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Abstract

Meta-analysis is now an essential tool for genetic association studies, allowing these to

combine large studies and greatly accelerating the pace of genetic discovery. Although the

(i,

standard |meta-analysis methods perform equivalently as the more cumbersome joint
analysis under ideal settings, they result in substantial power loss under unbalanced settings

with various case-control ratios. Here, we investigate the power loss problem by the

l

standard meta-analysis methods for unbalanced studies, and further propose novel meta-

analysis methods performing equivalently to the joint analysis under both balanced and

unbalanced Bsettings. We derive improved meta-score-statistics that can accurately

approximate the joint-score-statistics with combined individual-level data, for both linear and
logistic regression models, with and without covariates. In addition, we propose a novel

approach to adjust for population stratification by correcting for known population structures

\

through minor allele frequencies (MAFs). In the simulated gene-level association studies

under unbalanced settings, our method recovered up to 85% power loss caused by the

[

standard methods. We further showed the power gain of our methods in gene-level tests

with 26 unbalanced studies of Age-related Macular Degeneration (AMD). In addition, we

took the meta-analysis of three unbalanced studies of type 2 diabetes (T2D) as an example

to discuss the challenges of meta-analyzing multi-ethnic samples. In summary, our improved

t

meta-score-statistics with corrections for population stratification can be used to construct

both single-variant and gene-level association studies, providing a useful framework for

|
ensuring well-powered, convenient, cross-study analyses.

/
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Introduction

[

- [N
Meta-analysis is now an essential tool for genetic association studies, allowing these to

(

combine information on 100,000s — 1,000,000s of samples, and greatly accelerating the

3

pace of genetic discovery. Under ideal experiment settings, e.g., the same case-control ratio

for all individual studies, the standard meta-analysis methods perform as efficiently as the

L

more cumbersome alternative of joint analysis sharing individual-level data (Lin & Zeng,

]

2010). Standard meta-analysis methods have been routinely used in many large-scale
]
genome-wide association studies (GWASSs), identifying hundreds of complex trait loci, e.g.,

type 2 diabetes (T2D) (Fuchsberger et al., 2016; Scott et al., 2007; Zeggini et al., 2008), lipid

levels (Willer et al., 2008), body mass index (BMI) (Willer et al., 2009), rheumatoid arthritis

\

(Stahl et al., 2010), and fasting glucose levels (Prokopenko et al., 2009). Many tools

implementing standard meta-analysis methods have been proposed for both single-variant

and gene-level association studies, such as METAL for single-variant association studies

(Willer, Li, & Abecasis, 2010), META-SKAT for sequential kernel association test (SKAT),

(

MASS, and RAREMETAL for gene-level association studies (Feng, Liu, Zhan, Wing, &

]

Abecasis, 2014; Lee, Teslovich, Boehnke, & Lin, 2013; Liu et al., 2014; Tang & Lin, 2013).

t

The standard meta-analysis methods generally sum the within-study test statistics as

J

the meta-test-statistic that essentially eliminates all between-study variations, e.g., summing

P
p values with respect to sample sizes (Stouffer, 1949), regression coefficients with respect to

e 1

standard errors LCochran, 1954), and score statistics with respect to variations (Lee et al.,

2013). However, when the case-control ratios (or means and variances for quantitative traits)

3
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vary among individual studies due to unbalanced study designs, a common scenario for

using Biobank data (Sudlow et al., 2015), the between-study variations due to the

differences of case-control ratios actually contain important association information. This is

why the standard meta-analysis methods ignoring between-study variations will lose power
ol

for unbalanced studies, compared to the joint analysis. Although the commonly used

weighting strategy with respect to effective sample sizes may improve the power of the

standard meta-analysis methods for single-variant association studies (Willer et al., 2010), it

(

will fail for gene-level association studies based on score statistics such as META-SKAT

(7]

(Lee et al., 2013) and RAREMETAL (Feng et al., 2014; Liu et al., 2014). This is because the

magnitudes of score statistics are of the order of sample sizes (unlike the unit-free Z-score

l

statistics in single-variant association studies).

[

Here, we describe a novel meta-analysis approach that models the between-study

variances |with improved meta-score-statistics, improving the power over the standard

method under unbalanced settings. Our approach is suitable for both linear and logistic

/

regression models, with and without covariates. When the study samples are of the same
population (i.e., without population stratification), our meta-analysis methods are equivalent

to the more cumbersome joint analyses (i.e., golden standards). For studies with multi-ethnic

samples where the joint analysis is likely to cause inflated false positives, our methods will

innovatively adjust for the population stratification using known population-specific minor

allele frequencies (MAFs). Specifically, observing that the population stratification is reflected

[

by different within-study MAFs in the score statistics, we will regress out the effects of known

1

population-specific MAFs from the within-study MAFs. The population-specific MAFs are

obtainable from reference panels such as 1000 Genome (Genomes Project et al., 2012),

\

Biobanks (Sudlow et al., 2015), and gnomAD (Lek et al., 2016). In this paper, we focus on

f

the meta-analysis methods with single-variant score test (Radhakrishna Rao, 1948), gene-

level Burden (Morris & Zeggini, 2010; Neale et al., 2011) test, and SKAT (Wu et al., 2011).
4
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Our simulation studies showed that, under unbalanced settings, our methods
recovered up to 84% power loss caused by the standard methods while controlling for false
positive rates (i.e., type | errors), regardless of the existence of population stratification.
Further, we demonstrated the power gain of our methods in the real gene-level association
studies of Age-related Macular Degeneration (AMD) (Fritsche et al., 2016), consisted with 26
unbalanced individual studies and 33,976 unrelated European samples (Supplementary
Table 1). I%r ezmple, the known AMD risk gene CF/ has SKAT p value 1.9 x 1071 by joint

N4
analysis, p value 1.2 x 10~ by the standard meta-SKAT, and p value 3.1 x 10~° by our

meta-SKAT. In addition, we applied our methods on the meta-analysis of three studies of

l

type 2 diabetes (T2D) with Finnish and American European populations.

In summary, we propose novel meta-analysis methods based on our improved meta-

[

score-statistics to achieve equivalent performance as the joint analysis under unbalanced
settings, for‘bcih'single-variant and gene-level association studies. Our approach provides a

useful framework for ensuring well-powered, convenient, cross-study analyses and is now

/

implemented in the freely available RAREMETAL software.

Material and Methods

[

p——

Score Statistics for Individual Studies

(

Consider meta-analysis of K studies with n;, samples and m; genotyped variants for the kth

study. Let yimdenote the n;, x 1 phenotype vector; X, denote the n;, x m; genotype matrix,

t

encoding the minor allele count per individual per variant as (0,1,2); and C; denote the

J

ng X (qx + 1) augmented covariate matrix with the first column set to 1’s and the others

encodiryﬂcm?ariates. For each individual study, we consider the standard linear
regression moﬂ (Equation 1) for quantitative traits

Yii = Cricty + XiiPr + €, €~N(0,0%), i=1,..,ny, Equation 1

5
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and the standard logistic regression model (Equation 2) for dichotomous traits

lolitSPr'b(yk,- =1)) = Cruay + XpiPr Equation 2

where X, flis the ith row of genotype matrix X, B, is the vector of genetic effect-sizes, C; is

&

the ith row of augmented covariate matrix C,, and a; is the vector of covariate effects

including the intercept term. Let u;, denote the vector of score statistics for the kth study and

N

y
V, denote the variance-covariance matrix of u;, (Supplementary Appendix A).

(

- A
Standard Meta-analysis

For notation simplicity, we assume the same set of variants for all K studies. The standard

L

meta-analysis methods based on score statistics typically approximate the joint-score-

]

statistics (obtainable in joint analysis) by

u =YKy, V=3 ,Vk. Equation 3

dl

Under unbalanced studies, these statistics will be systematically different from the joint-
score-statistics, potentially leading to substantial power loss. Instead, we derive our
improved meta-score-statistics (u, V) with summary-level data from the joint-score-statistic

formulas with combined individual-level data.

|

Simplified Case without Covariates

(

We first consider a simplified case without covariates, in which the following analytical
formulas are derived from the joint-score-statistics under both linear and logistic regression

models (Supplementary Appendix B.1), in terms of summary-level data including the within-

J

study score statistics (uy, V), sample size n;,, phenotype mean deviation §;, residual

o
variance estimate a2, and MAF vector f,

%’k + Yko1 2mebi(f — f), Equation 4
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v =% |3l [ - S amrr — )] Equation 5

Here, §;, = k=1nkﬁ) — Y, denotes the difference between the overall phenotype mean

and within-study phenotype mean; ?zﬁz’,§=1[(nk—1)52+nk5,§] denotes the joint

H
-~ K
residual variance; and f = M denotes the overall MAF vector. The key difference from
— Yk=1"k
s N

the standard approach is that we now model the between-study variations through the
differences between the overall phenotype means, phenotype variances, and MAFs and

their respective within-study values, as shown in the second term of Equations 4 and 5.

J

We note that, when §, =0, EZ ~ 02, f, ~ f as under balanced settings, both our

meta-score-statistics (Equations 4 and 5) and the standard ones (Equation 3) are equivalent

[

to the joint-score-statistics, which is why both methods perform as efficiently as the joint

3

—_

analysis for balanced studies. However, when §;, # 0, o7 # 02, fi # f as under unbalanced

settings, fthe standard methods can no longer accurately approximate the joint-score-

Y

statistics, potentially leading to substantial power loss. In contrast, our meta-analysis

methods will still be equivalent to the joint analysis.

f

General Case with Covariates

)

Next, we consider the general case with covariates, in which our meta-score-statistic u is still

derived as Equation 4 from the joint-score-statistic but our meta estimate of the joint

[

variance-covariance matrix V will be different. For notation simplicity, we assume all

|

individual studies have the same set of covariates. We approximate the phenotype mean

L

deviation by &, (%Z’,;l(nkﬁ)) — [z, where [, = niz?jlﬁgl is the average of the fitted
k

\

phenotypes in study k under the null regression models with g = 0 (Equations 1 and 2).

Then under the linear regression model (Equation 1), we estimate V by

This article is protected by copyright. All rights reserved.



2 K Vi K ’ ’ —1
Ve Y =) (KGO TICX)
k =

k=10

H K K -1 K '
Z X;‘Ck> <Z C;{Ck> <Z X;(Ck> , Equation 6
k=1 k=1 k=1

where the quantities of the covariate relationship matrix C;C; and genotype-covariate
relationship matrix X;C, need to be shared across individual studies (see detailed

derivations in Supplementary Appendix B.2).
.

Under the logistic regression model (Equation 2), we estimate V by
-~

3

VTR Vet S8 A X Xy + Z£=1(X;cp7cck)(C;cﬁ;cck)_l(x;cﬁ;ck)’ — (R (X PRCy +

’ T D ’ -1 P ’ ! .
£ X1 Cr)) Ek=1(CiPrCr + Dk CCr)) (TR (X3 PrCh + DX Ch)) Equation 7
where P, fier (1 = 1)y wee s Beny, (1 — ,@n\k)) denotes the diagonal matrix of phenotypic

variances after correcting for within-study covariates; A, = 6, (1 — 2fz; — &) is the average

—

difference between P, and an analogous estimate in joint analysis (see detailed derivations

\

in Supplementary Appendix B.2). To enable the calculation by Equation 7, the quantities of

the genotype relation matrix X}, X,, covariate relation matrices (C},Cy, C;,P,C;), and the

[

genotype-covariate relation matrices (X},Cy, X} P Cy) need to be shared.

Adjusting for Population Stratification

]

With multi-ethnic studies, our meta-analysis methods based on the improved meta-score-

[

statistics (Equations 4-7; equivalent to the joint-score-statistics) will cause inflated false

J

positives as in joint analysis. Thus, we have to adjust our meta-score-statistics to control for

false positives cgused by population stratification. Particularly, we note that the population

)

stratification is reflected by the differences between the within-study and joint MAFs in the

i

score statistics, e.g., (f — f) in Equation 4 and (ff’ — ff}) in Equation 5. Therefore, we
8

This article is protected by copyright. All rights reserved.



propose to normalize our within-study MAFs by regressing out the population effects that
can be explained by known population-specific MAFs. For example, with known MAF vectors

freur, Farth [ arrs fFsas, feas Of genome-wide variants for European, American, African, South

3|

Asian, and East Asian populations in the 1000 Genome Project (Genomes Project et al.,

2012), we first fit the following linear regression model per individual study:

K = z Voopfpop +& pOp € (EUR, AMR, AFR, SAS, EAS).

Gl

- A —_
Then, in Equations 4 and 5, we substitute f, by the residuals & = fr — ¥ Vp0pfpop, @nd set

K
f as the weighted residual averages % For variants absent from the reference panel
k=1"k

or with fitted values falling outside of the 95% predictive intervals, we set the corresponding

]

elements in vectors f, and f as 0 such that the between-study variances related to these

ol

variants will not be modeled by our methods. Equivalently, in Equations 6 and 7, we can

C

normalize the genotype matrix by X = X — Z(Z@fpop)]’ for variants in the reference

|

panel and set the genotype matrix as 0 for variants with unknown population-specific MAFs

\

or with outlier fitted values.

Generally, we expect >99% R? for the model adjusting for population stratification,
i

which requires reference panel that matches the ancestry of the study samples to provide

_y

population-specific MAFs. We also suggest matching reference ancestries to the study

ancestries by using principle components, especially for admixed samples.

[

- -
Practical Approach

J

Although Equations 6 and 7 enable corrections for covariates, they are generally not

el
applicable in practice for the difficulties of sharing the quantities of X} X, (C},Cy, C;,PxCy),

and (X}.C,, X8%BpC,). Thus, for computational simplicity, we suggest using Equation 5 with

phenotypes corrected for covariates within individual studies under the linear regression

9

This article is protected by copyright. All rights reserved.



model (Equation 1), where the dichotomous traits could be treated as quantitative traits by

coding cases as 1’s and controls as 0’'s. The RAREMETAL software also implements this

practical approach. Both approaches (Equations 6 and 7 vs. Equation 5) produced nearly the

same association results in our simulations. For both quantitative and dichotomous studies
ol

in this paper, we first corrected phenotypes within studies, and then used meta-score-

statistics given by Equations 4 and 5 for association studies (adjusting for possible

population stratification).

a A
During the within-study covariate correction regressions, our meta-analysis methods

\ & 4
require including the intercepts in the corrected phenotypes to correctly model the between-
study variations. Otherwise, the phenotype deviation §;’s will all be 0’s, and our meta-score-
statistics (Equation 4) will equal to the standard ones (Equation 3). In addition, we require
the phenotype deviation §;’s contain no other artificial effects (e.g., batch effects, effects due
to different‘ m&t;ics or different underlying distributions across studies for phenotypes),

because the between-study variations due to artificial effects are likely to cause inflated false

positives.

Test Statistics

[

Our meta-analysis methods are based on accurately approximating the joint-score-statistics

(u, V), and properly adjusting for possible population stratification. In this paper, we focus on

score test for single-variant association studies, as well as the Burden test (Morris & Zeggini,

[

_ (ww’

2010) with statistic =
) QBurden

and SKAT (Lee et al., 2013) with statistic Qsxar =

w'Vw

u'W?u for gene-level association studies. Specifically, w' = (wy,...,w;,) is the variant-

L

specific weight vector, and W = diag(wy, ..., wy,) is the m x m diagonal matrix. For each

\

variant, we take the weight as “capped” beta density value w; = CBeta(f;; 0.5,0.5) with the

/

corresponding MAF f;, to avoid assigning extremely large weights for extremely rare variants

10
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(Beta(f;; 0.5,0.5) - o as f; — 0). That is, with sample size n, we have CBeta(f}; 0.5,0.5) =

5 . . .
Beta(g; 0.5,0.5)_ if the minor allele count 2nf; <5, otherwise CBeta(fj; 0.5,0.5) =
Beta(f;; 0 allowing equal variance contributions from all variants.
u2

iIUnder the null hypothesis (Ho: B = 0), both single-variant score statistic Qscore = -

and QBurdei ollow a chi-square distribution with 1 degree of freedom (df = 1). Under the

null hypothesis B(B;) = 0,Var(B;) = wft,j = 1,...,m; = = 0) for SKAT, Qsxr asymptotically

-
follows a mixture of chi-square distributions, Zj.’;l/lj)(]?‘dle, where (dele) are independent
chi-square random variables with df = 1, and 4;'s are nonzero eigenvalues of the variant

relationship matrix @ = WVW.

]

Simulation Studies

]

To evaluate the false positive rate (type | error) and power of our meta-analysis methods, we
- W

conducted simulation studies in various scenarios with balanced and unbalanced studies,

/

quantitative and dichotomous traits, with and without population stratification (see details of

I‘

the simulation setup in Supplementary Appendix C).

Briefly, we first simulated haplotypes of three populations (European (EUR), Asian

(ASA), and African (AFR)) by COSI with the well calibrated coalescent model (Schaffner et

(

al., 2005). Then we sampled genotypes of 1 x 10° individuals per population with 339

]

variants, 96% of which have MAFs <5%. Random risk regions of 100 variants were selected

n n
to simulate both quantitative and dichotomous phenotypes, respectively according to the

standard linear and logistic models. We simulated phenotypes under the null models (8 = 0)

|

for evaluating the empirical type | error, and phenotypes with 50% causal variants in the risk

\

regions for evaluating the power.

/

11
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We considered meta-analysis with 5 individual studies and a total sample size 3,000
(Supplementary Table2), under combined scenarios of dichotomous or quantitative traits,
balanced or unbalanced settings, common or uncommon covariates, single- or multi- ethnic
samples. For the balanced scenarios, each dichotomous study has 300 cases and 300

ol
controls, while each quantitative study has 600 samples. For unbalanced dichotomous
studies, th.ere are (60, 180, 300, 420, 540) cases and (540, 420, 300, 180, 60) controls, such
that the individual studies have the same sample size but various cases-control ratios.
Unbalanced quantitative studies have sample sizes (200, 400, 600, 800, 1000). Two

covariate scenarios were simulated: (i) common covariates for all studies; (ii) different

covariates among studies.

For the case with single-ethnic samples (i.e., without population stratification), we

[

compared our adjusted meta-analysis methods with the standard methods and joint analysis,

]

where the Lesults by joint analysis will serve as golden standards. For the case with multi-

ethnic samples (i.e., with population stratification; with EUR samples in studies 1 and 3, ASA

/

samples in studies 2 and 4, and AFR samples in study 5), we only considered balanced and

I‘

unbalanced dichotomous studies with common covariates (Supplementary Table2). In this

case, we corrected the population stratification using the population MAF vectors
]

(fEUR,fASﬂ),that were calculated from 1 x 10> samples of the respective population.

We compared our methods with the standard methods modeling no between-study

variations fJand joint analysis correcting for population stratification by using the first 4

g

principle components (PCs) as additional covariates (Price et al., 2006).
P

—
AMD and T2D D
e

P
The study of age-related macular degeneration (AMD) by the International AMD

ta

Q

Genomics Consqtium (IAMDGC) (Fritsche et al., 2016) consists of 26 individual studies with

33,976 European, 1,572 Asian, and 413 African unrelated samples. Variants were

12
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genotyped on a customized Exome-Chip and imputed against the 1000 Genome Project
Phase | reference panel. Advanced AMD cases include both cases with choroidal
M

neovascularization and cases with geographic atrophy (Fritsche et al., 2016; Yang, Fritsche,

Zhou, Abecasis, & International Age-Related Macular Degeneration Genomics, 2017).
ol

N E—

Three GWASSs of type 2 diabetes (T2D) were considered in this paper: the Finland-
United States Investigation of NIDDM genetics (FUSION) study (Scott et al., 2007),
METabolic Syndrome In Men (METSIM) study (Laakso et al., 2017), and Michigan
Genomicsﬁitme (MGI) study. We analyzed 2,297 unrelated Finnish samples (1,142 cases
vs. 1,155 controls) in FUSION, 3,340 unrelated Finnish samples (673 cases vs. 2,667
controls) in METSIM, and 16,495 unrelated European American samples (1,942 cases vs.

.
14,553 controls) in MGI.

Sh—

For the association studies of both AMD and T2D, all participants gave informed

P

consent and the University of Michigan IRB approved our analyses.

Results

Empirical Type | Errors in Simulation Studies

We repeated Zﬁx 107 null simulations per scenario to obtain empirical type | errors with
significance levels a =1072,10"%25x107® . In the scenarios without population

|
stratification, we showed that both Burden test and SKAT — by our adjusted meta-analysis

[

method, the standard method, and joint analysis — have type | errors less than the

1

corresponding significance levels (Figure 1A; Supplementary Figures 2-3). In the scenarios
with population stratification, we showed that both Burden test and SKAT by our adjusted
method and the standard method still controlled well for type | errors, with respective
genomic control factors A;- = 0.995,0.9926 for Burden tests and A;. = 0.7832,0.9708 for

SKAT (Figure 1B; Supplementary Figures 4-5(C, D, E, F)). The slightly inflated type | error
13
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for standard SKAT is due to the arbitrary choice of variant-specific weighs that overweight
the rare variants. In contrast, the joint analysis with first 4 joint PCs as additional covariates
caused huge inflation with A;. = 11.9013,52.6977 respectively for Burden test and SKAT
(see Quantile-Quantile (QQ) plots of —log10(p values) in Supplementary Figure 5(A, B)). This
i

demonstrated that the standard methods modeling no between-study variations were free of
population stratification, and that our approach of adjusting for population stratification
successfully corrected for inflated type | errors.

-y

a A
Empirical Power in Simulation Studies

For each scenario, we repeated 10,000 simulations to obtain the empirical power that is

L

given by the proportion of simulations with p values <2.5 x 10~° (genome-wide significance

]

level for gene-level association tests). Here, our goal is to compare the power of our

adjusted meta-analysis method with the standard method and the joint analysis. Here, the

power differences between Burden test and SKAT depend on the simulation settings.

In the balanced dichotomous studies without population stratification, both standard
and our adjusted meta-score-statistic estimates were highly concordant with the golden
standards obtained by joint analysis (R® >99.8%; Figure 2(A, B)). In the unbalanced

—
dichotomours stu‘dies, the standard meta-score-statistic estimates scattered further from the
joint-score-statistics (R? ~78.2%, Figure 2C), while our estimates were still concordant with

the joint-score-statistics (R2 >99.8%; Figure 2D). Consequently, under balanced settings,

the p values of single-variant score tests by both standard methods and our adjusted

1

methods were concordant with the joint analysis results (Figure 2(E, F)). While under

)

unbalanced settings, the p values by standard methods were less significant than joint

\

analysis results

.l

that were concordant with the joint analysis results (Figure 2H).

—~

Figure 2G), hence less significant than the results by our adjusted methods

14
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In the scenarios without population stratification, the gene-level tests (i.e., Burden

test and SKAT) based on our improved meta-score-statistic estimates are equivalent to the

t

ones in joint analysis under general settings, recovering up to 69% power loss caused by the

standard method in unbalanced dichotomous studies with common covariates (Figure 3).

Similar results were obtained for scenarios with different covariates (Supplementary Figures

6-8). Take the dichotomous studies with common covariates for examples (Figure 3), the

S N
power by standard meta-analysis method was 0.701 for Burden and 0.219 for SKAT, which

(

were 27% and 69% less than the golden standards (0.964 for Burden; 0.703 for SKAT) by

joint analysis; while the results by our adjusted meta-analysis method (power 0.964 for

Burden; 0.702 for SKAT) were concordant with the joint analysis results.

In the scenarios with population stratification, the joint analysis (with top 4 PCs as

[

additional covariates) no longer provide golden standards due to highly inflated type | errors
with A 1 b B,52.6977 Burden test and SKAT respectively (Figure 5(A, B)). Hence, we

only compared the empirical powers by our adjusted meta-analysis method with the

/

standard method. Again, both methods had similar power in balanced dichotomous studies,

P

while our adjusted meta-analysis method recovered up to 85% power loss by the standard

method in unbalanced dichotomous studies (0.898 vs. 0.302 for Burden test, Figure 3C;

0.880 vs. 0.126 for SKAT, Figure 3D).

C

For quantitative studies, although we simulated “unbalanced” scenarios with various

|

sample sizes, these are not really unbalanced for having similar phenotype means across
[ | a
individual studies (i.e., the between-study variances were close to 0). As a result, both our
. _ . . .
adjusted method and the standard method produced equivalent results as the joint analyses

under all settings (Supplementary Figures 9-13).

In summary, the simulation studies showed that our adjusted meta-analysis method

will improve power by correctly modeling the association information in the between-study

15
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variances. When the between-study variances are close to 0 as under balanced settings,
both our method and the standard method are equivalent to the joint analysis. When the

between-study variances are also subject to population stratification, our method require

)

known population-specific MAFs to correct for possibly inflated type | errors.

||
Real Study o

*
I>
=
o

A
4

o

We applied our

3

ethod on the real AMD data collected by the International AMD Genomics

Consortiu

3

(IAMDGC) (Fritsche et al., 2016), which has 26 individual studies with 33,976

3

-_—

57

N

European Asian, and 413 African unrelated samples. We treated the Asian and

| |
\

African samples as two extra studies. First, we conducted null simulations for 2.5 x 107 times

L

using the AMD data, by permuting the real AMD phenotypes and randomly selecting

genotype regions of 100 variants for Burden test and SKAT. We found that both our adjusted

|

and the standard meta-analysis methods had type | errors around the significance level,

while the joint analyses with first 4 joint PCs as extra covariates produced clearly inflated

type | errors (Supplementary Figure 14). Specifically, with significance level 2.5 x 107°, the

\

joint analyses (Joint_PC4) had type | errors 8.6 x 10~° for Burden test and 9.2 x 107 for

SKAT.

[

For valid comparisons with joint analyses, we only considered European samples

=
=

N
(on

from the 26 unbalanced studies (Supplementary Table1) for Burden test and SKAT in 3

example AMD risk genes (Fritsche et al., 2016) (CFH, CFI, TIMP3). Previous analyses by

f

variable-threshold tests (Price et al., 2010) (with respective MAF thresholds 0.015%,

1

0.068%, 0.021% for genes CFH, CFI, TIMP3) gave significant p values (< 2.5 x 107°) for
these 3 loci. To be consistent with the previous variable-threshold tests (Price et al., 2010),
we only analyzed protein-altering variants (imputed/genotyped) with MAFs under the
corresponding thresholds (MAFs < 0.015%, 0.068%, 0.021%), and corrected for the same

covariates — known independent signals within the same locus, gender, first two principal
16
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components (calculated using the combined data), and source of DNA (whole-blood or

whole genome-amplified DNA).

T

Table 1. P vg gene-level Burden test and SKAT by the standard meta-analysis method, our adjusted

meta-analy: @ 1, and joint analysis.

Burden Test SKAT
|
Adjusted Joint Standard | Adjusted Joint
2.1x107° 24%x1077 | 6.1x107* | 84x1075 | 3.6 x107°
33x1071% | 89%x10715 | 1.2x107* | 3.1x107° | 1.9x 10710
1.0%x107% | 1.8x107° [ 2.6%x1073 | 74%x 1075 | 2.6 x10™*

Our adjusted meta-analysis method produced genome-wide significant p values for
genes CFH and CF/ (Table 1), which were more significant than the ones by the standard
- -

method. Specifically, gene CFH had genome-wide significant Burden p value 2.4 x 10~7 by

/

joint analysis, versus 2.1 x 10~¢ by our adjusted method and 3.2 x 10~° by the standard

method (no longer genome-wide significant). Although all methods obtained significant

Burden p Values for gene CFI, the p value by our method was still more significant than the
|

one by the standard method (3.3 x 10~1# vs. 9.6 x 10~1°) and closer to the p value by joint

analysis (8. ~15). Similarly, the SKAT p value by standard method for gene CF/ was no

longer genome-wide significant (1.2 x 10™%), while the SKAT p value by our adjusted method
I

(3.1x 1q) was still genome-wide significant and close to the one by joint analysis (1.9 x

10710),

U

Even thoﬁgh all approaches failed to identify the TIMP3 locus with p values 1.8 x
107> by joint Iﬁden test and 2.6 x 10~* by joint SKAT, our method still produced more

significant p values than the standard method (1.0 x 1075 vs. 9.8 x 10~* for Burden test;

17
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7.4 x 107> vs. 2.6 x 1073 for SKAT). Likely due to the random errors between meta-score-

statistic estimates and the joint-score-statistics, the Burden and SKAT p values for gene

t

TIMP3 by our method are slightly smaller than the ones by joint analysis.

)

This real example of AMD study demonstrated that our method produced similar

[ ]
results as the joint analysis (golden standards with single-ethnic samples), recovering the

[

power loss by the standard method.

C

Real Study of T2D

S:

In this real example, we considered single-variant meta-analyses of three T2D GWASSs:

FUSION (1,142 cases vs. 1,155 controls; unrelated Finnish samples) (Scott et al., 2007),

METSIM (673 cases vs. 2,667 controls; unrelated Finnish male samples) (Laakso et al,,

[

2017), and MGI (1,942 cases vs. 14,553 controls; unrelated European American samples).

!

These thrﬁ unbalanced GWASs have various case-control ratios (0.98, 0.24, 0.13) and

multi-ethnic samples (Supplementary Figures 15-16).

We first jointly corrected the T2D phenotypes for age, gender, body mass index

|/

(BMI), and first two joint PCs, within individual studies. The reason of jointly correcting the

T2D phenotypes is to eliminate the possible between-study variance due to the artificial

effects caused by individually corrected phenotypes. Then we applied the joint analysis, the

(

standard meta-analysis method, our joint-equivalent meta-analysis method (without

]

adjustment for population stratification), and our adjusted meta-analysis method with

adjustmenz for pouIation stratification using the population-specific MAFs of EUR, AMR,

AFR, SAS, EAS from the 1000 Genome Project (Genomes Project et al., 2012) (~500

L

samples per population).

\

In this study, we only analyzed 631,870 variants genotyped in the METSIM study.
These analyzed variants could be either genotyped or imputed to 1000 Genome Project

18
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(Genomes Project et al., 2012) or absent in FUSION (627,920 variants) and MGI (631,628
variants) studies (see Manhattan plots of the individual GWASSs in Supplementary Figure
17). As expected, the joint analysis and the joint-equivalent methods resulted in inflation with
Acc = 1.11{1.13, while the standard meta-analysis method had A;. = 1.07 (Supplementary
Figure 18). Specifically, the standard method identified three known T2D risk loci (SLC30A8
on CHR8,.TCF7L2 on CHR10, and CDKAL1 on CHRG6) (Billings & Florez, 2010), while our

method with adjustment for population stratification identified comparable p values for

(

signals in the SLC30A8 and TCF7L2 loci, more significant p value in the CDKAL1 locus, and

(7]

one extra potential loci ROBO2 on CHR3 (see Manhattan plots in Figure 4).

We looked into the within-study MAFs of all “genome-wide significant” variants that

were identified by joint analysis (Supplementary Figures 19-20). We noticed that the known

sighals generally have comparable MAFs across three studies, especially for MAFs between

]

FUSION and METSIM with Finnish samples. The variants with large variation among within-
- -

study MAFs are likely to be “false positives”, according to our improved meta-score-statistic

/

formulas. Although our adjusted method corrected for these likely “false positives” signals, it

P

failed to completely correct for the inflation with A;. = 1.15 (Supplementary Figure 18 (D)).

This is pr&)ably because the 1000 Genome variants fail to provide a good reference MAFs
——

for the Finnish samples in FUSION and METSIM studies. Specifically, the regression R%s

were 97.1%, 96.3%, and 99.5% for regressing known population-specific effects (MAFs) out

A
from the within-study MAFs in the FUSION, METSIM, and MGI studies, respectively.
m—

This real study demonstrated the benefit of improving power by applying our adjusted

meta-analysis method on unbalanced studies. Further, this study showed the challenges of

l

correctly adjusting for population stratification when samples are of multi-ethnic, which

\

requires good reference panels to provide population-specific MAFs.

/

Discussion
19
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In this paper, we propose improved meta-score-statistics in terms of summary-level data that
retain R? >99% with the joint-score-statistics using individual-level data, under general
settings. We derived our adjusted meta-analysis methods based on the improved meta-

score-statistics for both single-variant and gene-level association studies, performing

equivalently with the joint analysis. We further propose a novel approach to adjust for
population stratification by using the known population-specific MAFs. By extensive

simulation and real studies, we demonstrated that our adjusted meta-analysis methods

(

controlled well for type | errors and gained power over the standard meta-analysis methods

for unbalanced studies.

Although we derived the improved meta-score-statistics for both linear and logistic

regression models, with and without covariates, we suggest using the simplified formula

[

(Equation 5) that requires to share score statistics, sample sizes, means and variances of

;

phenotypes‘ corrected for covariates, and MAFs, for practical usage. Alternatively, the more

complicated formula (Equation 6 or Equation 7) requires to share additional genotype,

/

genotype-covariate, and covariate relationship matrices for incorporating covariates, thus

I‘

generally more challenging in practice. Different from the standard meta-analysis methods

that only share score statistics, sharing the extra summary data enables our methods to

model the between-study variations, thus performing as efficiently as the joint analysis.

Of course, our meta-analysis methods are not without limitations. First, our method

]

assumes that the genetic effects are homogeneous across studies and the phenotypes are

| a
of the same distribution. Second, our method requires that there are no confounded artificial

effects in the between-study variances, otherwise the standard methods will be preferred.

l

Third, our method requires the population-specific MAFs from good reference panels to

\

correctly adjust for population stratification, where we suggest locating external samples of

/

the same ancestries as the individual studies by using principle components.

20
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In conclusion, sharing summary data allows us to leverage the power of large sample
sizes without the hassle of combining individual-level data, and then helps identify more
genetic risk loci for complex traits. We illustrated that the standard meta-analysis methods
will lose power under unbalanced studies for not modeling the association information in the
between-study variations. \Whereas our adjusted meta-analysis methods that correctly model
the between-study variations will improve the power under unbalanced settings, providing a
useful framework to ensure well-powered, convenient, cross-study association analyses.
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Figure Legends

Figure 1 pe I errors (with significance level « = 2.5 x 107°) for null simulations of balanced (B)

and unbalau&hotomous studies, with common covariates.

A: Scenarlo without populatlon stratification; B: Scenario with population stratification.

“Adjusted” d new meta-analysis methods; “Standard” denotes the standard meta-analysis methods; and

“Joint” denot€S the joMit analyses using combined individual-level data.
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Figure 2. Score statistics (A, B, C, D) and -log10(p values) of the corresponding single-variant score tests (E, F,

G, H), for dichotomous studies with common covariates, without population stratification, under balanced

and uangs

(A, B): Scoreﬂnder balanced studies;

(C,D) Score statistics under unbalanced studies;

]
(E, F): —loglh of single-variant score tests under balanced studies;

(G, H) —logl(@ of single-variant score tests under unbalanced studies.

“Standard Mws the standard meta-analysis methods; “Adjusted Meta” denotes our new meta-analysis
methods.
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Figure 3. Power comparisons of meta-Burden test and meta-SKAT, for balanced (B) and unbalanced (UB)

dichotomous studies with common covariates.

(A, B): WMion stratification;
(C, D): With @ stratification.

“Adjustd@t’ JEHGEESIBNr new meta-analysis methods; “Standard” denotes the standard meta-analysis methods; and

“Joint” denoht analyses using combined individual-level data.
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Figure 4. Manhattan plots of meta GWASs of type 2 diabetes, by standard method (A) and our adjusted

method (B).

“StandarMes the standard meta-analysis methods; “Adjusted Meta” denotes our new meta-analysis

methods.

A

Standard Meta

~logyP
Y

Adjusted Meta

~logioP
5

This article is protected by copyright. All rights reserved.

25



References i

Billings, L. K., & Florez, J. C. (2010). The genetics of type 2 diabetes: what have we learned

from GWAS? Ann N Y Acad Sci, 1212, 59-77. doi:10.1111/j.1749-6632.2010.05838.x
H I

Cochran, W. G. (1954). The Combination of Estimates from Different Experiments.
Biometrics, 10(1), 101-129. doi:Doi 10.2307/3001666
f N\

Feng, S., Liy, D., Zhan, X., Wing, M. K., & Abecasis, G. R. (2014). RAREMETAL.: fast and
powerful meta-analysis for rare variants. Bioinformatics, 30(19), 2828-2829.
doi:10.1093/bioinformatics/btu367

\V 2
Fritsche, L. G, Igl, W., Bailey, J. N., Grassmann, F., Sengupta, S., Bragg-Gresham, J. L., ..
. Heid, I. M. (2016). A large genome-wide association study of age-related macular
degenerat-ion highlights contributions of rare and common variants. Nat Genet, 48(2),
134-143. doi:10.1038/ng.3448

Fuchsberger, C., Flannick, J., Teslovich, T. M., Mahajan, A., Agarwala, V., Gaulton, K. J., . .
. McCarthy, M. I. (2016). The genetic architecture of type 2 diabetes. Nature,
536(7614), 41-47. doi:10.1038/nature18642

\ \J

Genomes Project, C., Abecasis, G. R., Auton, A., Brooks, L. D., DePristo, M. A., Durbin, R.
M., ... McVean, G. A. (2012). An integrated map of genetic variation from 1,092
human genomes. Nature, 491(7422), 56-65. doi:10.1038/nature11632

Laakso, M., Kuusisto, J., Stancakova, A., Kuulasmaa, T., Pajukanta, P., Lusis, A. J., . ..
Boehnke, M. (2017). The Metabolic Syndrome in Men study: a resource for studies of
metabolic and cardiovascular diseases. J Lipid Res, 58(3), 481-493.
doi:10.1194/jir. 0072629

Lee, S., Te_slovicﬁ, T. M., Boehnke, M., & Lin, X. (2013). General framework for meta-
analysis of rare variants in sequencing association studies. Am J Hum Genet, 93(1),
42-53. doi:10.1016/j.ajhg.2013.05.010

Lek, M., Kiarczew_ski, K. J., Minikel, E. V., Samocha, K. E., Banks, E., Fennell, T., . . . Exome
Aggregation, C. (2016). Analysis of protein-coding genetic variation in 60,706
humans. Nature, 536(7616), 285-291. doi:10.1038/nature19057

J

Lin, D. Y., & Zeng, D. (2010). Meta-analysis of genome-wide association studies: no
efficiency gain in using individual participant data. Genet Epidemiol, 34(1), 60-66.
doi:10.1002/gepi.20435

|

Liu, D. J., Peloso, G. M., Zhan, X., Holmen, O. L., Zawistowski, M., Feng, S., . . . Abecasis,
G. R. (2014). Meta-analysis of gene-level tests for rare variant association. Nat
Genet, 46(2), 200-204. doi:10.1038/ng.2852

26

This article is protected by copyright. All rights reserved.



Morris, A. P., & Zeggini, E. (2010). An evaluation of statistical approaches to rare variant
analysis in genetic association studies. Genet Epidemiol, 34(2), 188-193.
doi:10.1002/gepi.20450

Neale, B. M., Rivas, M. A, Voight, B. F., Altshuler, D., Devlin, B., Orho-Melander, M., . . .
Daly, M. J. (2011). Testing for an unusual distribution of rare variants. PLoS Genet,
7(3), e1001322. doi:10.1371/journal.pgen.1001322

Price, A. L., Kryukov, G. V., de Bakker, P. I, Purcell, S. M., Staples, J., Wei, L. J., &
Suﬁyaev, S. R. (2010). Pooled association tests for rare variants in exon-
resequencing studies. Am J Hum Genet, 86(6), 832-838.
doi:10.1016/).ajhg.2010.04.005

(

Price, A. L; Pgtte_rson, N. J., Plenge, R. M., Weinblatt, M. E., Shadick, N. A., & Reich, D.
(20_0@. Fﬂncipal components analysis corrects for stratification in genome-wide
association studies. Nat Genet, 38(8), 904-909. doi:10.1038/ng1847

l

Prokopenko, I., Langenberg, C., Florez, J. C., Saxena, R., Soranzo, N., Thorleifsson, G, . ..
Abecasis, G. R. (2009). Variants in MTNR1B influence fasting glucose levels. Nat
Genet, 41(1), 77-81. doi:10.1038/ng.290

Radhakrishna Raq, C. (1948). Large sample tests of statistical hypotheses concerning
se\ieral perameters with applications to problems of estimation. Mathematical
Progeedings of the Cambridge Philosophical Society, 44(01), 50-57.

Schaf‘fr&S. F., Foo, C., Gabriel, S., Reich, D., Daly, M. J., & Altshuler, D. (2005).
Calibratiﬁ a coalescent simulation of human genome sequence variation. Genome
Res, 15(11), 1576-1583. doi:10.1101/gr.3709305
[ =

Scott, L. J., Mohlke, K. L., Bonnycastle, L. L., Willer, C. J., Li, Y., Duren, W. L., . . . Boehnke,
M._(2007). A genome-wide association study of type 2 diabetes in Finns detects

multiple susceptibility variants. Science, 316(5829), 1341-1345.
doi:10.1126/science. 1142382

)

Stahl, E. A., Raychaudhuri, S., Remmers, E. F., Xie, G., Eyre, S., Thomson, B. P., . . .
Plenge, R. M. (2010). Genome-wide association study meta-analysis identifies seven
new rheumatoid arthritis risk loci. Nat Genet, 42(6), 508-514. doi:10.1038/ng.582

Stouffer, S. A. S., Edward A; DeVinney, Leland C; Star, Shirley A; Williams Jr, Robin M.
(1949). The American soldier: adjustment during army life. (Vol. 1). Oxford, England:
Princeton University Press.

Sudlow, C., Gallacher, J., Allen, N., Beral, V., Burton, P., Danesh, J., . . . Collins, R. (2015).
UK biobank: an open access resource for identifying the causes of a wide range of
[complex diseases of middle and old age. PLoS Med, 12(3), e1001779.
doi:10.1£1ljournal.pmed.1001779

27

This article is protected by copyright. All rights reserved.



Tang, Z. Z., & Lin, D. Y. (2013). MASS: meta-analysis of score statistics for sequencing
studies. Bioinformatics, 29(14), 1803-1805. doi:10.1093/bioinformatics/btt280

Willer, C. J., Li, Y., & Abecasis, G. R. (2010). METAL.: fast and efficient meta-analysis of
genomewide association scans. Bioinformatics, 26(17), 2190-2191.
doi:10.1093/bioinformatics/btq340

Willer, C. J., Sanna, S., Jackson, A. U., Scuteri, A., Bonnycastle, L. L., Clarke, R, . ..
'Z\b_ecasis, G. R. (2008). Newly identified loci that influence lipid concentrations and
risk of coronary artery disease. Nat Genet, 40(2), 161-169. doi:10.1038/ng.76

Willer, C. J Spellotes E. K, Loos, R. J., Li, S., Lindgren, C. M., Heid, I. M., . . . Genetic
Investlgatlon of, A. T. C. (2009). Six new loci associated with body mass index

hlgﬁhg_ht eneuronal influence on body weight regulation. Nat Genet, 41(1), 25-34.
doi:10.1038/ng.287
A\ A& 4

Wu, M. C., Lee, § Cai, T., Li, Y., Boehnke, M., & Lin, X. (2011). Rare-variant association
testing for sequencing data with the sequence kernel association test. Am J Hum
Genet, 89(1), 82-93. doi:10.1016/j.ajhg.2011.05.029

—

Yang, J., Fritsche, L. G., Zhou, X., Abecasis, G., & International Age-Related Macular
Deg‘eneration Genomics, C. (2017). A Scalable Bayesian Method for Integrating
Functlonal Information in Genome-wide Association Studies. Am J Hum Genet.
doi: 10 1016/] ajhg.2017.08.002

Zeggini, E., Scott, L. J., Saxena, R., Voight, B. F., Marchini, J. L., Hu, T., . . . Altshuler, D.
(2008). I\Eta-analysis of genome-wide association data and large-scale replication

identifies additional susceptibility loci for type 2 diabetes. Nat Genet, 40(5), 638-645.
|doi:10.1038/ng.120

Author

28

This article is protected by copyright. All rights reserved.



