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1. Introduction

Brain chemicals are highly diverse. Over two hundred different

compounds have been identified as neurotransmitters, includ-
ing amino acids, peptides, purines, lipids, monoamines, and

other small molecules (e.g. , acetylcholine).[1, 2] These chemicals
participate in neural activity and are involved in various phys-

iological functions, such as learning, memory, mood, and

movement.[3–5] Abnormal levels or dynamics of neurotransmit-
ters also link to mental illnesses and neurological disorders,

such as Alzheimer’s[6, 7] and Parkinson’s diseases.[8–11] It is there-
fore of interest to study dynamics of neurotransmitters and

their metabolites in the brain extracellular space. Besides these
compounds, other chemicals including metabolic intermedi-

ates and drugs are also important for brain functions. Energy

metabolites (e.g. , glucose and lactate) provide fuel for neu-
rons,[12] and measuring their concentrations has proven useful

for diagnostics in traumatic brain injury.[13–15] Drugs or psycho-
pharmacological substances can have effects on neurotrans-

mission in many different ways, such as enhancing or inhibit-
ing transmitter release.[16]

Measuring brain chemistry in vivo has proven indispensable

in better understanding chemical neurotransmission, which
can be correlated to brain functions, behavior and pharmacol-
ogy.[16–20] Probe techniques, such as electrochemical sen-

sors[21–23] and microdialysis sampling,[24–28] have remained pre-

dominant for in vivo neurochemical monitoring. In these tech-
niques, needle-like probes are implanted into live brain tissues

for direct chemical measurements. These techniques are used
in many fundamental neuroscience studies.[29–34] They have

also been translated into clinical settings, e.g. , using electro-
chemical sensors during deep brain stimulation surgery,[35–37]

and using microdialyis probes in neurocritical care units.[15, 38–40]

First generation probes were typically handmade and have
several limitations, including variability, low reproducibility, and

limited design flexibility. The probe size can be bulky for the
sampling probes in particular, leading to poor spatial resolu-

tion and substantial tissue damage.
Several efforts have been devoted to using microfabrication

for overcoming the above limitations. Microfabrication tech-

niques ultimately allows development of miniature, multi-
plexed and highly-precise probes for studying brain chemistry.

Other advantages also include a wide choice of materials, scal-
ability, and batch fabrication. Furthermore, microfabrication

offers unique opportunities for incorporating multiple func-
tions into a single probe, such as electrophysiological record-

ing, drug delivery, and optical stimulation. In this review, we

aim to provide a background and an overview of microfabri-
cated probes for monitoring brain chemistry. We will discuss

different approaches relevant to probe development for elec-
trochemical detection and sampling. Assays coupled to sam-
pling probes for neurochemical monitoring with improved
temporal resolution will also be discussed. Lastly, microfabricat-
ed optical elements for optogenetics that are of particular in-

terest to neurochemical probes will be highlighted.

2. Background: In Vivo Monitoring Technolo-
gy

Criteria for evaluating methodology for in vivo neurochemical

monitoring include sensitivity, selectivity, spatial resolution,

temporal resolution, and multiplexing.[23, 25, 41–44] Sensitivity and
selectivity are crucial to neurochemical measurements as the

brain extracellular space is a complex mixture of chemicals
with concentrations from picomolar (pM) to millimolar (mM).

Spatial resolution is important due to the heterogeneity and
small size of the brain structures. Temporal resolution is essen-

Probe techniques for monitoring in vivo chemistry (e.g. , elec-
trochemical sensors and microdialysis sampling probes) have

significantly contributed to a better understanding of neuro-
transmission in correlation to behaviors and neurological disor-

ders. Microfabrication allows construction of neural probes
with high reproducibility, scalability, design flexibility, and mul-
tiplexed features. This technology has translated well into fab-

ricating miniaturized neurochemical probes for electrochemical
detection and sampling. Microfabricated electrochemical

probes provide a better control of spatial resolution with mul-
tisite detection on a single compact platform. This develop-
ment allows the observation of heterogeneity of neurochemi-

cal activity precisely within the brain region. Microfabricated
sampling probes are starting to emerge that enable chemical

measurements at high spatial resolution and potential for re-
ducing tissue damage. Recent advancement in analytical meth-

ods also facilitates neurochemical monitoring at high temporal
resolution. Furthermore, a positive feature of microfabricated

probes is that they can be feasibly built with other sensing

and stimulating platforms including optogenetics. Such inte-
grated probes will empower researchers to precisely elucidate

brain function and develop novel treatments for neurological
disorders.
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tial because neurochemical levels can alter rapidly (i.e. , on mil-
lisecond time scale during exocytosis[45, 46] or second time scale

during behavior or stimuli[47–50]). Finally, simultaneous measure-
ment of multiple chemicals is often needed when one would

like to study multiplexed transmission or interactions between
neurotransmitters, metabolites and drugs.[51] Therefore, it is de-
sirable to develop technology that allows multiplexed neuro-
chemical monitoring with long-term stability and high spatial
and temporal resolution. In vivo neurochemical monitoring has

been performed by non-invasive imaging techniques, such as
positron emission tomography (PET), functional magnetic reso-

nance spectroscopy (fMRS), and genetically-encoded biosen-
sors, or by invasive techniques, such as electrochemical sensors

and sampling methods, that involve probe insertion into brain
tissue. Strengths and weaknesses of each monitoring tech-

nique are summarized in Table 1.

2.1. Non-invasive Imaging Techniques

Predominant neurochemical imaging techniques include PET

and fMRS. In PET, radioactive tracers (i.e. , positron-emitting ra-

dionuclides) are intravenously injected into the bloodstream
for labeling interested molecules in the brain prior to scan-

ning.[52–54] Even though this technique is highly effective, it has
limited spatial (2–3 mm at state of the art[55, 56]) and temporal

resolution (several seconds to minutes).[57–59] fMRS uses a mag-
netic field to resolve 1H spectra for identification and measure-

ment of brain chemicals.[60, 61] This technique has spatial[61] and

temporal resolution[62–64] within the scales that are comparable
to those of PET. The advantage of fMRS mainly stems from its

non-requirement of tracers, but this technique suffers inherent-
ly poor sensitivity. Although administration of a contrast agent

may improve sensitivity, it still remains insufficient for detect-
ing many neurotransmitters at basal concentration.
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Table 1. Summary of strengths and weaknesses of current in vivo moni-
toring technology.

Techniques Strengths Weaknesses

PET · Non-invasive
· Very low LOD (pM to nM)

· Limited spatial reso-
lution (2-3 mm)
· Limited temporal res-
olution (several secs to
mins)
· Require tracers
· Limited to immobi-
lized subjects

fMRS · Non-invasive
· Does not require tracers

· Limited spatial reso-
lution (1 mm)
· Limited temporal res-
olution (several secs to
mins)
· High LOD (mM to
mM)
· Limited to immobi-
lized subjects

Genetically-en-
coded biosen-
sors

· Non-invasive
· High spatial and temporal
resolution&1 mm, ms to s
scale)
· Low LOD (nM to mM)

· Difficult to engineer
fluorescent markers
· Only Glu can be
measured in vivo

Electrochemical
sensors

· High spatial and temporal
resolution10-100 mm, ms to
s scale)
· Low LOD (nM to mM)

· Limited number of
measurable neuro-
chemicals
· Limited multiplexing

Sampling meth-
ods

· Versatile approach for mul-
tiplexed measurement
· Very low LOD (pM to nM)

· Limited spatial reso-
lution (100 mm
@4 mm)
· Limited temporal res-
olution (10 s)
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Imaging brain chemicals via genetically-encoded biosensors
is an emerging technology based on introduction of fluores-

cent markers into the tissue of interest.[65–67] This technique
allows chemical measurement with superior spatial (mm-scale)

and temporal resolution (ms to s). Despite this advantage, this
technology is still in its infancy. Thus far only glutamate can be

studied in vivo by this approach with a sub-micromolar (mm)
limit of detection (LOD). Engineering a marker to efficiently

yield a fluorescent signal for a specific molecule is also a long

and difficult process. Due to several limitations of the imaging
techniques, the probe techniques remain popular for in vivo

neurochemical monitoring.

2.2. Electrochemical Sensors

Electrochemical detection of neurotransmitters relies on use of

microelectrodes. Commonly, a microelectrode is made by aspi-
rating a carbon fiber or a metal wire (&10 mm diameter) into a
glass capillary before pulling the glass capillary and manually
trimming the electrode site to a length of 50–100 mm (Fig-
ure 1 A). Using electrochemical methods,[23, 68] such as amper-
ometry or fast-scan cyclic voltammetry (FSCV), electroactive

molecules (e.g. , dopamine and serotonin) can be detected di-

rectly via a redox reaction at the exposed electrode site. For
detection of non-electroactive molecules (e.g. , glutamate and

glucose), the surface of electrode is treated with a selective
enzyme/ membrane to generate an electroactive product,[69, 70]

such as H2O2 via oxidase reaction, or nicotinamide adenine di-
nucleotide (NADH) via dehydrogenase reaction. Microelectro-

des can allow in vivo monitoring with high spatial (10–100 mm)
and temporal resolution (ms to s). Due to this advantage, elec-

trochemical sensors are popularly used for real-time monitor-
ing of transient neurochemical changes during behavior and/

or stimulation. Selectivity, sensitivity, and LODs of the electro-
chemical sensors rely on several factors, such as electrode

design, materials for electrode and selective-membrane, fabri-
cation procedures, and detection method. Advances in tech-
nique and instrumentation, better control of electrode surface

chemistry, and development of new materials and methods for
electrode modification have improved overall selectivity and

sensitivity. This improvement has allowed detection of several
neurochemicals with low LODs (e.g. , below 500 nm for gluta-

mate,[71] and below 20 nm for dopamine[72, 73]).
Development of microelectrode arrays has become a topic

of interest since it allows study of networks and chemical het-

erogeneity[74] within singular closely-spaced brain regions. Fur-
thermore, the multisite platform can be useful in multiplexed

monitoring if each electrode has a different selectivity. Tradi-
tionally, multisite in vivo monitoring may be performed by im-

planting several individual microelectrodes with the aid of a
stereotaxic system for manual alignment.[75] An alternative ap-

proach is to create electrode arrays either by bundling of mi-

crowires or placing carbon fibers into multi-barrel pulled glass
capillaries.[45, 76] Although these two approaches seem to be ef-

fective, they have limitations in term of reproducibility and
spatial control. Scalability has remained a challenge. Simultane-

ous recording at vertically-spaced different spots is also not
possible highlighting the inflexibility of design of manually pre-

pared electrodes. Several efforts have used microfabrication to

overcome these problems (discussed in Section 3).

2.3. Sampling Methods

Microdialysis is a popular sampling method for in vivo studies.

In microdialysis, an implantable probe (Figure 1 B) is construct-
ed by sheathing inlet and outlet capillaries with a hollow-fiber,

semi-permeable membrane which is plugged at one end (220–
500 mm in diameter, 1–4 mm long).[25–27] During sampling, the

inlet is infused with a buffer that matches the ionic composi-
tion of extracellular fluid at 0.1–3 mL min@1. Sampling occurs at
the membrane where analytes are extracted from the extracel-
lular space according to their concentration gradients. The

buffer with extracted analytes, called dialysate, is collected in
fractions before chemical analysis with an appropriate analyti-
cal technique. Microdialysis sampling is widely used for in vivo
chemical monitoring due to its versatility and feasibility for
coupling to various analytical techniques,[43, 77] such as liquid

chromatography with mass spectrometry (LC-MS), immunoas-
say, and capillary electrophoresis with laser-induced fluores-

cence (CE-LIF). This feature allows measurement of any neuro-

chemicals and drugs with high sensitivity and selectivity, and
multi-analyte capability.

An inherent weakness of microdialysis sampling is poor spa-
tial resolution due to a large size of membrane tubing, which

correlates to an active sampling region. An alternative sam-
pling method with higher spatial resolution is miniaturized

Figure 1. Schematic of conventional probes for in vivo neurochemical moni-
toring with comparison of probe sizes. A) Electrochemical microelectrode
with 10 mm diameter, 50 mm long. B) Concentric microdialysis probe with
1 mm long polyacrylonitrile (PAN) membrane with 230 mm o.d. C) low flow
push-pull probe made assembly of 20 mm i.d./ 90 um o.d. capillaries side-by-
side, sheathed with 180 mm i.d./ 220 mm o.d. polyimide tubing. Models were
drawn to scale for comparison of probe size and regions of chemical moni-
toring (at exposed electrode surface for (A), membrane surface for (B), and
space between orifices for (C).
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push-pull sampling or “low-flow push-pull perfusion”.[78, 79] In
this approach, the probe (Figure 1 C) is constructed by mount-

ing two 20 mm inner diameter (i.d.)/ 220 mm outer diameter
(o.d.) fused-silica capillaries side-by-side, then sheathed with a

180 mm i.d./ 220 mm o.d. polyimide tubing. Sample is pulled
from one capillary using low flow rates (typically at

50 nL min@1) and a make-up fluid is pushed from another capil-
lary at the same flow rate. The push-pull probes consequently
sample only from the probe tip, resulting in substantially

better spatial resolution, as compared to microdialysis probes.
However, the overall size of the push-pull probe remains bulky

due to the assembly process. This large size precludes experi-
ments in many small brain regions. It can also cause tissue
damage that may confound measurement in vivo.[80] To ad-
dress the size limitation in sampling probes, recent efforts

have resorted to microfabrication. Another traditional weak-

ness of the sampling methods is poor temporal resolution
(order of mins) ; however, advancement in analytical methods

and microfluidic technology has allowed in vivo neurochemical
monitoring with temporal resolution of less than 10 s. These

subjects will be discussed further in Section 4.

3. Microfabricated Electrochemical Probes

The field of neuro Microelectromechanical Systems, or “neuro-

MEMS” (see historical reviews and recent technological ad-
vancement[81–84]) has well-established technologies for fabricat-

ing neural probes to investigate electrical activity at multiple
different sites. Advancement in microfabrication tools and ma-

terials allowed development of small, highly reproducible,

highly integrated, and high density neural probe arrays (see
refs. [81, 85] for an example of 256-site probes; a recent work

has shown a neural probe with 1356 sites[86]). The microfabrica-
tion process has more recently been adopted to construct

probes with sensor arrays for neurochemical recording. Careful
considerations of material for substrate and electrodes, and

surface architectures are required to achieve desired per-

formance.[87] Different approaches with their key parameters in
microfabricating neurochemical probes are summarized in
Table 2.[88–103]

3.1. Electrodes

A key component in electrochemical detection is the electrode

site. By microfabrication, electrodes can be deposited as thin
films (less than a few hundred nm) by various techniques, such

as sputtering, low pressure chemical vapor deposition (LPCVD),
and plasma-enhanced chemical vapor deposition (PECVD) prior

to insulation. Choices of materials for insulating the electrodes
include silicon dioxide, low-stress silicon nitride, SU-8, poly-

imide, and parylene. For detection of the H2O2 product from

enzyme sensors, Pt is normally used due to its electrocatalytic
property, long-term biocompatibility, and ease of fabrication.

For direct detection of electroactive molecules (monoamines in
particular), carbon is a more suitable material because it has

less charging current, more favorable electrocatalytic proper-
ties for these molecules, and relatively wide potential window.

Since direct deposition of carbon (i.e. , via sputtering or evapo-
ration) typically resulted in low-quality film, it is preferable to

use pyrolysis of photoresists in the microfabrication of carbon
electrodes.[93, 104] The surface area of an electrode is also anoth-

er important parameter in designing neurochemical probes.
Enlarging this surface area increases sensitivity ; however, a

large surface area can increase probe size and compromises
spatial resolution. As seen in Table 2, electrode surface areas

ranged from 500–1000 mm2 for direct electrochemical detec-

tion of dopamine, and 5000–10 000 mm2 for detection of non-
electroactive species by enzyme-coated electrodes. The gap
between electroactive sites was typically kept at 50–200 mm to
limit cross-talk. Increasing surface roughness without signifi-
cantly changing overall size would be an approach to improve
sensitivity for a given size electrode. Strategies for surface en-

hancement include coating electrodes with porous materials,

such as conductive polymers,[105–107] carbon nanotubes,[108–110]

graphene composites,[111–113] and durable platinized Pt.[114]

Surface modification of electrodes, with selective mem-
branes, is generally required to improve selectivity and sensi-

tivity. For detection of non-electroactive molecules, enzymes
mixed with bovine serum albumin (BSA) are typically immobi-

lized on electrodes by crosslinking with glutaraldehyde. Thick-

ness of the enzyme coating is critical to performance of the
electrode as the substrates and products must move through

the membrane layers. Excessive thickness could lead to slow
response time[115] of the electrode and higher degree of cross-

talk between electrodes.[116] On the other hand, overly thin
membranes may lead to insufficient sensitivity and non-uni-

formity ; that could be detrimental to stability and reliability of

the electrode. Therefore, the thickness of the membrane
should be well-controlled and optimized. For example, the

enzyme thicknesses on the microfabricated electrodes were re-
ported to be approximately 5–10 mm thick.[91, 99] Rise times of

the microfabricated electrodes ranged from &1–8 s (see
Table 2). Besides thickness, other factors can also affect to ana-
lytical performance and response time of the electrode, includ-

ing the amount of immobilized enzyme which related to depo-
sition procedures. For enzyme immobilization, small volumes
of enzyme solutions were dispensed directly on microfabricat-
ed electrode sites using a microsyringe with the aids of micro-

scope and micromanipulator.[89, 99] Alternatively, electrochemi-
cally aided adsorption was adapted for enzyme coating at

high-spatially control, enabling parallel depositions of different
enzymes at closely-spaced electrodes.[91] Microfabrication tech-
niques (i.e. , lithographic patterning of polymers/ resists) also

made it possible to create microwells which encompassed the
planar electrodes. Not only did these microwells act as an ef-

fective insulator, but they also allowed precise immobilization
and stable formation of the selective membranes.[94, 102, 117]

Additionally, several types of polymers[118] have been ex-

plored in microfabrication of neurochemical probes, in order
to reject interference and prevent surface fouling. Common

deposition methods included dip-coating and electropolymeri-
zation. Nafion[88, 96] or overoxidized polypyrrole[89] can be used

for rejection of anionic molecules, such as ascorbic acid, 3,4-di-
hydroxyphenylacetic acid (DOPAC) and homovanillic acid
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(HVA), while promoting adhesion of cation molecules, like cate-
cholamine. Phenylenediamine derivatives are particularly useful

for detection of H2O2 product.[94, 95] These polymers prevent
access of large molecules (including ascorbic acid and dopa-

mine) while allowing fast response and high selectivity of the
smaller H2O2 molecules. Furthermore, (3-aminopropyl)triethoxy-
silane (APTES) can be used to improve storage and functional
lifetime and reproducibility of enzyme adhesion.[91]

3.2. Stiff Probes

Si is the most widely used substrate due to its mechanical and
electrical properties, and relatively simple processing. Standard

lithography allows patterning of microprobe structures and re-
cording sites with fine features. Wet etching or dry etching,
particularly deep-reactive ion etching (DRIE) based on the
“Bosch process”,[119] are employed in defining probe outlines
and releasing probes.[120] To precisely limit probe thicknesses, a

boron-doped layer[121] or a silicon-on-insulator (SOI) wafer[122, 123]

may be used as an etch stop. These approaches have ultimate-

ly allowed fabrication of very thin neural probes (less than

15 mm) with precisely-defined tapered tip (for example, see
ref. [124]). Alternatively, a combined process of DRIE and wafer

grinding can be used in thinning a Si neural probe down to
25 mm.[125, 126] Different designs of microfabricated Si probes

have been developed by several groups for monitoring several
neurochemicals, including dopamine,[88, 93] glutamate,[89–91] lac-

tate and glucose[94] with LODs of sub-mM. In all of these probe

designs, at least 4 electrode sites were integrated on a single
probe, enabling concurrent recording of a target analytes at

high spatially different locations. For example, the microfabri-
cated probes were employed in recording stimulated dopa-

mine in 4 different sites (at 100–200 mm vertically spaced) in
rat striatum by FSCV[93] or amperometry.[88] These results re-

vealed heterogeneity of the stimulant effect on dopamine re-

lease, indicating necessary use of the microfabricated probes.
With multi-site probes, simultaneous detection of multiple ana-

lytes in different target areas could also be achieved precise-
ly.[91, 94] At an additional electrode site, direct integration of a

reference electrode can be performed via electrodeposi-
tion.[90, 91] Further, parallel electrophysiological recording was
also made feasible by adding extra electrodes.[88, 95] Figure 2 A
shows an example of a single probe consisting of 8 electro-

chemical sites (60 mm V 125 mm) and 6 electrophysiological
sites (15 mm diameter). This microfabricated probe was used
for concurrent recording of glutamate and electrophysiology
at multiple sites in rat striatum.

Other types of stiff substrates for microfabricating neuro-

chemical probes have also been explored. The Gerhardt group
has extensively developed probes with electrode arrays based

on 125 mm thick ceramic wafers.[127] Probe shapes with ultra-

fine tip were created by using a diamond dicing saw and a
laser cutter. Although thinner ceramic wafers (25–50 mm) were

also commercially available, they were too fragile and difficult
to process. The ceramic-based probes were treated with specif-

ic enzymes for monitoring glutamate,[96, 97] lactate,[98] choline,
acetylcholine,[99] and glucose (for example, see Figure 2 B).[100] A

self-referencing recording approach was also used to remove
interferents.[128] Chronic measurements in freely moving ani-
mals were also demonstrated with adequate sensitivity and se-

lectivity, illustrating a potential advantage of biocompatibility
with this substrate.[129]

3.3. Polymer Probes

Interest in developing neural probes using “soft” materials like

polymers, has recently grown as matching the Young’s modu-
lus of the probe material to the soft brain is thought to mini-
mize tissue damage.[106, 130–132] Choices of traditional soft materi-

als included polyimide, SU-8, parylene, and polydimethylsil-
oxane (PDMS). Emerging polymer materials, namely shape

memory polymers, have also gained attention in recent years
due to their capability to adjust Young’s modulus based on

temperature changes.[133–135] Therefore, these substrates may

be tailored to be sufficiently stiff during probe insertion and
softened inside the tissue. Despite the potential benefit of soft

implants, they are generally designed for primary use at the
brain surface, or at depths up to a few millimeters. Otherwise,

soft implants normally require the use of needle guide or stiff
coating (such as polyethylene glycol (PEG)[136, 137] or biodegrad-

Figure 2. Examples of probes with multisite electrochemical sensors. A) Sili-
con probe for neurochemical monitoring (white rectangular) integrated with
electrophysiological recording sites (small black dots).[95] B) Ceramic probe
for glucose recording.[100] C) Polyimide probe for glutamate recording.[102]

D) Subcellular probe for dopamine detection made by combination of as-
sembly of carbon fiber and microfabrication of parylene insulator.[103]
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able silk[138, 139]) for aiding tissue penetration and trajectory to
deep brain tissue.

Thus far only a few studies have been reported on using
polymeric substrates to microfabricate neurochemical

probes.[101, 102] One attempt was to microfabricate polyimide-
based probes for detecting glutamate and lactate[102] (Fig-
ure 2 C). The polymer probe consisted of Pt electrodes with in-
tegrated reference and counter electrodes. The final probe size
was 500 mm wide V 100 mm thick, and 5.5 mm or 16 mm long.

Utility of the more durable probe (5.5 mm long) was demon-
strated in vivo by monitoring glutamate in rat cortex at

1.7 mm depth.
Microfabrication has allowed construction of multi-site elec-

trodes at high-spatially spaced positions. However, the total
sizes of microfabricated probes are still larger than a single

carbon fiber electrode. Alternatively, one interesting approach
was to combine processes of carbon fiber assembly and micro-
fabrication.[103] This approach used a glass microgroove mold

for manually aligning 8 carbon fibers to a printed-circuit board
before applying photoresists to protect the fiber tips. 10

device sets were attached on a 100 mm diameter Pyrex wafer
for subsequent microfabrication processes, including chemical

vapor deposition (CVD) of parylene to isolate electrodes. After

release of the devices, the fibers were manually trimmed to a
length of 50–200 mm. The resulting 8-shank carbon fiber array

had 9 mm diameter footprint for each electrode (Figure 2 D).
PEG was used to stiffen the fibers prior to probe insertion fol-

lowed by FSCV recording of dopamine in rat striatum. In es-
sence, this approach appears to be a relatively simple fabrica-

tion method for multi-site electrodes with subcellular diameter.

However, device design and size accuracy were still limited
due to some manual processes. Incorporation of automated

tools and microfabrication techniques, such as plasma etching,
could improve design flexibility, scalability, and overall uniform-

ity of the finalized probe arrays.

3.4. Conclusions

Microfabricated electrochemical probes have enabled neuro-

chemical monitoring on multiple sites with high-precision spa-
tial control. Other advantages include scalability and feasibility

to generate a multiplexing sensor or a parallel platform for si-
multaneous chemical and electrophysiological recordings. Sim-

ilar electrical components may also be adapted to perform

other functions, such as pH and oxygen sensing,[140] and electri-
cal stimulation.[141, 142] Furthermore, microfabrication will open

an opportunity for monolithic integration of electrochemical
probes with microfluidic and optical modalities (see below). A

variety of substrates and materials has been used in develop-
ment of the microfabricated probes with the goal of creating

small, biocompatible devices with enhanced sensor sensitivity

and selectivity. However, the current technology still has a limi-
tation in a number of measurable neurochemicals (less than 10

compounds can be measured). Future advancements in nano-
chemistry, materials, surface engineering and coating technolo-

gies may prove useful to broaden performance of the next
generation probes. Utility of microfabricated probes have

mostly been demonstrated only for acute studies. Future work
in chronic studies will help to evaluate long-term stability and

robustness of these chemical sensors.

4. Microfabricated Sampling Probes

Microfabrication has been employed to embed microfluidic

channels into neural probes.[143–145] Small channels with differ-
ent shapes and material types can be constructed by a variety

of techniques, such as surface micromachining using sacrificial
layer, and bulk micromachining using buried channel technolo-
gy[146, 147] or wafer bonding. Using microfabrication technolo-
gies, various microfluidic neural probes have been developed

for neurological studies and treatments. Their features as well
as manufacturing processes are well summarized in a recent
review by Sim et al.[148] Most of the work in microfabricating

fluidic probes aimed to improve microinjection or chemical de-
livery to brain tissues. These advancements also highlighted

viable integration of the microfluidic features with in vivo elec-
trophysiological recordings.[145, 149, 150] Nevertheless, similar mi-

crofabrication technologies can be adapted to fabricate sam-

pling probes for neurochemical monitoring.

4.1. Push–Pull/ Direct Sampling

Over the past few years, our group has developed the first,
functional sampling probes for in vivo monitoring of brain

chemistry.[151] Based on the buried channel technology, micro-

fabrication in Si was used to construct push-pull sampling
probes with 20 mm diameter channels. The microfabricated

push-pull probes are 85 mm wide V 70 mm thick V 11 mm long,
consisting of two 20 mm orifices at the probe tip for push-pull

sampling (Figure 3 A, i). The overall size of the microfabricated
probes was 6-fold smaller than the capillary-based probes,

thus potentially reducing tissue damage. Sampling at

50 nL min@1 from rat striatum, the microfabricated push-pull
probe was coupled to a benzoyl-chloride LC-MS assay for mon-

itoring of multiple neurotransmitters and metabolites. Assum-
ing that the active sampling area of push-pull sampling is

based on the space between the two orifices, the sampling
area of microfabricated push-pull probe is estimated to be

&1200 mm2. This sampling area is comparable to that of micro-
electrodes, as described above. In addition, microfabrication

has allowed fabrication of additional channel without increas-
ing overall probe dimension (Figure 3 A, ii). This additional
channel can be further used for microinjection or sample prep-
aration steps.

Other groups have recently also investigated microfabrica-

tion of sampling probes. Besides sampling, other features were
further implemented in these probes. One such probe was a

silicon-based probe designed for sampling with three integrat-
ed electrodes for sensing.[152] Another work showed a probe
that contained microfluidic channels for sampling as well as

electrodes for stimulating and recording in one package[153]

(Figure 3 B, i). This probe was constructed by polyimide and

SU-8. The resulting shank size of 240 mm wide V 86 mm thick.
Through a single inlet, direct sampling was performed at
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300 nL min@1 without adding a makeup fluid into the sample.
In vitro tests revealed the probe capable of segmented-flow

sampling (Figure 3 B, ii), on-chip detection, and functional elec-
trical capabilities. Both designs sought to miniaturize sampling

probes with integrated functions through microfabrication

techniques. However, it remains to be determined how these
probes will function for monitoring neurochemicals in vivo.

4.2. Membrane Integration

Although microfabricated push-pull probes allow sampling

with high spatial resolution, they are more susceptible to clog-
ging than microdialysis probes due to the absence of mem-
branes. Proteins and debris that enter the sampling channels

may also interfere with the downstream analytical assays. Inte-
gration of nanoporous membranes into the miniaturized sam-

pling probes can be performed to circumvent these potential
issues. A wide variety of techniques has been used to fabricate

nanoporous membranes,[154] including ion-track etching,[155] fo-

cused ion beam drilling,[156] and rapid annealing.[157] However,
these membranes are designed for integration on microfluidic

devices rather than microprobe structures. Embedding mem-
branes in microfluidic neural probes is challenging because

1) the small support structures may lead to collapse of the
membrane during fabrication, and 2) the limited surface area

increases the difficulty of membrane attachment. Membranes
should also contain sufficient porosity to allow suitable extrac-

tion efficiency/ recovery of analytes while having sufficient
strength to avoid rupture as fluid infuses into the microchan-

nels.
Zahn et al has reported microfabrication of dialysis

probes.[158] Preliminarily, a permeable polysilicon (100 nm thick
with 5–20 nm pore defects) was fabricated on top of a 10 mm
tall V &150 mm wide channel. Although the membrane was

successfully formed over the channel, according to the au-
thors, the thin membrane was too fragile to be effectively
used. An alternative approach was to employ a sacrificial oxide
spacer layer in creating 30 nm diffusion passage, sandwiched
between two layers of lithographically-patterned porous mem-
branes (2 mm pores with a total thickness of 2–3 mm). Even

though this probe proved its utility for in vitro sampling of a
fluorescent dye, its capability for in vivo neurochemical sam-
pling has not been tested. The membrane also had low porosi-

ty (i.e. , 1.5 %) which may limit recovery. The narrow flow pas-
sage may potentially lead to stiction issues.[159] Nevertheless,

this pioneering work suggested possibility of miniaturization of
dialysis sampling probe.

Recently, our group has adapted nanoporous anodic alumi-

num oxide[160–162] (AAO) to microfabricate Si probes for in vivo
microdialysis[163] (Figure 3 C). The AAO process was an attractive

approach because it yielded straight nanopores with high den-
sity and controllable pore sizes. The process was also relatively

simple, inexpensive, and compatible with the process flow for
Si microfabrication. In our approach, a 400 nm thick layer of

AAO with pore sizes of 50–70 nm was used as a mask for DRIE

through 2 mm thick Si microchannels. The AAO mask was re-
moved before a 3 mm thick AAO was then fabricated over the

porous Si channels in order to provide sufficient mechanical
strength. The final probe size was 180 mm wide V 45 mm thick

V 11 mm long, containing a 30 mm tall V 60 mm wide U-chan-
nel. The probes yielded 2–20 % relative recovery at a perfusion

rate of 100 nL min@1. Coupling to an LC-MS assay, utility of the

probe was demonstrated in vivo by monitoring 14 neurochem-
icals at basal concentrations. Compared to the conventional
probe, the microfabricated probe had 6-fold smaller surface
area of sampling, thus providing improved spatial resolution.

Our ongoing work is to optimize morphology of the mem-
branes so that they permit better recovery and can withstand

higher pressure. Improvement in recovery would lead to in-

crease the number of detectable analytes as well as potentially
reducing sampling areas. Stronger membranes would allow

device operation at smaller channel sizes. Therefore, the
probes can ultimately be made smaller with future improve-

ments in membrane performance. As the AAO process allows
alteration of membrane pore sizes, different molecular weight

cut-off limits can also be explored.

4.3. Assays for Improved Temporal Resolution

In sampling techniques, temporal resolution is limited by mass

sensitivity and throughput of analytical methods coupled to
the sampling probe.[28, 77] Particularly, the use of low flow rates

Figure 3. Examples of microfabricated probes for sampling. A) Push-pull
probe: orifices for sampling (A,i) and cross-section of a probe with additional
channel (A, ii) ; B) Direct sampling probe, an arrow indicates a single sam-
pling orifice (B,i). This probe is integrated with electrical recording and stim-
ulation (circle dots), and flow-segmentation (B, ii).[153] C) Dialysis probe: Top
view of probe tip (C,i) with AAO membrane in the inset, and cross-section
(C,ii) of a microchannel with embedded AAO-poly Si membranes.[163]
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(<100 nL min@1) in the microfabricated sampling probes can
compromise temporal resolution as a long period is required

to collect enough sample volume for the subsequent assay.
For instance, to collect 1–2 mL fractions for a conventional LC-

MS assay, temporal resolution was limited to 20 min.[151, 163] Min-
iaturized analytical methods, such as microbore LC or CE, may

be utilized for improved temporal resolution. However, as sam-
ples travel from probes to analytical system, the temporal reso-
lution is also limited by broadening of concentration zones

due to Taylor dispersion.[164] This reduction in temporal resolu-
tion depends inherently on flow rates and capillary dimen-
sions. The band-broadening may be mitigated by using high
sampling flow rate (>1 mL min@1) and short, small-bore con-

necting tubing. As a result, temporal resolution of 3–30 s could
be achieved.[47, 165–167] In spite of this improvement, this ap-

proach was limited to only anesthetized subjects. It is also not

suitable for the miniaturized probes where low sampling flow
rates are required.

Another effective approach for improved temporal resolu-
tion is to use segmented-flow or droplet microfluidics.[168–170] In

this approach, a sample flow is segmented into a train of dis-
crete aqueous droplets by an immiscible fluorinated oil. By

flow segmentation, sample droplets do not mix by diffusion

during transport, and the temporal resolution is hence pre-
served. In vitro studies have shown that chemical sampling

with sub-second time resolutions could be attained by using
segmented flow.[79, 153, 169] Furthermore, droplet technology facil-

itates handling and manipulation of small-volume samples col-
lected at short intervals. Integration with other microfluidic de-

vices was also made feasible for further analytical proce-

dures.[171, 172]

Analysis of droplets may be performed by a variety of high

throughput analytical methods.[173] Particularly, suitable analyti-
cal techniques for neurochemical analysis of droplets included

enzyme assay, microchip CE, and direct infusion ESI-MS. Low-
flow push-pull perfusion with segmented flow was coupled to

an enzyme assay for analysis of glutamate, with 7 s resolution

and a LOD of 300 nM.[79] Microchip CE with LIF detection was
used for simultaneous measurement of amino acids in droplet
dialysates with LODs of 80–100 nM.[174, 175] By using an offline
analysis, droplets could be generated at a high frequency (2 nL

droplet at &0.5 s interval) before pumping them into the chip
at a slower rate. Each droplet was therefore analyzed without

loss of temporal resolution although the separation time was
50 s. As a result, 9 s temporal resolution was achieved in vivo.
Using ESI-MS assay, acetylcholine in dialysate droplets (160 nL

at 5 s interval) was monitored with 5 s temporal resolution and
a LOD of 5 nM.[176] In addition, choline and the acetylcholine

esterase inhibitor were simultaneously detected. In principle,
the MS assay offers the most versatile route to analyze droplet

samples. This assay provides many advantages, such as high

sensitivity and selectivity, label-free detection, and multi-ana-
lyte capability. In contrast to the CE assay, flow desegmenta-

tion prior to ESI-MS was also not necessary when using suita-
ble oils and optimized flow rate and voltage.[177] Further, en-

hancement of MS sensitivity and reduction of matrix effects
can be achieved by using nanospray ionization.[178–180] This ap-

proach has enabled compatibility of the assay with much
smaller sample volume (i.e. , analysis of <5 nL droplets have
been made possible), thus facilitating neurochemical sampling
at low flow rates while providing high temporal resolution.

Future optimization of the MS assay and advances in instru-
mentation would open opportunities for simultaneous moni-

toring of many more neurochemicals.

4.4. Conclusions

Microfabricated fluidic probes can accommodate not only lo-

calized drug delivery but also sampling for neurochemical
monitoring. Two main types of the in vivo sampling tech-

niques are push-pull perfusion and microdialysis. Push-pull per-
fusion probes provide high spatial resolution monitoring while
microdialysis probes offer benefits of sample cleanup and ease

of device operation. Comparing to traditional sampling probes,
the microfabricated probes are at least several fold smaller,

thus leading to improved spatial resolution and reduced tissue
damage. Microfabrication facilitates direct integration of more

channels and other functional components within the probes.

Challenges in development of microfabricated sampling
probes typically include issues related to clogging and high

backpressure due to the use of small microchannels. To over-
come these problems, careful considerations in probe designs

and materials are necessary. Even though utility of miniaturized
sampling regions may limit extraction efficiency, versatility of

the method allows coupling of the probes to highly sensitive
analytical instruments for multiplexed detection of a variety of

neurochemicals. Another limitation of the microfabricated sam-

pling probes is poor temporal resolution due to a requirement
of operating at low flow rates. Integration of the probes with a

droplet-based microfluidic system in conjunction with a high
throughput assay will be a key for future improvements in

temporal resolution. Also, development of high-throughput
assays that provide multiplexed measurements is key for this

approach to have impact.

5. Potential for Optical Integration

Microfabrication already offers significant boons to neural
probe research that have been discussed in previous sections
of this review. Nonetheless, we feel significant room remains

to extend the conversation to the topic of optogenetics.[181–185]

The capacity to genetically prime and then optically stimulate
isolated neuron clusters is particularly attractive for micron-

scale probes designed to access small brain structures. Opto-
genetic experiments often employed optical fibers connected

to a light source, such as a laser or LED, to supply the light suf-
ficient for stimulation. Most studies have typically relied upon

behavioral observation or electrophysiological recording to as-

certain the effect of optically manipulating a particular circuit
or group of neurons. However, these approaches do not evalu-

ate neurochemical signaling or metabolic changes during stim-
ulation, which is crucial to elucidate behavioral and neuronal

effects. It is therefore important to couple direct neurochemi-
cal monitoring with optogenetics in order to provide a com-
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plementary view of neuron activities.[186–188] A combination of
the two techniques has ultimately enabled new studies in neu-

roscience. For example, this approach accommodated the
study of previously elusive causal link between specific pat-

terns of dopamine transmission and alcohol drinking behav-
ior.[188] Despite utility and power of the coupled method, con-

ventional probes made by assembly proved to be bulky and
supplied poor spatial resolution. Microfabrication methods
present a means to miniaturize the functions of larger probe

designs while directly integrating optical elements into a
single device. Reviews on optogenetics techniques have been

published recently which outline the progress made in this
field.[189–192] In this section, we select the particular work that

may be beneficial to microfabricated neurochemical probes.

5.1. Passive Components

Direct integration of waveguides onto probe shanks presents

the prospect of precise direction of light to neural circuits of
interest. Materials such as silicon nitride, silicon oxynitride

(SiOxNy), and photoresists have all been explored for their opti-
cal utility.[193–198] Efforts to expand the directional and wave-

length mixing functionality of waveguides produced useful re-

sults.[194–196] Characterization tests of one probe revealed that
light could be both separated by color and directed 908 from

the shank in opposite directions.[194] In contrast, a separate
project applied gradient index (GRIN) lenses to combine wave-

lengths along a single 30 mm wide V 7 mm thick waveguide tip
and minimize heating effects (Figure 4 A).[195] In vivo experi-

ments revealed distinctive neuron clusters could be simultane-

ously triggered by light wavelength, in the hippocampal CA1

region. Microelectrodes on the sampling area recorded differ-
ent firing behaviors for each respective color. SU-8-based

waveguides have also exhibited viability into in vivo testing
(for example, see Figure 4 B).[198, 199] Each probe relied upon an

SU-8 waveguide (30 mm wide V 15 mm thick) and recording
electrode, but one probe also included injection channels.[199]

Both probes recorded neurological responses to light, however
the drug injection port supplied a means to observe drug in-
teractions during optical stimulation. SU-8 has shown merit as

a viable optical material and may prove a cost effective alter-
native to physical vapor deposition (PVD) methods often re-

quired for nitride-based waveguides for some projects. Al-
though SU-8 waveguides were relatively bulkier, they were
easier to align with an external optical fiber to transfer light
from the light source. The papers described here provide evi-

dence for the efficaciousness of waveguides. However, the
waveguide approach typically requires wired-connection to ex-
ternal optical fiber and light sources, which may restrict physi-
cal movements of experimental subjects.

5.2. Active Components

As a significant portion of neurological activity occurs during

free range movement, the ability to record brain activity under
such conditions could further understanding of the relation-

ship between neurochemical activity and behavior. To achieve
this goal, several researches have gone into miniaturizing light

sources for direct integration with neural probes. The Rogers

Group developed flexible, multifunctional probes compatible
with wireless systems for behavioral studies (Figure 4 C).[200, 201]

One flexible, PDMS-based probe, 500 mm wide V 50 mm thick,
focused on microfluidic channels to complement mLED stimula-

tion. Another design incorporated Pt sensing elements at total
probe thickness of 20 mm. To aid insertion, the probes incorpo-

rated stainless steel and epoxy-based microneedles, respective-

ly. In both cases, the probes provided optogenetic capabilities
for the observation and manipulation of behaviors. One probe

enabled drug delivery, while the second allowed monitoring of
both electrophysiology and temperature changes during opti-

cal stimulation. Histological studies revealed that tissue
damage was negligible in both studies. The previous two ex-
amples show that softer probes can provide commendable
performance during experiments. However, soft probes typical-
ly require a form of reinforcement as described.

The need for reinforcements illustrates the benefits of more
rigid materials in neural probe fabrication. Silicon has seen
considerable use in microfabrication processes and neural
probe development. In particular, silicon-based probes can di-
rectly integrate sensing elements such as electrodes, wave-
guides, and miniaturized light sources, while offering ample
stiffness to penetrate the brain. The micron-scale dimensions

possible through microfabrication techniques can also reduce
the likelihood of tissue damage. One approach involved fabri-
cation and integration of bare laser diode chips (emitting at
650 nm) with a silicon neural probe.[202, 203] The diode chips

were directly coupled to SU-8 waveguides embedded on the
probe shank, resulting in a compact packaged device. This

Figure 4. Examples of microfabricated probes with optical elements.
A) Neural probe with an oxynitride waveguide and iridium electrodes.[195]

B) SU-8 waveguide, multi-shank probe for stimulation at varied depths.[198]

C) Multilayered probe with microfluidic channels and mLED’s.[200] D) Expand-
ed view of mLED’s from 4-shank probe design.[205]
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work demonstrates a potential feature of the miniaturized op-
tical system for experiments in freely behaving animals ; how-

ever, in vivo testing has not been reported. Some silicon-based
probes have incorporated GaN mLED’s on multiple shanks

through microfabrication techniques.[204, 205] GaN provides suita-
ble emissive properties for blue wavelengths (450–460 nm)

during channelrhodopsin-2 (ChR2)-based studies. Mutli-shank
designs can facilitate a broader range of neural cluster stimula-
tion per experiment. One example employed six, 100 mm wide

V 40 mm thick V 3 mm long, shanks; each shank possessed 16
mLED’s for 96 total optical elements in one array.[204] The 96
mLED probe permitted the simultaneous activation of multiple
sites at various depths within mice neocortex regions. The

direct integration of electrodes can allow more accurate quan-
tification of neuron circuit firing through improved spatial res-

olution. In fact, a separate design contained 12 of mLED’s
(10 mm V 15 mm) distributed among 4 probe shanks (Fig-
ure 4 D).[205] Each shank (70 mm wide V 30 mm thick V 5 mm

long) also employed Ti/Pt/Ir electrodes for electrical recording.
During in vivo trials, multiple clusters of neurons were optically

stimulated and recorded within the CA1 pyramidal layer of
mice. The minimal wiring requirements also permitted the sub-

jects free range movement during testing. The probes dis-

cussed here illustrate some of the versatility offered by mLED’s
in neurological studies. They open the door to free-range

movement studies, flexible placement of light within different
clusters of neurons, and low-power requirements which are

compatible with wireless devices.

5.3. Conclusions

Optical stimulation of neurons opens new avenues for charac-

terizing neurochemical changes. In this section, we have dis-
cussed both passive and active optical elements found in mi-

crofabricated neural probes. Waveguides made through micro-

fabrication of silicon nitride or SU-8 can effectively direct light
to specific regions of the brain. The integrated waveguide

system can be tailored to deliver a variety of wavelengths facil-
itating a broader range of optogenetics studies. However, the

waveguide system can be bulky, hindering experiments in-
volved freely moving animals. This problem was the root moti-

vation to using miniaturized active optical components, which
can be incorporated into different probe designs via microfab-
rication techniques. Particularly, the mLED approach is viable

for scaling up and integration with other neural electrical inter-
faces. However, mLED’s can be prone to heating issues, thus

optimization in device design and optical parameters must be
carefully evaluated. In addition, a significant portion of mLED-
based probes appear to include only blue light wavelengths.
Future advancements should also focus on a broader range of
colors which would surpass the advantages offered by wave-

guides in this respect. As stated in earlier sections of this
review, sampling probes allow versatility for monitoring various
types of neurochemicals within target tissue areas. Electro-
chemical sensors offer rapid chemical recording in real time,
but can focus only on a limited number of analytes. Microfabri-
cation techniques will open up opportunities to integrate op-

toelectrical components with the two mentioned complemen-
tary monitoring techniques, resulting in an advanced probe

with unprecedented degrees of multiplexing, spatial and tem-
poral resolution, and applicability.

6. Summary and Outlook

In vivo neurochemical monitoring is a vital tool for elucidating
brain function and disease. Microfabrication technologies have

enabled the possibility to create high density, highly-precise
neural probes for studying brain chemistry. Development of

microfabricated electrochemical probes enables multiplexed
chemical measurement at high-spatially different brain loca-

tions. Microfabricated sampling probes allow neurochemical

monitoring with minimal tissue damage and spatial resolution
comparable to microelectrodes. With incorporation of flow-

segmentation and advances in assay methods, it is also possi-
ble to achieve multicomponent chemical monitoring at sub-
second temporal resolution. Notably, the microfabrication of
neurochemical probes offers the potential to access different
brain regions at high spatial control and at a size-scale that

was previously impossible. The drive to perfect increasingly
smaller designs, however, must be balanced with recording

sufficient amounts of target analytes. In the case of sampling
probes, further considerations such as sample collection capa-
bility and practically-useful driving pressure, will also come
into play. Nevertheless, we believe that future progress in ana-

lytical techniques and instrumentations will facilitate further
miniaturization. Another exciting aspect of the microfabricated
probes stems from their scalability and feasible integration

with other neural interfaces, such as electrophysiology and op-
togenetics. The innovations in such multi-modal/functional

probes will ultimately open opportunities for new discoveries
in neuroscience.
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