Supplementary Figures

Figure S 1: Spectrum plots of $\log 10$ (MAFs) for simulated genotypes.

(A) European (EUR); (B) Asian (ASA); (C) African (AFR); (D) Mixed populations (MIX) of EUR, ASA, and AFR.

Figure S 2: Empirical type I errors of meta-Burden test and meta-SKAT with different significance levels ($\alpha=0.01,10^{-4}, 2.5 \times 10^{-6}$), for balanced (B) and unbalanced (UB) dichotomous studies without population stratifications.

(A, C): Scenarios with common covariates; (B, D, E) Scenarios with different covariates.

Figure S 3: Empirical type I errors of meta-Burden test and meta-SKAT with different significance levels ($\alpha=0.01,10^{-4}, 2.5 \times 10^{-6}$), for balanced (B) and unbalanced (UB) quantitative studies without population stratifications.

Figure S 4: Empirical type I errors of meta-Burden test and meta-SKAT with different significance levels ($\alpha=0.01,10^{-4}$), for balanced (B) and unbalanced (UB) dichotomous studies with common covariates and population stratifications.
(A)

(B)

Figure S 5: Quantile-Quantile (QQ) plots of $-\log 10$ (p values) of meta-Burden test and meta-SKAT, for null simulations with multi-ethnic samples and unbalanced settings, along with the genomic control factors ($\lambda_{G C}$).

(A)

(C)

Burden Test

(E)

Burden Test

(B)

(D)

(F)

SKAT

(A, B) Joint analysis with first 4 PCs as additional covariates; (C, D) Standard methods; (E, F) Our adjusted methods.

Figure S 6: Score statistic estimates in the dichotomous studies under balanced and unbalanced settings, with different covariates, without population stratification.

Figure S 7: $-\log 10$ (p values) of single-variant score tests in the dichotomous studies with different covariates, without population stratification.

Figure S 8: Power comparison for balanced (B) and unbalanced (UB) dichotomous studies with different covariates, without population stratification.

Figure S 9: Score statistic estimates in the quantitative studies under balanced and unbalanced settings, with common covariates, without population stratification.
(A)

(C)

(B)

(D)

Figure S 10: $-\log 10$ (p values) of single-variant score tests in the quantitative studies with common covariates, without population stratification.

Figure S 11: Score statistic estimates in the quantitative studies under balanced and unbalanced settings, with different covariates, without population stratification.

Figure S 12: $-\log 10$ (p values) of single-variant score tests in the quantitative studies with different covariates, without population stratification.

Figure S 13: Power comparison of meta-Burden test and meta-SKAT for balanced (B) and unbalanced (UB) quantitative studies without population stratification.

Figure S 14: Empirical type I errors of meta-Burden test and meta-SKAT with different significance levels $\left(\alpha=0.01,10^{-4}, 2.5 \times 10^{-6}\right.$), for permuted multi-ethnic AMD data.

(C)

Figure S 15: Histograms of the type 2 diabetes phenotypes that were jointly corrected for age, gender, BMI, and first four joint PCs.

MGI

Figure S 16: First two joint PCs of type 2 diabetes GWASs.

Figure S 17: Manhattan plots of the individual GWASs of type 2 diabetes.

Figure S 18: QQ plots of $-\log 10$ (p values) by single-variant score tests of type 2 diabetes GWASs.

Figure S 19: Manhattan plots with the joint analysis results (A) and the joint-equivalent metaanalysis results (B).

Figure S 20: Compare the MAFs in three individual GWASs for the genome-wide significant variants by joint analysis.

