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ABSTRACT 
Cardiovascular disease is the leading cause of death, and understanding 

the pathophysiological changes that occur in response to injury is important for 

identifying novel drug targets and developing improved therapeutics. The 

process of cardiovascular remodeling, which occurs after injury and includes 

structural and functional changes has been identified as a target for therapeutic 

intervention.  

Reprogramming macrophages towards a reparative phenotype in 

cardiovascular remodeling is a potential therapeutic approach. Interleukin-4 

receptor (IL4R) signaling is an inducer of alternatively activated macrophages 

(AAM or M2), and M2 macrophages are critically involved in inflammation 

resolution, tissue repair and pathological development of fibrosis. IL-4 

administration can be beneficial, but the important IL-4 responsive cell types 

mediating the protection have not been identified. We hypothesized that 

macrophages are the critical target cell type of IL-4, and macrophage IL4R 

signaling plays an important role in cardiovascular remodeling by controlling 

macrophage polarization.  

In order to test this hypothesis, we generated myeloid 

(macrophage/monocyte and neutrophil)-specific IL-4 receptor α knockout 

(MyIL4RαKO) mice. Bone marrow derived macrophages from MyIL4RαKO mice 

showed a significantly blunted response to the M2 macrophage stimulus IL-4 and 

a markedly augmented response to the M1 macrophage stimulus LPS, indicating 

the importance of IL4Rα signaling in macrophage polarization in vitro. In addition, 

significant decreases of M2 macrophage markers at basal levels were shown in 

the heart suggesting that endogenous IL4R is required for appropriate 

macrophage polarization of resident cardiac macrophages. 

 In cardiac remodeling post myocardial infarction (MI), the infarct size of 

MyIL4RαKO mice at 1 week post-MI was significantly smaller than that of control 
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mice and infarct thickness at 3 weeks was significantly increased, indicating the 

involvement of myeloid IL4Rα signaling in cardiac remodeling post-MI. No 

changes in collage deposition were detected within the infarct, but there was 

evidence of an important role for endogenous cytokine action at the myeloid IL-

4R since there was greater cardiac dysfunction in MyIL4RαKO mice. 

Surprisingly, IL4Rα knockout in myeloid cells did not change the percentage or 

number of M2 macrophages in infarct tissues post-MI. This does not support the 

hypothesis that IL4Rα signaling mediates cardiac remodeling via its control of 

macrophage polarization, but rather that the effect on myeloid phenotype is 

considerably subtler. 

In angiotensin II and high salt-induced hypertensive cardiovascular injury, 

cardiac and vascular fibrosis was substantially decreased in MyIL4RαKO mice. 

This corresponded to significant changes in fibrosis-related signaling pathways 

including TGFβ, Gal3 and BMP9 signaling. MyIL4RαKO mice also showed 

significantly increased mRNA expression of reactive oxygen species (ROS) 

generation related genes. This suggests that myeloid IL4Rα signaling 

significantly alters cardiovascular remodeling post hypertensive injury by 

regulating collagen accumulation and ROS generation. Similar to what we found 

in the MI model, ablation of IL4Rα in myeloid cells did not induce changes in the 

polarization of M2 macrophages in the heart and aorta during hypertensive injury. 

This suggests that the changes in cardiovascular remodeling may not be 

attributed to a simple alteration in global macrophage polarization.  

In conclusion, results from both injury models suggest that myeloid cells 

are critical targets of endogenous IL4Rα signaling, and myeloid IL4Rα signaling 

is very important in modulating cardiovascular remodeling post injury. However, 

the mechanism by which myeloid IL4Rα signaling regulates cardiovascular 

remodeling is not simply through a global change in M2 macrophage polarization 

in vivo, and the exact mechanism needs to be determined further.  

 



	 1 

CHAPTER I 
INTRODUCTION 

 
Overview 

Cardiovascular disease (CVD) is the leading cause of death worldwide. 

Based on the statistics reported in 2016, globally more than 17.3 million people 

die from CVD per year1, representing 31% of all deaths2, and this number is 

projected to grow to 23.6 million by 20303. CVD is also the No. 1 cause of death 

in the United States. CVD accounted for 30.8% of all deaths in 2013 in the U.S, 

which is more than all forms of cancer combined4, 5. On average, about 2,200 

Americans die each day from CVD, one death every 40 seconds.  Moreover, the 

estimated annual direct cost of CVD in the U.S from 2011 to 2012 is $193.1 

billion, more than any major diagnostic disease, and this total direct cost is 

projected to grow to $918 billion by 20306, 7. These numbers indicate that CVD 

not only claims the most lives, but is also a serious financial burden, and its 

prevalence and cost are growing substantially.  

This raises the urgent need to improve our understanding of the 

pathophysiology or response to injury in cardiovascular remodeling in order to 

identify novel targets and develop therapies to advance CVD treatment. 

Cardiovascular remodeling is the response of heart and vessels to an injury such 

as myocardial infarction (MI) and hypertension. The remodeling involves changes 

in the structure of the organs, often proliferation or hypertrophy of cells, 

modulation of the extracellular matrix, and ultimately functional adaptation of the 

organ. In this dissertation, we focus on cardiovascular remodeling occurring 

following two of the most common CVDs: myocardial infarction and hypertension. 

We investigate the involvement of modifying macrophages in these remodeling 

processes.  

Macrophage
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Monocytes and macrophages are types of leukocytes that phagocytize 

any pathogens not recognized as healthy tissues, including necrotic cells, 

apoptotic cells, cell debris and microorganisms. They play a central role in 

inflammatory responses following injury/stress and are essential for wound 

healing and tissue repair. 

Macrophage Heterogeneity 
Macrophages are highly heterogeneous in function, with a lifespan varying 

from hours to months or even years for tissue resident macrophages8. There is a 

wide spectrum of macrophage activation states, but the two main types often 

discussed are based on different in vitro stimulation leading to different activation 

states (Figure 1.1). Macrophages stimulated by lipopolysaccharide (LPS) and/or 

T helper cell type 1 (Th1) cytokine interferon γ (IFNγ) and damage associated 

molecular patterns (DAMPs) undergo classical activation, resulting in the 

polarization state of the classical activated macrophage (CAM) also called M1 

macrophages9. They are characterized by production of reactive oxygen species 

(ROS), reactive nitrogen species (RNS) and pro-inflammatory cytokines such as 

tumor necrosis factor α (TNFα), interleukin-1β (IL-1β) and interleukin-6 (IL-6). 

They play a crucial role in inflammation and tissue injury10.  

In contrast, macrophages stimulated by T helper cell type 2 (Th2) 

cytokines interleukin-4 (IL-4) and/or interleukin-13 (IL-13) undergo alternative 

activation, resulting in the polarization state of the alternative activated 

macrophage (AAM), also named M2 macrophage (reflecting the Th1-Th2 

polarization). M2 macrophages are characterized by expression of mannose 

receptor C type 1 (MRC1 or CD206), arginase 1 (Arg1), and resistin-like 

molecule α that is found in inflammatory zone (Relmα/Fizz1), producing 

cytokines like interleukin-10 (IL-10) and transforming growth factor β (TGFβ)11, 

and are significantly involved in immunomodulation, wound healing and fibrosis9, 

12-16. Although distinct, both subsets contribute to the initiation and progression of 

cardiovascular, chronic inflammatory and autoimmune diseases17-19. 

Macrophages also have substantial plasticity in function depending on their 

microenvironment20. Macrophages evaluate the status of local tissue frequently  
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Figure 1.1 Graphical representation of classical and alternative activation 
of macrophages (M1 vs M2).  M1 is induced by stimulus like lipopolysaccharide 
(LPS) and/or damage-associated molecular patterns (DAMPs) and stimulates 
production of pro-inflammatory cytokines (red) and also contributes to the 
expression of some anti-inflammatory cytokines like IL-10 (green).  IL-4/IL-13 is 
the standard in vitro stimulus for activation of M2 macrophages and stimulates 
markers Arg1, Ym1, Fizz1 and the cell surface marker CD206 (mannose receptor 
C type 1) that is often used for histologic identification of M2-like macrophages. 
M1 macrophages are more involved in antigen presentation and tissue damage, 
while M2 macrophages are more involved in would healing and fibrosis, but both 
M1 and M2 macrophages can phagocytize pathogens, dead cells and debris et 
al. 
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and change their phenotype accordingly21. They have a reversible transcriptional 

program that allows transformation of an activated pro-inflammatory macrophage 

phenotype into an anti-inflammatory and pro-resolution phenotype in response to 

local stimuli22.  

Macrophage in Fibrosis 
Macrophages are also very important in secretion of extracellular matrix 

(ECM) components and ECM remodeling. They are the major cell type producing 

matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases 

(TIMPs)23, which are important in collagen degradation. Among phenotypically 

and functionally diverse macrophages, the M2 macrophage subtype is important 

in fibrosis24. M2 macrophages also ingest collagen by endocytosis via a mannose 

receptor, representing their pleiotropic role in ECM homeostasis25. In addition, 

immune cells like neutrophils, lymphocytes and eosinophils also contribute to 

fibrotic remodeling in multiple organs26. The communication between stromal 

cells, immune cells and the ECM actively modulates fibrosis in cardiovascular 

remodeling27-29.  

Origin of Macrophages 
Resident Homeostatic Macrophages: Macrophages exist in essentially 

all tissues but can have different origins (Figure 1.2). Resident cells can be either 

derived from embryonic yolk sac or later through definitive hematopoiesis from 

hematopoietic stem cells (HSCs). The portion derived from each source is 

different in each tissue. Many types of these resident macrophages have a 

location specific name, for example macrophages in the brain are named 

microglia, macrophages in the liver are named Kupffer cells30,31. In the absence 

of injury, the homeostasis of resident macrophages in many tissues is maintained 

by local proliferation without hematopoietic precursors32-35. In the steady state, 

macrophages have minimal inflammatory characteristics, for instance cardiac 

resident macrophages express high levels of 22 AAM-associated genes although 

they also express some inflammatory genes like IL-1β36.  

Macrophages after Injury: Macrophages present during inflammation 

can have a totally different origin. After injury, macrophages come from two  
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Figure 1.2 Macrophages can arise from two main sources: embryonic yolk 
sac and the hematopoietic stem cell (HSC) through definitive 
hematopoiesis.  Initially, tissue-resident macrophages come from the yolk sac 
but with age they can be replaced with HSC derived macrophages to different 
degrees depending on the tissue. Macrophages developed from yolk sac can be 
maintained through adult by self-renewal. Upon stress or injury, macrophages 
can also originate from resident macrophage via proliferation and maturation 
from HSC derived monocytes.  
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distinct processes: recruitment of circulating monocytes that then differentiate 

into macrophages and proliferation of resident macrophages. Stimulated by 

injury, a small fraction of HSCs in bone marrow become active and produce 

progenitors that give rise to monocytes. These monocytes migrate from blood 

into the injured tissue where they differentiate into macrophages37. The spleen 

also contributes to macrophages generation during inflammation. It is reported 

that the subcapsular red pump in spleen is a monocyte reservoir, which expels 

monocytes that then accumulate in infarcted tissue post MI, and differentiate and 

mature into macrophages38. In addition to the circulating monocytes, resident 

macrophages repopulate the inflamed tissue by proliferation. Tissue-resident 

macrophages are maintained locally by proliferative self-renewal during 

inflammatory responses33, 34, 39. Jenkins et al. demonstrated that IL-4 signaling 

directly drives resident macrophage proliferation during Th2-biased tissue 

infection33, 40. Meanwhile, resident macrophages also promote the recruitment of 

monocytes by communication with the surrounding parenchymal and non-

parenchymal cells41. Recruitment of C-C chemokine receptor type 2 (CCR2) 

positive inflammatory macrophages has been shown to be crucial in both acute 

and chronic inflammatory diseases42-45.  

Monocytes, as circulating precursors of macrophages, display 

heterogeneity based on the expression of lymphocyte antigen 6 complex 

(Ly6C)46-49. Monocytes are designated as inflammatory Ly6Chigh monocytes and 

less-inflammatory Ly6Clow monocytes. During inflammation post MI, inflammatory 

Ly6Chigh monocytes are abundantly recruited into the injured tissue as early as 30 

min after the onset of ischemia, exceeding even neutrophils50, although the 

number of neutrophils peaks earlier than monocytes. The recruitment of 

monocytes from blood relies on monocyte chemoattractant protein 1 (MCP1 or 

CCL2)/CCR2 signaling51, 52. Ly6Chigh monocytes then differentiate into 

inflammatory macrophages, and both monocytes and macrophages produce 

inflammatory cytokines that activate macrophages. Activated macrophages 

function to clear debris, necrotic myocytes, and apoptotic neutrophils. 

Recruitment of monocytes from the spleen is dependent on angiotensin II 
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(AngII)38, so splenic monocytes mobilization after MI can be suppressed by 

angiotensin-converting enzyme (ACE) inhibitor that inhibits AngII signaling53.  

IL-4 Receptor Signaling 
IL-4 and IL-13 

IL-4 and IL-13 are both Th2 cytokines and are produced by activated T 

lymphocytes including Th2 cells, NK T cells, γ/δ T cells, as well as several other 

cell types including mast cells, basophils, eosinophils, and natural killer (NK) 

cells54, 55, among which Th2 cells are particularly important sources, which also 

require IL-4 and IL-13 for their own differentiation. Although IL-4 and IL-13 only 

share 20-25% amino acid sequences, their tertiary structure are of high 

homology and they have a common subunit—IL-4 receptor α (IL4Rα) in their 

respective receptor complexes that they have numerous overlapping biologic 

properties, eliciting a diverse array of biologic responses in immune system56, 57. 

IL-4 Receptor 
IL-4 induces biological responses by binding to two receptor complexes: 

type I and type II IL-4 receptor (IL4R)57, 58 (Figure 1.3). The type I IL4R is 

composed of a 140kDa ligand-specific chain—IL4Rα and a common γ-signaling 

chain (γc) that is shared by some other cytokine receptors such as IL-2, IL-7, IL-9 

and IL-15. The type II IL4R consists of an IL4Rα subunit and an IL-13 receptor 

α1 (IL13Rα1) subunit59. Unlike the type I IL4R, which can only be bound by IL-4, 

the type II IL4R can bind both IL-4 and IL-13. IL-13 can also bind to a second 

receptor IL13Rα2 subunit although this does not initiate cell signaling60, as 

IL13Rα2 serves as a decoy receptor. IL4R is expressed on a wide range of cell 

types including T cells, B cells, monocytes/macrophages, fibroblasts61, 

keratinocytes, epithelial cells, endothelial cells, and hepatocytes62, 63.    

Signaling Pathways Mediated by IL-4 Receptor 
Both IL-4 and IL-13 signaling are mainly mediated via the IL4Rα chain and 

both include the activation of transcription factor signal transducing and activation 

transcription 6 (STAT6)58, 64. One of the pathways is initiated by Janus kinase 

(JAK) family members, JAK1 and JAK365. IL-4 binds to type I IL4R and induces 

the phosphorylation of JAK1 that is associated with the IL4Rα subunit, and the 
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Figure 1.3 Type I and Type II IL-4 receptor.  Type I IL-4 receptor is a 
heterodimer of subunits IL4Rα and γc.  Type II IL-4 receptor is a heterodimer of 
IL4Rα and IL13Rα1 that can bind both IL-4 and IL-13. Activation of IL-4 receptor 
results in STAT6 signaling and induction of alternative M2 macrophage genes. 
IL4Rα knockout will block IL-4 signaling through both types of receptors as well 
as IL-13 through the Type II IL-4 receptor. RE: response element.  
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phosphorylation of JAK3 associated with γc subunit. The phosphorylated JAKs in 

turn phosphorylate and activate IL4Rα chain itself and STAT6. Once activated by 

phosphorylation, cytoplasmic STAT6 dimerizes and translocates to the nucleus 

where it promotes the transcription of IL-4-responsive genes that contain STAT6 

binding site in their promoter region65.  

IL-4 and IL-13 also signal through type II IL4R and subsequently activate the 

JAK1/STAT6 downstream signaling. STAT6 functions to mediate most responses 

of IL-4, such as Th2 cell differentiation66, 67, B cell growth and immunoglobulin E 

(IgE) secretion68, 69.  

IL-4 and IL-13 activate a second signaling pathway when they interact with 

the membrane-bound form of IL4R65 through the phosphorylation of an insulin 

receptor substrate (IRS), referred as IRS-2.  Phosphorylated IL4Rα stimulates 

the recruitment and phosphorylation of IRS-2, which in turn activates the 

phosphoinositide 3-kinase (PI3K) pathway. This pathway is critical in IL-4/IL-13-

induced protection against apoptosis, cell survival and proliferation responses58, 

65, 68. Another signaling pathway triggered by binding of IL-4 to IL4R that 

contributes to cell growth and proliferation through phosphorylation of the adaptor 

protein Shc, resulting in recruitment of growth factor receptor-bound protein 2 

(Grb2) and son of sevenless (SOS), which then activate Ras/MAPK pathway. 

This IL4R dependent Ras/MAPK signaling occurs only in human keratinocytic 

cells but not in T cells70.  

The soluble form of IL4Rα does not mediate IL-4 signaling, but rather 

protects IL-4 from proteolytic degradation71, 72. IL-4 binds to the soluble receptor 

with a lower affinity and IL-4 soluble receptor performs as a carrier for IL-4 

promoting its presentation to the cell surface bound receptor72.  

Biological Activities of IL-4/IL-13 Signaling 
Although IL-4 and IL-13 have low amino acid sequence homology, they have 

similar tertiary structure and have a common IL4Rα chain in their receptors, so 

IL-13 mediates virtually all of the IL-4 actions in nonhematopoietic cells and, to 

some extent, in hematopoietic cells73. The functional differences between IL-4 
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and IL-13 are attributable to cell-dependent differential receptor expression and 

IL-13 shows similar but less effective biological activities than IL-461. 

The major function of IL-4 includes promoting Th2 cell differentiation57, 69, 

stimulating B lymphocyte growth and differentiation74, facilitating IgE secretion75, 

regulating eosinophil recruitment76, and an important role in myeloid cells such as 

monocytes/macrophages and neutrophils. IL-4 directly and predominantly 

promotes Th2 cell differentiation via type I IL4R, while IL-13 does not directly 

participate in Th2 cell development because Th0 cells do not express IL13Rα1 

on their surface. However, IL-13 is to some extent involved in Th2 differentiation 

as IL4Rα deficient mice display more severely diminished Th2 cell differentiation 

than IL-4 deficient mice, implying some indirect role of IL-13 in Th2 cell 

development77, 78. Moreover, mature CD4+ T cells from IL-13-/- mice produce 

significantly less Th2 cytokines77. IL-4 also antagonizes the IL-12-mediated Th1 

cell differentiation69, 79. IL-4 stimulates B cell growth and differentiation and drives 

B cells to produce IgE. IL-13 has similar biological functions to those of IL-4 in B 

cells. IL-13 knockout mice showed significantly lower basal level of IgE in 

serum77, suggesting the essential role of IL-13 in IgE secretion. IL-4 and IL-13 

are also growth factors for mast cells, and regulate allergic responses via IgE-

mediated mast cell degranulation.  

IL-4 and IL-13 also exert critical biologic activities in macrophages and 

neutrophils. Both IL-4 and IL-13 are potent anti-inflammatory cytokines with the 

capability to inhibit monocytes/macrophages from producing pro-inflammatory 

cytokines and chemokines such as TNFα and IL-1β, and interfere with their 

generation of ROS and nitrogen intermediates, and suppress IFNγ-induced 

expression of cellular adhesion molecules. IL-4 and IL-13 are also crucial 

inducers of alternative activation of macrophage (AAM or M2), which promotes 

tissue repair80-82 and is pathologically associated with type 2 immune responses 

like allergy and fibrosis81, 83, 84. Furthermore, the anti-inflammatory activity of IL-4 

and IL-13 is also partially mediated through their induction of anti-inflammatory 

interleukin 1 receptor antagonist (IL-1Ra). IL-4 and IL-13 can augment the 

production of IL-1Ra, which binds IL-1 receptor type 1 with similar affinity to that 
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of IL-1α and IL-1β but transduces no signal85, 86. Neutrophils were originally 

reported to express the type I (IL4Rα/γc) but not the type II (IL4Rα/IL13Rα1) 

IL4R 87-89, however it was reported recently that type II IL4R is also expressed in 

neutrophils90. IL-4 and IL-13 display both pro- and anti-inflammatory activities in 

neutrophils although neutrophils are less effective in response to IL-13. Similar to 

macrophages, neutrophils up-regulate the production of IL-1Ra in response to IL-

4 and IL-1391. Type II IL4R signaling antagonizes the expansion and migration of 

neutrophils during infection and inflammation90, which indicates an anti-

inflammatory role in IL4R signaling in neutrophils. Illustrating the pro-

inflammatory role of IL-4 in neutrophils, IL-4 delays neutrophil apoptosis and 

enhances neutrophil-derived IL-8 production89, which contributes to the 

recruitment of leukocytes to the inflammatory site. Moreover, neutrophil 

infiltration together with IL-4 elevation contributes to the severity of asthma92, 93.  

Although IL-13 can partially substitute for IL-4, it has its own independent 

properties, which was demonstrated by IL-4-/- mice94-97. There is an additive 

effect when both IL-4 and IL-13 are deleted97, indicating a unique role of IL-13 in 

type 2 immune responses. IL-13 plays a more important role than IL-4 in worm 

expulsion94, effector activity in asthma96, hepatic fibrosis and granuloma 

formation95. Moreover, although IL-13 normally participates in type 2 immunity, 

IL-13 also has a significant role in regulating type 1 immune responses. In 

parasite-infected IL-13-/- mice, IFNγ (Th1 cytokine) production was dramatically 

inhibited, while IL-4 and IL-10 (Th2 cytokines) production was significantly 

enhanced, supporting the involvement of IL-13 in type 1 responses98, 99. This is 

consistent with the increased parasite burdens in IL13-/- mice98. IL-13 has also 

been shown to prime monocytes for IL-12 production100 and exhibits a protective 

type 1 immune response during listeriosis101.  

IL-13 signaling is mediated by type II IL4R, which consists of IL4Rα and 

IL13Rα1, however, another IL-13 binding receptor IL13Rα2, which acts as a non-

signaling decoy receptor, shows strong suppression of IL-13 activity102. For 

example, IL13Rα2 overexpression inhibits the expression of fibrotic markers 

induced by IL-13 in vitro and suppresses bleomycin-induced pulmonary fibrosis, 
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highlighting the antagonism of IL13Rα2 to the pro-fibrotic effector function of IL-

13103. Animals lacking IL13Rα2 fail to attenuate granuloma inflammation in the 

chronic phase after infection, and develop severe IL-13-dependent fibrosis and 

show increased mortality104, 105, although IL13Rα2 has no effect on the 

inflammatory responses at the acute stage post infection105. As IL-13 binds both 

type II IL4R and IL13Rα2 with high affinity, when IL13Rα2 is induced by IL-13, it 

acts as a inhibitor of IL-13 via negative feedback by competing for its interaction 

with type II IL4R 106. Conversely, there are also conflicting result showing that IL-

13 plays an important role in mediating fibrosis partially via IL13Rα2 in chronic 

infectious and autoimmune diseases107. Blocking both IL4R and IL13Rα2 

signaling in double knockout mice IL4/IL13-/- may be responsible for the 

augmented protection against chronic pancreatitis progression, compared with 

blocking IL4R signaling only in the IL4Rα-/- mice108. Therefore, IL13Rα2, originally 

regarded as a decoy receptor, probably also has the ability to mediate signaling. 

This is further supported by the ability of IL13Rα2 to signal on cell surface or in 

the cytoplasm with the soluble form in inducing TGFβ1 production in 

macrophages and mediating fibrosis109.  

IL4Rα signaling also functions in cells outside of the immune system. 

IL4Rα deficient mice exhibited significantly decreased bone marrow-derived 

fibroblasts (myeloid fibroblasts) and myofibroblasts in their kidneys110, indicating 

that IL4Rα signaling is involved in renal fibrosis via bone marrow-derived 

fibroblasts.  

IL-4 Receptor Signaling in Macrophage 
IL-4 and IL-13 promote alternative macrophage activation12, 111. Compared 

with their wild-type counterparts, macrophage/neutrophil-specific IL4Rα knockout 

mice revealed significant suppression of parasite infection progression, indicating 

the significance of IL-4/IL-13-IL4R signaling induced M2-like macrophage 

polarization in inflammatory disease112. IL4Rαflox/-LysMcre mice, subjected to 

worm infection, showed impaired alternative macrophage activation with 

significantly decreased CD206 expression and enhanced Inducible nitric oxide 

synthase (iNOS) production113. In addition, M2 macrophages activated by IL-4 
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and/or IL-13 mediate fibrotic remodeling through IL4R. When activated by IL-4 

and/or IL-13, macrophages secret proteins that are directly involved in tissue 

repair, such as collagen type 1 α 1 (Col1A1) that is deposited in the ECM. These 

proteins also include relmα, which eventually acts to cross-link collagen with 

fibrils, developing strength or stiffness to the tissue114. However, IL-4 and/or IL-13 

are not sufficient to induce tissue repair in vivo. IL-4 or IL-13 stimulated 

macrophages are not able to initiate the tissue-repair program until they receive 

signals showing the presence of apoptotic (dying) neutrophils115. Loss of the 

ability to sense of apoptotic cells by genetic ablation impairs proliferation of 

tissue-resident macrophages and the expression of genes involved in 

inflammation resolution and tissue repair in infected lung or gut with colitis115. 

After clearing pathogens and debris in the wounded or infected tissue, 

macrophages switch to repair mode and activate tissue repair programs, by 

sensing local tissue-specific cues or signals from dying cells, and then result in 

the production of tissue-building factors116.  

In addition to macrophage polarization, IL4R signaling may also be 

involved in macrophage proliferation. Compared with wild type mice, myeloid-

specific IL4Rα knockout (IL4Rαflox/- LysMCre) mice display a decrease in the 

absolute and relative number of macrophages (CD11b+F4/80+) during the early 

and middle phase of repair, which may be attributable to the decreased potential 

of macrophage proliferation caused by IL4Rα deficiency114.  

Models of Cardiovascular Remodeling 
We are using two widely used models of cardiovascular damage, 

permanent myocardial infarction and pressure overload by treatment with 

angiotensin-II, in order to test the role of IL-4 stimulated macrophages in the 

pathophysiology. 

Myocardial Infarction 
Myocardial infarction (MI) is the irreversible death of heart muscle due to 

blood flow deprivation (ischemia). MI strikes Americans approximately once 

every 42 seconds117. About 550,000 Americans have a first-time attack annually, 

and about 200,000 have recurrent attacks117. Each year, about 116,000 people 
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die of MI in the U.S117. Patients who survived the first MI are at high risk of 

having a secondary injury (second MI) because of complications, so prevention 

of secondary injury is very important in reducing mortality. Around 47% of the 

decrease in heart disease mortality in America is attributed to secondary injury 

prevention4. Inhibiting secondary injury can also substantially decrease the 

indirect cost of MI caused by loss of future productivity, which is estimated to 

reach $308.2 billion by 2030117. Benefitting from medical advances, annual death 

from MI has declined over time, however the development of heart failure (HF) 

post MI is alarmingly high and continues to increase118. Based on pooled data, 

people who are 45 years old or older have a 20% chance of developing HF within 

five years after a first MI117. 

Cardiac Remodeling post Myocardial Infarction  
In response to MI, cardiomyocytes die by necrosis followed by a 

reparative process, which includes a series of complicated and finely 

orchestrated events. The whole process can be divided into three partially 

overlapping phases: inflammation, proliferation and maturation. These are 

summarized in Figure 4. 

In the inflammatory phase, the sudden death of cardiomyocytes rapidly 

activates transient but intense inflammatory responses characterized by 

neutrophil and monocyte/macrophage infiltration119. The death of myocytes 

results in the loss of passive tension leading to infarct expansion in the first few 

days, which is characterized by acute ventricular dilation, infarct wall thinning, 

and cardiomyocyte elongation. When infiltrating neutrophils undergo apoptosis, 

inflammation resolution is induced by anti-inflammatory and pro-fibrotic signals. 

In the proliferation phase, fibroblasts transdifferentiate into myofibroblasts, 

which proliferate, produce contractile and ECM proteins, and secret collagens. 

Macrophages participate in remodeling by activating mesenchymal reparative 

cells51, 119. Communication between macrophages and fibroblasts and 

myofibroblasts, together with Th2 responses, sustain the pro-fibrotic remodeling. 

Apoptosis of the majority of reparative cells marks the end of proliferative stage  
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Figure 1.4 Cardiac remodeling post MI. Ischemia in part of the heart cause 
sudden death of myocytes, which activates transient but intense inflammatory 
responses characterized by neutrophil and monocyte/macrophage recruitment. 
Initially the infarct expands and the infarct wall gets thinner and thinner as a 
result of losing cardiomyoctes and extracellular matrix degradation. The 
apoptosis of neutrophils represents the start of inflammation resolution that is 
induced by anti-inflammatory signals. Infiltrating macrophages phagocytize 
apoptotic neutrophils and M1 and M2 macrophages sequentially dominate in the 
late inflammatory phase and the following reparative and maturation phase.  
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and pro-fibrotic remodeling. Conversely, failure to undergo apoptosis or 

extension of pro-fibrotic signaling results in pathological remodeling.  

In the maturation phase, the infarct zone undergoes fibrotic replacement 

with the formation of cross-linked collagen, while the adjacent non-infarct zone 

exhibits perivascular and interstitial fibrosis. Scar forms to preserve the structural 

integrity and maintain cardiac pump function by preventing dilatation, aneurysm 

or myocardial rupture120. Depending on the infarct size and the quality of repair, 

the extent of cardiac remodeling post-MI varies.  

Cellular and Molecular Adaptation post MI 
The innate immune system plays an important role in the remodeling post 

MI. In the inflammatory response after injury, immune cells including neutrophils 

and monocytes/macrophages recognize DAMPs by toll-like receptors (TLRs), 

and then activate downstream inflammatory pathways. Inflammation is further 

prolonged by secretion of pro-inflammatory cytokines such as MCP1, TNFα and 

IL-6. MCP1 contributes to the recruitment of monocytes, and TNFα promotes 

adhesion and extravasation of leukocytes through endothelium. The role of IL-6 

in inflammation and cardiac remodeling is ambiguous. Augmented IL-6 

expression aggravates the inflammatory responses and exacerbates deleterious 

effects of MI121. However, neither deficiency of IL-6 nor blocking the IL-6 receptor 

confers no protection122, 123. The neutrophils and monocytes/macrophages 

phagocytize and clear the dead cells and debris. In addition to these infiltrating 

immune cells, resident cells such as fibroblasts, surviving cardiomyocytes and 

resident macrophages contribute to the development of inflammation. 

Macrophages in the proliferation phase are less inflammatory and express M2 

macrophage-associated genes124. They secret cytokines and growth factors, and 

mediate tissue repair and neovasculogenesis51, 119. Galectin 3 (Gal3), a pro-

fibrotic protein predominantly produced by macrophages, is actively involved in 

post-MI remodeling125, 126. TGFβ, another major pro-fibrotic cytokine secreted by 

macrophages, suppresses inflammation, promotes hypertrophic cardiomyocyte 

growth, enhances ECM deposition by increasing collagen and fibronectin 

synthesis and down-regulates ECM degradation127, 128.  
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The importance of monocytes/macrophages in cardiac remodeling post MI 

is increasingly appreciated. In response to injury, Ly6Chigh monocytes efficiently 

migrate to the injured area and give rise to inflammatory macrophages129-131, 

while Ly6Clow monocytes infiltrate less efficiently and are believed to differentiate 

into resident macrophages. Clodronate-loaded liposome mediated depletion of 

monocytes/macrophages showed that both Ly6Chigh and Ly6Clow monocytes are 

essential for infarct healing132, 133. Depletion of monocytes/macrophages resulted 

in impaired dead cardiomyocytes removal, delayed matrix regeneration and 

inefficient angiogenesis51. In mice with MI, Ly6Chigh and Ly6Clow monocytes are 

sequentially recruited to the infarcted heart. Ly6Chigh monocytes dominate early, 

display phagocytic and inflammatory functions, and participate in damaged tissue 

digestion. In contrast Ly6Clow monocytes dominate later, exhibit blunted 

inflammatory properties, and contribute to tissue repair via myofibroblasts 

accumulation, collagen deposition and angiogenesis51. A similar time course of 

pro-inflammatory monocytes/macrophages in the inflammatory phase and less 

inflammatory monocytes/macrophages in the proliferation phase was also 

described in human patients with MI. CD14+CD16- (corresponding to Ly6Chigh) 

monocytes dominated early in blood and infarcted tissues, whereas abundance 

of CD14+CD16+ (corresponding to Ly6Clow) monocytes was only detected in 

infarcted tissues of patients who died later134, 135. Although macrophages are 

necessary for proper would healing and scar formation to preserve left ventricle 

geometry, excessive macrophages during the inflammation phase are harmful. 

Patients with more CD14+CD16- monocytes in blood in the acute inflammatory 

phase exhibited severely dilated left ventricles135, and monocyte cell counts are 

positively correlated with HF progression136, 137.  

During post MI remodeling, fibroblasts contribute to fibrosis by proliferation 

and transdifferentiation into myofibroblasts, which along with myeloid cells, 

account for a significant portion of the ECM138. Persistent activation by 

mechanical stress or pro-fibrotic molecules such as TGFβ and Gal3 released by 

neighboring myofibroblasts or macrophages drives quiescent fibroblast 

transformation into active collagen-producing myofibroblasts126, 127. Although 
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fibrosis initially benefits the injured myocardium, continued and uncontrolled 

fibrosis can be harmful and results in cell death and chronic inflammation, which 

consequently cause impaired cardiac function and organ failure139-141. One factor 

that limits fibrosis is that myofibroblasts are programmed to undergo apoptosis 

after accomplishing their reparative “tissue-building” task. Conversely, sustained 

myofibroblasts result in extensive fibrosis142.  

Limiting Inflammation and Fibrosis post MI 
To optimally repair the infarcted tissue, inflammatory or pro-fibrotic 

reactions have to be contained and resolved143, 144. Excessive inflammation, 

insufficient resolution, or excessive fibrosis leads to extended tissue damage, 

improper healing, defective scar formation, unnecessary cell loss and contractile 

dysfunction, all of which promote infarct expansion, adverse remodeling, 

chamber dilatation and the development of HF145. Inflammatory and pro-fibrotic 

signaling pathways are critically involved in dilative and fibrotic remodeling, and 

drive major events in the pathogenesis of post-MI HF119. Therefore, in order to 

understand the progression of HF post MI, and to develop novel therapeutic 

strategies to suppress the development of HF, investigation of the inflammation 

and fibrosis post MI is critical. The switch from pro-inflammatory macrophage 

phenotype that phagocytize necrotic tissue to macrophages with anti-

inflammatory and pro-fibrotic phenotype is thought to be critical to the proper 

healing of the damage.  IL4R signaling and the AAM/M2 macrophage is thought 

to be critical to this transition. 

Hypertension 
Hypertension or high blood pressure is a major risk factor for CVD146, 147. A 

systematic analysis using disability-adjusted life years (DALYs) showed that 

hypertension went from the number 4 leading risk factor in 1990 to the number 1 

risk factor in 2010148. Hypertension contributes to 40.6% and 34.7% of CVD and 

ischemic heart disease mortality, respectively, much higher than any other 

factor149. In America, about 33% of adults have high blood pressure117, and this 

will increase to ≈41.4% by 2030 (unpublished AHA computation, based on 

methodology described by Heidenreich et al7). Obviously, there is a considerable 
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financial burden in treating hypertension117, which is projected to be up to $274 

billion by 2030 (unpublished AHA computation, based on methodology described 

in Heidenreich et al7). Regardless, only 77 percent of people with hypertension 

are under current antihypertensive medication, and only 54% of those have their 

condition controlled117. Being a principal risk factor of CVD, hypertension can 

progressively lead to HF. Absence of hypertension in middle age is associated 

with lower risk of developing HF through the remaining life course, and 

prevention of hypertension during middle age substantially prolongs HF-free 

survival150. Adjusting for age and HF risk factors in a Framingham Heart Study, 

the chance of developing HF in hypertensive subjects compared with the 

normotensive ones is about 2-fold higher in men and 3-fold higher in women151. 

Hypertensive Cardiovascular Remodeling 

Hypertension induces the development of CVDs through cardiovascular 

remodeling such as cardiovascular hypertrophy, inflammation and cardiovascular 

fibrosis via direct hemodynamic mechanisms and/or overactivation of the renin-

angiotensin-aldosterone system (RAAS)152. For example, angiotensin II (AngII) 

increases significantly in Dahl salt-sensitive hypertensive rats in the phase of 

compensated left ventricle hypertrophy, but does not show further increase in 

subsequent congestive heart failure153. In addition, both renin and aldosterone 

have been implicated in a causal relationship with cardiac remodeling caused by 

hypertension via fibrosis-dependent or –independent mechanisms154, 155, and 

directly inhibiting renin decreases myocardial fibrosis and improves cardiac 

function156. Persistent hypertension results in cardiovascular remodeling, which 

includes hypertrophy of cardiomyocytes and smooth muscle cells, cardiac and 

vascular inflammation, perivascular and interstitial fibrosis, and microvascular 

rarefaction.  

Hypertensive Cardiac Remodeling 
Hypertension can result from pressure or volume overload. Cardiac 

remodeling due to a predominantly pressure overload hypertension comprises 

concentric left ventricle hypertrophy characterized by thickening of the left 

ventricle wall and increase in heart mass at the expense of chamber volume157-
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159. In contrast, cardiac remodeling due to a volume overload hypertension 

consists of eccentric cardiac hypertrophy characterized by increase in both heart 

mass and chamber volume157, 160. Left ventricle hypertrophy is an intermediate 

phenotype in the progression of hypertension-induced HF. If pressure overload 

persists, diastolic dysfunction progresses, the concentric remodeled left ventricle 

decompensates, and hypertensive HF with preserved ejection fraction (HFpEF) 

ensues. Patients with HFpEF exhibit left ventricle hypertrophy, epicardial 

coronary artery lesions, coronary microvascular rarefaction, and myocardial 

fibrosis150, 161. If volume overload persists, left ventricle dilatation progresses, the 

eccentric remodeled left ventricle decompensates, and HF with reduced ejection 

fraction (HFrEF) ensues150, 162, 163. Longstanding pressure or volume overload 

ultimately leads to cardiovascular diseases that consist of dilated cardiomyopathy 

with diastolic dysfunction and reduced ejection fraction150, 151. In animal models, 

changes are more dramatic in sudden pressure overload-induced hypertension, 

with earlier onset of cardiac fibrosis and accelerated cardiomyocyte loss164.   

Hypertensive Vascular Remodeling 
In vascular remodeling (Figure 1.5), pathological changes occur in all 

three compartments of the vessel wall: the innermost layer intima, middle layer 

media, and the outermost layer adventitia, and their respective resident 

mesenchymal cells: endothelial cells (EC), smooth muscle cells (SMC) and 

fibroblasts. Local signals secreted by stressed or injured cells antagonize 

vascular homeostasis with cell-cell communications between mesenchymal cells 

like SMCs and/or fibroblasts and macrophages. As a result, these cells are 

persistently activated in a pro-inflammatory and pro-remodeling phenotype, 

which promotes the progression of non-resolving chronic inflammation and 

remodeling of vessel22. Coronary microvascular dysfunction may conceivably 

attribute to a systemic inflammatory state and oxidative stress accelerated by 

complications of HFpEF165, 166. Animals with severe hypertension showed 

significant intimal fibrosis, dramatic medial thickening along with adventitia 

fibrosis, and eventually died from heart failure167, 168.  

 



	 21 

	
Figure 1.5 Vascular remodeling induced by Angiotensin II. The haematoxylin 
and eosin (H&E) stained aorta (up left) shows significant hypertrophic and 
hyperplasia remodeling in the middle layer media and the outermost layer 
adventitia. The picrosirius red staining (up right) of the same aorta section shows 
the substantial fibrosis (red) in adventitia, and the lower panel is the comparison 
of aorta cross section between sham and angiotensin II exposure.  
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Upon hypertension, changes in intima are characterized by endothelial 

hypertrophy, subendothelial edema and fibrosis due to collagen deposition169, 

intimal thickening because of endothelial hypertrophy and hyperplasia and 

thickening of the subendothelial space170-172. Endothelial injuries caused by shear 

stress induce ECs to produce vasoactive mediators, inflammatory molecules and 

growth factors173-175, and increase the permeability of endothelial cells, which 

consequently promotes the influx of plasma proteins, vasoactive substances and 

vascular wall protease176. Increase of endothelial permeability also exposes 

SMCs to vasoactive mediators and leads to subendothelial edema. Stressed or 

injured endothelial cells also produce more laminin, fibronectin and elastin, 

contributing to pro-fibrotic remodeling that consequently impairs EC and SMC 

function. Direct changes of ECs as well as molecules and cytokines secreted by 

ECs lead to intimal thickening, recruitment of circulating cells, local cell 

proliferation, smooth muscle contraction, hypertrophy and hyperplasia, all of 

which contribute to intima-related vasculature remodeling and stiffness22.  

The hypertrophic and hyperplasia responses of SMCs in media of large 

vessels and collagen deposition in the ECM contribute to medial thickening, 

which leads to compliance reduction of the vessels177. Cumulative data suggest 

that, non-resident smooth muscle-like cells that are with the potential of 

differentiating into “mature SMCs”, cumulated in the distal media of large vessels 

and proliferate22. These smooth muscle-like cells are of high proliferation 

potential, resistant to apoptosis, and secrete factors to continually stimulate pro-

proliferative and pro-signaling pathways178. The recruitment of these cells 

contributes to extended, severe vascular remodeling.  

The adventitia is the outermost layer of the vessel, and is also the most 

heterogeneous compartment of the vessel wall due to its cellular and structural 

complexity. The Adventitia contains lymphatic vessels, vasa vasorum, trophic 

nerves and resident cells including progenitor cells, fibroblasts and immune cells 

such as macrophages and dendritic cells. In response to hypertensive stress, the 

adventitia undergoes substantial remodeling: dramatic expansion of vasa 

vasorum, activation and proliferation of residential cells like progenitor cells, 
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fibroblasts and possibly macrophages, transdifferentiation of fibroblasts into 

myofibroblasts, recruitment of circulating progenitor cells and leukocytes such as 

macrophages and lymphocytes, as well as significant increase of collagen and 

ECM protein deposition179. The expansion, activation, proliferation and infiltration 

of cells in the adventitia synergistically promote remodeling, and the sustained 

hypertension persists this process, and finally causes massive fibrosis.  

Immune Cells in Hypertensive Cardiovascular Remodeling  
Hypertensive stimuli promote oxidative stress and up-regulate pro-

inflammatory molecules and cytokines, which leads to rolling, adhesion, and 

transcytosis of inflammatory immune cells180, 181. As a result, a robust 

accumulation of immune cells in the cardiovascular system is induced in 

hypertension182-184, including monocytes, macrophages, neutrophils and 

lymphocytes.  

Monocytes/Macrophages 
Increases in monocytes and macrophages have been repeatedly 

demonstrated in experimental hypertension185-189. Circulating monocytes 

increase in AngII-induced hypertension188, 190, and monocyte elimination results 

in decrease of hypertension severity, reduction of vascular reactive oxygen 

species (ROS) generation and improvement of vascular function188. Monocytes 

are circulating precursors of macrophages that accumulate in perivascular 

adipose tissue and adventitia during hypertension153, 191. Infiltrating macrophages 

release pro-inflammatory cytokines, produce ROS and disrupt vascular 

homoeostasis192-194. Wenzel et al. used myeloid (monocytes/macrophages and 

neutrophils)-specific LysM-diphtheria toxin receptor mice and completely 

eliminated neutrophils and monocytes/macrophages by exposing the mice to 

diphtheria toxin, and they found that the hypertensive responses to AngII were 

abrogated, as well as hypertrophy, ROS production and vascular dysfunction 

caused by hypertension188. Replacement of monocytes, but not neutrophils 

reversed hypertension188, indicating the importance of monocyte/macrophage 

lineage cells in hypertension.  
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Infiltrating macrophages during hypertension differentiate from circulating 

monocytes that are initially produced by hematopoietic stem cells (HSCs) in bone 

marrow37, 195. These macrophages are distinct from yolk sac macrophages that 

are developed in the embryo before the appearance of HSCs30. In monocyte 

development, HSCs first give rise to cell progenitor intermediates such as 

macrophage and dendritic cell progenitors (MDPs), and then finally differentiate 

into monocytes196. These hematopoietic stem and progenitor cells (HSPCs) can 

differentiate into monocytes, macrophages and dendritic cells et al. Besides 

proliferation and differentiation in bone marrow, HSPCs also constitutively exit 

bone marrow during inflammation and undergo myelopoiesis in tissues outside of 

the medulla of the bone196-198. Spleen tissue is identified experimentally and 

clinically in patients with CVDs199-201. Myelopoiesis from HSPCs in spleen supply 

a reservoir of monocytes38, which is able to mobilize and contribute to 

macrophage infiltration in distant lesions202, 203. AngII, independent of 

hemodynamics, plays a critical role in splenic release of monocytes204. AngII 

administration significantly induces the amplification of HSPCs in spleen instead 

of bone marrow204. By amplifying the HSPCs, AngII maintains splenic monocyte 

reservoir and allows tissue outside of medulla of bone to constantly supply new 

inflammatory macrophages, which highlights the central role of AngII as 

upstream of an effective macrophage amplification program. Instead of 

proliferation, AngII controls splenic monocyte/macrophage amplification by 

reprograming HSPC trafficking, and increasing their retention in spleen197, 204. It’s 

worth mentioning that the monocytes generated from splenic HSPCs driven by 

AngII are mostly Ly6Chigh204, indicating their pro-inflammatory characteristic. 

Although the production of monocytes in spleen is mediated by AngII, the 

recruitment of monocytes from circulation is not through AngII but thought via the 

MCP1/CCR2 axis205, 206, which suggests the production and recruitment of 

mononuclear phagocytes are two distinct processes that are managed 

separately.  

Neutrophils 
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The involvement of neutrophils in hypertension is unclear. Selective 

depletion of circulating neutrophils protects against oxidative stress although has 

no effect on AngII-induced hypertension207, which suggests neutrophils may be 

not involved in blood pressure regulation, but are probably associated with 

hypertension-induced inflammation. Restoration of neutrophils into myeloid cells 

(monocytes/macrophages and neutrophils)-depleted mice did not restore 

pathophysiological action of AngII188, which is inconsistent with the involvement 

of neutrophils in hypertension or hypertension-induced inflammation.  

T Cells 
In addition to the innate immune system, the adaptive immune system 

also contributes to hypertension and hypertension-induced cardiovascular 

remodeling. T cells, as major components of adaptive immune system, contribute 

to the development of hypertension by infiltrating into organs that control blood 

pressure such as vessels and kidney188, 189, 208. Infiltrating T cells, contribute to 

hypertension and renal glomerular and tubular damages via production of ang-II. 

Hypertensive stimuli like AngII and deoxycorticosterone acetate (DOCA)-salt, 

induce T cell accumulation in kidney and vasculature. Higher T cell infiltration 

results in higher production of pro-inflammatory cytokines and ROS, which 

further enhances leukocyte recruitment, and leads to renal and vascular 

dysfunction and exacerbates hypertension208-211. A landmark study by Guzik et 

al. showed that recombinase-activating gene 1 (RAG1) deficient mice, which fail 

to develop B and T cells, were protected from hypertension induced by AngII or 

DOCA-salt. Hypertensive responses were restored in these mice by adoptively 

transferring T but not B cells189, which confirms the significance of T cells in 

hypertension. Furthermore, they demonstrated that the T cells are recruited into 

perivascular adipose tissue and adventitia of these mice189.  

Molecules in Hypertensive Cardiovascular Remodeling 
Molecular pathways are essential for hypertension-induced cardiovascular 

remodeling. These pathways include reactive oxygen species (ROS) and 

inflammatory cytokines that promote inflammation and TGFβ signaling that 

promotes pro-fibrotic remodeling.  
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Reactive Oxygen Species  
ROS generation has been shown in multiple organs during hypertension, 

including brain, kidney, heart and the vasculature212, which contributes to the 

comorbidities of hypertension. ROS enhance inflammation, induce hypertrophy of 

cardiomyocytes and vascular smooth muscle, and mediate pathophysiological 

remodeling of stressed/injured tissues119, 184, 212-214. ROS generation is attributed 

to the endothelium, SMC, neutrophils, macrophages, epithelium and fibroblasts, 

and the production of ROS promotes recruitment of monocytes/macrophages, 

which in turn generates more ROS, substantially exaggerating the impact of 

ROS179, 215, 216. ROS also modulate the phenotype of resident cells and infiltrating 

cells by regulating their proliferation, migration, differentiation and matrix 

production, meanwhile, ROS function as molecular signals to activate 

downstream signaling pathways. A substantial clinical challenge targeting ROS 

production is that routine antioxidant administration is not effective in preventing 

cardiovascular diseases and hypertension and their treatment, which is likely due 

to the non-targeted fashion in which the drugs act, they clear away not only the 

harmful ROS but also those needed in normal cell signaling212.  

Inflammatory Cytokines 
The inflammatory cytokine TNFα is one of the principal cytokines 

regulating inflammation. TNFα activates nuclear factor κ B (NFκB) and 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase217, which 

importantly contribute to the induction of oxidative stress and up-regulation of 

chemokines and adhesion molecules218. TNFα signaling is also involved in 

macrophage recruitment. In AngII-induced hypertensive cardiac injury, the pro-

fibrotic response mediated by M2 macrophages is dependent on TNFα signaling, 

although the primary inflammatory stage characterized by M1 macrophages is 

TNFα signaling independent219.  

The pro-inflammatory cytokine IL-6 also promotes hypertension and 

hypertension-related remodeling. High levels of IL-6 correlate with blood 

pressure increase and may be an independent risk factor for hypertension220-224. 

Brands et al. demonstrated that IL-6 is essential for hypertension induced by 
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AngII222, which is supported by a human study showing that acute AngII infusion 

caused dramatically exaggerated plasma IL-6225. Higher levels of circulating IL-6 

were found in hypertensive patients and blocking AngII signaling by AngII 

receptor inhibition or AngII downstream product antagonist reduced circulating 

IL-6224, 226. Moreover, IL-6 ablation attenuates AngII and high salt-induced 

hypertension227, and IL-6 deficiency prevents cardiac inflammation, fibrosis and 

dysfunction without affecting myocyte hypertrophy and angiogenesis228. IL-6 also 

controls vascular remodeling by mediating superoxide production, endothelial 

impairment229, vascular SMC proliferation and migration, which contributes to 

vascular medial hypertrophy230, 231. 

AngII also stimulates MCP1 secretion232. By activating the receptor of 

MCP1–CCR2, chemokine MCP1 elicits the activation and migration of 

monocytes and leukocytes to inflammatory sites.  

Fibrosis Associated Signaling Pathways 
Instead of a single signaling pathway, multiple pathways contribute to the 

pro-fibrotic remodeling following cardiovascular injury. We summarized the ones 

that are associated with our study (Figure 1.6).  

Transforming Growth Factor β 

Inflammatory response is usually followed by pro-fibrotic remodeling in 

hypertensive cardiovascular diseases, in which transforming growth factor β 

(TGFβ) signaling plays an important role. Patients with essential hypertension 

show significantly higher levels of both active and total TGFβ1 in plasma than 

normotensive subjects233. Compared with normotensive rats, spontaneously 

hypertensive rats (SHR) with HF displayed significant increase in TGFβ1 mRNA 

expression in left ventricle, although SHR without HF did not show any 

increase234. Higher TGFβ1 mRNA level was also shown in aorta and kidney of 

DOCA-salt-induced hypertensive rats235. TGFβ1 promotes the deposition of ECM 

proteins236, which reduces the cardiovascular compliance and aggravates the 

stiffness.  

TGFβ Pathway – PDGF-A and PAI-1 
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Figure 1.6 Signaling pathways involved in AngII-induced fibrotic 
remodeling. Pro-fibrotic signaling TGFβ pathway (including TGFβ itself, PDGF-A 
and PAI-1) and Gal3 pathway, and anti-fibrotic signaling BMP9 pathway are all 
involved in AngII-induced fibrotic remodeling. BMP9 binds with its receptor activin 
receptor-like kinase 1 (ALK1); PAI-1 regulates fibrosis through its inhibition of tPA 
that activates fibril degradation; TGFβ functions via itself or its downstream 
signals like PDGF-A and PAI-1; and Gal3 can signal through Gal3-IL-6 axis. All 
of those signaling converge into their modulation of collagen synthesis and 
degradation by matrix metalloproteinases (MMPs) to regulate fibrotic remodeling.  
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The signaling pathways through which AngII/Salt induces fibrosis include 

both TGFβ1-dependent and –independent signaling237. Platelet derived growth 

factor subunit A (PDGF-A) is one of the downstream mediators in TGFβ signaling 

pathway to promote fibrosis238, 239.  

TGFβ and AngII can also induce plasminogen activator inhibitor-1 (PAI-1, 

or serpin E1)240. PAI-1 is a serine protease inhibitor (serpin) that serves as the 

principal inhibitor of tissue-type plasminogen activator (t-PA) and urokinase-type 

plasminogen activator (u-PA), the activators of plasminogen and hence fibrin 

degradation240, 241. This is consistent with the substantial fibrotic upregulation in 

PAI-1 null mice242, but converse to the pro-fibrotic role of PAI-1243, 244, which 

suggests the plastic role of PAI-1 depending on context and specific tissue type.  

In macrophages, PAI-1 expression can inhibit uPA and abrogate proteolytic 

activity by the macrophage 245 

Galectin 3 Signaling 
AngII also induces fibrosis through TGFβ-independent signaling such as 

AngII-galectin 3 (Gal3)-IL-6 axis237. Gal3 is a matricellular glycan-binding protein 

and involved in cardiac pro-fibrotic remodeling125, 246. Genetic ablation or 

pharmacologically blocking Gal3 ameliorated cardiac fibrosis induced by 

hypertension, highlighting the causative role of Gal3 in hypertension-related 

fibrosis247, 248. Therefore, targeting the AngII-Gal3 axis utilizing Gal3 inhibitor or 

by neutralizing IL-6 could be a therapeutic method to decrease cardiac fibrosis228, 

247.  Gal3 is also required in myofibroblasts for pro-fibrotic response to TGFβ249. 

In addition to the well-known pro-fibrotic signaling pathways, S100 

calcium-binding protein a8/a9 (S100a8/a9) produced by neutrophils was also 

found to activate fibroblasts in initiation of AngII-induced inflammation and 

fibrosis in the heart250. Moreover, osteopontin251 and syndecan-1252 have also 

been implicated in AngII-induced cardiac fibrosis.  

Bone Morphogenetic Protein 9 Signaling 
Bone morphogenetic protein 9 (BMP9) has been recently identified as a 

novel anti-fibrotic factor in a pressure overload hypertension model 253.  BMP9 
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can be synthesized in the liver but is also present in the heart.  Its receptor is the 

activin receptor-like kinase 1 (ALK1) and can oppose actions of TGFβ254.  
Matrix Metalloproteinase 

Fibrosis is essential for tissue healing and repair. Fibrosis occurs when 

ECM protein synthesis exceeds degradation. The proteolysis enzymes that 

regulate ECM protein (e.g. collagen) degradation are mainly matrix 

metalloproteinases (MMPs), such as the collagenase MMP1 that cleaves mature 

collagen fibers255. MMP2 acts to remodel nascent collagens to enable correct 

fibril formation256, 257. MMP9 is involved in inflammation-induced fibrosis via 

mediation of leukocyte migration. The activities of MMPs are antagonized by 

specific inhibitors: tissue inhibitors of metalloproteinases (TIMPs). The complex 

modulation between ECM protein synthesis, degradation by MMPs, and 

suppression of degradation by TIMPs coordinately determines the level of 

fibrosis.  Other MMPs can also participate in ECM degradation. 

Hypotheses Driving this Study 
In this thesis, we will address the role of the myeloid IL-4 receptor in the 

response to two injury models: permanent occlusion of the left coronary artery as 

a model of MI (Chapter II) and chronic angiotensin-II and high salt diet as a 

model of hypertension (Chapter III). For each we will determine the importance of 

the myeloid IL4Rα on a number of pathophysiological phenotypes of these two 

models.  It will separate out functions of endogenous IL-4 on the myeloid line to 

determine the important cell types responding and the consequences of that 

response. This is a critical study since IL4Rα is present on a variety of cell types 

including T cells, B cells, monocytes/macrophages, fibroblasts61, keratinocytes, 

epithelial cells, endothelial cells, and hepatocytes62, 63, all of which could be 

contributing to the phenotype of IL-4 action. While IL4Rα in macrophages is 

thought to play an important role, particularly in the polarization of macrophages, 

fibrosis and cardiovascular injury response, this assumption has not been tested 

in vivo. As a result, these studies will determine the importance of the 

macrophage response to endogenous IL-4 during the pathogenic processes. 
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1. We have tested the hypothesis that IL4Rα is important in determining the 

AAM/M2 macrophage phenotype.  While other cytokines and factors can 

influence macrophage polarization, IL-4 is thought to be a major 

determinant.  Certainly, it is clear that AAM/M2 macrophages increase 

with administration of IL-4.  We present analysis of both the number of 

macrophages and the level of expression of macrophage gene markers to 

detect changes in phenotype.  Our original hypothesis was that this 

receptor would be critical for the determination of macrophage phenotype, 

with knockouts showing decreased AAM/M2 macrophages and marker 

gene expression.  

2. Because of the AAM/M2 role in fibrosis and inflammation, we anticipated 

that cardiac remodeling would be aberrant with decreased fibrosis and the 

potential for increased tissue damage. To assess this, we analyzed 

collagen fibrosis by histology and gene expression. We also evaluated 

histology for evidence of increased tissue damage. To determine if fibrotic 

gene pathways were being activated, we determined the expression of 

pro- and anti-fibrotic genes and identified significant changes of these 

pathways in some circumstances. 

3. We further hypothesized that with the loss of AAM/M2, we would have 

increased inflammation. We analyzed this aspect by evaluation of 

CAM/M1 markers and other inflammatory cytokine genes were increased. 

4. Because IL-4 has been linked to improvements in cardiac function, we 

evaluated cardiac function and blood pressure.  Cardiac function was 

evaluated by echocardiography and structural changes in the heart were 

evaluated including heart size and cardiomyocyte hypertrophy. We 

proposed that function in the myeloid (monocyte/macrophage and 

neutrophil)-specific IL4Rα knockout (MyIL4RαKO) mice would be worse 

than control mice thus demonstrating that the phenotype had significant 

contributions from the IL-4 dependent induction of AAM/M2 phenotype. To 

assess vascular changes in the heart, we evaluated endothelial histology.  
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CHAPTER II 
MYELOID INTERLEUKIN-4 RECEPTOR SIGNALING IS NECESSARY FOR 
EFFICIENT CARDIAC REMODELING AND CARDIAC FUNCTION AFTER 

MYOCARDIAL INFARCTION  
 

Abstract 
Cardiac remodeling can be a critical determinant of outcome for patients 

after myocardial infarction (MI). Well-contained inflammation results in successful 

infarct healing while either inadequate or excessive inflammation can cause 

adverse remodeling and lead to heart failure. Reprogramming macrophages 

towards a resolving and reparative phenotype is a potential therapeutic 

approach. Interleukin-4 (IL-4) is a major inducer of alternative macrophage 

activation (M2) in vitro, and IL-4 treatment in MI has been shown to be beneficial 

although the target cell types have not been experimentally defined. We tested 

whether myeloid cells were important targets in a mouse model of MI using 

myeloid (monocyte/macrophage and neutrophil)-specific IL-4 receptor α knockout 

(MyIL4RαKO) mice.   

MyIL4RαKO and floxed control (FC) mice were subjected to permanent 

ligation of the left coronary artery. Initial infarct size at 2 day post-MI was not 

affected by IL4Rα knockout, but at 1 week post-MI, infarct size of MyIL4RαKO 

mice was significantly smaller than that of FC mice indicating changes in 

remodeling. At 3 week post-MI, infarct thickness of MyIL4RaKO mice was 

significantly increased compared with FC mice. These changes were 

accompanied by decreased expression of fibrosis markers: collagen 1A1 

(Col1A1) and procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (Plod2). A 

significantly lower ejection fraction was observed in MyIL4RαKO mice compared 

with FC mice at 3 week. Importantly, MyIL4RαKO did not decrease the 

percentage of CD206+ M2-like macrophages post-MI and the expression of 
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macrophage markers was largely unchanged. 

Myeloid-specific IL4Rα knockout results in alterations in cardiac 

remodeling and decreased cardiac function post-MI, demonstrating that these 

cells are important targets of IL-4.  Importantly, macrophage polarization markers 

were not significantly changed, suggesting that the functional changes observed 

and the protection from IL-4 is not through global changes in macrophage 

polarization; thus a simple macrophage polarization model is inadequate. 

Introduction 
Patients with acute myocardial infarction (MI), who survive the initial 

ischemia, are at higher risk of developing heart failure in a process named 

cardiac remodeling1-4. Cardiac remodeling refers to structural changes in size 

and shape, such as dilation, sphericity, wall thinning, as well as epigenetic, 

molecular, cellular, compliant and functional changes that include both resident 

(cardiomyocytes, fibroblasts, macrophage) and non-resident (infiltrating 

leukocytes) cells of the heart, in the infarct area and in the peri-infarct and remote 

viable myocardium5, 6. In the initial few days post MI, the infarct expands, which is 

characterized by acute ventricle dilation (without additional necrosis), infarct wall 

thinning and cardiomyocyte enlargement7, 8. Extracellular matrix degradation 

augments cardiomyocyte slippage and infarct wall thinning. Cardiac fibroblasts 

and myofibroblasts produce a noncompliant collagne scar to maintain the 

ventricle geometry and prevent the development of aneurysm2, 3, 7, 9. Cardiac 

remodeling is a powerful prognostic factor after MI and has been identified as a 

target for intervention4, 8, 10.  

Adverse cardiac remodeling post-MI can lead to impaired cardiac function 

and ultimately cause heart failure. Immune cells are a critical component of post-

MI healing and have major regulatory effects on the healing and remodeling 

process. Following ischemic injury, there is an intense influx of leukocytes, 

mainly characterized by infiltration of neutrophils, followed by 

monocytes/macrophages and lymphocytes, which are involved in a complex 

inflammatory response to facilitate cardiac healing. Through interactions with 

cardiomyocytes and fibroblasts, these immune cells are directly involved in the 
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regulation of hypertrophic, fibrotic and wound healing responses during cardiac 

injury11.  

In addition to cardiomyocytes and fibroblasts, macrophages represent a 

major resident immune cell type in the heart that are maintained under normal, 

steady state conditions through local proliferation12, 13. Macrophages exist within 

a spectrum of phenotypes and have been previously characterized as ranging 

from classically activated macrophages (CAM or M1) to alternatively activated 

macrophages (AAM or M2). Importantly, these characterizations are clearly 

inadequate14, 15. At rest, the heart contains a heterogeneous population of 

resident macrophages with gene expression profiles that more closely resemble 

the AAM/M2 macrophage phenotype12, 16. After MI, there are dynamic changes in 

macrophage phenotype. Kinetic analysis has shown that the early inflammatory 

phase is composed of a high percentage of macrophages expressing CAM/M1 

markers, which most likely reflects the need for immune cell recruitment, 

phagocytosis and clearance of necrotic tissue17, 18. During the later phase of 

injury, macrophages expressing AAM/M2 markers predominate and are thought 

to be involved in wound healing, angiogenic and profibrotic cardiac remodeling18, 

19.   

Apoptosis of infiltrating neutrophils and a switch in macrophages from 

CAM/M1 to AAM/M2 phenotype are involved in the resolution of the inflammatory 

phase4, 18, 20. Neutrophils undergo apoptosis, indicating the start of inflammation 

resolution, and leads to a gradual stop of the infiltration. Macrophages remove 

apoptotic neutrophils by phagocytosis and release cytokines and growth factors 

to potentiate the resolution21, 22. Uncontrolled or delayed resolution of 

inflammation with an abundance of CAM/M1 is thought to be responsible for 

impaired wound healing and adverse cardiac remodeling post-MI. However, 

simply depleting or blocking macrophages does not appear to be a viable 

therapeutic strategy. Several studies have found that depleting macrophages 

results in decreased clearance of necrotic tissue, impaired collagen deposition, 

and decreased survival post-MI23-26. AAM/M2 macrophages are known to be 

involved in wound healing, and it is thought that enhanced AAM/M2 polarization 
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may be critical for efficient infarct remodeling; therefore, depletion of 

macrophages likely prevents this critical process.  

There is increasing evidence to suggest that AAM/M2 macrophages are 

important for efficient cardiac remodeling and function after MI, and numerous 

studies have shown that enhanced AAM/M2 phenotypes correlate with cardiac 

protection27, 28. Although there are many regulators of macrophage polarization, 

IL-4 and IL-13 are the major inducers of the AAM/M2 phenotype in vitro. These 

Th2 cytokines induce an AAM/M2 phenotype by activating the IL-4 and IL-13 

receptors, both of which initiate signal transduction through the common IL-4 

receptor α subunit (IL4Rα). Global deletion of IL-13 has been shown to decrease 

survival and impair cardiac remodeling after MI in male mice29. In addition, IL-4 

administration has been shown to increase survival and improve cardiac function 

after MI27. Importantly, tribbles homolog 1 (Trib1)-/- mice that have an impaired 

capacity for AAM/M2 polarization are not protected by IL-4 administration. 

However, in addition to myeloid cells, IL4Rα is expressed in a number of cell 

types including T cells30, endothelial cell, smooth muscle cells31, and 

cardiomyocytes32. In fact, macrophage IL4Rα inactivation did not affect allergic 

airway disease33 even though IL-4 deficiency does34.  

To delineate the contribution of macrophage phenotypes mediated by IL-4 

during cardiac injury and repair, we genetically ablated IL-4 receptor α in myeloid 

cells to prevent IL-4/IL-13-induced AAM/M2 polarization. We hypothesized that 

the myeloid cells are an important target of IL-4/IL-13 and that inhibition of IL4Rα 

signaling in myeloid cells would block AAM/M2 responses post-MI and would 

lead to ineffective cardiac remodeling and decreased cardiac function. 

Materials and Methods 
Animals 

IL4Rαflox/flox mice were previously produced on a BALB/c background35. 

IL4Rαflox/flox mice were first backcrossed to C57BL/6 background for more than 10 

generations, and then intercrossed with LysM-Cre mice (The Jackson 

Laboratory) to generate myeloid-specific IL4Rα knockout (MyIL4RαKO) mice. 

Experiments used 10-12 weeks old male MyIL4RαKO mice (IL4Rαflox/flox;LyzMCre) 
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and littermate floxed controls (FC, IL4Rαflox/flox). Numbers of mice for each 

experiment are shown in figure legends. Mice were randomly assigned to 

intervention (myocardial infarction, MI) or sham (no MI, NM) groups. Animal died 

from experimental MI within 24 hours (6.9%) or that displayed excessively small 

infarct size (2.7%) as a result of variations in vascular tree were excluded. All 

animal procedures were performed in accordance with the Guide for the Care 

and Use of Laboratory Animals (8th Edition) and were approved by the 

Institutional Animal Care and Use Committee of the University of Michigan.  

Myocardial Infarction Model 
Myocardial infarction (MI) was induced in mice by permanent ligation of 

the left anterior descending (LAD) coronary artery. Mice were anesthetized with 

2% isoflurane, intubated, and maintained on mechanical ventilation while a 

thoracotomy was performed between the left 3rd and 4th intercostal space. The 

left ventricle was visualized and the LAD was ligated using 7-0 surgical silk 

suture. Occlusion of the LAD was confirmed by the presence of blanching of the 

myocardium in the LAD territory. The chest wall was closed with 6-0 silk suture, 

the intercostal and pectoral muscles were realigned, and the skin incision was 

closed with surgical staples. At the end of experiments, mice were euthanized by 

isoflurane. Simply, mice were first induced anesthesia by 3-4% isoflurane, once 

anesthesia was achieved, the isoflurane was increased to 5% to induce death. 

Mice were remained in the chamber for extra 3 minutes after no breath could be 

noticed. Afterwards euthanasia was further confirmed by exsanguination.  

Infarct Size and Thickness 
Infarct size at short-term (2 days and 1 week post-MI) was measured 

based on 2,3,5-triphenyltetrazolium chloride (TTC) stained heart sections with 

the area-based measurement. As the infarct wall thins over time, the area-based 

infarct size measurement is considerably compressed and becomes less 

appropriate, infarct size at late short-term to long-term (1 week and 3 week post-

MI) was measured based on picrosirius red (PSR) stained heart sections with 

length-based measurement.  

Area-based infarct measurement: Hearts were arrested in diastole by 
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intraventricular injection of saturated KCl, and then excised, rinsed and briefly 

frozen at -20°C. The frozen hearts were cut into 1 mm thick transverse sections, 

and then incubated with 1% TTC solution at 37°C for 10 minutes with flipping. 

The stained sections were fixed in 4% paraformaldehyde. The infarct area and 

the area of left ventricle (LV) were traced by a blinded observer and quantified 

using ImageJ 1.45s software, and the area-based infarct size was calculated as: 

infarct size= (total infarct area/total area of left ventricle) x 100%. 

Length-based infarct measurement: Hearts were arrested in diastole, fixed 

in 4% paraformaldehyde, and embedded in paraffin. Serial 5-µm sections were 

cut through the heart from apex to base with an interval of 500-µm distance. 

Heart sections were used for hematoxylin and eosin (H&E) and picrosirius red 

(PSR) staining. Infarct length and left ventricle (LV) circumference were traced 

and measured using ImageJ 1.45s software based on PSR stained sections. 

Epicardial infarct ratio = epicardial infarct length/epicardial LV circumference. 

Endocardial infarct ratio = endocardial infarct length/ endocardial circumference. 

Infarct size was then calculated as a ratio of [epicardial infarct ratio + endocardial 

infarct ratio)/2] x 100%.36, 37  

To measure infarct thickness, a representative PSR-stained heart section 

from the middle of the heart and with the most significant LV cavity dilatation was 

chosen. Nine evenly spaced radians were marked through the infarct with the 

section center as a reference. The Infarct thickness of each segment was 

measured by ImageJ 1.45s software and the average was calculated.36 

Histopathological Analysis   
Hearts were arrested in diastole, rinsed in PBS, fixed in 4% 

paraformaldehyde for 48 hours, and embedded in paraffin. Serial transverse 

sections (5 µm) were cut through the heart with an interval of 500 µm between 

sections, and then subjected to H&E and PSR staining. In order to determine 

myocyte cross-sectional area (CSA), pictures were taken of all regions in peri-

infarct zone and remote zone of left ventricle in H&E stained sections using a 

Zeiss Axio Imager 2 microscope (Carl Zeiss, Jena, Germany). Myocytes with 

similar-sized nuclei and intact cellular membranes were outlined by a blinded 
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observer, and CSA was calculated using ImageJ 1.45s software. The average 

CSA was calculated from approximately 200 myocytes per sample. For fibrosis 

analysis, pictures were taken of all regions in infarct zone, peri-infarct zone and 

remote zone in PSR stained heart sections. Fibrotic (PSR positive) areas and 

areas of cardiomyocytes were traced and measured with ImageJ 1.45s software. 

The percentage of fibrotic area was calculated as: area of fibrosis/(area of 

cardiomyocytes + area of fibrosis) x 100%.38 5-µm thick heart sections were also 

used for immunohistochemical staining for endothelial cells forming vasculature 

(CD31, DIA310, Diavona), and images captured. CD31-positive vessels were 

quantified using ImageJ 1.45s and reported as ‘percent per field’. 

Bone Marrow-Derived Macrophage 
Anesthesia was induced in mice by 3-4% isoflurane, once anesthesia was 

achieved, the isoflurane was increased to 5% to induce death. Mice were 

remained in the chamber for extra 3 minutes after no breath could be noticed. 

Afterwards euthanasia was further confirmed by exsanguination. When the death 

was confirmed, mice were dissected and bones were collected for producing 

bone marrow-derived macrophages, and peritoneal macrophages were collected 

by peritoneally flushing with ice cold PBS.  

Bone marrow-derived macrophages (BMDMs) were produced by flushing 

bone marrow from femurs and tibias. Briefly, bone marrow cells were flushed out 

with ice-cold PBS in a laminar flow hood. After centrifugation, cells were 

resuspended in RPMI 1640 medium with 10% fetal bovine serum (FBS), 100 

units/ml penicillin and streptomycin, 30% L929-conditioned medium, 1% Glutamax® 

and 0.1% Eagle’s basal medium (BME). The cells were then cultured in a humidified 

incubator under 95% air and 5% CO2 at 37°C for 4 days. On day 4, medium was 

replaced by fresh medium. After two more days culturing, BMDMs were 

differentiated and ready for experiments on day 6.   

Alternative macrophage activation was achieved by treatment with IL-4 (50 

ng/ml) for 24 h, while classical macrophage activation was achieved by treatment of 

100 ng/ml lipopolysaccharide (LPS) for 3 h.  

Immunofluorescence 
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After deparaffinization and rehydration, 5-µm thick sections of heart tissue 

were subjected to microwave epitope retrieval in 10 mM Tris-HCl (pH 9) 

containing 1 mM EDTA. After rinsing several times in 10 mM Tris-HCl buffer (pH 

8) containing 0.154 M NaCl (TBS), non-specific binding of the antibodies was 

extinguished by a 30 min incubation with ‘Background Sniper” (BioCare Medical, 

Concord, CA). The slides were labeled simultaneously with CD206 (Alexa Fluor® 

488, BioLegend, San Diego CA, #141710), and F4/80 (PE, BioLegend, San 

Diego CA, #123110) overnight at 4 °C. The slides were washed with 3 changes 

of TBS and stained with the nucleus staining dye 4’,6-diaminodo-2-phenylindole 

(DAPI) in a non-fading mounting media (ProLong Gold, Molecular probes, 

Carpinteria, CA).  

Gene Expression Analysis 
Relative mRNA expression was determined using quantitative reverse 

transcription–polymerase chain reaction (qRT-PCR). Total RNA was extracted 

using TRIzol reagent and RNA (1 µg) was reverse transcribed to cDNA with a 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 

Quantitative polymerase chain reaction (qPCR) was performed using a 7900HT 

fast real-time PCR system (Applied Biosystems) and relative mRNA expression 

was analyzed using the comparative method and normalized to the internal 

control L32.  All qPCR primers are listed in Table 2.1. 

 

 
 
 
 
 
 
 
 
 
 

Gene  Forward Reverse 
ANP GCTTCCAGGCCATATTGGAG GGGGGCATGACCTCATCTT 
Arg1 ACCTGGCCTTTGTTGATGTCCCTA  AGAGATGCTTCCAACTGCCAGACT  
BNP ATGGATCTCCTGAAGGTGCTG GTGCTGCCTTGAGACCGAA  
CCL11 GAATCACCAACAACAGATGCAC  ATCCTGGACCCACTTCTTCTT  
CCL17 CATGAGGTCACTTCAGATGCTG CCTGGAACACTCCACTGAGG 
Col1A1 GCTCCTCTTAGGGGCCACT  CCACGTCTCACCATTGGGG  
Col3A1 CCTGGCTCAAATGGCTCAC  CAGGACTGCCGTTATTCCCG  
F13A1 GAGCAGTCCCGCCCAATAAC CCCTCTGCGGACAATCAACTTA 
Fizz1 ACTGCCTGTGCTTACTCGTTGACT AAAGCTGGGTTCTCCACCTCTTCA  
IL-6 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATACA 
IL-1β AAGAGCTTCAGGCAGGCAGTATCA  TGCAGCTGTCTAATGGGAACGTCA  
IL4Rα TCTGCATCCCGTTGTTTTGC GCACCTGTGCATCCTGAATG 
L32       TTAAGCGAAACTGGCGGAAAC TTGTTGCTCCCATAACCGATG 
MCP1 TCACCTGCTGCTACTCATTCACCA  TACAGCTTCTTTGGGACACCTGCT  
Plod2 GAGAACTGGGCATGTTTCCTC CCCAAAGTGTAACGGAAGGAG 
TNFα CCCTCACACTCAGATCATCTTCT  GCTACGACGTGGGCTACAG  
Ym1 CACCATGGCCAAGCTCATTCTTGT  TATTGGCCTGTCCTTAGCCCAACT  
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Table 2.1. Sequences of all primers used in chapter II. They were synthesized 
by Integrated DNA Technologies. L32, 60S ribosomal protein L32, was used as 
internal control. 
 
Flow Cytometric Analysis 

Single cell suspensions were prepared from peripheral blood and by 

mincing heart tissue into small pieces followed by digestion in DMEM containing 

collagenase I (450 U/mL), collagenase II (600 U/mL), collagenase XI (125 U/mL), 

DNase I (60 U/mL), and hyaluronidase (60 U/mL) for 1 h at 37°C with agitation.  

Cells were incubated in Fc Block for 10 min and then stained on ice for 1 h with 

the following antibodies: anti-mouse CD45 Pacific Blue™ (clone 30-F11, 

Biolegend, cat # 103126), anti-mouse/human CD11b PE/Cy7 (clone M1/70, 

Biolegend, cat # 101216), anti-mouse F4/80 PE (clone BM8, Biolegend, cat # 

123110), anti-mouse Ly6C	PerCP/Cy5.5 (clone HK1.4, Biolegend, cat # 128011),	

anti-mouse CD206 Alexa Fluor® 488 (clone C068C2, Biolegend, cat # 141709), 

and anti-mouse CD301 APC (clone LOM-14, Biolegend, cat # 145707).  Stained 

cells were washed twice in PBS and fixed in 0.1% paraformaldehyde before 

analysis. Flow cytometry was performed using a BD FACS Canto II flow 

cytometer and analyzed with FlowJo V10.1 software. Neutrophils were defined 

as CD45+CD11b+F4/80-Ly6C-SSChighFSClow, macrophages as 

CD45+CD11b+F4/80+Ly6C-SSClow, and monocytes as CD45+CD11b+F4/80-

Ly6Chigh-lowSSClow, and monocytes were further divided into Ly6Chigh and Ly6Clow 

monocyte populations. Within macrophages, AAM/M2 macrophages were further 

defined as CD206+CD301+. For calculation of total cell numbers in heart, 

normalization to weight of indicated tissues was performed. The total number of 

each cell population per 100 milliliter of blood was calculated by multiplying the 

total cell number by the percentage of each cell population within the gate.  

Echocardiography 
Mice were anesthetized with isoflurane, and echocardiography was 

performed using a Vevo 2100 Micro-Imaging System (VisualSonics Inc.) with a 

18-38-MHz linear array ultrasound transducer. LV ejection fraction was 

determined from the two-dimensional long axis view. Ejection fraction and 
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fractional shortening were calculated based on the M-mode parasternal short 

axis view. Systolic and diastolic dimensions and wall thickness were determined 

by M-mode in the parasternal short axis view. Diastolic function was assessed by 

conventional pulsed-wave spectral Doppler analysis of mitral valve inflow 

patterns (early [E] and late [A] filling waves). Doppler tissue imaging (DTI) was 

used to measure the early (Ea) diastolic tissue velocities of the septal and lateral 

annuluses of the mitral valve in the apical 4-chamber view.  

Statistical Analysis 
Results are presented as mean ± SEM. For statistical analysis, one-way 

ANOVA, two-way ANOVA with a Bonferroni post-test and unpaired, two-tailed 

Student’s t test were used. All statistical analysis of data was performed in 

GraphPad Prism (version 6; GraphPad Software, Inc). P < 0.05 was considered 

significant.  

Results 
Myeloid IL4Rα deficiency changes macrophage polarization in vitro and 
cardiac macrophage markers at steady state in vivo 

To test the role that myeloid IL4Rα signaling and AAM/M2 polarization 

have during MI and post-MI cardiac remodeling, we used myeloid-specific IL-4 

receptor α knockout mice (MyIL4RαKO). As expected, bone marrow-derived 

macrophages (BMDMs) from MyIL4RαKO mice had a significant reduction in 

IL4Rα gene expression (Figure 2.1A), and importantly, this resulted in significant 

ablation of IL-4-induced AAM/M2 polarization. IL-4 treatment resulted in a 

significant increase in gene expression of AAM/M2 markers: Arg1, Ym1, and 

Fizz1 in macrophages from FC mice; however, this response was significantly 

abolished in MyIL4RαKO mice (Figure 2.1A). Like IL-4 stimulated AAM/M2 

markers activation, LPS significantly activated the gene expression of CAM/M1 

markers including TNFα, IL-1β, IL-6 and MCP1 (Figure 2.1A). Moreover, BMDMs 

from MyIL4RαKO mice showed significant increase in the mRNA level of TNFα, 

IL-1β and IL-6 (Figure 2.1A) although not in MCP1 (Figure 2.1A), which suggests 

the increase of CAM/M1 polarization as a result of IL4Rα deficiency. Taken 

together, myeloid-specific IL4Rα knockout significantly inactivates IL4Rα  
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Figure 2.1.  IL4Rα deficiency in myeloid cells efficiently inactivates IL4Rα 
signaling in macrophages and changes the macrophage markers expression 
in heart at steady state. (A) Bone marrow-derived macrophages (BMDMs) were 
produced from bone marrow of floxed control (FC) and myeloid-specific IL4Rα 
knockout (MyIL4RαKO) mice, and treated by M2 macrophage stimulus IL-4 or M1 
macrophage stimulus LPS. mRNA levels of IL4Rα, AAM/M2 markers: Arg1, Ym1 
and Fizz1 and CAM/M1 markers: TNFα, IL-1β, IL-6 and MCP1 were determined 
using qRT-PCR. (B) Baseline mRNA gene expression of AAM/M2 markers: Arg1, 
Ym1, Fizz1, F13A1 and CCL17 and CAM/M1 markers TNFα, IL-1β, MCP1, IL-6 and 
CCL11 was analyzed in intact hearts by qRT-PCR. Results are presented as means 
± SEM. n = 5-6. Two-way ANOVA and Student’s t test were used for statistical 
analysis. *P <0.05; **P <0.01; ***P <0.001; ****P < 0.0001.  



	 61 

signaling in macrophages, and induces less AAM/M2 macrophage polarization 

and more CAM/M1 macrophage polarization in vitro. 

In order to test whether the IL4Rα signaling in myeloid cells also changes 

macrophage polarization in vivo especially in resident macrophages in heart, we 

analyzed the basal expression of selected AAM/M2 markers (Arg1, Ym1, Fizz1, 

F13A1 and CCL17) in the hearts of MyIL4RαKO mice, then we measured the 

basal expression of CAM/M1 markers (TNFα, IL-1β, MCP1, IL-6 and CCL11) by 

qRT-PCR. The mRNA level of AAM/M2 markers Arg1, F13A1 and CCL17 was 

significantly decreased in MyIL4RαKO mice, although Ym1 and Fizz1 oppositely 

showed increase (Figure 2.1B). The mRNA level of CAM/M1 markers was 

consistently increased in MyIL4RαKO mice (Figure 2.1B). This basal level 

increase in CAM/M1 markers and the decrease in several AAM/M2 markers 

indicate the disturbance of macrophage polarization in vivo by IL4Rα deficiency 

in myeloid cells, with more CAM/M1 polarization and relatively less AAM/M2 

polarization, although the Ym1 and Fizz1 mRNA were increased in MyIL4RαKO 

mice, which may indicate not only macrophages, but also the other cell types 

contribute to the mRNA expression of Ym1 and Fizz1.  

Myeloid IL4Rα knockout has differential effects on infarct size and 
hypertrophy post-MI 

We subjected mice to experimental MI by left anterior descending 

coronary artery ligation and first determined the effect that MyIL4RαKO had on 

early infarct development at 2 days and 1 week after MI. For early infarct size 

estimation, area measurement based on 2,3,5-triphenyltetrazolium chloride 

staining was used, whereas for later time points, as a result of wall thinning, the 

area measurement approach becomes less appropriate that length measurement 

based on picrosirius red staining was used.37 Results showed that there was no 

difference in infarct size between MyIL4RαKO and FC mice at 2 days post-MI 

(Figure 2.2A and B). However, both area- and length-based measurement of 

infarct size displayed a significant decrease in MyIL4RαKO mice 1 week post-MI 

(Figure 2.2A and B), although there was no significant change detected at 3 

weeks post-MI (Figure 2.2B and C). Consistent with the decreased infarct size of  
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Figure 2.2. Myeloid IL4Rα knockout changes infarct size and thickness. (A) 
Representative images of serial 2,3,5-triphenyltetrazolium chloride (TTC) stained 
heart sections at 2 day and 1week post-MI. Infarct areas were outlined in white. (B) 
Measurement of infarct size. Area-based infarct size measurement of hearts at 2 
day (n = 5-6) and 1 week (n = 11-16) post-MI based on TTC staining and length-
based infarct measurement of hearts at 1 week (n = 5-8) and 3 week (n = 7-9) post-
MI based on picrosirius red (PSR) staining. (C) Representative images of serial PSR 
stained heart sections at 3 week post-MI, and their hematoxylin and eosin (H&E) 
counterstaining. (D) Representative photomicrographs of PSR stained heart 
sections showing infarct thickness at 3 week post-MI, and their counterstaining of 
H&E and infarct thickness determination based on PSR stained heart sections (n = 
9-11). Results are shown as means ± SEM. Unpaired Student’s t test was used for 
statistical analysis. *P <0.05; **P <0.01. 
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MyIL4RαKO mice at 1 week post-MI, infarct thickness was shown significant 

increase in MyIL4RαKO mice at 3 weeks post-MI compared to FC mice (Figure 

2.2D), suggesting that IL4Rα signaling in myeloid cells may have an important 

role in post-MI cardiac remodeling.   

Since immune cells can influence the hypertrophic response to cardiac 

injury, we next investigated whether myeloid IL4Rα inactivation altered cardiac 

hypertrophy post-MI. We detected significant increases in heart weight to body 

weight ratio (HW/BW) in FC mice at 2 days, 1 week and 3 weeks post-MI and a 

significant increase in heart weight to tibia length ratio (HW/TL) at 1 week post-MI 

when compared to mice with no MI (Figure 2.3A). A small decrease in HW/BW 

was shown in MyIL4RαKO mice at 1 week post-MI when compared to FC mice, 

however this difference was undetectable by 3 week (Figure 2.3A). Similarly, 

cardiomyocyte size was significantly increased due to MI, but no difference was 

detected between FC and MyIL4RαKO mice (Figure 2.3B). We also analyzed the 

expression of hypertrophy-induced fetal genes atrial natriuretic peptide  (ANP) 

and brain natriuretic peptide (BNP) in heart tissues by qRT-PCR. Although there 

was significant induction of ANP and BNP by MI, there was no difference 

detected between FC and MyIL4RαKO mice post-MI (Figure 2.3C). To be 

noticed, among mice with no MI, MyIL4RαKO showed significant increase in BNP 

expression compared with FC mice (Figure 2.3C), suggesting the difference 

between FC and MyIL4RαKO mice at basal level. Collectively, these data 

indicate that myeloid IL4Rα inactivation does not significantly alter the 

hypertrophic response post-MI.  

Myeloid IL4Rα signaling is involved in fibrosis post-MI 
IL-4 is thought to play an important role in fibrosis although whether 

effects are mediated through an AAM/M2-like macrophage phenotype in vivo has 

not been determined39-41. We, therefore, determined the effect of IL4Rα 

inactivation on fibrosis during the remodeling response post-MI. Cardiac 

interstitial fibrosis and perivascular fibrosis were examined using picrosirius red 

staining. The interstitial fibrosis did not show any change due to the lack of IL4Rα 

in myeloid cells whether in infarct zone, peri-infarct zone or remote zone (Figure  
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Figure 2.3. Myeloid-specific IL4Rα is not involved in hypertrophic cardiac 
remodeling. (A) Heart weight to body weight ratio (HW/BW) and heart weight to 
tibia length ratio (HW/TL) were measured at 2 day, 1 week and 3 week post-MI. 
Mice with no MI (NM) were served as controls. (FC, n = 8 and MyIL4RαKO, n = 13 
in no MI controls; FC, n = 6 and MyIL4RαKO, n = 4 at 2 day; FC, n = 49 and 
MyIL4RαKO, n = 42 at 1 week; FC, n = 18 and MyIL4RαKO, n = 22 at 3 week). (B) 
Representative images of H&E stained heart sections 3 week post-MI and the 
cardiomyocyte cross-sectional area in peri-infarct (PIZ) and remote zone (RZ) was 
determined. n = 9-12. (C) The mRNA expression of fetal genes ANP and BNP of 
heart tissues at 1 week and 3 week post-MI was analyzed by qRT-PCR at infarct 
zone (IZ), peri-infarct zone (PIZ) and remote zone (RZ) respectively.  Hearts from 
mice with no MI (NM) were dissected similarly into apical (Api), middle (Mid) and 
basal (Bas) regions and served as controls. n = 4-8. All results are shown as means 
± SEM. Unpaired Student’s t test was used for statistical analysis.  *P <0.05; **P 
<0.01; ***P <0.001; ****P < 0.0001. 
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2.4A). However, perivascular fibrosis in peri-infarct zone was significantly 

increased in MyIL4RαKO mice compared to FC (Figure 2.4B). In order to find out 

whether the change in perivascular fibrosis results in any change in angiogenesis 

after infarction, we investigated the expression of CD31 by 

immunohistochemistry in heart sections post-MI. CD31 showed significantly 

higher expression in remote zone than in infarct or peri-infarct zone (Figure 

2.4D), indicating the deteriorated vasculogenesis system in infarct and peri-

infarct zone. However, the expression of CD31 did not show any difference 

between FC and MyIL4RαKO mice (Figure 2.4D), which is consistent with the 

CD31 expression between IL4Rαflox/flox and IL4Rαflox/-LysMCre mice during wound 

healing after injury in skin41. These results suggest that the change in 

perivascular fibrosis does not affect angiogenesis post-MI. 

We next quantified the mRNA expression of fibrotic markers like collagen 

1A1 (Col1A1), collagen 3A1 (Col3A1) and procollagen-lysine 2-oxoglutarate 5-

dioxygenase 2 (Plod2) in heart tissues post-MI. These genes were all 

significantly increased as a result of MI (Figure 2.4C), and MyIL4RαKO mice 

displayed a significant decrease in Col1A1 and Plod2 mRNA level in infarcted 

tissues at 3 weeks post-MI when compared with FC (Figure 2.4C), which is 

consistent with the pro-fibrotic role of IL-4 signaling in myeloid cells39, although 

the increase of perivascular fibrosis in MyIL4RαKO mice is surprisingly the 

opposite. These suggest the possibility that without anti-inflammatory activity of 

IL-4 action in myeloid cells, there is increased perivascular pro-fibrotic effect from 

persistent inflammatory stimulation, and this may be unrelated to angiogenesis.  

Myeloid IL4Rα deficiency deteriorates cardiac function post-MI 
To determine if the changes in cardiac remodeling caused by IL4Rα 

knockout in myeloid cells result in functional deficits, we performed 

echocardiography on mice at 3 weeks post-MI to assess cardiac function (Figure 

2.5A). No differences were detected in baseline cardiac function in FC and 

MyIL4RaKO mice without MI (Figure 2.5B). When compared with mice with no 

MI, mice at 3 weeks post-MI had significantly reduced ejection fraction and 

fractional shortening (Figure 2.5B). More importantly, a significant decrease in  
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Figure 2.4. IL4Rα signaling in myeloid cells is involved in fibrotic cardiac 
remodeling post-MI. Representative images of picrosirius red stained heart 
sections at 3 week post-MI to show interstitial (A) and perivascular (B) fibrosis in 
hearts at 3 week post-MI, and their respective quantification. n = 7-9. (C) mRNA 
gene expression of fibrosis markers Col1A1, Col3A1, and Plod2 by qRT-PCR at 1 
week and 3 week post-MI.  Heart tissues were dissected into remote zone (RZ), 
peri-infarct zone (PIZ) and infarct zone (IZ), and hearts of mice with no MI (NM) 
were dissected similarly into basal (Bas), middle (Mid) and apical (Api) region. n = 6-
8. (D) Representative images of heart sections 3 week post-MI by CD31 staining 
and the quantification of the percentage of CD31 positive areas. n = 6-7. All results 
are shown as means ± SEM. Unpaired Student’s t test was used for statistical 
analysis. *P <0.05; **P <0.01; ***P <0.001; ****P < 0.0001.  
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Figure 2.5. Myeloid IL4Rα knockout impairs cardiac function after MI. Cardiac 
function was analyzed at 3 week post-MI by echocardiography. (A) Representative 
echocardiographic images of FC and MyIL4RαKO mice 3 week post-MI. (B) 
Quantitative evaluation of echocardiography data collected 3 week post-MI including 
ejection fraction (EF), fractional shortening (FS), left ventricle end diastolic volume 
(LVEDV), left ventricle end systolic volume (LVESV), left ventricular internal diameter 
diastole (LVIDd), and left ventricle internal diameter systole (LVIDs).  Mice that did 
not receive MI are labeled as NM (no MI) and served as controls. n = 4-5. Results 
are presented as means ± SEM. Unpaired Student’s t test was used for statistical 
analysis.  *P <0.05; **P <0.01; ***P <0.001. 
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ejection fraction and fractional shortening was detected in MyIL4RαKO mice 3 

weeks post-MI when compared to FC mice (Figure 2.5B). Similarly, MyIL4RαKO 

mice had significantly increased left ventricle end diastolic volume, left ventricle end 

systolic volume, left ventricular internal diameter diastole, and left ventricle internal 

diameter systole (Figure 2.5B), indicating that MyIL4RαKO mice have impaired 

cardiac function. In conclusion, these results suggest that IL4Rα signaling in 

myeloid cells is critical in cardiac remodeling that loss of this signaling impairs 

cardiac function.  

Myeloid IL4Rα inactivation does not change macrophage polarization post-
MI 

Although we found impaired cardiac function in MyIL4RαKO mice, the 

mechanism by which myeloid IL4Rα deficiency decreases cardiac function is still 

unknown. In order to test our hypothesis that IL4Rα signaling in myeloid cells 

changes macrophage polarization, we measured the mRNA expression of 

CAM/M1 and AAM/M2 markers in heart tissues post-MI. There was increased 

expression of both CAM/M1 markers and AAM/M2 markers at 1 week and 3 

weeks post-MI with highest levels found predominantly in the infarct zone (Figure 

2.6). However, no differences in CAM/M1 marker expression were detected 

between FC and MyIL4RαKO mice post-MI (Figure 2.6). Similarly, no difference 

was found in the expression of the AAM/M2 marker: Arg1, but increased 

expression of Ym1 was found in infarct tissues of MyIL4RαKO mice at 1 week, 

and increased expression of Fizz1 in both infarct and peri-infarct tissues at 1 

week and in infarct tissues at 3 weeks post-MI (Figure 2.6). Expectedly, the 

expression of CAM/M1 markers and AAM/M2 markers in heart tissues with no MI 

was consistent with the basal level expression (Figure 2.1B), which showed 

increase in CAM/M1 markers and decrease (Arg1) or increase (Ym1 and Fizz1) 

in AAM/M2 markers, indicating the disturbance of macrophage polarization in 

vivo by IL4Rα deficiency in myeloid cells with more CAM/M1 polarization at 

steady state. Collectively, these data suggest that IL4Rα deficiency in myeloid 

cells significantly changes macrophage polarization at steady state with increase 

of inflammation in heart; however, most of the changes disappear in  
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Figure 2.6. Gene expression analysis of pro-inflammatory CAM/M1 and anti-
inflammatory AAM/M2 markers in heart tissues post-MI. The mRNA level of anti-
inflammatory AAM/M2 markers: Arg1, Ym1 and Fizz1 and pro-inflammatory 
CAM/M1 markers: TNFα, IL-1β and MCP1 was measured at 1 week and 3 week 
post-MI in tissues from heart. Hearts post-MI were dissected into remote zone (RZ), 
peri-infarct zone (PIZ) and infarct zone (IZ) while mice with no MI (NM) were 
dissected similarly into basal (Bas), middle (Mid) and apical (Api) regions. n = 5-8. 
Results are presented as means ± SEM. Unpaired Student’s t test was used for 
statistical analysis.  *P <0.05; **P <0.01; ***P <0.001. 
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inflammatory state (post-MI).  

In order to further determine if myeloid-specific IL4Rα knockout changes 

macrophage polarization during MI, we used flow cytometry to characterize the 

macrophage subtypes defined by cell surface markers expression. At 1 week 

post-MI, there was a marked decrease in the percentage of CD301+CD206+ 

AAM/M2 macrophages in infarct tissues compared with non-infarct tissue or 

heart tissues with no MI, but no differences were detected as a result of myeloid 

IL4Rα inactivation (Figure 2.7A). This is supported by the results that neither the 

percentage of Ly6Chigh nor Ly6Clow monocytes showed any difference between 

FC and MyIL4RαKO mice (Figure 2.7B and C). The number of CD206+CD301+ 

AAM/M2 macrophages was significantly increased in infarct tissues (Figure 

2.7A), indicating the recruitment of AAM/M2 macrophages into the infarcts, 

however similarly, no difference was shown between MyIL4RαKO and FC mice, 

as well as the number of macrophages, neutrophils and Ly6Chigh and Ly6Clow 

monocytes (Figure 2.7B), which suggests that the inactivation of IL4Rα signaling 

in myeloid cells does not change the recruitment and trafficking of myeloid cells 

to infarct tissue, neither their polarization. This was further confirmed by the 

quantification of neutrophils and monocytes in blood of mice post-MI. The 

number of neutrophils and monocytes was significantly increased in blood 

because of MI (Figure 2.7D), indicating the circulation and trafficking of myeloid 

cells after MI, however the percentage or the number of neutrophils and 

monocytes in blood did not change as a result of IL4Rα knockout in myeloid cells 

(Figure 2.7D). We also performed immunofluorescent staining of heart sections 

to independently investigate the effect of IL4Rα knockout on macrophage 

polarization. F4/80 and CD206 were used to identify macrophage and AAM/M2 

macrophages respectively, and showed no changes due to IL4Rα deficiency in 

myeloid cells (Figure 2.8). These results again indicate that myeloid-specific 

IL4Rα inactivation does not change the polarization of AAM/M2 macrophages 

post-MI, although it did cause significant changes in cardiac remodeling and 

function.  
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Figure 2.7. Myeloid IL4Rα knockout does not alter myeloid cells recruitment or 
macrophage polarization. Flow cytometric analysis of macrophages, neutrophils 
and monocytes in intact hearts of control mice (NM, no MI), infarcted and non-
infarcted (including remote and peri-infarct) heart tissues of FC and MyIL4RαKO 
mice 1 week post-MI. Representative FACS contour plots of CD206+CD301+ M2-like 
macrophages gated from macrophages (A) and Ly6Chigh and Ly6Clow monocytes 
gated from total monocytes (C) and the quantification of their percentage and 
number per milligram of indicated tissues. (B) Total number of macrophages, 
neutrophils and Ly6Chigh and Ly6Clow monocytes per milligram of indicated tissues. 
n=5-7. (D) The percentage of neutrophils and monocytes in total CD45+ leukocytes 
in blood from mice 1 week post-MI, and the number of neutrophils and monocytes 
per 100 microliter of blood. n=5-7. Results are shown as means ± SEM. Unpaired 
Student’s t test and one-way ANOVA were used for statistical analysis. ***P <0.001.  
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Figure 2.8. Immunofluorescent analysis of F4/80+CD206+ M2-like macrophages 
in heart sections post-MI. (A) Representative immunofluorescent photos of remote 
zone (RZ), peri-infarct zone (PIZ) and infarct zone (IZ) of heart sections 3 wk post-
MI. F4/80+CD206+ macrophages were detected by co-localization of 
immunofluorescent signals from F4/80 and CD206 antibodies. (B) Quantification of 
F4/80+ macrophages and F4/80+CD206+ M2-like macrophage subpopulation. n = 5. 
Results are shown as means ± SEM. Unpaired Student’s t test was used for 
statistical analysis. **P <0.01. 
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Taken together, IL4Rα knockout in myeloid cells significantly changes 

macrophage polarization in vitro and changes macrophage polarization at steady 

state in heart with increase in inflammation. It impairs cardiac function post-MI by 

increasing the adverse cardiac remodeling, however, this is not caused by 

altering the M1/M2 macrophage polarization balance or myeloid cells recruitment 

post-MI, which suggests IL4Rα signaling in myeloid cells is very important in 

cardiac remodeling in inflammatory state, but through a more subtle mechanism 

rather than changing the number of polarized macrophages or myeloid cells 

trafficking.   

Discussion 
Adverse cardiac remodeling after MI is a major contributor to heart failure 

and is a significant cause of cardiovascular morbidity and mortality. Inflammation 

occurs rapidly after MI, and immune cells have important roles in post-MI cardiac 

remodeling. IL-4 is a major inducer of AAM/M2 macrophage polarization, and 

while IL-4 administration has been recently shown to be protective in post-MI 

cardiac remodeling, the target cell types have not been identified.  

In the present study, we investigated how myeloid IL4Rα changes cardiac 

remodeling and function post-MI by cell-type specific knockout of this receptor 

subunit. We found that myeloid-specific knockout of IL4Rα does not change 

cardiac hypertrophy or initial infarct size. It does alter remodeling leading to a 

smaller infarct at 1 week and by 3 weeks there is increased scar thickness. 

These results show that IL4Rα in myeloid cells is an important target for IL-4/IL-

13 and that its activity is required for normal infarct healing. In addition, IL4Rα 

knockout in myeloid cells increases perivascular fibrosis although it does not 

change interstitial fibrosis in the heart indicating a direct or indirect role in the 

peri-infarct area. All of these changes in cardiac remodeling result in decreased 

cardiac function, which suggests myeloid IL4Rα itself is protective in MI. 

Importantly, this is not a simple global change in AAM/M2 macrophages since 

the number or percentage of cells with AAM/M2 markers remains mostly 

unchanged. Despite the lack of global AAM/M2 changes, without IL4Rα signaling 

in myeloid cells there is impaired healing resulting in decreased cardiac function.  
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Cardiac hypertrophy occurs after MI,36, 42 showing as an increase in 

ventricle wall mass and cardiomyocyte size. Increases of HW/BW and HW/TL 

were detected in our data as a result of MI, but there was no difference between 

FC and MyIL4RαKO mice, indicating that IL4Rα knockout in myeloid cells does 

not affect cardiomyocyte growth. The only difference in HW/BW between FC and 

MyIL4RαKO mice was at 1 week post-MI, which showed decreased HW/BW in 

MyIL4RαKO mice, but the difference was not confirmed in HW/TL. Further, the 

expression of cardiac fetal genes associated with cardiac hypertrophy, did not 

show significant difference between FC and MyIL4RαKO mice. Fetal gene BNP 

mRNA level was higher in hearts from MyIL4RαKO mice, but the increase only 

was present in hearts without surgery and there were no differences in heart 

tissues post-MI. The expression of ANP mRNA did show increase at 3 weeks 

post-MI, but it was only in the area remote from the infarct. Overall these data do 

not support the involvement of myeloid IL4Rα in cardiomyocyte growth post-MI.  

Infarct size and infarct thickness correlate with the prognosis of MI.37 IL-4 

administration before MI was recently shown to reduce infarct size and increase 

infarct wall thickness.27 It was also found that the mice injected with IL-4 showed 

improved cardiac function post-MI. However, in our study, knockout of IL4Rα 

from myeloid cells caused abnormal remodeling and decreased infarct size 1 

week post-MI. By 3 week, the infarct size was comparable in knockout and wild 

type animals. The infarct thickness increased in MyIL4RαKO mice at 3 week, but 

was associated with decreased cardiac function in MyIL4RαKO mice. The 

change in infarct thickness may be similar to the impaired collagen fibril 

assembly seen in a wound-healing model.41 Since IL-4 administration also 

resulted in increased scar thickness and improved function, infarct thickness may 

not be a universal measure of improved healing. Potential explanations include 

that the increased thickness is due to altered remodeling that is not complete. 

Alternatively, the protective effect that resulted from IL-4 administration may not 

be through or only through myeloid cells, but also the involvement of the other 

cell types. It is possible that the changes in infarct size and infarct wall thickness 

are time point-dependent.  Importantly, the improved cardiac function after IL-4 
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administration in the literature27 is consistent with the decreased cardiac function 

in our MyIL4RαKO mice, which suggests that the protective effect of IL-4 

administration is significantly through IL4Rα signaling in myeloid cells.  

At the later stages of cardiac remodeling post-MI, inflammatory reactions 

are typically suppressed and reparative processes dominate. Fibroblasts 

proliferate and transdifferentiate into myofibroblasts, extracellular matrix 

deposition occurs in the injured area, and fibrosis is enhanced to form supportive 

tissue and scarring to maintain the structure and function of ventricles. Although 

the mRNA levels of Col1A1 and Plod2 were significantly decreased in the infarct 

tissues of MyIL4RαKO mice, the interstitial fibrosis based on picrosirius red 

staining did not show any difference whether in infarct area, peri-infarct area, or 

remote area. It was reported that administration of IL-4 increased both the 

number and the activation of fibroblasts after MI, which resulted in increased 

fibrosis27.  The differences between IL-4 treatment and our study using myeloid-

specific IL4Rα knockout may reflect other target cell types for IL-4 or that other 

effects may be due to IL-13, which is also a ligand for IL4Rα and has been 

shown to be involved in cardiac remodeling after MI.29  

It was previously found that IL-4 administration during MI increased the 

number of CD206+ macrophages (sometimes used to identify AAM/M2-like 

macrophages) post-MI27. We found no change in either the number or the 

percentage of CD206+ cells due to myeloid IL4Rα knockout. While this is not a 

full characterization of the macrophage phenotype, this staining is the almost 

universally used measure of M2 macrophages. This indicates two important 

points: first, that the presence of the CD206+ cells is not dependent on IL-4 

signaling effects in myeloid cells, and second, that global changes in 

macrophage polarization are not necessary for important effects of IL-4 and that 

IL-4 is not a required determinant of “M2” macrophage polarization. This points to 

inadequacy in this system of the M1-M2 paradigm as has recently been shown.15 

Although neither the number or the percentage of classically defined CD206+ 

AAM/M2 macrophages showed any significant differences in MyIL4RαKO mice, 

we did see significantly impaired responses in BMDMs and PEMs treated with IL-
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4, confirming that IL4Rα signaling in myeloid cells contributes to cardiac 

remodeling post-MI.  

We did not detect any large, consistent differences in pro- and anti-

inflammatory macrophage markers after MI, although we did find significant 

differences at baseline. In uninjured hearts, there was a clear pattern of 

increased pro-inflammatory markers and decreased anti-inflammatory markers in 

MyIL4RαKO mice. There were no differences in the pro-inflammatory markers in 

heart tissues post-MI, and the differences in anti-inflammatory markers varied 

depending on marker. The decrease in Arg1 mRNA disappeared in tissues post-

MI, while both Ym1 and Fizz1 mRNA increased in heart tissues both in steady 

state and post-MI although the increase of Ym1 only showed up at 1 week post-

MI. Part of the differences may be due to differential dependence of resident and 

recruited macrophages. This raises a very important question of different role of 

myeloid IL4Rα signaling in resident macrophages and circulating macrophages, 

but to clarify this question will require further investigation with experiments of 

linage tracing, which will be a promising direction of study in the future.  

Previous reports using MyIL4RαKO mice in other injury models did not 

specifically show a reduction in the number or percentage of AAM/M2 

macrophages, but they did find that the expression of the AAM/M2 marker 

CD206 was decreased in macrophages induced by pancreatitis or skin injury in 

MyIL4RαKO mice.39, 41 MyIL4RαKO mice in models of pancreatitis and skin injury 

showed decreased or perturbed collagen fibril formation that is different from 

ours, suggesting a model-dependent function of myeloid IL4Rα.39, 41 IL4Rα was 

also shown significantly decreased in neutrophils in MyIL4RαKO mice35, and IL-4 

signaling restricts neutrophil expansion in bone marrow and their migration from 

bone marrow to tissues43, which suggests the IL4Rα signaling-induced changes 

in neutrophils might contribute to the altered cardiac remodeling of MyIL4RαKO 

mice. Although we did not find any change in neutrophil recruitment and 

circulation, it worth further clarification of the contribution of IL4Rα signaling in 

neutrophils, either by isolating primary neutrophils in vitro or neutrophil-specific 

IL4Rα knockout in vivo by MRP8Cre. 
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In conclusion, myeloid IL4Rα is important for efficient cardiac remodeling 

and cardiac dysfunction after MI, indicating that it is likely an important target for 

IL-4-mediated protection during MI.  However, despite being necessary for IL-4 

induced AAM/M2 macrophage polarization in vitro, myeloid IL4Rα is not required 

for the polarization of CD206+ macrophages in vivo during MI. 
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CHAPTER III 
MYELOID INTERLEUKIN-4 RECEPTOR SIGNALING IS IMPORTANT FOR 
CARDIOVASCULAR REMODELING INDUCED BY ANGIOTENSIN II AND 

HIGH SALT  

 
Abstract 

Hypertension is the first leading risk factor for death from cardiovascular 

diseases. Hypertension-induced cardiovascular remodeling results in chronic 

low-grade inflammation, fibrosis and tissue stiffness, which lead to development 

and progression of cardiovascular diseases. Macrophages are the central 

participants in remodeling, and modulating the remodeling process by 

reprogramming macrophages is a potential strategy to prevent cardiovascular 

diseases.  

We investigated the role of myeloid IL4Rα in cardiac and vascular 

remodeling in angiotensin II (AngII) and high salt-induced hypertension. Myeloid-

specific knockout of IL4Rα (MyIL4RαKO) did not show any effect on hypertrophic 

remodeling in the cardiovascular system, but it increased the expression of 

reactive oxygen species (ROS) generation related genes. MyIL4RαKO also 

resulted in substantial decreases in cardiovascular fibrosis through systemic 

suppression of pro-fibrotic pathways including TGFβ and Gal3 signaling and 

enhancement of anti-fibrotic BMP9 signaling, which indicates an important role 

for myeloid IL4Rα signaling in cardiovascular remodeling. The pathophysiologic 

alterations in inflammation and fibrosis resulted in a relatively mild preservation of 

cardiac function in MyIL4RαKO mice while that of floxed control mice was 

significantly impaired by AngII and high salt. However, no change in macrophage 

polarization was shown in injured heart and aorta tissues. Neither the percentage 

or cell number of M2 macrophages was decreased by IL4Rα deficiency although 

IL-4 receptor signaling is very important in M2 macrophage activation. These 
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results suggest that the decreased fibrosis and functional preservation in 

MyIL4RαKO mice is not simply due to a change in macrophage polarization.  

In conclusion, myeloid IL4Rα signaling is significantly involved in 

cardiovascular remodeling induced by AngII and high salt, but it is not simply 

through blocking the M2 macrophage activation in vivo, suggesting a more 

complicated change in macrophages, which needs to be determined in the future.  

Introduction 
Hypertension is a major risk factor for cardiovascular disease1. Being the 

first-leading risk factor, hypertension contributes to 40.6% of total cardiovascular 

mortality2. Antihypertensive therapy has been shown to reduce the risk of death 

from cardiovascular disease, but only half of hypertensive patients using 

antihypertensive medication have controlled hypertension, and 25% of 

hypertensive patients do not take any type of antihypertensive medication3. 

Based on recent reports from preclinical research and clinical trials, none of the 

newly developed drugs or interventions have been successful in preventing 

cardiovascular disease outcomes or death in hypertensive patients4. Novel 

therapeutic targets need to be identified and target-based therapeutic strategies 

need to be developed to improve cardiovascular outcomes.  

Uncontrolled hypertension can exert deleterious effects on the 

cardiovascular system by adverse cardiovascular remodeling, which includes a 

complex spectrum of pathophysiological events including cardiovascular 

hypertrophy, inflammation and fibrosis. These remodeling events result in 

myocardial stiffening, vascular stiffness, oxidative stress, and long-term low-

grade systemic inflammation, which promote the pathological transition from 

hypertension to hypertensive cardiovascular diseases5. 

In response to hypertension, left ventricle and vasculature geometry 

undergoes structural remodeling, which is a pro-inflammatory and pro-fibrotic 

process that leads to adverse accumulation of collagen. Collagen deposition in 

extracellular matrix gives rise to interstitial fibrosis, which initially reduces 

myocardial compliance without cardiomyocyte loss, and clinically displays as 

heart failure with preserved ejection fraction6. As advanced hypertension 
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progresses, cardiomyocytes undergo pathological hypertrophy and 

cardiomyocyte loss occurs.  This results in irreversible replacement by fibrosis 

and collectively leads to impairment of cardiac systolic function and clinically 

manifests as heart failure with reduced ejection fraction7-9. Shear stress and low-

grade systemic inflammation during hypertension also cause endothelial damage 

and results in perivascular fibrosis with substantial collagen accumulation in the 

adventitia of intramural arteries. This leads to a reduction in vascular compliance 

and changes in permeability10. Low-grade systemic inflammation also elicits 

structural and functional alterations in the microvasculature, which cause 

microvasculature remodeling and rarefaction10.  

In addition to structural remodeling, hypertension also induces 

cardiovascular consequences via neurohumoral activation – renin-angiotensin-

aldosterone system (RAAS). RAAS functions to maintain blood pressure 

homeostasis, however stimulating RAAS exerts detrimental consequences such 

as high blood pressure, adverse cardiovascular remodeling and increase of 

cardiovascular morbidity and mortality11, 12. Angiotensin II (AngII) is a crucial 

component in the system and is commonly used in experimental models of 

hypertension or hypertensive cardiovascular diseases13, 14.  

Macrophages are one of the central cell types that mediate cardiovascular 

remodeling induced by hypertension. Macrophages accumulate and infiltrate into 

injured tissues through two distinct mechanisms: recruitment of monocyte 

precursors from circulation and proliferation of resident macrophages. Selective 

ablation of monocyte/macrophage and neutrophil using inducible diphtheria toxin 

receptor driven by lysozyme M (LysM) resulted in blunted oxidative stress, 

reduced arterial hypertension and attenuated vascular dysfunction induced by 

AngII, in contrast, adoptive transfer of monocytes but not neutrophils restored the 

adverse effects suggesting an essential role of monocytes/macrophages in 

AngII-induced hypertension15.  

There is a wide spectrum of macrophage phenotypes with two main 

extremes: classically activated macrophage (CAM/M1) and alternatively activated 

macrophage (AAM/M2). M1 macrophages are characterized by the production of 
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reactive oxygen species (ROS), reactive nitrogen species (RNS) and pro-

inflammatory cytokines including tumor necrosis factor α (TNFα), interleukin-1β 

(IL-1β) and interleukin-6 (IL-6), and are considered to play a crucial role in 

inflammation and tissue damage16. M2 macrophages are defined as 

macrophages stimulated by Th2 cytokines such as interleukin-4 (IL-4) and 

interleukin-13 (IL-13) in vitro. They are characterized by expression of mannose 

receptor C type 1 (MRC1/CD206), arginase 1 (Arg1), and resistin-like molecule α 

that also named found in inflammatory zone (Relmα/Fizz1), and are significantly 

involved in would healing and fibrosis17-22. Although distinct, both populations 

contribute to the initiation and progression of cardiovascular diseases23-25. 

IL-4 and IL-13 function by binding to IL-4 receptor (IL4R), so IL4R 

signaling plays a very important role in cardiovascular remodeling potentially 

through its control of macrophage polarization. IL4R includes type I and type II 

IL4R: type I IL4R consists of IL-4 receptor α (IL4Rα) chain and common γ chain 

(γc), while type II IL4R consists of IL4Rα and IL-13 receptor α1 (IL13Rα1) 

subunits, highlighting the importance of IL4Rα subunit that is required by both 

type I and type II IL4R. IL-4 can signal through both receptors, while IL-13 can 

only signal through type II IL4R. IL4Rα-/- mice and IL-4/IL-13 double knockout 

mice showed significantly decreased fibrosis in chronic pancreatitis, indicating 

the critical role of IL4R signaling in fibrosis26. In AngII-induced hypertension,      

IL-4-/- mice exhibited significantly reduced interstitial myocardial fibrosis and 

protected left ventricle chamber dilatation27. A pro-fibrotic role for IL-4 signaling in 

cardiac remodeling is further supported by data showing that inhibition of IL-4 

with neutralizing antibodies significantly reduces cardiac fibrosis during 

transverse aortic constriction28.  

Alternative macrophage activation through IL4Rα signaling has been 

proposed as a mechanism by which IL-4 and/or IL-13 mediate tissue fibrosis17, 22, 

29, 30, and M2-like macrophages have been hypothesized as regulators of 

fibrosis29, 31. Mice lacking myeloid (monocyte/macrophage and neutrophil)-

specific IL4Rα (LysMcreIL4Rαflox/flox) were less susceptible to pancreatic fibrosis, 

and compared with wild type mice, IL4Rα-/- and LysMcreIL4Rαflox/flox mice 
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displayed similar decrease in fibrosis, which suggests the principal role of 

myeloid or probably macrophage IL4Rα in pro-fibrotic remodeling26. Moreover, 

pancreatic macrophages from both IL4Rα-/- and LysMcreIL4Rαflox/flox mice showed 

comparable and significantly decreased expression of the M2 macrophage 

marker CD206, implicating that IL4Rα deletion in myeloid cells reduces fibrosis 

likely by limiting M2 macrophage activation and polarization26. Work by the 

Sabine laboratory also showed attenuated alternative macrophage activation in 

LysMCreIL4Rαflox/- BALB/c mice in skin wound healing, and they demonstrated 

that the M2 macrophage marker Relmα (Fizz1) is critical for collagen fibril 

assembly, which further suggests an important role of myeloid-specific IL4Rα 

signaling and M2-like macrophages in adverse pro-fibrotic remodeling32.  

In addition to pro-fibrotic remodeling, IL4R signaling and IL4R signaling-

medicated M2 macrophage activation are also importantly involved in 

inflammation, although their role in inflammation in vivo is ambiguous. Both IL-4 

and IL-13 were up-regulated in hypoxic pulmonary hypertension, as well as early 

recruitment of alveolar macrophages characterize by M2 macrophage markers 

Arg1, Fizz1, chitinase-3-like protein 3 (Ym1) and CD206, all of which contributed 

to the development of pulmonary hypertension33. Schistosoma mansoni infected 

LysMCreIL4Rαflox/- mice showed massive inflammatory cell infiltration in intestine, 

associated with enhanced production of the type 1 cytokine interferon γ (IFNγ) in 

gut, supporting the anti-inflammatory role of myeloid IL4Rα signaling34. 

Furthermore, it was demonstrated that macrophages but not neutrophils 

stimulated by IL-4/IL-13 are essential for the survival in acute schistosomiasis, 

and LysMCreIL4Rαflox/- mice showed impaired M2 macrophage activation with 

reduced CD206 levels. This indicates that IL4R signaling-mediated M2 

macrophage activation protects against schistosomiasis by down-regulation of 

inflammation34. 

In this study, we generated myeloid (macrophage/monocyte and 

neutrophil)-specific IL4Rα knockout (MyIL4RαKO) mice, and then subjected them 

to AngII and high salt-induced hypertension to investigate the role of myeloid-

specific IL4Rα signaling in hypertensive injury-induced cardiovascular remodeling. 
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We hypothesized that IL4Rα signaling in myeloid cells promotes fibrosis but 

inhibits inflammation in cardiovascular remodeling by regulating M2 macrophage 

activation and polarization; therefore blocking IL4Rα signaling in myeloid cells 

may reduce cardiovascular fibrosis but enhance systemic inflammation and 

eventually result in cardiac function alterations. In order to test this hypothesis, 

we determined the hypertrophy, fibrosis, expression of inflammatory cytokines 

and ROS generation-related genes in heart and vessel (aorta), as well as cardiac 

function in hypertensive MyIL4RαKO mice to detect the effect of myeloid IL4Rα 

deficiency on cardiovascular remodeling. In addition, we performed flow 

cytometry analysis to examine macrophage polarization in injured tissues and the 

migration and recruitment of myeloid cells in order to determine of myeloid IL4Rα 

knockout induces phenotypic and functional changes in myeloid cells during 

cardiovascular remodeling.   

Materials and Methods 
Animals 

IL4Rαflox/flox mice were previously generated on a BALB/c background34. 

IL4Rαflox/flox mice were then backcrossed to a C57BL/6 background for at least 10 

generations, and further mated with LysM-Cre C57BL/6 mice (The Jackson 

Laboratory) to generate myeloid (macrophage and neutrophil)-specific IL4Rα 

knockout (MyIL4RαKO) mice. Male MyIL4RαKO (IL4Rαflox/flox; LyzMCre) mice at 

the age of 10-12 weeks were used for experiments, and their littermate floxed 

control mice (IL4Rαflox/flox, referred to as FC) were used as wild type equivalents. 

Animals of each genotype were randomly assigned to treatment (hypertension) 

and sham groups. Hypertension was induced by subcutaneously implanting 

micro-osmotic pump (Alzet, Cupertino, CA, Model 1002) into each mouse to 

infuse angiotensin II (AngII, Sigma-Aldrich, St. Louis, MO, at. A9525) at a dose of 

1.5mg/kg/day, and by feeding 4% NaCl high salt diet (Envigo, Cat. TD.03095) for 

4 weeks. The pumps were implanted twice as they only last for 2 weeks. The 

mice in sham group were also subcutaneously implanted the pumps twice but 

with saline (0.9% NaCl) and were fed with regular chow. At the end of 

experiments, mice were euthanized by isoflurane. In brief, mice were first 
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induced anesthesia by 3-4% isoflurane, once anesthesia was achieved, the 

isoflurane was increased to 5% to induce death. Mice were remained in the 

chamber for extra 3 minutes after no breath could be noticed. Afterwards 

euthanasia was further confirmed by exsanguination. All animal procedures were 

performed in accordance with the Guide for the Care and Use of Laboratory 

Animals (8th Edition) and were approved by the Institutional Animal Care and Use 

Committee of the University of Michigan.  

Histological Analysis   
After euthanization, hearts and aortas were collected from mice following 

perfusion with PBS. The collected tissues were fixed in 4% paraformaldehyde for 

48 hours, and then processed and embedded in paraffin for histological analysis. 

Tissue blocks were cut transversely and sections (5 µm thick) were subjected to 

hematoxylin and eosin (H&E) staining. In order to measure myocyte cross-

sectional area (CSA), pictures were taken of all regions through the H&E stained 

sections using a Zeiss Axio Imager 2 microscope (Carl Zeiss, Jena, Germany). 

Myocytes with similar-sized nuclei and intact cellular membranes were outlined 

by a blinded observer, and myocyte CSA was calculated using ImageJ 1.45s 

software. The average myocyte CSA was calculated from approximately 200 

myocytes per heart. To determine wall thickness and medial area of aorta, digital 

images of H&E stained aorta cross sections were also obtained from the Zeiss 

Axio Imager 2 microscope. Similar to what was shown before35, perpendicular 

lines were drawn from internal elastic lamina to the external lamina at a minimum 

of ten locations of the aorta section to measure the distance, and average 

distance was calculated as wall thickness of aorta. For medial area of aorta, the 

internal and external perimeters of elastic laminas were traced and the area 

between those two perimeters was quantified and reported as the aortic medial 

wall area. All measurements were performed using ImageJ 1.45s software.  

Fibrosis Evaluation  

Hearts, aortas and kidneys were harvested from euthanized mice after 

perfusion, and fixed in 4% paraformaldehyde for 48 hours, and then processed 

and embedded in paraffin to make tissue blocks. Tissue sections (5 µm thick) 
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were then transversely cut from the blocks and subjected to picrosirius red (PSR) 

staining for further fibrosis determination. To quantify fibrosis, pictures were 

taken of all regions through each section using a Zeiss Axio Imager 2 microscope 

(Carl Zeiss, Jena, Germany). For fibrosis in heart sections, cardiac interstitial 

fibrosis and cardiac perivascular fibrosis were measured separately. To measure 

interstitial fibrosis, the red-stained interstitial area (fibrotic area) and the area of 

cardiomyocytes were traced respectively and quantified using ImageJ 1.45s, and 

the percentage of fibrotic area was calculated as: area of fibrosis/(area of 

cardiomyocytes + area of fibrosis) x 100%36. To measure cardiac perivascular 

fibrosis, all vessels across the section were traced and the area that was 

positively stained and immediately surrounding the intramyocardial vessel was 

considered perivascular fibrotic area, and perivascular fibrosis was calculated as 

the ratio between perivascular fibrotic area and luminal media area37. Fibrosis in 

aorta was expressed as the ratio between the red-stained collagen area in aorta 

and the total area of aorta including tunica intima, tunica media and tunica 

adventitia. For kidneys, glomerular, tubulointerstitial and perivascular fibrosis 

were analyzed respectively. All glomeruli (matrix, cells, capillary loops and space 

surrounding glomerular segments) across the kidney section were included, and 

glomerular fibrosis was calculated as: PSR positively stained area/ glomerular 

area x 100%38, while the tubunointerstitial fibrosis was expressed as the ratio 

between PSR positively stained area and total area. In order to determine the 

perivascular fibrosis in kidney, all intraparenchimal vessels with a diameter of ≤ 

100um across the section were taken into account, and the fibrosis was 

calculated as: collagen area surrounding the vessel/ luminal media area x 100%.  

Gene Expression Analysis 
Relative mRNA expression was determined using quantitative reverse 

transcription–polymerase chain reaction (qRT-PCR). Total RNA was extracted 

using TRIzol reagent and RNA (1 µg) was reverse transcribed to cDNA with a 

High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems). 

Quantitative polymerase chain reaction (qPCR) was performed using a 7900HT 

fast real-time PCR system (Applied Biosystems) and relative mRNA expression 
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was analyzed using the comparative method and normalized to the internal 

control L32.  All qPCR primers are listed in Table 3.1.  

 
Table 3.1. Sequences of primers used in chapter III. The primers were 
synthesized by Integrated DNA Technologies. L32, 60S ribosomal protein L32, 
was used as internal control. 
 
Echocardiography 

Mice were anesthetized with isoflurane, and echocardiography was 

performed using a Vevo 2100 Micro-Imaging System (VisualSonics Inc.) with a 

18-38-MHz linear array ultrasound transducer. LV ejection fraction was 

determined by the two-dimensional long axis view.  Ejection fraction and 

fractional shortening were calculated based on the M-mode parasternal short 

axis view. Systolic and diastolic dimensions and the LV wall thickness were 

determined by M-mode in the parasternal short axis view at the level of the 

papillary muscles. Diastolic function was measured by conventional pulsed-wave 

Gene  Forward Reverse 
ANP GCTTCCAGGCCATATTGGAG GGGGGCATGACCTCATCTT 
Arg1 ACCTGGCCTTTGTTGATGTCCCTA  AGAGATGCTTCCAACTGCCAGACT  
BMP9 CAGAACTGGGAACAAGCATCC GCCGCTGAGGTTTAGGCTG 
BNP ATGGATCTCCTGAAGGTGCTG GTGCTGCCTTGAGACCGAA  
Col1A1 GCTCCTCTTAGGGGCCACT  CCACGTCTCACCATTGGGG  
Col3A1 CCTGGCTCAAATGGCTCAC  CAGGACTGCCGTTATTCCCG  
Fizz1 ACTGCCTGTGCTTACTCGTTGACT AAAGCTGGGTTCTCCACCTCTTCA  
Gal3 GGAGAGGGAATGATGTTGCCT TCCTGCTTCGTGTTACACACA 
IL-6 GAGGATACCACTCCCAACAGACC AAGTGCATCATCGTTGTTCATACA 
IL-1β AAGAGCTTCAGGCAGGCAGTATCA  TGCAGCTGTCTAATGGGAACGTCA  
L32       TTAAGCGAAACTGGCGGAAAC TTGTTGCTCCCATAACCGATG 
MMP2 CAAGTTCCCCGGCGATGTC TTCTGGTCAAGGTCACCTGTC 
MMP8 TCTTCCTCCACACACAGCTTG CTGCAACCATCGTGGCATTC 
MMP9 GGACCCGAAGCGGACATTG CGTCGTCGAAATGGGCATCT   
MMP12 AATGCTGCAGCCCCAAGGAAT CTGGGCAACTGGACAACTCAACTC 
MMP13 CTTCTTCTTGTTGAGCTGGACTC CTGTGGAGGTCACTGTAGACT 
Nox1 GGTGGTCACGGAGTTAAAAACA TCGGCATCCATTGGGGTCT 
Nox4 ACTTTTCATTGGGCGTCCTC AGAACTGGGTCCACAGCAGA 
p22phox TGCCAGTGTGATCTATCTGCT TCGGCTTCTTTCGGACCTCT 
p47phox ACACCTTCATTCGCCATATTGC TCGGTGAATTTTCTGTAGACCAC 
PAI-1 GCTTGGCAACCCACGTTAAAGGAA    ACAGCAGCCGGAAATGACACATTG    
PDGFα GAGGAAGCCGAGATACCCC  TGCTGTGGATCTGACTTCGAG 
TGFβ1 CTCCCGTGGCTTCTAGTGC GCCTTAGTTTGGACAGGATCTG 
TIMP1 CCTAGAGACACACCAGAGCA TACCGGATATCTGCGGCATT 
TIMP2 GGCAACCCCATCAAGAGGA CCTTCTGCCTTTCCTGCAATTAG 
Timp3 CTTCTGCAACTCCGACATCGT  GGGGCATCTTACTGAAGCCTC  
TNFα CCCTCACACTCAGATCATCTTCT  GCTACGACGTGGGCTACAG  
Ym1 CACCATGGCCAAGCTCATTCTTGT  TATTGGCCTGTCCTTAGCCCAACT  
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spectral Doppler analysis of mitral valve inflow patterns. The early diastolic tissue 

velocities of the septal and lateral annuluses of the mitral valve were measured 

by Doppler tissue imaging with the apical 4-chamber view.  

Flow Cytometric Analysis 
Preparation of single cell suspensions: after euthanization, whole blood 

was collected in a heparinized blood collection tube (BD Vacutainer, Ref 

367871), and then 100ul blood was subjected to red blood cell (RBC) lysis with 

the diluted 1X RBC lysis buffer (Biolegend, Cat 420301). After the RBC lysis, 

peripheral blood single cell suspension was ready for further procedures. Organs 

including spleen, heart and aorta39 were harvested from the euthanized mice 

after perfusion via left ventricle by 5ml of 2mM EDTA buffer and 2x10ml PBS. 

Single cell suspension from spleen was obtained by trituation followed by RBC 

lysis. Single cell suspensions from heart and aorta were achieved by mincing 

hearts and aortas into small pieces followed by digestion with a cocktail of 450 

U/ml collagenase I (Worthington, Lakewood, NJ), 125 U/ml collagenase XI 

(Worthington, Lakewood, NJ), 60 U/ml DNase I and 60 U/ml hyaluronidase 

(Worthington, Lakewood, NJ) for 1 h at 37°C while agitating. The number of total 

viable cells was counted using Trypan Blue (Gibco, Ref 15250-061).  

Cells were then blocked by incubating with anti-CD16/32 (Biolegend, San 

Diego, CA, Cat. 101302) for 5 min on ice. Antibodies including: anti-CD45-

PerCP/Cy5.5 (Biolegend, San Diego, CA, Cat 103131), anti-CD45-PE/Cy7 

(Biolegend, San Diego, CA, Cat 103113), anti-CD45-Pacific Blue™ (Biolegend, 

San Diego, CA, Cat 103126), anti-CD3-APC (Biolegend, San Diego, CA, Cat 

100236), anti-CD11b-Brilliant Violet 605TM (Biolegend, San Diego, CA, Cat 

101257), anti-Ly6G-FITC (Biolegend, San Diego, CA, Cat 127606), anti-Ly6C-

PerCP/Cy5.5 (Biolegend, San Diego, CA, Cat 128011), anti-F4/80-PE 

(Biolegend, San Diego, CA, Cat 123110), anti-CD206-Alexa Fluor® 488 

(Biolegend, San Diego, CA, Cat 141710), anti-TNFα-PE/DazzleTM 594 

(Biolegend, San Diego, CA, Cat 506345) were used for flow cytometric analysis 

in this study. T cells were identified as CD45+CD3+CD11b-Ly6G- Ly6C- in blood 

and spleen, and were identified as CD45+CD3+CD11b-Ly6G- F4/80- in heart and 
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aorta. Neutrophils were identified as CD45+CD3-CD11b+Ly6G+Ly6C- in blood and 

spleen, and CD45+CD3-CD11b+Ly6G+F4/80- in heart and aorta. Monocytes were 

identified as CD45+CD3-CD11b+Ly6G- Ly6C+, and within the monocyte 

population, monocytes were further divided into Ly6Chigh and Ly6Clow monocytes 

based on the expression of Ly6C. Macrophages were identified as CD45+CD3-

CD11b+Ly6G-F4/80+, and within the macrophage population, macrophages were 

further divided into M1-like macrophages (CD206-TNFα+) and M2-like 

macrophages (CD206+TNFα-). Cells were incubated with indicated antibodies on 

ice (light protected) for 30 min without permeabilization except anti-TNFα-

PE/DazzleTM 594. Until after fixation and permeabilization (eBioscience, Cat 88-

8824), cells were incubation with anti-TNFα-PE/DazzleTM 594 for 30 min on ice. 

Flow cytometry was performed using a BD LSRFortessa™ flow cytometer (BD 

Biosciences) and data were analyzed using FlowJo V10.1 software. For 

calculation of total cell numbers in heart and aorta, normalization to weight of 

indicated tissues was performed. The total cell number of each population was 

calculated by multiplying the total cell number by the percentage of each cell 

population within the gate.  

Statistical analysis 
Results are presented as mean ± SEM. For statistical analysis, one-way 

ANOVA, and unpaired, two-tailed Student’s t test were used. All statistical 

analysis of data was performed in GraphPad Prism (version 6; GraphPad 

Software, Inc). P < 0.05 was considered significant.  

Results 

Myeloid IL4Rα signaling has no impact on cardiovascular hypertrophy 
AngII infusion and high salt diet has been used as an experimental model 

for hypertension40, 41, so we exposed myeloid-specific IL4Rα knockout 

(MyIL4RαKO, LysMCreIL4Rαflox/flox) mice and the floxed control mice (FC, 

IL4Rαflox/flox) to AngII and high salt to induce hypertensive cardiovascular injury. 

As shown in Figure. 3.1A, the systolic blood pressure of both FC and 

MyIL4RαKO mice were significantly increased in response to AngII and high salt, 

although there was no significant difference between FC and MyIL4RαKO mice, 
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Figure 3.1. Myeloid-specific IL4Rα knockout does has no effect on 
cardiovascular hypertrophy. (A) The systolic blood pressure of sham mice and 
mice subjected to AngII and high salt (n=5-6) was determined. The heart weight to 
body weight ratio (HW/BW, n=20-24) and heart weight to tibia length ratio (HW/TL, 
n=17-25), and the cardiomyocyte cross-sectional area were measured to determine 
the cardiac hypertrophy of sham mice and mice after AngII and high salt treatment. 
Representative images of hematoxylin and eosin (H&E) stained heart sections to 
show the size of cardiomyocytes (n=7-9). The mRNA level of fetal genes ANP and 
BNP in hearts of sham and AngII and high salt-treated mice was determined by 
qRT-PCR (n=5-9). (B) Representative pictures of H&E stained aorta sections, and 
the wall thickness and medial area of aorta were measured to determine the aortic 
hypertrophy (n=5-9). Results are shown as means ± SEM. Unpaired student’s t test 
and one-way ANOVA were used for statistical analysis. **P <0.01; ***P <0.001; ****P 
< 0.0001.  
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which suggests that myeloid IL4Rα does not control blood pressure.  

As hypertrophy is one of the most important events in cardiovascular 

remodeling induced by hypertension, we determined both cardiac and vascular 

hypertrophy. Heart weight to body weight ratio (HW/BW) and heart weight to tibia 

length ratio (HW/TL), and the size of cardiomyocytes were measured. HW/BW, 

HW/TL (Figure. 3.1A), and cardiomyocyte size shown as myocyte cross-sectional 

area (Figure. 3.1A) were significantly increased in mice exposed to AngII and 

high salt, however no difference was shown between FC and MyIL4RaKO mice, 

which suggests that myeloid IL4Rα signaling is not involved in hypertrophic 

cardiac remodeling. This is further supported by the expression of hypertrophy-

induced fetal genes atrial natriuretic peptide  (ANP) and brain natriuretic peptide 

(BNP) expression at mRNA level, which exhibited significant increase after AngII 

and high salt, but no difference between hypertensive FC and MyIL4RaKO mice 

(Figure. 3.1B). Of note, the expression of BNP mRNA was significantly increased 

in heart of sham MyIL4RαKO mice (Figure. 3.1B), and this is consistent with what 

was found in the acute myocardial infarction model showing higher basal level 

BNP mRNA in sham MyIL4RαKO mice (Figure. 2.3C).  

Vascular hypertrophy was analyzed by measuring the wall thickness and 

medial area of aorta. Compared with the sham mice, mice treated by AngII and 

high salt displayed significant increase in aortic wall thickness and aortic medial 

area (Figure. 3.1B), but similar to the cardiac hypertrophy, there was no obvious 

difference between FC and MyIL4RαKO mice, indicating the comparable 

hypertrophic remodeling in aorta. Taken together, all results above indicate that 

AngII and high salt can successfully induce hypertension, cardiac hypertrophy 

and vascular hypertrophy, however IL4Rα signaling in myeloid cells does not 

contribute to either blood pressure or hypertrophic cardiovascular remodeling.  

Myeloid IL4Rα signaling contributes to pro-fibrotic remodeling  
IL-4 signaling has been shown to promote fibrosis26, 32, so we 

hypothesized that knockout of IL4Rα in myeloid cells suppresses cardiovascular 

fibrotic remodeling induced by AngII and high salt. To test this hypothesis, we 

analyzed the fibrosis in heart and aorta by picrosirius red staining, and quantified 
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the percentage of fibrotic areas. As shown in Figure. 3.2A, fibrosis was 

distinctively induced in aorta of hypertensive mice, and more importantly, 

hypertensive MyIL4RαKO mice showed significantly less fibrosis than 

hypertensive FC mice. As well as aorta, both cardiac interstitial and perivascular 

fibrosis were substantially induced by AngII and high salt, and compared with FC 

mice, the interstitial and perivascular fibrosis in heart of MyIL4RαKO mice were 

considerably decreased (Figure. 3.2B). The interstitial fibrosis in heart of 

MyIL4RαKO mice was only half of that in FC mice (Figure. 3.2B). These results 

strongly indicate that IL4Rα signaling in myeloid cells contributes to pro-fibrotic 

cardiovascular remodeling induced by hypertension.  

Prolonged hypertension also causes end organ damage in kidney42-46, 

which is associated with progressive fibrosis, so we also determined the fibrosis 

in kidney based on picrosirius red staining. The glomerular, tubulointerstitial and 

perivascular fibrotic areas were traced separately and the percentage of fibrotic 

areas in each region was calculated. AngII and high salt induced considerably 

increase in glomerular, tubulointerstitial and perivascular fibrosis, and the fibrosis 

in all three regions was significantly decreased when IL4Rα was ablated in 

myeloid cells (Figure. 3.3). The tubulointerstitial fibrosis in kidney of MyIL4RαKO 

mice was even comparable to the basal level (Figure. 3.3).  

In conclusion, these results suggest that myeloid IL4Rα signaling critically 

contributes to a systemic pro-fibrotic remodeling in a variety of organs after 

hypertensive injury, and blocking IL4Rα signaling in myeloid cells can protect 

heart and vasculature from adverse fibrotic remodeling and ameliorate kidney 

damage.  

Signaling pathways mediating the decreased fibrosis in MyIL4RαKO mice 
Accumulation of collagen in extracellular matrix (ECM), and ECM 

degradation by matrix metalloproteinases (MMPs) regulate the fibrotic 

cardiovascular remodeling 47, 48. Increase of collagen synthesis, decrease in the 
activity of MMPs but increase of tissue inhibitors of metalloproteinases (TIMPs) 

result in the accumulation of collagen. In order to investigate whether the fibrosis  



	 96 

           	
Figure 3.2. IL4Rα deficiency in myeloid cells decreases fibrosis in aorta and 
heart. (A) Representative images of picrosirius red stained aorta sections to show 
the fibrosis (red) in aorta, and the percentage of fibrotic areas in the whole section 
was quantified in sham and AngII and high salt-induced hypertensive mice (n=9-14). 
(B) Representative pictures of picrosirius red stained interstitial and perivascular 
region of heart to display the cardiac interstitial and perivascular fibrosis (red) 
induced by AngII and high salt, and the quantification of interstitial and perivascular 
fibrosis in heart. Sham mice: n=6; AngII and high salt-treated mice: n=17. Results 
are shown as means ± SEM. Unpaired student’s t test and one-way ANOVA were 
used for statistical analysis. *P <0.05; **P <0.01; ***P <0.001; ****P < 0.0001.  
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Figure 3.3. IL4Rα deficiency in myeloid cells decreases fibrosis in kidney. 
Representative images of glomerular, tubulointerstitial and perivascular region of 
picrosirius red stained kidney after exposure to AngII and high salt and the 
quantification of glomerular, tubulointerstitial and perivascular fibrosis in kidney 
based on the picrosirius red staining in kidney. Sham mice: n=5-6; AngII and high 
salt-treated mice: n=13-14. Results are shown as means ± SEM. Unpaired student’s 
t test and one-way ANOVA were used for statistical analysis. *P <0.05; **P <0.01; 
***P <0.001; ****P < 0.0001.  
  



	 98 

reduction in MyIL4RαKO mice attribute to the expression changes of collagens, 

MMPs and TIMPs, we determined the mRNA level of collagen 1A1 (Col1A1), 

collagen 3A1 (Col3A1), MMP2, MMP8, MMP9, MMP12, MMP13, TIMP1, TIMP2 

and TIMP3 by qRT-PCR.  

In heart tissues, both Col1A1 and Col3A1 were significantly up-regulated 

by AngII and high salt, but only Col3A1 mRNA showed significant decrease as a 

result of IL4Rα deficiency in myeloid cells (Figure. 3.4). The expression of MMPs 

varies, MMP2 showed significant increase after exposing to AngII and high salt, 

while MMP9 and MMP13 exhibited significant decrease, and no change was 

noticed in MMP8 and MMP12 (Figure. 3.4). No significant differences were 

shown between FC and MyIL4RαKO mice in the expression of MMPs except 

MMP13 with dramatic increase in MyIL4RαKO mice (Figure. 3.4). The mRNA 

level of TIMP1 was up-regulated by AngII and high salt, but not TIMP2 and 

TIMP3, and there was no change induced by the knockout of myeloid IL4Rα 

(Figure. 3.4). Taken together, the decreased fibrosis in heart of MyIL4RαKO mice 

attributes at least partially to the decreased expression of Col3A1 and increase in 

MMP13.  

Regarding the signaling pathways through which AngII and high salt 

induces fibrosis, both TGFβ-dependent and -independent signaling are 

involved49. PDGFα is one of the downstream mediators in TGFβ signaling 

pathway to promote fibrosis50, 51, as well as plasminogen activator inhibitor-1 

(PAI-1, or serpin E1)52, which is a serine protease inhibitor (serpin) that functions 

as the principal inhibitor of tissue-type plasminogen activator (t-PA) and 

urokinase-type plasminogen activator (u-PA), the activators of plasminogen and 

hence fibrin degradation52, 53. AngII/galectin3 (Gal3)/IL-6 axis is one of the TGFβ-

independent signaling pathways that facilitate fibrosis in cardiovascular 

remodeling54, 55. Genetically ablate IL-6 or Gal3, or pharmacologically neutralize 

IL-6 or block Gal3 reduces hypertension-related fibrosis13, 14, 56. Another TGFβ-

independent signaling bone morphogenetic protein 9 (BMP9) pathway has been 

recently identified as a novel anti-fibrotic pathway in a pressure overload 

hypertension model57. 
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Figure 3.4. The fibrosis-related genes contributing to cardiac fibrosis 
decrease in MyIL4RαKO mice. The expression of collagens including Col1A1 and 
Col3A1 (n=11-18), matrix metalloproteinases (MMPs) including MMP2 (n=12-14), 
MMP8 (n=6-7), MMP9 (n=12-14), MMP12 (n=6-7) and MMP13 (n=13-14), tissue 
inhibitor of metalloproteinases (TIMPs) including TIMP1, TIMP2 and TIMP3 (n=6-7) 
and genes included in the fibrosis signaling pathways TGFβ1 (n=12-13), PDGFα 
(n=5-7), PAI-1 (n=12-14), Gal3 (n=12-14), and BMP9 (n=12-14) at mRNA level was 
determined in heart tissues of sham and AngII and high salt-induced hypertensive 
mice. Results are shown as means ± SEM. Unpaired student’s t test and one-way 
ANOVA were used for statistical analysis. *P <0.05; **P <0.01; ***P <0.001; ****P < 
0.0001. 
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Based on the known pathways contributing to AngII and high salt-induced 

fibrotic remodeling, we determined the mRNA level of TGFβ1, PDGFα, PAI-1, 

Gal3 and BMP9 in order to identify the signaling pathways that are responsible 

for the fibrosis decrease resulted from myeloid-specific IL4Rα deficiency. In heart 

tissues, TGFβ1 did not show any difference upon AngII and high salt, neither 

between FC and MyIL4RαKO mice (Figure. 3.4). PDGFα, PAI-1 and Gal3 all 

displayed significant increase after AngII and high salt, and more importantly, all 

of them showed significant decrease as a result of IL4Rα ablation in myeloid cells 

(Figure. 3.4). As BMP9 limits cardiac fibrosis, BMP9 mRNA in heart was 

significantly reduced in response to AngII and high salt, furthermore, compared 

with hypertensive FC mice, hypertensive MyIL4RαKO mice exhibited significantly 

increased BMP9 mRNA (Figure. 3.4). In conclusion, instead of a single signaling 

pathway, TGFβ signaling via the decrease of PDGFα and PAI-1, Gal3 signaling 

with reduced Gal3, and BMP9 signaling with increased BMP9 mRNA 

cooperatively mediate the cardiac fibrosis decrease induced by myeloid IL4Rα 

deletion. This suggests that the reduced cardiac fibrosis because of IL4Rα 

deficiency in myeloid cells is rather a systemic change caused by multiple 

signaling pathways.   

In contrast to the gene expression in heart, both collagens (Col1A1 and 

Col3A1), all MMPs (MMP2, MMP8, MMP12 and MMP13) except MMP9, and all 

TIMPs (TIMP1, TIMP2 and TIMP3) in aorta were dramatically increased by AngII 

and high salt at mRNA level, however none of them showed any difference 

between FC and MyIL4RαKO mice (Figure. 3.5), suggesting the different 

mechanism contributing to cardiac or vascular fibrosis decrease.  In terms of the 

signaling pathways involved in fibrosis induced by hypertension, the mRNA level 

of TGFβ1, PDGFα, PAI-1, Gal3 and BMP9 all showed significant increase in 

aorta in response to AngII and high salt, however none of these genes showed 

any difference between hypertensive FC and MyIL4RαKO mice except PAI-1 

(Figure. 3.5). PAI-1 mRNA, instead of the expected decrease in hypertensive 

MyIL4RαKO mice based on fibrosis quantification in aorta, it surprisingly showed 

significant increase compared with hypertensive FC mice (Figure. 3.5). This is  
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Figure 3.5. The fibrosis-related genes contributing to aortic fibrosis decrease 
in MyIL4RαKO mice. The expression of collagens including Col1A1 and Col3A1 
(n=12-15), matrix metalloproteinases (MMPs) including MMP2 (n=12-20), MMP8 
(n=12-14), MMP9 (n=13-20), MMP12 (n=5-8) and MMP13 (n=12-19), tissue inhibitor 
of metalloproteinases (TIMPs) including TIMP1 (n=5-8), TIMP2 (n=5-8) and TIMP3 
(n=13-14) and genes included in the fibrosis signaling pathways TGFβ1 (n=12-16), 
PDGFα (n=6-8), PAI-1 (n=14), Gal3 (n=12-13), and BMP9 (n=14) at mRNA level 
was determined in aorta tissues of sham and AngII and high salt-induced 
hypertensive mice. Results are shown as means ± SEM. Unpaired student’s t test 
and one-way ANOVA were used for statistical analysis. *P <0.05; **P <0.01; ***P 
<0.001; ****P < 0.0001. 
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consistent with the substantial fibrotic up-regulation in PAI-1 null mice58, but 

contrary to the pro-fibrotic role of PAI-159, 60, which suggests the plastic role of 

PAI-1 depending on specific context. The increased PAI-1 mRNA in aorta of 

MyIL4RαKO mice is also opposite to what was shown in heart tissues (Figure. 

3.4), which again suggests the different mechanism of fibrotic remodeling in heart 

and aorta, although the exact mechanism in aorta is not clear yet. 

It’s also noteworthy that a lot fibrosis-related genes including Col1A1, 

MMP2, MMP8, PDGFα, PAI-1, Gal3 and BMP9 in aorta revealed a significant 

change at basal level between FC and MyIL4RαKO mice although not after 

hypertension induction (Figure. 3.5), which strongly suggests a different role of 

myeloid IL4Rα signaling at steady state and in the AngII and high salt-induced 

inflammatory state in fibrotic remodeling. Moreover, as most pro-fibrotic genes 

showed higher mRNA level in MyIL4RαKO mice at basal level, which probably 

suggests higher baseline inflammation as a result of the inactivation of anti-

inflammatory IL4Rα signaling in myeloid cells.  

IL4Rα deficiency in myeloid cells increases ROS-related genes expression  
In addition to fibrosis, hypertension also elicits up-regulation of low-grade 

systemic inflammation and oxidative stress, the pathophysiological events that 

promote the transition of hypertension to cardiovascular diseases.  

In order to investigate whether the ablation of IL4Rα in myeloid cells 

enhances inflammation induced by AngII and high salt, we measured the mRNA 

level of inflammatory cytokines including TNFα, IL-1β, and IL-6 in heart and 

aorta. As shown in Figure. 3.6, TNFα, IL-1β and IL-6 mRNA were all significantly 

increased by AngII and high salt, indicating the increased inflammation in 

hypertensive mice, however, no difference was caused by the knockout of IL4Rα 

in myeloid cells except IL-6 mRNA in aorta, suggesting that myeloid IL4Rα 

signaling might have no effect on the expression of hypertension-induced 

inflammatory cytokines. The reduction of IL-6 mRNA in aorta of MyIL4RαKO 

mice (Figure. 3.6) may contribute to the decreased fibrosis as IL-6 is involved in 

the AngII/Gal3/IL-6 axis that regulates fibrosis13, 14, 54-56. Although no difference 

was shown between hypertensive FC and MyIL4RαKO mice in heart, sham  
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Figure 3.6. The mRNA expression of inflammatory cytokines in heart and 
aorta. The mRNA level of inflammatory cytokines TNFα, IL-1β and IL-6 was 
measured in heart (n=11-17) and aorta (n=11-20) of sham mice and mice subjected 
to AngII and high salt. Results are shown as means ± SEM. Unpaired student’s t test 
and one-way ANOVA were used for statistical analysis. *P <0.05; **P <0.01; ***P 
<0.001; ****P < 0.0001.  
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MyIL4RαKO mice displayed significant increase of IL-1β and IL-6 mRNA in heart 

compared with sham FC mice (Figure. 3.6). This is consistent with what was 

shown in the acute myocardial infarction model (Figure 2.1B), which probably 

suggests the aggravated inflammation at baseline caused by deficiency of IL4Rα 

in myeloid cells. 

Oxidative stress plays an important role in inflammation. In order to detect 

whether deletion of IL4Rα in myeloid cells enhances inflammation by up-

regulating oxidative stress, we measured the mRNA level of ROS generation-

related genes including p22phox, p47phox, Nox1 and Nox4 by qRT-PCR. In 

heart tissues, the expression of p47phox, Nox1 and Nox4 were all significantly 

increased in hypertensive mice except p22phox, however no difference was 

detected between hypertensive FC and MyIL4RaKO mice (Figure. 3.7). 

However, both Nox1 and Nox4 exhibited significant increase at basal level of 

MyIL4RαKO compared with sham FC mice, what’s more, the Nox1 mRNA at 

basal level was even comparable to that induced by hypertension in MyIL4RαKO 

mice (Figure. 3.7), indicating the relatively exacerbated oxidative stress caused 

by IL4Rα deletion in myeloid cells. In aorta tissues, p22phox, p47phox and Nox4 

mRNA were significantly up-regulated by AngII and high salt, and more 

importantly they displayed significant increase in hypertensive MyIL4RαKO mice 

compared with hypertensive FC mice (Figure. 3.7), which suggests probably 

higher oxidative stress caused by IL4Rα ablation in myeloid cells. Moreover, 

Nox1 and Nox4 also showed significantly higher mRNA level in MyIL4RαKO mice 

at basal level than sham FC mice (Figure. 3.7), which also suggests probably 

higher basal level ROS in MyIL4RαKO mice.  

Taken together, ROS generation related genes revealed significant 

increase as a result of IL4Rα ablation in myeloid cells, suggesting the possible 

more ROS generation and higher oxidative stress, which in turn may result in 

aggravated inflammation. In conclusion, myeloid-specific IL4Rα signaling is also 

involved in inflammatory regulation by modulating the expression of ROS 

generation related genes and hence oxidative stress.  
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Figure 3.7. Myeloid-specific IL4Rα deletion induces increase of ROS 
generation-related genes mRNA expression. The mRNA expression of ROS 
generation-related genes: p22phox, p47phox, Nox1 and Nox4 was determined by 
qRT-PCR in hearts (n=15-20) and aortas (n=11-20) of sham mice and AngII and 
high salt-treated mice. Results are shown as means ± SEM. Unpaired student’s t 
test and one-way ANOVA were used for statistical analysis. *P <0.05; **P <0.01; 
***P <0.001; ****P < 0.0001.  
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Myeloid-specific IL4Rα knockout preserves cardiac function in response to 
AngII and high salt 

In order to clarify the overall impact of the myeloid-specific IL4Rα 

knockout, after charactering its effect on fibrosis and inflammation, cardiac 

function was determined by echocardiography.  

The ejection fraction of FC mice was significantly impaired by AngII and 

high salt, but MyIL4RαKO mice did not show any significant change with 

comparable ejection fraction of the sham mice (Figure. 3.8), indicating the 

preserved ejection fraction by IL4Rα deficiency in myeloid cells. Similarly, systole 

and diastole left ventricle internal diameter (LVID) were also preserved in 

hypertensive MyIL4RαKO mice, while significantly increased in hypertensive FC 

mice (Figure. 3.8), which supports the suggestive protection of cardiac function 

by IL4Rα deficiency in myeloid cells. In addition, compared with hypertensive FC 

mice, hypertensive MyIL4RαKO mice showed significant decrease in systole left 

ventricle area and left ventricle volume (Figure. 3.8), which indicates a stronger 

potential of cardiac contraction of MyIL4RαKO mice. In addition to left ventricle, 

MyIL4RαKO mice also displayed a protective role in the function of aorta. 

Compared with hypertensive FC mice, aorta velocity peak gradient was 

significantly increased in hypertensive MyIL4RαKO mice, which was even 

comparable to that of sham mice (Figure. 3.8). Ascending aorta diameter was 

also preserved in hypertensive MyIL4RaKO mice while that of hypertensive FC 

mice was significantly increased (Figure. 3.8).  

In conclusion, hypertensive MyIL4RαKO mice showed relatively improved 

cardiovascular function compared with the hypertensive FC mice, which basically 

indicates a overall protective role of myeloid-specific IL4Rα knockout by 

balancing the effect on fibrosis and inflammation.  

Myeloid-specific IL4Rα deletion does not change M2 macrophage 
polarization 

IL-4 or IL4R signaling regulates fibrosis through controlling the M2 

macrophages polarization26. In our study, knockout of IL4Rα in myeloid cells 

caused decreased fibrosis, so we hypothesized that this may through its down- 
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Figure 3.8. Myeloid IL4Rα deficiency helps to preserve cardiac function after 
AngII and high salt treatment. Cardiac function was analyzed in sham and AngII 
and high salt-induced hypertensive mice by echocardiography. Quantitative 
evaluation of echocardiography data including ejection fraction (EF), systole left 
ventricle area (LV area, s) and systole left volume (LV Vol, s), systole and diastole 
left ventricular internal diameter (LVIDs and LVIDd), aorta velocity peak gradient (Ao 
Peak Vel) and ascending aorta diameter (Asd Aorta Diam) were shown. n=6-8. 
Results are shown as means ± SEM. Unpaired student’s t test and one-way ANOVA 
were used for statistical analysis. *P <0.05; **P <0.01; ***P <0.001; ****P < 0.0001.  
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regulation of M2 macrophage activation. In order to test this hypothesis, we first 

measured the mRNA level of M2 macrophage markers in heart and aorta. 

Unexpectedly, no significant difference was shown between hypertensive FC and 

MyIL4RαKO mice in the mRNA level of M2 macrophage markers including Arg1, 

Fizz1 and Ym1 (Figure. 3.9), which suggests that myeloid IL4Rα deletion might 

not change M2 macrophages polarization at least in our model. It should be 

pointed out that, compared with sham FC mice, Arg1 showed significant 

decrease while Fizz1 showed significant increase in hearts of sham MyIL4RαKO 

mice (Figure. 3.9), which is consistent with the results in acute myocardial 

infarction model (Figure. 2.1B), strongly suggesting the control of macrophages 

at steady state by IL4Rα.   

As the gene expression of M2 macrophage markers were examined in 

heart and aorta tissues that consist of a wide range of cell types rather than 

macrophages only, the gene expression in non-macrophages may interfere with 

their expression profile in macrophages, which cannot truly manifest the M2 

macrophage polarization change caused by IL4Rα knockout. In order to 

specifically investigate the M2 macrophage polarization, flow cytometry analysis 

was performed to determine the M2-like macrophage population in heart. M1-like 

and M2-like macrophages were gated from CD11b+F4/80+ macrophages and 

characterized as TNFα+CD206- and TNFα-CD206+ respectively. As shown in 

Figure. 3.10, the percentage of M1-like (TNFα+CD206-) or M2-like (TNFα-

CD206+) macrophages was similar between FC and MyIL4RαKO mice as well as 

their cell numbers, although AngII and high salt induced a significant infiltration of 

both M1- and M2-like macrophages, which indicates that IL4Rα signaling 

inactivation in macrophages does not change the M2 macrophage polarization in 

vivo. In order to test whether IL4Rα signaling is involved in the regulation of 

macrophage recruitment, we examined macrophages in heart of sham and 

hypertensive mice. Both the percentage of macrophages in total leukocytes and 

the macrophage cell number were significantly increased upon AngII and high 

salt (Figure. 3.11), indicating the migration and infiltration of macrophages into 

hearts after hypertension, however, no significant change was shown between  
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Figure 3.9. The mRNA level of M2 macrophage markers in heart and aorta. The 
expression of M2 macrophage markers including Arg1, Fizz1 and Ym1 at mRNA 
level was determined in heart (n=9-17) and aorta (n=5-20) tissues of sham mice and 
mice exposed to AngII and high salt. Results are shown as means ± SEM. Unpaired 
student’s t test and one-way ANOVA were used for statistical analysis. *P <0.05; **P 
<0.01; ***P <0.001; ****P < 0.0001. 
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Figure 3.10. IL4Rα knockout does not change macrophage polarization in 
vivo. Representative FACS dot plots of M1-like (CD206-TNFα+) and M2-like 
macrophages (CD206+TNFα-) gated from macrophages and the quantification of the 
percentage of M1-like and M2-like macrophages in total macrophages and their cell 
number. All cell numbers are expressed per milligram tissue. n=5. Results are 
shown as means ± SEM. Unpaired student’s t test and one-way ANOVA were used 
for statistical analysis. **P <0.01; ****P < 0.0001.  
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FC and MyIL4RαKO mice (Figure. 3.11), suggesting that IL4Rα signaling 

inactivation in myeloid cells in vivo has no effect on macrophage recruitment 

either.  

As, in addition to macrophages, myeloid cells also include neutrophils that 

have IL4Rα deleted in MyIL4RαKO mice, it’s worth determining whether IL4Rα 

controls neutrophil infiltration into the heart. Like macrophages, neither the 

percentage of neutrophils in total leukocytes nor their number showed any 

change caused by IL4Rα deficiency (Figure. 3.12), suggesting that IL4Rα 

signaling in neutrophils does not affect their migration into the heart upon 

inflammation. This is consistent with the results from Eming lab, who reported no 

difference between IL4Rαflox/flox and LysMCreIL4Rαflox/- mice in the number of 

Ly6G+ cells in skin wound tissues32. No change was even shown in neutrophils 

as a result of AngII and high salt (Figure. 3.12), which may suggest that AngII 

and high salt does not significantly induce cardiac neutrophil infiltration or at least 

not at the time of examination.  

T cells are known importantly involved in AngII-induced hypertension and 

inflammation, so we were curious whether deletion of IL4Rα in myeloid cells 

changes T cells infiltration via the regulation of inflammation by IL4Rα signaling. 

We then quantified T cell population in heart tissues by flow cytometry. No 

change in the cell number of T cells was shown in response to AngII and high 

salt or as a result of IL4Rα deficiency in myeloid cells (Figure. 3.12), however, 

the percentage of T cells in total leukocytes in heart was decreased after AngII 

and high salt (Figure. 3.12), which probably attributes to the massive infiltration of 

macrophages that in turn decreases the fraction of T cells.  

Taken together, suppressing IL4Rα signaling in myeloid cells did not 

change M2-like macrophage polarization, neither macrophage or neutrophil 

recruitment, which suggests a more complicated microenvironment in vivo than 

in vitro, and the IL4Rα signaling may change the characteristics of macrophage 

rather than simply change the M2 macrophage polarization, and IL4Rα signaling 

may not be involved in the recruitment of myeloid cells into the heart in response 

to hypertension.    
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Figure 3.11. IL4Rα knockout does not change macrophage recruitment 
induced by AngII and high salt. Representative FACS dot plots of macrophages 
(CD11b+F4/80+) gated from leukocytes in heart tissues of sham and AngII and high 
salt-treated mice, with quantification of the percentage of macrophages in total 
leukocytes and their cell number. All cell numbers are expressed per milligram 
tissue. n=5. Results are shown as means ± SEM. Unpaired student’s t test and one-
way ANOVA were used for statistical analysis. **P <0.01; ***P <0.001; ****P < 
0.0001. 
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Figure 3.12. IL4Rα knockout does not change neutrophils and T cells 
recruitment induced by AngII and high salt. Representative FACS dot plots of 
neutrophils (Ly6G+) and T cells (CD3+) gated from leukocytes in heart tissues of 
sham and AngII and high salt-treated mice and the quantification of the percentage 
of neutrophils and T cells in leukocytes and their cell number. All cell numbers are 
expressed per milligram tissue. n=5. Results are shown as means ± SEM. Unpaired 
student’s t test and one-way ANOVA were used for statistical analysis. *P <0.05; **P 
<0.01; ***P <0.001; ****P < 0.0001.  
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In addition to heart tissues, we also determined the M2-like macrophage 

population in aorta, another important organ in cardiovascular remodeling 

induced by hypertension. Similar to the results in heart, no change in M2-like 

macrophages was caused by IL4Rα deletion (Figure. 3.13), which supports that 

IL4Rα signaling alone may not be able to change macrophage polarization in 

vivo. However, AngII and high salt significantly exerted an increase in both the 

percentage of M2-like macrophages in total macrophage and their cell number 

(Figure. 3.13), indicating the involvement of M2-like macrophages in 

hypertensive inflammatory and pro-fibrotic vascular remodeling.  

Macrophage and neutrophil population in aorta were also determined by 

flow cytometry. Both the percentage and number of macrophages were 

significantly up-regulated by AngII and high salt (Figure. 3.14), which indicates 

the migration and infiltration of macrophages into the hypertensive vasculature 

with enhanced inflammation. In contrast to the un-changed neutrophil in heart, 

both the percentage and the total number of neutrophils in aorta showed 

significant increase after exposure to AngII and high salt (Figure. 3.15), which 

indicates the recruitment of neutrophils into the vasculature and confirms the 

increased inflammation induced by AngII and high salt. Consistent with the 

results of heart tissues, no change in macrophage or neutrophil was induced by 

IL4Rα deletion (Figure. 3.14 and Figure. 3.15), which supports the conclusion 

that IL4Rα signaling may not contribute the recruitment of myeloid cells into 

injured tissues. Neither the percentage or number of T cells in aorta was 

changed by AngII and high salt or IL4Rα deficiency in myeloid cells (Figure. 3.15). 

Based on the above data from flow cytometry, knockout of IL4Rα in 

myeloid cells does not change M2 macrophage polarization in vivo, neither 

macrophage and neutrophil infiltration into injured tissues and the T cell 

recruitment, which suggests that the phenotypic and functional changes in heart 

and vasculature induced by myeloid-specific IL4Rα ablation does not simply 

attribute to a global change of M2-like macrophages as hypothesized. 
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Figure 3.13. IL4Rα deficiency does not change the polarization of 
macrophages in aorta. Representative FACS dot plots of M2-like macrophages 
(CD206+TNFα-) gated from macrophages and the quantification of the percentage of 
M2-like macrophages in total macrophages and their cell number.  All cell numbers 
are expressed per milligram tissue. n=9-10. Results are shown as means ± SEM. 
Unpaired student’s t test and one-way ANOVA were used for statistical analysis. ***P 
<0.001; ****P < 0.0001.	
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Figure 3.14. IL4Rα deficiency does not change the recruitment of 
macrophages induced by AngII and high salt into aorta. Representative FACS 
dot plots of macrophages (CD11b+F4/80+) gated from leukocytes in aorta tissues of 
sham and AngII and high salt-treated mice, and the quantification of the percentage 
of macrophages in leukocytes and their cell number. All cell numbers are expressed 
per milligram tissue. n=9-10. Results are shown as means ± SEM. Unpaired 
student’s t test and one-way ANOVA were used for statistical analysis. ***P <0.001; 
****P < 0.0001.  
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Figure 3.15. IL4Rα deficiency does not change the recruitment of neutrophils 
and T cells induced by AngII and high salt into aorta. Representative FACS dot 
plots of neutrophils (Ly6G+) and T cells (CD3+) gated from leukocytes in aorta 
tissues of sham and AngII and high salt-treated mice, and the quantification of the 
percentage of neutrophils and T cells in leukocytes respectively and their cell 
number. All cell numbers are expressed per milligram tissue. n=5. Results are 
shown as means ± SEM. Unpaired student’s t test and one-way ANOVA were used 
for statistical analysis. ****P < 0.0001. 



	 118 

Mildly enhanced circulating myeloid cells in MyIL4RαKO mice 
As the infiltrating macrophages in heart and aorta are mostly derived from 

circulating monocytes, we were wondering whether the ablation of IL4Rα would 

cause any change in circulation monocytes. In order to answer this question, we 

determined the monocytes in blood by flow cytometry. Not only the percentage 

but also the number of monocytes increased significantly after exposure to AngII 

and high salt (Figure. 3.16A), which indicates the increase of circulating 

monocytes and inflammation in response to hypertensive injury, and more 

intriguingly, increased monocytes were shown in hypertensive MyIL4RαKO mice 

compared with hypertensive FC mice (Figure. 3.16A), which suggests the 

exaggerated inflammation induced by lack of IL4Rα in myeloid cells.  

Because of the diversity and heterogeneity of monocytes61-64, it was 

shown in infarcted hearts that Ly6Chigh monocytes dominate early and undergo 

inflammatory functions to digest damaged tissue, while Ly6Clow monocytes 

dominate later and are less inflammatory to promote tissue healing and repair65, 

which is parallel with the property and function of M1 and M2 macrophages66, 67. 

In order to elucidate whether the knockout of IL4Rα disturbs the Ly6Clow and 

Ly6Chigh monocytes interplay, we determined the circulating Ly6Clow and Ly6Chigh 

monocytes in blood. The percentage of Ly6Clow or Ly6Chigh monocytes in total 

monocytes was not changed (Figure. 3.16B), although the numbers of Ly6Clow 

and Ly6Chigh monocytes were both increased and the number of Ly6Clow 

monocytes in MyIL4RaKO mice was higher than that in FC mice (Figure. 3.16B), 

which is likely attributable to the increase of total monocytes. Meanwhile, 

neutrophils in blood were also quantified by flow. Neutrophils were increased in 

hypertensive mice (Figure. 3.16C), indicating the increase of inflammation 

induced by AngII and high salt, but no difference was shown between 

hypertensive MyIL4RaKO and FC mice (Figure. 3.16C), however neutrophils at 

basal level were significantly increased in MyIL4RαKO mice (Figure. 3.16C), 

suggesting the enhanced inflammation at least at baseline by IL4Rα deficiency. 

No change was shown in T cells in blood (Figure. 3.16C), together with the  
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Figure 3.16. Myeloid-specific IL4Rα ablation mildly increases circulating 
myeloid cells in blood. (A) Representative FACS dot plots of monocytes 
(CD11b+Ly6C+) gated from leukocytes in blood of sham and AngII and high salt-
treated mice, and the quantification of the percentage of monocytes in leukocytes of 
blood and their cell number. n=9-10. (B) Representative FACS dot plots of Ly6Clow 
and Ly6Chigh monocytes gated from total monocytes and the quantification of the 
respective percentage of Ly6Clow and Ly6Chigh monocytes in total monocytes and 
their cell number per 100µl of blood. n=5. (C) Representative FACS dot plots of 
neutrophils (Ly6G+, n=8-10) and T cells (CD3+, n=5) gated from leukocytes in blood 
of sham and AngII and high salt-treated mice, and the quantification of the 
percentage of neutrophils and T cells in total leukocytes of blood and their cell 
number. All cell numbers are expressed per 100µl of blood. Results are shown as 
means ± SEM. Unpaired student’s t test and one-way ANOVA were used for 
statistical analysis. *P <0.05; **P <0.01; ***P <0.001; ****P < 0.0001.  
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quantification of T cells in heart and aorta, suggests that IL4Rα signaling in 

myeloid cells is not involved in T cell infiltration from blood.  

As spleen is also an important monocyte reservoir68, and AngII can induce 

the release of monocytes from splenic reservoir68, 69, and drive splenic 

macrophage progenitor amplification70, we also characterized the cell populations 

in spleen after AngII and high salt-induced hypertension. Monocytes in spleen 

were significantly increased upon AngII and high salt (Figure. 3.17A), which is 

the opposite of reported decreased total monocytes in spleen after AngII68, 

however, the increase of splenic monocytes is consistent with the enlargement of 

spleen in hypertensive mice (Figure. 3.17A). No difference was shown between 

FC and MyIL4RαKO mice in the number of monocytes in spleen or the size of 

spleen (Figure. 3.17A), suggesting that the IL4Rα signaling may not participate in 

the splenic monocyte circulation (at least in our model). 

As well as the Ly6Clow or Ly6Chigh monocytes in blood, no change was 

shown in their percentage in total monocytes in spleen (Figure. 3.17B), and the 

increase of both Ly6Clow and Ly6Chigh monocytes in response to AngII and high 

salt (Figure. 3.17B) is likely resulted from the increase of total monocytes (Figure. 

3.12B). Neutrophils were also increased in spleen in response to AngII and high 

salt, with significant increase in MyIL4RαKO mice at basal level compared with 

FC mice (Figure. 3.17C), which probably suggests the enhanced inflammation in 

MyIL4RαKO mice at least at basal level. T cells were also significantly induced in 

hypertensive mice, but compared with FC mice, the number of T cells in spleen 

was reduced in MyIL4RαKO mice (Figure. 3.17C), which may suggest the 

involvement of myeloid IL4Rα signaling in modulation of T cells in spleen.  

Taken all the results in circulation together, knockout of IL4Rα in myeloid 

cells showed increase in the number of neutrophils and monocytes in circulation, 

which suggests that myeloid-specific IL4Rα knockout causes a mild systemic 

inflammation increase.  
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Figure 3.17. Myeloid-specific IL4Rα knockout does not change the migration 
of myeloid cells from spleen after AngII and high salt. (A) Representative FACS 
dot plots of monocytes (CD11b+Ly6C+, n=9-10) gated from leukocytes in spleen of 
sham and AngII and high salt-treated mice, and the quantification of the percentage 
of monocytes and their cell number in spleen. The measurement of the spleen 
weight to body weight (BW) ratio and spleen weight to tibia length (TL) ratio. n=7-16. 
(B) Representative FACS dot plots of Ly6Clow and Ly6Chigh monocytes gated from 
total monocytes, and the quantification of respective percentage of Ly6Clow and 
Ly6Chigh monocytes in total monocytes of spleen and their cell number. n=5. (C) 
Representative FACS dot plots of neutrophils (Ly6G+) and T cells (CD3+) gated from 
leukocytes in spleen of sham and AngII and high salt-treated mice and the 
quantification of the percentage of neutrophils and T cells in leukocytes of spleen 
respectively and their cell number. n=8-10. Cell numbers indicated are per spleen. 
Results are shown as means ± SEM. Unpaired student’s t test and one-way ANOVA 
were used for statistical analysis. *P <0.05; **P <0.01; ***P <0.001; ****P < 0.0001.  
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Discussion 
In the present study, we investigated the role of myeloid IL4Rα signaling in 

cardiovascular remodeling during AngII and high salt-induced hypertension and 

cardiovascular remodeling. Knockout of IL4Rα in myeloid cells had no effect on 

cardiovascular hypertrophic remodeling, but increased the expression of ROS 

generation related genes, and substantially decreased cardiovascular fibrotic 

remodeling via a systemic change of signaling pathways that mediate the 

development of fibrosis, such as TGFβ, Gal3 and BMP9 signaling. These 

pathophysiologic changes lead to a relative mild preservation of cardiovascular 

function in MyIL4RαKO mice while that of FC mice was significantly impaired by 

AngII and high salt. However, the decreased fibrosis and the functional 

preservation in MyIL4RαKO mice are not simply due to the hypothesized M2 

macrophage polarization reduction, because no decrease in M2-like macrophage 

population was shown. In conclusion, myeloid IL4Rα signaling is significantly 

involved in cardiovascular remodeling induced by AngII and high salt, but it is not 

simply through blocking M2 macrophage activation in vivo, suggesting a more 

complicated change in macrophage phenotype that needs to be determined in 

the future.  

Hypertrophic Remodeling 
Hypertension is causally related to adverse cardiovascular remodeling, 

which includes hypertrophic structural changes. Clinical trials demonstrate that 

antihypertensive therapy prevents left ventricle hypertrophy. The prevention or 

reversal of left ventricle hypertrophy are correlated with cardiac function 

improvement and decline in risk of adverse cardiovascular outcomes. Cardiac 

hypertrophy, either from dilatation of left ventricle chamber or thickening of 

walls8, is an intermediate phenotype in the progression of hypertension to heart 

failure. Vascular smooth muscle hypertrophy is a critical component of vascular 

hypertrophic remodeling in hypertension71. In our study, hypertrophy was 

observed in both heart and aorta in AngII and high salt-induced hypertensive 

injury. Mice displayed increased heart weight, enlarged cardiomyocyte size, and 

increased aortic wall thickness (Figure. 3.1), which is consistent with previously 
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reports 72, 73. However, no change in hypertrophic remodeling was caused by 

myeloid IL4Rα deficiency, which is also consistent with a previous report showing 

that global IL-4 deficiency does not affect hypertrophy during AngII-induced 

cardiac remodeling 27. These results together suggest that myeloid IL4Rα 

signaling is not involved in cardiovascular hypertrophic remodeling.  

Fibrotic Remodeling 
In addition to hypertrophy, AngII and high salt also induces pro-fibrotic 

cardiovascular remodeling. Both hypertrophy74 and fibrosis75-77 contribute to 

myocardial and vascular stiffness, which plays a critical role in deleterious 

functional disorders. In our study, MyIL4Rα deficiency resulted in significant 

suppression of interstitial and perivascular fibrosis (Figure. 3.2) with modest 

changes in collagen gene expression (Figure. 3.4 and Figure. 3.5) during AngII 

and high salt treatment compared to floxed controls. In addition to collagens, 

MMPs and TIMPs also contribute to the pathogenesis of fibrosis. Decreased 

MMPs and increased TIMPs would lead to collagen accumulation. In heart 

tissues of AngII treated MyIL4RαKO mice, we detected decreased Col3A1 and 

increased MMP13 which could cooperatively contribute to the decreased fibrosis. 

No change in TIMP1 was found in hypertensive MyIL4RαKO mice compared with 

the sham, where as a significant increase in TIMP1 mRNA expression was 

shown in hypertensive floxed control mice (Figure. 3.4).  

Fibrosis Associated Signaling Pathways 
TGFβ signaling: TGFβ signaling is one of the classical pathways in 

fibrotic remodeling. TGFβ1 facilitates the deposition of extracellular matrix 

proteins on vascular walls in response to mechanical stress caused by 

hypertension78, which attenuates vasculature compliance and increases stiffness. 

In our study, TGFβ1 mRNA in heart did not show any change upon AngII and 

high salt treatment (Figure. 3.4). Consistent with our results, spontaneously 

hypertensive rats (SHR) without heart failure also do not show any difference in 

TGFβ1 mRNA in left ventricle compared with normotensive rats, although a 

significant increase was shown in SHR with heart failure79. Another study by Kim 

et al. showed that there is no significant difference in cardiac TGFβ1 mRNA 
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expression between deoxycorticosterone acetate (DOCA)-salt hypertensive rats 

and shams. However, TGFβ1 mRNA was significantly increased in aorta of 

DOCA-salt hypertensive rats80, which is consistent with our results showing a 

significant increase of TGFβ1 mRNA in aorta tissues but no change in hearts 

after AngII and high salt treatment (Figure. 3.4 and Figure. 3.5). These studies 

suggest that the expression of TGFβ1 varies depending on the severity of 

disease and the tissue. Fibrosis development may not absolutely require an 

increase in TGFβ1 since TGFβ1 mRNA did not change, but its downstream 

target gene PDGFα mRNA increased upon AngII and high salt (Figure 3.4). 

PAI-1 signaling: PAI-1 has been linked to both pro-fibrotic and anti-

fibrotic actions. The pro-fibrotic role was shown in renal fibrosis either induced by 

unilateral ureteral obstruction (UUO) or protein overload, which displayed 

significantly diminished fibrosis in kidney of PAI-1–/– mice59. Its anti-fibrotic role 

was shown in PAI-1–/– aging mice which revealed increased fibrosis in heart but 

not other major organs such as lung and kidney58. As PAI-1 is an inhibitor of t-PA 

and u-PA, spontaneous cardiac fibrosis in PAI-1 deficient mice is consistent with 

cardiac fibrosis in u-PA overexpressing mice58 and impaired collagenous scar 

formation in infarcted hearts of u-PA null mice81, which supports an anti-fibrotic 

role of PAI-1. This may explain the increased expression of PAI-1 mRNA in aorta 

in hypertensive MyIL4RαKO mice compared with hypertensive FC mice, but with 

decreased aortic fibrosis in our study (Figure. 3.2A and Figure. 3.5). PAI-1 

deficient mice with reduce perivascular fibrosis in infarcted hearts82 is consistent 

with PAI-1 overexpression resulting in augmented fibrosis, and PAI-1 deficiency 

or u-PA overexpression leads to decreased fibrosis in lung and kidney60, 83, which 

supports a pro-fibrotic role of PAI-1. This may partially explains the reduced PAI-

1 mRNA in heart of MyIL4RαKO mice with decreased cardiac fibrosis (Figure. 

3.2B and Figure. 3.4). However, it is not clear whether PAI-1 is pro- or anti- 

fibrotic in our model except using the PAI-1–/– mice to demonstrate.  

One of the possibilities is that the function of PAI-1 may vary depending 

on the severity of the damage or the progression of disease. PAI-1 inhibits 

fibrosis when fibrosis is harmful, but promotes fibrosis when fibrosis is required to 



	 125 

maintain the integrity of the injured tissue. A molecule may have opposite effects 

depending on the context. Another alternative explanation is that the role of PAI-

1 is possibly tissue-dependent. In a specific context, it is likely that both damage 

severity and tissue type contribute to the function of PAI-1 in fibrosis.  

BMP9 Signaling 
As a TGFβ1-independent signaling pathway, BMP9 signaling has been 

recently identified as a novel pro-fibrotic84-86 or fibrosis-limiting factor57, another 

molecule that may have opposite and context-specific effects. In our study, 

decreased cardiac fibrosis was shown in hypertensive MyIL4RαKO mice with 

increased BMP9 mRNA expression (Figure. 3.2B and Figure. 3.4), which 

probably supports the anti-fibrotic role of BMP9 in heart, however, this needs to 

be confirmed via a BMP9 knockout mouse model or pharmacologically blocking 

BMP9 signaling. BMP9 acts through the downstream target genes inhibitor of 

DNA binding 1 (ID1) and inhibitor of DNA binding 2 (ID2) via the Smad molecules 

to regulate the production of ECM proteins 87,57,88. However, in our study, 

compared with hypertensive FC mice, MyIL4RαKO mice did not show any 

difference in ID1 mRNA expression in heart, while showed significant decrease in 

ID2 mRNA (data not shown), which is not consistent with the increase in BMP9 

mRNA. This may suggest that there are more than one signaling in addition to 

BMP9 contributing to the transcription of ID1 and ID2. 

In contrast to the no change in ID1 and decrease in ID2 mRNA in heart of 

hypertensive MyIL4RαKO mice, ID1 significantly decreased while ID2 did not 

show any change in aorta (data not shown), which is not consistent with the 

expression of BMP9 in aorta either as BMP9 mRNA did not show any difference 

in hypertensive MyIL4RαKO mice compared with FC (Figure. 3.5). This may 

confirm that there may be other pathways contributing to the expression of ID1 

and ID2, in addition to BMP9. The difference in BMP signaling between heart and 

aorta tissues also supports the tissue-dependent mechanisms that control fibrotic 

remodeling.  

Inflammatory Responses 
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Hypertensive stimuli including AngII and high salt induce ROS production 

in a variety of tissues such as brain, heart, kidney and vasculature71, which 

promotes the pathological development of hypertensive remodeling like 

hypertrophy, inflammation and fibrosis. ROS generation related genes were 

increased in MyIL4RαKO mice (Figure. 3.7), suggesting there is increased 

inflammation as a result of IL4Rα deficiency in myeloid cells.  

Hypertensive stimuli also induce pro-inflammatory molecules, which then 

promote the rolling, adhesion and accumulation of inflammatory cells in injured 

tissues89-93. The pro-inflammatory molecules and oxidative stress mutually 

amplify each other. For instance, TNFα activates NADPH oxidase that further 

enhances oxidative stress94. Meanwhile, TNFα facilitates the overexpression of 

chemokines and adhesion molecules95. The migration of M2 macrophages at late 

stages of cardiac injury was shown to be TNFα signaling dependent96.  

IL-6, another major pro-inflammatory cytokine, also mediates superoxide 

production, which causes endothelial impairment97. IL-6 is fundamental for the 

development of hypertension98-103 and contributes to hypertension-induced 

cardiovascular remodeling. AngII and high salt-induced hypertension and cardiac 

injury was significantly abrogated in IL-6 deficient mice104, and high levels of 

circulating IL-6 can be considerably diminished by blocking AngII signaling103, 105. 

Deletion of IL-6 prevents macrophage infiltration, ameliorates fibrosis and 

improves cardiac function in AngII and high salt-induced hypertension13. IL-6 also 

involves in vascular remodeling by promoting vascular smooth muscle cells 

migration and proliferation, which results in vascular medial hypertrophy106, 107. In 

our study, TNFα was significantly induced by AngII and high salt, and a strikingly 

significant increase in IL-6 mRNA was also shown (Figure. 3.6).  

The chemokine MCP1 (also known as CCL2) activates monocytes and 

mediates their migration towards the inflammatory site. AngII can stimulate the 

production of MCP1 by activating CCR2 receptor108. A significant increase in 

MCP1 mRNA was observed in hypertensive aorta tissues in our study, however, 

no increase in heart has detected (data not shown), which indicates a differential 

remodeling mechanism in heart and aorta. No significant change in MCP1 
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expression was revealed in MyIL4RαKO mice compared with FC, suggesting that 

myeloid IL4Rα signaling effects on cardiovascular remodeling may not be 

through the MCP1/CCR2 axis. 

Immune Cells in Cardiovascular Remodeling 
The hypertrophic, inflammatory and fibrotic cardiovascular remodeling 

following hypertension is attributable to the interaction between cardiac- and 

vascular- parenchymal cells and inflammatory immune cells.  

Monocytes and Macrophages 
Circulating monocytes amplify in response to AngII15, 109, which is also 

supported by our results (Figure. 3.16), showing significant increase of 

monocytes in blood. Elimination of monocytes results in attenuated hypertension, 

decreased ROS generation and improvement of cardiovascular function15. 

Monocytes are circulating precursors of macrophages that accumulate in 

perivascular adipose tissue, adventitia, heart and kidneys during hypertension110, 

111. Stimulated by hypertension, infiltrating macrophages release pro-

inflammatory cytokines, produce ROS and promotes oxidative stress, disturb 

tissue homeostasis and initiate remodeling, all of which contributes to disease 

development and progression112-117. Massive infiltration of macrophages in the 

cardiovascular system was observed in our study (Figure. 3.11 and Figure. 3.14), 

characterized by a significant increase of macrophages in heart and aorta in 

hypertensive mice. In monocyte and neutrophil depleted LysMiDTR mice by 

diphtheria toxin administration, hypertensive responses such as hypertrophy, 

ROS production and cardiovascular dysfunction were blocked. Restoration of 

monocytes rather than granulocytes reversed the hypertension15, which supports 

the essential role of monocytes/macrophage in hypertension and hypertension-

induced cardiovascular remodeling.  

Macrophages are present during injury with distinctive phenotypes 

depending one the stage. Initially they migrate into the injured tissue and adopt a 

pro-inflammatory phenotype (M1 macrophages) that serves to clear dead cells 

and debris, later on they polarize to anti-inflammatory phenotype (M2 

macrophages) and produce cytokines against inflammation and other factors to 
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resolve inflammation and initiate tissue repair. Macrophages are more and more 

appreciated as master regulator of fibrosis29, 109. The type 2 immune response 

maintains tissue homeostasis, but if not appropriately regulated, it can result in 

fibrosis by amplification of macrophages118. It has recently been shown that IL-4 

or IL-13 alone is not sufficient to induced type 2 immune responses, but IL-4 or 

IL-13 together with signals from apoptotic cells activate macrophages to repair 

the damaged tissue119, i.e. IL-4 or IL-13 activated macrophages cannot initiate 

tissue repair program unless they receive signals from apoptotic neutrophils. 

Losing the ability to sense apoptotic cells interrupts the proliferation of tissue-

resident macrophages and inhibits the activation of anti-inflammatory genes 

involved in tissue repair119. The sensing process occurs between macrophages 

and local tissue-specific signals, by which macrophages integrating various 

signals and then switch to repair mode to produce tissue-building factors120. 

Macrophages generate proteins that are directly involved in tissue repair such as 

Col1A1 which deposits in ECM and Relmα which eventually acts to cross-link 

collagen with fibrils, enhancing the strength or stiffness of injured tissue32. Those 

macrophages participating in tissue repair are mostly M2-like macrophages.  

M2 Macrophage Polarization In Vivo 
M2 macrophages are importantly involved in the pro-fibrotic remodeling. 

Fibrosis in multiple tissues was found significantly decreased in MyIL4RαKO 

mice in our study (Figure. 3.2 and Figure. 3.3), and as IL4Rα signaling is very 

important for M2 macrophage activation and polarization, we hypothesized that 

the decreased fibrosis attributes to M2 macrophage polarization suppression as 

a result of IL4Rα deficiency. However, we were unable to demonstrate this 

hypothesis. Knockout of IL4Rα in myeloid cells dramatically attenuated M2 

macrophage polarization in vitro (Figure. 2.1A), but unfortunately not in vivo. 

First, no significant decrease was observed in the expression of M2 macrophage 

markers in heart or aorta tissues of hypertensive MyIL4RαKO mice (Figure. 3.9). 

On the contrary, one of the M2 macrophage markers Fizz1 displayed significant 

increase in heart of sham MyIL4RαKO mice compared with sham FC. This may 

contribute to the expression of Fizz1 in other cell types other than myeloid cells in 
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heart because Fizz1 also expresses in endothelial cells, vascular smooth muscle 

cells, T cells and myofibroblast-like cells121. Our result is supported by the 

comparable expression of Fizz1 in IL-4 knockout mice and WT mice in hypoxia-

induced hypertensive lung122, which together suggests that there are more than 

one signaling pathway in addition to IL-4 signaling that contribute to Fizz1 

expression. Second, no difference was shown in the percentage or number of M2 

macrophages in MyIL4RαKO mice based on the results from flow (Figure. 3.10 

and Figure. 3.13). These results conflict with data from other studies. 

Macrophages from LysMcreIL4Rαflox/- mice revealed significant reduction in genes 

characterizing M2 macropahges including CD206 and Fizz1 by qRT-PCR after 

specifically sorting CD11b+F4/80+ macrophages from wound tissues32. This 

inconsistency may attribute to the samples for gene expression: instead of 

macrophages only in vivo, we determined gene expression in tissues that include 

a lot other cell types. Macrophages from pancreas of LysMcreIL4Rαflox/flox mice 

also displayed significant decrease in CD206 expression in a chronic pancreatitis 

model26, which was determined by flow. In order to further pursue that whether 

IL4Rα deficiency changes the macrophages or not, sorting macrophages from 

heart and aorta and then characterize these macrophages by determining the 

mRNA expression profile of M2 and M1 macrophage markers with qRT-PCR will 

be very helpful.  

To reconcile the results we have so far, we propose a 4-part hypothesis. 

First: timing; macrophages from wounded skin showed decreased expression of 

M2 macrophage markers at 7-day post injury, but none of the markers was 

maintained at very late stage (after 14 days) of repair32, which suggests the time 

dependence of gene expression. Second: genetic background; both mouse 

models that showed decrease in M2 macrophage polarization are on a 

background of BALB/c (LysMcreIL4Rαflox/- mice in the skin wound model and 

LysMcreILR4αflox/flox mice in the chronic pancreatitis model), in contrast, what we 

used in our study are on a C57BL/6 background. Totally different phenotypes 

were shown in mice of different background but with the same knockout123, which 

highlights the importance of genetic background. Third: signaling pathways other 
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than IL4R signaling also contribute to M2 macrophage polarization in vivo. 

Instead of canonical IL-4/IL-13-STAT6 signaling, activated adventitia fibroblasts 

polarized naïve macrophages to a distinctive phenotype that promotes 

inflammation and fibrosis via IL-6-STAT3-HIF1-C/EBPβ axis, which challenges 

the present paradigm of IL-4/IL-13-STAT6-mediated macrophage alternative 

activation as the sole driver of reparative remodeling124. This is supported by 

other studies. Tumor-derived lactic acid from aerobic glycolysis enhanced Fizz1 

expression in tumor-associated macrophages, which is dependent on HIF1 but 

not IL-4/IL-13125. Feilding et al. demonstrated that IL-6 is required for the 

development of peritoneal fibrosis by switching acute inflammation to a chronic 

pro-fibrotic state126. Therefore, signaling like IL-6-STAT3-HIF1 axis may 

compensate the lack of IL4R signaling and contribute to the polarization of M2 

macrophages in vivo. Fourth: incomplete deletion of IL4Rα by LysMcre. Because 

of the heterogeneity, macrophages express LysM differently. Macrophages 

elicited by inflammatory stimuli have a lower level of LysM than the tissue 

resident macrophages, which was demonstrated by the results that naïve tissue 

resident macrophages from LysMCreIL4Rαflox/- mice almost completely lost IL4Rα 

function while a large fraction of inflammation-stimulated macrophages failed to 

repeal IL4Rα127. Taken together, the four mechanisms mentioned above 

probably synergize or work independently and result in the unchanged M2 

macrophage populations in vivo in our model.  

Neutrophils 
As LysMcreIL4Rαflox/flox also ablates IL4Rα in neutrophils, our results also 

reflect the effect of IL4Rα deletion in neutrophils. Based on our data from flow 

cytometry, no change was shown in neutrophils of heart and aorta as a result of 

IL4Rα ablation (Figure. 3.12 and Figure. 3.15), which suggests that IL4Rα 

deficiency in neutrophils does not at least change their migration into the injured 

tissues. This is consistent with the study by Wenzel et. Al. who showed that 

restoration of neutrophils in LysMiDTR driven myeloid cells ablated mice did not 

restore pathophysiological action of AngII15. However, more neutrophils were 

shown in blood and spleen of sham MyIL4RαKO mice, which indicates the higher 
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level of inflammation and this is supported by the result that selective depletion of 

circulating neutrophils protects against oxidative stress in AngII-induced 

hypertension128.  

T cells 
T cells have also been shown to be involved in hypertension via infiltrating 

into organs that control blood pressure129, 130. A landmark study by Guzik et al. 

demonstrated that recombinase-activating gene 1 (Rag1) deficient mice, which 

fail to develop B and T lymphocytes, were protected from hypertension induced 

by AngII or DOCA-salt. Importantly, the hypertensive responses were restored by 

adoptive transfer of T cells, but not B cells129. These results were confirmed by 

Mattson et al. who observed a similar phenotype in Rag1-/- mice131. T cells 

accumulate in the kidney and vasculature of hypertensive mice, release 

inflammatory cytokines, produce ROS, and promote renal and vasculature 

dysfunction132, 133. Blocking T cell infiltration by immunosuppressive drug 

mycophenolate acid reduces intrarenal AngII and prevents hypertension and 

kidney damage112, 134, 135. Furthermore, circulating T cells induced by AngII were 

described with effector phenotype in vivo and in vitro 129, 136. In addition to T 

effector cells, T regulatory cells are also involved in hypertension and play a role 

that is opposite of T effector cells. Adoptive transfer regulatory T cells (Tregs) 

diminished AngII-induced hypertension, vascular stiffening and inflammation, as 

Tregs are innate and adaptive immune responses suppressing cells137. Innate 

immune system release signals to activate T effector cells and their 

differentiation towards pro-inflammatory Th1 and Th17 phenotypes. These T 

effector cells promote low-grade inflammation by producing pro-inflammatory 

cytokines, which eventually lead to increase in blood pressure and end-organ 

damage. In contrast, Tregs counteract effects associated with hypertension by 

suppressing immune responses. Imbalance of T effector cells and Tregs 

aggravates inflammation, elicits increase in blood pressure and leads to end-

organ damage in hypertensive patients117. However, no significant increase of 

infiltrating T cells was shown in response to AngII and high salt in our study 

(Figure. 3.12, and Figure. 3.15), which partially can be explained technically. T 
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cells are know accumulating in perivascular fat 111, 129 to impair endothelial 

function and cause vascular fibrosis136, 138-140, but when we collect the aorta 

tissues, in order to more specifically analyze aorta, we tried to exclude the 

surrounding adipose tissues, where a lot T cells accumulate. Distinct from injured 

tissues and blood, more T cells were detected in spleen from hypertensive mice 

(Figure. 3.17C), which probably resulted from the enlargement of spleen (Figure. 

3.17A). This is consistent with the significant spleen hypertrophy and more 

proliferative immature lymphocytes in AngII-infused apolipoprotein E (ApoE)-/- 

mice141.  

Prospect in Future 
Overall, as IL4Rα signaling in myeloid cells is significantly involved in 

cardiovascular remodeling induced by hypertension, specifically targeting 

myeloid IL4Rα signaling pathway could suppress excess pro-fibrotic remodeling 

and protect cardiovascular function. However, the timing and the extent are very 

important. For example, attenuating inflammation in the early phase of 

myocardial infarction could be beneficial, however, inhibiting fibrosis initially could 

lead to cardiac rupture or aneurysm11, 142-144. Myeloid IL4Rα signaling involves 

both anti-inflammatory and pro-fibrotic pathways in cardiovascular remodeling. 

Targeting myeloid IL4Rα to limit the pro-fibrotic role but not suppress the anti-

inflammatory effect is not easy to control. Therefore, comprehensive and 

accurate spatio-temporal description of the components in the anti-inflammatory 

and pro-fibrotic pathways is necessary, and specific drugs that target these 

pathways need to be evaluated.  
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CHAPTER IV 
SUMMARY AND CONCLUSIONS 

 
Overview 

Previous work from our lab has demonstrated that macrophage activation 

and polarization are important for inflammation in response to cardiac damage 

and ischemic stroke1, 2. The mineralocorticoid receptor controls macrophage 

polarization, and ablation of the mineralocorticoid receptor in macrophages 

results in an alternatively activated (M2) profile and suppresses classical 

activation (M1). This change in macrophage polarization contributes to the 

protective effect of mineralocorticoid receptor deficiency on L-NG-nitroarginine 

methyl ester (L-NAME)/AngII-induced cardiac and vascular remodeling1 and 

neuroprotection in experimental stroke2. Most importantly, these results indicate 

that macrophages are critical target cell types for mineralocorticoid receptor 

antagonists that have been widely used in the treatment of cardiovascular 

diseases.  

Based on these previous findings, the original goal of the present study 

was to regulate macrophage polarization by modifying macrophage-specific 

molecules that control macrophage phenotype and test the importance of 

macrophages as a target cell type in the cardiac injury models myocardial 

infarction and AngII/Salt-induced hypertensive cardiac injury. IL4Rα signaling is a 

well established and potent inducer of alternative activation (M2) in 

macrophages, and M2 macrophages are significantly involved in resolution of 

inflammation, wound healing and tissue repair3, 4, and pathological fibrosis5, 6. We 

hypothesized that macrophage IL4Rα signaling inhibits inflammatory responses, 

but promotes fibrosis in cardiovascular remodeling post injury through M2 

macrophage activation and polarization; therefore blocking IL4Rα signaling in 

macrophages could exaggerate systemic inflammation, but ameliorate fibrosis, 
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leading to alterations in cardiovascular remodeling and subsequent changes in 

cardiac function.  

In order to test this hypothesis, we generated myeloid-specific IL4Rα 

knockout mice (MyIL4RαKO), which have genetic ablation of IL4Rα in myeloid 

lineage cells including monocytes, macrophages and neutrophils. We subjected 

these mice to cardiac injury/stress using experimental myocardial infarction and 

AngII/Salt-induced hypertensive cardiac injury models and investigated whether 

macrophages are the main target cell type of endogenous IL4/IL-13 signaling 

during cardiac remodeling and whether myeloid-specific IL4Rα signaling affects 

inflammation, pro-fibrotic remodeling and cardiac function.  

Based on the expression of M1/M2 macrophage markers, in vitro 

macrophages isolated from MyIL4RαKO mice showed significantly blunted 

responses to the M2 macrophage stimulus IL-4 and in contrast had markedly 

increased responses to the M1 macrophage stimulus LPS. This demonstrates 

the importance of IL4Rα signaling in macrophage polarization, particularly with 

respect to the activation and polarization of M2 macrophages.  

During myocardial infarction (MI), the infarct size of MyIL4RαKO mice was 

significantly decreased at 1-week post MI and the infarct thickness was 

significantly increased at 3-week. This suggests that IL4Rα in macrophages is an 

important target for endogenous IL-4/IL-13 and that myeloid IL4Rα signaling is 

importantly involved in cardiac remodeling post MI. In addition, IL4Rα deletion in 

myeloid cells enhanced perivascular fibrosis and caused more severe cardiac 

dysfunction, suggesting a protective role for myeloid IL4Rα signaling in cardiac 

remodeling post MI. Surprisingly, there was no obvious change in alternatively 

activated M2-like macrophage populations in infarct tissues post-MI, which 

indicates that the increased adverse cardiac remodeling caused by lacking of 

IL4Rα in myeloid cells is not through a simple global change of M2-like 

macrophages. Taken together, myeloid IL4Rα signaling is necessary for 

appropriate cardiac remodeling post MI, and macrophages are important target 

cell types for IL-4/IL-13 signaling, therefore myeloid IL4Rα signaling may be a 

potential therapeutic strategy for patients post MI. 
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In AngII/Salt-induced hypertensive cardiac injury, myeloid-specific IL4Rα 

ablation caused significant upregulation of ROS generation-related genes, 

indicating there is enhanced inflammation in MyIL4RαKO mice. This is 

accompanied by a substantial decrease in cardiovascular fibrosis, which may 

attribute to the significant down-regulation of TGFβ signaling and Gal3 signaling. 

The results above suggest that myeloid IL4Rα signaling is importantly involved 

the suppression of oxidative stress development and pro-fibrotic cardiovascular 

remodeling, two opposite effects regarding cardiac function. By performing 

echocardiography, we found that cardiac and aortic function of MyIL4RαKO mice 

was largely preserved in chronic hypertension, while that of control mice was 

significantly impaired. Surprisingly, but consistent with the infarction model, the 

changes in cardiovascular remodeling were not simply due to the disturbed 

macrophage polarization because no in vivo changes  in M1/M2 macrophages 

were detected by flow cytometry. In conclusion, myeloid IL4Rα signaling is 

significantly involved in cardiovascular remodeling induced by chronic 

hypertensive injury, and myeloid lineage cells are critical targets of endogenous 

IL-4/IL-13. Importantly, instead of M1/M2 macrophage polarization alteration, 

increased systemic inflammation and decreased pro-fibrotic remodeling in 

MyIL4RαKO mice is mediated by a more complicated mechanism of myeloid 

cells, which needs to be determined in the future. 

Overall in this dissertation, we demonstrated the following important 

findings: 1) myeloid cells are critical targets of endogenous IL-4/IL-13 signaling; 2) 

myeloid IL4Rα signaling involves more than simply regulating M1/M2 

macrophage polarization, and the present M1/M2 paradigm is inadequate; 3) 

IL4Rα signaling differentially affects resident and monocyte-derived infiltrating 

macrophages; 4) the effect of myeloid IL4Rα signaling on cardiac and vascular 

remodeling varies depending on the type and severity of the injury/stress. The 

last two conclusions were not specifically emphasized, but will be discussed later 

in this chapter.  

Myeloid cells are critical targets of IL-4/IL-13 
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IL-4 and IL-13 are anti-inflammatory cytokines, and the signaling pathways 

driven by these two cytokines have been shown to be very important in cardiac 

and vascular remodeling after injury. IL-4 administration improved post-MI 

prognosis and cardiac function7. Cardiac fibrosis induced by pressure overload 

was considerably attenuated by anti-IL-4 neutralizing antibody8, and IL-4 

deficient mice displayed reduced interstitial myocardial fibrosis in response to 

AngII9. However, the target cell type(s) of IL-4/IL-13 in cardiovascular remodeling 

have been unclear. 

IL4Rα is the common chain of IL-4/IL-13 receptors by which IL-4 and IL-13 

activate their signaling pathways, therefore we employed the use of myeloid 

specific IL4Rα deficient mice to identify the contribution of macrophages in 

endogenous IL-4/IL-13 mediated cardiovascular remodeling. By blocking IL4Rα 

signaling specifically in myeloid cells, infarct size post-MI was decreased 

temporarily, perivascular fibrosis was increased and cardiac function was more 

significantly impaired post-MI. Both interstitial and peri-vascular fibrosis were 

significantly decreased during AngII/Salt-induced hypertensive injury. These 

results indicate that myeloid cells are important mediators of endogenous IL-4/IL-

13-induced changes in cardiovascular remodeling during acute and chronic 

cardiac injury. Macrophages represent the largest population of myeloid lineage 

cells in the heart and vasculature in the models we tested, and these results 

highlight a significant role of macrophages in IL4Rα signaling-mediated 

remodeling. This is further supported by the similar degree of fibrosis detected in 

global IL4Rα deficient and myeloid-specific IL4Rα deficient mice during a chronic 

pancreatitis model. They found that myeloid-specific IL4Rα knockout 

phenocopied the global IL4Rα deficient mice indicating that myeloid cells were 

the critical cell types mediating the fibrotic effects of IL4Rα signaling10.  

The significant role of myeloid cells or macrophages in IL4Rα signaling-

mediated cardiac and vascular remodeling in our studies could be confirmed by 

generating the whole body IL4Rα knockout (IL4Rα-/-) mice, and then comparing 

the remodeling phenotypes between IL4Rα-/- and MyIL4RαKO mice. If IL4Rα-/- 

mice phenocopy the myeloid-specific IL4Rα deficient mice, that would indicate 
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myeloid cells/macrophages are critical cell specific targets in endogenous IL-4/IL-

13 mediated cardiovascular remodeling. An alternative scenario would be to 

administer IL-4 in MyIL4RαKO and control mice that are subjected to myocardial 

infarction. If administration of IL-4 decreases cardiac damage and improves 

cardiac function in control mice but not in MyIL4RαKO mice, that would also 

demonstrate a predominant role for myeloid cells or macrophages in IL-4-

mediated protection.  

Myeloid cells include monocytes/macrophages and neutrophils, and both 

monocytes/macrophages and neutrophils express IL4Rα, so we cannot exclude 

the possible contribution of neutrophils in our studies. Although we did measure 

the neutrophil population in our studies by flow cytometry, further experiments 

testing the response of neutrophils to IL-4 or other inflammatory stimuli during 

IL4Rα deficiency would provide additional insight. Furthermore, to particularly 

delineate the contribution of neutrophils in IL4Rα signaling-mediated 

cardiovascular remodeling after injury/stress, neutrophil-specific IL4Rα knockout 

using the Mrp8 (S100A8)-Cre would be a possible approach.  

Inadequacy of M1/M2 macrophage paradigm 

IL4Rα signaling is a well-established mechanism of IL-4-induced M2 

macrophage activation and polarization. Consistent with this role, IL-4 stimulation 

of IL4RαKO macrophages showed a dampened response in polarization 

compared with macrophages from control mice. Although we saw some similar 

changes at baseline in cardiac tissue, we did not see this phenotype in vivo in 

cardiac injury models. No change was detected in M2-like macrophages 

characterized by CD11b+F4/80+CD206+ in injured tissues between MyIL4RαKO 

and control mice either after MI or hypertensive cardiac injury. This raises the 

question that after injury macrophage polarization is not changed by deleting 

IL4Rα, or the properties of macrophages are changed but the present M1/M2 

paradigm is not adequate to describe it? 

This would indicate a diminished role for endogenous IL-4/IL-13 since the 

in vitro data clearly showed that deficiency of IL4Rα in macrophages significantly 

decreased the expression of M2 macrophage markers, but increased the M1 
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macrophage markers. In vivo, the lack of IL4Rα in myeloid cells caused 

substantial alteration in cardiovascular remodeling: enhanced cardiac dysfunction 

post-MI and attenuated cardiac and vascular fibrosis post hypertensive injury. 

Since macrophages represent one of the major myeloid cell types in the injured 

myocardium, and the infiltration of neutrophils was not largely changed in 

MyIL4Rα mice, the significant differences in cardiovascular remodeling caused 

by myeloid-specific IL4Rα ablation is likely to be mediated through its effects on 

macrophages.  

It is likely that the deficiency of IL4Rα did change the properties of 

macrophage in vivo, however, the present M1/M2 model we used is not sufficient 

enough to reveal these changes. This indicates the inadequacy of the M1/M2 

dichotomy since the M1/M2 model is based on the in vitro activation of 

macrophages, which stimulates macrophages with a defined set of factors. This 

does not resemble anything that occurs in vivo11. Instead of M1 and M2, two 

polarized extremes, macrophages exist as a wide spectrum that line between M1 

and M2. Presently, we lack markers to characterize the intermediates. Current 

markers only characterize the two extremes, for example TNFα and CD206 are 

commonly used in flow cytometry to identify M1 and M2 macrophages 

respectively. The transcriptional profiles of human macrophages display a broad 

transcriptional range that challenges the M1/M2 paradigm11. Third, stimuli in 

cardiovascular diseases may activate macrophages that are considerably 

deviated from the M1/M2 axis.  

Based on the rationale above, in order to characterize macrophages from 

MyIL4RαKO mice in cardiovascular remodeling more broadly, in addition to the 

current M1 and M2 macrophage markers that are more involved in M2a subset, 

the genes to be determined can be more extended, such as the genes typically 

expressed by M2b, M2c and M2d subsets. Additionally, instead of measuring 

gene expression in the tissue, specifically sort pure macrophage population from 

injured tissues by flow cytometry and then determine the expression of M1/M2 

macrophage related genes by RNA sequencing and qRT-PCR would definitely 
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provide more information about the role of IL4Rα signaling in macrophage 

polarization during cardiovascular remodeling.  

IL4Rα signaling in resident and infiltrating macrophages 
We have consistently shown in our studies that the expression of certain 

genes is significantly changed in heart and aorta at basal levels as a result of 

myeloid IL4Rα deletion. However, these differences disappear in the 

inflammatory state after MI and AngII/Salt-induced hypertensive injury. These 

genes include BNP, Arg1, TNFα, IL-1β, MCP-1, IL-6, Nox1 and Nox4 in heart, 

and Col1A1, MMP2, MMP8, PDGFα and Gal-3 in aorta. This is a wide range of 

genes involved in a variety of pathophysiological processes such as hypertrophy, 

inflammation, oxidative stress, fibrosis, and M2 macrophage polarization, which 

suggests a systemic effect rather than a random event caused by myeloid cells 

lacking IL4Rα. The main difference of myeloid cells in the determined tissues at 

steady state and those at inflammatory state is that, the macrophages at steady 

state are resident macrophages while the macrophages upon inflammation are 

infiltrating macrophages.  

Most resident macrophages in steady state originate from the embryonic 

yolk sac, while macrophages in the inflammatory state are mainly from circulating 

monocytes derived from bone marrow hematopoietic stem cells, although 

proliferation of resident macrophages also contributes. The distinct origin of 

resident and infiltrating macrophages may explain the significant differences in 

gene expression at basal level that disappear after inflammation. This may also 

partially contribute to the different responses of MyIL4RαKO mice in terms of 

cardiac function in two different models: severe acute injury in MI and the more 

mild hypertensive injury induced by AngII/Salt, because compared with control 

mice, MyIL4Rα mice displayed worse cardiac function after MI, but a more 

preserved cardiac function in response to hypertension. In MI induced by 

permanent occlusion, resident macrophages can be replaced by monocyte-

derived infiltrating macrophages12. In hypertensive cardiac injury induced by 

AngII and high salt, where the injury is more mild and chronic, cardiac 

macrophages are also replaced by hematopoietic-derived monocytes although it 
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is possible that a more mild and chronic progression of injury will result in 

maintaining a macrophage population that originates from local proliferation of 

the resident macrophage pool. 

Although it is suggestive that IL4Rα signaling may differentially regulate 

resident and infiltrating macrophages, the gene expression data that we acquired 

is all based on analysis of transcripts from cardiac tissue rather than purified 

macrophages. In order to test our hypothesis, it would be necessary to isolate 

macrophages from sham and injured cardiac tissue using cell sorting, and then 

perform RNA sequencing and qRT-PCR to characterize their transcriptional 

profile, including genes associated with hypertrophy, ROS generation, 

inflammation progression and fibrosis. This would help to distinguish resident and 

infiltrating macrophages and to demonstrate the involvement of IL4Rα signaling 

in these two distinct macrophage populations. In addition, CCR2 is currently 

considered as a marker that is positive in monocyte-derived infiltrating 

macrophages but negative in yolk sac-derived resident macrophages13, 14, so 

specifically sort CCR2- and CCR2+ cells from control and MyIL4RαKO mice in MI 

and AngII/salt-induced injury model, and then determine their transcriptional 

prolife can more specifically demonstrate the role of IL4Rα signaling tissue 

resident and monocyte-derived infiltrating macrophages.  

The fate of embryonic yolk sac-originated, resident macrophages and 

bone marrow hematopoietic stem cell-derived infiltrating macrophages after 

injury and their contribution in the modulation of the post injury inflammation is 

still unknown. In order to investigate how IL4Rα signaling differentially regulates 

resident and infiltrating macrophages during cardiac injury, lineage tracing 

experiments could be employed. This would identify changes in the proliferation 

of resident macrophages and also the recruitment and proliferation of 

hematopoietic-derived infiltrating macrophages. MyIL4RαKO mice could be 

crossed to a GFP reporter line and MyIL4RαKO/GFP bone marrow chimeras 

could be generated to create myeloid IL4RαKO in the resident cardiac 

macrophage population or in the circulating hematopoietic-derived 

monocyte/macrophage lineage. We can then trace the number and recruitment 
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of GFP-labeled resident macrophages or non-GFP-labeled infiltrating 

macrophages after injury in MyIL4RαKO mice in order to clarify the involvement 

of IL4Rα signaling in the proliferation and recruitment of these two distinct 

macrophage population. Alternately, the temporally regulated CX3CR1CreERT2 Cre 

line could be used to generate IL4Rα knockout in the resident cardiac 

macrophage population, but not the infiltrating macrophage population. Since the 

resident cardiac macrophage population is maintained through self-renewal, 

transient tamoxifen administration will cause IL4Rα gene inactivation that will be 

maintained indefinitely through local proliferation. In contrast, IL4Rα gene 

inactivation in circulating monocytes will be transient since they are continuously 

replaced by new hematopoietic stem cell-derived monocytes, therefore after 2-4 

weeks all circulating monocytes will have wild type IL4Rα.  

It has been reported that monocytes/macrophage turnover and flux occurs 

extremely rapidly during MI and these cells are also capable of exiting the heart 

during inflammation15. In order to investigate macrophage and monocyte kinetics 

and whether IL4Rα signaling is involved in the modulation of macrophage exit, 

dioctadecyloxacarbocyanine (DiO) can be used to label tissue-specific resident 

macrophages. Through intramyocardial injection of DiO, resident macrophages in 

heart but not circulating cells can be labeled. In order to trace the exit of cardiac 

resident macrophages during inflammation, we can detect DiO+ macrophages in 

heart, lymph nodes, spleen and bone marrow after injury with flow cytometry, and 

identify if IL4Rα signaling affects macrophage kinetics and the regulation of 

cardiac resident macrophage exit.  

Macrophage-specific transcriptional profile assay and lineage tracing of 

embryonically-derived resident macrophage and monocyte-derived infiltrating 

macrophage populations after injury can collectively distinguish the role of IL4Rα 

signaling in these two distinctive macrophage subsets. Furthermore, these future 

experiments can provide valuable mechanistic information about myeloid IL4Rα 

signaling and identify the contribution of resident and infiltrating macrophages in 

cardiac remodeling post MI or AngII and high salt. 
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