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ABSTRACT  

 

Despite large advances in design automation of digital circuits to match the advance of 

Moore’s law, Analog design techniques have remained relatively unchanged. Recently, cell-

based methodologies leveraging digital place and route tools have been explored in order to 

accelerate the design of common analog circuit blocks, such as Phase Locked Loops (PLLs). 

However, to date these designs have been implemented in older process nodes, and have 

otherwise failed to target the needs of the high speed processors which dominate the 

semiconductor industry. 

This thesis examines that state of cell-based analog design automation, and presents new 

techniques which will enable this approach to be used for analog blocks high speed 

processors. First, analytical modeling was performed for cell-based oscillators, removing the 

ad hoc circuit design process and enabling the number of iterative to design cycles to be 

drastically reduced. Additional circuit techniques which can be leveraged in cell-based PLLs 

were explored and two prototypes were implemented. In the first, a cascaded fast locking 

frequency generation circuit was created in a 28nm SOI process. This achieves fractional-N 

operation using an innovative controller, and design leverages binary search for fast locking. 

In the second, a 5GHz wide-bandwidth PLL for processor clocking was created in a 14nm 

FinFET process. This design achieves the widest output frequency range among synthesized 
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PLLs. Finally, this design approach was extended to implement a phase interpolator for a 

clock and data recovery (CDR) circuit, enabling a fully synthesized CDR. 
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Over the past nearly seven decades, the integrated circuit has evolved from an experiment 

in a Texas Instruments lab to the backbone of the modern information economy. From 

massive data centers [1], [2], to ubiquitous smart phones [3], to the smallest remote sensors 

[4], [5], modern integrated circuits touch nearly every aspect of our lives. Modern processors 

and Systems on Chip (SoCs) can contain billions of transistors, and represent a balance of 

performance, power consumption, connectivity, and other abilities [6], [7]. Figure 1.1 shows 

the various end-market applications which drive the more than $300 billion dollar 

semiconductor industry [8]. 

 

Figure 1.1: Applications of Integrated Circuits [9] 

CHAPTER 1 

Introduction 
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A typical digital processor is shown in Figure 1.2. It consists of one or more cores or other 

logic components, which are produced through an automated design process from a logic 

description. These cores are attached to an on-chip memory which can be automatically 

generated using a memory compiler. These represent the core digital components of the 

processor, but they are surrounded by several analog circuits which contribute to the 

processors final operation. Clock generation, voltage regulation, and high speed I/O are all 

commonly needed on-chip in high speed processors [10]. SoCs may require additional analog 

peripherals such as communication radios [11], [12]. For all of these additional analog 

blocks, the design process is still largely done without automation. 

Processor

Processor Cores

Memory

Serial I/Os

Clocking

Power Mgmt

Custom Design

Automated Design

 

Figure 1.2: Typical Components of a Digital Processor  

1.1. The Steady Advance of Digital IC Design  

Moore’s law process scaling has continued to drive the performance of digital devices 

forward, enabling increasingly advanced applications [13]. These increasing complex digital 
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designs are enabled by increasingly powerful digital electronic design automation (EDA) 

tools [14]–[16]. A typical digital EDA flow is shown in Figure 1.3. Digital designers describe 

their design using a hardware description language (HDL) to model the logic. Constraints are 

applied to the physical implementation to ensure that the resulting synchronous circuit can 

operate at the intended frequency and under the intended conditions. The designer inputs 

are then fed to a synthesis tool such as Synopsys’ Design Compiler, which will convert the 

logic description to a circuit made of logic gates from a standard cell library. Finally, this 

structural circuit description in physically implemented using a place and route tools such 

as Cadence’s Innovus. These so-called “back end” tools will attempt to iteratively optimize 

the design until it meets all timing constraints, yielding a passing design. This design 

methodology is what allows processors with billions of transistors to be successfully 

developed in a relatively short timeframe. 

 

Figure 1.3: The Typical Digital Design Flow [15] 
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1.2. Analog Challenges in Digital Chips 

While Moore’s law and digital EDA have enabled huge advances in digital circuits, the same 

cannot be said for the analog support circuits that these processors and SoCs rely on.  The 

power and delay benefits that process scaling brings to digital circuits bring many penalties 

with them to analog circuits. For one, smaller geometries typically result in increased 

mismatch, and increased mismatch means that creating functioning analog circuits requires 

substantially more effort [17]. Analog designers may be forced to use larger devices or 

include calibration mechanisms [18], [19]. Scaled processes also frequently have increased 

excess device noise and lower supply voltages which directly impact the noise performance 

of analog circuits. And although bandwidth increases, lower gain of scaled processes makes 

the design of many traditional analog blocks difficult. Finally, the availability of analog 

models for transistors in a process typically lags the availability of digital models, 

complicating the circuit design of analog blocks in new process nodes. 

Analog design also faces numerous challenges not faced in digital design from the physical 

design perspective, which is the drawing of the transistors and interconnect. In order to 

achieve continued process scaling, in particular for FinFETs, technologies such as double and 

triple patterning have been employed to print the small features [20], along with additional 

factors such as quantized device sizes [21]. Additionally, layout dependent effects (LDE) can 

drastically alter device performance beyond normal parasitic effects, providing another set 

of rules which must be followed in practice. The number of layout design rules is increasing 

exponentially as process scaling continues, as shown in figure 1.4 [22]. To date, there have 

been no widely accepted design automation methodologies for analog physical design. While 

digital EDA tools have been continually developed in order to automate digital designs in 
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spite of these increases in rules, the manual human-in-the-loop layout used in analog design 

has led to a dramatic increase in physical design time. Additionally, many analog circuits 

require the use of additional backend components such as MIMCAPs and inductors which 

are not used in digital design, complicating integration. Finally, because there is no tool for 

translating a behavioral description of an analog circuit to a physical netlist, which is 

common-place in the digital design flow, porting an analog design from one process node to 

another often involves a complete manual redesign from scratch.  

 

Figure 1.4: DRC Complexity Increases Exponentially as Process Scaling Continues 

[22] 
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1.3. Attempts at Solving the Analog Problem 

Multiple approaches have been attempted in academia and industry to alleviate the many 

issues with analog design highlighted here. Some have found commercial success in limited 

applications, while others have not. A broad overview of two major ideas in solving analog 

design automation problems is given below.  

1.3.1. Digitally-Assisted Analog 

Much attention has been given to an approach called “digitally-assisted analog”, where 

digital components are used to enhance the functionality of analog circuits [23]. Highly 

digital architectures, which replace analog sub-blocks with equivalent digital components 

are used as a means to reduce susceptibility to analog performance problems, and to 

increase design reusability. An example is the all-digital phase locked loop (ADPLL), such as 

that shown in Fig. 1.5 [24]. In a typical ADPLL, the analog phase detector, loop filter, and 

voltage controlled oscillator (VCO) blocks are replaced with a time to digital converter (TDC), 

digital loop filter (DLF), and digitally controlled oscillator (DCO). This allows the number of 

analog components to be reduced, shrinking and improving the design. A similar approach 

of block substitution has been applied to other analog blocks, such as some radio 

transceivers [25], [26]. Another approach is the digital linearization of analog nonlinearities. 

In this case, a digital function is applied to a signal before it goes to or after it comes from the 

analog domain, in order to cancel the nonlinearity of analog components [27].  

Overall, digitally-assisted analog has yielded substantial benefits in a number of areas, and 

has been widely adopted by industry. However, while it is effective for the blocks which 

become completely digital, such as filters, in reality the TDC and DCO are mixed-signal 
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blocks, which are then designed and laid out through the same custom process as their 

analog predecessors. This means that the suffer from the same drawbacks, to a large extent. 

In addition, using digital control on an analog block produces another drawback in the form 

of quantization noise. Quantization noise is a performance degradation that occurs due to 

the finite resolution of digital circuits, and contributes directly to the phase noise of ADPLLs, 

both in the TDC and DCO [28]. 

Time 
-to- 

Digital

Digital
Loop Filter

Divider

ref(t) out(t)

DCO

 

Figure 1.5: A Typical ADPLL Architecture [24] 

1.3.2. Analog Design Automation 

In addition to work on digitally-assisted analog, a substantial amount of effort has been 

devoted to analog design automation over the past several decades. These strategies include 

analog standard cells, predetermined or derived analytical models, automatic optimization, 

and genetic algorithms, among others. The following is a short history.  

In the late 1980s, following the development of the first EDA tools for digital design, 

researches started exploring the idea of creating analog standard cell libraries, which were 

intended to contain many typical analog functions, such as amplifiers and data convertors 
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[29], [30]. The elements of these cell libraries would be relatively complicated analog blocks, 

such as operational amplifiers, passive arrays, filters, oscillators, voltage references, with 

some even specifying data converters as elements. However, while assembling a library of 

digital cells which can implement most of the desirable functionality of digital circuits is 

straightforward, the same is not true for analog design. The variation in analog performance 

parameters is much wider than in digital, and as process scaling continued to make analog 

design more complicated, the idea of building larger analog functionality from a readily 

available library became less and less realistic. Today this idea survives to an extent as the 

analog IP market (e.g. TrueCircuits, Analogbits, Synopsis), which provides blocks which new 

designs may be assembled from, but without any sort of automated synthesis. 

An additional approach to analog automation has been the attempted use of analytical 

equations in order to perform the automated generation of analog blocks. The most basic of 

these are tools which would use specifications to perform sizing on fixed circuit schematics, 

such as OPASYN [31], [32]. These tools would use predetermined analytical equations 

derived from a specific circuit topology to determine circuit performance, then adjust device 

sizes using convex optimization until the design specification was met. Later tools such as 

OASYS broke the analog block into hierarchical components and then applied the 

optimization [33]–[35]. This concept was expanded on by the next generation of tools in a 

variety of directions. One class of tools continued focusing on analytical equations, using 

design specified equations and more powerful optimization engines. However, this approach 

never gained momentum due to the failure of analytical equations to accurately capture 

important aspects of analog designs [36]. More successful tools leveraged commercial 

simulators in the feedback loop in order to analyze performance. In the late 90s and early 
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00s, approaches such as using genetic algorithms to replicate analog designer intuition were 

attempted [37]. However, many of these tools were not able to properly optimize across 

layers of hierarchy, as is often required in analog design. 

To date, while some analog design automation features have been absorbed into commercial 

EDA tools, no complete solution has had significant success [38]–[40]. While existing tools 

have been able to produce functional designs, they cover only a small portion of the analog 

application space. These tools could only produce small blocks or a narrow class of systems, 

meaning that outside of a few specific cases, designers were forced to fall back on custom 

design [41]. Additionally, they were largely not portable across process, requiring 

substantial engineering effort for every new process node that greatly hampered any 

potential usefulness. 

1.4. Digitally-Assisted Cell-Based Analog Design 

Learning from previous attempts, a new approach for analog system design automation has 

emerged that combines optimization with digitally-intensive architectures which we refer 

to as digitally-assisted cell-based analog design. 

Digitally-assisted cell-based analog design takes the idea of individually characterized circuit 

cells from digital circuits, and applies it to analog design. However, in contrast with the 

original analog standard cell libraries, the cells involved here are not intended to represent 

individual units of analog functionality [29], [30]. Instead, digitally intensive architectures 

are used to reduce the number of essential analog circuits which must be created. The 

portions which must be analog are made tunable by breaking them into individual digitally 

controlled tuning cells, which can be placed separately into a cell grid and later routed. 
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Digital tuning can then be accomplished either using calibration or closed loop feedback, 

such as in a PLL, removing strict analog performance requirements from individual 

elements. By leveraging the digital tools in this way, the automated solutions to process 

scaling developed for digital circuits can be extended to analog circuits.  

Part of the reason that this is now possible is because of an interesting trend that has 

appeared in digital design, in parallel with the difficulty of analog design. While digital 

performance continues to benefit from scaling, the actual design of digital circuits has grown 

increasingly difficult for many of the same reasons as analog design. Increased process 

variation, temperature sensitivity, interconnect parasitics, layout effects, DRC requirements, 

and modeling complexity have all begun to limit digital design. Many of the assumptions of 

the original digital tools are no longer valid, leading to an expanding range of tools and 

models for various effects used in the design and verification of modern digital elements. 

Digital design has in fact become closer and closer to analog design. This fact has motivated 

the use of digital tools to perform more analog design functions. One method this has been 

achieved with is the use of cell-based analog design. 

An example of the cell-based analog design flow for ADPLLs is shown in Figure 1.6. 

The design starts with specifications for the PLL such as output frequency tuning range and 

jitter. From this, the required DCO and TDC resolutions are calculated to achieve the jitter 

specification. One or more oscillator cells are designed or selected from a library in order to 

create the first version of the oscillator. The digital synthesis and place and route flows are 

used to generate the entire PLL design, using a parameterized Verilog description. The 

performance of the oscillator is then measured (typically using SPICE simulations), and 

compared to the specification. Based on the difference between the to, either oscillator 
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topology is changed, or the cell changed. If a cell change is used, it can either involve altering 

a custom cell, or selecting a different cell from a library. This process can be iterated until a 

PLL design which meets specifications after layout is found. While this entire loop can be 

performed manually or in principle entirely automated, the general process remains the 

same. 

 

Figure 1.6: The Cell-Based Analog Design Flow [42] 

Digitally-assisted cell-based analog design was first highlighted in [43], using digital 

standard cells to create a lower power transmitter, and was further explored in [44], [45], 

which implemented an all-digital phase locked loop using only digital standard cells. These 

works showed the initial viability of cell-based design as a design technique for analog 

circuits. Other works extended the use of digital standard cells to blocks such as ADCs and 

DACs [46], [47]. However, in all of these cases, the potential performance of the final design 

was needlessly limited by constructing the design from existing digital standard cells, which 

were intended for a completely different purpose. While from an academic perspective, it 

may seem nice to avoid designing cells when some already exist, in the context of global 

semiconductor production, constructing an analog cell library which could be used to 

produce a wide variety of final designs represents a very small investment for a potentially 

large performance reward. Later works explored the application of this methodology to low-
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power radios, using custom delay cells to build a ring oscillator [42], [48]. While this showed 

the effectiveness of custom cells, it offers a limited application space, since the majority of 

wireless standards require LC oscillators in order to meet phase noise specifications.  Recent 

research has showed that the strategy may be extensible to LC oscillators, although work is 

early [49]. Additional work has extended this approach using custom cells to DACs, with 

positive results [47]. 

1.5. Thesis Contributions 

A broad application area for cell-based analog design is in clock generators and other timing 

based circuits for digital processor applications. A common digital processor can feature as 

many as 10 PLLs, with several different requirement sets [50], [51]. Additionally, these 

circuits are often ring oscillator based, and may benefit from being tightly integrated with 

the digital core. With the above in mind, this work explores methods to apply cell-based 

analog design to the practical problems facing analog design for digital processors in 

advanced nodes. The specific contributions of this work are as follows: 

1. Modeling Techniques for Cell-Based Ring Oscillators 

Two modeling techniques which take advantage of the structure of cell-based ring 

oscillators are developed and explored. The first relies on the characterization of a 

single oscillator fitting analytical equations to the measured data. The properties of 

other oscillators made from the same cell are derived from this. The second technique 

leverages static timing analysis to characterize a single oscillator cell, and accurately 

predict frequency after automated layout. These techniques are addressed in Chapter 

2. 
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2. A Fast-Locking Cascaded Frac-N PLL with a Binary Search Engine 

A novel fractional-N PLL architecture based on two cascaded PLLs was implemented 

entirely using the cell-based analog design flows. The PLL targets the 900 – 940 MHz 

range, and utilizes a binary search algorithm in order to achieve extremely fast 

locking time. Details of the architecture and cells used in this design are discussed in 

Chapter 3. 

3. A 5GHz Wide-Bandwidth FinFET PLL for Processor Clocking 

A PLL specifically design for clocking a multicore high-performance processor was 

developed in a 14nm FinFET process using the cell-based analog flow. Using a phase 

domain architecture, 8MHz bandwidth was achieved. A high frequency target was 

selected to allow division to achieve 50% duty cycle, while architectural innovations 

allowed low jitter. The details of this design are presented in Chapter 4. 

4. A Cell-based SERDES interface designed for SoC applications 

Finally, future work for the proposed thesis will move beyond PLLs into another 

analog block which is perhaps even more important to digital processors: high speed 

SERDES I/O circuits. The cell-based analog flow will be used to develop a clock and 

data recovery circuit, as well as the transmit and receive equalization circuit for a 

SERDES transceiver with a multi-gigabit datarate. The details of this design will be 

discussed in Chapter 5. 

Across these contributions, a variety of architectures, circuits, and custom cell designs are 

explored in order to best tackle the problem of automating analog design in high 

performance processors. In tackling clock generation and SERDES, this work seeks to make 

the automation picture in Figure 1.7 a reality.  
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Figure 1.7: Typical Processor Blocks, with analog design automation from this 

research. 
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Previous work has shown that ADPLLs can be automatically designed using a cell-based ring 

oscillator as a core [42], [44], [48], [52], [53]. Although the assembly of the overall circuit is 

performed within the digital EDA flow, which alleviates the need for a substantial amount of 

resources normally used in analog design, the design and verification of these circuits still 

relies on SPICE simulations. For instance, designers must manually extract parasitic 

capacitance and resistance after completing the EDA flow, and then simulate their design to 

verify performance. Additionally, because these highly digital architectures may often 

include many additional cells in the output from the digital tool, simulation times can be 

longer than in the traditional analog case due to the large number of transistors in the design. 

In this chapter we present two techniques which can be used to accelerate the design of cell-

based ring oscillators beyond what is possible using only SPICE simulations in the feedback 

loop. The first is an analytical technique which can be used to produce an appropriate 

starting point for optimization. The second is a numerical technique based on a new 

application of static timing analysis (STA) in order to improve optimization times. 

2.1. Analytical Design Techniques for Cell-Based Ring Oscillators 

Developing a full physical library of oscillator cells, analogous to a standard cell library, 

facilitates multiple designs by reusing and modifying Verilog only, with minimal or no new 

CHAPTER 2 

Modeling Techniques for Cell-Based Ring Oscillators  
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custom design. However, as a given design only tends to require between 3 and 4 varieties 

of analog cells, physical cell design can potentially be postponed until rough oscillator design 

is completed using the procedures described in this section along with estimated parasitics. 

This section presents an analysis of these factors in the context of cell-based ring oscillators, 

which can be used to efficiently produce oscillators with automated physical design. A block 

diagram of such as oscillator is shown in Figure 2.1. Examples of typical current or capacitor 

tuning cells are shown in Figure 2.2. 

 
(a) 

 
(b) 

Figure 2.1: Structure of a cell-based oscillator, showing (a) block diagram, and (b) 

layout cell placement. 
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Figure 2.2: Schematics of typical cells used in cell-based ring oscillators. 

In order to use automatically generated DCOs for high-performance frequency generation, it 

is necessary to ensure that these oscillators meet center frequency, tuning range, and phase 

noise requirements. This section presents an analysis of these factors in the context of cell-

based ring oscillators, which can be used to efficiently produce oscillators with automated 

physical design. The following analysis assumes the use of any of the three cells from Figure 

2.2, examining only the effects of combining fixed cells in various configurations. Specifically, 

we examine the impact of the number of cells per stage and the number of oscillator stages 

on the previously mentioned performance requirements. 

2.1.1. Center Frequency and Tuning Range 

Though every variety of ring oscillator has a slightly different collection of factors that affect 

output frequency, all designs tend to possess a linear relationship with current consumption 

and an inverse relationship with load capacitance in the oscillator. That is to say, for a generic 

ring oscillator, 

 
𝒇𝟎 = 𝒌

𝑰

𝑪
 

(2.1) 
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where 𝑘 is a process and circuit dependent constant, while 𝐼 and 𝐶 represent the “total 

current” and “total capacitance” of the oscillator, respectively. Empirically, keeping a 

common cell topology results in a relatively constant 𝑘, allowing the strength of a cell to be 

described by the ratio of 𝐼 and 𝐶. While this model is simplified, it can be used to predict how 

a modified oscillator will differ from a baseline design. Following this approach, a library of 

oscillator cells can be characterized in a baseline case to determine I and C contributions, 

then combined to achieve the target 𝑓0. 

Tuning range analysis is tightly related to that for center frequency. Assuming current-cell-

based tuning allows (2.1) to be rewritten as   

 
𝒇𝟎 = 𝒌

𝑰𝑩 + 𝒏𝑰𝒕𝒖𝒏𝒆
𝑪𝑩 +𝑵𝑪𝒕𝒖𝒏𝒆

.  (2.2) 

Here, the 𝐼𝐵 and 𝐶𝐵 represent the baseline quantities, while 𝐼𝑡𝑢𝑛𝑒 and 𝐶𝑡𝑢𝑛𝑒 represent the 

contributions of an individual tuning cell. Additionally, 𝑁 is the total number of current 

tuning cells in the design, while 𝑛 is the number of enabled current cells.  

The fractional tuning range of the oscillator is the fraction of the maximum frequency over 

which the oscillator can be tuned, which can be written as 

 
𝑻𝑹 = 𝟏 −

𝒇𝒎𝒊𝒏

𝒇𝒎𝒂𝒙
.  (2.3) 

Combining this with (2.2) and simplifying (using 𝑛 = 0,𝑁 at 𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥) yields 

 
𝑻𝑹 =

𝑵

𝑵+ 𝑰𝑩 𝑰𝒕𝒖𝒏𝒆⁄
.  (2.4) 

Thus, tuning range dependence on the number of tuning elements follows a nonlinear 

characteristic that is dependent on only the ratio of base current to the tuning element 

current. Once the maximum frequency target is met and the basics of the oscillator are 

determined, the ratio can be calculated and an arbitrary tuning range can then be achieved 
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using (2.4). An expression for tuning using switched capacitors is similarly straightforward. 

Assuming that a capacitor cell has on-capacitance 𝐶𝑜𝑛 and off-capacitance 𝐶𝑜𝑓𝑓, the 

frequency of a switch-cap tunable oscillator is given by 

 
𝒇𝟎 = 𝒌

𝑰𝑩
𝑪𝑩 + 𝒏𝑪𝒐𝒏 + (𝑵 − 𝒏)𝑪𝒐𝒇𝒇

.  (2.5) 

Following the same approach as above, the tuning range is given by 

 
𝑻𝑹 =

𝑵(𝑪𝒐𝒏 − 𝑪𝒐𝒇𝒇)

𝑪𝑩 +𝑵𝑪𝒐𝒏
.  (2.6) 

The tuning resolution of the DCO is another important design specification because it affects 

quantization noise introduced in a PLL [28]. Using the above approach, it is possible to derive 

relationships between the desired resolution and the required tuning cell. For current based 

tuning cells, it is desirable to closely match the 𝐼/𝐶 ratio of the cells to that of the oscillator 

in order to avoid dramatically altering the maximum output frequency. Assuming this is the 

case, the relationship of interest is 

 
𝑪𝒕𝒖𝒏𝒆 =

𝚫𝒇

𝒇𝟎
𝑪𝑩,  (2.7) 

where Δ𝑓 is the desired resolution. For capacitor based tuning, the 𝐼/𝐶 ratio will necessarily 

be decreased, and thus this must be accounted when using these cells. The relationship in 

this case is 

 
𝚫𝑪 =

𝚫𝒇

𝒇𝟎
𝑪𝑩,  (2.8) 

Where Δ𝐶 is the difference between the capacitance in the on and off states of the cell. The 

influence of 𝐼𝑡𝑢𝑛𝑒 and 𝐶𝑡𝑢𝑛𝑒 on different aspects of the oscillator dictates the variety of cells 

which are needed in a library. 
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2.1.2. Phase Noise 

Similar to the case for frequency and tuning range, it is desirable to create an expression for 

the phase noise of a cell-based ring oscillator that will predict the change in noise resulting 

from a change in the number of stages or number of parallel buffers per stage. This type of 

model can be leveraged for quick optimization of cell-based ring oscillator designs to meet 

noise targets. 

A noise analysis of an inverter based ring oscillator is presented in [3]. This analysis begins 

from simplified noise equations for CMOS transistors, and assumes ideal input switching 

steps in order to derive an analytical expression for the phase noise spectrum due to white 

noise. The resulting spectrum ℒ(𝑓) is given by: 

 
𝓛(𝒇) =

𝟐𝒌𝑻

𝑰𝒔𝒕𝒂𝒈𝒆
(

𝟏

𝑽𝑫𝑫 − 𝑽𝒕
(𝜸𝑵 + 𝜸𝑷) +

𝟏

𝑽𝑫𝑫
) (

𝒇𝟎
𝒇
)
𝟐

 (2.9) 

where 𝐼𝑠𝑡𝑎𝑔𝑒  is the saturation drive current per stage, 𝑓0 is the center frequency. The 

remaining parameters will remain constant across ring oscillators produced using the same 

cells for the same conditions, and thus aren’t relevant to this analysis, and will be collectively 

represented as 

 
𝜿 = 𝟐𝒌𝑻(

𝟏

𝑽𝑫𝑫 − 𝑽𝒕
(𝜸𝑵 + 𝜸𝑷) +

𝟏

𝑽𝑫𝑫
)  (2.10) 

 Equation (2.9) implies that when only considering white noise, an oscillator at a set 

frequency will have the same noise performance if it has the same per stage drive current, 

regardless of the number of stages or load capacitance per stage.  

 In order to directly see the impact of the number of stages and parallel buffers on 

phase noise, we insert the simplified expression for center frequency 
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𝒇𝟎 =

𝑰𝒔𝒕𝒂𝒈𝒆

𝑴𝑪𝒔𝒕𝒂𝒈𝒆𝑽𝑫𝑫
𝟐  (2.11) 

Here, 𝑀 is the number of stages, and 𝐶𝑠𝑡𝑎𝑔𝑒  is the load capacitance per stage. this gives the 

resulting expression for phase noise 

 
𝓛(𝒇) =

𝜿𝑰𝒔𝒕𝒂𝒈𝒆

𝑴𝟐𝑪𝒔𝒕𝒂𝒈𝒆
𝟐 𝑽𝑫𝑫

𝟒
(
𝟏

𝒇𝟐
)  (2.12) 

From this equation, we can determine the dependence of the phase noise on the number of 

stages and number of parallel buffers per stage, since this is directly related to 𝑀, 𝐶𝑠𝑡𝑎𝑔𝑒 , and 

𝐼𝑠𝑡𝑎𝑔𝑒 . In that case that all buffers are switched on, both 𝐼𝑠𝑡𝑎𝑔𝑒  and 𝐶𝑠𝑡𝑎𝑔𝑒  are directly 

proportional to the number of parallel buffers, 𝑁. This gives 

 
𝓛(𝒇) ∝

𝟏

𝑵
 (2.13) 

Meanwhile, changes in the number of enabled buffers 𝑛 affects  

only 𝐼𝑠𝑡𝑎𝑔𝑒 , meaning that the relevant relationship while tuning the oscillator is 

 𝓛(𝒇) ∝ 𝒏  (2.14) 

Finally, when adjusting the number of stages in the oscillator, it is clearly seen that 

 
𝓛(𝒇) ∝

𝟏

𝑴𝟐
 (2.15) 

 Frequently, it is more desirable to analyze the jitter performance of a ring oscillator. 

In this case, [3] provides the equation 

 
𝝈𝝉
𝟐 =

𝜿𝑴𝑪𝒔𝒕𝒂𝒈𝒆𝑽𝑫𝑫
𝟐

𝑰𝒔𝒕𝒂𝒈𝒆
𝟐

  (2.16) 

For the same three scenarios analyzed above, the corresponding relationships are 

 
𝝈𝝉 ∝

𝟏

√𝑵
 (2.17) 
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𝝈𝝉 ∝

𝟏

𝒏
 (2.18) 

 𝝈𝝉 ∝ √𝑴  (2.19) 

While the latter two relationships are seemingly counter to those found for phase noise, this 

is explained by the dependence on center frequency when converting phase noise to jitter. 

For example, adding stages lowers phase noise, but also lowers the center frequency, 

resulting in an overall increase in the jitter measured in seconds. 

Generally speaking, an inverse relationship exists between power consumption and phase 

noise [54]. Despite the fact that this relationship is well understood, realizing this tradeoff in 

ring oscillators typically requires significant effort in modifying custom circuits to adjust 

device sizing without impacting the center frequency.  

By contrast, using a cell-based flow with automated physical implementation offers a 

straightforward way to adjust phase noise levels. Given a baseline oscillator, noise can be 

reduced by placing a duplicate oscillator in parallel with the original oscillator, connecting 

all internal nodes as shown in Figure 2.3. Noise is effectively averaged between the two 

oscillators. More precisely, jitter in the oscillator depends only on 𝐼 and not 𝐶 as long as 

frequency remains constant. Thus, by scaling the numbers of all cells by a constant, jitter 

power will be reduced by the same scale factor (i.e. a doubling of cells will produce a 3dB 

decrease in phase noise and the same frequency) [54]. 
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Figure 2.3: Noise reduction by duplicating oscillator cells. 

An added advantage of this approach is that all tuning cells increase with the scale factor as 

part of the process and undergo a corresponding resolution improvement, as each cell now 

represents a smaller part of the overall 𝐼/𝐶 ratio. Thus, quantization noise improves at the 

same rate as phase noise. However, area and power both increase with the scale factor, thus 

producing a design tradeoff. 

An additional method for meeting phase noise goals exists if the required oscillator 

frequency is low enough. Rather than add additional cells in parallel, it is possible to start 

with a higher frequency oscillator (which has lower jitter due to the high 𝐼/𝐶 ratio) and 

increase the number of stages. Assuming stage delay is kept constant, absolute jitter will 

grow at a predictable rate of √𝑀. The advantages of improved frequency resolution also 
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apply with this method, and furthermore there is no power penalty.  Another advantage of 

this approach is the suitability of high numbers of stages for use in ADPLLs with embedded 

TDCs [42], [55]. 

2.2. Verification of Analytical Models 

A test chip containing a number of different oscillators was fabricated in order to verify the 

modelling and design approaches discussed above. A small number of cells were produced, 

then reused in various configurations by only modifying the RTL, then using the APR tool for 

all physical design, to produce 16 test oscillators. Different numbers of oscillator stages, 

parallel oscillators, and tuning cells were included in each oscillator to verify the efficacy of 

the models developed for these variables. Figure 2.4 illustrates the variables swept to 

produce the oscillators. Figure 2.5 shows a die micrograph of the manufactured test chip. 
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Figure 2.4: Block diagram of a parameterized oscillator for the test chip.  

 

Figure 2.5: Die micrograph of the oscillator test chip.  

The measured tuning range is plotted versus the number of tuning cells in Figure 2.6. The 

model from (2.4) is fitted to the measured data and shows excellent agreement, supporting 
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the use of this approach in automating design. In order to further verify the assumptions of 

this model, the ratios of 𝐶𝑡𝑢𝑛𝑒/𝐶𝐵 and 𝐼𝑡𝑢𝑛𝑒/𝐼𝐵 were computed using the oscillators with the 

maximum and minimum number of tuning cells per stage. Variation of these ratios was found 

to be less than 10%; thus, even when making large adjustments to the design using this 

simple model, the resulting frequency error is negligible compared to what must already be 

designed for to account for PVT variation and mismatch. 

 

Figure 2.6: Tuning range as a function of the number of tuning cells in each stage.  

Figure 2.7 shows measurement results from the two methods suggested for reducing phase 

noise. Measured phase noise at a 2MHz offset is plotted alongside power and output 

frequency. The expected trends for all three measurements are included in the plots. In the 

left column, the number of parallel oscillators is adjusted, while in the right column, the 

number of stages is increased. In both cases, the deviation from the ideal predicted 

improvement is small, supporting both of those techniques as straightforward ways to adjust 

the performance of an automatically designed ring oscillator. At a high number of cells, the 

importance of good routing becomes more pronounced, as can be seen by the drift away from 

the prediction, and thus attention to this aspect is warranted. 
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Figure 2.7: Measurement results showing impact of oscillator parameters of various 

performance metrics. 

Figure 2.8 shows the three jitter relationships discussed above, along with the relevant 

models from (2.17)-(2.19). The dependence of jitter on tuning code is successfully modeled, 

while the plots vs. the number of stages and number of parallel oscillators confirm the phase 

noise results. 
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Figure 2.8: Jitter models vs. experimental results 
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2.3. Static Timing Analysis for Ring Oscillators 

While analytical models can provide a start to a design, they are not sufficient to complete 

a design in modern CMOS. Traditionally, SPICE simulations have been used to verify analog 

designs; however, they can be very time consuming, preventing fast design iterations. This 

section instead presents for the first time a methodology for performing static timing 

analysis (STA) on a variety of ring oscillators to accurately simulate the frequency and tuning 

range, including the impact of layout, without using SPICE simulations. This is an attractive 

alternative to simulation because it dramatically reduces the simulation time of the 

oscillator, as well as the cost of the simulation tool. By leveraging the capabilities which 

already exist with digital implementation tools, STA for ring oscillators allows an entire 

ADPLL to be implemented, optimized, and verified without manual intervention. Along with 

jitter and power consumption, output frequency is one of the primary specifications for an 

oscillator. Therefore, frequency must be carefully considered throughout the entire design 

process. Traditionally, the design process for an oscillator begins with analytical equations 

for frequency to generate an initial design, and follows with repeated SPICE simulations to 

verify and refine the design. Once parasitic effects are extracted from the physical design, 

further iterations with SPICE are used to ensure that performance requirements are satisfied 

across all design corners. Due to process scaling, however, this conventional approach to 

oscillator design has become more and more inadequate, especially during final verification 

when mixed-signal co-simulations are required between the analog and digital circuits. In 

this section, we examine the effects which contribute to the difficulty of oscillator design in 

advanced nodes, and observe how static timing analysis combined with cell-based ring 

oscillators can overcome these difficulties.  



30 
 

2.3.1. Circuit Factors Impacting Oscillator Frequency 

Traditional methods for estimating ring oscillator frequency without the use of transistor 

level simulations have relied on analytical equations. The most basic equation for the 

frequency of a ring oscillator is given by: 

 
𝒇𝟎 =

𝟏

𝟐𝑵𝒔𝒕𝒈𝝉𝒅
 (2.20) 

where 𝑁𝑠𝑡𝑔 is the number of stages and 𝜏𝑑  is the propagation delay for each stage of the ring 

oscillator [56].  

This expression estimates the oscillator period as the delay for an edge to propagate through 

each delay stage twice, which provides the full 360° phase shift needed to sustain oscillation. 

This equation captures the fundamental idea behind a ring oscillator, but omits any basis for 

determining 𝜏𝑑 , which is made difficult due to the impact of both nonlinearities and parasitic 

impedances on oscillator performance.  

The most well-known approach for obtaining an analytical equation for 𝜏𝑑  models an 

oscillator stage as a constant current source driving a capacitive load, which yields the 

following result 

 
𝒇𝟎 =

𝑰𝑺𝑺
𝟐𝑵𝒔𝒕𝒈𝑪𝒔𝒕𝒈𝑽𝑺𝑾

 (2.21) 

Unfortunately, this equation can only be usefully applied to oscillator stages using a constant 

bias current, and very inaccurate results can be obtained when using devices from advanced 

nodes.  

Various approaches towards finding the oscillation frequency using more rigorous analytical 

modeling have been proposed, such as in [57], which offers an analysis of differential ring 

oscillators with tail current sources, or [56], which examines a single-ended resistor-loaded 
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oscillator. These modelling approaches offer some design insight, but fail in advanced nodes 

thanks to second-order effects and parasitics.  

Because of these limitations, SPICE simulations have typically been relied upon earlier in the 

design cycle. However, oscillation frequencies simulated before parasitic extraction may 

differ by more than 2x from final values. This requires overdesign and additional design 

cycles after layout in order to meet all specifications across PVT corners, requiring 

substantial design resources. A design approach which accounts for the above factors, but 

does not entail the overhead of large numbers of repeated circuit simulations across corners 

is desirable. To solve this problem, we turn to cell-based digitally-controlled ring oscillators 

designed using static-timing analysis. 

2.3.2. Cell-Based Digitally-Controlled Oscillators 

Cell-based ring oscillators with digital frequency control, as used in [1,2,3] were originally 

proposed as a method to avoid the challenges of physical design for analog circuits in 

advanced nodes, while also offering easy integration into ADPLLs. However, cell-based 

digitally-controlled oscillators (DCOs) also offer advantages from the perspective of 

frequency analysis, beginning with the early design stage. As demonstrated above, in order 

to account for all factors impacting oscillator frequency in advanced nodes, an increasing 

number of circuit parameters must be included. This becomes extremely cumbersome to 

accomplish using analytical expressions, especially given the fact that the result may not 

agree with simulation. Because cell-based oscillators are built with pre-characterized cells, 

better approaches can be used for design and verification. 
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A cell-based oscillator architecture was previously shown in Figure 2.1. Each stage consists 

of several identical tristate inverters in parallel. Note that some of inverters may be always 

enabled to establish a base frequency; however, they are not treated separately in our 

analysis. Using current-source-based models, a characterized cell is essentially represented 

as a time and voltage dependent current source, as well as with a time and voltage dependent 

capacitance [58]. Unlike analytical equations which attempt to manually identify circuit 

parameters which characterize frequency, the current-based models directly capture the 

transition behavior while eliminating the need to solve the transistor equations after 

characterization is complete. Also, the fact that the model uses a current source means that 

examining cells in parallel poses no issues. If the cells are properly characterized, the error 

can be within 2% of SPICE simulations [7,8]. 

Starting with pre-characterized cells, a designer can construct an oscillator by selecting 

appropriate cells and combining them into whatever configuration is desired. Let us label 

the input capacitance and output current provided by the current-based cell model as 𝐶𝑐𝑒𝑙𝑙 

and 𝐼𝑐𝑒𝑙𝑙, respectively. An assembled oscillator will have roughly constant capacitance across 

tuning codes compared to the wide changes in transition rates, 𝐼𝑐𝑒𝑙𝑙 and 𝐶𝑐𝑒𝑙𝑙 will be analyzed, 

only with respect to transition time. If a single oscillator stage consists of 𝑀𝑠𝑡𝑔 cells, of which 

𝑚𝑠𝑡𝑔 are enabled, then the capacitance and current values of each cell are effectively 

multiplied by those values. The delay of a stage for a given input transition can then be 

calculated: 

 
𝒅(𝝉𝒕𝒓𝒂𝒏) =

𝑴𝒔𝒕𝒈𝑪𝒄𝒆𝒍𝒍(𝝉𝒕𝒓𝒂𝒏)

𝒌𝒎𝒔𝒕𝒈𝑰𝒄𝒆𝒍𝒍(𝝉𝒕𝒓𝒂𝒏)
 (2.22) 
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where 𝜏𝑡𝑟𝑎𝑛 is the input transition time and 𝑘 is a constant which encompasses the many 

effects shown in previous analytical equations, but remains roughly constant for a given 

architecture. Then, given an 𝑁 stage oscillator, we can sum and invert the stage delays to find 

the oscillator frequency: 

 
𝒇𝟎 =

𝒌𝒎𝑫𝑪𝑶𝑰𝒄𝒆𝒍𝒍(𝝉𝒕𝒓𝒂𝒏)

𝑵𝒔𝒕𝒈𝑴𝑫𝑪𝑶𝑪𝒄𝒆𝒍𝒍(𝝉𝒕𝒓𝒂𝒏)
 (2.23) 

where 𝑚𝐷𝐶𝑂 is the total number of enabled cells, and 𝑀𝐷𝐶𝑂 is the total number of cells.  

Looking at this expression further, we can determine the tuning range of a cell-based 

oscillator by looking at the characterization of a single cell. When all the cells in the oscillator 

are enabled, the frequency is proportional to 𝐼𝑐𝑒𝑙𝑙/𝑁𝑠𝑡𝑔𝐶𝑐𝑒𝑙𝑙, which means that the maximum 

frequency of an oscillator depends on the characterized cell and number of stages, regardless 

of the number of cells used in parallel.  Looking at the case of the minimum frequency, where 

only one cell is enabled in each stage, delay per stage can be solved directly from the 

characterization data. These estimates based on the characterization data can provide much 

better estimates than the analytical expression in the previous section, and are easily able to 

be found as part of the STA-based flow.  

Cell-based oscillators provide additional design advantages. Once the frequency is known, it 

can be combined with individual cell characterization data in order to quickly calculate 

power and jitter. Existing digital tools are fully capable of producing power estimates from 

such data. Meanwhile, for a given number of stages, jitter and quantization noise both scale 

inversely with the number of parallel cells, making it easily predictable. 
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After initial design estimates, it is necessary to fully analyze the DCO across corners, and 

make design adjustments to meet specifications. For this purpose, we turn to a full static 

timing analysis. 

2.4. Proposed Static Timing Analysis Methodology 

The proposed methodology for using static timing analysis to characterize ring oscillators is 

presented in Figure 2.9.  Before the timing analysis can be performed on any ring oscillator, 

its stages must be described as cells and characterized to produce a timing library. For the 

digitally controlled oscillators, the individual cells are typically constructed as tristate 

buffers, which are then connected in parallel to construct an oscillator stage. In the case of 

pseudo-differential oscillators, a switchable pseudo-differential cell could be used. Both 

types of cells are shown in Figure 2.10. Characterization is performed by running SPICE 

simulations on individual cells using a variety of input slope and output loading conditions, 

and fitting the result to a current source-based model [58]. These oscillator cells should be 

characterized over the range of input slews and output loads which is representative of the 

conditions which may be seen in the final oscillator design. This range may be wider than the 

typical standard cell characterization range, because of the variety of loading scenarios 

which occur for different oscillator configurations, but is necessary for accuracy. 
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Figure 2.9: Procedure for static timing analysis in ring oscillators.  
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Figure 2.10: Cells typically used in cell-based ring oscillators.  

2.4.1. Iterative Delay Analysis 

Once the cells have been characterized, timing analysis algorithms can be used to 

characterize the oscillator. Our approach leverages the accuracy and performance of 

industry standard static timing analysis tools. However, most EDA tools identify ring 

oscillators as illegal combinational loops when constructing the timing graphs used during 

timing analysis, and thus cannot be used directly. In a typical static timing analysis flow, 

transition slopes are directly specified at the input pins of a circuit block, and the timing 

analysis engine then propagates these transitions from the input pins through combinational 

logic to sequential elements and output pins. In the case of a ring oscillator, there is no input 

pin driving the oscillation, meaning this typical propagation of transition waveforms cannot 

be used.  
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One way to overcome the issue of combinational loops is to simply break the oscillator at one 

point within the loop and treat the structure as a delay line, driven by some gate. However, 

this introduces error sources to the analysis. First, the interconnect parasitics at the point 

where the oscillator is broken become inaccurate. Even if this is accounted for, the input 

transition waveform is unspecified. It must be selected before timing analysis without 

information of what its value should be, propagating an error through the entire delay line. 

Instead, an iterative, convergent process must be used to determine the actual transition 

waveform at the oscillator. An example of this sort of iterative analysis taken from the 

domain of SPICE simulation is the periodic steady state (PSS) analysis as used for oscillators. 

In PSS analysis for oscillators, the oscillator state and assumed period are iterated upon until 

the analysis confirms periodicity within a specified tolerance [59].  

A second issue is the sheer number of paths through an oscillator made of parallel drivers. 

In static timing analysis, a timing path consists of delays from gate inputs to gate outputs as 

well as delays from routing parasitics. If an oscillator consists of 𝑁 stages with 𝑀 parallel 

drivers in each stage, then each individual stage has a total of 𝑀2 timing paths from its input 

pins to the input pins of the next stage, since there is a path through each parallel driver in 

one stage to each parallel driver in the next stage. This logic can be extended to determine 

the total paths from one net in the DCO, through the entire oscillator, and back to the same 

net. Thus, if the entire oscillator path were to be timed at once, the total number of paths 

would be 𝑀𝑁 for single ended oscillators and  2𝑀𝑁 paths for the differential case. In a 

practical case of a placed-and-routed DCO, the number of parallel buffers per stage may climb 

as high as 400 in a 5-stage oscillator, which would produce >10 trillion timing paths, which 

becomes an intractable computing problem. To solve this issue, the delays and transitions of 
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the oscillator must be evaluated on a stage by stage basis, calculating the 𝑀2 single stage 

delay paths at each stage. This reduces the number of paths to 𝑁 ∙ 𝑀2 without eliminating 

any paths altogether. The number of paths to evaluate in the previous example would then 

be reduced from >10T to a much more manageable 800,000, an improvement of over 1 

million times.  

In the proposed method, similar to in PSS, an iterative process is used to find the delay 

through the entire oscillator. First, the loop is broken and the timing engine is applied to each 

stage sequentially, as shown in Figure 2.11. The output of the driving stage is set to have an 

ideal transition with an estimated transition slope, which drives the stage of interest. Rise 

and fall transitions can be handled simultaneously. Delay is measured through each parallel 

cell in the stage of interest, including the extracted interconnect path from the stage of 

interest to the following stage, using the standard timing engine. The measured delays 

through all cells in the stage, including the delay through the interconnect networks, are then 

averaged to produce a single delay number. Additionally, the transitions at the outputs of the 

interconnect RC network are averaged to produce new transition values for the rise and fall 

times.  
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Figure 2.11: Illustration of static timing analysis procedure for a single stage of the 

oscillator.  

After a single stage is measured, the calculated transition values are then used to perform 

the same calculation on the stage immediately following it. Proceeding around the loop, 

transition values are produced for the output of each stage. Once the first stage is reached 

again, the difference between the first and second estimates of rise and fall time are 

calculated and stored. At this point timing analysis begins a second iteration, and continues 

estimating delays and transition slopes around the loop until the error between the current 

and previous estimates for each stage are within a specified tolerance. The tolerance can be 

specified depending on the accuracy to which calculations are desired. This process can be 

applied either after routing with accurate parasitics, or before routing with estimated 

preroute parasitics. To further reduce runtime, this analysis can be run with a representative 

sample of paths rather than using all paths, at the tradeoff of accuracy. 
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2.4.2. Oscillator Tuning 

DCOs feature a digital control input, where a DCO tuning code can be applied to alter the 

output frequency. In the case of a DCO, it is necessary to measure the frequency in 

configurations other than when all buffers are enabled in the max frequency configuration. 

However, while static timing analysis tools can consider possible logic values when 

evaluating timing constraints, they are not designed to analyze the effects of 

enabling/disabling different numbers of parallel cells. Simply removing buffer cells will not 

produce valid frequency results, because the load capacitance of those cells is removed. To 

see how this effect could still be addressed, we examine the relationship between the 

number of enabled cells in a stage, and the effective load seen by one cell in that stage, as 

shown in Figure 2.12. 

0

0

1

1

M Parallel Buffers

 

Figure 2.12: Analysis of oscillator stage load on a cell-by-cell basis. When on m 

drivers out of M are enabled, the load is effectively multiplied. 
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In an oscillator stage with 𝑀 drive cells in parallel, and 𝑚 cells enabled, each cell effectively 

drives 1/𝑚 of the load. Following this, in the case where all 𝑀 cells are enabled, each cell 

drives 1/𝑀 of the load. Thus, the ratio 𝑀/𝑚 describes the difference in load per-cell between 

the all-enabled case and the 𝑚-enabled case. Following this logic in order to run timing 

analysis at lower tuning codes, the timing analysis setup is configured so that each drive cell 

has its effective load increased by 𝑀/𝑚. This yields valid frequency results for the 

corresponding DCO tuning code. Once the frequency for each DCO configuration is 

calculated, tuning range and resolution are easily determined, as well potential tuning 

nonlinearity caused by differences in layout between stages. 

2.5. Static Timing Analysis Experimental Results 

To verify the methodology, comparisons with SPICE simulations were performed. Two test 

designs were used, one single-ended oscillator constructed out of tristate inverter cells and 

one pseudo-differential oscillator constructed from the pseudo-differential cell in Figure 

2.10. The configurations of the designs are shown in Figure 2.13. Test case 1 is pseudo-

differential, while test case 2 is single-ended. Both are 7-stage oscillators measured after 

layout and parasitic extraction. Comparisons were conducted across a number of process 

corners. The tested corners are listed in Table 2.1. 
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Figure 2.13: Oscillator configurations used for testing. 

Table 2.1: Design Corners Tested 

Process Supply Temperature Interconnect 

FF 0.99 V -40°C rc-best 

FF 0.99 V 125°C rc-best 

TT 0.9 V 25°C typical 

SS 0.81 V -40°C rc-worst 

SS 0.81 V 125°C rc-worst 

 

Figure 2.14a shows a comparison of the oscillator frequency measured by both methods 

versus the tuning code for test case 1. The static timing analysis exhibits a consistent 

agreement with the simulated data. Figure 2.14b shows the frequency error for the same 
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case. Frequency error is within 10% of simulated values in all but the lowest frequency 

configuration. STA is most accurate at the highest code, which is most critical for oscillator 

design, with an error within 4% across all corners.  

 

(a)                                                                                  (b) 

Figure 2.14: Results for test case 1: Pseudo-differential DCO. 7 stages, 36 buffers per 

stage, post-layout. All paths were analyzed. 

In test case 2, a sampled subset of paths was used rather than all paths. Results are shown in 

Figure 2.15. The frequency error magnitude is less than 12% in the typical corner. Compared 

to the overall variation in frequency over corners, the error value produced by static timing 

analysis is quite small, and can be guard banded as part of an automated design process. This 

fast estimate could be used for design, with the more accurate full analysis being used for 

verification. 



44 
 

 

(a)                                                                                    (b) 

Figure 2.15: Results for test case 2: Singled-ended DCO. 7 stages, 36 buffers per stage, 

post-layout. A sample of paths was analyzed. 

Table 2.2 summarizes error results for both test cases. It also shows the amount of 

computation time taken to measure the oscillators using the proposed method, compared to 

SPICE simulations. The proposed method offers a speedup of more than 20x in post-layout 

frequency measurement.  

Table 2.2: Results Summary 

 Test case 1 Test case 2 

Design 7x36 Pseudo-Diff. 7x36 Single-Ended 

Design Stage Post-layout Post-layout 

STA Method All Paths Sampled Paths 

RMS Error 4.24% 9.57% 

Max Error 10.75% -19.6% 

STA time* 104.4s 29.5s 

SPICE time* 522.0s 593.8s 

Speedup 5.0x 20.1x 

 

An additional result produced by this analysis provides a means for further design 

optimization. Because every path between oscillator stages is measured, the standard 

deviation of the delay along paths can be computed. A plotted example of this versus the 
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selected tuning code is shown in Figure 2.16. This statistic is representative of the overall 

level of layout mismatch in the placed-and-routed oscillator. Additionally, this information 

can be examined on a stage-by-stage basis, or even by comparing individual cells to the mean, 

providing information on whether certain areas need more optimization. 

 

(b) 

Figure 2.16: Measured standard deviation in oscillator path timings for test case 2. 

2.6. Conclusion 

We have presented a method for applying existing static timing analysis engines to ring 

oscillators, especially those implemented using digital place and route flows. By applying the 

timing engine to individual oscillator stages and iterating to achieve convergence, accurate 

frequency estimation which agrees with SPICE simulations can be achieved. Additionally, by 

altering the load which must be driven by a single oscillator cell, this frequency analysis can 

be extended to different tuning codes of DCOs, producing tuning range and resolution data.  



46 
 

In addition to time savings, this method of analysis presents a host of other opportunities for 

design automation. Because it takes place inside the digital place-and-route flow, adherence 

to specifications can be checked before and after routing, and automated adjustments can be 

made to improve placement and routing. Several iterations of this can occur without 

designer intervention, until specifications are met. By comparison, existing custom design 

methods require manual editing of layout, re-running parasitic extraction, and re-simulating 

in order to correct performance after layout is completed. The shortened feedback loop 

reduces the process of finalizing oscillator layout from weeks to hours. 

Finally, integration with the digital design flow opens many possibilities for future 

advancement in tool capabilities. The variety of verification steps which are commonly 

applied to digital circuits can now be applied to digitally controlled oscillators as well. This 

will reduce the uncertainty of inserting an analog block characterized in one environment 

into a different digital verification environment. Considering this line of further 

development, the proposed technique has the potential to accelerate design of ADPLLs in 

advanced nodes. 
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All-Digital Phase-locked loops (ADPLLs) are widely used as clock generators in advanced 

digital systems, eliminating several of the downsides of traditional PLLs. However, 

traditional ADPLLs still require large amounts of custom layout in the oscillator, which 

becomes difficult in advanced process nodes due to exponentially increasing numbers of 

design rules. Previous work  has demonstrated that integer-N ADPLLs can be implemented 

using digital synthesis and automatic place-and-route (APR) tools, resulting in a simplified 

and easily customizable design flow [42], [44], [60], [61]. However, meeting specifications 

for many modern frequency generation applications requires fractional-N PLLs in order to 

achieve the desired tuning resolution, lock time, and in-band phase noise. Additionally, high-

frequency dividers commonly employed in PLLs are major power consumers and introduce 

additional jitter into the system. Dividerless PLLs have advantages over conventional 

architectures, but traditionally have only been feasible for integer-N PLLs, with one notable 

exception where the reference edge is modulated [62]. This chapter presents a dividerless 

fractional-N ADPLL synthesized with a digital place and route flow. 

3.1. Proposed Architecture 

The block diagram of the clock generator is shown in Figure 3.1. Two cascaded PLLs allow 

for smaller frequency multiplications, ensuring that locking can occur without the use of a 

CHAPTER 3 

A Fast-Locking Cascaded PLL using Binary Search   
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divider or frequency locked loop, and providing finer granularity in fractional frequency 

selection. Cascading PLLs also has the benefit of pushing spurs further from the center 

frequency, as described in [63]. The first PLL (PLL A) uses a 25MHz reference to produce an 

output at 160-210MHz. The second PLL (PLL B) takes the output of the first as its reference, 

producing the 900MHz output tone. Each PLL uses an identical controller, differing only in 

the bit width of the DCO control signals. Because there is no need for a divider or any other 

block to operate at the frequency of the output oscillator, no custom design is required to 

account for frequencies which may be outside the range of some standard cell libraries. 

Frac-N

PLL A

Frac-N 

PLL B
ref

(25MHz)
180MHz 900MHz

fin

fout

Fractional-N

Controller
DLF

Embedded TDC

Binary Search 

Engine

Internal Architecture
(Duplicated)

Phases

 

Figure 3.1: Block Diagram of the Proposed Clock Generator 

 

Each DCO is configured such that only one integer multiple of the reference frequency 

(25MHz and 160-210MHz for PLLs A and B) is within the tuning range. The use of an 

embedded TDC [55] produces a sub-sampled version of the phase error. By computing the 

slope of the aliased phase signal, ϕε, the deviation of the DCO oscillation frequency from 
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N*ωref can be determined. Rather than driving this deviation to zero as in an integer-N PLL, 

the control loop drives the deviation to a desired value, producing the fractional part of the 

output frequency. Figure 3.2 illustrates how the fractional-N controller operates. The DCO 

output frequency can be represented as ωdco=N*ωref + ωfrac, where N is set by the DCOs tuning 

range, and ωfrac is the fractional frequency part.  The frequency control word (FCW) acts as 

a reference input, and negative feedback drives the measured ωfrac to the desired value. 

Tunability of the fractional portion of the PLL depends upon the resolution with which ωfrac 

can be measured by the controller. In the proposed design, ωfrac is computed by counting the 

number of reference cycles required for the aliased phase signal to complete one cycle; 

therefore, the expression for the fractional portion is ωfrac = ωref /FCW. The output frequency 

therefore has an inverse relationship with the frequency control word, creating a variable 

tuning step. This problem is solved by cascading the PLLs to give much finer and more 

consistent control over the output frequency by tuning both FCWs in conjunction. A lookup 

table can be easily used to program both PLLs for any desired frequency. Figure 3.2 shows 

the full frequency equation for the cascaded PLLs. Using this method, we were able to tune 

by 100kHz steps around 924MHz. 
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Figure 3.2: Principles of the dividerless fractional-N controller. 

The DCOs in both PLLs are shown in Figure 3.3. Both oscillators feature a pseudo-differential 

drive cell, which provides improved power supply rejection and provides balanced outputs. 

Because the embedded TDC resolution depends on the number of stages in the oscillator, it 

is desirable to use as many stages as possible. To this end, the low frequency DCO has 32 

stages, while the high frequency DCO has 10 stages. Tuning in the oscillators is accomplished 

by two different methods. In the slower oscillator, tuning is accomplished by enabling or 

disabling differential tri-state buffers placed in parallel with the main drivers. A novel 

capacitance tuning cell was used in order to achieve fine frequency resolution in the high 

frequency oscillator. Using a 1-bit DAC consisting simply of a stack of diode-connected PMOS 

and two transmission gates, a MOS capacitor can be switched between two different regions 
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of its CV curve, providing fine frequency adjustment. The design is resistant to process 

variation, because the stack output voltage and the C-V curve characteristics both display a 

similar dependence on threshold voltage. Both oscillators feature both coarse and fine 

frequency control cells. These cells are custom designed but integrate into the digital cell 

library, and then APR-ed using digital CAD tools, as in [2]. 

 

Figure 3.3: DCO architecture and cell schematics. 

Fast-locking PLLs allow digital systems to move between various power states with minimal 

time spent transitioning. The synthesized architecture of our ADPLL allows easy 

implementation of multiple operating modes, enabling fast-locking schemes which take 

advantage of state-based mode switching. After first determining whether the PLL is locked, 

the controller goes into one of two modes. If locked, it operates as a normal ADPLL, feeding 
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the phase difference signal into the DLF. If not locked, it switches to a fast-locking mode 

utilizing a binary search engine to quickly find the desired frequency. The binary search 

algorithm leverages full information about the output frequency of the DCO computed in the 

controller, a result of the embedded TDC and this fractional-N PLL architecture. When a large 

frequency jump is programmed into the PLL, the loop is opened, and the fractional frequency 

comparison is instead fed to a binary search controller. By iterating through the coarse 

control bits of the DCO, lock time is substantially reduced. Fig. 4 shows the operation of the 

binary frequency search, and also shows a measured comparison of lock times. As shown, 

the binary search speeds up lock by nearly an order of magnitude. 

 

Figure 3.4: Binary search engine (BSE) behavior and measured lock time results. 

3.2. Measurement Results 

The ADPLL is fabricated in a 28nm FDSOI CMOS process and occupies 0.09mm2. It consumes 

3.0mW, with an RMS jitter of 7.1ps. The measured phase noise spectrum is shown in Figure 

3.5. The figure of merit (FOM) is -218.2 dB at a 924MHz output frequency. Performance 

characteristics are summarized in Table 3.1 and compared with other synthesized PLLs. The 

performance of this clock generator compares favorably with previous synthesized PLLs; 
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however, this is the first time a fractional-N PLL has been fully synthesized without using a 

divider. 

 

Figure 3.5: Measured phase noise spectrum. 

Table 3.1: Performance comparison with state-of-the-art work 

 This Work 
RFIC 2013 

[2] 
ISSCC 2013 

[4] 
ISSCC 2014 

[3] 

FREF (MHz) 25 40.3 25 40-350 

FOUT 908-940MHz 403MHz 4-825MHz 0.39-1.41GHz 

PN (dBc/Hz) -82 @ 1MHz -98 @ 1MHz -95 @ 1MHz -115@ 1MHz 

RMS Jitter 7.1ps 7.9ps 30ps 2.8ps 

Area 0.09 mm2 0.1 mm2 0.032 mm2 0.0066 mm2 

Power 3.0mW 2.1 mW 3.1mW 0.78mW 

FoM* -218.2 dB -218.8 dB -205.5 dB -236.5 dB 

VDD 1.1V 1.0V 1.0V 0.8V 

Architecture Frac-N ADPLL Int-N ADPLL Frac-N ADPLL Int-N ADPLL 

Divider No No Yes Yes 

Technology 28 nm 65 nm 28 nm 65 nm 

   *FoM[dB]=10log10((σt/1s)2x(P/1mW)) 
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Figure 3.6: Die Micrograph 
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All-Digital Phase-locked loops (ADPLLs) have gained widespread usage as clock generators 

in modern digital systems, due to the many advantages they offer over their analog 

counterparts when implemented in advanced process nodes. Previously demonstrated 

design approaches using fully synthesized ADPLLs allow for faster implementation and 

integration by using automated digital place-and-route design flows [44], [60], [64]–[66]. 

These designs leverage cells designed to fit into the standard cell grid to construct a digitally 

controlled oscillator and time-to-digital converter (TDC). These cells may come from a 

standard cell library or be custom designed auxiliary cells, and are assembled using the 

digital automatic place and route (APR) flow. However, many of the designs presented to 

date have functioned over limited tuning ranges, which do not extend over the frequency 

ranges commonly employed in modern processor design spaces. Specifically, multiple 

designs using an injection locking architecture have been demonstrated, in order to benefit 

from area and noise reduction, at the expense of frequency range [60], [64], [65]. 

Additionally, most have been designed in mature processes, and have not had to cope with 

the increased routing concerns introduced by FinFET processes.  

In this chapter, we present an automatically placed-and-routed ADPLL in a 14nm FinFET 

process, in which all steps of the physical design are scripted, and therefore fully automated 

and portable to other processes. This ADPLL features a phase-interpolated embedded TDC 

CHAPTER 4 

A 5GHz Wide-bandwidth 14nm FinFET PLL for Processor Clocking 
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to improve resolution, and is designed to meet the challenges of modern many-core 

processor clocking and FinFET DRC requirements. Rather than injection locking, the design 

is based around a phase domain architecture [67]. By using optimized auxiliary cells to 

construct the DCO, and synthesized resolution enhancing phase interpolator, the proposed 

ADPLL achieves the highest output frequency and widest tuning range of any synthesized 

PLL to date, and the smallest area for a >1GHz clock generator. 

4.1. Synthesizeable ADPLL Design 

A conventional phase-domain ADPLL is shown in Figure 4.1. Phase information is measured 

using the combination of a counter and a TDC. For each reference cycle, the counter provides 

the integer number of DCO cycles which have occurred, while the TDC provides the fractional 

number of DCO cycles. The DCO phase measurement is then used in the feedback loop to 

drive the oscillator phase to its desired value. However, in this configuration, in-band jitter 

performance is limited by TDC resolution and linearity, making it difficult to implement 

using APR. 
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Figure 4.1: Conventional Phase Domain Architecture 
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The proposed PLL block diagram is shown in Figure 4.2. Phase detection is achieved using 

an embedded TDC [55]. Because the embedded TDC obtains phase information from the 

oscillator stages, no gain calibration is required, and PVT variations are also inherently 

tracked. This helps limit INL in the TDC. To enhance TDC resolution, the existing oscillator 

phases are interpolated as shown in Figure 4.3. Both the TDC samplers and the interpolating 

inverters were implemented using standard cells in the normal digital flow. The individual 

gates were placed inside or between the oscillator stages that they were sampling, making 

the wiring delay to each sampler negligible. Clock routing to the sampler flip flops was 

performed using the digital clock tree synthesis tool with additional skew constraints, 

allowing for simultaneous skew optimization across corners. All of these customizations 

were scripted, and therefore automated by the tools and portable to other 

designs/processes. 
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Figure 4.2: Block Diagram of the Proposed PLL 
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. . .. . .

fref
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Figure 4.3: A Segment of the proposed phase-interpolated embedded TDC 

The PLL is designed to operate up to 5GHz, which is twice the desired frequency of 2.5GHz, 

so that a divider can be used to provide a clean 50% duty cycle output, required for many 

memory circuits. Additionally, the PLL is tunable down to 1GHz and features a wide 

bandwidth to enable processor DVFS. Operation at 5GHz places stringent timing 

requirements on the feedback counter, so the signal is predivided by 4 before being fed into 

the counter. The divide by 2 and divide by 4 signals are then concatenated with the counter 

output, recovering the lost edge information, as shown in Figure 4.4. The associated timing 

issues arising from having a digital signal with three separate driving clock sources are 

identified and handled by the place and route tool. This scheme enables the digital tool to 

perform the counter clock routing with relaxed constraints, but still maintain the full counter 

resolution. The digital tools account for the skew between original and generated clocks. The 

original full speed clock is used for reference retiming, but is made available at the output to 

extend the frequency range if the duty cycle requirements of the PLL are not of primary 

concern. The retiming circuit is a TDC-based path-selection type, implemented in RTL. 
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Figure 4.4: DCO counter predivider detail. Automated hold-fixing is included. 

The DCO architecture is shown in Figure 4.5. The oscillator is based on a switchable pseudo-

differential cell optimized for the FinFET process. This cell provides coarse tuning of the 

oscillator over the 1-5 GHz range. Additional capacitor cells provide fine tuning of the 

oscillator frequency. These cells are illustrated in Figure 4.9. In order to achieve the desired 

frequency resolution at very high frequencies, the voltage to the source and drain terminals 

is switched between VDD and ground, rather than disconnecting the capacitors from the 

circuit entirely. Using this method, a delay resolution of 300fs was achieved. All cells were 

designed with SLVT devices, which feature lower variation in this process. Symmetrical cell 

layout is used to avoid mismatch due to double patterning. Additionally, the diffusion shape 

was optimized to avoid layout dependent effects, including adding dummy fill on both sides 

of the cell to avoid influences from adjacent logic cells. Coarse and fine frequency steps were 

optimized to meet range and resolution requirements with the minimum total cell area. As a 

result, the full tuning range is covered by 128 coarse and 128 fine cells. 
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Figure 4.5: Proposed DCO architecture. 
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Figure 4.6: Oscillator Auxiliary Cells. Coarse driver cell and fine capacitor cell. 

In order to achieve the desired oscillator frequency while taking advantage of the digital 

place-and-route flow, additional layout constraints were leveraged in the digital flow. First, 

an automated method was used to apply placement guides to each stage of the oscillator, 

ensuring that cells from adjacent stages would be placed near each other. Additionally, the 

digital router was configured to use wider routing and include additional spacing between 

phase signals. These two constraints were fully scripted and automated. This substantially 
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reduced parasitic resistance and capacitance in the oscillator phase routing, enabling the 

oscillator to function at the frequencies of interest. 

Using an all-digital architecture and leveraging the digital flow also greatly eases 

implementation of test features. To leverage this facet of the PLL architecture, an on-chip 

test-measurement system was implemented. This system functions like a multi-channel 

digital oscilloscope embedded in the controller. It includes a memory, and is able to select 

and capture multiplexed digital signals based off of a selectable trigger signal with a 

programmable delay. This oscilloscope enables measurement of TDC linearity, lock time, and 

in-band phase noise (as measured by the error signal), without external test equipment. This 

functionality is highlighted in Figure 4.7. 
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Figure 4.7: Block diagram of on-chip data capture system. 
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4.2. Measurement Results 

The ADPLL was constructed in a 14nm FinFET process. The block occupies 0.0195mm2, of 

which more than half is used by the integrated oscilloscope. The area of the PLL itself is 

0.009mm2. The ADPLL achieves the smallest area among PLLs with >1GHz output. The free-

running DCO consumes 7.6mW from an 0.95V supply, while the controller consumes 2.1mW. 

The ADPLL output frequency tunes from 1.0GHz to 5.5GHz across process corners. 

TDC nonlinearity was measured using the on-chip measurement system. Measurements of 

TDC INL are shown in Figure 4.8. Due to the inherent relationship between the DCO phases 

and the TDC value in an embedded TDC, the INL values remain small despite the usage of 

automatic place-and-route for physical implementation. 

 

Figure 4.8: Measured TDC nonlinearity. 
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The phase noise spectrum is shown in Figure 4.9. An intermittent logic error degraded phase 

noise at low frequencies. Nevertheless, integrated jitter at the maximum frequency was 

measured to be 4.71ps, while period jitter was measured at 1.29ps. The phase noise is -101 

dBc/Hz @ 10MHz offset, which agrees with simulated values for in-band noise in the absence 

of the logic error. Measurements were taken with a 50MHz reference. The PLL achieves an 

FoM of -216.84 at 2.5GHz (divided) output frequency, where the FoM is defined as 

10 log [(𝜎𝑡/1𝑠)
2  (𝑃𝐷𝐶/1𝑚𝑊)]. Figure 4.10 shows the output spectrum of the PLL, and Figure 

4.11 shows the measurement test bench. Figure 4.12 shows the chip micrograph with the 

ADPLL design highlighted. Table 4.1 summarizes the ADPLL performance and compares it 

against similar works. 

 

Figure 4.9: Measured Phase Noise Spectrum with 5GHz Oscillator Frequency, divided 

to 2.5GHz. 



64 
 

 

Figure 4.10: Spectrum of the 2.5GHz output. 

 

Figure 4.11: Test Bench used for measurements. 
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Figure 4.12: Chip Micrograph. 

Table 4.1: Performance comparison of ring oscillator ADPLLs 
 

This 
Work 

Deng 
[64]  

Kong 
[68]  

Jang 
[69] 

Yeh 
[70] 

August 
[71]  

Process 14nm 65nm 45nm 28nm SOI 40nm 22nm 

Freq. (GHz) 1.0-5.5 0.8-1.7 2.3-2.6 0.8-3.2 3.2 0.3-3.2 

Ref. (MHz) 50 50-400 22.6 50 200 40 

Power (mW) 9.7 3.0 6.4 5.0@2.4GHz 2.915 3.4 

Area (mm2) 0.009 0.048 0.03 0.049 0.0216 0.2 

Period Jitter (ps) 1.29 N/A N/A N/A N/A 0.8 

Integ. Jitter (ps) 4.71 3.6 1.68 2.52 3.54 3.1 

FoM (dB) -216.8 -224.2 -227.4 -226.5 -224 -224.9 

Synthesized? Yes Yes No No No No 

Type Int-N Frac-N Frac-N Int-N Int-N Int-N 

 

 



66 
 

As computational performance increases, the total amount of I/O bandwidth of today’s 

computing systems has kept pace in order to avoid creating bottlenecks. This has led to 

modern processors, SoCs, and chipsets containing dozens of serial links implementing 

several different standards on a single chip, requiring a substantial design effort. 

Additionally, these differing standards are likely to all require different clock sources, adding 

to the number of analog systems which must be designed. While the design of clock sources 

has been addressed using the cell-based ADPLLs described previously, the clock and data 

recovery (CDR) and channel equalizer circuits remain a very cumbersome analog design 

process. In this chapter cells, models, architectures, and methods for synthesizing a full serial 

link targeting the USB 3.1 standard are presented. A full layout level circuit design is 

presented for a USB transceiver with CDR, clock source, and equalization circuits 

synthesized using EDA tools that is portable to other processes. 

5.1. Architecture Overview 

The USB 3.1 standard specifies both 5Gbps and 10Gbps data rates, both utilizing transmit 

and receive equalization, data encoding, and clock recovery [72]. Spread spectrum clocking 

(SSC) is used to reduce EMI from the interface [73]. The standard specifies a CDR transfer 

function which receivers should implement, as well as specifying the amount of spread 

CHAPTER 5 

Cell-based SERDES Circuits 
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spectrum which must be tracked and limits on the deterministic and random jitter. In order 

to meet these specifications, the design uses a phase interpolating CDR (PI-CDR), which 

leverages a phase interpolator designed using automatic place and route. This CDR 

additionally has its clock inputs provided by a synthesized PLL, which also includes SSC and 

acts as the transmit clock. A half-rate architecture is chosen in order to reduce timing 

constraints in the design. The PLL architecture is shown in Figure 5.1. 

 

Figure 5.1: Architecture of SERDES PLL with SSC. 

Details of the phase-interpolated TDC and SSC are shown in Figure 5.2. The embedded TDC 

has an inherent resolution equal to the oscillator period divided by the number of internal 

oscillator phases, which is 16 for the 8-stage differential oscillator. This yields a resolution 

of 16ps, which is not sufficient for in-band phase noise requirements. To resolve this while 

staying within the digital flow, the resolution of the TDC is enhanced by using an inverter-

based phase interpolator. The interpolator increases the resolution by a factor of two, 

providing a 3dB in-band noise improvement. The spread spectrum control signal is 
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generated using a compact digital triangle generator. A continuous triangle wave 

representing 5000ppm of the reference multiplier would require a number of bits far beyond 

what is required for quantization noise purposes. This circuit leverages simple addition and 

shifting operations to generate a coarsely stepped triangle wave without the need for 

complex multiplier hardware being added to the PLL. Instead a combination of step and shift 

control values which yield the desired waveform are computed ahead of time and 

programmed into the PLL. 

 

Figure 5.2: Detail of (a) phase interpolated embedded TDC and (b) SSC modulator, as 

well as (c) SSC modulator output waveform. 
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5.2. CDR Architecture 

The CDR uses a half-rate phase-interpolation architecture (PI-CDR), leveraging the fact that 

many phases of the oscillator already exist in the frequency generator PLL. The architecture 

block diagram is shown in Figure 5.3. A half-rate bang-bang phase detector is used to detect 

the phase difference between the currently selected phase and the incoming data stream. 

The digital filter includes a rate-reduction of 8x, achieved using a majority voting algorithm, 

which reduces high frequency noise from the BBPD as well as further alleviating timing 

requirements. The detected phase error is used to adjust which phase of the phase 

interpolator is selected to be used as the receiver data clock. The phase interpolator receives 

several evenly spaced phases of the half-rate clock as inputs, and produces and output 

interpolated between two of these phases. A second order digital filter allows the CDR to 

track low frequency phase variations caused by spread spectrum clocking, while still filtering 

higher frequency jitter adequately. 

 

Figure 5.3: Architecture of Phase Interpolator-based CDR. 
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5.2.1. Phase Interpolator 

An overview of the phase interpolator circuit is shown in Figure 5.4. The PLLs oscillator is 

implemented using pseudo-differential cells which results in an even number of phase 

outputs. These outputs are broken into even and odd categories and fed into the interpolator. 

Based on the desired phase output, the two nearest phases are chosen to interpolate 

between. These phases are both fed to 8 multiplexers. By changing the weighting 

interpolated phases are both fed to a number of inverters driving the same node. By changing 

the weighting code, a number of interpolated phases can be produced. 

 

Figure 5.4: Circuit realization of the synthesizable phase interpolator. 
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inverters driven by the trailing edge will dominate the inverters from the leading edge, 

preventing the output transition from occurring until the trailing edge switches. This results 

in significant nonlinearity such as in the top right of Figure 5.5. 

Tune[0]

Tune[1]

Tune[15]

...

Vx Vout

Tune[0]

Tune[1]
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Vx Vout
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t  

Figure 5.5: Control of PI nonlinearity through input slope tuning. 

On the other hand, if the input edges to the phase interpolator are relatively slow, then the 

behavior of the interpolating inverters will approach their static transfer function. When the 

input transitions overlap and are slow relative to the minimum inverter delay, the ratioed 

NMOS and PMOS will perform voltage interpolation between the two edges, which results in 

a linear time interpolation. Thus, achieving a linear interpolation requires that the slopes of 

the edges to the interpolating inverters are carefully calibrated. This is done through the use 

of tunable buffers driving the interpolating inverters, as shown on the left of Figure 5.5. 

These tunable buffers are implemented using parallel tristate buffer cells from the standard 

cell library. The distribution of the buffer into multiple cells also improves linearity, as the 

tuning buffers from various branches are interspersed by the tool, resulting in some amount 

of random error averaging. 
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5.3. Physical Implementation of the CDR 

In order to successfully complete the CDR design using place and route, and number of 

components are needed. After going through the CTLE, the differential data signals must be 

converted to single ended signals. Because there are no pre-existing digital cells which 

operate on digital data, a custom sampler cell must be created. The schematic of this cell is a 

typical dynamic comparator with transmission gate sample-and-hold, as shown in Figure 

5.6. This circuit is implemented as a single standard cell, and can easily be characterized 

similar to a flip-flop and inserted into the standard cell library. The layout for this 

comparator was fit into the standard cell grid. One comparator is used for each edge of the 

clock, rising and falling, in order to facilitate the half-rate architecture. 

 

Figure 5.6: Sampling comparator cell. 

The phase interpolator is implemented with existing digital cells. Delay based timing 
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standard cells, and no custom cells are required. The tuning spans 16 levels in order to meet 

the linearity requirements across PVT. 

5.4. Receive Equalizer 

The receive equalizer is a differential continuous time linear equalizer (CTLE)[74]. A typical 

CTLE is illustrated in Figure 5.7. It consists of a differential amplifier with an added zero, 

which allows high frequencies to be emphasized, partially correcting the low-pass nature of 

the channel. Because this block is inherently an analog amplifier, it is less amenable to a cell-

based approach using a small number of reusable cells. However, it does require digital 

tuning, producing many switched elements. These individual elements can be realized as 

custom cells, and connected together using the cell-based flow.  

Vin
+ Vin

-

Vout
+-

 

Figure 5.7: Typical CTLE Receiver. 

A cell-based CTLE receiver is shown in Figure 5.8. The original circuit has been split into 4 

types of differential cells, with several of each type instantiated to provide tuning of the 
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frequency response. Differential pair, load resistor, tail capacitor, and tail resistor cells were 

created through custom design. To reduce offset from mismatch, differential cells were used, 

meaning each cell contains a matching element for both the positive and negative sides of 

the CTLE. The differential pair, load resistor, and tail capacitor cells are connected in parallel, 

while the tail resistor cell is placed in series, and is tuned using a shorting transistor. The 

capacitor cell is implemented using a MOS capacitor, while the resistor cells are created using 

poly resistors. 
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Figure 5.8: Cell-based CTLE circuit, with differential cells. 

5.5. Transmit Equalizer 

The transmitter features a 3-tap FFE scheme, based off a similar concept to the current DAC 

found in [47]. A block diagram is shown in Figure 5.9. First, a half-rate serializer produces a 

serial stream of data which is sent through dual-edge triggered flip flops in order to be fed 

to the output stage. The output stage consists of three differential cell-based automatically-

placed-and-routed current DACs with outputs shorted together.  
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Figure 5.9: Transmitter block diagram. 

Details of the transmit output stage are shown in Figure 5.10. Each DAC consists of a bank of 

differential current steering cells. The current DACs are controlled by the data bit, which 

changes the sign of the output current, as well as the FFE tap weights, which are 

programmable and control the magnitude of the output current. Separate DACs are used for 

the main driver and pre/post-emphasis drivers in order to allow independent strength 

adjustment. Because of the relatively high current at the output of the transmitter, special 

attention must be paid to the output routing. To accomplish this in the digital flow, the 

transmit cells were laid out with pins brought up to a higher metal layer, and custom routing 

rules were applied to only the output nets. 
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Figure 5.10: Transmitter cell-based output stage and cell detail. 

5.6. Simulated Results 

The serial link was designed in a 40nm CMOS process. Simulated results were produced after 

parasitic extraction. The total area of the design is 0.175mm2. The power of the various 

components of the system is presented in Table 5.1. The receiver frequency response when 

configured for long channels is shown in Figure 5.11, with results from Monte Carlo included. 

Mismatch has only a very minor impact on the frequency response.  
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Figure 5.11: Simulated Frequency Response of CTLE Receiver. Monte Carlo Results. 

Table 5.1: Power Consumption of System Components 

Component Power 

Transmitter 2.2mW 

Receiver 0.57mW 

CDR 6.9 mW 

 * Phase Interpolator 3.1 mW 

PLL 10.3mW 

Total 20.0 mW 
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The transmit equalizer was tested using the long channel settings specified by the USB 3.0 

standard. These settings were programmed, and the resulting waveform is shown in Figure 

5.12.  

 

Figure 5.12: Transmit Equalizer Output Waveform 

5.7. Measured Results 

The PLL and phase interpolator were implemented in a 40nm CMOS process. The PLL 

phase noise and spectrum were measured with an N9020A spectrum analyzer. Figure 5.13 

shows the phase noise spectrum of the PLL, as well as the spectrum with SSC enabled. 

Figure 5.14 shows a time domain plot of the spread spectrum behavior. The PLL has an 

output range from 1.0-2.0GHz, and power consumption of 10.3mW. The integrated jitter of 

the PLL is 5.0ps. Results are compared with other PLLs targeting similar applications in 

Table 5.2. 
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Figure 5.13: PLL Phase Noise and SSC Enabled Spectrum 

 

Figure 5.14: SSC Frequency vs. Time 
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Table 5.2: PLL Performance Comparison 

 This Work ISSCC ‘15 
[64] 

ISSCC ‘11 
[75] 

ISSCC ‘15 
[76] 

Supply  0.95 V N/A 1.2 V 1.0 
Process 40 nm 65 nm 90 nm 40nm 
SSC Yes No No No 
Frequency 1-2 GHz 0.8-1.7 GHz 0.25-2 GHz 2.002GHz 
Osc. Type Ring Ring Ring Ring 
Integrated Jitter 5.0 ps 3.6 ps 2.3 ps  2.36 ps 
PLL Power 10.3 mW 3 mW 1.4 mW 9.1 mW 

Area(mm2) 0.036 0.0066 N/A 0.046 

Synthesized Yes Yes No No 
 

Phase interpolator linearity was measured using a TDS6124C oscilloscope to measure time 

intervals between the original and interpolated clocks. Figure 5.15 shows the phase 

interpolator linearity after calibration. DNL is < 1LSB across the tuning range, making this 

design practical for use in a serial link receiver. The maximum observed DNL is 0.90LSB. 

The influence of the 8 input phases on the nonlinearity results is evident. DNL only slightly 

exceeds the maximum simulated value without random variation, as shown in Figure 5.15. 

This indicates that the random effects are successfully mitigated through the use of parallel 

driving cells. 

Results from the design are compared with similar designs in Table 5.3. The phase 

interpolator operates over a frequency range of 1.5-2.0GHz, and consumes 3.1mW from a 

0.95V supply. Compared with the state of the art, this phase interpolator suffers only a 

slight linearity penalty, and has a power budget suitable for most CDR applications. 

Additionally, it has a small active area allowing for a small CDR implementation. The total 

area of gates in the PI is 0.0009mm2, allowing a full CDR to be implemented in 0.010mm2 

with a density of 30%. A die photo of the manufactured chip is shown in Figure 5.16. 
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Figure 5.15: Phase Interpolator Nonlinearity 

Table 5.3: Phase Interpolator Performance Comparison 

 This Work JSSC ‘13 
[77] 

VLSI ‘16 
[78] 

ISSCC ‘11 
[79] 

Type Inverter-
based 

Inverter-
based 

Current-
based 

Current-
based 

Supply  0.95V 1.2V 1.2V 1.2V 
Process 40 nm 65nm 65nm 65nm 
Frequency 1.5-2 GHz 0.1-1.5GHz 4-8GHz 1-6GHz 
Bits 6 8 6 Analog 
Max INL 2.21 0.99 N/A 6.5° * 
Max DNL 0.90 0.45 0.48 N/A 
Power 3.1 mW 

@2GHz** 
4.3mW  
@1.5GHz** 

87.6mW 
@16Gbps† 

3.8mW 
@6Gbps† 

Area (mm2) 0.0009** 
0.0192† 

0.060** 0.088† 0.0035† 

Synthesized Yes No No No 
*Equivalent to 1.16 bits in a 6b digital PI 
** PI only 
†with CDR 
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Figure 5.16: Serial Link Die Photo 
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As analog design has become more and more difficult relative to digital design due to process 

scaling, many approaches to analog design automation have been developed. Among them, 

cell-based analog design automation is a recent development which leverages digital design 

tools and highly digital architectures in order to accelerate analog design. This approach can 

also increase design flexibility and reduce area by allowing application specific design 

customization in place of heavily reused analog IP blocks. Previous work has demonstrated 

the viability of this approach for ADPLLs. However, this work is limited in the range of 

specifications and process technologies it targeted, as well as focusing only on physical 

design automation while ignoring circuit design automation. 

This thesis addresses both of these issues. First, both analytical and numerical modeling 

strategies which can be applied to the design of cell-based ring oscillators are presented. The 

analytical models allow for prediction of what oscillator configuration can be used to achieve 

a given circuit specification, leveraging the cell-based nature of the design and without 

detailed knowledge of parasitics. The numerical timing model allows for accelerated 

verification and iteration of the design to meet frequency specifications without the use of 

SPICE simulations, reducing design times. Both of these models together enable the 

development of a fully automated design flow. 

CHAPTER 6 

Conclusions 
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The usefulness of these automation techniques is limited if they cannot be applied to 

advanced process nodes or modern use cases. This thesis presented circuit strategies to 

enable fractional-N operation and high output frequencies in cell-based ADPLLs designed in 

modern processes. Among the many circuit factors which need to be addressed in these 

processes are design for noise, mismatch, and parasitic resistance. Two prototypes were 

fabricated: the first in a 28nm FD-SOI process, and the second in a 14nm FinFET process. 

These designs demonstrated the applicability of these ADPLLs to modern design challenges. 

Finally, this thesis extended the cell-based design methodology to an additional class of 

circuits: SERDES interfaces. Cell-based circuit approaches for a CDR, FIR Tx Equalizer, and 

CTLE Rx Equalizer were presented. A prototype targeting the USB 3.1 specification was 

implemented in a 40nm CMOS process, and represents the first synthesized SERDES. The 

first step demonstates the feasibility of implemented these types of circuits using an 

automated cell-based approach, removing additional design bottlenecks. 

6.1. Future Work 

Cell-based implementation of analog blocks has recently begun attracting attention from 

industry, which has lent additional clarity to the major advantages of this approach. The 

potential for full design automation of these circuits can change how they are utilized at the 

system level, potentially making a bigger impact that simply reducing design time. With this 

in mind, potential future directions for this work are discussed below. 
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6.1.1. Additional circuit varieties 

To date, the cell-based design methodology for analog has been primarily applied to ring 

oscillator PLLs and to current steering DACs. This thesis extends the work to a limited subset 

of SERDES circuits as well. However, there are still a number of analog blocks commonly 

used in modern processors and systems-on-chip which could potentially be implemented 

using this approach. Most directly related to the work in this thesis would be a cell-based LC 

oscillator, which has been demonstrated to some extent in [49]. Additionally, an LC PLL 

would enable additional SERDES standards to be targeted, with additional circuit 

requirements. Other circuits of potential interest are voltages regulators and ADCs. 

6.1.2. Analog specific EDA support 

The purpose of this research is to enable design automation of analog circuits, so it is not 

enough to simply consider circuits; the approach to automation is also essential for achieving 

useful performance. Chapter 2 of this thesis developed multiple modeling techniques 

intended to be used for performance evaluation in a fully automated PLL design flow. Missing 

from these models is a numerical approach to evaluating jitter, analogous to the use of static 

timing analysis for frequency evaluation. While analytical predictions of jitter a typically 

reliable enough to design with guard banding, a cell-based numerical model which correlates 

with SPICE could largely remove the need to run SPICE simulations on generated PLLs 

altogether. Several other research topics which fall under the umbrella of EDA could 

contribute to the usefulness of the cell-based analog design flow. Examples include supply-

sensitivity modeling and specialized placement and routing of oscillator cells. 
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6.1.3. System level usage of automated analog design 

Currently, analog system requirements are typically planned early in a chip design cycle, and 

are relatively inflexible due to the large custom design effort that goes into creating them. 

However, if analog circuits can be quickly generated to fill a specific role, they can potentially 

be used in new parts of a system later in the design cycle. For example, additional 

synthesized voltage regulators could be inserted into the design late in the design cycle based 

on simulated supply noise values, without requiring large floorplan changes imposed by a 

hard macro regulator. The value of these sorts of system-wide usages is speculative, but 

potentially much higher than simply the benefits of design automation. 
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