograde trafficking.  
(A-B) Results of the quantification of colocalization between Atg9-GFP and RFP-Ape1 from (A) 
Figure 4B and (B) Figure 4D are displayed, showing 3 independent repeats as scatterplots. 
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Figure 2.10 Phosphorylation of Atg9 S122 is important for the interaction of Atg9 with Atg23 
and Atg27.  
Results of the quantification of colocalization between Atg9-GFP and RFP-Ape1 in (A) Figure 5B 
and (B) Figure 5D are displayed, showing 3 independent repeats as scatter.



 58 

Chapter 3 Downregulation of Autophagy by Met30-Mediated Atg9 Turnover3 

3.1 Abstract 

Macroautophagy/autophagy is primarily a self-eating process that recycles cytosolic 

components such as misfolded or aggregated proteins and dysfunctional organelles for 

homeostasis, and for survival in unfavorable conditions. Autophagy is stringently regulated at 

different levels including transcriptionally, post-transcriptionally, translationally and post-

translationally. A thorough understanding of the mechanisms involved is crucial to allow the 

manipulation of autophagy for the treatment of diseases. Post-translational modifications (PTMs) 

represent a subset of regulatory mechanisms that are critical for modulating autophagy in order to 

adapt to different types of environmental stress. In summary, we identified a novel mechanism of 

Atg9 regulation in autophagy through PTMs. In growing conditions, Atg9 is synthesized at a basl 

level and cells are primed for autophagy. We show that in this situation Atg9 is ubiquitinated and 

targeted for degradation in a proteasome-dependent manner, thereby limiting autophagy to a basal 

level. However, when cells are deprived of nutrients, autophagy is highly induced, necessitating 

an increase in the amount of Atg9; the proteasome-dependent reduction of Atg9 protein levels is 

subsequently reduced to facilitate the increase in autophagy. Thus, the post-translational 

ubiquitination of Atg9 provides an additional mechanism that allows cells to maintain appropriate 

levels of autophagy, and—by ending this modification—to rapidly respond and adapt to 

environmental stresses. 

                                                
3 A modified version of this chapter has been submitted for publication.  
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3.2 Introduction 

Depending on the type of cargo that is sequestered, autophagy can be nonselective or 

selective; examples of the latter include the cytoplasm-to-vacuole targeting (Cvt) pathway, 

mitophagy, and pexophagy [113, 208]. One of the key features of autophagy is the generation of 

the phagophore, a dynamic and transient compartment that carries out the sequestration of 

cytoplasm; during maturation, the phagophore seals, becoming a double-membrane spherical 

structure referred to as an autophagosome. At present, in the complex network of autophagy-

related (ATG) genes that are present in all eukaryotes, over 40 unique components have been 

identified that make up the autophagy machinery; the core components refer to those proteins that 

are critical for autophagosome formation [208]. However, many questions remain concerning the 

mechanism of autophagosome biogenesis, including the source of the membrane used for 

nucleation and expansion of the phagophore. Among the core machinery, AtgG9 is the only 

transmembrane protein (and one of only two Atg membrane proteins in fungi) [103]. Unlike most 

other Atg proteins that mainly localize as a diffuse population in the cytosol and as a discrete 

punctum that corresponds to the phagophore assembly site (PAS)—where the phagophore 

nucleates—Atg9 is found at multiple punctate structures in yeast cells in addition to the PAS. 

Various studies have indicated that Atg9 travels through and/or remains in proximity to the 

endoplasmic reticulum, the Golgi apparatus, endosomes, and mitochondria [58, 209, 210]. When 

autophagy is induced, the percent of the total Atg9 population that localizes at the PAS is 

significantly increased [211]. This observation suggests that during autophagy, Atg9 is constantly 

cycling between the PAS and peripheral sites [193], presumably facilitating the delivery of 

membranes from donor organelles that is used for autophagosome formation [103]. Therefore, 
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characterizing Atg9 thoroughly is of great importance in understanding the membrane origin, and 

the mechanism of phagophore expansion in autophagy.  

The highly conserved and constitutive autophagy pathway has to be critically regulated; 

disruption of this balance leads to various diseases that include neurodegeneration, cancer and 

infection, as well as aging-related disorders [212, 213]. It is essential that we gain a detailed 

understanding of the regulatory mechanisms that control autophagy to enable its safe modulation 

for therapeutic purposes. Studies have shown that Atg9 is transcriptionally repressed in growing 

conditions; this regulation correlates with the number of autophagosomes formed [184], in 

agreement with the model that Atg9 plays a critical role in membrane delivery to the PAS.  

In addition to transcriptional control, post-translational modifications (PTMs) such as 

glycosylation, ubiquitination, phosphorylation, acetylation, lipidation, and proteolysis, represent a 

subset of regulatory mechanisms that are critical for controlling the level of autophagy activity that 

allows cells to adapt to various stress conditions [122, 176, 214, 215]. Ubiquitination involves the 

addition of the 8-kDa ubiquitin (Ub) moiety to a targeted protein; different linkages direct the 

target for subsequent proteasome-dependent degradation, signal transduction or other cellular 

processes. The completion of the reaction cascade requires an E1 Ub activating enzyme, an E2 Ub 

conjugating enzyme (E2), an E3 Ub ligase, and, in some cases, an E4 Ub chain elongation factor 

[216]. Recent studies have reported a role for the CUL3-KLHL20 complex, which acts as a 

ubiquitin ligase in mammalian cells; the activity of this enzyme leads to the degradation of the 

PIK3C3/VPS34 and ULK1 complexes, and the subsequent downregulation of autophagy [217]. 

Lys63-linked ubiquitination of BECN1 by TRAF6 or by AMBRA1 regulate its binding to BCL2 

as well as subsequent phosphatidylinositol 3-kinase complex activity. TRAF6-mediaed 

ubiquitination of BECN1 amplifies lipopolysaccharide-, IFNG/interferon γ- and amino acid 
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starvation-induced autophagy in mouse macrophages [218]. In addition, deubiquitinating enzymes 

such as USP10 and USP13 are involved in the regulation of BECN1 ubiquitination in human and 

mouse cells, which promotes autophagy [219]. In our study, we discovered a novel role of 

ubiquitination on Atg9 in the regulation of autophagy in basal conditions; termination of this 

modification allows cells to rapidly respond and adapt to environmental stresses. 

Based on a large-scale analysis predicting that yeast Atg9 is ubiquitinated and is short-

lived [220], we studied the regulation of this protein through ubiquitination. We found that… 

3.3 Results  

3.3.1 Atg9 is ubiquitinated in nutrient-rich conditions 

In the study by Radivojac et al., Atg9 is proposed to be ubiquitinated on lysine (K) 113 and 

K138, both of which are localized at the N terminus of Atg9, which is predicted to face the cytosol 

(Fig. 1A). To detect Atg9 ubiquitination at the endogenous level, we used TUBEs (Tandem 

Ubiquitin Binding Entities) agarose beads for isolation and detection of poly-ubiquitinated Atg9 

[221]. Due to the low abundance of Atg9 molecules in a cell, we adopted an extra step of Atg9-

MYC affinity isolation with anti-MYC magnetic beads to enrich Atg9 from the cell extract, and 

used it as input for the subsequent TUBEs precipitation; thus, we refer to this procedure as a two-

step affinity isolation of poly-ubiquitinated Atg9. Ubc6, a known proteasome substrate, was also 

included as a positive control [222]. Similar to Ubc6, Atg9-MYC was detected after TUBEs 

affinity isolation, suggesting that Atg9 was ubiquitinated (Fig. 3.1B, Step 2, IP). We repeated the 

affinity isolation using a gradient of TUBEs agarose beads to determine the point of saturation 

(Fig. S1B). Using a gradient of TUBEs agarose beads we found that the amount of Atg9 that was 

affinity isolated increased, suggesting that at low levels the TUBEs beads may be saturated (Fig. 

3.8B). When we examined the same number of cells from nutrient-depleted conditions, we 
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detected a substantial decrease in the amount of affinity-isolated (ubiquitinated) Atg9 (Fig. 3.8B). 

These results indicate that Atg9 is a ubiquitinated protein and this ubiquitination occurs primarily 

in rich conditions.  

3.3.2 Atg9 is targeted for proteasome dependent degradation  

Next, we decided to investigate whether the ubiquitination of Atg9 is a signal for 

proteasomal degradation or if it plays a role in regulating other cellular processes including protein 

translocation from peripheral sites to the PAS and protein-protein interaction. Accordingly, we 

looked at Atg9 steady-state protein levels in a proteasome mutant compared with the wild-type 

(WT) isogenic control strain. The PRE1 gene, encodes the beta 4 subunit of the 20S proteasome, 

and is essential; therefore, we used a temperature-sensitive pre1-1 mutant to analyze the stability 

of Atg9 when proteasome activity is compromised. When cultured at a permissive temperature 

(24°C), Atg9 protein levels were essentially the same in the pre1-1 mutant compared to the WT 

cells, and the same was true during 1 h of nitrogen starvation (Fig. 3.2A). In contrast, at a 

nonpermissive temperature (34°C), the Atg9 protein level in the pre1-1 mutant was increased 

compared to the WT or to the mutant at 24°C (Fig. 3.2A). Furthermore, this increase in the Atg9 

protein amount was reversed after shifting the cells back to 24°C.  

To extend this analysis, we also chemically inhibited proteasome activity through MG132 

treatment and examined the effect on Atg9 turnover. In this experiment, cycloheximide (CHX) 

was added, allowing us to monitor degradation in the absence of new protein synthesis. In growing 

conditions, Atg9 was degraded by approximately 50% after 1.5 h in the presence of CHX. In 

contrast, this degradation was largely blocked following treatment with MG132 (Fig. 3.2B). The 

turnover of Ubc6 was monitored as a positive control and showed a half-life of approximately 1 h 
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(Fig. 3.9), in agreement with published studies [222] with nearly complete rescue in the presence 

of MG132 (Fig. 3.9).  

Based on our findings in Figure 1, which showed that Atg9 ubiquitination decreased in 

nitrogen starvation conditions (i.e., when autophagy was induced), we decided to test if this 

decrease of ubiquitination also corresponded to a decrease of degradation. We carried out the same 

analysis to examine degradation in the presence of CHX in nitrogen starvation conditions and 

found that Atg9 degradation was indeed essentially blocked (Fig. 3.2C). Next, we determined 

whether the putative ubiquitination sites, K113 and K138, were involved in the degradation event. 

To do this, we generated an Atg9K113,138R double mutant (Atg9KKRR) that is no longer subject to 

ubiquitination at these sites and repeated the same analysis. In agreement with these sites serving 

as ubiquitination targets, the Atg9KKRR mutant displayed a substantial stabilization in the presence 

of CHX in nutrient-rich conditions (Fig. 3.3A). These results collectively suggest that Atg9 is a 

target of the ubiquitin-proteasome system in growing conditions, when autophagy is maintained 

at a basal level. 

Atg9 undergoes dynamic cycling during autophagy, shuttling between the peripheral sites 

and the PAS [58, 61, 178]. Anterograde trafficking to the PAS from the peripheral sites is 

dependent on various proteins including Atg23 [62], whereas the retrograde trafficking from the 

PAS to the peripheral sites depends on Atg1-Atg13 and Atg2-Atg18 [44]. To understand the timing 

and subcellular location of Atg9 ubiquitination, we generated atg23∆, and atg1∆ cells, where Atg9 

is either blocked at the peripheral sites or at the PAS, respectively. Again, we examined Atg9 

stability at either location. In atg23∆ cells, Atg9 was degraded similar to the situation seen in the 

WT and to an even greater level, and this degradation was blocked by MG132 treatment (Fig. 

3.3B). Similar result is seen in atg27∆ cells (Fig. 3.10A). In contrast, in atg1∆, Atg9 appeared to 
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be stabilized in the absence or presence of MG132 (Fig. 3.3C). It is also consistent with results in 

atg18∆ cells (Fig. 3.10B). These findings suggest that Atg9 degradation happens primarily at the 

peripheral sites, which is consistent with our previous finding that Atg9 degradation primarily 

occurs in growing conditions. 

3.3.3 Atg9 ubiquitination affects autophagy activity  

To test if the two putative ubiquitination sites, K113 and K138, play a role with regard to 

autophagy activity, we examined the Atg9KKRR double mutant using an assay that monitors the 

processing of GFP-Atg8. GFP-Atg8 is initially present on both the convex and concave surfaces 

of the phagophore; the GFP-Atg8 that is localized on the concave surface becomes trapped within 

the autophagosome, is transported into the vacuole during autophagy, and is subsequently 

degraded. GFP is relatively stable to hydrolysis compared to the full-length chimera, so the free 

GFP produced reflects the level of autophagy [223]. Compared to the WT, the double mutant 

Atg9KKRR showed a statistically significant increase in autophagy-dependent GFP-Atg8 

processing, particularly when looking at the basal level (0 h) and the 1 h time point; by 2 h of 

starvation, when the Atg9 protein level was increasing in the WT strain due to the block in 

ubiquitination, the difference became insignificant (Fig. 3.4A). 

The GFP-Atg8 processing assay measures both selective and nonselective autophagy. To 

examine the effect of Atg9KKRR on selective autophagy activity we used the precursor 

aminopeptidase I (prApe1) maturation assay in vac8∆ cells. Ape1 is a vacuolar enzyme that is 

initially synthesized in the cytosol as a precursor containing a propeptide; delivery of prApe1 to 

the vacuole can occur via either the Cvt pathway or nonselective autophagy, depending on nutrient 

conditions [81, 188];  in either case, the efficient trafficking of prApe1 depends on a receptor 

protein, Atg19, making the delivery a selective process [86].  Following the release of prApe1 into 
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the vacuole lumen, the propeptide is removed, which generates the mature Ape1 hydrolase. This 

maturation event—removal of the propeptide—is easily detected by SDS-PAGE due to the 

resulting change in molecular mass. In this experiment, we relied on the phenotype of the vac8∆ 

strain; in the absence of Vac8, prApe1 accumulates in cells during vegetative growth, due to an 

essentially complete block in the Cvt pathway; however, following a shift to starvation conditions 

there is rapid vacuolar delivery and maturation of prApe1 [53].  Thus, shifting vac8∆ cells from 

vegetative to starvation conditions mimics a pulse-chase analysis. In the atg9∆ vac8∆ strain we 

could detect only prApe1 even after autophagy was induced by starvation (Fig. 3.4B). This block 

in prApe1 maturation that was seen under autophagy-inducing conditions was rescued by 

chromosomal re-integration of the wild-type ATG9 gene, and prApe1 maturation was increased in 

the presence of Atg9KKRR after 1 h starvation (Fig. 3.4B). These results suggest that the 

ubiquitination of Atg9 has consequences for Atg9 function in both selective and nonselective 

autophagy. 

3.3.4 The Atg9 ubiquitination mutant has increased PAS localization   

To follow the movement of Atg9, we monitored cells expressing wild-type Atg9 or 

Atg9KKRR driven by the native ATG9 promoter, and tagged with GFP on the C terminus. We used 

red fluorescent protein (RFP)-tagged prApe1 (RFP-Ape1) as a marker of the PAS, and quantified 

the colocalization with the Atg9 chimeras. During vegetative growth, Atg9-GFP localized to 

multiple puncta per cell, and approximately 20% of the cells examined had Atg9-GFP puncta 

localized to the PAS; this distribution of Atg9 during basal autophagy agrees with our previously 

published data [211]. The percent colocalization at the PAS (i.e., the population of active Atg9) 

was increased to approximately 50% after cells were shifted to starvation (-N) conditions for 30 

min. In contrast, the colocalization of Atg9-GFP in cells expressing Atg9KKRR-GFP was 
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substantially higher than WT in growing conditions and it remained at the WT level after 

autophagy was induced (Fig. 3.5A). This result suggests that the partial block of Atg9 degradation 

due to the block in ubiquitination at K113 and K138 leads to an increase in the population that is 

localized to the PAS.  

To test if the increased PAS localization of Atg9KKRR bypasses the normal requirement of 

its interacting proteins, we carried out the same experiment in either the atg1∆ strain, where Atg9 

accumulates at the PAS or in atg27∆ cells, where Atg9 remains at the peripheral sites. In this case, 

by again monitoring the colocalization of Atg9-GFP and RFP-Ape1, we found no significant 

differences between the KKRR mutant and WT with regard to Atg9 localization in these two 

deletion backgrounds (Fig. 3.5B-D). Taken together, these data suggest that the increased PAS 

localization of Atg9KKRR-GFP does not bypass the role of Atg proteins involved in Atg9 

trafficking, and that it depends on the higher protein level of Atg9 resulting from the block in 

degradation. 

3.3.5 Atg9 degradation is mediated by Met30 

To identify for the E3 ligase that covalently link ubiquitin to Atg9, we performed a screen 

of yeast strains harboring knockouts or conditional mutations in the genes encoding the E3 

enzymes. Atg9 was tagged with protein A (PA) on the genome in each mutant and Atg9-PA 

stability was monitored in the presence of CHX. In WT cells, after 3 h of CHX treatment, the Atg9 

protein level decreased to approximately 20% of that present at time 0. Most of the E3 mutants 

that we screened, such as yjl149w∆ and rad7∆, displayed a similar stability of Atg9 as seen in WT 

(Fig. 3.11). A few of the mutants had a partial effect on Atg9 degradation, resulting in over 50% 

of Atg9 being present at the 3-h time point. Among all of the mutants tested, the met30-6 

temperature-sensitive mutant displayed the most significant block; more than 80% of Atg9 
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remained after 3 h in the presence of CHX (Fig. 3.6A). This result suggests that Atg9 degradation 

is mediated at least in part by Met30.  

Met30 is an F-box protein working in a SCF (Skp, Cullin, F-box containing) ubiquitin 

complex, which contributes to substrate specificity by targeting a specific protein [224]. The 

association between E3 and substrate is weak and transient due to the fact that F-box proteins are 

not abundant, or stable and also as a result of the rapid de-ubiquitination process. To test if Atg9 

is a substrate of the Met30 SCF, we used a bimolecular fluorescence complementation (BiFC) 

assay. Briefly, this assay involves the separation of  the Venus yellow fluorescent protein (vYFP) 

into two fragments, VN and VC, corresponding to the N and C termini of vYFP, respectively 

[195]. If the two halves of vYFP are brought into proximity due to interaction of the respective 

chimeras, fluorescence is restored. We genomically fused VN to Atg9 on the C terminus and 

overexpressed VC under the RPL1 promoter to Met30 on the N terminus. In growing conditions, 

a vYFP signal was observed only in cells that expressed both Atg9-VN and VC-Met30 (Fig. 3.6B), 

suggesting that interactions between Atg9 and Met30 existed in basal autophagy conditions. The 

interaction of Atg9-VN and Atg23-VC was included as a positive control (Fig. 3.6B) [211]. The 

interaction between Atg9-VN and VC-Met30 was also seen in starvation conditions; however, we 

think this observation reflects the fact that vYFP is extremely stable in the BiFC complex. In 

contrast, we could barely detect the interaction between these two proteins through co-

immunoprecipitation even in growing conditions, suggesting this binding is weak and/or transient 

(data not shown). 

Phosphorylation can promote or inhibit subsequent protein ubiquitination [225], and 

previous studies showed Atg9 is a phosphoprotein [120, 211]. Accordingly, we examined 

ubiquitination-dependent degradation of Atg9 in phosphorylation site mutants. We observed that 



 68 

Atg9S122A was degraded in a similar pattern as in WT cells with 1 or 2 h of CHX chase (Fig. 3.6C). 

This result suggests that phosphorylation of S122A in Atg9 is not involved in the regulation of its 

ubiquitination.   

3.4 Discussion 

Atg9 is the only membrane protein in the autophagy core machinery, and it plays a 

significant role in phagophore/autophagosome formation; thus, it is important to know how this 

protein is regulated in order to understand the mechanism of autophagy. Based on a large-scale 

analysis that predicts Atg9 is a ubiquitinated protein with a short half-life, we first verified this 

ubiquitination by two-step affinity isolation using TUBEs, and observed a higher amount of Atg9 

being pulled down in nutrient-rich conditions compared to starvation, which indicates Atg9 is 

primarily ubiquitinated in growing conditions. By checking the protein stability of Atg9 in cells 

where proteasome function was compromised either genetically or through chemically inhibition, 

we further determined that this ubiquitination is a signal for proteasome-dependent degradation of 

Atg9 in growing conditions, which maintains autophagy at a low basal level. This hypothesis is 

consistent with our later findings that Atg9 was degraded in atg23∆ cells when it was restricted to 

peripheral sites; whereas, it was stabilized in atg1∆ cells when Atg9 is primarily localized at the 

PAS. These findings suggest that the “active” population of Atg9 (i.e., Atg9 that has orchestrated 

the delivery of membrane) at the PAS is not subject to degradation, while that part of the Atg9 

pool localized at peripheral sites, or on its way to the PAS, is subject to degradation.  

We also generated Atg9 lysine-to-arginine double mutants K113,138R (KKRR) based on 

the predicted ubiquitination sites. These two sites are conserved across different species of fungi 

(Fig. 3.8A) and this type of modification and regulation may be also conserved among more 

complex eukaryotes. Using both GFP-Atg8 processing and prApe1 processing assays, we found 
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that autophagy activity was increased in the mutant compared to WT, which maybe due to a higher 

level of Atg9. This is consistent with previous findings showing that the amount of Atg9 correlates 

with the number of autophagosomes formed (i.e., the frequency of formation) and hence with 

autophagy activity [184]. Knowing Atg9 is undergoing dynamic trafficking during autophagy, we 

also looked at its PAS localization as a readout of its trafficking and found there was a higher PAS 

localization in the presence of KKRR mutant Atg9 compared to WT cells in growing conditions. 

We hypothesized that this higher autophagy activity and higher PAS localization of Atg9 was due 

to the higher Atg9 protein level as a result of a partial block of ubiquitination. However, the KKRR 

mutant was not able to travel to the PAS without Atg27 or Atg1. To look for the E3 ligase 

responsible for conjugating ubiquitin to Atg9 in growing conditions, we performed a screen using 

an E3 knockout library to look for a mutant that stabilizes Atg9. Among 37 E3s we screened, Atg9 

was stabilized the most significantly in met30 ts, suggesting Atg9 degradation is mediated by 

Met30. We further validated this hypothesis by testing interactions between Atg9 and Met30 by 

BiFC, and indeed observed interacting signals in growing conditions.  

In summary, we identified a novel mechanism of Atg9 regulation in autophagy through 

ubiquitination. In growing conditions, Atg9 is synthesized and cells are primed for autophagy. We 

showed that Atg9 is ubiquitinated and targeted for degradation in a proteasome-dependent manner 

during nutrient-rich conditions, therefore limiting autophagy to a basal level. However, when cells 

are nutritionally deprived, autophagy is highly induced, necessitating an increase in the amount of 

Atg9; the proteasome-dependent reduction of Atg9 protein levels is reduced to give cells a 

jumpstart for autophagy. Thus, the post-translational ubiquitination of Atg9 provides an additional 

mechanism that allows cells to maintain appropriate levels of autophagy, and to rapidly respond 

and adapt to environmental stresses. 
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3.5 Materials and Methods 

3.5.1 Strains, media, and growth conditions 

Yeast strains used in this paper are listed in Table 1. Gene deletions or integrations were 

performed using a standard method [226, 227]. Cells were cultured in rich medium (YPD; 1% 

[w:v] yeast extract [ForMedium, YEM04], 2% [w:v] peptone [ForMedium, PEP04], and 2% [w:v] 

glucose), or synthetic minimal medium (SMD; 0.67% yeast nitrogen base [ForMedium, 

CYN0410], 2% glucose, and auxotrophic amino acids and vitamins as needed) as indicated, 

referred to as nutrient-rich conditions. Autophagy was induced through nitrogen starvation by 

shifting cells in mid-log phase from YPD (or SMD) to SD-N (0.17% yeast nitrogen base without 

ammonium sulfate or amino acids [ForMedium, CYN0501], and 2% [w:v] glucose) for the 

indicated times, referred to as starvation conditions. 

3.5.2 Plasmids 

Integrating plasmids encoding Atg9-GFP [184] and a centromeric plasmid encoding pCu-

GFP-ATG8 or RFP-Ape1 have been published previously [223]. Plasmids encoding Atg9-GFP 

with mutations K113R and K138R was generated by site-directed mutagenesis [198] from Atg9-

GFP. 

3.5.3 Ubiquitination assay 

Step 1: Yeast cells (50 OD units; equivalent to 50 ml of cells at OD600 = 1.0) grown in YPD 

to OD600 =1.0 were lysed using glass beads in 1.5 ml IP buffer (PBS, 200 mM Sorbitol, 1 mM 

MgCl2, 0.1% Tween 20), supplemented with a mixture of protease inhibitor cocktail (Complete 

EDTA-free, Roche; 1 tablet per 50 ml lysis buffer) and 1 mM PMSF. After mixing by vortex for 

8 min and centrifugation for 10 min at 15,000 rpm (20,879 x g), the resulting supernatant was 
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removed and incubated with 100 µl of anti-MYC/c-Myc magnetic beads (Thermo Scientific) for 

4 h at 4°C. Magnetic beads are washed 3 times with IP buffer and collected using a magnetic stand. 

MYC-tagged protein was eluted by incubating 3 times with 100 µl of 0.5 mg/ml MYC/c-Myc 

peptide (Sigma) at 37°C, 10 min. The eluate concentration was measured using NanoDrop. Step 

2: The eluate was incubated with agarose-TUBEs beads (LifeSensors) according to the 

manufacturer’s protocol overnight at 4°C. Beads were washed 3 times with IP buffer and then 

suspended in SDS-PAGE loading buffer (50 mM Tris-Cl, pH 6.8, 100 Mm DTT, 2% SDS, 0.1% 

bromophenol blue, 10% glycerol) and analyzed by western blot. 

3.5.4 Additional assays 

GFP-Atg8 processing, prApe1 processing, western blot, fluorescence microscopy and 

BiFC assays were performed as described previously [211, 223]. Antibodies against GFP, Atg9, 

Ape1 and Pgk1 (a generous gift from Dr. Jeremy Thorner, University of California, Berkeley) 

were used as described previously. A commercial antibody that reacts with protein A (Jackson 

Immunoresearch) was used at 1:40,000 dilution and anti-MYC/c-Myc (Invitrogen) was used at 

1:5,000 dilution. 

3.5.5 Statistical analysis 

Two-way ANOVA test was used to determine statistical significance.  

* p<0.05, ** p<0.01, *** p<0.001, N.S., not statistically significant 
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Table 3.1. Yeast strains used in this study. 
Name Genotype Reference 

SEY6210 MATα leu2-3,112 ura3-52 his3-∆200 trp1-∆901 suc2-∆9 lys2-

801 GAL 

[206] 

YKF548 WLY176 pdr5∆drKAN UBC6-13MYC::HIS3 This study 

YKF539 WLY176 ATG9-MYC::TRP1 doa4∆::KAN This study 

YKF511 WLY176 ATG9-MYC::TRP1 This study 

YKF557 WLY176 pdr5∆::KAN UBC6-MYC::HIS3 This study 

YKF512 BY4741 ATG9-PA:: HIS3 This study 

YKF513 BY4741 pre1-1ts::KAN ATG9-PA::HIS3 This study 

YKF515 BY4741 UBC6-PA::HIS3 pdr5∆::KAN This study 

YKF508 WLY176 pdr5∆::KAN ATG9-PA::HIS3 This study 

YKF619 WLY176 atg9∆::LEU2 pRS314 ATG9-PA ::TRP1 This study 

YKF620 WLY176 atg9∆::LEU2 pRS314 ATG9 K113R K138R -PA::TRP1 This study 

YKF530 WLY176 pdr5∆::KAN ATG9-PA::HIS3 atg23∆::URA This study 

YKF547 WLY176 pdr5∆::KAN ATG9-PA::HIS3 atg18∆::URA3 This study 

YKF531 WLY176 pdr5∆::KAN ATG9-PA::HIS3 atg27∆::URA3 This study 

YKF528 WLY176 pdr5∆::KAN ATG9-PA::HIS3 atg1∆::URA This study 

YKF083 WLY176 atg9Δ::LEU2  ATG9-GFP::URA RFP-APE1:TRP1 This study 

YKF516 WLY176 atg9∆::LEU2 ATG9K113RK138R-GFP::URA3 RFP-

APE1::TRP1 

This study 

YKF496 WLY176 atg9∆::LEU2 ATG9-GFP::URA3 RFP-APE1::TRP1 

atg1∆::HIS3 

This study 



 73 

YKF500 WLY176 atg9∆::LEU2 ATG9-GFP::URA3 RFP-APE1::TRP1 

atg27∆::HIS3 

This study 

YKF538 WLY176 atg9∆::LEU2 ATG9K113RK138R-GFP::URA3  

RFP-APE1::TRP1 atg1∆::HIS3 

This study 

YKF506 WLY176 atg9∆::LEU2 ATG9K113RK138R-GFP::URA3  

RFP-APE1::TRP1 atg27∆::HIS3 

This study 

YKF621 WLY176  pRPL-VC-MET30::KAN This study 

YKF640 WLY176 pRPL-VC-MET30::KAN  ATG9-VN::HIS3 This study 

YKF631 WLY176 ATG9-VN::HIS3 This study 

YKF001 WLY176 atg9Δ::LEU2 ATG9-GFP WT::URA3 [211] 

YKF002 WLY176 atg9Δ::LEU2 ATG9-GFP S122A::URA3 [211] 
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Figure 3.1 Atg9 is ubiquitinated in nutrient-rich conditions.  
(A) Schematic representation of Atg9 highlighting positions of K113 and K138 on the N terminal 
cytosolic domain. (B) TUBEs affinity isolation of ubiquitinated Ubc6 and Atg9 in growing 
conditions 
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Figure 3.2 Atg9 is targeted for proteasome-dependent degradation.  
(A) Atg9-PA protein level in WT and proteasome-mutant pre1-1 ts cells under permissive (24°C) 
and non-permissive (34°C) temperatures. Quantification of the data is shown on the right. (B, C) 
Atg9-PA protein stability in (B) growing or (C) starvation conditions in control (DMSO) and 
proteasome inhibitor (MG132; 75 µM)-treated cells at the indicated time points of CHX (100 
µg/ml) chase time. Quantification of the data is shown below each set of blots. 
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Figure 3.3 Atg9 is primarily degraded at peripheral sites.  
(A) Atg9-PA protein stability in WT and KKRR mutant cells at the indicated time points of CHX 
chase time. (B, C) Atg9-PA protein stability in (B) atg23∆ or (C) atg1∆ cells in control (DMSO) 
and proteasome inhibitor (MG132) treatment conditions at the indicated time points of CHX chase 
time. The quantification for each set of blots is shown on the right. 
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Figure 3.4 Atg9 ubiquitination is important for autophagy activity.  
(A) Western blot analysis of a GFP-Atg8 processing assay in atg9∆ cells transformed with a 
plasmid expressing Atg9-GFP WT or the KKRR mutant. Cells were cultured in YPD, shifted to 
SD-N and collected at the indicated time points of nitrogen starvation. The quantification of free 
GFP:total GFP ratio is shown on the right. (B) Western blot analysis of prApe1 processing assay 
in atg9∆ vac8∆ cells transformed with an empty vector (EV) or with a plasmid expressing Atg9-
GFP WT or the KKRR mutant. Cells were grown and processed as in A. The quantification of 
Ape1:total Ape1 (Ape1 + prApe1) ratio is shown on the right. 
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Figure 3.5 The Atg9 ubiquitination mutant displays a higher frequency of PAS localization. 
(A-C) Representative florescence microscopy images of (A) atg9∆ (WT), (B) atg1∆ or (C) atg27∆ 
cells transformed with a plasmid expressing WT or KKRR mutant Atg9-GFP. A plasmid 
expressing RFP-Ape1 was also used to provide a PAS marker. Cells were cultured in YPD, shifted 
to SD-N and collected at both 0 and 30 min nitrogen starvation. The single z-stack images are 
displayed at equal intensity for comparison. Scale bars: 5 µm. (D) Quantification of colocalization 
between Atg9-GFP and RFP-Ape1 in each of the respective strains. Error bars correspond to the 
standard deviation and were obtained from 3 independent repeats.   
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Figure 3.6 Atg9 degradation is mediated by Met30.  
(A) Representative western blot images of Atg9-PA stability in two alleles of the met30 ts mutant. 
Pgk1 was used as a loading control. (B) Representative florescence microscopy images of cells 
expressing the BiFC constructs ATG9-VN, VC-MET30, or both, cultured in YPD and shifted to 
SD-N for 1 h. ATG9-VN ATG23VC was included as a positive control. Images are from single 
Z-sections. DIC, differential interference contrast. Scale bar: 5 µm. (C) Atg9-GFP protein stability 
in growing conditions in control WT and S122A mutant cells at the indicated time points of CHX 
chase time. A quantification of the western blots is shown below the panels. 
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Figure 3.7 Schematic model for downregulation of autophagy through UPS-dependent 
degradation of Atg9.  
In nutrient-rich conditions, Atg9 is synthesized and cells are primed for autophagy. The excessive 
Atg9 is ubiquitinated and targeted for degradation in a proteasome-dependent manner, therefore 
limiting autophagy to a basal level. However, when cells are nutritionally deprived, autophagy is 
highly induced, necessitating an increase in the amount of Atg9; the proteasome-dependent 
reduction of Atg9 protein levels is reduced to allow cells to induce a higher level of autophagy. 
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Figure 3.8 The Atg9 N terminus is conserved among fungi, and Atg9 ubiquitination is 
suppressed in starvation conditions.  
(A)Amino acid sequence alignment of the N terminus of Atg9 across different species. The 
mutated lysine residues are highlighted in yellow. S., Saccharomyces; Z., Zygosaccharomyces. (B) 
TUBEs affinity isolation of ubiquitinated Atg9 in growing conditions with increasing amount of 
TUBEs beads and ubiquitinated Atg9 in nitrogen starvation for 1 h.  
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Figure 3.9 Ubc6 is degraded in a proteasome-dependent manner.  
Ubc6-PA protein stability in control (DMSO) and proteasome inhibitor (MG132)-treated cells at 
the indicated time points of CHX chase time. 
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Figure 3.10 Atg9 is primarily degraded at peripheral sites.  
(A, B) Atg9-PA protein stability in (A) atg27∆ or (B) atg27∆ cells in control (DMSO) and 
proteasome inhibitor (MG132) treatment conditions at the indicated time points of CHX chase 
time.  
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Figure 3.11 Atg9 degradation is mediated by Met30.  
(A) 37 E3 ligase mutants were screened for stability of Atg9 by western blot analysis, quantified 
and grouped into categories of <50%, 50-80% and >80% stability after 3 h of CHX chase. (B, C) 
Representative western blot images of Atg9-PA stability in (B) WT, yjl149w∆ and rad7∆ cells 
representing the group <50% and in (C) WT and mdm30∆ cells representing the group 50-80%. 
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Chapter 4 Summary 

Autophagy is a self-eating process in which cells engulf portions of the cytosol or 

organelles via phagophores. After maturation, the resulting double-membrane autophagosomes 

deliver the cargo to the lysosome or vacuole, where it is ultimately degraded; the resulting 

breakdown products are released back into the cytosol and recycled to allow the cells to survive 

unfavorable conditions and maintain cellular homeostasis. One of the key questions regarding 

macroautophagy/autophagy is the mechanism through which the transmembrane protein Atg9 

functions in delivering membrane to the expanding phagophore, the sequestering compartment 

that matures into an autophagosome.  

Previous studies have indicated that multiple membrane sources contribute to 

autophagosome formation, including the endoplasmic reticulum (ER) [228-230], the Golgi 

apparatus [231] and the plasma membrane [232]. Atg9 is the only transmembrane protein in the 

autophagy core machinery and has been proposed to play a key role in directing membrane from 

donor organelles for autophagosome formation. Thus, understanding the mechanism of Atg9 

regulation is fundamental. 

In this chapter, I summarize findings of chapters 2 and 3, and discuss future directions. 

4.1 Phosphorylation of Atg9 regulates movement to the phagophore assembly site and the 

rate of autophagosome formation 

In chapter 2, we characterized a phosphorylation-dependent regulation of Atg9 anterograde 

trafficking that mediates autophagy activity. We first identified S122 on Atg9 as a phosphorylation 

site independent of Atg1 kinase from a SILAC assay. Alteration of this residue to a non-
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phosphorylatable mutant, S122A, reduces autophagy activity, whereas the phospho-mimetic 

mutant S122D increases autophagy activity. Besides non-selective autophagy, this 

phosphorylation is also important in selective autophagy. We subsequently examined the 

mechanisms behind such an effect by EM analysis and found that the number of autophagosomes 

formed in these mutants is also altered. Consistent with autophagy activity, cells expressing 

Atg9S122A generate fewer autophagosomes, whereas cells expressing Atg9S122D have the opposite 

phenotype. Based on previous studies that propose Atg9 cycles between the PAS and other 

cytosolic punctate structures, we also find this phosphorylation is important for Atg9 trafficking 

as shown in its localization at the PAS by fluorescence microscopy. More Atg9 at the PAS, as seen 

with Atg9S122D, correlates with an increased rate of autophagosome formation. This result agrees 

with findings from a recent study where the absolute Atg9 levels correspond to the number, but 

not the size, of autophagosomes generated during autophagy [233]. Furthermore, using the MKO 

strain, we determined that anterograde movement is altered with the mutant version of Atg9. 

Finally, our data suggest that the S122D mutation results in an enhanced interaction between Atg9 

and Atg27, one of the components required for efficient anterograde trafficking of Atg9  [179, 

193].  

We are not able to show this interaction by co-immunoprecipitation due to the fact that it 

may be weak, transient or unstable during the immunoprecipitation procedure. Also, the kinase or 

phosphatase that directly modifies Atg9 S122 remains to be identified. 

4.2 Downregulation of autophagy through Met30-mediated Atg9 turnover 

In chapter 3, we identified a novel mechanism of restricting autophagy to a basal level 

through ubiquitination and proteasome-dependent degradation of Atg9 in nutrient-rich conditions.  

Based on a large-scale analysis that predicts Atg9 is a ubiquitinated protein, we first verified this 
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ubiquitination by two-step affinity isolation using TUBEs, and observed a higher amount of 

ubiquitinated Atg9 in growing conditions compared to starvation conditions, which indicates Atg9 

is primarily ubiquitinated in the former. We further identified this ubiquitin as being a proteasome-

dependent degradation signal in growing conditions by finding an increase of Atg9 steady state 

protein level in cells with a genetically defective proteasome or one that was chemically 

compromised. A chase analysis to monitor Atg9 stability in atg23∆ (Atg9 is present at peripheral 

sites) or atg1∆ (Atg9 is localized at the PAS) cells further supports our hypothesis that the 

population of Atg9 either at peripheral sites or on its way to the PAS is subject to degradation, but 

the population at the PAS, which is actively working in autophagy, is protected and not subject to 

degradation. A lysine-to-arginine double mutant K113R K138R generated based on the predicted 

ubiquitination sites promoted increased non-selective and selective autophagy activity at early time 

points relative to the wild-type strain. Subsequent fluorescence microscopy analysis revealed an 

increased PAS localization of Atg9K113,138R, which explained the higher autophagy activity. 

However, trafficking of Atg9K113,138R still depended on interaction with Atg23, Atg27 and Atg1, 

suggesting that this alteration was specifically affecting protein level rather than protein 

movement. Based on these findings, we performed a screen for the E3 ligase that modifies Atg9 

and found that Atg9 is stabilized the most significantly in the met30 ts strain, indicating that the 

ubiquitination is at least partly mediated by Met30. The interaction between Atg9 and Met30 was 

verified by BiFC assay. 

In summary, we identified a novel mechanism of Atg9 regulation in autophagy through 

ubiquitination. In growing conditions, Atg9 is synthesized and cells are primed for autophagy. We 

showed that Atg9 is ubiquitinated and targeted for degradation in a proteasome-dependent manner 

during nutrient-rich conditions, therefore limiting autophagy to a basal level. However, when cells 
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are nutritionally deprived, autophagy is highly induced, necessitating an increase in the amount of 

Atg9; the proteasome-dependent reduction of Atg9 protein levels is reduced to give cells a jump 

start for autophagy. Thus, the post-translational ubiquitination of Atg9 provides an additional 

mechanism that allows cells to maintain appropriate levels of autophagy, and to rapidly respond 

and adapt to environmental stresses.  

 

4.3 Discussion and perspectives 

Although increasing details about the post-translational regulation of autophagy have been 

revealed in recent years, many questions remain to be answered. Modulation of proteins by 

phosphorylation and ubiquitination is a dynamic process; both conjugation and removal of the 

modulating groups are crucial to maintaining normal autophagy flux. However, information about 

dephosphorylation and deubiquitination is relatively limited. For example, the relevant 

phosphatases that affect the autophagy core machinery proteins are still unknown. Similarly, the 

role of deubiquitinating enzymes in the regulation of autophagy needs further investigation. In 

addition, the regulation of autophagy is connected to the control of apoptosis, and these two 

processes share many regulatory components. How these two processes are coordinated and co-

regulated needs further analysis. Finally, more research about the relationship between the 

regulation of autophagy and human disease is required.   
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