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ABSTRACT
Meta-analysis is now an essential tool for genetic association studies, allowing them to

combine large studies and greatly accelerating the pace of genetic discovery. Although

the standard meta-analysis methods perform equivalently as the more cumbersome

joint analysis under ideal settings, they result in substantial power loss under unbal-

anced settings with various case–control ratios. Here, we investigate the power loss

problem by the standard meta-analysis methods for unbalanced studies, and further

propose novel meta-analysis methods performing equivalently to the joint analy-

sis under both balanced and unbalanced settings. We derive improved meta-score-

statistics that can accurately approximate the joint-score-statistics with combined

individual-level data, for both linear and logistic regression models, with and without

covariates. In addition, we propose a novel approach to adjust for population strati-

fication by correcting for known population structures through minor allele frequen-

cies. In the simulated gene-level association studies under unbalanced settings, our

method recovered up to 85% power loss caused by the standard methods. We further

showed the power gain of our methods in gene-level tests with 26 unbalanced studies

of age-related macular degeneration . In addition, we took the meta-analysis of three

unbalanced studies of type 2 diabetes as an example to discuss the challenges of meta-

analyzing multi-ethnic samples. In summary, our improved meta-score-statistics with

corrections for population stratification can be used to construct both single-variant

and gene-level association studies, providing a useful framework for ensuring well-

powered, convenient, cross-study analyses.
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1 INTRODUCTION

Meta-analysis is now an essential tool for genetic association

studies, allowing them to combine information on 100,000s

to 1,000,000s of samples, and greatly accelerating the pace

of genetic discovery. Under ideal experiment settings, e.g.,

the same case–control ratio for all individual studies, the

standard meta-analysis methods perform as efficiently as

the more cumbersome alternative of joint analysis shar-

ing individual-level data (Lin & Zeng, 2010). Standard

meta-analysis methods have been routinely used in many

large-scale genome-wide association studies (GWASs), iden-

tifying hundreds of complex trait loci, e.g., type 2 diabetes

(T2D) (Fuchsberger et al., 2016; Scott et al., 2007; Zeggini

et al., 2008), lipid levels (Willer et al., 2008), body mass

index (BMI) (Willer et al., 2009), rheumatoid arthritis (Stahl

et al., 2010), and fasting glucose levels (Prokopenko et al.,

2009). Many tools implementing standard meta-analysis

methods have been proposed for both single-variant and

gene-level association studies, such as METAL for single-

variant association studies (Willer, Li, & Abecasis, 2010),

META-SKAT for sequential kernel association test (SKAT),
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MASS, and RAREMETAL for gene-level association studies

(Feng, Liu, Zhan, Wing, & Abecasis, 2014; Lee, Teslovich,

Boehnke, & Lin, 2013; Liu et al., 2014; Tang & Lin, 2013).

The standard meta-analysis methods generally sum the

within-study test statistics as the meta-test-statistic that essen-

tially eliminates all between-study variations, e.g., sum-

ming P values with respect to sample sizes (Stouffer et al.,

1949), regression coefficients with respect to standard errors

(Cochran, 1954), and score statistics with respect to varia-

tions (Lee et al., 2013). However, when the case–control ratios

(or means and variances for quantitative traits) vary among

individual studies due to unbalanced study designs, a com-

mon scenario for using Biobank data (Sudlow et al., 2015),

the between-study variations due to the differences of case–

control ratios actually contain important association informa-

tion. This is why the standard meta-analysis methods ignor-

ing between-study variations will lose power for unbalanced

studies, compared to the joint analysis. Although the com-

monly used weighting strategy with respect to effective sam-

ple sizes may improve the power of the standard meta-analysis

methods for single-variant association studies (Willer et al.,

2010), it will fail for gene-level association studies based on

score statistics such as META-SKAT (Lee et al., 2013) and

RAREMETAL (Feng et al., 2014; Liu et al., 2014). This is

because the magnitudes of score statistics are of the order of

sample sizes (unlike the unit-free Z-score statistics in single-

variant association studies).

Here, we describe a novel meta-analysis approach that

models the between-study variances with improved meta-

score-statistics, improving the power over the standard

method under unbalanced settings. Our approach is suitable

for both linear and logistic regression models, with and with-

out covariates. When the study samples are of the same

population (i.e., without population stratification), our meta-

analysis methods are equivalent to the more cumbersome joint

analyses (i.e., golden standards). For studies with multi-ethnic

samples where the joint analysis is likely to cause inflated false

positives, our methods will innovatively adjust for the pop-

ulation stratification using known population-specific minor

allele frequencies (MAFs). Specifically, observing that the

population stratification is reflected by different within-study

MAFs in the score statistics, we will regress out the effects

of known population-specific MAFs from the within-study

MAFs. The population-specific MAFs are obtainable from

reference panels such as 1000 Genome (Genomes Project

et al., 2012), Biobanks (Sudlow et al., 2015), and gnomAD

(Lek et al., 2016). In this paper, we focus on the meta-analysis

methods with single-variant score test (Rao, 1948), gene-level

Burden (Morris & Zeggini, 2010; Neale et al., 2011) test, and

SKAT (Wu et al., 2011).

Our simulation studies showed that, under unbalanced set-

tings, our methods recovered up to 84% power loss caused

by the standard methods while controlling for false positive

rates (i.e., type I errors), regardless of the existence of popula-

tion stratification. Further, we demonstrated the power gain of

our methods in the real gene-level association studies of age-

related macular degeneration (AMD) (Fritsche et al., 2016),

consisted with 26 unbalanced individual studies and 33,976

unrelated European samples (Table S1). For example, the

known AMD risk gene CFI has SKAT P value 1.9× 10^(−10)

by joint analysis, P value 1.2 × [10]^(−4) by the standard

meta-SKAT, and P value 3.1 × [10]^(−9) by our meta-SKAT.

In addition, we applied our methods on the meta-analysis of

three studies of T2D with Finnish and American European

populations.

In summary, we propose novel meta-analysis methods

based on our improved meta-score-statistics to achieve equiv-

alent performance as joint analysis under unbalanced set-

tings, for both single-variant and gene-level association stud-

ies. Our approach provides a useful framework for ensuring

well-powered, convenient, cross-study analyses and is now

implemented in the freely available RAREMETAL software.

2 MATERIALS AND METHODS

2.1 Score statistics for individual studies
Consider meta-analysis of 𝐾 studies with 𝑛𝑘 samples and 𝑚𝑘
genotyped variants for the 𝑘th study. Let 𝒚𝑘 denote the 𝑛𝑘 × 1
phenotype vector; 𝑿𝑘 denote the 𝑛𝑘 × 𝑚𝑘 genotype matrix,

encoding the minor allele count per individual per variant as

(0, 1, 2); and 𝑪𝒌 denote the 𝑛𝑘 × (𝑞𝑘 + 1) augmented covari-

ate matrix with the first column set to 1′s and the others encod-

ing 𝑞𝑘 covariates. For each individual study, we consider the

standard linear regression model (Equation 1) for quantitative

traits

𝒚𝒌𝒊 = 𝑪𝒌𝒊𝜶𝒌 +𝑿𝒌𝒊𝜷𝒌 + 𝜖𝒊, 𝜖𝒊 ∼ 𝑵
(
0, 𝝈2

𝒌

)
,

𝒊 = 1,… , 𝒏𝒌 , (1)

and the standard logistic regression model (Equation 2) for

dichotomous traits

𝒍𝒐𝒈𝒊𝒕
(
𝑷 𝒓𝒐𝒃

(
𝒚𝒌𝒊 = 1

))
= 𝑪𝒌𝒊𝜶𝒌 +𝑿𝒌𝒊𝜷𝒌, (2)

where 𝑿𝑘𝑖 is the 𝑖th row of genotype matrix 𝑿𝑘, 𝜷𝑘 is the

vector of genetic effect sizes, 𝑪𝑘𝑖 is the 𝑖th row of augmented

covariate matrix 𝑪𝑘, and 𝛼𝑘 is the vector of covariate effects

including the intercept term. Let 𝒖𝑘 denote the vector of

score statistics for the 𝑘th study and 𝑽 𝑘 denote the variance–

covariance matrix of 𝒖𝑘 (Supplementary Appendix A).

2.2 Standard meta-analysis
For notation simplicity, we assume the same set of variants for

all 𝐾 studies. The standard meta-analysis methods based on
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score statistics typically approximate the joint-score-statistics

(obtainable in joint analysis) by

𝒖 =
𝑲∑
𝒌=1

𝒖𝒌, 𝑽 =
𝑲∑
𝒌=1

𝑽 𝒌. (3)

Under unbalanced studies, these statistics will be systemat-

ically different from the joint-score-statistics, potentially lead-

ing to substantial power loss. Instead, we derive our improved

meta-score-statistics (𝒖, 𝑽 ) with summary-level data from

the joint-score-statistic formulas with combined individual-

level data.

2.3 Simplified case without covariates
We first consider a simplified case without covariates, in

which the following analytical formulas are derived from the

joint-score-statistics under both linear and logistic regression

models (Supplementary Appendix B.1), in terms of summary-

level data including the within-study score statistics (𝒖𝑘, 𝑽 𝑘),

sample size 𝑛𝑘, phenotype mean deviation 𝛿𝑘, residual vari-

ance estimate 𝜎2
𝑘
, and MAF vector 𝒇𝑘

𝒖 =
𝑲∑
𝒌=1

𝒖𝒌 +
𝑲∑
𝒌=1

2𝒏𝒌𝜹𝒌
(
𝒇 − 𝒇𝒌

)
, (4)

𝑽 = 𝝈2
⎡⎢⎢⎣

𝑲∑
𝒌=1

⎡⎢⎢⎣
𝑽 𝒌

𝝈2
𝒌

⎤⎥⎥⎦ −
𝑲∑
𝒌=1

4𝒏𝒌
(
𝒇𝒇 ′ − 𝒇𝒌𝒇

′

𝒌

)⎤⎥⎥⎦ . (5)

Here, 𝛿𝑘 = (1
𝑛

∑𝐾
𝑘=1 𝑛𝑘𝑦𝑘) − 𝑦𝑘 denotes the difference

between the overall phenotype mean and within-study pheno-

type mean; 𝜎2 = 1
𝑛−1

∑𝐾
𝑘 = 1[(𝑛𝑘 − 1)𝜎2

𝑘
+ 𝑛𝑘𝛿2𝑘] denotes the

joint residual variance; and 𝒇 = denotes the overall MAF vec-

tor. The key difference from the standard approach is that we

now model the between-study variations through the differ-

ences between the overall phenotype means, phenotype vari-

ances, and MAFs and their respective within-study values, as

shown in the second term of Equations (4) and (5).

We note that, when 𝛿𝑘 = 0, 𝜎2
𝑘
≈ 𝜎2, 𝒇𝑘 ≈ 𝒇 as under

balanced settings, both our meta-score-statistics (Equations 4

and 5) and the standard ones (Equation 3) are equivalent

to the joint-score-statistics, which is why both methods per-

form as efficiently as the joint analysis for balanced studies.

However, when 𝛿𝑘 ≠ 0, 𝜎2
𝑘
≠ 𝜎2, 𝒇𝑘 ≠ 𝒇 as under unbal-

anced settings, the standard methods can no longer accurately

approximate the joint-score-statistics, potentially leading to

substantial power loss. In contrast, our meta-analysis methods

will still be equivalent to the joint analysis.

2.4 General case with covariates
Next, we consider the general case with covariates, in which

our meta-score-statistic 𝒖 is still derived as Equation (4) from

the joint-score-statistic but our meta estimate of the joint

variance–covariance matrix 𝑽 will be different. For notation

simplicity, we assume all individual studies have the same set

of covariates. We approximate the phenotype mean deviation

by 𝛿𝑘 ≈ (1
𝑛

∑𝐾
𝑘 = 1(𝑛𝑘𝜇𝑘)) − 𝜇𝑘, where 𝜇𝑘 =

1
𝑛𝑘

∑𝑛𝑘
𝑖 = 1 𝜇𝑘𝑖 is

the average of the fitted phenotypes in study 𝑘 under the null

regression models with 𝜷 = 0 (Equations 1 and 2).

Then under the linear regression model (Equation 1), we

estimate 𝑽 by

𝑽 ≈ 𝝈2
⎛⎜⎜⎝

𝑲∑
𝒌=1

𝑽 𝒌

𝝈2
𝒌

+
𝑲∑
𝒌=1

(
𝑿

′
𝒌
𝑪𝒌

(
𝑪

′
𝒌
𝑪𝒌

)−1
𝑪

′
𝒌
𝑿𝒌

)

−

(
𝑲∑
𝒌=1

𝑿
′
𝒌
𝑪𝒌

)(
𝑲∑
𝒌=1

𝑪
′
𝒌
𝑪𝒌

)−1( 𝑲∑
𝒌=1

𝑿
′
𝒌
𝑪𝒌

)′⎞⎟⎟⎠ , (6)

where the quantities of the covariate relationship matrix 𝑪
′
𝑘𝑪𝑘

and genotype–covariate relationship matrix 𝑿
′
𝑘𝑪𝑘 need to be

shared across individual studies (see detailed derivations in

Supplementary Appendix B.2).

Under the logistic regression model (Equation 2), we esti-

mate 𝑽 by

𝑽 ≈
𝑲∑
𝒌=1

𝑽 𝒌 +
𝑲∑
𝒌=1

Δ𝒌𝑿
′

𝒌
𝑿𝒌 +

𝑲∑
𝒌=1

(
𝑿

′

𝒌
𝑷 𝒌𝑪𝒌

)(
𝑪

′

𝒌
𝑷 𝒌𝑪𝒌

)−1

(
𝑿

′

𝒌
𝑷 𝒌𝑪𝒌

)′

−

(
𝑲∑
𝒌=1

(
𝑿

′

𝒌
𝑷 𝒌𝑪𝒌 + Δ𝒌𝑿

′

𝒌
𝑪𝒌

))
(

𝑲∑
𝒌=1

(
𝑪

′

𝒌
𝑷 𝒌𝑪𝒌 + Δ𝒌𝑪

′

𝒌
𝑪𝒌

))−1

(
𝑲∑
𝒌=1

(
𝑿

′

𝒌
𝑷 𝒌𝑪𝒌 + Δ𝒌𝑿

′

𝒌
𝑪𝒌

))′

, (7)

where 𝑷 𝑘 = 𝑑𝑖𝑎𝑔(𝜇𝑘1(1 − 𝜇𝑘1),… , 𝜇𝑘𝑛𝑘 (1 − 𝜇𝑘𝑛𝑘 )) denotes the

diagonal matrix of phenotypic variances after correcting for

within-study covariates; Δ𝑘 = 𝛿𝑘 (1 − 2𝜇𝑘 − 𝛿𝑘) is the aver-

age difference between 𝑷 𝑘 and an analogous estimate in joint

analysis (see detailed derivations in Supplementary Appendix

B.2). To enable the calculation by Equation (7), the quan-

tities of the genotype relation matrix 𝑿′
𝑘
𝑿𝑘, covariate rela-

tion matrices (𝑪
′

𝑘
𝑪𝑘, 𝑪

′

𝑘
𝑷 𝑘𝑪𝑘), and the genotype–covariate

relation matrices (𝑿
′

𝑘
𝑪𝑘, 𝑿

′
𝑘
𝑷 𝑘𝑪𝑘) need to be shared.

2.5 Adjusting for population stratification
With multi-ethnic studies, our meta-analysis methods based

on the improved meta-score-statistics (Equations 4–7; equiv-

alent to the joint-score-statistics) will cause inflated false
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positives as in joint analysis. Thus, we have to adjust our

meta-score-statistics to control for false positives caused by

population stratification. Particularly, we note that the pop-

ulation stratification is reflected by the differences between

the within-study and joint MAFs in the score statistics, e.g.,

(𝒇 − 𝒇𝒌) in Equation (4) and (𝒇𝒇 ′ − 𝒇𝒌𝒇
′
𝒌
) in Equation (5).

Therefore, we propose to normalize our within-study MAFs

by regressing out the population effects that can be explained

by known population-specific MAFs. For example, with

known MAF vectors 𝒇EUR, 𝒇AMR,𝒇AFR, 𝒇SAS, 𝒇EAS of

genome-wide variants for European, American, African,

South Asian, and East Asian populations in the 1000

Genome Project (Genomes Project et al., 2012), we first

fit the following linear regression model per individual

study:

Then, in Equations (4) and (5), we substitute 𝒇𝒌 by the

residuals 𝝃𝒌 = 𝒇𝒌 −
∑
𝛾pop𝒇 pop, and set 𝒇 as the weighted

residual averages
∑𝐾
𝑘 = 1 𝑛𝑘𝝃𝒌∑𝐾
𝑘 = 1 𝑛𝑘

. For variants absent from the ref-

erence panel or with fitted values falling outside of the 95%

predictive intervals, we set the corresponding elements in vec-

tors 𝒇𝒌 and 𝒇 as 0 such that the between-study variances

related to these variants will not be modeled by our methods.

Equivalently, in Equations (6) and 2017, we can normalize the

genotype matrix by 𝑿̃ = 𝑿 − 2(
∑
𝛾pop𝒇 pop)𝑱 ′ for variants

in the reference panel and set the genotype matrix as 0 for vari-

ants with unknown population-specific MAFs or with outlier

fitted values.

Generally, we expect >99% R2 for the model adjusting

for population stratification, which requires reference panel

that matches the ancestry of the study samples to provide

population-specific MAFs. We also suggest matching refer-

ence ancestries to the study ancestries by using principle com-

ponents, especially for admixed samples.

2.6 Practical approach
Although Equations (6) and (7) enable corrections for covari-

ates, they are generally not applicable in practice for the diffi-

culties of sharing the quantities of 𝑿′
𝑘𝑿𝑘, (𝑪

′
𝑘𝑪𝑘, 𝑪

′
𝑘𝑷 𝑘𝑪𝑘),

and (𝑿
′
𝑘𝑪𝑘, 𝑿′

𝑘𝑷 𝑘𝑪𝑘). Thus, for computational simplicity,

we suggest using Equation (5) with phenotypes corrected for

covariates within individual studies under the linear regres-

sion model (Equation 1), where the dichotomous traits could

be treated as quantitative traits by coding cases as 1′s and con-

trols as 0′s. The RAREMETAL software also implements this

practical approach. Both approaches (Equations 6 and 7 vs.

Equation 5) produced nearly the same association results in

our simulations. For both quantitative and dichotomous stud-

ies in this paper, we first corrected phenotypes within studies,

and then used meta-score-statistics given by Equations (4) and

(5) for association studies (adjusting for possible population

stratification).

When correcting phenotypes for additional covariates by

regression within individual studies, our meta-analysis meth-

ods require including the intercepts in the corrected pheno-

types to correctly model the between-study variations. Oth-

erwise, the phenotype deviation 𝛿𝑘’s will all be 0′s, and our

meta-score-statistics (Equation 4) will equal to the standard

ones (Equation 3). In addition, we require the phenotype devi-

ation 𝛿𝑘’s contain no other artificial effects (e.g., batch effects,

effects due to different metrics or different underlying distri-

butions across studies for phenotypes), because the between-

study variations due to artificial effects are likely to cause

inflated false positives.

2.7 Test statistics
Our meta-analysis methods are based on accurately approxi-

mating the joint-score-statistics (𝒖, 𝑽 ), and properly adjust-

ing for possible population stratification. In this paper, we

focus on score test for single-variant association studies, as

well as the Burden test (Morris & Zeggini, 2010) with statis-

tic𝑄Burden = (𝑤′𝑢)2
𝑤′𝑉 𝑤

and SKAT (Lee et al., 2013) with statistic

𝑄SKAT = 𝒖′ 𝑾 2𝒖 for gene-level association studies. Specifi-

cally, 𝒘′ = (𝑤1,… , 𝑤𝑚) is the variant-specific weight vec-

tor, and𝑾 = diag(𝑤1,… , 𝑤𝑚) is the𝑚 × 𝑚 diagonal matrix.

For each variant, we take the weight as “capped” beta den-

sity value 𝑤𝑗 = 𝐶𝐵𝑒𝑡𝑎(𝑓𝑗 ; 0.5, 0.5) with the correspond-

ing MAF 𝑓𝑗 , to avoid assigning extremely large weights for

extremely rare variants (𝐵𝑒𝑡𝑎(𝑓𝑗 ; 0.5, 0.5) → ∞ as 𝑓𝑗 → 0).

That is, with sample size 𝑛, we have 𝐶𝐵𝑒𝑡𝑎(𝑓𝑗 ; 0.5, 0.5) =
𝐵𝑒𝑡𝑎( 5

2𝑛 ; 0.5, 0.5) if the minor allele count 2𝑛𝑓𝑗 < 5, oth-

erwise 𝐶𝐵𝑒𝑡𝑎(𝑓𝑗 ; 0.5, 0.5) = 𝐵𝑒𝑡𝑎(𝑓𝑗 ; 0.5, 0.5) allowing

equal variance contributions from all variants.

Under the null hypothesis (𝐻0 ∶ 𝜷 = 0), both single-

variant score statistic 𝑄score =
𝒖2

𝑽
and 𝑄Burden follow a chi-

square distribution with one degree of freedom (𝑑𝑓 = 1).

Under the null hypothesis 𝐸 (𝛽𝑗) = 0, 𝑉 𝑎𝑟 (𝛽𝑗) = 𝑤2
𝑗 𝜏, 𝑗 =

1,… , 𝑚; 𝜏 = 0) for SKAT, 𝑄SKAT asymptotically follows

a mixture of chi-square distributions,
∑𝑚
𝑗=1 𝜆𝑗𝜒

2
𝑗,𝑑𝑓=1, where

(𝜒2
𝑗,𝑑𝑓=1) are independent chi-square random variables with

𝑑𝑓 = 1, and 𝜆𝑗’s are nonzero eigenvalues of the variant rela-

tionship matrix 𝚽 = 𝑾 𝑽𝑾 .

2.8 Simulation studies
To evaluate the false positive rate (type I error) and power of

our meta-analysis methods, we conducted simulation studies

in various scenarios with balanced and unbalanced studies,

quantitative and dichotomous traits, with and without pop-

ulation stratification (see details of the simulation setup in

Supplementary Appendix C).

Briefly, we first simulated haplotypes of three populations

(European (EUR), Asian (ASA), and African (AFR)) by COSI
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with the well-calibrated coalescent model (Schaffner et al.,

2005). Then we sampled genotypes of 1 × 105 individuals per

population with 339 variants, 96% of which have MAFs< 5%.

Random risk regions of 100 variants were selected to simulate

both quantitative and dichotomous phenotypes, respectively,

according to the standard linear and logistic models. We sim-

ulated phenotypes under the null models (𝜷 = 0) for evaluat-

ing the empirical type I error, and phenotypes with 50% causal

variants in the risk regions for evaluating the power.

We considered meta-analysis with five individual stud-

ies and a total sample size 3,000 (Table S2), under com-

bined scenarios of dichotomous or quantitative traits, bal-

anced or unbalanced settings, common or uncommon covari-

ates, single- or multi-ethnic samples. For the balanced scenar-

ios, each dichotomous study has 300 cases and 300 controls,

while each quantitative study has 600 samples. For unbal-

anced dichotomous studies, there are (60, 180, 300, 420, 540)

cases and (540, 420, 300, 180, 60) controls, such that the indi-

vidual studies have the same sample size but various cases–

control ratios. Unbalanced quantitative studies have sample

sizes (200, 400, 600, 800, 1,000). Two covariate scenarios

were simulated: (i) common covariates for all studies; (ii) dif-

ferent covariates among studies.

For the case with single-ethnic samples (i.e., without popu-

lation stratification), we compared our adjusted meta-analysis

methods with the standard methods and joint analysis, where

the results by joint analysis will serve as golden standards. For

the case with multi-ethnic samples (i.e., with population strat-

ification; with EUR samples in studies 1 and 3, ASA samples

in studies 2 and 4, and AFR samples in study 5), we only con-

sidered balanced and unbalanced dichotomous studies with

common covariates (Table S2). In this case, we corrected the

population stratification using the population MAF vectors

(𝒇𝐸𝑈𝑅, 𝒇𝐴𝑆𝐴, 𝒇𝐴𝐹𝑅) that were calculated from 1 × 105
samples of the respective population. We compared our meth-

ods with the standard methods modeling no between-study

variations and joint analysis correcting for population strati-

fication by using the first four principle components (PCs) as

additional covariates (Price et al., 2006).

2.9 AMD and T2D data
The study of AMD by the International AMD Genomics Con-

sortium (IAMDGC) (Fritsche et al., 2016) consists of 26 indi-

vidual studies with 33,976 European, 1,572 Asian, and 413

African unrelated samples. Variants were genotyped on a cus-

tomized Exome-Chip and imputed against the 1000 Genome

Project Phase I reference panel. Advanced AMD cases include

both cases with choroidal neovascularization and cases with

geographic atrophy (Fritsche et al., 2016; Yang, Fritsche,

Zhou, & Abecasis, 2017).

Three GWASs of T2D were considered in this paper:

the Finland-United States Investigation of NIDDM genetics

(FUSION) study (Scott et al., 2007), METabolic Syndrome

In Men (METSIM) study (Laakso et al., 2017), and Michi-

gan Genomics Initiative (MGI) study. We analyzed 2,297

unrelated Finnish samples (1,142 cases vs. 1,155 controls)

in FUSION, 3,340 unrelated Finnish samples (673 cases vs.

2,667 controls) in METSIM, and 16,495 unrelated Euro-

pean American samples (1,942 cases vs. 14,553 controls)

in MGI.

For the association studies of both AMD and T2D, all par-

ticipants gave informed consent and the University of Michi-

gan IRB approved our analyses.

3 RESULTS

3.1 Empirical type I errors in simulation
studies
We repeated 2.5 × 107 null simulations per scenario to

obtain empirical type I errors with significance levels 𝛼 =
10−2, 10−4, 2.5 × 10−6. In the scenarios without population

stratification, we showed that both Burden test and SKAT—by

our adjusted meta-analysis method, the standard method, and

joint analysis—have type I errors less than the correspond-

ing significance levels (Fig. 1A; Supplementary Figs. S2

and S3). In the scenarios with population stratification, we

showed that both Burden test and SKAT by our adjusted

method and the standard method still controlled well for

type I errors, with respective genomic control factors 𝜆GC =
0.995, 0.9926 for Burden tests and 𝜆𝐺𝐶 = 0.7832, 0.9708
for SKAT (Fig. 1B; Supplementary Figs. S4 and S5C–F).

The slightly inflated type I error for standard SKAT is due to

the arbitrary choice of variant-specific weighs that overweight

the rare variants. In contrast, the joint analysis with first four

joint PCs as additional covariates caused huge inflation with

𝜆GC = 11.9013, 52.6977, respectively, for Burden test and

SKAT (see Quantile-Quantile (QQ) plots of –log10(P val-

ues) in Supplementary Fig. S5A,B). This demonstrated that

the standard methods modeling no between-study variations

were free of population stratification, and that our approach of

adjusting for population stratification successfully corrected

for inflated type I errors.

3.2 Empirical power in simulation studies
For each scenario, we repeated 10,000 simulations to obtain

the empirical power that is given by the proportion of simula-

tions with P values < 2.5 × 10−6 (genome-wide significance

level for gene-level association tests). Here, our goal is to com-

pare the power of our adjusted meta-analysis method with

the standard method and the joint analysis. Here, the power

differences between Burden test and SKAT depend on the

simulation settings.
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F I G U R E 1 Empirical type I errors (with significance level 𝛼 = 2.5 × 10−6) for null simulations of balanced (B) and unbalanced (UB) dichoto-

mous studies, with common covariates. (A) Scenario without population stratification. (B) Scenario with population stratification. “Adjusted” denotes

our new meta-analysis methods; “Standard” denotes the standard meta-analysis methods; and “Joint” denotes the joint analyses using combined

individual-level data

F I G U R E 2 Score statistics (A, B, C, D) and –log10(P values) of the corresponding single-variant score tests (E, F, G, H), for dichotomous

studies with common covariates, without population stratification, under balanced and unbalanced settings. (A, B) Score statistics under balanced

studies. (C, D) Score statistics under unbalanced studies. (E, F) –log10(P values) of single-variant score tests under balanced studies. (G, H) –log10(P
values) of single-variant score tests under unbalanced studies. “Standard Meta” denotes the standard meta-analysis methods; “Adjusted Meta” denotes

our new meta-analysis methods



YANG ET AL. 339

In the balanced dichotomous studies without population

stratification, both standard and our adjusted meta-score-

statistic estimates were highly concordant with the golden

standards obtained by joint analysis (R2 > 99.8%; Fig. 2A,

B). In the unbalanced dichotomous studies, the standard meta-

score-statistic estimates scattered further from the joint-score-

statistics (R2 ∼78.2%, Fig. 2C), while our estimates were

still concordant with the joint-score-statistics (R2 > 99.8%;

Fig. 2D). Consequently, under balanced settings, the P val-

ues of single-variant score tests by both standard methods and

our adjusted methods were concordant with the joint anal-

ysis results (Fig. 2E, F). While under unbalanced settings,

the P values by standard methods were less significant than

joint analysis results (Fig. 2G), hence less significant than the

results by our adjusted methods that were concordant with the

joint analysis results (Fig. 2H).

In the scenarios without population stratification, the gene-

level tests (i.e., Burden test and SKAT) based on our improved

meta-score-statistic estimates are equivalent to the ones in

joint analysis under general settings, recovering up to 69%

power loss caused by the standard method in unbalanced

dichotomous studies with common covariates (Fig. 3). Similar

results were obtained for scenarios with different covariates

(Supplementary Figs. S6–S8). Take the dichotomous stud-

ies with common covariates for example (Fig. 3), the power

by standard meta-analysis method was 0.701 for Burden and

0.219 for SKAT, which were 27% and 69% less than the

golden standards (0.964 for Burden; 0.703 for SKAT) by

joint analysis; while the results by our adjusted meta-analysis

method (power 0.964 for Burden; 0.702 for SKAT) were

concordant with the joint analysis results.

In the scenarios with population stratification, the joint

analysis (with top four PCs as additional covariates) no longer

provide golden standards due to highly inflated type I errors

with 𝜆GC = 11.9013, 52.6977 Burden test and SKAT, respec-

tively (Fig. S5A, B). Hence, we only compared the empir-

ical powers by our adjusted meta-analysis method with the

standard method. Again, both methods had similar power

in balanced dichotomous studies, while our adjusted meta-

analysis method recovered up to 85% power loss by the stan-

dard method in unbalanced dichotomous studies (0.898 vs.

0.302 for Burden test, Fig. 3C; 0.880 vs. 0.126 for SKAT,

Fig. 3D).

For quantitative studies, although we simulated “unbal-

anced” scenarios with various sample sizes, these are not

really unbalanced for having similar phenotype means across

individual studies (i.e., the between-study variances were

close to 0). As a result, both our adjusted method and the stan-

dard method produced equivalent results as the joint analyses

under all settings (Supplementary Figs. S9–S13).

In summary, the simulation studies showed that our

adjusted meta-analysis method will improve power by

correctly modeling the association information in the

between-study variances. When the between-study variances

are close to 0 as under balanced settings, both our method and

the standard method are equivalent to the joint analysis. When

the between-study variances are also subject to population

stratification, our method require known population-specific

MAFs to correct for possibly inflated type I errors.

3.3 Real study of AMD
We applied our method on the real AMD data collected by

the IAMDGC (Fritsche et al., 2016), which has 26 individual

studies with 33,976 European, 1,572 Asian, and 413 African

unrelated samples. We treated the Asian and African sam-

ples as two extra studies. First, we conducted null simula-

tions for 2.5 × 107 times using the AMD data, by permuting

the real AMD phenotypes and randomly selecting genotype

regions of 100 variants for Burden test and SKAT. We found

that both our adjusted and the standard meta-analysis meth-

ods had type I errors around the significance level, while the

joint analyses with first 4 joint PCs as extra covariates pro-

duced clearly inflated type I errors (Supplementary Fig. S14).

Specifically, with significance level 2.5 × 10−6, the joint anal-

yses (Joint_PC4) had type I errors 8.6 × 10−6 for Burden test

and 9.2 × 10−6 for SKAT.

For valid comparisons with joint analyses, we only con-

sidered European samples from the 26 unbalanced studies

(Table S1) for Burden test and SKAT in 3 example AMD

risk genes (Fritsche et al., 2016) (CFH, CFI, TIMP3). Pre-

vious analyses by variable-threshold tests (Price et al., 2010)

(with respective MAF thresholds 0.015%, 0.068%, 0.021%

for genes CFH, CFI, TIMP3) gave significant p values (<

2.5 × 10−6) for these three loci. To be consistent with the

previous variable-threshold tests (Price et al., 2010), we only

analyzed protein-altering variants (imputed/genotyped) with

MAFs under the corresponding thresholds (MAFs < 0.015%,

0.068%, 0.021%), and corrected for the same covariates—

known independent signals within the same locus, gender,

first two principal components (calculated using the com-

bined data), and source of DNA (whole-blood or whole

genome-amplified DNA).

Our adjusted meta-analysis method produced genome-

wide significant p values for genes CFH and CFI (Table 1),

which were more significant than the ones by the standard

method. Specifically, gene CFH had genome-wide significant

Burden P value 2.4 × 10−7 by joint analysis, versus 2.1 ×
10−6 by our adjusted method and 3.2 × 10−5 by the stan-

dard method (no longer genome-wide significant). Although

all methods obtained significant Burden P values for gene

CFI, the P value by our method was still more significant than

the one by the standard method (3.3 × 10−14 vs. 9.6 × 10−10)

and closer to the P value by joint analysis (8.9 × 10−15). Simi-

larly, the SKAT p value by standard method for gene CFI was

no longer genome-wide significant (1.2 × 10−4), while the
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F I G U R E 3 Power comparisons of meta-Burden test and meta-SKAT, for balanced (B) and unbalanced (UB) dichotomous studies with com-

mon covariates. (A, B) Without population stratification. (C, D) With population stratification. “Adjusted” denotes our new meta-analysis methods;

“Standard” denotes the standard meta-analysis methods; and “Joint” denotes the joint analyses using combined individual-level data

T A B L E 1 P values of gene-level Burden test and SKAT by the standard meta-analysis method, our adjusted meta-analysis method, and joint

analysis

Gene

Burden test SKAT
Standard Adjusted Joint Standard Adjusted Joint

CFH 3.2 × 10−5 2.1 × 10−6 2.4 × 10−7 6.1 × 10−4 8.4 × 10−5 3.6 × 10−5

CFI 9.6 × 10−10 3.3 × 10−14 8.9 × 10−15 1.2 × 10−4 3.1 × 10−9 1.9 × 10−10

TIMP3 9.8 × 10−4 1.0 × 10−5 1.8 × 10−5 2.6 × 10−3 7.4 × 10−5 2.6 × 10−4

SKAT p value by our adjusted method (3.1 × 10−9) was still

genome-wide significant and close to the one by joint analysis

(1.9 × 10−10).

Even though all approaches failed to identify the TIMP3
locus with P values 1.8 × 10−5 by joint Burden test and

2.6 × 10−4 by joint SKAT, our method still produced more

significant P values than the standard method (1.0 × 10−5
vs. 9.8 × 10−4 for Burden test; 7.4 × 10−5 vs. 2.6 × 10−3
for SKAT). Likely due to the random errors between meta-

score-statistic estimates and the joint-score-statistics, the Bur-

den and SKAT p values for gene TIMP3 by our method are

slightly smaller than the ones by joint analysis.

This real example of AMD study demonstrated that our

method produced similar results as the joint analysis (golden

standards with single-ethnic samples), recovering the power

loss by the standard method.

3.4 Real study of T2D
In this real example, we considered single-variant meta-

analyses of three T2D GWASs: FUSION (1,142 cases vs.

1,155 controls; unrelated Finnish samples) (Scott et al., 2007),

METSIM (673 cases vs. 2,667 controls; unrelated Finnish

male samples) (Laakso et al., 2017), and MGI (1,942 cases

vs. 14,553 controls; unrelated European American samples).

These three unbalanced GWASs have various case–control

ratios (0.98, 0.24, 0.13) and multi-ethnic samples (Supple-

mentary Figs. S15 and S16).

We first jointly corrected the T2D phenotypes for age, gen-

der, BMI, and first two joint PCs, within individual stud-

ies. The reason of jointly correcting the T2D phenotypes is

to eliminate the possible between-study variance due to the

artificial effects caused by individually corrected phenotypes.

Then we applied the joint analysis, the standard meta-analysis
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F I G U R E 4 Manhattan plots of meta GWASs of type 2 diabetes, by (A) standard method and (B) our adjusted method. “Standard Meta” denotes

the standard meta-analysis methods; “Adjusted Meta” denotes our new meta-analysis methods

method, our joint-equivalent meta-analysis method (without

adjustment for population stratification), and our adjusted

meta-analysis method with adjustment for population strati-

fication using the population-specific MAFs of EUR, AMR,

AFR, SAS, EAS from the 1000 Genome Project (Genomes

Project et al., 2012) (∼500 samples per population).

In this study, we only analyzed 631,870 variants genotyped

in the METSIM study. These analyzed variants could be either

genotyped or imputed to 1000 Genome Project (Genomes

Project et al., 2012) or absent in FUSION (627,920 vari-

ants) and MGI (631,628 variants) studies (see Manhattan plots

of the individual GWASs in Supplementary Fig. S17). As

expected, the joint analysis and the joint-equivalent meth-

ods resulted in inflation with 𝜆𝐺𝐶 = 1.11, 1.13, while the

standard meta-analysis method had 𝜆GC = 1.07 (Supplemen-

tary Fig. S18). Specifically, the standard method identified

three known T2D risk loci (SLC30A8 on CHR8, TCF7L2 on

CHR10, and CDKAL1 on CHR6) (Billings & Florez, 2010),

while our method with adjustment for population stratification

identified comparable P values for signals in the SLC30A8 and

TCF7L2 loci, more significant P value in the CDKAL1 locus,

and one extra potential loci ROBO2 on CHR3 (see Manhattan

plots in Fig. 4).

We looked into the within-study MAFs of all “genome-

wide significant” variants that were identified by joint anal-

ysis (Supplementary Figs. S19 and S20). We noticed that the

known signals generally have comparable MAFs across three

studies, especially for MAFs between FUSION and METSIM

with Finnish samples. The variants with large variation among

within-study MAFs are likely to be “false positives,” accord-

ing to our improved meta-score-statistic formulas. Although

our adjusted method corrected for these likely “false posi-

tives” signals, it failed to completely correct for the infla-

tion with 𝜆GC = 1.15 (Supplementary Fig. S18D). This is

probably because the 1000 Genome variants fail to provide

a good reference MAFs for the Finnish samples in FUSION

and METSIM studies. Specifically, the regression R2s were

97.1%, 96.3%, and 99.5% for regressing known population-

specific effects (MAFs) out from the within-study MAFs in

the FUSION, METSIM, and MGI studies, respectively.

This real study demonstrated the benefit of improving

power by applying our adjusted meta-analysis method on
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unbalanced studies. Further, this study showed the challenges

of correctly adjusting for population stratification when sam-

ples are multi-ethnic, which requires good reference panels to

provide population-specific MAFs.

4 DISCUSSION

In this paper, we propose improved meta-score-statistics in

terms of summary-level data that retain R2 > 99% with the

joint-score-statistics using individual-level data, under gen-

eral settings. We derived our adjusted meta-analysis meth-

ods based on the improved meta-score-statistics for both

single-variant and gene-level association studies, performing

equivalently with the joint analysis. We further propose a

novel approach to adjust for population stratification by using

the known population-specific MAFs. By extensive simu-

lation and real studies, we demonstrated that our adjusted

meta-analysis methods controlled well for type I errors and

gained power over the standard meta-analysis methods for

unbalanced studies.

Although we derived the improved meta-score-statistics for

both linear and logistic regression models, with and without

covariates, we suggest using the simplified formula (Equa-

tion 5) that requires to share score statistics, sample sizes,

means, and variances of phenotypes corrected for covariates,

and MAFs, for practical usage. Alternatively, the more com-

plicated formula (Equation 6 or Equation 7) requires to share

additional genotype, genotype–covariate, and covariate rela-

tionship matrices for incorporating covariates, thus gener-

ally more challenging in practice. Different from the standard

meta-analysis methods that only share score statistics, shar-

ing the extra summary data enables our methods to model the

between-study variations, thus performing as efficiently as the

joint analysis.

Of course, our meta-analysis methods are not without lim-

itations. First, our method assumes that the genetic effects

are homogeneous across studies and the phenotypes are of

the same distribution. Second, our method requires that there

are no confounded artificial effects in the between-study vari-

ances, otherwise the standard methods will be preferred.

Third, our method requires the population-specific MAFs

from good reference panels to correctly adjust for popula-

tion stratification, where we suggest locating external sam-

ples of the same ancestries as the individual studies by using

principle components.

In conclusion, sharing summary data allows us to lever-

age the power of large sample sizes without the hassle

of combining individual-level data, and then helps identify

more genetic risk loci for complex traits. We illustrated that

the standard meta-analysis methods will lose power under

unbalanced studies for not modeling the association informa-

tion in the between-study variations. Whereas our adjusted

meta-analysis methods that correctly model the between-

study variations will improve the power under unbalanced set-

tings, providing a useful framework to ensure well-powered,

convenient, cross-study association analyses.
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