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ABSTRACT 
 

 
 Organic optoelectronic devices have been widely used in display, energy-storage, and 

consumer electronics. Insightful understanding on material properties, device architecture, and 

fabrication processes is inevitable to improve the performance of organic optoelectronic devices. 

My PhD research focuses on improving the performance of organic photovoltaics (OPV) and 

organic light-emitting diode (OLED) through the systematic processing and material design.  

The first part of the dissertation describes how to construct a highly conductive morphology 

of mixed donor:acceptor heterojunction. Organic vapor phase deposition (OVPD) was utilized to 

enhance crystallinity of C70 acceptor in the mixed tetraphenyldibenzoperiflanthen (DBP):C70 thin-

film. Forming the face-center-cubic (fcc) structure of C70 facilitated charge extraction, thereby 

improving fill factor (FF) of the corresponding OPVs.  

The second part presents the study on the morphological stability and reliability of OPVs. 

The cathode buffer, bathophenanthroline (BCP), undergoes significant morphological 

degradation. This morphological degradation was successfully suppressed by making the 

underlying DBP:C70 layer rougher via the moving N2 carrier gas in OVPD. The open-circuit 

voltage (Voc) of the obtained heterojunction OPVs of DBP:C70 grown by OVPD experienced a 

negligible drop (< 3 % change) while the equivalent OPVs grown by VTE showed a significant 

decrease in Voc from 0.91±0.01 V to 0.74±0.01 after 1 Sun illumination for 250 h.  

 The third part explains a more precise way to control the morphology of organic mixed 

layer. It was found that increase in the growth pressure of OVPD induced reorganization of 

molecules to form the equilibrium morphology. The morphology of the electron-filtering buffer 

layer of 3,5,3′,5′-tetra(m-pyrid-3-yl)phenyl[1,1′]biphenyl (BP4mPy):C60 was optimized to achieve 

the highest electron mobility by means of the control of the growth pressure. Consequently, the 

resulting OPVs with optimized BP4mPy:C60 buffer showed FF = 0.65±0.01 and a much higher 
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PCE = 8.0±0.2 % compared to PCE = 6.6±0.2 % of the equivalent OPVs with the same 

composition buffer layer grown by VTE.  

The fourth part summarizes the effects of the inclusion of novel block-copolymers on the 

performance of the polymer bulk-heterojunction photovoltaic cells. The block-copolymers were 

composed of thiophene units with and without a dangling phenyl-C61-butyric acid methyl ester 

(PCBM) side chain. The added copolymer into the poly(3-hexylthiophene) (P3HT): PCBM active 

layer resulted in greatly improved thermal stability of P3HT:PCBM. Furthermore, electron 

conductivity also increased since the fullerene units of the copolymers contribute to the formation 

of a percolation pathway for electron transport. While PCE of conventional P3HT:PCBM bulk-

heterojunction solar cells decreases significantly from 2.6±0.2 to 1.2±0.2% after 90-min of thermal 

annealing, the equivalent OPVs with the copolymer shows a much smaller decrease in PCE from 

3.1±0.2% to 2.7±0.2%. 

The last section of this dissertation covers the design of phosphorescent OLED employing 

a metal-free purely organic phosphor. Owing to their much longer triplet lifetime in the millisecond 

regime compared to microseconds of organometallics, a more careful consideration should be 

given in the device design. The requirements for the host materials in metal-free purely organic 

phosphor OLEDs are identified to be a high triplet energy, suitable HOMO and LUMO energy 

levels, and large spectral overlap with the absorption of the phosphors. Systematic investigation 

on various host molecules, electron transporting molecules, and the layer thickness of each layer 

allows us to demonstrate an optimized phosphorescent OLED having an external quantum 

efficiency (EQE) of 2.5 % at 1 mA/cm2.



1 

Chapter 1  

Introduction to organic optoelectronic devices 

 

 The development of organic semiconductor materials draws industrial as well as academic 

interests owing to their multiple advantageous properties and a large molecular design window. 

Tunable optoelectronic properties, cost-effectiveness, and processing feasibility on flexible 

substrates make organic materials more attractive in optoelectronic device applications. This 

chapter as an introductory chapter of the dissertation discusses the fundamental properties of 

organic semiconducting materials and the device physics and figure of merits of the two most 

widespread organic optoelectronic devices, organic photovoltaics (OPV) and organic light-

emitting diode (OLED).  

 

1.1 Fundamental properties of organic semiconducting materials                   

 Organic materials generally refer to materials made up of carbon and hydrogen atoms with 

some heteroatoms (either sulfur, oxygen, or nitrogen). Organic materials have a unique property 

compared to their inorganic counterparts due to the different bonding type. Organic molecules are 

bound by Van der Waals forces [1]. Van der Waals forces are an electrostatic interaction between 

molecules. Induced dipole moment of molecules attracts surrounding molecules when they are 

within a close distance (few nm). The strength of Van der Waals bond is much weaker than a 

covalent bond (sharing electron pairs between atoms) or an ionic bond (Coulombic interaction  
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between charged ion) through which inorganic materials are held together. Therefore, density of 

states in organic materials are discrete molecular orbitals instead of the continuous energy band in 

inorganic compounds. Accordingly, the charge transport mechanism is hopping-base transport 

between molecular orbital levels, whereas the charge transport in inorganic compounds is through 

a well-defined energy band [2]. The resulting charge mobility of organics is usually less than 0.1 

cm2/(V˖s) compared to that of inorganic materials, which is more than 1000 cm2/(V˖s). The 

thickness of each organic layer is usually < 200 nm due to this mobility constraint [3]. Dielectric 

constants of inorganics are usually large (11.9ε0 for Si and 13.2ε0 for GaAs, where ε0 = 8.854×10-

14 F/cm is the permittivity of free space) owing to the delocalized nature of the carriers, while 

dielectric constants of organics are small (usually 3ε0 - 4ε0) [1]. The difference in dielectric 

constants leads to the difference in exciton binding energy.  An analytical expression of the exciton 

binding energy can be obtained after solving Schrödinger’s equation of the electronic state in an 

atom. 

 

௕ܧ ൌ 	
௘మ௔బ

ሺ௠∗/௠	ሻሺ௔బ
∗ሻమ

                                                       (1.1)                         

ܽ଴
∗ ൌ 	m/݉∗ܽߝ଴                                                         (1.2)  

 

where, Eb is the exciton binding energy, ܽ଴
∗  is the exciton radius, e is the elementary charge, m is 

the electron mass, m* is the effective reduced mass, ε is the dielectric constant, and ܽ଴ is the Bohr 

radius for the hydrogen atom. The exciton radius of organic materials is ~ 1 nm with a large binding 

energy (0.1 – 1 eV), called Frenkel exciton. In contrast, excitons in inorganic compounds have a 

small binding energy (typically less than kT = 25.7 meV) with a nearly 10 nm of exciton radius, 

called Wannier-Mott excitons [4]. The difference in material properties between organic materials 
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and inorganic compounds is summarized in Table 1.1. A large exciton binding energy of organic 

semiconducting materials (by either light absorption or direct carrier injection) plays a critical role 

in the operation of organic optoelectronic devices.  

 

Table 1.1 A comparison of properties in organic and inorganic materials 

Property Organics Inorganics 

Bonding type Van der Waals Covalent or Ionic 
Charge transport Polaron Hopping Band Transport 

Mobility < 0.1 cm2/V·s ~ 1000 cm2/V·s 
Exciton binding energy 0.1-1 eV < 100 meV 

Exciton Radius ~10Å ~100Å 

 

 

1.2. Organic photovoltaics (OPV) 

 Organic photovoltaics (OPV) are one major branch in organic optoelectronic devices. OPV 

utilizes photon energy from sun to populate excitons in the organic photo-active layer, collecting 

charge carriers at each electrode after the exciton disassociation within the organic photo-active 

layer. First proof-of-concept of OPV was demonstrated by C. W. Tang with 1 % power conversion 

efficiency [5]. After tremendous efforts in the development of new materials and  device 

architecture, the power conversion efficiency of OPVs exceeds 10 % [6,7].  

 

1.2.1. Structure of OPV 

 A standard OPV consists of an anode, an anode buffer layer, an organic donor:acceptor 

(D:A) photo-active layer, a cathode buffer layer, and a cathode as shown in Figure 1.1. Indium tin 

oxide (ITO) is widely used as an anode owing to its high transparency and conductivity. The anode 
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buffer layer is usually transparent transition-metal oxide (MoO3, ZnO, NiO, etc.) having high 

conductivity of charge carriers. The D:A photo-active layer is the most important layer where the 

generation and disassociation of excitons and charge transport occur. Once excitons are generated 

after absorption of photons, the excitons are dissociated at the interface between the donor and the 

acceptor due to their energy level difference. The separated charges through exciton dissociation 

are transported towards each buffer layer. Therefore, organic materials having high absorbance, 

high carrier mobility, and suitable energy levels are required for the D:A layer. The cathode buffer 

layer can be made of either organic materials or a transition metal oxide. Organic materials are 

generally more preferred in small-molecule OPVs because of their readily tunable energy levels. 

Al or Ag metal is used as a cathode based on their high reflectivity and proper work-function.  

  

 

Figure 1.1. Schematic illustration of OPV device structure. 

 

Mainly, two common architectures have been investigated for the D:A layer. The first one 

is the bilayer (planar) heterojunction where donor and acceptor organic layers are stacked 
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consecutively. The efficiency of these bilayer heterojunction OPVs is limited by the exciton 

diffusion length of ~ 10 nm for most organic materials. Even if donor or acceptor materials have 

high carrier mobility and absorption coefficient, the layer thickness beyond the exciton diffusion 

length of organic semiconductors does not produce any more photo-current because the excitons 

beyond the exciton diffusion length will recombine before they reach the D:A interface [8]. The 

other architecture is the heterojunction of mixed D:A having the donor and acceptor-rich domains 

within the exciton diffusion length. The D:A mixed layer thickness is not limited to the exciton 

diffusion length any more but to the light penetration length and the resistance of the D:A layer. 

The charge collection and transport efficiencies become more important in the D:A mixed 

heterojunction OPV [9]. 

 

1.2.2. Current-voltage characteristics of OPV 

 Historically, a physical model of inorganic photovoltaics was established first to explain 

the current-voltage (J-V) characteristics of the device. The ideal-diode equation, called Shockley 

equation, of inorganic photovoltaics is as follows: 

 

ሺܸሻܬ 	ൌ 	 ሺ݌ݔ௦ሾ݁ܬ
௏ି௃ோೞ
௡௞்/௤

ሻ 	െ 1ሿ 	െ	ܬ௅                                      (1.3) 

 

Here, Js is the reverse-bias saturation current, Rs is the series-resistance of the device, n is the diode 

ideality factor, k is Boltzmann constant, T is temperature, q is elementary charge, and JL is the 

current generated from the absorption of photons (photo-current). This model can also be applied 

to describe J-V characteristics of organic photovoltaics due to its simplicity. However, Giebink et 

al. showed that it failed to fit experimental J-V characteristic of OPVs at different operating 
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temperatures [10]. After including the excitonic nature of OPVs in the physical model, the original 

equation was modified to the ideal-diode equation for organic D:A heterojunction: 

 

ሺܸሻܬ 	ൌ 	 ሺ݌ݔ௦஽ሾ݁ܬ
௏ି௃ோೞ
௡ವ௞்/௤

ሻ െ 1ሿ 	൅	ܬ௦஺ሾ݁݌ݔሺ
௏ି௃ோೞ
௡ಲ௞்/௤

ሻ െ 1ሿ 	െ	ܬ௅                       (1.4) 

 

where JsD(A) is the reverse-bias saturation current on the donor (acceptor) side, nD(A) is the ideality 

factors considering the trap-limited recombination in the donor (acceptor) side. The two 

exponentials in Equation (1.4) are for the polaron pair recombination occurred at both donor and  

 

  

Figure 1.2. Dark J-V characteristics of (a) CuPc:C60 (b) SubPc:C60 OPVs recorded for T = 296, 275, 247, 
218, 193, 171, 155, 145, 128, 114 K. Red lines indicate fits to Equation (1.4). Both data sets are refit using 
Equation (1.3) in (c) and (d), where the difference between data and theory is most pronounced at low 
voltage and temperature. [10] 
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acceptor. As shown in Figure 1.2, the Giebink’s model successfully describe J-V characteristics of 

copper phthalocyanine (CuPc):C60, boron subphthalocyanine chloride (SubPc):C60 heterojunction 

OPVs, whereas the original ideal-diode model does not. 

 

1.2.3. Efficiency of OPV  

Figure 1.3 shows general J-V characteristics of OPV under light illumination. The 

maximum electrical power generated from OPV is the maximum area of the rectangle defined by 

J(V) × V in fourth quadrant of the J-V curve. This is the maximum power point (MPP) of OPV, 

which is Pm,out = Jmp × Vmp. Geometrical factor, called fill factor (FF), is defined by squareness of 

J-V characteristic in the fourth quadrant: 

 

	ܨܨ ൌ 	
௉೘,೚ೠ೟	

௃ೞ೎௏೚೎
ൌ

௃೘೛௏೘೛

௃ೞ೎௏೚೎
                                                   (1.5) 

 

In the physical point of view, FF represents the quality of the diode. It is affected by charge 

transport properties of OPV (series resistance), molecular recombination, and manufacturing 

defects (shunt resistance). The power conversion efficiency (PCE) of the device is defined by the 

ratio of the maximum electrical power from OPV to the incident optical power (P0).    

 

η ൌ
௉೘,೚ೠ೟

௉బ
ൌ ௃ೞ೎௏೚೎ிி

௉బ
                                                       (1.6) 
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Figure 1.3. General J-V characteristics of OPV under dark and light illumination. Several figures of merits 
are included. 
 

For standard measurement, AM 1.5G solar spectrum (air mass 1.5) is used as an incident light 

spectrum. AM 1.5G spectrum stands for the solar irradiation at 48.19 degree solar zenith angle 

with a total power density of 100 mW/cm2. Figure 1.4 shows the standard AM 1.5G solar spectrum.  

 

Figure 1.4. Standard AM 1.5G solar spectrum. 
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Practically, solar simulators with a known light source (Xenon arc lamp, mercury lamp, tungsten 

lamp, etc.) are used to analyze the performance of OPV. Corrections of the incident power and 

spectral mismatch of solar simulators compared to AM 1.5G solar spectrum are needed to 

evaluate OPV cells accurately. 

 

1.3. Organic light emitting diode (OLED)  

 Organic light emitting diode (OLED) in the display technology is the most successful 

demonstration of organic optoelectronic devices. OLED operates as electrons and holes are 

injected to form excitons in organic emissive materials, and excitons radiatively decay to generate 

photons with a specific wavelength that is determined by the bandgap of the organic emissive 

materials.  Since Tang and VanSlyke demonstrated the first organic electroluminescent devices 

[11], significant breakthrough to overcome fundamental challenges and limits and realize high 

efficiency OLEDs was made by Forrest and Thompson through rational design and utilization of 

organometallic phosphor compounds [12, 13]. Nowadays, researches in OLED put more emphasis 

on extending the device lifetime of particularly blue OLED due to the roll-off issue of the devices 

originated from the high exciton energy [14–16].  

 

1.3.1. Device structure of OLED  

 The standard structure of OLED consists of an anode, a hole injection layer (HIL), a host 

transport layer (HTL), an electron blocking layer (EBL), an emissive layer (EML), an electron 

transport layer (ETL), a hole blocking layer (HBL), an electron injection layer (EIL), and a cathode 

as shown in Figure 1.5. HIL and EIL facilitate the injection of holes and electrons from the anode 

and cathode, respectively. Charge transport layers (HTL, ETL) are responsible for transport of 
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carriers from each injection layer to EML. Further HBL, EBL are needed to confine the formation 

of excitons within EML because most of organic materials have asymmetric hole and electron 

mobilities. The lowest unoccupied molecular orbital (LUMO) level of EBL needs to be at least 

equal or shallower than that of EML to effectively block electrons from EML. In the same way, 

the highest occupied molecular orbital (HOMO) level of HBL needs to be at least equal or deeper 

than that of EML to effectively block holes from EML. The above-mentioned requirements can be 

met by a single or multilayer design depending on materials’ electrical properties and energy level 

alignments.  

 

 

Figure 1.5. Standard structure of OLED. Transitions of electrons and holes are indicated.  

 

EML comprises two different organic materials, called the host-guest system. The emitting 

material (guest) is diluted as a minor component into the major host material having a high triplet 

exciton energy. A high doping concentration of guest molecules results in self-quenching due to 

the formation of aggregation and consequent nonradiative quenching. Typically, the doping 

concentration ranges from 2 % to 20 % (by vol.) depending on the charge transport property and 
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non-radiative relaxation of the guest material. The injected electrons and holes can form either a 

singlet exciton (spin anti-symmetric, spin number = 0) or a triplet exciton (spin symmetric, spin 

number = 1) within the EML. According to the fundamental quantum statistics, the probability of 

triplet-exciton formation is three times higher than that of singlet-exciton [3]. Therefore, 

fluorescent OLEDs using singlet excitons have a fundamental limitation in its efficiency compared 

to phosphorescent OLEDs utilizing triplet excitons. The maximum internal quantum efficiency 

(IQE) of fluorescent OLEDs is only 25 %, while that of phosphorescent OLEDs is 100 % by 

transferring singlet excitons to triplet excitons via intersystem crossing [17].  

 

1.3.2. Energy transfer  

There are two types of energy transfer mechanism depending on the distance between 

excitons. Förster resonant energy transfer (FRET) is a long-range electromagnetic dipole-dipole 

interaction. Spins should be conserved during the energy transfer, allowing only transfer from 

excited singlet to ground state singlet. The FRET rate is expressed as [18]: 

 

݇ிோா் ൌ 	
ଵ

ఛವ
ሺோబ
ோ
ሻଶ                                                            (1.7) 

 

where τD is the lifetime of the host molecule, R is the distance between the host molecule and guest 

molecule, and R0 is Förster radius defined as: 

 

ܴ଴
଺ ൌ 8.77 ൉ ଶߢ஽ߔ ׬  (1.8)                                        ߣସ݀ߣሻߣ஺ሺߝሻߣ஽ሺܫ
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Here, ΦD is the quantum yield of the host molecule’s fluorescence, κ is the orientation factor of the 

dipoles, ID is the emission intensity of the host, and εA is the absorption coefficient of the guest. 

The FRET efficiency is proportional to the spectral overlap between the emission of the host and 

the absorption of the guest. A typical Förster radius is from 5 to 10 nm, which is effective in most 

host-guest mixtures in EML [19].   

 The other energy transfer mechanism is a short-range coherent transfer of excitons by 

simultaneous charge exchange, called Dexter transfer. Dexter transfer rate is given as [20]: 

 

݇஽௘௫௧௘௥ ൌ
ଶగ

ħ
ଶ߁ ׬ ሻߣ஺ሺߝሻߣ஽ሺܫ  (1.9)                                               ߣ݀

 

where, Γ is the transition matrix element for charge exchange, which is expressed as: 

 

Γଶ ൌ	൏ ஺ߔ஽ሺ1ሻߔ
∗ሺ2ሻ| ଵ

ସగఌೝఌబோ
஽ߔ|

∗ ሺ1ሻߔ஺ሺ2ሻ ൐൏ ஺ሺ2ሻߪ|஽ሺ2ሻߪ ൐൏ ஽ߪ
∗ሺ1ሻ|ߪ஺

∗ሺ1ሻ ൐   (1.10) 

 

Here, Φ is the spatial component of molecular ground state wavefunction, σ is the spin component 

of molecular ground state wavefunction (* denotes excited state). According to Equation (1.10), 

transition matrix element Γ becomes non-zero only if two molecular wavefunctions have overlap 

and ground state and excited state have the same spin multiplicity. This means that Dexter transfer 

allows triplet-triplet energy transfer between host and guest molecules, unlike FRET. Assuming 

hydrogenic initial and final states, Equation (1.10) can be approximated to Γଶ ∝ ሺെ݌ݔ݁ ଶோ

௅
ሻ, where 

L is effective Bohr radius of molecules. Thus, Dexter transfer is only effective when two molecules 

are in proximity of 1 nm [21]. 
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1.3.3. Color and efficiency of OLED 

 To represent color of specific photons, Commision Internationale de l’Éclairage (CIE) 

coordinate system is devised based on the spectral responsivity of ρ, γ, β cones in the retina [3]: 

 

x ൌ y  ,ߣሻ݀ߣሻܺሺߣ௉ሺߔ׬ ൌ ߣሻ݀ߣሻܻሺߣ௉ሺߔ׬ , z	 ൌ  (1.11)               ߣሻ݀ߣሻܼሺߣ௉ሺߔ׬	

ݔ̅ 	ൌ ݔሺ	/	ݔ ൅ ݕ ൅ ,ሻݖ തݕ 	ൌ ݔሺ	/	ݕ	 ൅ ݕ ൅  ሻ                           (1.12)ݖ

 

 

Figure 1.6. The standardized spectral response of the three color-sensitive photoreceptors cell. 
 

 

where, Φp is photon flux from OLED emission, X(λ), Y(λ), Z(λ) are standardized response of the 

three color-sensitive photoreceptors in the human eye as shown in Figure 1.6. From the calculated 

ሺ̅ݔ,  തሻ in Equation (1.12), the color of OLED is represented in CIE color space shown in Figureݕ

1.7. 
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Figure 1.7. CIE color space (x, y) diagram. Color of mono-chromatic light is included in the curved 
boundary. 
 

External quantum efficiency (EQE) is one of the most important figure of merits in OLED. 

It is defined as follows: 

 

EQE ൌ ௡௨௠௕௘௥	௢௙	௣௛௢௧௢௡௦	௘௫௧௥௔௖௧௘ௗ	

௡௨௠௕௘௥	௢௙	௘௟௘௖௧௥௢௡௦	௜௡௝௘௖௧௘ௗ	
  

ൌ 
௡௨௠௕௘௥	௢௙	௣௛௢௧௢௡௦	௚௘௡௘௥௔௧௘ௗ

௡௨௠௕௘௥	௢௙	௘௟௘௖௧௥௢௡௦	௜௡௝௘௖௧௘ௗ
ൈ ௡௨௠௕௘௥	௢௙	௣௛௢௧௢௡௦	௘௫௧௥௔௖௧௘ௗ	

௡௨௠௕௘௥	௢௙	௣௛௢௧௢௡௦	௚௘௡௘௥௔௧௘ௗ
                     

= η஼ηாη௉௅ொ௒ ൈ η௢௨௧                                                                     (1.13) 

 

Here, ηC is the charge balance factor, ηE is the ratio of emissive excitons, ηPL is the 

photoluminescence efficiency, and ηout is the outcoupling efficiency. ηC represents confinement of 

electrons and holes within EML without any leakage to the adjacent layers. ηE is the ratio of 

radiative excitons in emissive molecules. As mentioned in 1.3.1, ηE of fluorescent OLED is 25 %, 
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while ηE of phosphorescent OLED utilizing triplets emitters is 100 %. ηPL is determined by the 

ratio of the radiative decay rate (kr) to the total decay rate (kr + knr) including non-radiative decays. 

Except ηout, first three terms are related to the photo-physical property of emissive molecules and 

the structure of OLED. Thus, multiplication of ηC, ηE, and ηPLQY is the internal quantum efficiency 

(IQE) of OLED. The outcoupling efficiency, ηout, is typically ~20 % since many of generated 

photons within EML are dissipated by substrate, waveguide, and surface plasmon modes [22, 23].   

 To define OLED efficiency in terms of a photometric unit, luminous efficiency function 

(P(λ)) for photopic response is introduced as shown in Figure 1.8. This indicates the averaged 

spectral sensitivity of photoreceptor cells in human eyes.  

 

Figure 1.8. Photopic response curve. 

 

Normalized luminous responsivity (ΦL) of human eyes to photon flux (Φp) is defined as: 

 

௅ߔ ൌ
ఃು௉ሺఒሻௗఒ׬

ఃುௗఒ׬
                                                            (1.14)  



16 

The luminous flux (L, in lumen), is a photometric unit equivalent to radiant power (Watt), defined 

as:  

 

L ൌ ௅ߔ
௛௖

ఒ
ൈ ሺܧܳܧሻ ൈ ூ

௤
                                                (1.15) 

 

Where, h is Planck’s constant, c is the speed of light, I is current, q is the elementary charge. The 

power efficiency of OLED is calculated by dividing the luminous flux with the electrical power. 

 

௣ߟ ൌ ሺܸ/ܮ	 ൈ ሻܫ 	ൌ ௅ߔ	 ൈ ܧܳܧ ൈ
1
ܸ
ൈ
݄ܿ
ߣݍ
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Chapter 2  

Method 

 

 This chapter provides background information about experimental methods and 

characterization techniques used in the following chapters. Theoretical description with 

experimental details are included.  

 

2.1. Growth technique of organic materials 

 Various growth techniques are available to deposit organic thin-films. Most common ways 

to deposit organic-thin films are vacuum thermal evaporation, organic vapor phase deposition, and 

spin-casting. Vacuum thermal evaporation (VTE) and organic vapor phase deposition will be 

explained in detail since the difference between the two growth techniques is a main topic in 

Chapters 3 - 5.  

 

2.1.1. Vacuum thermal evaporation  

 Vacuum thermal evaporation is widely used in organic thin-film deposition due to its 

simple and intuitive operation. Organic materials are loaded in a molybdenum or tungsten baffled 

boat. A resistive heater heats up the baffled boat to evaporate organic materials. Evaporated 

molecules are ballistically transported from the boat to a substrate in a high vacuum environment 

(~10-7 torr). Quartz crystal microbalance is used to monitor the thickness of the deposited organic 
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thin-film based on the crystal’s frequency change depending on the mass deposited on the crystal. 

Substrate rotation is usually required to achieve high uniformity (>90 %). The material utilization 

efficiency is typically low compared to organic vapor phase deposition even though it strongly 

depends on the geometry of the chamber (distance from the boat to the substrate, size of the 

chamber, etc.). For example, a VTE chamber in a laboratory-scale (~ 4 inch diameter substrate and 

25 inches chamber height) has less than 5 % material utilization efficiency, whereas industrial 

VTE system with an in-line linear source has at least 50 % material utilization efficiency [1, 2].  

 

 

Figure 2.1. Schematic diagram of vacuum thermal evaporation. 

 

2.1.2. Organic vapor phase deposition  

 Organic vapor phase deposition (OVPD) is the deposition technique using a carrier gas 

based on vapor phase epitaxy. Organic materials are loaded in a boat at one end, being transported 

towards a cooled substrate via the inert carrier gas. The pathway of the evaporated material follows 

the direction of the carrier gas flow. Thus, the chamber configuration of OVPD is not limited to 
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the facing-down configuration of VTE. It can be either horizontal or facing-up to ease 

manufacturing integration [3, 4]. The temperature of the OVPD chamber wall needs to be 

maintained at an elevated temperature to prevent any condensation of the evaporated organic 

vapor. Therefore, material utilization efficiency of OVPD is much higher than that of VTE where 

evaporated organics can be randomly adsorbed on the chamber wall [5]. Also, uniformity of OVPD 

is high (> 90%) even without rotation as far as the substrate temperature is uniformly maintained 

[6]. OVPD has various growth parameters such as chamber pressure, substrate temperature, carrier 

gas flow rate that VTE does not have. With these multiple growth parameters, OVPD can 

effectively control the morphology of organic thin films. The effects of the morphological change 

on the performance of OPV will be discussed throughout Chapters 3 - 5. A simplified diagram of 

an OVPD system is shown in Figure 2.2. 

 

 

Figure 2.2. Schematic diagram of organic vapor phase deposition system. Growth parameters are               
indicated. 
 

2.1.3. Spin-coating  

 Spin-coating is a simple way to deposit organic thin films. An organic solution is prepared 

by dissolving organic materials in organic solvents (1,2-Dichlorobenzene, Tetrahydrofuran, 
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Chloroform, etc.). A typical spin-coating process starts with dropping an organic solution on a 

substrate, rotating the substrate rapidly afterwards. Usually thin films of less than 300 nm thick 

are formed after the spin-coating since majority of solutions are removed during the rotation. The 

thickness of the thin-film is determined by the concentration of the solution, viscosity of the 

solution, and the spin speed. Spin-coating is the most effective method to deposit polymer 

materials because VTE and OVPD require a high processing temperature and will induce thermal 

decomposition of organic materials. However, the spin-coating is not suitable for an organic multi-

layer structure because spin-coating of an additional layer can dissolve the preformed organic 

layers underneath. Depositing multi-layers through spin-coating is possible by using orthogonal 

solvents in each layer, however, it is practically impossible to find the collection of orthogonal 

solvents for every organic layer.  

 

2.2. Thin-film characterization method 

 As the morphology of organic thin-film is critically important to the performance of 

organic optoelectronic devices, representative characterization techniques are summarized and 

explained in this subsection. Depending on the property of organic materials (crystallinity, domain 

size, chemical composition, etc.), a proper technique needs to be chosen to characterize the organic 

thin-film correctly.  

 

2.2.1. Atomic force microscopy  

 Figure 2.3 shows the atomic force microscope (AFM), which maps the surface topology or 

surface composition with a resolution less than a nanometer by means of the force measurement 



23 

between its cantilever tip and the surface of a specimen. It records the change of a laser signal 

reflected from the probe tip attached to the cantilever.  

 

 

Figure 2.3. Schematic representation of atomic force microscope. 

 

There are three measurement modes of AFM - contact mode, non-contact mode, and tapping mode. 

The contact mode has a fast scan speed, but usually induces a damage on a soft organic film 

surface. The non-contact mode is suitable on the surface of organic films. However, because of its  

 

 

Figure 2.4. AFM image of 100 nm pentacene thin-film. Scale bar is 2 μm long. 
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slow scan speed and high sensitivity to environment, often the tapping mode is more preferred to 

the non-contact mode for organic thin films. From the image acquired, a surface roughness is 

typically represented as the root mean-square (RMS) value of the height variation. An AFM image 

of pentacene thin-films is shown in Figure 2.4. [6] 

 

2.2.2. X-Ray diffraction  

 X-Ray diffraction (XRD) is a useful measurement technique to unravel structural 

information of materials. If a given specimen has a certain crystal structure, incident X-ray will be 

diffracted at an angle determined by Bragg’s law of diffraction: 

 

2݀ sin ߠ 	ൌ  (2.1)                                                  	ߣ݊	

 

where, d is the crystal plane spacing, θ is the incident angle of X-ray, n is an integer, and λ is the 

wavelength of the incident X-ray. After X-ray is generated by striking a target metal (typically Cu,  

 

 

Figure 2.5. Schematic diagram of Bragg-Brentano (θ-2θ) configuration in XRD measurement. 
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Mo) with electron beams accelerated at a high voltage (10~100Kv), Bragg-Brentano (θ - 2θ) 

configuration is used to collect diffraction data of the specimen as shown in Figure 2.5. Once the 

peak positions are identified, a corresponding crystal plane spacing can be easily calculated with 

λ of X-ray and the measured θ.  Furthermore, an approximate crystallite size can be calculated 

based on Scherrer’s equation [7]: 

 

ሻߠሺ2ܤ 	ൌ 	 ଴.ଽଷൈఒ
௅ ୡ୭ୱఏ

                                                             (2.2) 

 

where, B is an approximate crystallite size, L is the full width-half maximum (FWHM) value of 

the obtained peaks in the XRD measurement. Thus, the crystallite size gets smaller with large L. 

The application of Equation (2.1) and Equation (2.2) to analyze the structural parameters of the 

organic thin-film will be illustrated in Chapters 4 and 5.  

 

2.2.3. Transmission electron microscopy  

Transmission electron microscope (TEM) directs an electron beam to transmit through a 

specimen, creating images based on the interaction of electrons with the specimen. The intensity 

change after the electron beam passes the specimen creates image contrast in the fluorescent 

screen. Simplified TEM configuration is shown in Figure 2.6. TEM can also measure diffraction 

from electron beam using diffraction aperture in the microscope column. Since short de Brogile 

wavelength of electrons is extremely short (2.24 pm at 300 keV), the imaging resolution is less 

than few angstroms. Thus, TEM is a useful technique to investigate the morphology of organic 

thin-films down to nano-size. Examples of TEM images for organic materials are shown in Figure  
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Figure 2.6. Schematic cross section of transmission electron microscope. 

 

2.7 [8]. One practical challenge in TEM for organic thin-film characterization is the difficulty in 

sample preparation. To get a cross-section image of a thin-film, an ion-beam milling process is 

used to cut specimen and attach the section to a TEM grid. A sophisticated sample-cut is required 

because organics easily get damaged from the high ion-beam intensity. Detailed description of 

sample preparation for TEM is elsewhere [9, 10]. An alternative transfer method of organic thin-

films to a TEM grid is introduced. First, dip a Si/MoO3 substrate having a deposited organic thin-

film into DI water. The thin-film is delaminated from the substrate since MoO3 is water-soluble. 

The film transfer to a TEM grid is completed by dredging the thin-film floating on the water 

surface. An electron diffraction image shown in Chapter 3 was obtained by this transfer method.  
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Figure 2.7. TEM images of photoactive layers of new (left) and old (right) batches of PDPPTPT polymer 
with PCBM [8]. 
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Chapter 3  

Effect of mixed layer crystallinity on the performance of 

organic photovoltaics 

This chapter is adapted from the peer-reviewed publication: Adv. Mater., 26, 2914-2918 (2014)  

 

3.1. Introduction  

State-of-the-art solar cells based on small molecular weight organic molecules rely on 

multilayer structures whose morphology must be engineered at the nanoscale [1–5].  It follows, 

therefore, that growth methods enabling control over film morphology and layering schemes are 

required to achieve this objective. One such method is organic vapor phase deposition (OVPD), 

where organic molecules are transported by a hot inert carrier gas from the source to a cooled 

substrate where they condense to form a thin film [6, 7].  Compared to conventional vacuum 

thermal evaporation (VTE), the use of a carrier gas in OVPD dramatically changes many aspects 

of the film deposition kinetics.  For example, the presence of carrier gas molecules in the vicinity 

of the substrate leads to a reduced molecular mean free path [8–10].  Furthermore, the formation 

of complex multilayers and mixed or doped layers are enabled by the precise control over gas flow 

rates, source temperatures, background pressure, and substrate temperature [11].  And finally, 

OVPD is capable of high speed film growth with efficient material utilization and thickness 

uniformity over large substrate areas [12, 13].  Indeed, OVPD is particularly useful in the growth 
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of complex morphologies such as those inherent in mixed donor/acceptor heterojunctions.  These 

structures have been shown to maximize the efficiency of exciton dissociation by distributing the 

donor-acceptor interface throughout the photoactive OPV layers [14-16].   The morphology control 

afforded by OVPD can be engineered to minimize photo-generated charge recombination often 

incurred in the mixed region [8,17,18]. 

  

3.2. Results & Discussion  

We demonstrate organic photovoltaic (OPV) cells based on a nanocrystalline mixed 

tetraphenyldibenzoperiflanthen (DBP): C଻଴  heterojunction grown by OVPD with a power 

conversion efficiency, PCE = 6.7±0.2%, compared to 6.2±0.2% for analogous, optimized devices 

grown by VTE.  Due to the lower electrical resistance of the nanocrystalline layers formed via 

OVPD, the active region thickness can be almost double those grown by VTE. The increased cell 

thickness has the potential to ease manufacturing tolerances by reducing the occurrence of shorts 

due to pinholes often encountered in thinner cells [19–21].  In addition, the material utilization 

efficiency of OVPD is generally significantly higher than VTE [22,23], thereby the increased 

thickness of the organic layer should not negatively impact the total cost of device fabrication. 

 

3.2.1. Performance of mixed heterojunction OPVs 

Mixed heterojunction OPVs were fabricated with the following structure: Glass/indium tin 

oxide (ITO) anode/MoOଷ (10 nm)/DBP:C଻଴ (x nm, 1:10 ratio by volume)/bathophenanthroline 

(BPhen) (8 nm)/Ag cathode (100 nm). The 1:10 DBP:C଻଴ films were grown by VTE (base pressure 

~2ൈ 10ି଻ torr) at deposition rates of 0.2 Å/s and 2.0 Å/s, and by OVPD using source temperatures 

of 375±2 °C and 540±1 °C for DBP and C଻଴, respectively. For OVPD, a N2 carrier at a mass flow 
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rate of 50 standard cubic centimeters per minute (sccm) was simultaneously injected into both 

source cells using the system configuration described previously [8, 17, 18]. Device performance 

as a function of mixed active layer thickness, x, in Figure 3.1, indicates that for x > 60 nm, the FF 

of VTE-grown devices dramatically decreases. Consequently, at x = 60 nm the VTE-grown device 

has a maximum PCE = 6.2±0.2% (at 1 sun, AM1.5G illumination, spectrally corrected) and FF = 

0.58±0.01.  On the other hand, OVPD-grown devices have FF = 0.61±0.01 up to x = 100 nm, and 

the short-circuit current density, ܬ௦௖ , peaks at x = 100 nm, leading to PCE = 6.7±0.2% and 

FF=0.61±0.01.  These trends are also apparent in the J-V characteristics under similar illumination 

conditions shown in Figure 3.2 (left), where devices grown by VTE and OVPD are compared at 

the optimum thicknesses of x = 60 nm and 100 nm, respectively. Figure 3.2 (right) shows the  

 

 

Figure 3.1. Power conversion efficiency (PCE), fill factor (FF), and short-circuit current density (Jsc) of 
DBP:C70 mixed heterojunction devices grown by VTE and OVPD as functions of mixed layer thickness.  
Open circuit-voltages for all devices are 0.90±0.01 V.  Standard deviations of device parameters (Jsc, FF, 
PCE) are ±0.2 mA/cm2, ±0.01, ±0.2%, respectively. 
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external and internal quantum efficiency (EQE, IQE, respectively) spectra of these devices.  Here, 

IQE is obtained from the EQE and the absorption spectra [24, 25].  The x = 100 nm OVPD-grown 

device has a ~7% higher IQE than the x = 60 nm device grown by VTE.  Since IQE is the ratio of 

charge at the contacts to the number of photons absorbed within the active layer [25], OVPD-

grown OPVs exhibit higher efficiency charge transfer than analogous VTE-grown devices. 

 

 

Figure 3.2. (left) Current density (J) versus voltage (V) characteristics under 1 sun illumination for 60 nm 
or 100 nm active layer thicknesses grown by VTE and OVPD, respectively. (right) External and internal 
quantum efficiencies as a function of wavelength (λ) of the devices. 
 

3.2.2. Morphology of DBP:C70 mixed layer  

The DBP:C70 mixed layers were examined using atomic force microscopy (AFM) and 

transmission electron microscopy (TEM) to determine the morphologies achieved by the two 

growth techniques.  Figure 3.3 (top-left), shows an AFM image of a VTE-grown film on a Si 

substrate.  The surface is featureless with a root-mean-square roughness of rms = 0.4±0.1 nm, 

showing no indication of a crystalline nanostructure. In contrast, the OVPD-grown film (Figure 

3.3 top-right) exhibits ~ 40 nm diameter features suggestive of nanocrystallites, with rms = 1.5±0.2 
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nm.  The structures were also investigated by selected area electron diffraction (SAED), as shown 

in Figure 3.3 (bottom).  It has been reported that both hexagonal close packed (hcp) and face-

centered cubic (fcc) polymorphs of C70 can co-exist, with their ratio dependent on the growth 

temperature and pressure [26–28].  The fcc polymorph of C70 has a unit cell dimension of a = 

14.89Å [29]. The SAED pattern of the VTE-grown film (Figure 3.3 bottom-left) indicates a 

completely amorphous layer, which is in striking contrast to the OVPD-grown film in Figure 3.3 

(bottom-right), where four concentric rings corresponding to diffraction peaks [29, 30] suggestive 

of fcc C70.  Identification of the peaks in the figure and their interplanar spacings are summarized  

 

Table 3.1 Interplanar d-spacings of OVPD grown DBP:C70 films 

(hkl) index d=a / √hଶ ൅ kଶ ൅ lଶa) dଵ/dୠሻ(XRD) dଵ/d	(SAED) 

(111) 8.59 Å 1.00 1.00 

(220) 5.26 Å 1.63 1.62 

(311) 4.49 Å 1.91 1.93 

(420) 3.39 Å 2.53 2.60 

a) a = 14.89Å is the lattice constant of the C70 fcc structure in. d1 corresponds to the (111) plane.  The errors in d1/d 
from SAED ~ 3% arise from inaccuracies in extracting diameters of concentric rings in Figure 3.3. 
b) C70 data from Ref. 30.   

 

in Table 3.1. We attribute the crystallinity of C70 observed in OVPD-grown films to the presence 

of Nଶ molecules that impart energy during growth.  The carrier gas enhances surface diffusion of 

the incident organic molecules that promotes nucleation, desorption, crystallite ripening, etc., 

resulting in a morphology that approaches that of the equilibrium crystal structure [10, 18]. 

While SAED does not provide information on the arrangement of the DBP molecules in such dilute 

mixtures as employed here, the differences in nanostructure result in changes in spectral properties 

from which the structure may be indirectly inferred.  As shown in Figure 3.4, the OVPD-grown  
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Figure 3.3. Atomic force microscopy (AFM) images of 60 nm thick DBP:C70 (1:10 ratio) films grown by 
(top-left) VTE and (top-right) OVPD on a Si substrate.  The root-mean-square (RMS) roughness of the 
films is shown. The errors are due to variation from area to area of the film. Selected area electron diffraction 
(SAED) patterns of DBP:C70 films grown by (bottom-left) VTE and (bottom-right) OVPD. Corresponding 
Miller indices of C70 face-centered cubic (fcc) structure are indicated for the OVPD-grown film.   
 

DBP:C70 film has a lower extinction coefficient (k) in the DBP spectral range between wavelengths 

of  = 500 nm and 625 nm [15, 31, 32], compared to that grown by VTE.  Anisotropic materials 

typically have at least two different optical constants: Ordinary optical constants for p-polarized 

light and extraordinary optical constants for s-polarizations [33]. For planar DBP molecule, the 

ordinary extinction coefficient is larger than the extraordinary coefficient, and hence the absorption 

of DBP depends on its preferred orientation in the film [31],  which in turn is strongly affected by 

the substrate and growth process [33, 34]. In our case, we attribute the decreased extinction 
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coefficient in OVPD-grown films to a preferred molecular orientation along the axis of lower k 

relative to the light that is incident normal to the substrate.  As a result, OVPD-grown OPVs require 

a thicker mixed layer than an analogous VTE-grown layer to achieve a similar EQE, as shown in 

Figure 3.1.   Hence, we conclude that the nanocrystalline morphology of C70 affects the orientation 

of the diluted DBP when grown by OVPD, whereas this preferred orientation is not observed in 

VTE growth.  

 

3.2.3. Optical and Electrical properties of DBP:C70 mixed layer  

Since the nanostructure of the organic film affects the allowed optical transitions near 

highest occupied molecular orbital (HOMO) – lowest unoccupied molecular orbital (LUMO) 

energy gap (i.e. near the long wavelength optical cutoff) [35, 36], we can analyze the spectral 

properties of the films in this region to gain further information about their morphologies.  That is,  

 

 

Figure 3.4. (left) Extinction coefficient (k) of DBP:C70 grown by VTE and OVPD as a function of 
wavelength (λ).  (right) Natural logarithm of the absorption coefficient, log(α), of DBP:C70 films grown by 
VTE and OVPD vs. 1/λ near the film long wavelength cutoff.  Dashed lines are linear fits to the data.  Their 
slopes yield the Urbach tail energies, U = 101±4 meV and 81±2 meV for VTE and OVPD-grown mixtures, 
respectively. 
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structural disorder leads to a broadened density of states that results in an Urbach tail near the 

absorption cutoff [37–39] that follows: ߙ	 ൌ ሻሻܷߣሺ݄ܿ/ሺ	଴expߙ	 .  Here, α0 is a constant, ݄	 is 

Planck’s constant, c is the speed of light, and U is Urbach tail energy (see Figure 3.4).  From the 

slopes of the best fits to the data, we obtain U=81±2 meV and 101±4 meV for DBP:C70 films 

grown by OVPD and VTE, respectively, compared to the reported value of VTE-grown C70 of 55 

meV [38]. Errors in U correspond to the standard deviation of four samples.  The lower energy for 

OVPD indicates reduced disorder than for VTE-grown films.  This also agrees with the observation 

that OVPD results in a C70 fcc structure (c.f. Figure 3.3). 

Finally, the J-V characteristics of the OPVs can be understood in terms of the modified ideal-

diode equation for organic heterojunctions [40, 41]: 

 

ܬ ൌ ௦஽ܬ ቂ݁݌ݔ ቀ
௤ሺ௏ି௃ோೞሻ

௡ವ௞್்
ቁ െ ߯ቃ ൅ ௦஺ܬ ቂ݁݌ݔ ቀ

௤ሺ௏ି௃ோೞሻ

௡ಲ௞್்
ቁ െ ߯ቃ െ                      ௑.               (3.1)ܬ௉௉ௗߟݍ

 
Here, JsD and JsA are the saturation current densities associated with trapped charge in the donor 

and acceptor layers, respectively, nD and nA are the corresponding ideality factors, JX is the exciton 

current density, Rs is the series resistance, q is electron charge, T is the temperature, kb is 

Boltzmann’s constant, and ηPPd is the polaron pair dissociation efficiency. Also, χ is the ratio of 

the polaron pair dissociation rate at voltage, V, to its value at equilibrium.  For simplicity, we 

assume χ ≈ 1 [41].  The fit to the forward characteristics of the devices in Figure 3.1 measured at 

their optimal thicknesses are shown in Figure 3.5 (left), from which we obtain Rs vs. x plotted in 

Figure 3.5 (right), along with the corresponding FF.  While Rs for VTE -grown devices increases 

linearly from 0.5±0.1 at x = 45 nm to 2.5±0.2 Ω-cm2 at x = 100 nm, its value for OVPD-grown 

devices is nearly thickness independent, with Rs < 0.5±0.1 Ω-cm2 up to x = 110 nm.  The decreased 
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series resistances is primarily due to the improved crystallinity of C70 (see Figure 3.3). 

Furthermore, directional grain structure of DBP molecules has previously been observed for 

substrates heated during growth [42].  Since OVPD employs a hot carrier gas, the temperature of 

growth surface can be higher than in VTE growth. Further, oriented films of DBP may be induced 

to the higher surface mobility of molecules, also enabled by the presence of the carrier gas. This 

directionality in film growth leads to an equilibrium nanocrystalline structure that increases charge 

mobility [43].  Both the improved crystallinity of C70 and preferential orientation of DBP explain 

that OVPD growth results in a morphology that leads to an improved charge extraction compared 

to the amorphous VTE-grown structures. 

 

 

Figure 3.5. (left) Fits of the forward-biased J-V characteristics of the devices in Figure 3.1 using the ideal 
diode equation for 60 nm and 100 nm thick active layer OPVs grown by VTE and OVPD, respectively.  
(right) Series resistance (Rs) and fill factor (FF) of the devices.  Error bars correspond to the standard 
deviation of 4 devices for each data point. 

 

3.3. Conclusion 

The growth of mixed DBP:C70 layers by OVPD leads to a nanocrystalline morphology that 

improves charge extraction and reduced charge recombination in mixed heterojunction organic 

photovoltaic cells relative to analogous cells grown by VTE.  Since OVPD growth occurs near 
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thermodynamic equilibrium, mixed layers are nanocrystalline compared with the amorphous 

layers grown by the highly non-equilibrium process of VTE.  A consequence of the enhanced 

crystallinity is a reduction of extinction coefficient of DBP.  The enhanced crystallinity also results 

in a low series resistance Rs and hence, a high FF even for relatively thick mixed DBP:C70 films.  

The absorption loss in the nanocrystalline films is compensated by the use of thicker active layers 

without negatively impacting either Rs or FF. Optimal DBP:C70 layers grown by OVPD have a 

thickness of 100 nm, resulting in OPVs with a PCE = 6.7±0.2%. This compares to PCE = 6.2±0.2% 

obtained with optimized 60 nm-thick mixed layers grown by VTE. The significantly thicker 

nanocrystalline devices should ultimately result in higher device yields through the reduction in 

pin-holes and other shunt paths often observed in very thin VTE-grown OPVs.    

 

3.4. Experimental details  

Device fabrication: Glass substrates pre-coated with a 70 nm thick layer of indium tin oxide 

(ITO) having sheet resistance of 20 Ω/ᇝ were cleaned with tergitol, deionized water, acetone, and 

isopropanol, followed by exposure to ultraviolet-ozone treatment for 10 min.  The substrates were 

transferred into a vacuum thermal evaporation chamber to deposit MoOଷ at 1.0Å/s.  The DBP:C଻଴ 

mixed layers were grown on MoOଷ by either VTE or OVPD, transferring the samples into the 

respective growth chamber through an ultrahigh purity N2-filled glove box.  The remaining layers 

of BPhen and Ag were deposited by VTE, also following transfer from the OVPD reactor without 

air exposure.  For VTE growth, two separate quartz crystal monitors tracked the deposition rates 

of DBP and C଻଴, at 0.2Å/s, 2.0Å/s (1:10 ratio), respectively at base pressure of ~10-7 torr.  For 

OVPD, the three zones of the reactor were set a 570, 510, and 450˚C, respectively, creating a 

temperature gradient from the source to the substrate positions along the tube.  The DBP and C଻଴ 
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were co-evaporated by heating the source materials to 375±2˚C and, 540±1˚C respectively, at a 

source barrel flow rate of 50 sccm Nଶ . The gas solvent was further diluted by 20 sccm 

Nଶ	introduced directly into the main reactor tube. The pressure during growth was maintained at 

0.61 torr.  These conditions achieved the same deposition rate as in VTE.  

Measurement of device characteristics: J-V characteristics were obtained in an ultrahigh 

purity N2 gas environment using an Agilent 4156C semiconductor parameter analyzer.  Simulated 

AM 1.5G illumination, 1 sun intensity (100mW/ܿ݉ଶ) was provided using a solar simulator, and 

calibrated using a standard Si reference cell traceable to National Renewable Energy Laboratory 

(NREL) standards.  The EQE spectra were measured with Stanford SR830 DSP lock-in amplifier 

under 200 Hz-chopped monochromated Xe-lamp.  A NIST-traceable Si detector was used as a 

reference. 

 Selective area electron diffraction (SAED) measurements: Organic layers were deposited 

onto MoOଷ	(10 nm) pre-deposited on Si substrates cleaned with acetone and isopropanol.  Organic 

layers were captured on a copper grid by dissolving MoO3 in deionized water.  The SAED patterns 

were recorded using a JEOL 3011 high resolution electron microscope at an accelerating voltage 

of 300kV with a 20 μm selective aperture diameter. 

 Measurement of optical constants: Variable angle spectroscopic ellipsometery was used to 

measure thickness and optical constants of thin film samples deposited on Si substrates.  

Spectroscopic data were recorded in the near infrared for thickness measurements, and in the 

ultraviolet-visible range for obtaining the optical constants, using a B-spline algorithm [44].  This 

procedure was repeated over samples having different thicknesses to reduce error. 
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Chapter 4  

Reliability of organic photovoltaics grown via organic vapor 

phase deposition  

This chapter is adapted from the peer-reviewed publication: Adv. Energy Mater., 5, 1401952 (2015) 

 

4.1. Introduction  

Recent improvement in small molecular-weight organic photovoltaics (OPVs) based on 

small molecular-weight materials have been realized by controlling thin-film morphology down 

to the nanometer scale [1–4].  Morphology has been found to influence device efficiencies [5–7], 

operational lifetimes [8-10], and failure mechanisms [11, 12].  One method to effectively control 

the film morphology is via growth by organic vapor phase deposition (OVPD) [13–15], where 

deposition occurs in the presence of a hot, inert carrier gas that provides extra energy for organic 

molecules to find an equilibrium configuration as they adsorb onto the substrate.  This is in contrast 

to conventional vacuum thermal evaporation (VTE), where molecules follow ballistic trajectories 

from the source to the substrate, affording them little opportunity to find a lowest energy site before 

being buried by subsequently arriving molecules [16].  Also, OVPD has the advantages of high 

material utilization efficiency [17, 18], scalability for uniform growth over large substrates [19, 

20], and enhanced device lifetime [21]. 
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4.2. Results & Discussion 

We show that morphological changes over time in a bathophenanthroline (Bphen) cathode 

blocking layer used in fullerene-based OPVs strongly impact device reliability, and that these 

changes are significantly reduced when the underlying active region is grown by OVPD vs. VTE. 

The wide energy gap Bphen has often been used in organic light emitting diodes (OLEDs) [22, 

23], and OPVs [24, 25] as an optical spacer and exciton blocking layer proximal to the cathode 

contact [26, 27].  However, devices containing Bphen suffer from morphological instabilities [28, 

29] resulting from its low glass transition temperature of 62 ˚C [30].  When deposited onto a 

tetraphenyl-dibenzoperiflanthene (DBP):C70 mixed active region grown by VTE, the 

morphological transformation of Bphen is found to significantly reduce the open-circuit voltage 

( ைܸ஼) from 0.91±0.01% to 0.52±0.01% after aging at 50±5 ̊ C for 250 hr under simulated AM 1.5G 

solar illumination.  The decrease in ைܸ஼ results in the reduction of the power conversion efficiency 

from PCE = 6.0±0.2% to 3.1±0.2%.  In addition, the morphological degradation results in electrical 

shorts across the devices, greatly reducing device yield from 93% to 63% for VTE-optimized 

devices.  In contrast, the rougher, nanocrystalline surfaces of the DBP:C70 active layers grown by 

OVPD effectively pin the overlying amorphous Bphen, thereby preventing morphological 

changes.  Hence, OPVs grown by OVPD have the highest PCE = 6.7±0.2%, and experience little 

change in ைܸ஼, PCE or device yield when similarly aged. 

 

4.2.1. Morphological degradation of Bphen  

Atomic force (AFM) and optical microscope images of an 8 nm thick Bphen layer on a 

1:10 (by vol.) DBP:C଻଴ active layer (60 nm thick for VTE-grown, or 200 nm thick for OVPD-

grown devices) are shown in Figure 4.1.  Active layer thicknesses were individually optimized for 
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each growth technique, with the nanocrystalline OVPD active layer grown thicker due to its higher 

conductivity than the amorphous layers grown by VTE [31].  Figures 4.1a-d show images of a 

Bphen cap on a VTE-grown active layer after 0, 12 , 25, and 75 hr aging, respectively, under 

simulated 1 sun intensity.  The initial Bphen surface has a root-mean-square (RMS) roughness of 

0.4±0.1 nm, followed by spherulite growth appearing within 25 hr (Figure 4.1c, 4.1d).  In contrast, 

the Bphen on the relatively rough nanocrystalline OVPD-grown active layer (RMS = 1.2±0.2 nm, 

Figure 4.1e) becomes only marginally rougher, to RMS = 2.2±0.4 nm, over this same period 

(Figure 4.1f, 4.1g).  There are only a very few regions of local crystallization after 75 hr (Figure 

4.1h).  The active layer surface itself has an RMS roughness of 0.8±0.2 nm for VTE, and 4.1±0.2 

nm for OVPD, neither of which changed after 75 hr.  Hence, we conclude that all morphological 

 

 

 

Figure 4.1. (a) Atomic force (AFM) and optical microscope images of an 8 nm thick Bphen film grown by 
vacuum thermal evaporation (VTE) on ITO/MoO3 (10 nm)/1:10 (by vol.) DBP:C70 (60 nm grown by VTE) 
and after aging for (b) 12 hr, (c) 25 hr, and (d) 75 hr.  (e) Similar images of an 8 nm thick Bphen film grown 
by VTE on an analogous structure but with the DBP:C70 grown to 200 nm thickness by organic vapor phase 
deposition (OVPD) and (f)-(h) after aging for the same durations.  The root-mean-square (RMS) surface 
roughness of each image is indicated.  
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changes occur only in the Bphen overlayer. This suggests that the initially rough OVPD-grown 

surface pins the morphology of Bphen, whereas the smooth VTE-grown active layer does not.   

X-ray diffraction (XRD) measurements of a 100 nm thick VTE- and OVPD-grown 

DBP:C଻଴ layers on sapphire are shown in Figure 4.2a. The peak at 10.26±0.03º corresponds to 

diffraction from the (111) plane of the face-centered-cubic (fcc) crystal structure of C଻଴  [32], 

which is only apparent for the OVPD-grown layer (curve II, Figure 4.2a), indicative of its 

nanocrystalline morphology.  In contrast, the diffraction pattern of the VTE-grown active layer is 

featureless due to its amorphous structure (curve I, Figure 4.2a) [31].  Following aging for 75 hr, 

the XRD measurements of a 50 nm thick Bphen on a 100 nm thick DBP:C଻଴ layer grown by VTE 

show the emergence of a narrow, strong reflection at 8.37±0.03º corresponding to a crystal plane 

spacing of d002 = 10.55±0.04 Å of the orthorhombic Bphen lattice (curve I, Figure 4.2b) [33], 

whereas the Bphen peak on the OVPD-grown layer is broad and weak (curve II, Figure 4.2b).   

 

Figure 4.2. (a) Bragg-Brentano Cu-Kα X-ray diffraction (XRD) measurement of 1:10 (by vol.) DBP:C70 
(100 nm thick) film grown by (I) VTE and (II) OVPD on sapphire substrates.  (b) XRD data of the 50 nm 
thick Bphen on the same structure after aging for 75 hr.  Peak positions and crystal indices are shown.    
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From the full width at half maxima of each peak (Table 4.1), we estimate that the aged Bphen 

crystallite size is at least 35% smaller when deposited on an OVPD-grown active layer than on 

one grown by VTE.  Since the 50 nm thick Bphen layer used for XRD analysis is much greater 

than that used as a cathode blocker in an OPV (typically ~8 nm), the actual differences of Bphen 

crystallite size might be larger in devices themselves because the reduced thickness enhances 

pinning by the underlying rough surface. 

 

Table 4.1 Crystallographic data for Bphen/DBP:C଻଴ 

Organic layer Peak position [º] FWHM [º] d-spacing [Å] Crystallite sizea) [nm] 

Bphen (OVPD) 8.34±0.03 0.28±0.02 10.59±0.04 /10.57b) 28±3 

C଻଴   (OVPD) 10.26±0.03 0.48±0.02 8.61±0.03 / 8.60c) 16±2 

Bphen (VTE) 8.37±0.03 0.19±0.02 10.55±0.04 / 10.57b) 42±4 

a) Calculated using the Scherrer equation, ݐ ൌ
௄ఒ

஻௖௢௦ఏ
 where K is a constant dependent on crystallite shape 

(0.9), λ is the wavelength of Cu-kα X-ray line, B is the full width at half maximum of the peak, and θ is the 
Bragg angle. 
b) Calculated based on the (002) plane in orthorhombic Bphen crystal structure [33]. 
c) Calculated based on the (111) plane in face-centered-cubic (fcc) C଻଴ crystal structure [32]. 

 

4.2.2. Performance change of mixed heterojunction OPVs with Bphen buffer 

To understand the relationship between OPV performance and the morphological changes 

in Bphen, we fabricated three devices with the following structures: Glass/ITO/1:10 (by vol.) 

DBP:C଻଴(60 nm, 200 nm thick grown by VTE and 200nm thick grown by OVPD)/Bphen(8 nm 

thick grown by VTE)/Ag(100 nm).  In fully VTE-grown devices, 60 and 200 nm were chosen for 

the active layer thicknesses – the thinner layer is optimized for VTE-grown devices, whereas the 
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thicker layer corresponds to the highest performance OVPD-grown structures.  The OVPD device 

has a higher fill factor (FF) compared to that grown by VTE at the same thickness (200 nm), as 

shown in Figure 4.3, and Table 4.2.  This difference is due to the low series resistance arising from 

the C଻଴ nanocrystalline morphology in OVPD-grown active layers [31].  After aging for 250 hr, 

the 60 nm thick VTE-grown device exhibits a substantial drop in ைܸ஼ , from 0.91±0.01 V to 

0.52±0.01 V (Figure 4.3b), due to the morphological degradation of the blocking layer.  The 200 

nm thick VTE-grown device also shows a decrease in ைܸ஼  from 0.91±0.01 V to 0.74±0.01 V, 

whereas the OVPD-grown device exhibits almost no change ( ைܸ஼ = 0.91±0.01 V initially, ைܸ஼ = 

0.89±0.01 V after aging).  In addition, the device yield for the 60 nm thick VTE-grown population 

(30 devices) decreases from 93 % to 67 % after 250 hr.  In contrast, 200 nm thick devices grown 

by both VTE and OVPD show only a few shorted devices after aging.     

 

 

Figure 4.3. Current density-voltage (J-V) characteristics of DBP:C70 mixed heterojunction organic 
photovoltaic (OPV) cells with an 8 nm thick Bphen blocking layer and a 100 nm thick Ag cathode.  The 
number of operational devices among the 30 grown on each substrate is specified in the legend.  (a) Initial 
J-V characteristics of OPVs with 60 nm thick and 200 nm thick VTE-grown active layers, and a 200 nm 
thick OVPD-grown active layer.  (b) J-V characteristics of the three devices after aging 250 hr.  
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Table 4.2 Performance of DBP:C଻଴ mixed heterojunction OPVs grown by VTE or OVPD 

Active layer thickness ܬ௦௖ [mA/cm2] ௢ܸ௖ [V] FF PCE [%] 

As-grown 

60nm (VTE) 11.6±0.02 0.91±0.01 0.56±0.01 6.0±0.2 

200nm (VTE) 12.3±0.02 0.91±0.01 0.48±0.01 5.3±0.2 

200nm (OVPD) 12.9±0.02 0.91±0.01 0.56±0.01 6.7±0.2 

After 250 hours of light illumination 

60nm (VTE) 11.2±0.02 0.52±0.01 0.52±0.01 3.1±0.02 

200nm (VTE) 10.7±0.02 0.74±0.01 0.49±0.01 4.0±0.02 

200nm (OVPD) 11.6±0.02 0.89±0.01 0.52±0.01 5.5±0.02 

 

 

4.2.3. Origin of electrical shorts and VOC changes in OPVs  

As shown in the fluorescence microscope images in Figure 4.4, we find that Bphen 

protrusions pierce the active layer after 75 hr for the VTE-grown sample.  These protrusions 

contain Ag, identified by three peaks (at 2.98, 3.14, and 3.35 keV) in the energy dispersive spectra 

(EDS; see Figure 4.4c).  This suggests that device shorts are a result of the diffusion of Ag atoms 

through the grain boundaries between crystallites in the aged Bphen layer [34].  Such protrusions 

are completely absent for the OVPD-grown sample (Figure 4.4b), thus greatly reducing the 

possibility of shorts.  

 The decrease in ைܸ஼ can be understood using the expression for the open circuit voltage of 

organic heterojunctions, where [35]: 
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ݍ                                                 ைܸ஼ 	ൌ ு௅ܧ߂	 െ	݊஺݇஻ܶ	ln	ሾܬ଴/ܬ௦௖ሿ	                                         (4.1) 

with                                        ܧ߂ு௅ 	ൌ ௔ߔ	 ൅ ௖ߔ ൅ ݍ ௕ܸ௜.                                                           (4.2) 

Here, ΔEHL is the energy difference between the lowest unoccupied molecular orbital 

(LUMO) of the acceptor (C଻଴) and the highest occupied molecular orbital (HOMO) of the donor 

(DBP), nA is the ideality factor due to charge recombination at traps in the acceptor layer, kB is 

Boltzmann’s constant, T is the temperature, and J0 is the reverse-bias saturation current density.  

Also, ߔ௔ and ߔ௖ are the hole and electron injection barriers at the anode and cathode, respectively,  

and ௕ܸ௜ is the built-in potential determined by the difference in contact work functions: ௕ܸ௜ = ܹܨ௔ 

  ௖. Figure 4.5 shows the change in capacitance (C)–voltage (V) characteristics after 250 hr ofܨܹ -

 

 

Figure 4.4. Fluorescence microscope image of glass/12 nm thick tris(8-hydroxyquinolinato) aluminum 
(Alq3)/1:10 (by vol.) DBP:C70 (60 nm) grown by (a) VTE or (b) OVPD/Bphen(8 nm)/Ag(100 nm) after 
aging 75 hr.  3D image reconstruction of protrusion (Inset) from multiple slices of the 2D images is shown.  
(c) Energy dispersive spectra (EDS) of DBP:C70 (60 nm thick grown by VTE or OVPD)/Bphen(8 
nm)/Ag(60 nm) films on a Si substrate after aging 75 hr.  Elements corresponding to each peak are indicated.  
Inset: Cross-sectional SEM images of each sample with EDS probe area indicated (circle). The probe area 
is located well below the Ag/organic interface to ensure that only areas far away from the contact are 
sampled for the presence of Ag.   
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aging for the 60 nm and 200 nm active-layer-thickness VTE-grown devices, and for the 200 nm 

thick OVPD-grown device.  Voltage shifts were observed in the forward-bias region after the 

aging: ∆ܸ = 0.39±0.03 V, 0.18±0.02 V, and 0.03±0.01 V, respectively.  From the Equation 4.1 and 

4.2, resulting ∆ܸ could be either ∆ߔ௖ or ∆ܹܨ௖ after the aging since the degradation exists only in 

the cathode side.  Although it is not clear about ∆ܹܨ௖ (i.e. ∆ ௕ܸ௜) from the 1/ܥଶ vs. V plot [36], all 

of ∆ܸ are comparable to the decrease in ைܸ஼ (0.38±0.01 V, 0.17±0.01 V, and 0.02±0.01 V; c.f. 

Table 4.2) of the devices. The origin of ∆ܸ is due to the change in fixed charge (Q) at the interface  

 

 

Figure 4.5. Capacitance-voltage (1/C2 vs. V) characteristics of (a) 60 nm thick VTE-grown, (b) 200 nm 
thick VTE-grown, and (c) 200 nm thick OVPD-grown DBP:C70 active layer devices before and after 
aging for 250 hr.  Voltage shifts (∆V) are obtained from the voltage difference between the initial curve 
and one after the aging in the middle of the straight line (grey arrows), from which the change in the fixed 
charge density (ΔQ) is inferred. 
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between the active layer and the blocker, following	∆ܳ ൌ  The defects at the interface caused  .ܸ∆ܥ

by morphological irregularities during layer crystallization introduce a substantially higher fixed 

charge density in the VTE-grown active layers.  These interface states have the highest density in 

films that undergo the greatest crystallization: 60nm thick and 200 nm thick VTE-grown layers 

are therefore anticipated to have higher defect densities than 200 nm thick OVPD-grown layers.   

We, therefore, calculate the incremental increase in Q after the aging.  The 60 nm thick VTE-

grown devices show the largest ∆ܳ = 4.5±0.3×10-10 C compared to ∆ܳ = 8.8±0.5×10-11 C for the 

200 nm thick VTE-grown devices, and ∆ܳ = 4.7±0.5×10-11 C for the OVPD-grown devices. The 

decrease in ைܸ஼ with device age is the primary source of the decrease in PCE for both VTE-grown  

 

Figure 4.6. Aging characteristics of three DBP:C70 mixed heterojunction devices (60 nm thick, 200 nm 
thick active layer grown by VTE, and 200 nm thick active layer grown by OVPD) with an 8 nm thick Bphen 
blocking layer and a 100 nm thick Ag cathode.  The normalized (a) power conversion efficiency, PCE, (b) 
open circuit-voltage, Voc, (c) responsivity, R, and (d) fill factor, FF, over 250 hr of AM 1.5G illumination 
are shown. 
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devices, as shown in Figure 4.6.  While both VTE-grown devices show monotonic decreases in 

ைܸ஼ vs. time, the effect of Bphen morphology more rapidly impacts the thin active layer device 

performance.  In the 200 nm thick OVPD-grown device, however, both responsivity and FF 

decrease by only 11±1% and 9±1% from their initial values respectively, during the first 25 hours 

(corresponding to initial burn-in losses [37]).  After this, the device performance is stable for the 

following 225 hr, showing a clear distinction from the VTE-grown devices.  

 

4.3. Conclusion  

In summary, the effect of morphological changes of the Bphen blocking layer over time on 

device performance was investigated for DBP:C଻଴  mixed heterojunction OPVs whose active 

regions are grown by either VTE or OVPD.  The Bphen blocking layer tends to crystallize which 

results in a decrease ைܸ஼ due to the accumulation of charge at the active-layer/Bphen interface.  

Morphological degradation not only affects device performance but also leads to electrical shorts 

—an effect that is mitigated by growing thicker active layers, and is entirely eliminated by the use 

of OVPD-grown active layers.  The rough surface of the nanocrystalline OVPD-grown active layer 

pins the Bphen morphology, thereby hindering its transformation.  This, in turn, results in OPVs 

that maintain both a high ைܸ஼ and yield after 250 hr of operation.  

 

4.4. Experimental details  

 Atomic force microscope images were obtained using a Bruker Dimension Icon AFM in 

the tapping mode.  X-ray diffraction patterns were obtained in the Bragg-Brentano configuration 

on organic films deposited on sapphire substrates.  Fluorescence microscope images were recorded 
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with an Olympus BX-61 motorized microscope for the following structures: Glass/12 nm thick 

tris(8-hydroxyquinolinato) aluminum (Alqଷ)/1:10 (by vol.) DBP:C଻଴(60 nm grown by either VTE 

or OVPD)/Bphen(8 nm)/Ag(100 nm).  The thickness of the fluorescent (Alqଷሻ layer was adjusted 

until sufficient contrast between the protrusions and the fluorescence background emission was 

clearly observed.  Scanning electron microscope (SEM) images were acquired using a Hitachi 

SU8000 in-line SEM equipped with an energy dispersive spectrometry (EDS) microprobe at 10kV.  

The cross-sectional images were acquired on layers consisting of 1:10 (by vol.) DBP:C଻଴(60 nm 

grown by either VTE or OVPD)/Ag(60 nm) deposited on Si substrates.  The samples were cleaved 

after aging.  The Ag and organic bulk layers were distinguished from the Si substrate using EDS.  

Samples were aged under simulated air mass 1.5 global (AM1.5G) illumination in an ultra-high 

purity (HଶO, Oଶ < 1ppm) Nଶ-filled glovebox. Intensity was calibrated using a National Renewable 

Energy Laboratory (NREL)-traceable KG-5 filtered Si reference cell.     

 Organic PV cells were prepared as follows. 2.5 cm2 square glass substrates were pre-

patterned with rectangular, 150 nm thick indium tin oxide (ITO) patterns for each contact.  The 

substrates were subsequently cleaned in tergitol, de-ionized water, twice with acetone, and twice 

with isopropanol for > 5 min each.  Ultraviolet-ozone treatment was applied for 10 min followed 

by 1 min snow-cleaning [38] with COଶ.  Substrates were transferred to the glovebox, and a shadow 

mask with 1.2 cm2 square openings was aligned to the ITO pattern for deposition of all layers 

except cathode.  Both MoOଷ, and Bphen were deposited at 1Å/s in a VTE chamber (base pressure 

~10ି଻torr).  Thicknesses and deposition rates were monitored using quartz crystal monitors.  DBP 

and C଻଴ were co-evaporated at 0.2Å/s, 2.0Å/s, leading to 1:10 volume ratio.  The OVPD growth 

employed a multi-barrel quartz reactor with a 10 sccm (standard cubic centimeters per minute) Nଶ 

flow used in each source barrel along with a 6 sccm dilution flow in the main reactor tube, 
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maintained at a pressure of 0.28 torr.  The DBP barrel was heated to 375±2 ˚C, and the C଻଴ barrel 

to 520±2 ºC inside the reactor having three temperature zones of 560, 500, and 440˚C to reach the 

same deposition rate as in VTE growth.  A shadow mask was aligned to the anode patterns to 

define a 2 mm2 device area via the deposition of the Ag cathode by VTE at 1Å/s.  Following 

deposition, the devices were packaged in an ultrahigh purity N2 environment by sealing a 1.6 cm2 

cover glass to the substrate using UV-curable epoxy applied along its periphery.   

 Current density (J) vs. V characteristics were measured under AM1.5G illumination using 

an Agilent 4156C parameter analyzer.  Additionally, the wavelength-dependent external quantum 

efficiency (EQE) was recorded using a fiber-coupled Xe arc lamp at 200 Hz with a Stanford SR830 

DSP lock-in amplifier.  Then the short circuit current density, ܬ௦௖, was calculated by integrating 

the EQE over the AM 1.5G solar spectrum.  The intensity of the solar simulator was set such that 

 was equal to that obtained from the integrated EQE.  The measured and calculated J-V agree to	௦௖ܬ

within 4%.  Capacitance-voltage characteristics were obtained using an HP 4284A precision LCR 

meter equipped with an Agilent B1500A semiconductor device analyzer.  A 25mV amplitude AC 

signal at 1 kHz frequency was applied. 

 The encapsulated devices were aged at 50±5 Ԩ under a large area (210 mmଶ) AM 1.5G 

Xe arc lamp solar simulator.  The J-V characteristics of each device were automatically acquired 

every 30 min using a computer-controlled semiconductor parameter analyzer.   
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Chapter 5 

Control of morphology in electron-conducting buffers via 
organic vapor phase deposition  

 
This chapter is adapted from the peer-reviewed publication: Nano Lett., 16, 3905 (2016)  

 

5.1. Introduction  

The power conversion efficiencies of small molecular-weight organic photovoltaic (OPV) 

cells depend, among other factors, on the composition and morphology of the cathode buffer layer 

[1–4] that serves to block excitons from quenching at the contact, and to conduct electrons from 

the acceptor layer to the electrode. A recent and efficient “electron filtering buffer” design has 

been introduced that employs a mixture of a fullerene to conduct electrons along with a wide-

energy gap matrix that blocks excitons [1, 5, 6]. It is expected that the properties of such filters 

depend critically on morphology, fullerene-to-matrix mixture, optical transparency, etc. Indeed, 

Bergemann, et al. have shown a strong dependence of conductivity on the concentration of the 

fullerene, with the percolation threshold for conductivity being unexpectedly low at < 20% for 

bathophrenanthroline (Bphen):C60 buffers [7]. In this context, the growth process of organic vapor 

phase deposition (OVPD) has proven to be a precise means to control thin film morphology 

required in such dilute mixtures [8–11]. For example, OVPD growth can yield films with long 

range crystalline order, thereby enhancing device performance [9], morphological stability [8], and 

yield [8, 12] when compared to devices grown by vacuum thermal evaporation (VTE). One  
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particular benefit of OVPD is the ability to control the thermodynamic conditions (e.g. carrier gas 

pressure, flow rate, and substrate temperature) during growth that can be used to vary the kinetic 

energy imparted on depositing molecules. This, in turn, affects the diffusion of organic molecules 

at the growth interface, and hence the crystallinity of the resulting thin film [13]. Indeed, the 

variation in carrier gas pressure can result in dramatic changes in thin-film morphology by 

inducing pronounced surface roughening due to gas-phase nucleation among other effects [14].    

  

5.2. Results & Discussion 

We demonstrate morphological control over fullerene-based electron-filtering buffer layers 

using OVPD by employing 3,5,3',5'-tetra(m-pyrid-3-yl)phenyl[1,1']biphenyl (BP4mPy) as a wide 

energy gap exciton blocker. This material has improved morphological stability compared with 

Bphen due to its high glass transition temperature [15]. We find that the morphology, and 

specifically the extent of the crystalline domains of C60 mixed into BP4mPy are a function of 

growth pressure, as supported by atomic force microscopy (AFM) and x-ray diffraction (XRD). 

The compound buffer grown at a nitrogen background pressure of P = 0.28 torr in the OVPD 

chamber shows the largest C60 crystallite size of 10 nm within the amorphous BP4mPy matrix. A 

further increase in growth pressure results in an amorphous mixture in which the crystalline C60 

conductive “wires” are absent.  In the space-charge limited current (SCLC) regime, we find that 

the electron mobility follows the crystallinity of C60 whose extent is controlled by the OVPD 

growth pressure. The mobility of the highest conductivity buffer is 6.1±0.5×10-3 cm2/V·s, which 

is comparable to that of a neat, polycrystalline C60 thin-film (3.3×10-2 cm2/V·s). 

Tetraphenyldibenzoperiflanthene (DBP):C70 planar mixed heterojunction OPVs employing the 

BP4mPy:C60 electron-filtering buffer grown at 0.28 torr show a power-conversion efficiency PCE 
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= 8.0±0.2 % with a fill factor FF = 0.65±0.01, compared to PCE = 6.6±0.2 % and FF = 0.55±0.01 

for an amorphous, VTE-grown buffer. We attribute this improvement to film morphology that is 

determined by the kinetic energy imparted to the molecules at the growth interface by the N2 carrier 

gas in OVPD. By varying the gas pressure, we can vary the extent of fullerene crystallinity in the 

blends, achieving morphologies that range from amorphous to extended high conductivity C60 

crystalline domains. Microscopic analysis is supported by molecular dynamic simulations 

indicating that distinct morphologies are the result of the control of molecular kinetics at the 

growth interface. 

 

5.2.1. Morphology of BP4mPy:C60 electron-conducting buffer 

The surface morphology of C60 and BP4mPy thin films are investigated using atomic force 

microscopy (AFM), with images of 10 nm thick C60 films grown at pressures of P1 =0.17, P2 =  

 

Figure 5.1. Atomic force microscope (AFM) images of 10 nm thick C60 films grown by organic vapor phase 
deposition (OVPD) at (a) 0.17 torr (b) 0.28 torr (c) 0.49 torr (d) 0.82 torr and (e) vacuum thermal 
evaporation (VTE). AFM image of 10 nm thick (f) BP4mPy and (g) BP4mPy:C60 (1:1 vol.) grown by 
OVPD at 0.28 torr. All thin-films are deposited on an ITO/MoO3 10 nm/DBP:C70 (1:8 vol., 54 nm)/C70 (9 
nm) surface. Root-mean-square (RMS) surface roughnesses are indicated.   
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0.28, P3 = 0.49 and P4 = 0.82 torr shown in Figure 5.1a-d, respectively. Cluster-like features 

suggestive of crystallite formation develop with increasing pressure. This is accompanied by an 

increase in surface roughness, from a root mean square value of 1.6±0.3 nm at P1, to 4.0±0.5 nm 

at P4. The diameter of a C60 cluster is ~10 nm in Figure 5.1d. In contrast, surface clustering is 

absent in the film grown by VTE suggesting a homogeneously amorphous film (Figure 5.1e).  The 

surfaces of BP4mPy thin films grown by both VTE and OVPD are smooth and featureless as 

shown in Figure 5.1f. Further, the 1:1 (by vol.) BP4mPy:C60 film surface morphology does not 

show a pressure dependence when grown by OVPD (Figure 5.2). We conclude that the change in 

morphology under different growth pressures is confined to changes only in the regions C60 due to 

its propensity for crystallization into a face centered cubic (fcc) structure [16, 17], whereas 

BP4mPy is stable in the amorphous phase with a relatively high glass transition temperature (128 

oC) [18].    

 

 

Figure 5.2. Atomic force microscope (AFM) images of 10 nm thick BP4mPy:C60 (1:1 vol.) films grown by 
organic vapor phase deposition (OVPD) at (a) 0.17 torr (b) 0.49 torr (c) 0.82 torr.  (d) AFM image of 200 
nm thick BP4mPy:C60 (1:1 vol.) grown by OVPD at 0.28 torr. All thin-films are deposited on an ITO/MoO3 
10 nm/DBP:C70 (1:8 vol., 54 nm) surface. Root-mean-square (RMS) surface roughnesses are indicated.   
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Structural information is obtained via XRD of 200 nm thick C60 films grown by OVPD for 

these same growth pressures, as shown in Figure 5.3a. Consistent with the development of C60 

clusters,  (Figure 5.1a-d), the peak at a diffraction angle of 2=10.93±0.03o corresponding to the 

(111) plane of the C60 fcc structure [16, 17] increases with pressure. In the 1:1 BP4mPy:C60 film, 

this peak emerges at P1 = 0.17 torr, increasing to a maximum intensity at P2 = 0.28 torr, and then 

declines as pressure is increased further until it disappears at P4 = 0.82 torr (Figure 5.3b). Using 

Scherrer analysis of the peak broadening [19], we obtain an approximate average C60 crystallite 

size of 10±1 nm for the film at P2. However, VTE-grown 1:1 BP4mPy:C60 films show no 

diffraction features from C60, indicating that it is most likely amorphous.   

 

 

Figure 5.3. X-ray diffraction (XRD) using the Cu-Kα line in the Bragg-Brentano configuration of 200 nm 
thick (a) C60 and (b) BP4mPy:C60 (1:1 vol.) on sapphire substrates grown by OVPD at four different growth 
pressures (0.17, 0.28, 0.49, 0.82 torr).  

 

5.2.2. Electrical property of BP4mPy:C60 electron-conducting buffer 

The electron mobility (µ) of the mixed layer is obtained from the current density (J)-voltage 

(V) characteristics of an electron-only device in the space-charge limited current (SCLC) regime 

where [20]: 
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with [21]      ߤሺܧሻ ൌ ଴ߤ	 expሾߛሺܧሻଵ/ଶሿ	         (5.2)  

 

that assumes the mobility is limited by Frenkel-Poole intermolecular hopping. Here, ε is relative 

permittivity of the layer (≈3), ε0 is the permittivity of free space, d is the film thickness, E is the 

electric field, μ0 is zero-field mobility, and γ is the field-activation parameter that is a function of 

the degree of disorder of the film [22]. By fitting the J-V characteristics for the electron-only 

devices to these expressions (see Figure 5.4), we obtain μ0, and  for compound buffers grown 

under different growth conditions as listed in Table 5.1. We observe that μ0 increases and γ 

decreases with the crystalline domain size of C60 (c.f. Figure 5.3b), indicating that electrons are 

 

 

Figure 5.4. Current density-voltage characteristics of sapphire/Al (100 nm)/BP4mPy:C60 (1:1 vol., 200 
nm)/NTCDA (10 nm)/LiF (1.5 nm)/Al (100 nm) electron-only devices. The BP4mPy:C60 blends were 
grown by OVPD at four different pressures (P1=0.17, P2=0.28, P3=0.49, P4=0.82 torr) or by VTE. Lines 
indicate fits based on space-charge limited current. (Inset) Logarithm of electron mobility versus the applied 
electric field for the electron-only devices.  
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conducted through the C60 domains within the BP4mPy matrix. The highest μ0 = 6.1±0.5×10-3 

cm2/V·s corresponds to buffers grown at P2, which is comparable to 3.3×10-2 cm2/V·s of neat, 

polycrystalline C60 thin films [23]. The lowest γ = 4.6±0.5×10-4 (cm/V)1/2 is also observed in the 

buffer grown at P2, providing additional evidence for structural order of C60 at this pressure. 

Electron-filtering buffers grown by VTE have μ0 = 7.9±0.4×10-5 cm2/V·s with the largest γ = 

5.0±0.6×10-3 (cm/V)1/2, suggesting significant disorder within and between the C60 clusters. 

 

Table 5.1 Zero-field mobility, μ0, and field-activation parameter, γ, of BP4mPy:C60 mixed layers 
under different growth conditions  
 

Growth Process Pressure [Torr] μ0 [cm2/(V·s)]a γ x103 [(cm/V)1/2]a 

VTE 10-7 7.9±0.4×10-5 5.0±0.6 

OVPD 0.17 1.8±0.3×10-3 2.0±0.7 

OVPD 0.28 6.1±0.5×10-3 0.46±0.05 

OVPD 0.49 1.3±0.2×10-3 2.5±0.5 

OVPD 0.82 1.6±0.1×10-4 3.5±0.5 

 

a) Parameters are extracted from current density (J)-voltage (V) characteristics of the electron-only device. 
Electron-only devices have the following structure: Al (100 nm)/BP4mPy:C60 (1:1 vol., 200 nm)/NTCDA 
(10 nm)/LiF (1.5nm)/Al (100 nm). Errors are obtained from the deviations in the fitting. 
 

 

5.2.3. Performance of mixed heterojunction OPVs with BP4mPy:C60 buffer 

Figure 5.5a shows the performance of DBP:C70 planar-mixed heterojunction OPVs with the 

different electron-filtering buffers. The variations in performance primarily arise from differences 

in FF of the devices whose full characteristics are listed in Table 5.2. From Figure 5.5b, we observe 

that FF varies as a function of the growth pressure, following similar variations in µ0 of the buffers 
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shown in Table 5.1. Therefore, we conclude that the FF is strongly dependent on the extraction of 

electron-polarons from the buffer; that is, as the extent of the C60 crystalline domains increases, 

the mobility and hence the FF are also increased. The OPV with the buffer grown at P2 = 0.28 torr 

shows the highest FF = 0.65±0.01 and PCE = 8.0±0.2 %, compared to the device with the 

amorphous buffer grown by VTE whose FF and PCE are 0.55±0.01 and 6.6±0.2 %, respectively. 

 

 

Figure 5.5. (a) Current density-voltage characteristics of DBP:C70 planar mixed heterojunction devices with 
BP4mPy:C60 (1:1 vol., 10 nm) buffers grown by VTE or OVPD at different growth pressures (0.17, 0.28, 
0.49, 0.82 torr). (b) Fill factor (FF) variation of the devices in (a) depending on the growth pressure. 

 

5.2.4. Molecular dynamic simulation of BP4mPy:C60 buffer 

To understand the morphological dependence on the pressure, molecular dynamic 

simulations of the blend under different thermodynamic conditions used during growth have been 

performed. In OVPD, N2 carrier gas imparts kinetic energy to adsorbate molecules to promote 

diffusion along the surface until the molecules find suitably low energy sites to stabilizes their 

location. Over a suitably small range of pressures such as those used in our experiments, we can 

express the dependence of kinetic energy on pressure as an equivalent small change in substrate 
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Table 5.2 Performance of DBP:C70 planar mixed heterojunction OPVs with 10 nm thick 
BP4mPy:C60 compound buffer layers  
 

Growth 

Process 

Pressure 

[Torr] 

Jsc 

[mA/cm2]a 

VOC
 

[V]a 

FFa 

 

      PCE 

       [%]a 

VTE  10-7 13.1±0.2 0.920±0.002 0.55±0.01       6.6±0.2 

OVPD         0.17 13.2±0.2 0.920±0.002 0.62±0.01       7.5±0.2 

OVPD         0.28 13.3±0.2 0.923±0.001 0.65±0.01       8.0±0.2 

OVPD         0.49 13.2±0.2 0.922±0.001 0.61±0.01       7.4±0.2 

OVPD         0.82 13.1±0.2 0.915±0.003 0.57±0.01       6.7±0.2 

 

a) Error bars from standard deviation of four different samples. 

 

temperature according to the ideal gas law.  That is, if the temperature at pressure P1 is T1, then at 

a different pressure, P, the incremental kinetic energy is given by the canonical relationship:   

 

(5.3) 

 

where kB is Boltzmann’s constant and Teff is the effective substrate temperature that leads to the 

increased energy. The increase in carrier gas pressure allows molecules to find lower energy sites 

due to their larger kinetic energy. In this case, Teff represents the equivalent annealing temperature 

(as opposed to the actual temperature) that would impart the energy required for molecules to 

reorganize into the observed morphology. It remains for us to determine the activation energy 

barrier, ,0kinE that must be overcome for a molecule to have sufficient surface mobility to seek a 
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low energy site, rather than to be fixed at its point of initial incidence on the surface.  From the 

data in Figure 5.3 and 5.4, and measurements of µ0 and , we infer that nanocrystallites form at 

pressure P1 = 0.17 torr, whereas when deposited in vacuum on room temperature substrates, the 

morphology is completely amorphous. An elevated temperature of T1 = 350 K compared to the 

substrate temperature (= 297 K) was chosen as the kinetic energy in the presence of N2 at P1 was 

imparted to the molecules. Thus, we can set a lower limit to the activation energy for crystallite 

formation of δEkin,0 = 4.5 meV. Following Equation 5.3, the molecular dynamics leading to 

different morphologies in the limited pressure range from P1 to P4 can be simulated.  

Figure 5.6 shows the molecular dynamic simulation results for 32 C60 and 12 BP4mPy 

molecules that are initially randomly distributed in their own regions. The simulation proceeds by  

 

 

Figure 5.6. Molecular dynamic simulation results of an ensemble of 12 BP4mPy and 32 C60 molecules after 
simulated annealing with effective molecular kinetic energies of (a) δEkin = 4.5 meV, (b) 7.4 meV, (c) 13 
meV, (d) 21.7 meV corresponding to OVPD growth pressures of 0.17 torr, 0.28 torr, 0.49 torr, 0.82 torr, 
respectively. Note the ordered fcc C60 lattice in (b), and the almost complete intermixing of the equilibrium 
structure achieved at the highest pressure of 0.82 torr in (d).   
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allowing the ensemble of molecules to reach different equilibrium arrangements at each 

background pressure.  At P1 (Teff = 350K), Figure 5.6a shows that there is minor reorganization 

within the C60 and BP4mPy regions with a slight intermixing at the interface. At P2 (corresponding 

to δEkin = 7.4 meV) in Figure 5.6b, C60 molecules clearly form into an fcc lattice, consistent with 

the significant crystallization observed for C60 under these growth conditions (c.f. Figure 5.3). As 

the growth pressure increases to P3 (corresponding to δEkin = 13.0 meV in Figure 5.6c), C60 and 

BP4mPy molecules inter-diffuse across the domain boundaries, and become completely blended 

in an amorphous mixture at the highest pressure, P4 (δEkin = 21.7 meV in Figure 5.6d). Finally, we 

calculated the total intermolecular vdW energies of each equilibrium morphology in Figure 5.6. 

The corresponding energies are -0.833 eV/molecule at P1, -0.872 eV/molecule at P2, -0.935 

eV/molecule at P3, and -1.01 eV/molecule at P4. This implies that the ensemble energy decreases 

as the BP4mPy:C60 blend becomes more intermixed. Hence, increasing pressure and hence kinetic 

energy) drives the morphology to an increasingly stabilized structure. We tested whether the  

  

Figure 5.7. (a) Potential energy of the simulated molecular configuration annealed at T = 576 K 
(corresponding to P2) as a function of simulation time. The equilibrium structure is achieved after 
approximately 150 ps. (b) Normalized peak intensities at 10.1 Å and 14.1 Å in radial distribution function 
(RDF) as a function of pressure in BP4mPy:C60 blends.  
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simulation is carried out over a sufficient period to ensure that the equilibrium structure is 

achieved.  In Figure 5.7a, we show the simulation at T2 = 576 K proceeding for 400 ps. A stable 

minimum energy is reached after approximately 150 ps. We further analyze each morphology with 

an intermolecular radial distribution function (RDF) [24] that quantifies the degree to which the 

fcc structure of C60 is achieved. Figure 5.7b shows the RDF peak intensity at 10.1 Å and 14.1 Å 

for the four different morphologies. The peak at 10.1 Å is from the nearest-neighbor distance of 

carbon atoms, and 14.1Å corresponds to the fcc lattice constant [24]. From Figure 5.7b, we find 

that the morphology at P2 has the largest fcc content, with the degree of order decreasing at higher 

pressure. Once again this is consistent with observations obtained by XRD in Figure 5.3, and 

inferred from the conductivity of the films in Figure 5.4. 

 

5.3. Conclusion  

We demonstrate that the morphology of BP4mPy:C60 compound buffer can be controlled 

by the growth pressure in OVPD. Specifically, we find that the degree of C60 crystallite formation 

increases with pressure below P2 = 0.28 torr, but then decreases with at higher pressures as the 

constituent molecules become increasingly intermixed. At the optimum growth pressure, the 

electron mobility is 6.1±0.5×10-3 cm2/V·s, comparable to the mobility of crystalline C60 thin films. 

The DBP:C70 planar-mixed heterojunction OPVs with compound buffers grown at 0.28 torr have 

FF = 0.65±0.01 and PCE = 8.0±0.2 %, which are significantly improved compared with FF = 

0.55±0.01 and PCE = 6.6±0.2 % for analogous devices grown by VTE. Morphological differences 

are understood by annealing of C60 domains in molecular dynamic simulation. These simulations 

are consistent with observation in that the highest degree of order in the C60 domains occurs at a 

pressure of 0.28 torr where the conductivity and other optoelectronic properties of the layers are 

optimized. It is expected that the conductivity of BP4mPy:C70 can be also enhanced by optimizing 
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OVPD growth conditions. Indeed, we can infer that this approach can be generally applied to any 

fullerene-based compound buffer.  

 

5.4. Experimental details  

Samples used for atomic force microscope (AFM) analysis have the following structures: 

ITO/MoO3 (10 nm)/DBP:C70 (1:8 vol., 54 nm)/C70 (9 nm)/BP4mPy:C60 (1:1 vol., 10 nm). The 

AFM images were recorded by a Bruker Dimension Icon AFM in tapping mode. X-ray diffraction 

data for 200 nm thick BP4mPy:C60 layers were obtained using a Rigaku x-ray diffractometer in 

the Bragg-Brentano configuration using the Cu-Kα line at 40kV and 100mA. Electron-only 

devices have the following structure for space charge limited current measurements: Sapphire/Al 

(100 nm)/BP4mPy:C60 (1:1 vol., 200 nm)/NTCDA (10 nm)/LiF (1.5nm)/Al (100 nm). NTCDA 

was used to block hole conduction [4], and the LiF/Al top contact enabled efficient electron 

injection [25]. An Agilent 4156C parameter analyzer was used to measure current-voltage 

characteristics. Both μ0 and γ were determined from fits to Equation 5.2.  

OPV devices have the following structure: ITO/MoO3 (10 nm)/DBP:C70 (1:8 by vol., 54 

nm)/C70 (9 nm)/BP4mPy:C60 (1:1 by vol., 10 nm)/Ag (100 nm). Glass substrates were pre-coated 

with ITO (Rs = 20Ω/͐□). Substrates were cleaned with tergitol, deionized water, acetone, and 

isopropanol for 5 min each. Ultraviolet (UV)-ozone treatment was applied for 10 min, followed 

by CO2 snow-cleaning for 1 min [26]. All layers except BP4mPy:C60 layer were grown by VTE. 

The device area (4.9 mm2) is defined by the 2.5 mm-diameter shadow mask circular openings 

through which Ag is deposited. The VTE deposition rate was monitored by quartz crystal 

microbalance. For OVPD growth, 2 sccm of N2 was injected into each source barrel and the main 

reactor, and a total of 6 sccm of N2 was maintained during the growth. Substrates were water-
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cooled at 24oC. Temperatures of source barrels were adjusted to maintain deposition rates of 

0.5Å/s. Thicknesses were calibrated ex-situ; a Si substrate was included to enable ellipsometric 

thickness measurement after deposition. All devices were fabricated in ultra-high purity (H2O, O2 

<1 ppm) N2-filled glovebox without exposure to atmosphere. 

 Molecular dynamic simulations were performed using Materials Studio v8.0 (Biovia Corp., 

San Diego, CA) along with the Forcite module for simulated annealing. Velocity scaling [27] was 

chosen to ensure reliable temperature control during the 250 ps simulated annealing. A Dreiding 

forcefield [28] 6-12 Lennard-Jones potential function was applied. As an initial condition, 32 C60 

and 12 BP4mPy molecules were initially distributed in each region within 14.2 Å × 14.2 Å × 28.4 

Å box. The initial temperature is set at 297 K based on the actual substrate temperature used during 

OVPD growth. Annealing temperatures corresponding to different growth pressures were 

determined based on ideal gas law (Teff in Equation 5.3). The annealing cycle is repeated 3 times 

for 250 ps followed by geometric optimization, which ensures final molecular configuration at 

each annealing temperature has reached lowest energy sites. Intermolecular van der Waals energies 

were then calculated for each molecular configuration.  
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Chapter 6 

Effect of copolymer in polymer bulk-heterojunction organic 
photovoltaics  

 

6.1. Introduction  

Development of semi-conducting π-conjugated polymers opens a new possibility in the 

area of organic photovoltaics (OPV) [1–4]. One archetype donor:acceptor (D:A) OPV system is  

based on poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM). 

Since P3HT:PCBM-based OPV was successfully demonstrated in 2002 [5], this archetype system 

has been intensively investigated to understand the effects of the morphology of bulk 

heterojunction on the performance of OPVs. Fabrication of the bulk-heterojunction OPVs involves 

solution processing of the D:A layer followed by appropriate annealing to construct a nanoscale 

morphology in the D:A layer [6, 7]. This provides a large interfacial area between the donor and 

acceptor to promote exciton disassociation and charge extraction. However, long-term annealing 

eventually leads to a large macroscopic phase separation of the donor and the acceptor due to their 

immiscibility [8–10]. Some approaches using gradient or block copolymers have been reported to 

localize the phase segregation of the two dissimilar molecules [11, 12]. Palermo et al. reported an 

improved thermal stability of P3HT:PCBM bulk heterojunction OPVs when a gradient copolymer 

was incorporated as an additive [13]. However, a systematic analysis to correlate the OPV 

performance with the effect of the presence of a copolymer in terms of the blend morphology of 

P3HT:PCBM is still lacking.      
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6.2. Results & Discussion 

In this work, we demonstrated that addition of a thiophene-fullerene copolymer to 

P3HT:PCBM based organic photovoltaics (OPVs) largely affect their performance and thermal 

stability. The blended 8 wt% copolymer in the active layer of P3HT:PCBM (50:50 wt%) increases 

the initial power conversion efficiency (PCE) of the OPV from 2.6±0.2 % to 3.1±0.2 %. Upon 

applying continuous thermal annealing to the OPVs, we found strong phase segregation of P3HT 

and PCBM from optical microscopy and atomic force microscopy (AFM) analysis. The phase 

segregation results in the decrease of PCE of conventional P3HT:PCBM OPVs from 2.6±0.2 % to 

1.2±0.2 % after 90 min of the thermal annealing. However, the added copolymer effectively 

suppressed the phase segregation during the thermal annealing by compatibilizing P3HT-rich and 

PCBM-rich domains, resulting in a much smaller decrease in PCE from 3.1±0.2 % to 2.7±0.2 % 

after the same 90 min of the thermal annealing. More importantly, we found that the fullerene units 

within the copolymer promoted charge extraction. Conductive-tip atomic force microscopy (c-

AFM) analysis showed that electron current of the P3HT:PCBM OPVs with 8 wt% copolymer 

was more than two times larger than that of the P3HT:PCBM OPVs without the copolymer. The 

difference in the charge extraction capability appeared in the series resistance of the OPVs. While 

the series resistance of the P3HT:PCBM OPVs with 8wt% copolymer stayed below 10 Ω×cm2 

regardless of the duration of the thermal annealing up to 90 min, that of the OPVs without the 

copolymer was larger than 15 (Ω×cm2) and showed drastic increase to 47 Ω×cm2 after 90 min 

annealing. The variation in the series resistance was accordingly reflected in the fill factor (FF) of 

the OPVs. Furthermore, the copolymer could also facilitate charge recombination because its 

highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) 

lie between those of P3HT and PCBM, respectively. This resulted in the increase in the reverse 
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bias saturation current (J0) of OPVs. We verified that the difference in J0 would result in the change 

in VOC based on the ideal diode equation for organic heterojunction [14]. 

 

6.2.1. Synthesis of thiophene-fullerene functionalized copolymer 

The synthesis of the fullerene functionalized dibenzooctyne (PCB-DIBO, molecule 9 in 

Figure 6.1) took five steps from commercially available fullerenes (see section 6.4 for more 

details) by our collaborator, Prof. McNeil group in the chemistry department of the University of 

Michigan. A metal-free click reaction was adapted to achieve higher fullerene loading since 

previous copper-catalyzed azide alkyne cycloaddition (CuAAC) based reaction could result in 

cross-linked polymers with metal residue [13]. Instead of using metal catalysis, the driving force 

of the cycloaddition was sought from the cyclic alkyne to release the strain. The strain-promoted 

alkyne azide cycloaddition (SPAAC) of P2 and PCB-DIBO afforded the target copolymers with 

complete conversion and a single peak in the gel permeation chromatography (GPC) trace. This 

indicates that no cross-linking occurred even under ambient atmosphere. SPAAC enables high 

fullerene loading up to 100 mol % without cross-linking, however, 20 mol % loading of fullerene 

in copolymer was chosen considering the solubility of the copolymer.  

 

6.2.2. Performance of P3HT:PCBM bulk heterojunction OPVs with copolymer 

Figures 6.2a,b show the J-V characteristics of the P3HT:PCBM OPVs and the 

P3HT:PCBM OPVs having 8 wt% copolymer under the simulated AM 1.5G illumination. Both 

OPVs have an inverted architecture where ZnO and MoO3 are used as an electron and a hole 

selective layer, respectively [15]. Under constant thermal annealing at 150 °C, while the J-V 

characteristics of the P3HT:PCBM OPVs degrades significantly after 45 min of annealing (Figures            
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Figure 6.1. Synthetic scheme of thiophene-fullerene functionalized copolymer. 

 

6.2 a and f), the OPVs with 8 wt% copolymer show more stable J-V curves over 90 min thermal 

annealing (Figures 6.2 b, f). Figures 6.2 c-f summarize the figure of merits of the two different 

OPVs under various thermal annealing times. The short-circuit current (Jsc) of the P3HT:PCBM 

OPVs experiences significant degradation: After 90 min of the thermal annealing, Jsc drops to 

almost half of its pristine device’s Jsc, whereas Jsc of the P3HT:PCBM OPVs with 8 wt% 

copolymer changes only marginally (Figure 6.2c). The open circuit-voltage (VOC) of the OPVs 

with the copolymer is slightly lower (from 0.02 to 0.07 V) than that of the OPVs without the 

copolymer as shown in Figure 6.2d. While FF of the OPVs containing the copolymer is more than 

0.5, FF of the P3HT:PCBM OPVs is at least 20% lower (Figure 6.2e). Overall, the initial PCE of 

the P3HT:PCBM OPVs with 8 wt% copolymer is 3.1±0.2 %, larger than 2.6±0.2 % of the 

P3HT:PCBM OPV. After the thermal annealing, the difference in PCE of the two types of OPVs 

is much larger (>1% absolute) than the initial PCE difference as shown in Figure 6.2f. 
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Figure 6.2. Current density-voltage (J-V) characteristics of (a) P3HT:PCBM bulk-heterojunction OPVs and 
(b) the OPVs with copolymer under different thermal annealing time (0, 15, 45, 90 min). Performance of 
the OPVs depending on thermal annealing time is summarized: (c) current density Jsc, (d) open-circuit 
voltage Voc, (e) fill factor FF, and (f) power conversion efficiency PCE.  
 

 

6.2.3. Morphology of P3HT:PCBM bulk heterojunction with copolymer  

We analyzed the morphology of the P3HT:PCBM blend and the P3HT:PCBM blend with 

8 wt% copolymer by AFM and optical microscopy as shown in Figure 6.3. Without any thermal 

annealing, the P3HT and PCBM domains of the blend film without the copolymer are clearly 

visible in the AFM phase images (Figure 6.3a). Figure 6.3b implies that P3HT and PCBM become 

much more miscible with the addition of the copolymer. The optical microscopy image of the 

P3HT:PCBM blend shows strong phase segregation of the P3HT and PCBM domains after the  
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Figure 6.3. AFM phase image of (a) 180 nm thick P3HT:PCBM or (b) 180 nm thick P3HT:PCBM with 8 
wt% copolymer on ITO/ZnO (40 nm) substrate. Optical microscopy image of (c) 180 nm thick 
P3HT:PCBM or (d) P3HT:PCBM with 8 wt% copolymer on glass substrate after 90 min of thermal 
annealing at 150 oC. Scale bar is included in each figure.  
 

thermal annealing at 150 °C for 90 min (Figure 6.3c). This large scale (µm) phase segregation will 

reduce the interfacial area between P3HT and PCBM, thereby impairing exciton disassociation 

and consequential drop in JSC (see Figure 6.2c).  However, the phase segregation is effectively 

suppressed in the P3HT:PCBM blend film having the copolymer (Figure 6.3d). Thus, we can 

regard the copolymer as a ‘morphological compatibilizer’ to maintain the nanoscale blend 

morphology of P3HT and PCBM even after a long-term thermal treatment. 

To understand the origin of the FF improvement in the P3HT:PCBM OPVs with the 

copolymer, c- AFM analysis was conducted in two different configurations: by using either MoO3 
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or ZnO as the charge transporting layer, we could collect separately the hole current and the 

electron current (See section 6.4 for the details).  

 

Figure 6.4. Conductive-AFM (c-AFM) image of 180 nm thick P3HT:PCBM on (a) ITO/MoO3 (20 nm) or 
(b) ITO/ZnO (40 nm) substrate. C-AFM image of 180 nm thick P3HT:PCBM with 8 wt% copolymer on 
(c) ITO/MoO3 (20 nm) or (d) ITO/ZnO (40 nm) substrate. Average current obtained from current 
distribution over 1×2 μm is included in each image. The conductive AFM images were obtained through 
collaboration with Jill Wenderott.   
 

Figure 6.4 shows hole and electron current of the P3HT:PCBM and the P3HT:PCBM with 8 wt% 

copolymer. While the hole current does not show any significant difference (Figure 6.4a and 6.4c), 

the electron current of the P3HT:PCBM blend with 8 wt% copolymer is more than twice larger 

(202±47 pA/μm2) than that of the P3HT:PCBM without the copolymer (88±11pA/μm2) as shown 

in Figure 6.4b,d. We attribute the increase in the electron current to the fullerene units dangling 

along the copolymer backbone (see Figure 6.1). We further investigated the hole and electron 

current of the P3HT:PCBM thin films having a higher wt% of copolymer (Figure 6.5). We found 

that the electron current of P3HT:PCBM with 12 wt% copolymer was lower than that of the 8 wt% 

copolymer thin-film and the hole current was even lower than the pristine P3HT:PCBM films 
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without the copolymer. The largely reduced hole current could imply that when a large amount of 

copolymer is blended to the P3HT:PCBM matrix, the copolymer goes into the P3HT-rich domain 

and disrupts the polymer packing and ruins the original morphology of the P3HT:PCBM blend.   

 

 

Figure 6.5. c-AFM image of 180 nm thick P3HT:PCBM with 12 wt% copolymer on (a) ITO/MoO3 (20 nm) 
or (b) ITO/ZnO (40 nm) substrate. Average current obtained from current distribution over 1×2 μm is 
included in each image. The conductive AFM images were obtained through collaboration with Jill 
Wenderott.   

 

6.2.4. Voc, FF changes in P3HT:PCBM with copolymer bulk heterojunction OPV 

The effect of the copolymer having a high electron conductivity appears in the J-V 

characteristics of OPVs. We extracted the series resistance (Rs) of each OPV from the inverse slope 

of the J-V curve at the VOC point and plotted them in Figure 6.6. Rs of the P3HT:PCBM OPVs are 

much higher (at least above 15 Ω×cm2
 and increases to 47 Ω×cm2

 after 90 min annealing) than that 

of the P3HT:PCBM OPVs with 8 wt% copolymer (below 10 Ω×cm2). The improved FF of the 

OPVs having the copolymer originates from the enhancement in electron conductivity. From the 

cyclic voltammetry (CV) measurement (Figure 6.7a), the HOMO of the copolymer was 

determined to be -5.48 eV, which is between the HOMO of P3HT and the HOMO of PCBM [16]. 

The LUMO of the copolymer, calculated by subtracting the HOMO energy from the optical energy 

gap (Eg) (Figure 6.7b), is -3.9 eV. Thus, the LUMO of the copolymer is also between the LUMOs 

of P3HT and PCBM. In this energy level alignment, the copolymer is in favor of the extraction of  
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Figure 6.6. Series resistance (Rs) of P3HT:PCBM and P3HT:PCBM with 8 wt% copolymer bulk 
heterojunction OPVs under different thermal annealing time. Error bar is obtained from standard deviation 
of three different devices.   
 

electron and hole polarons towards each electrode. However, while the copolymer facilitates the 

extraction of each charge polaron between P3HT and PCBM, charge recombination can also occur 

within the copolymer concurrently.  

Specifically, VOC of organic heterojunction is given by [14, 17]:  

 

qVOC  =  ΔEHL  –  nkBT ln[J0/JSC]                                               (6.1) 

 

where, ΔEHL is the energy level difference between HOMO of the donor and LUMO of the 

acceptor, n is the ideality factor of the diode, kB is the Boltzmann constant, T is temperature, J0 is 
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the reverse bias saturation current density, and JSC is the short-circuit current density. The amount 

of recombined charge polarons is represented as J0 in the Equation 6.1 [14, 17]. Figure 6.8 shows 

the dark J-V characteristics of the P3HT:PCBM OPVs and the P3HT:PCBM OPVs with 8 wt% 

copolymer after 45 and 90 min annealing. J0 of the P3HT:PCBM OPVs is one order of magnitude 

lower than that of the P3HT:PCBM OPVs with the copolymer.  

 

 

Figure 6.7. (a) Cyclic voltammetry (CV) curve of copolymer in acetonitrile solution. The inset is the CV 
curve of ferrocene as a standard reference at a scan rate of 50 mV/s. (b) Absorption of copolymer thin-film 
measured by UV-vis spectrometer. 
 

The corresponding VOC changes from the difference of J0 is nkBTln[10JSC2/JSC1] ≈ 0.07 V  

(For simplicity, n ≈ 1.5 for P3HT:PCBM heterojunction [18], kBT ≈ 25.7meV, JSC1 ≈ 10 mA/cm2 

for P3HT:PCBM with copolymer OPVs, and JSC2 ≈ 6 mA/cm2 for the P3HT:PCBM OPVs). This 

calculated value of 0.07 V is consistent with the VOC difference observed from the two types of 

OPVs (cf. Figure 6.2). 
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Figure 6.8. Dark J-V characteristics of P3HT:PCBM and P3HT:PCBM with 8 wt% copolymer bulk 
heterojunction OPVs after 45, 90 min of thermal annealing.  
 

6.3. Conclusion  

We demonstrated that performance and reliability of P3HT:PCBM bulk heterojunction 

OPV was improved with an addition of the fullerene functionalized thiophene copolymer. The 

copolymer effectively compatibilzes P3HT and PCBM, suppressing μm-size phase segregation of 

P3HT and PCBM under a long-term thermal treatment. Microscopy data show that P3HT and 

PCBM become more miscible by the copolymer, leading to more stable performance of OPVs. 

PCE of pristine P3HT:PCBM bulk heterojunction OPVs degrades from 2.6±0.2 % to 1.2±0.2 % , 

whereas PCE of the equivalent OPVs with 8 wt% copolymer drops only 0.4 % absolute after 90 

min of the thermal annealing. Furthermore, the copolymer facilitates extraction of charge polarons 

in P3HT:PCBM blend with suitable HOMO and LUMO energy levels. The fullerene unit in the 
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copolymer helps to extract electron polarons, supported by the increase in the electron current of 

c-AFM measurement. Rs of OPVs with the copolymer remains below 10 Ω×cm2 while Rs of the 

pristine P3HT:PCBM OPVs undergoes drastic increase to 48 Ω×cm2 after 90 min of thermal 

annealing. Reverse bias saturation current J0 of OPVs with the copolymer is one order of 

magnitude higher than J0 of P3HT:PCBM OPVs without the copolymer. Although Voc of OPVs 

with the copolymer is slightly lower due to the higher J0 compared to the pristine P3HT:PCBM 

OPVs, overall PCE of OPVs with the copolymer is higher resulting from the FF enhancement 

through better charge extraction.  

 

6.4. Experimental details  

Synthesis of sub unit in thiophene-fullerene functionalized copolymer (Figure 6.9): All 

chemical synthesis was conducted by our collaborator, McNeil Group in the chemistry department 

of the University of Michigan. To prepare copolymers with precise controlled monomer sequences 

and ratios, a living chain-growth polymerization method known as catalyst transfer polymerization 

(CTP) was used. The method enables synthesis of polymers with controlled chain length (Mn), 

low dispersity (Đ), high regioselectivity, and known end group. To ensure the precision of the 

claimed polymer sequence, we used a tolyl-functionalized nickel catalyst 3 to cap tol group on one 

side of the polymer chain for one-direction propagation and two monomers that only differ on the 

end of the hexyl side chain to minimize the reactivity difference during CTP. Using the efficient 

polymerization method, we prepared copolymers composed of 3-hexylthiophene (3HT) and 3(1-

bromohexylthiophene) (3BHT) in random sequence with 80:20 ratio. Random sequence of 

copolymer was obtained by adding catalyst 3 to a mixture of monomer 1 and 2. A feeding 

composition of 60:40 for monomer 1:2 was used for polymerization model. The 20 mol% of  
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Figure 6.9. Synthetic scheme of sub units in thiophene-fullerene functionalized copolymer. 

 

3BrHT was incorporated in random sequence copolymer, and it showed a consistent copolymer 

composition that matched with the monomer feeding ratio (~ 40% of 3BrHT). Polymer chain 

length was aimed at 80 repeating units (synthesized by adding 1.25 mol% catalyst with 80/1 

monomer/catalyst mole ratio). Obtained 20 mol% random sequence copolymer has a number-

average molecular weight Mn of 21.7 kDa, narrow dispersity Đ of 1.22, and high regioregularity. 

Then post-polymerization functionalization was performed to convert the side chain bromide to 

azide, which is widely used in click chemistry for convenient combination with another 

functionalized unit.  

Ring expansion of the starting material afforded dibenzocyclooctenone 4 and it’s enol form 

4’ by carbene insertion in quantitative yield. Both isomers 4 and 4’ can be reduced to 
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dibenzocyclooctenol 5. Bromination of the double bond and the following reduction with lithium 

diisopropyl amide (LDA) afforded dibenzocyclooctynol (DIBO) 7, which acts as a linker for 

polymer and fullerene. DIBO 7 was then used to couple with PCBA 8, which is prepared from 

hydrolysis of commercial PCBM, affording PCB-DIBO 9 via esterification. 

Device fabrication: All OPV devices have the following inverted structure: 

glass/ITO/ZnO(40 nm)/Polymer layer/MoO3 (20 nm)/Ag(100 nm). The ITO substrate was first-

cleaned with detergent, DI water, acetone, and iPrOH for 10 min each, followed by the exposure 

to 245 nm ultraviolet light source under oxygen flow for 15 min. ZnO sol-gel solution was prepared 

as described in the literature [19]. The prepared ZnO solution was spin-coated at 3000 rpm for 60 

s, followed by thermal annealing in air at 150 °C for 20 min. All polymer solutions were prepared 

at 30 mg/mL concentration of P3HT, PCBM, and the copolymer in o-DCB. The prepared solutions 

were heated at 60°C for 12 h before the spin-casting in ultra-high purity (<1ppm of H2O and O2) 

N2 glovebox. Spin-casting of the polymer solution at 800 rpm for 180 s gave 180±15 nm thick 

film. The thickness of the polymer thin-film was determined by variable-angle spectroscopic 

ellipsometry. J.A. Woollam M-2000 ellipsometer was used to record near-infrared (1100 nm – 

1600 nm) spectroscopic data, followed by Cauchy-model fitting for thickness measurement [20]. 

After spin-casting the polymer solution, the films were subsequently transferred to an Angstrom 

AMOD thermal evaporation chamber integrated with the N2 glovebox system. Molybdenum 

masks with 1 mm radius circular openings were placed on the sample, determining 3.14 mm2 of 

the device size. MoO3 and Ag were evaporated at a rate of 1 Å/s under the base pressure of 3×10-

7 torr inside the chamber.  

Measurement of the device characteristics: J-V characteristics of the devices were recorded 

by a HP 4156a semiconductor parameter analyzer. The transparent glass/ITO side of the devices 
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was illuminated with simulated AM 1.5G solar spectrum at 1 sun intensity (100 mW/cm2). The 

intensity of the solar simulator was calibrated by the National Renewable Energy Laboratory 

(NREL)-traceable Si reference cell.  

AFM and c-AFM measurement: Jill Wenderott in Peter Green group provided helps for 

the measurement. Asylum Research MFP-3D atomic force microscope was used for both phase 

images and conductive-tip atomic force microscopy (c-AFM) images. Phase images of the spin-

casted polymer (180 nm) on ITO/ZnO (40nm) were obtained under tapping mode. The c-AFM 

images were obtained under the contact-mode using a Pt-Ir5-coated tip (spring constant 0.2 N/m). 

For the hole and electron current measurement, the spin-casted polymer films (180 nm) on 

ITO/MoO3 (20 nm) or ITO/ZnO (40 nm) were scanned under 1.5 V of applied bias in reference to 

an ITO substrate. The average current and standard deviation were obtained from the current 

distribution over 1×2 μm scanned area.  
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Chapter 7  

Organic light-emitting diode (OLED) from metal-free 
organic phosphor  

 

7.1. Introduction  

Organic light-emitting diode (OLED), as an emerging high-end display, has been rapidly 

replacing liquid crystal displays (LCD) [1]. A significant improvement in the efficiency of OLED 

was achieved by the development and incorporation of phosphorescent organometallic 

compounds, which enables efficient intersystem-crossing (ISC) between singlet and triplet 

excitons [2, 3]. The strong spin-orbit coupling promoted by the heavy-metal atom at the center of 

the organometallic phosphors allows otherwise forbidden radiative ISC from the excited state of 

triplets to the ground state [4]. However, the organometallic phosphors particularly blue 

compounds are known to suffer from the metal-ligand bond-breakage during the OLED operation 

and the high cost of rare-earth metals. Room-temperature phosphorescence (RTP) from purely 

organic materials has gained much attention since they are composed of more stable covalent 

bonds and have a large molecular design window for property tuning [5]. Due to the absence of 

the heavy metal in the molecular structure, various molecular design strategies to achieve efficient 

phosphorescence must be implemented: efficient spin-orbit coupling [6–8], the heavy-atom effect 

by halogen bonding in molecular crystals [7, 9], and effective suppression of molecular vibration 

[8, 10]. Even though many such novel purely organic phosphors have been reported in the



96 

literature, a systematic investigation and demonstration of OLED devices using purely organic 

phosphors have not yet been presented due to the lack of insightful understanding on material 

properties, device physics, and the device fabrication process.  

  

7.2. Results & Discussion 

We successfully built phosphorescent OLED employing a metal-free purely organic 

phosphor. 1-(7-bromo-9,9-diphenyl-9H-fluoren-2-yl)-2,2,2-trifluoroethan-1-one (BrPFL-TFK) 

shows significant phosphorescent photoluminescence owing to its triplet-producing aromatic 

aldehyde and the heavy-atom effect from its bromine. Bearing in mind the relatively-long triplet 

lifetime (~ms) of metal-free organic phosphors, a more careful consideration should be given to 

the OLED structure. Electroluminescent property of BrPFL-TFK together with different host 

materials was investigated first. BrPFL-TFK in N,N’-dicarbazolyl-4,4’-biphenyl  (CBP) host 

undergoes exothermic energy transfer from BrPFL-TFK to CBP, showing spectral broadening in 

its phosphorescence emission as well as undesired fluorescence emission from CBP in OLED 

devices.  N,N’-dicarbazolyl-3,5-benzene (mCP) host having a higher triplet energy (2.9 eV) 

prevents the exothermic energy transfer. However, the exciplex emission from mCP and BrPFL-

TFK was observed in the electroluminescent spectra due to the rather shallow highest occupied 

molecular orbital (HOMO) level of mCP. When a new host of 2,8-

bis(diphenylphosphoryl)dibenzo[b,d]thiophene (PPT) was used, only bright green 

phosphorescence emission (1430 cd/m2 at 100 mA/cm2) was achieved from BrPFL-TFK:PPT 

electroluminescence devices. The maximum external quantum efficiency (EQE) of the OLEDs 

with the PPT host is 2.5% at 1 mA/cm2 compared to 0.4 %, 1.6% at 1 mA/cm2 of the OLEDs with 

the CBP and mCP hosts, respectively. The single-carrier device under different doping 



97 

concentrations of BrPFL-TFK shows that PPT and BrPFL-TFK are responsible for electron and 

hole transport, respectively. 

  

7.2.1. Synthesis and photo-physical property of BrPFL-TFK 

Figure 7.1a shows the synthetic scheme of BrPFL-TFK. 2,7-Dibromo-9,9-diphenylfluorene was 

designed and synthesized first through collaboration with Jaehun Jung since spiro-annulated 

monomers have good thermal stability due to their steric hindrance [11]. A carbonyl group was  

 

 

 
Figure 7.1. (a) Synthetic scheme of 1-(7-bromo-9,9-diphenyl-9H-fluoren-2-yl)-2,2,2-trifluoroethan-1-one 
(BrPFL-TFK).  (b) (top) Lowest unoccupied molecular orbital (LUMO) distribution of BrPFL-TFK and 
(bottom) highest occupied molecular orbital (HOMO) distribution of BrPFL-TFK. B3LYP and 6-31G* 
basis set of Gaussian09 program are used.  (c) UV-vis absorption (thin-film), fluorescence (thin-film), and 
phosphorescence (embedded in PMMA) spectra of BrPFL-TFK.  
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introduced considering that aromatic carbonyl molecules satisfy the El-Sayed rule and promote 

triplet electron formation [7]. The carbonyl and fluorine group allow the modulation of HOMO 

and lowest unoccupied molecular orbital (LUMO) energy levels. 

Density functional theory (DFT) calculation results of BrPFL-TFK are shown in Figure 

7.1b. The calculated HOMO energy level of BrPFL-TFK is -6.54 eV that is comparable to -6.34 

eV obtained from a cyclic voltammetry measurement (Figure 7.2).  The origin of this very deep 

HOMO is the electron-withdrawing carbonyl. It is also noted in Figure 7.1b that both HOMO and 

LUMO distribution include bromine and oxygen atoms, inducing large spin-orbit coupling as well 

as intramolecular halogen effects.  

 

 
Figure 7.2. Cyclic voltammetry (CV) curve of BrPFL-TFK molecules in acetonitrile solution. The inset is 
the CV curve of ferrocene as a standard reference at a scan rate of 50 mV/s.  

 

The absorption and emission properties of BrPFL-TFK are summarized in Figure 7.1c. The 

LUMO energy level of -3.25 eV is calculated from the difference between the HOMO energy level 

(-6.34 eV) and the optical band gap (3.09 eV). Photoluminescence (PL) measurement of a 50 nm 
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thick vacuum-deposited BrPFL-TFK film shows a fluorescence emission peak at 405 nm whose 

corresponding singlet energy (S1) is 3.06 eV. Phosphorescence emission is observed from the PL 

measurement of poly(methyl 2-methylpropenoate) (PMMA) film having BrPFL-TFK under N2 

environment. From the onset of the phosphorescence spectrum, the triplet energy (T1) of BrPFL-

TFK is calculated to be 2.58 eV that is consistent with 2.56 eV from the DFT calculation. The 

phosphorescence photoluminescence quantum yield (PLQY) of BrPFK-TFK is ΦPL = 23±1 %.  

 

7.2.2. Spectrum of BrPFL-TFK doped in various host materials 

An energy level diagram of the materials used in this study is shown in Figure 7.3. We 

doped MoO3 in the hole-transporting layer of CBP or mCP to increase the hole conductivity [12] 

for all devices. CBP, mCP, PPT are used as a host material in the emissive layer. For the electron-

transporting layer, 1,3,5-Tri(1-phenyl-1H-benzo[d]imidazol-2-yl)phenyl (TPBi), 3,5,3 ′ ,5 ′ -

tetra(m-pyrid-3-yl)phenyl[1,1′]biphenyl  (BP4mPy) or PPT is used. PL measurements of 2% 

BrPFL-TFK doped in various host materials are shown in Figure 7.4a. Triplet lifetime of BrPFL-

TFK in the three hosts is the same as 0.6 ± 0.1 ms from the mono-exponential fit in the transient 

PL measurement (Figure 7.4a. inset). BrPFL-TFK doped in CBP host, however, exhibits a broad 

emission starting from 460 nm compared to the emission of BrPFL-TFK doped in mCP or PPT 

host. This originates from the low triplet energy (2.56 eV) of CBP. Exothermic energy transfer 

from BrPFL-TFK triplet to CBP triplet occurs after BrPFL-TFK triplet is populated, resulting in 

phosphorescence of CBP starting from 460nm. A similar back-energy transfer process is also 

reported in an organometallic guest-host system [13, 14].  PL of BrPFL-TFK doped in mCP or 

PPT host, however, shows only phosphorescent emission from BrPFL-TFK, implying that the  
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Figure 7.3. Energy level diagram of materials used in organic light emitting-diode (OLED) devices. HOMO 
and LUMO levels of each material are indicated. Shaded layers indicate host materials for emissive layers 
of the devices.  
 

singlets of hosts are transferred to the singlets of BrPFL-TFK through Förster energy transfer 

process and subsequently phosphorescence emission is produced through intersystem crossing. 

Electroluminescent (EL) spectrum of 2% BrPFL-TFK doped CBP device (D1) is shown in Figure  

7.4b. Florescent emission of CBP around 400 nm becomes stronger as the current density 

increases, resulting from inefficient energy transfer from CBP to BrPFL-TFK. The spectral overlap 

between the fluorescence of CBP and the absorption of BrPFL-TFK is small, making inefficient 
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Förster energy transfer similar to the CBP-Eupopium organometallic host-guest system [15]. The 

emission from BrPFL-TFK (λmax = 510 nm) in CBP host is also relatively broad compared to that 

in mCP host (Figure 7.4c) and PPT host (Figure 7.4d), supporting the possible back-energy transfer 

process discussed earlier. More efficient energy transfer from host to guest is attained by replacing 

CBP with mCP having a higher triplet energy (2.9 eV) and a larger spectral overlap (λem.max = 355 

nm) [16] with the absorption of BrPFL-TFK. Figure 7.4c shows EL spectrum of the 2% BrPFL- 

 

 

Figure 7.4. (a) Photoluminescence (PL) spectra of a 50 nm thick CBP, mCP, and PPT film having 2% 
BrPFL-TFK. (inset) Corresponding transient PL decay curve of the three thin-films. Dashed line indicates 
the mono-exponential fit of the PL decay. Electroluminescent spectra of OLED devices with 2% BrPFL-
TFK doped in (b) CBP and (c) mCP with a TPBi or BP4mPy electron-transporting layer, and (d) PPT. 
Circled A and B areas in (c) indicate undesired residual emission from TPBi fluorescence and exciplex 
between mCP and BrPFL-TFK, outside of main phosphorescent emission (λmax = 510 nm). The applied 
current densities are included.  
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TFK doped mCP host with TPBi (D2-a) or BP4mPy as the electron-transporting layer (D2-b). 

Both D2 devices show a sharp phosphorescence emission at λmax = 510 nm from BrPFL-TFK and 

the undesired emission at 400 nm is largely suppressed. We believe that the emission at 400 nm 

circled in A is TPBi fluorescence due to its shallow HOMO energy level. It is expected that holes 

at the HOMO level of mCP are transferred to the HOMO of electron-transporting TPBi, generating 

singlets in TPBi. This TPBi fluorescence emission is eliminated by replacing TPBi with BP4mPy 

having a deeper HOMO energy level. However, there is still an undesired emission centered at 

450 nm (circled B in Figure 7.4c). We attribute this residual emission to the exciplex formation 

between mCP host and BrPFL-TFK guest during the electroluminescent process in the emissive 

layer. Since the HOMO and LUMO level of mCP are shallower than those of BrPFL-TFK (cf. 

Figure 7.3), holes at the HOMO of mCP and electrons at the LUMO of BrPFL-TFK can form 

exciplex. This is further supported by comparing the theoretical exciplex energy (2.83 eV) with   

 

 

Figure 7.5. Electroluminescent spectra of OLED devices with BrPFL-TFK doped in PPT host emissive 
layer under different doping concentration of BrPFL-TFK.  
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the photon energy (2.76 eV) in the EL spectrum. Finally, mCP is replaced by PPT host where there 

is no possibility of exciplex formation based on the deeper HOMO energy level of PPT. 

Additionally, PPT has a high triplet energy (2.96 eV), which can prevent back energy transfer, and 

a large spectral overlap with the absorption of BrPFL-TFK for efficient Förster energy transfer 

[17]. PPT was also used as the electron-transporting layer (ETL) for D3 since the HOMO level of 

PPT is deeper than that of BP4mPy. The resulting EL spectrum of the device with PPT as the host 

molecule and for ETL nearly replicate phosphorescence of BrPFL-TFK regardless of the current 

density. It is noteworthy that increase in the doping concentration induces fluorescence of BrPFL-

TFK (cf. Figure 7.1c) in D3 as shown in Figure 7.5. It is expected that the long triplet lifetime 

(~ms) of BrPFL-TFK makes accumulated triplet population when the concentration of BrPFL-

TFK is high, which retards the intersystem crossing from singlet to triplet, producing fluorescence 

emission from BrPFL-TFK.  

 

7.2.3. Performance of OLED with the purely organic emitter BrPFL-TFK  

Current density-voltage-luminescence (J-V-L) characteristics and external quantum 

efficiency (EQE) of the devices are summarized in Figure 7.6. The devices of BrPFL-TFK doped 

in PPT host (D3) show the highest brightness of 58 cd/m2 and EQE of 2.5 % at 1 mA/cm2. The 

turn-on voltage of D3 is much lower (~2 V) than the devices made of CBP host (D1) or mCP host 

(D2) due to the deeper LUMO level of PPT ETL compared to the level of BP4mPy and TPBi. 

Therefore, electron injection from cathode to PPT ETL would be much more efficient owing to 

the smaller electron injection barrier. Figure 7.6b shows significant EQE drops when the current 

density is larger than 10 mA/cm2 for all devices. Even though we minimized triplet-triplet 

annihilation (TTA) by keeping a low doping concentration (2%) of BrPFL-TFK, TTA is  
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Figure 7.6. (a) Current density-voltage-luminance (J-V-L) characteristics of OLED devices having 2% 
BrPFL-TFK doped in CBP (D1) and mCP with TPBi (D2-a) or BP4mPy (D2-b) as the electron-transporting 
layer, and PPT (D3). (b) External quantum efficiency-current density (EQE-J) plot of the four devices.  
 

unavoidable as the triplet lifetime of BrPFL-TFK is in the range of millisecond. From J-V 

characteristics of the hole-only device of D3 with different BrPFL-TFK concentrations, we find 

that holes in EML are mainly transported via BrPFL-TFK guest (Figure 7.7a). Figure 7.7b 

indicates that electron transport is unrelated to the concentration of BrPFL-TFK. As PPT has an  

 

Figure 7.7. (a) J-V characteristic of hole-only device for D3 based on the following structure: ITO (UV-
Ozone-treated)/15% of MoO3 doped in mCP (20 nm)/BrPFL-TFK (5 nm)/x% of BrPFL-TFK doped in PPT 
(20 nm)/PPT (40 nm)/MoO3 (10 nm)/Al (100 nm). (b) J-V characteristic of electron-only device for D3 
based on the following structure: ITO (untreated)/BrPFL-TFK (5 nm)/x% of BrPFL-TFK doped in PPT (20 
nm)/PPT (40 nm)/LiF (1 nm)/Al (100 nm). 
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electron deficient diphenylphosphine oxide structure and thereby is known to have a good electron-

transporting property [17], majority of electrons are transported and subsequently trapped by 

BrPFL-TFK with a deeper LUMO energy level.   

 

7.3. Conclusion 

We successfully demonstrated phosphorescent OLEDs employing a metal-free purely 

organic phosphor, BrTFL-TFK. The carbonyl group of BrTFL-TFK satisfying an El-Sayed rule 

and the heavy atom effect from bromine synergistically allows efficient intersystem crossing, 

producing bright phosphorescence emission. BrPFL-TFK doped in CBP host suffers from the 

back-energy transfer, resulting in spectral broadening in PL spectrum as well as undesired 

fluorescence emission from CBP in the EL spectrum. Replacing CBP with mCP host eliminates 

the emission from the host due to the higher triplet energy of mCP. However, the singlet emission 

from TPBi ETL remains due to its shallow HOMO energy level. The ETL emission was removed 

by using BP4mPy as ETL due to its deeper HOMO energy level while an exciplex emission 

between BrPFL-TFK and mCP still exists. Finally, pure phosphorescent emission from BrPFL-

TFK in EL was realized when PPT was used as the host because PPT has a high triplet energy, a 

large spectral overlap with the guest, and suitable HOMO-LUMO energy levels. The maximum 

EQE of 2.5 % was achieved from OLEDs having BrPFL-TFL doped in PPT host at 1 mA/cm2. 

However, significant EQE roll-off behavior was observed at the current density higher than 10 

mA/cm2. The long triplet lifetime (~ms) of BrPFL-TFK is the primary reason of the EQE roll-off. 

We also conclude that holes are transported by BrPFL-TFK and electrons are transported by PPT 

judging from the J-V characteristics of single-carrier devices.   
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7.4. Experimental details  

Synthesis of BrPFL-TFK: The chemical synthesis was conducted by Jaehun Jung in Kim  

group. 2,7-Dibromo-9,9-diphenyl-9H-fluorene was synthesized as the starting material described 

in the literature [11]. The synthesized 2,7-Dibromo-9,9-diphenyl-9H-fluorene (1g) was placed into 

a flame-dried reaction flask under argon purging. Anhydrous tetrahydrofuran was added (20 ml) 

and the reaction flask was cooled to -78 0C. n-BuLi (2.5 M) was added dropwise and the reaction 

flask was stirred for 1 hr, followed by the addition of ethyl perfluororacetate. After 1 hr of stirring, 

the resulting mixture was let warm up to room temperature. The reaction was quenched carefully 

with NH4Cl and extracted with ethyl acetate. The extracted organic layer was dried over MgSO4 

with cycles of filtering and evaporation under vacuum at ~10-2 torr. Purification was done by silica  

column chromatography with dichloromethane and hexane. 1H NMR (300 MHz, DMSO-d6): δ  

7.99-7.91 (m, 2H); 7.66-7.61 (m, 5H); 7.29-7.23 (m, 6H); 7.10-7.07 (m, 4H). 1H-NMR spectrum  

was recorded by a Varian, MR 400 (400 MHz) in dimethyl sulfoxide-d6 (DMSO-d6) solution.  

Chemical shift values were recorded as parts per million relative to tetramethylsilane as an internal  

standard, and coupling constants in Hertz.  

 DFT calculations: Single molecule calculations were performed at the density functional 

theory (DFT) level via the Gaussian09 software [18]. Herein, the ground state geometry in the gas 

phase and the HOMO and LUMO distributions were fully optimized using the B3LYP function 

and 6-31G* basis set.  

 Cyclic voltammetry (CV) measurement: The electrochemical measurements were 

performed on CH instruments electrochemical analyzer. Glassy carbon electrode, Pt wire, and 

Ag/AgCl electrode were used as working, counter, and reference electrodes, respectively. A 
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ferrocene/ferrocenium (Fc/Fc+) redox couple was used as the internal standard which is assumed 

to have an absolute energy level of -4.8 eV [19].  

Photo-physical property of BrPFL-TFK: UV-vis absorption of a 50 nm thick BrPFL-TFK 

thin film on a quartz substrate was recorded with a Varian Cary 50 Bio spectrometer. 

Photoluminescence (PL) emission spectra were obtained with a Photon Technologies International 

(PTI) Quantamaster system. The excitation wavelength was adjusted to the maximum absorption 

of the host material used, which was between 280 and 350 nm. Phosphorescent lifetime data were 

collected with a PTI LaserStrobe. The quantum yields of BrPFL-TFK in PMMA were obtained 

using an integrating sphere. A neutral density filter was inserted near the photomultiplier tube 

detector to prevent the saturation of the detector with the excitation light source while maximizing 

the emission signal intensity.   

 Device Fabrication: The glass/ITO substrate were cleaned with detergent, DI water, aceton, 

isopropanol for >5 min, respectively. Substrates were subsequently treated with ultraviolet (UV)-

ozone for 15 minutes to remove surface-contaminant and lower the work-function of ITO. 

Substrates were loaded into an ultra-high purity (<1 ppm of O2, H2O) glovebox system integrated 

with a vacuum thermal evaporation chamber. All layers were grown inside the chamber with the 

base pressure of 2×10-7 torr. The device structure was glass/ITO/HIL (20 nm)/EML (20 

nm)/ETL/LiF(1 nm)/Al (100 nm). For D1, 15 % MoO3 doped in CBP, 2% BrPFL-TFK doped in 

CBP, 60 nm thick TPBi were used as HIL, EML, ETL, respectively. For D2-a, 15 % MoO3 doped 

in mCP, 2% BrPFL-TFK doped in mCP, and 60 nm thick TPBi were used as HIL, EML and ETL, 

respectively. A 40 nm thick BP4mPy layer was used instead of 60 nm thick TPBi as an ETL for 

D2-b. For D3, 15 % MoO3 doped in mCP, 5 nm thick BrPFL-TFK, 2% BrPFL-TFK doped in PPT, 

40 nm thick PPT were used as HIL, HTL, EML, ETL, respectively. Prior to LiF and Al depositions, 
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a molybdenum shadow mask with 2 mm diameter circles (3.14 mm2 area opening) was placed on 

the sample surface to define the area of the devices. For hole-only devices, ITO was treated with 

UV-ozone as a substrate and 20 nm thick 15% MoO3 doped in mCP, 5 nm-thick BrPFL-TFK, 20 

nm thick x% BrPFL-TFK doped in PPT, 40 nm thick PPT, 10 nm thick MoO3, and 100 nm thick 

Al were deposited sequentially to complete the device structure. For electron-only devices, the 

device structure is as follows: ITO (w/o UV-ozone treatment)/BrPFL-TFK (5 nm)/x% BrPFL-TFK 

doped in PPT (20 nm)/PPT (40 nm)/LiF (1 nm)/Al (100 nm). 

Performance analysis of OLED devices: The current density-voltage-luminance (J-V-L) 

was measured by an HP 4156a semiconductor parameter analyzer attached with a FDS1010 

calibrated photodiode from Thorlab, following the standard procedure of OLED measurement 

[20]. Electroluminescent spectra were recorded with a HR2000+ES from Ocean Optics coupled to 

the OLED devices via a 300 um-diameter optical fiber. 
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Chapter 8 

Outlook 

 

8.1. Roll-to-roll fabrication of all vacuum-deposited organic photovoltaics  

A practical challenge for commercialization of OPVs is whether organic photovoltaics cells 

can be volume-manufactured at a very low cost. While considerable research has focused on 

polymer-based OPVs due to their amenable large area coating capability by simple spin casting, 

high efficiency OPVs often require a multilayer structure that are not easily achievable by spin 

coating because finding multiple solvents having an orthogonal solubility for polymers is always 

challenging as described in Section 2.1.3. In contrast, multilayer structures based on small 

molecular-weight organic materials have a proven record in the OLED industries for delivering a 

high performance through simple fabrication procedures. Following the success of small 

molecular-weight organic materials in OLED, roll-to-roll (R2R) processing of multilayer solar 

cells using a combination of VTE and OVPD could accelerate the development progress toward a 

low manufacturing cost of OPVs. As explained throughout Chapters 3-5, OVPD can provide a 

precise control of the organic thin-film morphology, a high material utilization efficiency and 

manufacturing yield, so as to achieve high-performance and reliable OPVs. One limitation of 

OVPD is a narrow range of material selectivity. Since OVPD requires an accurate temperature 

control inside the chamber, using various materials with a large boiling point range is rather 

challenging. There has been an attempt to evaporate metals in OVPD. However, because the 
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typical boiling point of metals is above 2000 0C, maintaining the substrate temperature low enough 

(<50 0C) during the deposition is turned out to be extremely difficult [1]. Thus, alternatively it is 

desirable to employ OVPD as a deposition system for organic materials while using VTE for 

evaporation of metal or metal-oxide (ex. MoO3, Ag, Al, etc.). A schematic diagram of entire R2R 

sytstem combining VTE and OVPD is shown in Figure 8.1.  

 

 

Figure 8.1. Schematic diagram of the multi-chamber R2R deposition system. 

 

As described in the above diagram, sheets of patterned ITO on a flexible substrate are 

loaded into the roll-to-roll process line with a glovebox attachment. The substrate is rolled into the 

production line from the glovebox and it starts the roll-to-roll process by rotating the starting feed 
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roll. Depending on the materials needed for the device architecture, the rollers will move the 

substrate around the chamber to one of the three positions: the VTE for metals and metal-oxides, 

the quartz OVPD for high boiling point materials (350 0C ~ 500 0C) such as fullerenes, and the 

stainless steel OVPD for lower boiling point (< 350 0C) organic materials.  The tension arm plays 

a role in minimizing the sheer stress when the stage is raised.  Each chamber contains so called 

dynamic shadow masks that has multiple shadow masks in them. Between the growth chamber 

and the deposition tools, there are gate valves in each plane such that only one deposition tool is 

exposed to the substrate at a time. This allows for the proper control of the vacuum level during 

each processing step. A pressure of 10-3 torr will be used in the growth chamber when not 

depositing, while 10-1 torr is needed for OVPD deposition, and ~10-7 torr for VTE deposition. The 

connecting glovebox will be kept slightly above the atmospheric pressure of N2, and will enable 

transfer of substrates and devices in and out of the growth chamber. Once the rollers position the 

substrate in front of the desired deposition tool, a substrate positioning stage will move the 

substrate into the position toward the deposition machine, where it will contact aligned shadow 

masks to define the deposition area. After rapid deposition of the desired material (more than 2 

nm/s) to the proper layer thickness, the substrate is pulled away from the mask by the positioning 

stage, and can be proceeded on to the next stage. The other feed roll rotates in opposite way with 

the starting feed roll to move substrate back to the load/unload position next to the glovebox.  

  

8.2. Increase lifetime of OLED employing a thick emissive layer  

Although OLED technology has been a great success in lighting industries, the short 

operational lifetime of blue OLED still restricts realization of long-term full RGB color spectrum 

from OLED. Table 8.1 shows that the lifetime of blue fluorescent OLEDs is more than 10 times 
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shorter than that of green or red fluorescent OLEDs. The lifetime of blue phosphorescent OLED 

is even too short (<100 hr of T50) to report based on the industrial standard. The primary reason 

for the short lifetime of blue OLEDs is strong exciton-polaron annihilation. Giebink et al. showed 

that annihilation occurred between excited excitons and polarons introduces defect formation, 

resulting in luminance loss and voltage rise over time [2, 3]. To reduce the exciton-polaron 

quenching event, graded doping concentration of guest molecules is proposed as illustrated in 

Figure 8.2. This strategy effectively distributes excitons uniformly within the emissive layer to 

lower exciton-polaron annihilation. With a 13 % (by vol.) of uniform doping concentration (D1, 

D2), large density of excitons is detected near the electron transporting layer (near mCBP in Figure 

8.2). By gradually reducing the doping concentration of the guest from 18 % to 8 %, exciton 

density is more evenly distributed throughout the emissive layer. This results in the improvement  

 

Table 8.1 OLED performance chart from Idemitsu Kosan Co, Ltd. 

Color CIE (x,y) 
Efficiency 

(cd/A) 
T50 (hrs) 

Blue 
(Fluorescence) 

(0.14, 0.12) 9.9 11,000 

Green 
(Fluorescence) 

(0.29, 0.64) 37 200,000 

Red 
(Fluorescence) 

(0.67, 0.33) 11 160,000 

Green 
(Phosphorescence) 

(0.33, 0.63) 64 200,000 

Red 
(Phosphorescence) 

(0.67, 0.33) 22 200,000 

 

1) CIE and efficiency are obtained when OLED operates at 10 mA/cm2. 
2) T50 is the time when brightness of OLED becomes half during continuous operation.  
    (Initial luminance is 1,000 cd/m2) 
3) Source: http://www.idemitsu.com/products/electronic/el/performance.html. 
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of operational lifetime of the corresponding blue phosphorescent OLED by three times [4].  

 Judging from the OLED degradation model based on exciton-polaron annihilation, a more 

intuitive and simpler way to achieve extended operational lifetime of OLED could be using a 

thicker emissive layer. Generally, the thickness of emissive layer is determined primarily based on 

charge transport properties of host and guest materials. The thickness of the emissive layer of  

 
 

 

Figure 8.2. (a) Chemical structure of the host mCBP and phosphorescent guest Ir(dmp)3 used in the emissive 
layer of the OLED. (b) Structure of the three OLEDs. HATCN, NPD, Alq3 are used for hole injection layer, 
hole transporting layer, electron transporting layer, respectively. D1, D2 has 13 % of uniform doping 
concentration while the emissive layer of D3 has the doping concentration graded from 18 to 8 % by vol. 
[4]. 
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OLEDs is typically 15-30 nm, considering charge carrier transport and optical coupling at a given 

wavelength of photons. In Chapter 3, we showed that charge transport in a mixed layer organic 

thin-film can be largely enhanced by the formation of nanocrystalline morphology via OVPD. 

Thus, a thicker emissive layer grown by OVPD having a better charge transport property could 

replace the conventional emissive layer grown by VTE. A thicker emissive layer will eventually 

reduce overall exciton density in the emissive layer, directly increasing operational lifetime of the 

OLED as the slope of luminance vs. time is proportional to the exciton density [2, 4]. It would give 

a substantial impact on the phosphorescent OLED research if blue OLEDs with an OVPD-grown 

emissive layer shows significant improvement in the operational lifetime.  

 

8.3. Possible research direction in metal-free organic phosphorescent OLED  

Phosphorescent OLED built with a metal-free purely organic phosphor was successfully 

demonstrated in Chapter 7. The efficiency of the purely organic phosphorescent OLED is limited 

by a low photoluminescence quantum yield of the phosphor used, BrPFL-TFK, and the long triplet 

lifetime in millisecond regime. One simple yet possibly challenging way to improve the 

performance of the OLED with purely organic phosphors is the development of organic phosphors 

with a high quantum yield and a fast triplet lifetime. BrPFL-TFK phosphor introduced in Chapter 

7 still have a flexibility in molecular design by replacing the functional groups on the fluorene core 

[5]. A few examples of the modified molecular structure of BrPFL-TFK under development are 

shown in Figure 8.3b. Once BrPFL derivatives with a high quantum yield are available, we can re-

configure the OLED structure based on the obtained device design strategies described in Chapter 

7 to demonstrate a high-efficiency OLED from the purely organic phosphors. 
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Figure 8.3. Chemical structure of (a) 1-(7-bromo-9,9-diphenyl-9H-fluoren-2-yl)-2,2,2-trifluoroethan-1-one 
(BrPFL-TFK) and (b) A few purely organic phosphors having the fluorene core with various functional 
groups. Here, R is a phenyl or an alkyl chain. 

 

Due to the long lifetime of triplet excitons, it is expected that triplet-triplet annihilation 

(TTA) is a major source of the EQE roll-off behavior in the purely organic phosphor OLED. 

However, a direct evidence based on EQE roll-off model has not been presented yet. For 

organometallic compounds having a microsecond triplet lifetime, it is verified that TTA is the 

dominant mechanism for the EQE-drop at a high current density as shown in Figure 8.4 [6]. It is 

possible that other annihilation mechanisms such as triplet-polaron annihilation (TPA) affect 

significantly the EQE roll-off behavior since triplet excitons in the purely organic phosphor will 

stay much longer than those of organometallic counterparts. A similar model-fit to EQE vs. current 

density characteristics of purely organic phosphor OLEDs would be helpful to understand the 

fundamental mechanism of the EQE roll-off.  

Appling the design strategy of the purely organic phosphors to the host material design 

would be another interesting research topic. The basic design strategy of the purely organic 

phosphors is to employ halogens in the molecular structure to enhance spin-orbit coupling, thereby 

enabling efficient intersystem mixing between singlets and triplets. Since the incorporation of 

molecules with heavy-atom effects in thermally activated delayed fluorescence (TADF) OLEDs 
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Figure 8.4. The external quantum efficiency versus current density characteristics of the 
Eu(TTA)3phen:CBP device. The behavior of triplet-polaron quenching for bulk-limited transport (J	∝ nt

8 ) 
does not fit the data while triplet-polaron quenching model where J	∝ nt

2 gives relatively good fit. Triplet-
triplet quenching model with onset current density of J0 = 6 ± 1 mA/cm2

 describes the roll-off characteristics 
of the device most accurately [6]. 
 

was demonstrated [7, 8], recent literature proposed a substitution of atoms in host molecules with 

a halogen atom Br to enhance spin-orbit coupling as shown in Figure 8.5 [9]. Although EQE of 

the corresponding device does not show much improvement (from 17.1 % to 17.9%), it showed a 

lower population of triplets owing to the increased reverse intersystem crossing rate via the heavy-

atom effect. It is possible that the triplet population of a given host material is significantly reduced 

by applying the design rule used in the purely organic phosphors. More available singlets in host 

materials could be transferred to purely organic phosphor guests via Förster energy transfer 

mechanism, generating more radiative triplets in the organic phosphor guest in the end. In this 

way, phosphorescent emission from triplets of purely organic phosphors could be further 

increased.  
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Figure 8.5. Molecular structure of host materials (CBP, CBP-Br2, CBP-Br4) and guest material (4CzIPN) 
[9]. 
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