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ROHRS’ EXAMPLE REVISITED: ON THE ROBUSTNESS OF ADAPTIVE
ITERATIVE LEARNING CONTROL

Berk Altin"® and Kira Barton

ABSTRACT

Adaptive feedback based methods in iterative learning control (ILC) have garnered much interest from researchers
for some time now. Much as in adaptive feedback control, most of these methods use Lyapunov functions and positive
real transfer functions to prove convergence and boundedness of system signals updated through iterative estimations.
While Rohrs et al. have motivated further research on the design of robust adaptive feedback controllers, by demon-
strating in the early 1980’s that the algorithms of the time were not robust in the presence of unmodeled dynamics, the
topic of robustness has not been studied much in the adaptive iterative learning control (AILC) literature. Inspired by
Rohrs’ counterexample, we use a model reference AILC scheme to show the lack of robustness to unmodeled dynamics
in AILC. We rigorously define the concept of stability in ILC via £, space concepts, and demonstrate the existence of
unstable learning operators. We put forth linear systems arguments to explain how conditions leading to instability can
occur, and support heuristic arguments with simulation examples. Our findings indicate that the shortcomings of AILC
in terms of robustness are no different than those of adaptive feedback, with the robustness issue more severe in certain

cases, and further research is necessary to design robust AILC schemes.

Key Words: Robustness, learning control, iterative methods, adaptive control, model reference adaptive control.

I. INTRODUCTION

Adaptive methods in iterative learning control
(ILC) have been a popular area of research in recent years
[1]. The main idea is simple, given an uncertain system
working on a finite interval repetitively, use estimation
schemes in adaptive feedback to iteratively update the
input so the control objective is achieved. Much as in
adaptive feedback control, most of these methods employ
techniques such as the construction of Lyapunov func-
tions and positive real transfer functions to prove con-
vergence and boundedness of the system signals. Special
attention has been given to the application area of robotic
manipulators, wherein iterative estimation schemes are
employed through energy functions [18,20] for improved
transient response under parametric uncertainty. Related
schemes were also used to reduce the trajectory track-
ing errors in model reference adaptive control (MRAC)
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[11,20]. The similarities between adaptive feedback and
adaptive iterative learning control (AILC) were further
underlined in other works, which have sought to show
how adaptive feedback schemes can be extended straight-
forwardly to ILC to obtain universal learning controllers
[13,16]. Due to space limitations and the fact that the
focus of the current work is adaptive 1LC, we refer the
readers to the surveys [1,7,22] for a review of recent
contributions to the ILC literature.

In the early 1980s, Rohrs et al. demonstrated in their
benchmark paper [17] that the adaptive feedback control
algorithms of the time were not robust in the presence
of unmodeled dynamics. Although it was later argued
that the explanation of the instability observed was not
adequate [3,5,6], the example constructed in the paper
generated much controversy and spurred further research
on the design of robust adaptive controllers [15]. Interest-
ingly, despite the prominence of AILC and its similarities
with adaptive feedback control, robustness of adaptive
iterative learning controllers has not attracted the same
level of attention, and is an open question [22]. While
several works [10,21,23] have referred to the notion of
robustness in AILC, there have been no studies in the lit-
erature that tackle the issue of robustness explicitly and in
a direct manner. This motivates the question of whether
AILC offers benefits in terms of robustness over adap-
tive feedback, or if it has the same drawbacks as in the
feedback case.
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Inspired by this question, in this paper, we use the
model reference adaptive ILC (MRAILC) scheme of [19]
to demonstrate the lack of robustness of AILC to unmod-
eled dynamics. The MRAILC scheme of [19] for systems
with relative degree 1 is a direct extension of the basic
MRAC scheme scrutinized in Rohrs’ counterexample,
and is therefore a good avenue to explore the convergence
properties of AILC in the presence of unmodeled dynam-
ics. Our aim is not to disprove the validity of a specific
algorithm, but rather point out through a case study in
the spirit of Rohrs’ counterexample that AILC is likely to
suffer from the same robustness issues as those of adaptive
feedback control.

The rest of the paper is organized as follows.
Section II generalizes certain function space concepts for
ILC systems, followed by a summary of an MRAILC
algorithm for systems with relative degree 1 in Section II1.
The instability of the learning operators of the algorithm
are proven in Section IV, with a short discussion of the
main assumptions in Section V. We give heuristic lin-
ear systems arguments to discuss possible mechanisms of
instability and how they can come to occur in Section VI.
Simulation results of Section VII are presented to sup-
port our arguments, and concluding remarks are given in
Section VIII.

II. NOTATION AND PRELIMINARIES

We denote by R the set of real numbers. We take N
as the set of nonnegative integers and N* as the set of
positive integers. The space L] is the space of Lebesgue
measurable functions f : R — R” with finite norm; i.e.

o 12
ufuﬁzé( / uf<r>||§dr> <o,

where ||.||, is the Euclidean norm. Similarly, /, denotes
the space of square summable real sequences.

Let P : U - Y be a mapping where U is the space
of admissible inputs and Y is the space of outputs.
The standard ILC problem is that of finding a con-
troller C that maps the input history uy, u;,...,u;_, €
U to the current input u;, € U such that the out-
put y, = Pu, converges to a desired reference y,
in the image of P, or a small neighborhood of it, as
k — 00.* The fact that the map C has the domain
[Iien U and range [],n Y shows the multidimension-
ality of the problem setting. In our case, " and Y will

*Here, we are assuming that P is known and there are no exogenous inputs
affecting the error, so that any function of the error can be transformed into a
function of the input by substituting y, — Pu,. Thus, it is sufficient to consider the
sequence of inputs.

be L, spaces of different dimensions on a finite inter-
val. Hence, a signal /" will be defined as a function that
maps a given iteration k£ and time ¢ to an n dimensional
real vector. This motivates us to define the concepts of
stability and gain for mappings such as C. We intro-
duce several definitions to rigorously formulate these for
ILC systems.

Definition 1 (L/, space). LI is the space of all function
sequences f = (fy, f}, ... ), where f;, : R — R” is Lebesgue
measurable for all £ € N, and the £/, norm of / given by

© 172
Nl er, & (2 nfkniz>
k=0

1s finite.

Definition 2 (Extended L/, space). The extended space
L[5 is the space of all / such that (f), € L] forallx € N,

where (), £ (fy, /1> --- /3> 0,0, ...) is the truncation of f.

The idea of the extended space as defined above may
seem redundant due to the discrete nature of the prob-
lem setting, as a sequence f € L, if and only if every
fr € L,. Moreover, if each f; has bounded support, the
condition is automatically satisfied. Nevertheless, it will
enable us to focus on the convergence properties of the
iterative problem rather than the time domain dynamics.

Definition 3 (Finite gain £/, stability). A mapping P :
LY — LI} is finite gain £/, stable if there exist finite
constants @ and g such that

PN, < all@),llpy, + 8 Vue LBk €N.

Otherwise, P is said to have infinite gain or be unstable.

In addition to the above, we will also say that f
is bounded if there exists a finite constant M such that
Wfi®ll, < M for all k € Nand ¢t € R, where ||.||
is the sup norm, and unbounded otherwise. The defini-
tions above are natural generalizations of the classical £,
space concepts to iterative signals: If |||, = €, f has
a total energy of €. We have chosen the notation £/, to
reflect the two dimensional nature of iterative signals as
each fi € £, and (|[foll,» If1llz,,---) 1s an [, sequence.
For our discussion, we will assume that each signal f;
has the same bounded support, namely the finite interval
[0, T'] as per the ILC assumption. Note that the trunca-
tion operator is defined on the iteration domain since we
are interested in this axis.
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Finally, let (E, E,, ..., E,) be the standard basis
of R". We say that f € LI} has an iteration-invariant

component if there exist m € {1, 2, ...,n} such that
Ef()=E fi,() VkeN,1€[0,T]. (1)

Furthermore, the sequence f’ £ ( fo’ , 1’ ,...), where

£ £ E] fi(pforallk € Nand 7 € [0, T}, is called an
iteration-invariant component of /. With some abuse of
notation, we will also denote by f” the function f;. Simi-
larly, we say that f"is iteration-invariant if (1) holds for all
me{l,2,...,n}.

III. PROBLEM SETUP

In this section, we introduce the MRAILC algo-
rithm of [19] for plants with relative degree 1. We will limit
the discussion to this algorithm for simplicity and con-
sistency with Rohrs’ example. The algorithm is a direct
extension of the standard unnormalized MRAC algo-
rithm for plants with relative degree 1. In addition, we
will introduce the error model structure of the algorithm,
which will be used later to argue how instability can arise.

3.1 The MRAILC algorithm for relative degree 1 systems
Consider a nominal single-input single-output

(SISO) linear time-invariant (LTI) minimum phase plant

Zp(s)
Ryp(s)

Gp(s) = gp

with relative degree 1, where g € R\{0} is the
high-frequency gain, and Zp(s) and Ry (s) are monic
polynomials. The nominal plant Gp(s) is unknown, but it
is assumed that an upper bound n on the degree of Rp(s)
and the sign of gp is known. Similarly, consider a SISO
LTT strictly positive real (SPR) reference model

Zy($)
GM(S) M RM(S)’
where g, € R\{0} is the high-frequency gain, and Zy,(s)
and Ry,(s) are monic Hurwitz polynomials with degree
less than n. The reference model Gy,(s) has relative degree
1, and can be designed to ensure desired closed-loop
dynamics. The control law of the algorithm is given by

u (1) = 0] (D (1) VkeN,1€(0,T], )

where 0,(1) € R?" is the output of the parametric adap-
tation law, and Q,(r) € R is the vector of measured
variables containing the reference r(f) € R, along with
filtered copies of the input #,(f) € R and output y,(¢) €
R. Specifically, Q.(¢¥) = [y,(?) r(H)]" for all k € N and
t € [0,T] when n = 1, and using the standard mixed
notation,

a(s)
Ao($)Zy(s) L4 ()]
a(s)
Q) = ANoZy® (0]

(0
r(1)

Vke N, te[0,T],

when 7 > 2, where a(s) = ["25"3 ... 117 and Ay(s) is
an arbitrary polynomial such that Ay(s)Zy(s) is a Hur-
witz polynomial of degree n — 1. The adaptation law is
defined as

0o (1) = TQy(Dey(Dsgn(p™) 3)

0,.(1) = 0,_1 () + TQ(De, (sgn(p™)
for all k € Nt and ¢+ € [0,T], where ' € R¥>*2 ig
the symmetric positive definite adaptation gain matrix,
e (t) £ yy(t) — y,(2) is the output tracking error with
y4(H) € R the desired trajectory at time ¢, and the con-
stant p* = gp /gy 18 the ratio of the high-frequency gains
of the nominal open-loop plant and the reference model.
Note that for k = 0, the controller parameter vector
and the input are computed using the standard MRAC
algorithm over the finite time interval. The dynamics of
the MRAILC algorithm in the iteration domain with
the uncertain open-loop plant G(s), under the influence
of external disturbances, is shown in Fig. 1, where it is
assumed that p* > 0. Without loss of generality, in the
sequel, we suppose p* > 0.

3.2 Error model structure of the algorithm

The error signal of the classical MRAC algorithm

for relative degree 1 plants is given by
0T (HQ(¢
(1) = (G*(5) = Gy(S)F®)] + G*(s) [%]

forall ¢ € [0, T]. We denote by 8* € R?" the constant vec-
tor that achieves G*(s) = Gy(s) when the relative degree
of Gp(s) is 1, where G*(s) is the closed-loop transfer func-
tion that would result with u(¢) = (6*)"Q(7) for all ¢ > 0.
Here, 0(1) £ 0(r) — 6* is the parameter estimation error,
and 07 is the component of 6* that acts on r(z). Hence,

© 2018 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd



996 Asian Journal of Control, Vol. 20, No. 3, pp. 993-1002, May 2018

|-
Uk yk -
{ Yd
E(s) G (s)
, 404_@ €L

Or—1

—1

Fig. 1. Block diagram of the MRAILC agorithm with the
forward trial-shift operator ¢, where it is assumed that
p* > 0,and “.” denotes the dot product. The filter Z(s)
depends on a Hurwitz polynomial of choice.

the error signal of the MRAILC algorithm is

N EAGRG
e (1) = (G*(5) = GyNIrD] + G*(s) —

4)

for all k € N* and ¢ € [0, T]. As stated in [17], if the
restrictive relative degree assumption is violated, G*(s)
can be as close to Gy,(s) as the feedback structure allows.

IV. INSTABILITY OF THE LEARNING
OPERATORS

We will now analyze the MRAILC algorithm given
by (2) and (3) in the same quantitative manner of [17].
This approach will enable us to later use linear systems
arguments to discuss how the conditions bringing insta-
bility could be introduced to the system by exogenous sig-
nals. Since we are interested in the convergence properties
on the iteration axis, we can treat 6, as an initial condition
to rewrite the estimation as a pointwise integrator,

k
0,(0) = 0,(1) +T Y, (0)ey(0) (5)
I=1

for all k € N* and ¢ € [0, T']. Consequently, the control
at the kth iteration is given as

T

k
u (1) = (00(0 +T 2 Q,(t)e,(t)) Q. (9) (6)

=1

for all k e Nt and r € [0, T]. Now let

Q2 (Q,Q,...),

A
e=(ey,ep,...),

02 (6,.0,,...),

A
u = (U, uy,...).

We define Hy, : L], — Elg;’ as the operator map-
ping e to 0 according to (5), and G, : LI,, —» LI,, as the
mapping from e to u according to (6), both parametrized
by Q. It is trivial to see that there exists Q such that both
operators have infinite gain when isolated from the rest
of the system.

Theorem 1. If Q has an iteration-invariant component w
such that w(z) £ b + ¢sin(wyt) = E! Q, for all 1 € [0, T
for some m € {1,2,...,2n} and positive constants b, c,
and @,, then H has infinite gain.

Proof. We prove this by construction as in [17]. With-
out loss of generality, assume I" to be the identity matrix
and 8, = 0, ¢y = 0. Let ¢,(¥) = asin(wyt + ¢) for all
te [0,T] and k € N*. It suffices to consider the com-
ponent of the vector 6, that arises due to w. Hence, we
denote this component @, @, (1) £ Z]/;o w(t)e,(1). Since
ep =0, [loll L, = ky for some finite constant y. Now let
@ = (g, @1, ... ). Then we have

. 1/2
(k+ D2k +1)
I@)llr, = y(ZF) =/

=1
(7

by Faulhaber’s formula. Since ||(e), || o, = \/Ellel I| £,
from (7)

I@lle, [+ DO+ 7
@)l 6 ledlle,”

@) ller,

TN

so lim

= oo0. Thus, H, has infinite gain.

It is clear from the definition of ¢, that Hg, when
parametrized by the bounded vector Q, is bounded-input
bounded-output unstable in the sense that a bounded input
e forces the output ¢ to grow unboundedly. Also observe
that as opposed to the quantitative proof of [17], the
proof of instability is much less tedious in the itera-
tive case as a result of the iteration invariance assump-
tion. We discuss this assumption in the next section.
For completeness, we also state the instability of G.
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Theorem 2. If Q has an iteration-invariant component w
such that w(r) £ b + ¢sin(wyr) = E| Q, for all 7 € [0, T]
for some m € {1,2,...,2n} and positive constants b, c,
and w,, then G, has infinite gain.

Proof. Let 6§, = 0 and choose e as in the proof of
Theorem 1. Assume Q;, = (w;, Wy, ..., W,,) is such that
w;=w for some i € {1,2,...,2n}. Then, |u (9] >
kle,(t)|w*(z) for all k € N* and ¢ € [0, T']. The rest of the
proof follows the same steps as before.

V. ASSUMPTION OF
ITERATION-INVARIANT SINUSOIDALS

The central argument of the proofs of instability
is that [[(@), ]|, (or @), ll) is OG?), while [|(e), Il
is O(x'/?), which is due to the iteration-invariance of
w and e. We explain our reasoning for this assumption
as follows: In [17], the authors use LTI systems argu-
ments to heuristically argue that closed-loop stability
can be violated under certain conditions when unmod-
eled high-frequency time-domain dynamics are present.
Hence, sinusoidal error and parameter signals are used
to show the instability of the feedback operators in the
time domain. By the same token, we assume the same
sinusoidal structure for the error and parameter signals.
On the other hand, the assumption of iteration invari-
ance relies on the fact that if an exogenous signal exists
to induce sinusoidal behavior in e, and w (e.g. 60 Hz
hum, or a sinusoidal reference) for some k € N, it is
likely to persist up to a phase shift in the following iter-
ations. This assumption can be relaxed in many ways.
For instance, if ¢, is bounded and €, has a component
wy such that ¢, and w; are both bounded away from
0 in an interval contained in [0, 7] Yk > K, for some
K € Nt*, the proof follows in a similar manner: By
the boundedness assumptions, ||(¢), | -;, would be O(x'7?)
and ||(@), | ¢l would be bounded from below by an

O(x3/?) function.

VI. MECHANISMS OF INSTABILITY

It is discussed in [5,6] that the arguments of [17]
do not capture all aspects of the problem. In [5,6], the
author uses averaging methods to further analyze Rohrs’
counterexample. It is shown that since a step input is
persistently exciting of order 1, the set of equlibria of
the parameters is an affine subspace of R? instead of an
isolated point. Thus, parameters can drift on this line,
thereby leaving the region where the linearized system
is stable. Hence, controller parameters cannot be deter-

mined reliably in the presence of unmodeled dynamics
and disturbances. Similarly, outside the bandwidth of
the plant where unmodeled dynamics are present, phase
shifts of +180° can occur, thereby violating the positive
realness condition.

The iterative adaptation law (3) manifests as an
unstable linear discrete “time” (iteration)-varying system
for each ¢ € [0, T'], so it may be argued that similar argu-
ments can be made for the adaptive iterative controller.
However, it is not straightforward how time-domain
dynamics can be related to this pointwise integrator to
show that the equilibrium set of 6, has possibly more than
a single element,” as the the system state 6, lies in an
infinite-dimensional subspace of £,. Nevertheless, linear
systems concepts can be used in the style of [17] to give
a sufficiently intuitive explanation of how instability can
occur. Let us now try to give heuristic explanations in the
same way.

6.1 Existence of the sinusoidals

We argued in Section V that if an exogenous sig-
nal exists to induce sinusoidal behavior, it is likely to
be invariant over the iteration domain. This argument
is consistent with the assumptions of classical ILC, and
also that of [17]. For example, the invariance of the ref-
erence (or disturbance) from trial-to-trial is a standard
assumption in ILC. On the other hand, certain distur-
bances that affect system dynamics during a trial, such as
measurement noise, load disturbance, or mains hum, will
also persist in future trials. Thus, we can consider a single
trial in conjecturing how these signals can be introduced
to the feedback system.

First, assume that the reference signal is sinusoidal
with frequency @, and a bias term. Then, from lin-
ear systems theory, the output y,, and consequently all
components of Q,, will be sinusoidals at frequency w,
with a bias term and a phase shift. Now under the com-
mon assumption that plant uncertainties occur at high
frequencies, G*(s) will match Gy(s) at DC, but not at a
large enough w,,. Therefore, ¢, will be a sine wave at fre-
quency w,. Thus, the conditions for the infinite gains of
G, and H, will be satisfied.

"In fact, it is trivial to see via the Laplace transform that in an infinite hori-
zon setting (i.e. T = oo) there is a unique time-invariant parameter signal for all
nonzero references achieving perfect tracking. In other words, assuming uniform
convergence to 0, any nonzero reference is sufficiently rich of all orders in the iter-
ative domain due to the fact that the signal space L, is infinite dimensional. For
instance, when the reference is a step, perfect tracking implies that the closed-loop
system must match the whole spectrum of the reference model as opposed to just
zero frequency (DC), which is the case in adaptive feedback. Now the question
is whether we can find a time-varying parameter that can also achieve perfect
tracking given a nonzero reference.
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Now we suppose that a sinusoidal disturbance d of
frequency w,, corrupts the output y, additively. Then, the
measured output y, + d will have a sinusoid at frequency
y, and so will Q, and e, by definition. Again, the con-
ditions for infinite gain will be satisfied.

6.2 Destabilizing effects of the infinite-gain operators

In [19], the author considers an extension of the
well known SPR-Lyapunov design approach [14], coined
Iterative-SPR-Lyapunov lemma. Under the assumption
that Gp(s) has relative degree 1, G*(s) can be made equal
to Gy(s), simplifying (4) to

e () = G*(s) l VkeN,te[0,T].

Qz(t)Qk(t)
9*
Since G*(s) is SPR, the system is known to be stable for
k = 0. In addition, for each ¢ € [0, T'], the SPR assump-
tion enables the construction of a discrete Lyapunov
functional over the iteration domain that is nonincreas-
ing, thereby proving pointwise convergence of the error

to 0 and boundedness of all signals.

We consider two pathological cases that may lead
to the failure of this approach. First, the fact that the
error converges pointwise to 0 is a key ingredient of
the MRAILC algorithm of Section III, since the con-
verse implies a divergent series. If there is a steady-state
error on an interval contained in [0, 7], caused by a per-
sistent disturbance, the adaptive law will integrate this
error with each iteration, and 6 will be unbounded by
virtue of the infinite gain of H. For the second case, we
assume that w, is large enough so that G*(s) is subject
to phase shifts of +180° when unmodeled dynamics are
present. To analyze the case, we direct our attention to
Fig. 2 and note that the error system of the MRAILC
is a feedback controller in the iteration domain. Thus, the
phase shift of +180° combined with the infinite gain will
affect the iterative loop the same way it affects the feed-
back loop, by enforcing the error signal so it grows in
amplitude with each iteration. In other words, if the rel-
ative degree assumption is violated so that G*(s) does
not equal Gy(s), and G*(s) has a +180° phase shift,
the iterative controller will create a positive feedback
loop due to a change of sign that will force signals to
grow unboundedly.

It is well worth noting that these results are to be
expected: The MRAILC algorithm can be interpreted as
a standard MRAC scheme where the exogenous signals
are periodic with period 7', and the adaptation law is
reformulated as a periodic update. Therefore, it should
not come as a surprise that the MRAILC system loses

l |G (s) [« 1/0;

e EY

e J ]
Ok

Qk:

Fig. 2. Error model of the MRAILC with the forward
trial-shift operator g.

stability in the same conditions as MRAC. We verify
these via simulation in the following section.

VII. SIMULATIONS

The heuristic arguments of the previous section pro-
vide good intuition into causes of instability, but do
not necessarily describe the situation accurately since
the adaptive system is nonlinear. Hence, in this section
we will present several simulation scenarios to support
our claims. We consider the following model that was
originally presented in [17]:

2 2 229

W=7 =T 3020
3
Gu) = ==, 0 = [r0) 30]".

We define /(1) and @, (?) such that

0,(1) = [w(1) @|(D)],
and initialize the simulations with
0,(0) = [1.14 —0.65] ",
thereby yielding the stable system

527
s3 + 3152 + 2595 + 527

for 6 = 6,(0). We take the adaptation rate I' to be
the identity matrix. We choose T to be relatively small
at 5 seconds to ensure “stability” in the time domain
and that signals remain bounded for a few iterations.
Note that since the adaptation law is static (therefore
causal) in time, the short simulation time does not
affect the signal content, in the sense that taking 7" > 5
would have resulted in the same signals for the first
5 seconds of each iteration. We also note that when
G(s) is equal to 2/(s + 1), i.e. there are no unmodeled
dynamics, the MRAILC algorithm guarantees pointwise

G*(s) =
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0.15

Error Norm

10 10 10° 10°
Iteration

Fig. 3. Stable learning of a sinusoidal reference under perfect
modeling without disturbance; the desired reference is
r(f) = 0.3 + 2 sin(4¢). [Color figure can be viewed at
wileyonlinelibrary.comy].

convergence to 0 for Gp(s), Gy(s), ,(9), 6,.(£), " chosen
as above.

For our first example, we will consider a sinusoidal
reference. In [17], it was shown that the system went
unstable for () = 0.3+1.85sin(16.1¢), where 16.1 rad/s is
the frequency at which G(s) has a 180° phase shift. On the
other hand, all closed-loop signals were shown to remain
bounded for r(z) = 0.3 + 2sin(8¢), despite a “bursting”
period. Hence, we take a more modest frequency of 4
rad/s and simulate the system for r(z) = 0.3 + 2sin(4?).
We observe in Fig. 3 that when unmodeled dynamics
are not present, ie. G(s) equals Gy(s), the MRAILC
algorithm seems to drive the error to 0 in the £, norm
topology despite the fact that only pointwise convergence
was proven. On the other hand, Fig. 4 indicates that while
the MRAC scheme (trial 0) remains stable for 5 seconds,
the resulting tracking error at trial 8 is larger than the
original error. In fact, our simulation had a singular-
ity at the attempted 9th trial, with an infinite-derivative
error. A closer look at the evolution of the parameter vec-
tor reveals the infinite-gain action of H,, where the final
parameter signal can be seen to be much larger than the
initial. We also note that the parameter has evolved in a
complicated manner and the signal at the 8th iteration is
rich with harmonics. The infinite-gain action that leads
to stability is perhaps most easily seen in the last graph,
where we see that the MRAILC scheme indeed reduces
the £, norm of the tracking error for 2 iterations before
going unstable.

For the second case, we consider the problem of set-
point tracking with r(z) = 1.0. Although not shown here,
the MRAC scheme performs quite well with very sta-
ble behavior and perfect tracking for prolonged periods
of time since G*(s) readily matches G(s) at DC. How-
ever, Fig. 5 shows that the error again starts to grow

(a)

8

Outputs

Time (s)
(b)
35
55 wy(t)
= = =
2 15 N wg(t)
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Fig. 4. Instability in sinusoidal reference tracking without
disturbance; the desired referenceisr(z) = 0.3 + 2 sin(4¢).
(a) Evolution of the output from the first to the last
iteration, (b) Evolution of the parameter vector from
the first to the last iteration and (c) Evolution of the
error £, norm in the iteration domain. [Color figure
can be viewed at wileyonlinelibrary.com]

unboundedly with each trial after a reduction period of 3
trials. Hence, we see that while the MRAC scheme offers
high performance in DC, an attempt to improve the tran-
sients leads to instability in the iteration domain. In this
case, an appropriate takeaway message would be that
the MRAILC fails to apply the “common-sense rule”
of not fitting a model to bad data [4]: Although system
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Fig. 5. Instability in setpoint tracking without disturbance;
the desired reference is r(¢) = 1.0. (a) Evolution of the
output from the first to the last iteration and (b)
Evolution of the error £, norm in the iteration domain.
[Color figure can be viewed at wileyonlinelibrary.com]

uncertainty is low at DC, the MRAILC system learns a
large bandwidth that is necessary to compensate for the
transient error in response to a step reference. In partic-
ular, we observe in Fig. 5 that the response to the learned
input at the 8th iteration shows oscillatory behavior due
to the high-gain operators, as opposed to the initial out-
put which is devoid of high frequencies. We see a similar
trend of initial steady decrease of the error for regula-
tion in response to a load disturbance in Fig. 6, where
the error starts to increase with each iteration after the
Oth trial. Again, the high-gain operators result in insta-
bility despite the low bandwidth of the exogenous signals
rand d.

Next, we reconsider setpoint tracking at a lower
amplitude, where r(¢) = 0.1, but assume a persistent sinu-
soidal disturbance given by d(f) = 0.01sin(8¢). Fig. 7
shows that the MRAILC algorithm performs well and
reduces the tracking error this time for about 25 itera-
tions, before beginning to diverge. In this case, the lower
amplitude of the signals help maintain stability for a

Error Norm

0.5 1 1 1 1

Iteration

Fig. 6. Instability in regulation with a load disturbance; the
desired reference is r(¢) = 0.0 and the disturbance is
d(t) = 1.0. [Color figure can be viewed at
wileyonlinelibrary.com]
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Fig. 7. Instability in setpoint tracking with a sinusoidal
disturbance; the desired reference is r(#) = 0.1 and the
disturbance is d(f) = 0.01 sin(8¢). (a) Evolution of the
parameter vector from the first to the last iteration and
(b) Evolution of the error £, norm in the iteration
domain. [Color figure can be viewed at
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Fig. 8. Stable learning of setpoint tracking with sinusoidal
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desired reference is () = 0.1 and the disturbance is
d(t) = 0.1 sin(4). [Color figure can be viewed at
wileyonlinelibrary.com]

longer time, but the algorithm cannot counteract the
phase shift inherent in the system. A closer look at the
evolution of the parameter vector shows that the adapta-
tion law has roughly learned the frequency of the distur-
bance, so the phase error of the system must be the source
of the problem that leads to parameter drift.

Finally, we note in Fig. 8§ that when the distur-
bance is changed to d(f) = 0.1sin(4¢), the algorithm
progressively decreases the error despite an initial tran-
sient phase. This implies that the exogenous signals have
to have a low enough frequency and amplitude to pre-
serve stability and prevent bursting: In this case, it seems
that for setpoint tracking at r(¢) = 0.1, the upper bound
for the frequency of admissible disturbances lies some-
where between 4 and 8 rad/s, while the amplitude can
possibly be greater than 0.1.

VIII. CONCLUSION

In this paper, we studied the robustness problem
of AILC in the presence of unmodeled dynamics. We
generalized function space concepts to ILC systems to
define the notion of gain and showed the existence
of infinite-gain operators in an MRAILC algorithm.
Heuristic linear systems arguments were put forth to
explain how instability can occur, which were backed by
several simulation examples. Our findings indicate that
the shortcomings of MRAILC in terms of robustness are
no different than those of MRAC. In fact, the robustness
issue is found to be more severe with certain cases demon-
strating that the learning operation deteriorates a readily
satisfactory tracking performance given by MRAC.

It is reasonable to say that similar problems can
occur in a variety of AILC schemes. As a matter of fact,
most ILC systems that achieve perfect tracking are essen-
tially iterative integrators [7] and are prone to instability
in the presence of unmodeled dynamics. For example,
stability of proportional-derivative type ILC schemes
depend on a specific relative degree assumption [2]. How-
ever, in the nonadaptive case, there are easy remedies
for this such as the use of the low-pass Q-filter [8,12].
In the adaptive feedback case, although the parame-
ter drift problem has been resolved, the ability to adjust
closed-loop bandwidth is a nontrivial problem [14]. In gen-
eral, filtering has been shown not to be effective and
even detrimental, save for some recent approaches given
in [9,24]. Based on the similarities between adaptive
feedback control and AILC, similar results are likely
to be encountered in the iterative case. We believe fur-
ther research is necessary to investigate these issues and
understand how AILC can be made to be more robust
under uncertainties.
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