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Abstract

Using multiple, independent approaches to molecular species delimitation is advo-

cated to accommodate limitations and assumptions of a single approach. Incongru-

ence in delimitation schemes is a potential by-product of employing multiple

methods on the same data, and little attention has been paid to its reconciliation.

Instead, a particular scheme is prioritized, and/or molecular delimitations are cou-

pled with additional, independent lines of evidence that mitigate incongruence. We

advocate that incongruence within a line of evidence should be accounted for

before comparing across lines of evidence that can themselves be incongruent.

Additionally, it is not uncommon for empiricists working in nonmodel systems to be

data-limited, generating some concern for the adequacy of available data to address

the question of interest. With conservation and management decisions often hinging

on the status of species, it seems prudent to understand the capabilities of

approaches we use given the data we have. Here, we apply two molecular species

delimitation approaches, spedeSTEM and BPP, to the Castilleja ambigua (Oroban-

chaceae) species complex, a relatively young plant lineage in western North Amer-

ica. Upon finding incongruence in our delimitation, we employed a post hoc

simulation study to examine the power of these approaches to delimit species.

Given the data we collected, we find that spedeSTEM lacks the power to delimit

while BPP is capable, thus allowing us to address incongruence before proceeding

in delimitation. We suggest post hoc simulation studies like this compliment empiri-

cal delimitation and serve as a means of exploring conflict within a line of evidence

and dealing with it appropriately.
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1 | INTRODUCTION

Species are one of the basic units of scientific inquiry, and the way

we define species can have far-reaching impact—for example our

understanding of biodiversity (Adams, Raadik, Burridge, & Georges,

2014; Agapow et al., 2004; Pimm et al., 2014), our approaches to

conservation (Costello, May, & Stork, 2013; Hedrick, 2001; Myers,
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Mittermeier, Mittermeier, da Fonseca, & Kent, 2000) and our under-

standing of evolutionary processes (Morales, Jackson, Dewey,

O’Meara, & Carstens, 2017; Ruane, Bryson, Pyron, & Burbrink,

2014). Because of this, species delimitation is central to the biodiver-

sity sciences (e.g., Camargo & Sites, 2013; Carstens, Pelletier, Reid,

& Satler, 2013; Flot, 2015; Leach�e & Fujita, 2010; Rannala, 2015;

Sites & Marshall, 2003; Wiens, 2007). The advancement of molecu-

lar-based delimitation approaches through the incorporation of coa-

lescent theory (e.g., Knowles & Carstens, 2007; O’Meara, 2010;

Pons et al., 2006; Yang & Rannala, 2010) has represented a huge

step forward in our ability to robustly delimit species, especially at

recent timescales. The past 10 years have seen an explosion in

molecular species delimitation approaches (e.g., Camargo, Morando,

Avila, & Sites, 2012; Ence & Carstens, 2011; Grummer, Bryson, &

Reeder, 2014; Knowles & Carstens, 2007; O’Meara, 2010; Pons

et al., 2006; Sol�ıs-Lemus, Knowles, & An�e, 2015; Yang & Rannala,

2010), empirical examples (e.g., Goldberg et al., 2011; Reeves &

Richards, 2010; Satler, Carstens, & Hedin, 2013; Singh et al., 2015)

and critical reviews (e.g., Camargo et al., 2012; Carstens et al., 2013;

Leach�e & Fujita, 2010). Most authors agree that the use of multiple

lines of evidence (Schlick-Steiner et al., 2010; Yeates et al., 2010),

multiple approaches in conjunction (Aguilar et al., 2013; And�ujar,

Arribas, Ruiz, Serrano, & G�omez-Zurita, 2014; Fujita, Leach�e, Bur-

brink, McGuire, & Moritz, 2012), and when possible, integrated anal-

yses (Edwards & Knowles, 2014; Guillot, Renaud, Ledevin, Michaux,

& Claude, 2012; Padial, Miralles, la Riva, & Vences, 2010; Zapata &

Jim�enez, 2012), are necessary to be objective in our delimitations.

However, despite the amount of work in this area, few studies

have specifically addressed how to handle conflict. Conflict occurs

when independent approaches result in incongruent delimitations—

that is, the delimitation scheme of one approach differs from that of

another. Possible explanations of incongruent delimitations might

include different signals across different lines of evidence (e.g., mor-

phological delimitation differs from molecular delimitation) or viola-

tion of assumptions and/or different degrees of statistical power of

an analysis. Incongruence in delimitation across lines of evidence can

be mediated by evaluating delimitation with each line of evidence

independently and then determining which data source to rely on

given biological and/or evolutionary explanations for disagreement

across data sets (e.g., Schlick-Steiner et al., 2010; Yeates et al.,

2010). The integration of multiple lines of evidence into unified spe-

cies delimitation analyses—that is, where all data are used simultane-

ously—may help alleviate this subjectivity (e.g., Edwards & Knowles,

2014; Sol�ıs-Lemus et al., 2015). However, results of multiple analy-

ses on the same data set (e.g., applying several molecular species

delimitation methods on the same molecular data set) can also differ,

highlighting when the limitations of a particular approach may impact

delimitation (e.g., Satler et al., 2013).

For example, consider spedeSTEM (Ence & Carstens, 2011) and

BPP (Yang & Rannala, 2010), two commonly applied delimitation meth-

ods utilizing the multispecies coalescent that can disagree in practice;

the likelihood-based approach spedeSTEM relies on highly informative

gene trees to build a species tree, which is then used to test and rank

all possible permutations of lineage composition, and the Bayesian

approach BPP estimates the posterior probability of bifurcations on a

guide tree that is collapsed to examine all possible combinations of

putative lineages. The largely conservative spedeSTEM has been

shown to underdelimit species (Ence & Carstens, 2011), while BPP

may overdelimit (Leach�e & Fujita, 2010), especially in the case of inac-

curate guide trees (but see Zhang, Rannala, & Yang, 2014) and/or mis-

specified priors (Giarla, Voss, & Jansa, 2014). Therefore, if conflict

occurs between these two approaches, it could mean that uninforma-

tive gene trees may be limiting spedeSTEM, and/or misinformed ana-

lytical parameters may be limiting BPP (e.g., Camargo et al., 2012;

Carstens & Satler 2013; Giarla et al., 2014; Pelletier, Crisafulli, Wagner,

Zellmer, & Carstens, 2015). Improvements to BPP have addressed this

possibility by incorporating the estimation of the species tree topology

in conjunction with species delimitation (Yang & Rannala, 2014).

Recent theoretical work has highlighted the sensitivity of the multi-

species coalescent and its use by BPP, highlighting the potential for

detecting population structure, rather than what many delimitation

analyses are aiming for, that is species boundaries (Sukumaran &

Knowles, 2017). Other methods employing the coalescent potentially

risk this as well. It is apparent that now, more than ever, we should be

addressing the capability of the methods we employ to perform the

tasks that we expect they do.

If we find incongruent delimitation schemes from analyses that

use the same input data, it may suggest differing degrees of statisti-

cal power in the approaches we use. Additionally, because the

parameter space associated with any question of species delimita-

tion is complex and intractable, simplifying assumptions must be

made to minimize the number of parameters considered; each ana-

lytical approach will simplify in different ways, and thus, each

approach will have different implicit assumptions (Carstens et al.,

2013). Statistical power is a topic explored in methodological

papers, and most often includes simulations and an empirical exam-

ple to understand the limitations of the method. How the approach

behaves in other systems is left to the exploration of the user.

Incongruence across delimitations using the same input data is not

uncommon and has been shown to be particularly problematic in

studies with small sample sizes (Carstens et al., 2013). When work-

ing with small or limited data sets, a knee-jerk reaction might be to

increase sampling (loci or individuals). Several studies have docu-

mented the impact of small sample sizes on delimitation, and general

“good practices” of species delimitation suggest at least 10 individu-

als per putative lineage and as many loci as possible (Carstens et al.,

2013). Increasing the number of loci in a data set has become easier

to do (e.g., Lemmon & Lemmon, 2013; McCormack, Hird, Zellmer,

Carstens, & Brumfield, 2013), and there is a general consensus in

the phylogenetics community that more loci typically result in

increased resolution (Blaimer, Brady, & Schultz, 2015; Ruane, Rax-

worthy, Lemmon, Lemmon, & Burbrink, 2015). However, genome-

scale data are still time consuming and expensive to generate, par-

ticularly for nonmodel organisms, and there can be computational

disadvantages to using hundreds of loci (Ruane et al., 2015). Fur-

thermore, for rare taxa—for example, those known from only a few,
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often small, populations, and/or those that are spatially restricted—

the incorporation of 10 individuals per putative lineage may not be

possible (Lim, Balke, & Meier, 2012). For these reasons, empirical

studies, especially those dealing with rare or spatially restricted taxa,

often begin with existing data sets (often Sanger-sequenced data or

data obtained from GenBank) that, in terms of individuals and loci

sampled, are often smaller in size.

When a researcher recovers conflicting delimitation schemes across

approaches using a data set that is limited in size, an alternative analyti-

cal tactic is an assessment of the data already at hand (i.e., less than ideal

data sets). In other words, an assessment of the capability of each

methodological approach to detect the signal of independent lineages in

the data collected. This can be directly tested in empirical studies using

post hoc simulations. While this has been implied as an appropriate and

important step in empirical delimitation (Carstens et al., 2013), and some

studies have simulated data in order to compare methodological

approaches (e.g., Barley, Brown, & Thomson, 2018; Camargo et al.,

2012) or to specifically address sample size (e.g., Giarla et al., 2014;

Hime et al., 2016), to our knowledge, an assessment of inferential error

has not been specifically made in any empirical study.

In this study, we apply species delimitation approaches to a spe-

cies complex in the plant genus Castilleja, a widespread and iconic

wildflower that is most diverse in western North America. A recent,

rapid radiation (Tank & Olmstead, 2008), Castilleja, is an important

target for species delimitation, both theoretically and practically.

Theoretically, the young age of this lineage affords us the opportu-

nity to test the limits and capabilities of delimitation approaches in a

group where molecular, morphological, ecological and geographic

boundaries between species are often “fuzzy.” Furthermore, Castil-

leja is known to have a rich history of hybridization and genome

duplication events that have complicated the taxonomy and system-

atics of the genus (Chuang & Heckard, 1991; Heckard & Chuang,

1977; Tank & Olmstead, 2008). Practically speaking, recent

advances in sequence generation (e.g., Uribe-Convers, Settles, &

Tank, 2016) and analytical approaches (e.g., Morales et al., 2017),

combined with focused delimitation efforts, provide an opportunity

to refine what we know about the evolutionary history and species

composition of Castilleja. However, as is the case with many empiri-

cists working in nonmodel systems, we are working towards becom-

ing “data-rich” in Castilleja, but to some degree, we are still currently

data-limited (i.e., we do not have tens to hundreds of loci). This is

important from a conservation standpoint. Many species of Castilleja

(including two taxa studied here) are only known from narrow

ranges that are vulnerable to extirpation. Knowledge of their evolu-

tionary relationships, and, if warranted, status as a species, will

impact conservation and management efforts.

Here, we propose a strategy to species delimitation when data

are limited. By simulating data compared to the empirical data and

under a known species tree topology, we can directly test the capa-

bility of molecular species delimitation approaches to delimit the

known number of distinct evolutionary lineages. Given this informa-

tion, we can address conflicting delimitations from an informed posi-

tion using the data at hand. We think it is important to consider

what can (and cannot) be done with small, nongenomic data sets.

We suggest an approach that allows us to address the assumption

that a given species delimitation method is capable of delimiting

species with the data that we currently have available to us.

2 | METHODS

2.1 | Study system

We focus our attention on two annual, diploid lineages of Castilleja:

the polymorphic Castilleja ambigua Hook. & Arn. and a close relative,

Castilleja victoriae Fairbarns and J.M. Egger (Figure 1). Generally

occurring in maritime locations, members of C. ambigua typically

inhabit coastal bluffs, salt marshes and grasslands of the western

coast of North America and are united by vegetative morphology and

reproductive similarities (Egger, Ruygt, & Tank, 2012; Wetherwax,

Chuang, & Heckard, 2017). There is, however, variability within the

species that has led to the description of multiple intraspecific vari-

eties that are primarily distinguished from one another by ecological

preferences and geographic ranges, but also differ in some morpho-

logical characters (Egger et al., 2012; Fairbarns & Egger, 2007).

The typic and most widespread of these varieties, C. ambigua var.

ambigua, has white and yellow flowers and occurs on coastal bluffs and

grasslands along the Pacific coast from southern California north, into

British Columbia (Figure 1). Castilleja ambigua var. humboldtiensis (D.D.

Keck) J.M. Egger is a fleshy, less-branched variety and has primarily pink

to rose-purple flowers and a much narrower distribution. It occurs in salt

marshes along the northern coast of California in Mendocino and Hum-

boldt counties. Another narrow-ranged variety, C. ambigua var. insalu-

tata (Jeps.) J.M. Egger, is non-fleshy, and its stems are highly branched.

It, too, has pink-purple flower coloration and occurs in grassy coastal

bluffs along the central California coast, between San Mateo and San

Luis Obispo counties. More recently, Egger et al. (2012) described the

variety C. ambigua var. meadii J.M. Egger & Ruygt. Vegetative morphol-

ogy, restricted range and ecological preferences readily distinguish

C. ambigua var.meadii from the other varieties; varietymeadii is typically

erect, with unbranched stems, and leaves and bracts with narrow, linear

lobes. In addition, it is restricted to the Atlas Peak Plateau district of

Napa County, California, where it occurs in seasonally wet places associ-

ated with freshwater and is known from only four extant populations (a

fifth being recently documented as extirpated (Egger et al., 2012)).

Another member of this complex described in 2007 (Fairbarns &

Egger, 2007), Castilleja victoriae, has been allied to C. ambigua. Both spe-

cies share a coastal range, but C. victoriae is associated with edge habitat

of freshwater seeps and vernal pools and is restricted to southwestern

British Columbia, Canada, and a single island in the San Juan Archipelago

of extreme northwestern Washington State, USA. This species is for-

mally known from only three extant populations (a fourth being recently

documented as extirpated (Fairbarns & Egger, 2007)). Morphologically,

C. victoriae tends towards a compact, single-stemmed habit and lacks

the distinctive contrasting floral coloration of C. ambigua. A difference in

stigma position at peak flowering time between C. ambigua (exserted)

and C. victoriae (inserted) is also diagnostic.
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Because of the morphological and ecological variation outlined

above, in addition to the conservation and management implications

of species status of the two range-restricted taxa, we focus on test-

ing the distinctiveness of the following three taxa: C. ambigua,

C. ambigua var. meadii, and C. victoriae. For the purposes of this

work, we treat C. ambigua varieties ambigua, insalutata and humbold-

tiensis as part of C. ambigua.

2.2 | Molecular methods

2.2.1 | Taxon sampling and DNA extraction

Thirteen accessions of C. ambigua (including two accessions of

var. insalutata and one of var. humboldtiensis), three accessions

of C. ambigua var. meadii and three accessions of C. victoriae

were sampled throughout their ranges, and the closely related

Castilleja lacera (Tank, Egger, & Olmstead, 2009; Tank &

Olmstead, 2008) was chosen to serve as out-group for

phylogenetic analyses (Figure 1; Table S1). Total genomic DNA

was extracted from either silica-gel dried tissue or tissue

sampled from herbarium specimens using a modified CTAB

method (Doyle and Doyle 1987).

2.2.2 | Chloroplast data set

We used a set of Castilleja-specific chloroplast primers designed to

amplify the most variable regions of the chloroplast genome (Latvis

et al., 2017; Table S2). Following Uribe-Convers et al. (2016),

microfluidic PCR was performed on 45 primer pairs on the Fluidigm

Access Array System (Fluidigm Co., San Francisco, California, USA).

The resulting amplicons were sequenced on an Illumina MiSeq plat-

form using the REAGENT KIT v.3 (300-bp paired-end reads; Illumina Inc.,

San Diego, California, USA). Microfluidic PCR, downstream quality

control and assurance, and Illumina sequencing were performed in

the University of Idaho Institute for Bioinformatics and Evolutionary

Studies (IBEST) Genomics Resources Core Facility.

0 km 100 km 200 km

(a)

(b)

(c)

(d)

(e)

Castilleja ambigua 
var. ambigua

Castilleja ambigua 
var. humboldtiensis

Castilleja ambigua 
var. insalutata

Castilleja ambigua 
var. meadii

Castilleja victoriae

F IGURE 1 Distributions and location of sampled individuals for focal taxa considered here; (a) the polymorphic Castilleja ambigua (purple)
(which we treat as including varieties C. ambigua var. ambigua, (b) C. ambigua var. humboldtiensis and (c) C. ambigua var. insalutata), (d; green)
Castilleja victoriae and (e; orange) C. ambigua var. meadii. Castilleja lacera, a closely allied taxon, served as outgroup (not pictured here; pink,
empty circle). Filled circles are known localities of each taxon; empty circles represent sampled localities. Photographs by J. Mark Egger [Colour
figure can be viewed at wileyonlinelibrary.com]
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2.2.3 | Nuclear data set

The nuclear ribosomal sequences from the internal and external

transcribed spacers (ITS and ETS, respectively) used here were col-

lected in two ways—first, following traditional Sanger sequencing

approaches, and second, using a targeted amplicon sequencing

(TAS) strategy modified from Bybee et al. (2011). Both approaches

used ITS2, ITS3, ITS4 and ITS5 primers from Baldwin (1992) to

amplify the entire ITS region, as well as the ETS-B (Beardsley &

Olmstead, 2002) and 18S-IGS primers (Baldwin & Markos, 1998)

to amplify a portion of the 30 end of the ETS region. For Sanger-

sequenced products (Table S1), PCR was performed following Tank

and Olmstead (2008), and prior to sequencing, amplified PCR prod-

ucts were cleaned and purified by precipitation from 20% poly-

ethylene glycol solution and washed in 70% ethanol. Both strands

of the cleaned PCR products were sequenced using the BIGDYE TER-

MINATOR v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster

City, California, USA) with the same primers used during amplifica-

tion on an ABI 3130xl Genetic Analyzer (Applied Biosystems). For

TAS, the ITS and ETS regions were amplified using a two-round

PCR strategy (Table S1). Following Uribe-Convers et al. (2016),

each target-specific primer sequence contained a conserved

sequence tag that was added to the 50 end at the time of oligonu-

cleotide synthesis (CS1 for forward primers and CS2 for reverse

primers), to provide an annealing site for the second pair of pri-

mers. After an initial round of PCR using the CS-tagged, target-

specific primers (PCR1), a second round of PCR was used to add

sample-specific barcodes and high-throughput sequencing adapters

to both the 50 and 30 ends of each PCR amplicon (PCR2). From 50

to 30, the PCR2 primers included either Illumina P5 (CS1-tagged

forward primers) or P7 (CS2-tagged reverse primers) sequencing

adapters, 8 bp sample-specific barcodes and the reverse comple-

ment of the conserved sequence tags. Sequences for the CS1 and

CS2 conserved sequence tags, barcodes and sequencing adapters

were taken from Uribe-Convers et al. (2016). Following PCR2, the

resulting amplicons were pooled together and sequenced on an

Illumina MiSeq platform using 300-bp paired-end reads, as with

chloroplast sequencing. PCR conditions were as follows: PCR1—

25 ll reactions included 2.5 ll of 10X PCR buffer, 3 ll of 25 mM

MgCl2, 0.30 ll of 20 mg/ml BSA, 1 ll of 10 mM dNTP mix,

0.125 ll 10 lM CS1-tagged target-specific forward primer, 0.125 ll

10 lM CS2-tagged target-specific reverse primer, 0.125 ll of

5000 U/ml Taq DNA polymerase, 1 ll template DNA, and PCR-

grade H2O to volume; PCR1 cycling conditions—95°C for 2 min

followed by 20 cycles of 95°C for 2 min, 50°C for 1 min, 68°C

for 1 min, followed by a final extension of 68°C for 10 min;

PCR2—20 ll reactions included 2 ll of 10X PCR buffer, 3.6 ll of

25 mm MgCl2, 0.60 ll of 20 mg/ml BSA, 0.40 ll of 10 mM dNTP

mix, 0.75 ll of 2 lM barcoded primer mix, 0.125 ll of 5000 U/ml

Taq DNA polymerase, 1 ll of PCR1 product as template and

PCR-grade H2O to volume; PCR2 cycling conditions—95°C for

1 min followed by 15 cycles of 95°C for 30 s, 60°C for 30 s,

68°C for 1 min, followed by a final extension of 68°C for 5 min.

2.2.4 | Data set preparation

For the chloroplast and TAS-generated nuclear ribosomal data sets,

pooled reads from Illumina MiSeq runs were demultiplexed using the

dbcAmplicons pipeline, and consensus sequences were generated

using the R script reduce_amplicons.R (https://github.com/msettles/

dbcAmplicons) following the workflow detailed in Uribe-Convers

et al. (2016). Briefly, for each sample, read-pairs were identified,

sample-specific dual barcodes and target-specific primers were iden-

tified and removed, and each read was annotated to include the spe-

cies name and read number for each gene region. To eliminate

fungal contamination that may have been amplified for ITS, each

read was screened against a reference file of annotated sequences

retrieved from GenBank (using the “-screen” option in dbcAmpli-

cons). Reads that mapped with default sensitivity settings were kept.

Each read was reduced to the most frequent length variant, paired

reads that overlapped by at least 10 bp (default) were merged into a

single continuous sequence, and consensus sequences without ambi-

guities were produced (“-p consensus” in the R script reduce_ampli-

cons.R from dbcAmplicons). Paired reads that did not overlap were

concatenated together using PHYUTILITY v.2.2.6 (Smith & Dunn, 2008),

and any merged segments were added to the concatenated reads

(Table S2). The resulting chromatograms from Sanger sequencing

were edited, and contigs were assembled using SEQUENCHER v.4.7

(Gene Codes Corp., Ann Arbor, Michigan, USA).

2.3 | Phylogenetic analyses

2.3.1 | Alignment and model selection

Each chloroplast (cp) and nuclear ribosomal (nr) DNA region was

aligned separately using MUSCLE v.3.8.31 (Edgar, 2004). Sequences

from individual chloroplast regions were concatenated into a single

data set with PHYUTILITY v.2.2.6 (Smith & Dunn, 2008) and treated as

a single locus. Likewise, the ITS and ETS regions are tightly linked in

the nrDNA repeat and were also treated as a single locus. The best-

fit partitioning schemes and models of molecular evolution for

nucleotide alignments were selected using PartitionFinder (Lanfear,

Calcott, Ho, & Guindon, 2012), where predefined data blocks corre-

sponded to each region of the chloroplast data set (i.e., single-end

reads or merged reads; Table S2), and ITS and ETS, in the case of

the nuclear data set. The Bayesian information criterion, as imple-

mented in PartitionFinder, was used to identify the highest ranking

models of molecular evolution. All downstream phylogenetic analy-

ses used these partitioning schemes and models.

2.3.2 | Gene trees

Maximum-likelihood (ML) gene trees were estimated with cpDNA

and nrDNA as implemented in the program GARLI v.2.0 (Zwickl,

2006). Twenty-five search replicates were performed, and subse-

quent log files were examined to ensure that each replicate search

resulted in similar trees and log-likelihood scores, thus indicating that
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the analyses consistently found the same topology. A bootstrap run

of 1,000 replicates was conducted to assess nodal support. The

SumTrees function of the DENDROPY package v.4.0 (Sukumaran &

Holder, 2010) was used to summarize bootstrap results.

Bayesian phylogenetic analyses were conducted on cpDNA and

nrDNA data sets using MRBAYES v.3.2.1 (Ronquist et al., 2012). Each

analysis consisted of four Markov chains (using default heating

schemes), sampled every 10,000 generations for a total of 5,000,000

generations. To avoid false stationarity at local optima, we con-

ducted four independent runs of each analysis. Stationarity of the

chains and convergence of parameter estimates were determined by

plotting the likelihood score and all other parameter values against

the generation time using the computer program TRACER v.1.5 (Drum-

mond, Suchard, Xie, & Rambaut, 2012). Stationarity was assumed

when all parameter estimates and the likelihood had stabilized. Addi-

tionally, the likelihoods of the independent runs were considered

indistinguishable when the average standard deviation of split fre-

quencies was <0.01. Burn-in positions were visually assessed, and a

conservative initial 25% of trees was discarded, and the remaining

trees and their associated values were saved. The sump and sumt

commands in MrBayes were used to summarize the estimated poste-

rior distributions of both the parameter values and the trees across

runs. A majority rule consensus tree showing all compatible parti-

tions from the resulting posterior distribution of topologies was used

to recover the posterior probabilities of nodes.

2.3.3 | Species tree

We performed a *BEAST analysis with BEAST v.2.0 (Bouckaert et al.,

2014) via the CIPRES Science Gateway (Miller, Pfeiffer, & Schwartz,

2010) using the nrDNA and the cpDNA data set and previously

identified partitioning schemes and nucleotide substitution models.

Individuals were mapped to species according to taxonomic identifi-

cation. We employed a strict molecular clock to estimate relative

times of diversification events and a constant population size prior.

Five independent analyses were conducted for 500 million genera-

tions each, sampling the posterior every 10,000 generations. In addi-

tion, a run without data was performed to examine the influence of

the priors on posterior parameter estimates. Convergence and sta-

tionarity of the chains were assessed the same way as with the

mrBayes analyses. Burn-in was estimated from each trace file sepa-

rately, the trees discarded, and then all analyses were combined

using LOGCOMBINER v.2.2.0, and a maximum clade credibility tree was

summarized with TREEANNOTATOR v.2.2.0 (Drummond et al., 2012).

2.4 | Molecular species delimitation

Here, we aim to test the delimitation of our focal taxa (C. ambigua,

C. ambigua var. meadii and C. victoriae) as distinct evolutionary lin-

eages. We apply two independent coalescent-based species delimita-

tion methods—the ML approach spedeSTEM (Ence & Carstens,

2011) and the Bayesian approach BPP v.3.1 (Yang & Rannala, 2014).

We use these methods in a validation context (as opposed to

discovery (sensu Ence & Carstens, 2011), as the assignment of individ-

uals to a taxonomic group is made prior to the delimitation analysis.

When referring to topological relationships in the following sections,

we use the following acronyms for simplification: C. ambigua (AMB),

C. ambigua var. meadii (MEA), C. victoriae (VIC) and C. lacera (LAC).

2.4.1 | Estimating theta and tau

Both molecular species delimitation approaches used here require an

estimate of population size parameters, encompassed in the variable

theta (h); BPP also requires an estimate of divergence time, tau (s).

We used the program MIGRATE-N v.3.6 (Beerli & Felsenstein, 2001) to

estimate a value of h appropriate for our data set. Sequences were

organized into populations corresponding to their taxonomic identifi-

cation; each taxon was treated as one population. Three independent

analyses were conducted to ensure convergence on the same param-

eter estimates, each consisting of one long chain and 10 short chains

(four of which were statically heated). We used analysis A00 (part of

the BPP program, this analysis estimates both h and s parameters) of

the program BPP to estimate s. We modelled this parameter on the

species tree topology from our *BEAST analysis and loosely informed

the prior with our MIGRATE-N results. Multiple independent analyses

were conducted to confirm results were stable across runs. This anal-

ysis also estimates h, affording us the opportunity to compare our

MIGRATE-N and BPP estimates of this parameter. Further details of

both approaches can be found in the Data S3.

2.4.2 | spedeSTEM

The ML delimitation approach spedeSTEM (Ence & Carstens, 2011)

calculates the ML species tree for all possible models of lineage

composition, given a set of gene trees and an estimate of h. In our

case, this corresponds to five models that reflect all possible combi-

nations of our focal, a priori defined taxa: one model with three dis-

tinct lineages (AMB, VIC, MEA), three models with two distinct

lineages (where the “_” between acronyms indicates a combined lin-

eage) [AMB_VIC, MEA], [AMB_MEA, VIC] and [MEA_VIC, AMB], and

a final model of one distinct lineage [AMB_MEA_VIC]. Postlikelihood

calculations, the competing lineage-composition models are ranked

and scored using information theory to identify the best model (fur-

ther detail below). Because our sampling efforts were disproportion-

ately weighted towards C. ambigua, we used the replicated

subsampling approach in STEM (Hird, Kubatko, & Carstens, 2010) to

generate 100 sets of gene trees (a set composed of one chloroplast

and one nuclear gene tree) with three alleles subsampled from our

data set per focal lineage (except C. lacera, which is represented in

our data set with a single allele only and is therefore present once in

each gene tree). Our subsampling was constrained to three per focal

lineage, given that we had three alleles only from C. victoriae and

C. ambigua var. meadii from which to subsample. Hird et al. (2010)

demonstrated that as few as three to five alleles could produce

accurate estimates of the species tree, provided enough loci. These

subsampled gene trees were then used as input in 100 separate
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spedeSTEM analyses. At the end of the analysis, we are left with

100 likelihoods for each model of lineage composition. Following

Ence and Carstens (2011), we then calculated the average likelihood

for each model and used the Akaike information criterion to calcu-

late model differences (Di) and weights (wi). This series of calcula-

tions describes the amount of information lost between a given

model i and the next best model and describes the probability that

this model i is the best model (Anderson, 2008).

2.4.3 | BPP

The Bayesian approach BPP v.3.1 (Yang & Rannala, 2014), when pro-

vided with sequence data and parameter estimates (that include h, s),

examines support for various delimitation schemes by collapsing inter-

nal nodes of a species tree and calculating probabilities of those

nodes. Previous versions of BPP (Rannala & Yang, 2013) required the

user to provide the species tree (called the guide tree). Simulations

and empirical studies have suggested that incorrect guide trees could

lead to strongly supported, oversplit lineages (e.g., Leach�e & Fujita,

2010; but see (Zhang et al., 2014)). The version used here retains the

user-provided guide tree (called analysis A10, which can be beneficial

when the species phylogeny is known because it is computationally

more tractable), but also includes an analysis of delimitation that does

not require an estimate of the species tree (called analysis A11). This

analysis performs species delimitation and estimates the species phy-

logeny simultaneously.

Here, we applied both approaches. In the guided analysis (A10), we

provided a guide tree representing our best estimate of the species

tree from our *BEAST analysis ((AMB, VIC), MEA) (following (Leach�e &

Fujita, 2010)), in addition to our taxonomic hypothesis ((AMB, MEA),

VIC) and the alternative topology ((MEA, VIC), AMB). In both analyses

(A10 (guided) and A11 (unguided)), we performed a series of multiple

replicates to ensure convergence across rjMCMC algorithms, species

tree topology (the guide trees in A10; the starting trees in A11) and

species model priors (in analysis A11). The guided analysis in BPP

reports probabilities of distinction at each node of the guide tree (i.e.,

probability of speciation at each node of the user-provided guide tree

topology). The unguided analysis in BPP reports posterior probabilities

for the number of species in the data set and their probability of

species delimitation (i.e., probability that an a priori defined taxon is a

distinct lineage),and estimates a posterior distribution of species tree

topologies.

2.5 | Post hoc simulation study

To test the capability of these approaches to delimit species in our

data set, we used a simulation approach (Figure 2). We first simu-

lated one genealogy per locus with the same number of tips and

species designations as our empirical gene trees using the program

ms (Hudson, 2002). Next, using scaled versions of these genealogies

as guide topologies, we simulated the evolution of nucleotide

sequences along the genealogy to generate sequence alignments

that are compared to our empirical data set using the program seq-

gen (Rambaut & Grass, 1997). The subsequent sequence alignments

then become the input data sets for species delimitation with a

known topology (i.e., a “known topology” that we simulated data

on), thus allowing us to directly test the capability of each delimita-

tion approach to recover the “true” delimitation (i.e., the known

number of lineages that the data were simulated under). Further-

more, we performed this series of simulations on multiple topologies:

the species tree topology (((AMB, VIC), MEA), LAC), the taxonomic

topology (((AMB, MEA), VIC), LAC), the alternative of these two

topologies (((MEA, VIC), AMB), LAC) and a “one-lineage” topology

((AMB_MEA_VIC), LAC). In this way, we can confirm the capability

of each analysis to delimit, regardless of the biological or evolution-

ary reality of the underlying topology. Because a failure to delimit

could be due to limitations of the analysis, or because the relation-

ship among the tips in the simulation is incorrect, by modelling on

several topologies, we can test the true capability of each analysis to

delimit. We have outlined these simulation steps in further detail in

the supplementary materials (Data S4).

2.5.1 | Set-up and expectations of the simulations

We simulated 100 data sets to test the capability of each delimitation

approach to delimit correctly. If the delimitation approach correctly

delimits (i.e., identifies the same number of lineages as simulated), we

can assume that the approach is sensitive enough to delimit given a data

set with the size and amount of variability that we have collected. If the

delimitation incorrectly delimits (i.e., identifies a number of lineages dif-

ferent from what we simulated), we conclude that the approach is not

sensitive enough to delimit given the data we have collected.

2.5.2 | Post hoc simulation study of molecular
delimitation approaches

We have developed our own code that combines the simulation

steps described above with the spedeSTEM analysis (available on

Dryad). For each topology, this code simulates one genealogy per

locus, simulates sequences on the genealogy and then performs all

steps of the spedeSTEM approach (including the 100 subsampled

replicates) using the same values of h used in the empirical delimita-

tion. We performed this simulation-plus-analysis procedure 100

independent times and report the proportion of models that are

ranked in each position (first through fifth) across simulations.

For BPP, we randomly sampled 10 data sets from the 100 simu-

lated data sets made during the spedeSTEM simulation study using R

(R Development Core Team 2016) and performed the unguided

delimitation analysis using the same prior settings for h and diver-

gence times used in our empirical analyses. We used species model

prior “1” in each analysis, which assigns equal probabilities across all

rooted topologies. For each randomly sampled data set, we per-

formed two replicates to ensure convergence across independent

analyses using different rjMCMC algorithms. We summarize the

results by reporting the posterior probability of lineage distinction

and the component models of the 95% credibility set of models.
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3 | RESULTS

3.1 | Phylogenetic reconstructions

3.1.1 | Gene trees and species trees

Maximum-likelihood and Bayesian reconstructions of chloroplast and

nuclear phylogenies were largely similar, varying mostly in the

amount of topological support, with one primary exception. Bayesian

nuclear reconstructions recovered Castilleja ambigua var. meadii as

sister to the remaining taxa, while ML reconstructions recovered it

within C. ambigua + Castilleja victoriae clade (Data S5). To keep

things simple, we refer only to the Bayesian reconstruction from

here forward, noting that with the exception of the previous rela-

tionship, all results mentioned here apply to the ML reconstructions

as well.

In both gene tree reconstructions, we recovered a monophyletic

C. ambigua var. meadii and a monophyletic C. victoriae (Figure 3a).

Furthermore, in our nuclear reconstruction, both C. victoriae and

C. ambigua var. meadii were placed on long branches relative to

other taxa. The chloroplast reconstruction recovered C. ambigua as

paraphyletic with respect to C. ambigua var. meadii and C. victoriae,

while the nuclear reconstruction supported C. ambigua var. meadii as

sister to a paraphyletic C. ambigua and C. victoriae. This paraphyletic

relationship was also recovered in our estimate of the species tree

(Figure 3b), where C. ambigua var. meadii is sister to a clade com-

posed of both C. victoriae and C. ambigua. Taken together,

C. ambigua var. meadii and C. victoriae are each monophyletic, and

their relationship to C. ambigua is difficult to place with certainty.

3.2 | Molecular species delimitation

3.2.1 | Estimate of theta

Given the three independent MIGRATE-N analyses, we estimated an

average nuclear h of 0.0146, an average chloroplast h of 0.0064

and a genomewide average h of 0.0105 (Table S3.1). After a series

of preliminary tests to ensure the priors suited this data set (see

Data S3 for details), four independent BPP A00 analyses estimated

an averaged h of 0.0326 for C. ambigua, 0.0055 for C. ambigua

var. meadii and 0.0054 for C. victoriae (Table S3.1). We take these

separate estimates of h as corroborative of each other. While

these estimates were not identical, they did fall within the same

order of magnitude, and locus-wide averages were similarly close.

3.2.2 | Molecular delimitation with spedeSTEM and
BPP

Results of spedeSTEM analyses, averaged over 100 subsampled

replicate analyses, strongly supported only one of five possible mod-

els of lineage composition (Table 1). This highest ranked model con-

siders our three focal taxa as a single evolutionary lineage,

(AMB_MEA_VIC). An extremely large Di separated this best model

from that of the next best. Therefore, this model composes all of

Sequence data

Estimate gene trees
1. ML
2. Bayesian

Estimate
species tree

Molecular species
delimitation
1. spedeSTEM
2. BPP

Model selection

Estimate demographic
parameters
1. Theta
2. Divergence times
3. Population sizes

Chloroplast
genealogy

Nuclear
genealogy

Chloroplast
genealogy

Nuclear
genealogy

Chloroplast
genealogy

Nuclear
genealogy

Chloroplast
genealogy

Nuclear
genealogy

Simulated
chloroplast

dataset

Simulated
nuclear
dataset

Simulated
chloroplast

dataset

Simulated
nuclear
dataset

Simulated
chloroplast

dataset

Simulated
nuclear
dataset

Simulated
chloroplast

dataset

Simulated
nuclear
dataset

4. Molecular species delimitation (power analysis)
1. spedeSTEM (all data sets)
2. BPP (10 random data sets)

3. Simulate sequences

2. Scale genealogies

1. Simulate 100 genealogies

((AMB, VIC), MEA)
X 100

species tree hyp.

((AMB, MEA), VIC)
X 100

taxonomic hyp.

((MEA, VIC), AMB)
X 100

alt. three-lineage hyp.

(MEA_VIC_AMB)
X 100

one-lineage hyp

Simulated dataEmpirical data

F IGURE 2 Schematic illustrating components of our empirical analyses (left) and simulations (right), highlighting the use of estimated
models of nucleotide evolution, demographic parameters and inferred species tree topology from empirical data in our simulations (dashed
lines connecting the left side to the right). Solid arrows represent the use of sequence data in each step of phylogenetic, species tree and
molecular species delimitation inference; dashed arrows indicate estimated models of nucleotide evolution and demographic parameters
necessary for phylogenetic, species tree and molecular species delimitation analyses. AMB = Castilleja ambigua, MEA = C. ambigua var. meadii,
VIC = Castilleja victoriae
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the total model probabilities, indicating no support for other models

of lineage composition.

Results of the guided delimitation (analysis A10) with BPP recov-

ered high probabilities of lineage divergence at each node in each of

our guide topologies (Figure 4a). The unguided delimitation in BPP

(Analysis A11) reports high posterior probability for the presence of

three distinct lineages (four, including the out-group Castilleja lacera,

(Table 2)) and recovers high posterior probabilities for all taxonomic

species. Across all replicates, the 95% credibility set of species tree

topologies was composed of four topologies (Figure 4b; Table 2).

Among these, a sister relationship of C. ambigua and C. ambigua var.

meadii was consistently the most highly supported model; however,

it was rarely recovered with strong probability (six of 22 replicates

with probability of 0.95 or greater (Table 2)).

It has been suggested that lineages be declared distinct only if

posterior probabilities exceed thresholds of 95% or greater (Rannala

& Yang, 2013). The results of our independent molecular species

delimitation approaches are in conflict; spedeSTEM supports a single-

lineage model while BPP finds evidence of three distinct lineages.

3.3 | Post hoc simulation study

3.3.1 | Delimitation with simulated data

Here, we present the results of our simulation study of spedeSTEM

and BPP, using 100 and 10 simulated data sets, respectively, from

four alternative topologies: our estimate of the species tree, ((AMB,

VIC), MEA); the taxonomic hypothesis, ((AMB, MEA), VIC); the alter-

native three-lineage topology, ((MEA, VIC), AMB); the one-lineage

topology (AMB_MEA_VIC). We expect that an analysis will have suf-

ficient power to delimit if it identifies the same number of lineages

as modelled in the simulations. spedeSTEM reports results as
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F IGURE 3 (a) Results of Bayesian gene tree inference (chloroplast reconstruction at left, nuclear reconstruction at right). Dots above
branches indicate support >0.95. Branch lengths are proportional to the number of substitutions per site, as measured by the scale bar. (b)
Species tree estimation with posterior probabilities indicated at nodes. Dashed lines indicate median node heights used to inform timing of
population splits in simulated genealogies

TABLE 1 Results of empirical species delimitation using spedeSTEM. Information-theoretic metrics from 100 subsampled replicates
(replicates 3–99 omitted for simplicity)

Models of lineage
composition

Average likelihood for each subsampled replicate

lnL (avg) k AICc Di

Model
likelihood wiRep. 1 Rep. 2 . . . Rep. 100

AMB_MEA_VIC �11935.99 �12682.72 . . . �12682.72 �12223.46 1 24450.25 0.00 1.00 1.00

MEA, AMB_VIC �12193.18 �12905.89 . . . �12913.24 �12478.08 2 24966.16 515.91 0.00 0.00

VIC, AMB_MEA �13416.58 �14163.11 . . . �14163.11 �13511.09 2 27032.18 2581.93 0.00 0.00

MEA, VIC, AMB �13668.46 �14371.97 . . . �14379.33 �13713.90 3 27457.80 3007.55 0.00 0.00

MEA_VIC, AMB �14149.41 �14886.75 . . . �14886.75 �14372.91 2 28755.82 4305.57 0.00 0.00

AMB: Castilleja ambigua (including varieties ambigua, humboldtiensis and insalutata); MEA: C. ambigua var. meadii; VIC: Castilleja victoriae; lnL (avg) : log-

likelihood of the model, averaged across all replicates; k: the number of free parameters in the model; AICc: Akaike information criterion, corrected for

small sample sizes; Di: Akaike differences between current and best model; wi: model weights.
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support for lineage composition (i.e., how many lineages are present,

and which taxa make up those lineages, with no comment on rela-

tionship of those lineages) and unguided BPP reports probabilities of

lineage distinction, with an additional estimate of species phylogeny.

3.3.2 | spedeSTEM

In two of our three, three-lineage simulations spedeSTEM did not

recover the correct number of lineages (Figure 5, rows 1–2). In all

simulations based on the species tree and taxonomic hypotheses,

the highest ranked model was composed of a single lineage. In the

alternative three-lineage simulations, spedeSTEM most often ranked

a one-lineage model as highest; therefore, failing the majority of the

time to identify the correct number of lineages (Figure 5, row 3);

however, in six of the 100 simulations, spedeSTEM ranked the

three-lineage model as the highest (Table S6). In our one-lineage

simulations, spedeSTEM delimited the correct number of lineages 20

times of 100. Most often it ranked a two-lineage model first (71

times), but also ranked a three-lineage model as first nine times (Fig-

ure 5, row 4; Table S6).

3.3.3 | Bpp

In two of our three, three-lineage simulations BPP correctly delim-

ited (Figure 6, rows 1–2). In simulations of the species tree and taxo-

nomic hypotheses, BPP recovered very strong support for the

delimitation of taxonomic species corresponding to our focal taxa.

Furthermore, in all simulations, the 95% clade credibility set con-

tained models corresponding to the simulated topology, indicating

that BPP was reconstructing the topology correctly (Figure 6, rows

1–2; Tables S7.1 and S7.2). In simulations of the alternative three-

lineage topology, BPP incorrectly delimited a single species. This cor-

responds to no posterior support for taxonomic species and an

incorrect topological reconstruction (Figure 6, row 3; Table S7.3). In

our one-lineage simulations, BPP correctly delimits a single species,

recovered very strong support for the delimitation of one species

and reconstructed the correct topology (Figure 6, row 4).

4 | DISCUSSION

Initial phylogenetic analyses often hint at the conflict between tax-

onomy and phylogeny that may be present in a system, as we see

here in the Castilleja ambigua species complex (Figure 3). In cases

such as these, where there is a need for species delimitation with

limited data, it is important to explore the capability of the data and
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F IGURE 4 (a) Results of empirical molecular species delimitation using guided BPP. The three topologies correspond to the species tree
hypothesis (left) and its two alternative topologies. Values at nodes represent lineage distinctiveness. (b) The set of models included in the 95%
credibility set of trees from unguided delimitation with BPP. Posterior probability for each topology is reported beneath the tree. A = Castilleja
ambigua; M = C. ambigua var. meadii; V = Castilleja victoriae; L = Castilleja lacera (out-group)

TABLE 2 Results of empirical molecular species delimitation using
BPP, analysis A11, averaged across 22 independent runs. Each panel
represents a portion of the output of this analysis; the probability of
the taxonomic species (first and second panel) and the best models
found in the 95% credibility set of species tree topologies (third
panel)

Best model (ignoring
species tree phylogeny)

Posterior probabilities

Mean Min Max

Number reps
above 0.95
(of 22)

Four distinct

lineages: A, M, V, L

0.9610 0.74 0.99 18

Posterior probability of
taxonomic species Mean Min Max

Number reps
above 0.95
(of 22)

Castilleja ambigua 0.9713 0.79 0.99 18

C. ambigua var. meadii 0.9845 0.79 0.99 21

Castilleja victoriae 0.9645 0.75 0.99 18

Castilleja lacera 0.9780 0.74 0.99 20

Best models in
95% credibility
set Mean Min Max

Number
reps above
0.95 (of 22)

Number reps
occurred in
(of 22)

(((A, M), V), L) 0.7434 0.59 0.99 6 22

(((A, V), M), L) 0.1838 0.02 0.87 0 6

(((M, V), A), L) 0.2401 0.01 0.34 0 6

((A, M), (V, L)) 0.1413 0.02 0.63 0 3

A: C. ambigua (including varieties ambigua, humboldtiensis and insalutata);

M: C. ambigua var. meadii; V: C. victoriae; L: C. lacera.
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analyses at hand to address the question of interest. In our case,

when individual gene trees are considered alongside the results of

our species tree reconstruction, we have reason to suspect (1) that

we may have signal of distinct lineages that do not correspond with

taxonomy, and (2) that the relationship between these lineages is

poorly understood. The application of two independent molecular

delimitation approaches results in incongruent delimitations (Tables 1

and 2); spedeSTEM ranks highest a one-lineage model, while BPP

supports three distinct lineages. BPP results are further complicated

by strong support for different topologies (guided analysis (A10)

recovers high support for all three topologies tested (average over

all replicates >0.95, Figure 4a); unguided analysis (A11) moderately

supports the taxonomic hypothesis (average over all replicates

between 0.75 and 0.95; Figure 4b)).

Had we stopped here, we would be faced with a subjective deci-

sion about which delimitation to prioritize. We would have

attempted to explain the conflict in a biological context to arrive at a

delimitation decision. However, knowing that each approach has its

own set of limitations casts doubt on the interpretations of the

results. spedeSTEM is known to be more conservative; it is highly

reliant on the phylogenetic certainty of gene trees, and simulations

have shown that the validity of shallower nodes is most difficult to

establish (Ence & Carstens, 2011). Guided BPP can overdelimit, given

an incorrect guide tree (Leach�e & Fujita, 2010) (but see Zhang et al.,

2014) or misspecified prior settings (Giarla et al., 2014). In addition

to testing the impact of the prior settings on results, we also pro-

vided BPP with alternative topologies and found each was strongly

supported with high probability, suggesting one or more may be

0

20

40

60

80

100

First Second Third Fourth Fifth

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0
20

40
60

80
10

0

A

V

M

L

A

V

M

L

AMV

L

A

V

M

L

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0
20

40
60

80
10

0

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0
20

40
60

80
10

0

1 4 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 91 95 99

0
20

40
60

80
10

0

One lineage: A_M_VTwo lineages: A_M, V Two lineages: A_V, MTwo lineages: M_V, AThree lineages: A, M, V

P
ro

p
o
rt

io
n
 o

f 
re

p
lic

a
te

 a
n
a
ly

s
e
s

Highest ranked model

P
ro

p
o
rt

io
n
 a

c
ro

s
s
 a

ll 
s
im

u
la

ti
o
n
s

Simulated topology spedeSTEM power analysis

0

20

40

60

80

100

First Second Third Fourth Fifth

0

20

40

60

80

100

First Second Third Fourth Fifth

0

20

40

60

80

100

First Second Third Fourth Fifth

Model ranks
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incorrect. The unguided delimitation is intended to eliminate the

need for a guide tree. We find this analysis strongly supports distinct

lineages (for our focal taxa) and most often recovers a topology con-

sistent with taxonomy—a hypothesis that is in conflict with one of

our gene trees, as well as our species tree and is only recovered six

of 22 times with strong probability (Table 2). Furthermore, two of

the 22 replicate unguided analyses recovered the species tree topol-

ogy with noteworthy support, though moderate (pp = 0.86, results

not shown). With such striking contrasts between delimitations, we

find ourselves back at the starting point—how many lineages do we

have? Is it lack of signal in the data that causes spedeSTEM to fail

to delimit, or are we somehow biasing our delimitation, resulting in

overdelimitation with guided BPP?

Pertinent to this conversation is the quality of the data we are

using and the particular characteristics of the study system. Despite

having many base pairs of data (25,351 bp of the most variable

regions of Castilleja plastome and 1,139 bp nrDNA totalling

26,490 bp; Table S4.5), we are effectively delimiting with only two

loci. In addition, the sampling of two of our focal taxa is small (three

individuals for both C. ambigua var. meadii and Castilleja victoriae).

These small sample sizes could be impacting our results. If that is

the case, an easy fix is to increase sample size, but generating more

data by adding loci and/or increasing individuals sampled is difficult

and expensive. Furthermore, two of our focal taxa are extremely rare

and known from only a few populations that are very spatially

restricted (Egger et al., 2012; Fairbarns & Egger, 2007) (Figure 1). As

such, incorporating additional individuals that will represent addi-

tional, currently unsampled molecular variation is unlikely, not to

mention practically difficult. This is a common position for empiri-

cists, especially those working in nonmodel systems with rare and/or

spatially restricted taxa. While many of us are focused on gathering

more data, it is important to remember that we do have other tools

available to assess the suitability of the data already at hand. Post

hoc simulation studies can help us evaluate the adequacy of our data

for addressing our question of interest.

4.1 | Simulations are useful in cases such as these

By simulating data on a known topology (i.e., a topology that we know

for certain because we simulated it (rather than estimating it)) with

variation similar to what we observe in our data set, we can specifically

test if there is signal in our data to delimit species, and if that signal is

detectable with these analyses. In addition, by simulating data on mul-

tiple topologies (including our estimated species tree topology, as well

as alternative relationships, therefore accommodating uncertainty in

the underlying species-level relationships), we can assess the sensitiv-

ity of these analyses to different topological relationships therefore

testing the ability of each approach to delimit, regardless of our knowl-

edge of the true underlying species relationships.

In our simulation study, spedeSTEM fails to delimit in three of

four cases where we see dominating support for a one-lineage

model in our three, three-lineage simulations (Table S6; Figure 5). In
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F IGURE 6 Results of simulation study
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separate simulations. For each simulated
topology (left column), we report the
posterior probability for lineage
distinctiveness (middle column), and the
component models recovered in the 95%
credibility set of models (right column).
Ranges of probabilities reported under the
latter represent the range of support
across 10 independent simulations

2408 | JACOBS ET AL.



the fourth case, the one-lineage simulation, spedeSTEM accurately

delimits a single lineage 20 times, but also delimits a two or three-

lineage model 80 times (71 and 9, respectively). Unguided delimita-

tion with BPP, on the other hand, correctly delimits in three of four

cases (Figure 6, Tables S7.1, S7.2 and S7.4) and fails when we simu-

late the alternative three-lineage topology (Figure 6, Table S7.3).

Given the results of these simulations, we conclude that spedeSTEM

is not suitable for delimitation with the data set that we have col-

lected here. BPP, on the other hand, appears to be sensitive enough

to delimit the number of lineages, but perhaps not the evolutionary

relationship of these lineages.

4.2 | Other reasons for conflict in delimitation

There are, of course, other explanations for conflicting delimitations,

other than the limitations of the approaches as we have described

them here. For example, we may have violated assumptions implicit

in both approaches. Probably the assumption most in jeopardy of

violation is that polymorphism present in the data is the result of

incomplete lineage sorting and not gene flow (Ence & Carstens,

2011; Yang & Rannala, 2014). Breaking this particular assumption

has been shown to impact both approaches by homogenizing allele

frequencies across lineage boundaries, thus impeding delimitation

(e.g., Ence & Carstens 2011, Camargo et al., 2012; Pelletier et al.

2015). In this system, there are distinct floral differences that exist

between C. victoriae and C. ambigua (including C. ambigua var. mea-

dii) that suggest the possibility that contemporary gene flow

between these taxa is unlikely. In C. victoriae, stigmas are inserted at

anthesis (i.e., female reproductive organs enclosed within the flower

at peak flowering time), suggesting the possibility of self-pollination

as a reproductive strategy. This is in direct contrast with all of C. am-

bigua where stigmas are exserted at anthesis (i.e., female reproduc-

tive organs held up and out of the flower at peak flowering times),

which is the typical placement for an outcrossing mode of pollina-

tion. These differences are likely to be a strong functional barrier to

cross-pollination.

While floral morphological distinction between C. ambigua and

C. ambigua var. meadii is less apparent, vegetative morphological

variation is apparent and may reflect the ecological differentiation of

these taxa. Castilleja ambigua var. meadii is found further inland than

most other C. ambigua (which are typically coastal) and is associated

with freshwater (as opposed to salt water habitats where other

members of C. ambigua occur) (Figure 1). For these reasons, we con-

sider contemporary gene flow unlikely in this particular complex of

species; however, historical gene flow is something we cannot rule

out and, given the young age of this lineage, something that may be

relatively recent.

Hybridization has played and may continue to play, a big role in

the history of Castilleja, both at recent and deep time scales (e.g.,

Clay, Novak, Serpe, Tank, & Smith, 2012; Heckard, 1968; Heckard &

Chuang, 1977; Hersch-Green, 2012; Tank & Olmstead, 2009). We

have evidence of ongoing hybridization that we can observe in the

field (e.g., Anderson & Taylor, 1983; Hersch-Green & Cronn, 2009),

as well as signatures of hybridization deep in the history of the lin-

eage (Hersch-Green, 2012; Hersch-Green & Cronn, 2009; Tank &

Olmstead, 2009). Furthermore, there is reason to expect gene flow

at relatively shallow nodes in the phylogeny. Between the uplift of

the Cascades and the Sierras between 2 and 5 million years ago, and

the last glacial maximum that peaked around 20,000 years ago,

western North America has seen many geographic changes, and

there are many examples of geologic impact on flora and fauna,

including diversification (e.g., Brunsfeld, Sullivan, Soltis, & Soltis,

2001; Esp�ındola et al., 2012; Folk, Mandel, & Freudenstein, 2017;

Folk, Visger, Soltis, Soltis, & Guralnick, 2017; Hewitt, 1996; Shafer,

Cullingham, Cote, & Coltman, 2010). Therefore, it is not unreason-

able to suggest that diversification of this species complex happened

within this timeframe. Indeed, major north-south postglacial recolo-

nization routes pass through extreme southwestern British Columbia

and northwestern Washington state (Shafer et al., 2010) where cur-

rent day C. victoriae occurs (Figure 1). As such, expecting a shallow

node of divergence of both C. victoriae and C. ambigua var. meadii

from C. ambigua is perhaps realistic— this would explain the low

amount of variation we recover in our sequence data, and the diffi-

culty spedeSTEM has detecting it.

While we consider the results of this work to confirm the distinc-

tion of three lineages corresponding to our focal taxa, there is still

evidence wanting with respect to species delimitation. First, a robust

delimitation must include additional lines of evidence that corrobo-

rate (or refute) the evidence presented here. For example, given the

distinctive habitats of C. victoriae and C. ambigua var. meadii, we

expect a signature of ecological differentiation in these lineages. This

is especially important given recent criticism about the nature of

what BPP— and coalescent-based, molecular species delimitation

approaches, in general—is delimiting (i.e., population structure or spe-

cies, (Sukumaran & Knowles, 2017). Second, recent advances in mod-

elling the complex history of lineages (including gene flow, alongside

that of population subdivision and/or population size differences)

(e.g., Jackson, Carstens, Morales, & O’Meara, 2017; Morales et al.,

2017) provide us with opportunities to examine the possibility of his-

torical and contemporary gene flow in this system, and possibly rule

out (or identify) potential causes of incongruence in our delimitation.

Future work in the C. ambigua species complex will address additional

lines of evidence and include more holistic species delimitation analy-

ses (e.g., Sol�ıs-Lemus et al., 2015), and any formal changes to species

limits will follow accordingly.

Carstens et al. (2013) report that only 30% of species delimita-

tion studies make taxonomic recommendations and only 25%

describe new species and suggest that this could indicate a lack of

confidence in the study, an inability to resolve incongruence across

approaches or acknowledgement of inadequacy of the data. Formal

simulation studies, like ours, provide an avenue for researchers to

address these concerns. Ultimately, empiricists have an obligation to

use species delimitation approaches carefully and according to “man-

ufacturer instructions.” By carefully considering the assumptions and

limitations of the approaches we use, we are off to a good start; by

keeping abreast of both empirical and theoretical studies that refine
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our understanding of the limitations of these approaches, we are in

an even better position to appropriately use the methods we

employ. Finally, by performing simulation studies, such as those

shown here, we have the opportunity to test if our approach is

appropriate given our specific study system and the data at hand.

This will be particularly important and useful in systems that are in

the process of becoming data-rich (but currently have smaller,

nongenomic data sets) and have pressing need for formal delimita-

tions. Regardless, post hoc simulation studies such as this can be

important to success in species delimitation, especially at recent time

scales where the depth of the nodes we are examining may be very

shallow. It is likely that in many systems, such as this one, where we

are interested in distinguishing incipient lineages, incongruence

across delimitations will be common.
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