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Summary

In recent years image processing has improved detection and diagnosis in med-

ical application. Image processing applications are now embedded in medical

instruments such as MRI and CT. In the case of retinopathy, fast extraction

of blood vessels can allow the physician to view injury regions during surgery.

Macula detachment surgeries, or computer‐aided intraocular surgeries, require

precise and real‐time knowledge of the vasculature during the operation. Use of

artificial neural network has produced good results in image processing appli-

cations, but its implementation may not be suitable for real‐time applications

in small, embedded hardware. Because of error resiliency of the neural net-

work, its structure can be pruned and simplified. In this paper an efficient hard-

ware implementation of neural network for retinal vessel segmentation is

proposed. We simplify the neural network structure in such a way that the

accuracy of the results is not altered significantly. Simulation results and FPGA

implementation show that our proposed network has low complexity and can

be applied for segmentation of retinal vessels with acceptable accuracy. This

makes the proposed method a good candidate to be implemented in any device

such as a binocular indirect ophthalmoscope.
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1 | INTRODUCTION

In some medical applications, efficient detection of injury location plays a vital role in the process of diagnosis. In recent
years image processing techniques are considered as a useful method for detection of medical abnormalities in the
human body. Retinal blood vessel detection is very important in diagnostic approach for retinopathy. For example as
illustrated in Figure 1, diabetic retinopathy occurs when blood vessels in the eye become leaky, resulting in blood and
other fluids to flow into the retinal tissue.1,2

For retinal bleeding in diabetic patients it is necessary to recognize the location of the bleeding vessels. Vessel seg-
mentation and extraction by image processing techniques can be useful before and during surgical operations of retina.
In some operations related to retina, vessels must be detected as soon as possible and segmentation algorithm must be
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FIGURE 1 Diabetic retinopathy1 [Colour figure can be viewed at wileyonlinelibrary.com]
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real‐time. Hardware implementation of retinal vessel segmentation method in surgical vision instruments, such as bin-
ocular indirect ophthalmoscope and can be very useful.

There are many studies to extract and segment the retinal blood vessels. In Lupascu et al3 a method for detection of
retinal vessels based on linear combination of weak classifiers (Ada boost) is proposed. For each pixel, a 41‐D feature
vector including, intensity structure, spatial properties, and multiple scale geometry is used. Feature vectors are con-
structed by various filters such as 2‐D Gabor wavelet transform. Also, likelihood of structures such as edges and ridges
and numerical estimation of the differential properties of the intensity are used. Although this feature vector contains a
rich description of vessel regions but it can be very complex. In Fraz et al,4 ensemble system of bagged and boosted
decision trees is proposed. Feature vector based on the orientation analysis of gradient vector field, morphological
transformation, line strength measures, and Gabor filter responses are used. In Melinscak et al5 an approach using deep
max‐pooling convolutional neural networks with GPU implementation is proposed. In Becker and Riviere6 a method for
the map and localization of retinal vessels for intraocular surgery in real‐time is proposed. A recursive template matching
algorithm is performed, which includes a sparse retinal vessel initialization followed by a tracing algorithm. Candidate
vessel points are detected along a coarse grid. Then these points are used to detect other points in both directions along
the vessel. Although small fraction of the pixels is analyzed, but in order to detect each series of vessel points, the
algorithm needs to trace the candidate points iteratively. In Alonso‐Montes et al7 an algorithm for retinal vessel extrac-
tion is proposed using local dynamic convolutions and morphological operations. This methodology finds the boundary
of the blood vessels using an active contour method, which is called pixel‐level snakes. Edge detection and some simple
preprocessing operations are performed, which provide some points to guide pixel‐level snakes evolving. This algorithm
runs iteratively, and all of the image pixels must be traversed during the run, which is a time‐consuming task. In Neto
et al8 probability of spatial dependency, using an adaptive local thresholding, is used to coarsely segment the vessel map.
The result is then refined through curvature analysis and morphological reconstruction. In Roychowdhury et al9 vessel
pixels are segmented in an iterative process and in each process the threshold is adapted using residual image generated
by masking out the existing segmented vessel pixels. The new vessel pixels are then extended on the basis of region grow-
ing into the existing vessels. In Zhao et al10 adaptive histogram equalization and a 2D Gabor wavelet are used to enhance
the vessels. Also, an anisotropic diffusion filter is used for smoothing the image and preservation of vessel boundaries.
Retinal vessels are obtained by using a region‐based active contour model. In Wang et al11 multiwavelet kernels, in
the form of matched filters, are used for vessel enhancement. Binary map of the vasculature is identified using a thresh-
old based on the vessel edge information. In Lázár and Hajdu12 filters are convolved in different directions, and direc-
tional responses of a pixel are considered as a vector. The combination of the statistical measures of the response
vectors and its local maxima provide the seeds for the region growing procedure. In Azzopardi et al13 vessel‐like patterns
are detected using a filter by computing the weighted geometric mean of the responses of DoG filters with collinearly
aligned supports.

Among the previous studies, artificial neural network (ANN)–based approaches have led to efficient designs and
good accuracies. In Fu et al14 a new deep neural network architecture for retinal vessel extraction is proposed. A 4‐stage
convolutional neural network is used to create the probability map of vessel boundaries. After that, for improving the
results of probability map, a conditional random field layer over the all convolutional neural network outputs is applied.
In Li et al15 a deep convolutional neural network is applied to find a relation between a retinal image and a vessel map.
This network architecture can produce a label map as well as a single label value without increasing the normal size of
the patches. After that, vessels are segmented by using Bayes probability theory. This means that the number of
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neighboring pixels participating to vessel detection is increased without increasing the patch size. It can be useful to
reduce computational complexity of the algorithm. In Vega et al16 a lattice neural network with dendritic processing
is used for retinal blood vessel extraction. This process includes preprocessing, feature computation, classification, and
postprocessing. Preprocessing is performed by removal of the background light and vessel enhancement. Invariant
moments and intensity are used for feature extraction. Train based on merging is used for lattice neural network with
dendritic processing. A median‐based filtering method is applied in the postprocessing. In Wang et al17 a segmentation
based on combination of the convolutional neural network and random forest is proposed. The convolutional neural net-
work works as a feature extractor while ensemble random forest works as a classifier. Although neural network studies
have good accuracy and scalability, but their architectures are very complex, which is not suitable for real‐time applica-
tions. Some previous studies on cellular neural networks focused on time and speed up more than any other factors.18-20

In Alonso‐Montes et al18 retinal vessel tree is extracted in 3 stages. In the first step a preprocessing is performed on the
basis of histogram equalization and opening. After erosion and edge detection in second step, a contour is initialized.
Using an active contour and the information in the first step, retinal vessels are detected. In literature19,20 a retinal vessel
segmentation algorithm based on cellular neural networks is proposed, which is implementable on hardware. A 15 × 15
neighborhood with various directions is used for line detection. The accuracy of the proposed algorithm is not compara-
ble with the state‐of‐the‐art algorithms. For its implementation, large amount of hardware resources are required. There
are many studies for the acceleration of medical image processing algorithms using hardware accelerators such as
FPGAs and GPUs.21 Also in portable onsite biomedical diagnostic applications hardware implementation for real‐time
responses is necessary.22 In Krause et al23 a system for retinal image processing is proposed, which combines high quality
with high computational efficiency. Vessels are detected on the basis of the local Radon transform, and efficient imple-
mentation on GPU is proposed.23 Although an efficient implementation on GPU is proposed, but many steps are
required in local radon transform and in the preprocessing and postprocessing stages. In Arguello et al24 a fast and accu-
rate method for retinal vessel segmentation that is suitable for real‐time implementation on GPU is proposed. This work,
which is based on vessel tracing, is included a preprocessing and a contour tracing stages. Preprocessing is performed by
linear filtering and morphological operations. Then in the contour tracing stage data from the preprocessing stage form
the initial contours. Although parallel processing is done by GPU, but morphological operations as well as contour trac-
ing need to be done iteratively. On the other hand, the high power consumption and high hardware complexity of GPUs
discards these for embedded systems.25 In literature22,26 high performance parallel hardware architecture for accelera-
tion of the retinal vessel extraction is proposed. A matched filtering–based procedure is used to segment the blood ves-
sels. The design is implemented on FPGA. Although in Koukounis et al22 an acceptable speed up is achieved but high
hardware use makes inappropriate for medical devices such as binocular indirect ophthalmoscope. In Nieto et al27 an
FPGA implementation with SIMD architecture for retinal vessel tree detection is introduced. A presegmentation proce-
dure feeds information to a region growing algorithm, which is done by cellular active contour algorithm. Pixel process-
ing is done in a parallel manner and independently in several split sub images. This algorithm runs iteratively, and its
delay is not acceptable for real‐time applications.

Macula detachment surgeries, or computer‐aided intraocular surgeries, require precise and real‐time knowledge of
the vasculature. This knowledge is important during retinal procedures such as laser photocoagulation or vessel cannu-
lation.6 Although in some conditions a single computer works near the medical equipment, but there is a demand for
embedding a fast and small hardware module with low power consumption in medical devices.28 This embedding can
be done in portable and handheld devices or in devices which the real‐time implementation is vital. As it is shown in
Figure 2, in binocular indirect ophthalmoscope and digital fundus fluorescein, a fast extraction of blood vessels enables
clinical personal to view injury regions during surgical operations or in portable devices.

From previous studies we see that ANN is an effective and complex system. Hence, it is not a suitable candidate for
portable medical devices with real‐time applications such as binocular indirect ophthalmoscope. In this paper a simpli-
fied ANN is proposed to detect and segment the retinal blood vessels. For this purpose, at first an ANN is configured to
give an accurate segmentation results. To simplify the network structure in the second step, network weights as well as
its biases are quantized. To reduce and compensate the quantization error, an optimization method is proposed. Nonlin-
ear activation function is approximated by a pricewise linear function. All approximations are performed in such a way
that the hardware structure becomes simple and efficient. Finally, for each part of modified neural network a hardware
structure is proposed. By analyzing final design complexity the number of required hardware resources is determined.

The rest of this paper is organized as follows. In Section 2, neural network simplification approaches are presented. In
Section 3 hardware architecture of the proposed method is explained. Section 4 is dedicated to simulation results, and in
Section 5 concluding remarks are presented.



FIGURE 2 Retinal diagnostic equipment29,30 [Colour figure can be viewed at wileyonlinelibrary.com]
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2 | SIMPLIFIED ARTIFICIAL NEURAL NETWORKS

ANNs are considered as general tools for learning of structures of different images. Usually, multilayer perceptron struc-
tures with nonlinear activation functions are used. Although by using ANN accurate results are achieved but their mul-
tilayer structures with many neurons and complex activation functions make their implementations complex. In this
regard, research publications are interested in simplification of the main components of neural network including
multiplier,31 adders,32 and activation functions.33 On the other hand, some recent papers are interested on ANN signal
representations, and operations. In literature34-37 a simple binary representation with logical operations during training
is used. Thanks to its signal representation, all multiplication operations as well as activation functions are performed by
simple and level‐one logical operations. The binary and ternary signal representation used for their implementation
makes such structure too deep and wide. The logical operation and binary signal representation necessitate the increas-
ing of number of neurons and layers to generate accurate results. In Figure 3, the overview of proposed method for sim-
plification of ANN is shown. The network is learned and optimization is performed on its different parts. For each
network neuron, its inputs are multiplied by corresponding weights and are added by a tree‐adder. These results are
fed into an activation function that generates inputs of the next layer. As illustrated in Figure 3, there are 3 main com-
ponents in each ANN layer including multiplier, tree‐adder, and activation function. Optimization and simplification,
which are performed on the structure shown in Figure 3, are as follows.
2.1 | Weight quantization and error compensation

As illustrated in Figure 3, a typical multilayer ANN requires elements that multiply each input by a corresponding
weight. In typical implementation of an ANN withM inputs,W nodes in the hidden layer and N output nodes, the num-
ber of multipliers is

number of multiplier ¼ M×W×N

Given that all multiplies must be floating points, high computational effort could be imposed for computational oper-
ations in each layer. An alternative way is to implement multipliers with shift and add operations. This reduces the com-
plexity of calculations. Considering the complexity of the design hardware implementation, weights are quantized
assuming that at most a limited number of shift and add operations are allowed. Hence, the nearest number to the orig-
inal one is selected as its quantized value. For example, suppose that we have 2 numbers 0.8735 and 0.3811 as weights in
an ANN and at most 3 number of shift and add operations are allowed. These numbers can be represented in a new form
of addition and shift operations as follows

0:8735≅0:8750 ¼ 2−1 þ 2−2 þ 2−3

0:3811≅0:3750 ¼ 2−2 þ 2−3

By using this form, all weight become in the form of sum of power 2 numbers, which can be implemented by shift
and add operations. In this way, each required multiplier module in ANN is converted to several adders and shifter
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FIGURE 3 Overview of ANN structure optimization [Colour figure can be viewed at wileyonlinelibrary.com]

1170 HAJABDOLLAHI ET AL.
modules. Although a simple quantization with respect to numbers of power of 2 operations reduce the computational
complexity but an error is generated, which may be a problem in some conditions. In the following an error compensa-
tion procedure is proposed to deal with this problem.
2.2 | Average quantization error reduction

In the common type of quantization, weights are quantized by only considering their values. This could create quanti-
zation errors that are accumulated and could lead to significant loss of accuracy. Hence, a compensation error method
is proposed. Each quantization may lead to a loss of accuracy. But there is similarity in each image region and the loss of
accuracy due to a weight quantization can be compensated in the later weight quantization. In this way average error as
well as the loss of accuracy can be reduced. To do this after quantization of each weight, the created error is diffused in
the next weight quantization. Let us consider the following example. Three weight coefficients of 0.8000, 0.4250, and
0.4050 are considered, and at most 3 number of shift and add operations are allowed. The nearest quantized value in
form of add and shift number and their quantization error are illustrated.

0:8000≅0:7500 ¼ 2−1 þ 2−2 ¼ >quantization error ¼ 0:8000−0:7500 ¼ þ0:0500

0:4250≅0:3750 ¼ 2−2 þ 2−3 ¼ >quantization error ¼ 0:4250−0:3750 ¼ þ0:0500
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0:4050≅0:3750 ¼ 2−2 þ 2−3 ¼ >quantization error ¼ 0:4050−0:3750 ¼ þ0:0300

Hence, average quantization error becomes

average error ¼ þ0:0500þ 0:0500þ 0:0300
3

¼ þ0:0433

Average quantization error can be reduced by diffusion of each quantization error in the next steps of weight
quantization. In the case of our example we have

0:8000≅0:7500 ¼ 2−1 þ 2−2 ¼ >error ¼ 0:8000−0:7500 ¼ þ0:0500

0:4250 ⇒

error

difusion

¼ 0:4250þ 0:0500 ¼ 0:4750≅0:5000 ¼ 2−1 ¼ >error ¼ 0:4250−0:5000 ¼ −0:0750

0:4050 ⇒

error

difusion

¼ 0:4050þ 0:0500−0:0750 ¼ 0:3800≅0:3750 ¼ 2−2 þ 2−3 ¼ >error ¼ 0:4050−0:3750 ¼ þ0:0300

average error ¼ þ0:0500−0:0750þ 0:0300
3

¼ þ0:0050
3

¼ þ0:0016

All quantization errors in previous stages are considered in the current quantization stage. As it was observed, in the
case of 0.4250, the quantization error of +0.0500 from the previous stage is considered in the current quantization stage.
Hence, the current value 0.4250 is increased by +0.0500. Also for the quantization of 0.4050, previous quantization errors
(+0.0500 and −0.0750) are considered in the current quantization. This means that the current value 0.4050 is added to
+0.0500 and −0.0750.

In this example the average error is reduced because of considering the previous quantization errors in the current
weight quantization. By this technique the total error caused by quantization can be reduced.
2.3 | Activation function linearization

In ANN, hyperbolic tangent is the widely used activation function with the following form.

tanh xð Þ ¼ 2
1þ e−2x

−1

Hence, an exponential operation as well as a floating point division must be calculated. Simplification and lineariza-
tion of activation function especially in the case of large networks can be an efficient way to reduce total computation
volume. In this paper the domain of tanh(x) function is divided into 4 intervals, and in each interval a linear approxima-
tion function is used on the basis of (1).

Picewise Linear Approximation of tanh xð Þ ¼

±x for 0≤±x<0:5

± 0:5þ ABS xð Þ−0:5ð Þ
2

� �
for 0:5≤±x<1

± 0:75þ ABS xð Þ−1ð Þ
4

� �
for 1≤±x<2

±1 for ±x≥2

8>>>>>>><
>>>>>>>:

(1)

By using this pricewise linear function, computation is performed without any multiplication and division and all
operations are in form of addition and shift. In Figure 4, tanh(x) and its approximation are depicted visually. From
Figure 4, it is observed that the proposed piecewise linear function is approximately near the original function. A
comparison between approximate and accurate structure is provided in experimental results.



FIGURE 4 Piecewise linearization of tanh(x) [Colour figure can be viewed at wileyonlinelibrary.com]
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2.4 | Postprocessing

After neural network segmentation, there are some pixels inside of the vessels that may be not segmented as vessel
points. Always, these pixels are located on thick vessels. Hence, after the segmentation by ANN, its accuracy is improved
by a postprocessing stage. Always, all gaps are filled out by a morphological filling operation. Since morphological
operations are iterative and create delay in the system, a simple filling operation is proposed. For a 5 × 5 image block,
any pixel with at least T neighbors is classified as vessel point.
3 | HARDWARE ARCHITECTURE OF SIMPLIFIED NEURAL NETWORK

In this section, efficient hardware architecture is designed for the proposed simplified neural network. The major part of
hardware architecture is the implementation of the weights of the layers as well as the activation function. To simplify
the neural network we try to optimize the architecture of each part. The hardware structure of the proposed simplified
neural network is illustrated in Figure 5. This hardware architecture does not need any multiplication and division and
all operations are in the form of add and shift. Three major parts of this structure are designed as follows.
3.1 | Weights multiplication layer

It was mentioned in Section 2.1 that a floating point operation is necessary for multiplication of an input by a corre-
sponding weight. Using the proposed weight quantization it is possible to perform a simple shift and add instead of a
complex floating point operation. As shown in Figure 5, a network of shift operations in each layer instead of complex
multiplications.
FIGURE 5 Hardware structure of the simplified ANN [Colour figure can be viewed at wileyonlinelibrary.com]
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3.2 | Tree adder layer

After multiplication of network weights in each layer, in the form of proposed method, their results must be summed up.
For this purpose a tree‐adder with integer representation is used for each neuron to add the multiplication results from
previous stages as well as neuron bias.
3.3 | Piecewise linear activation function

In the case of nonlinear activation function implementation, one of the approximate and flexible methods is look up
table (LUT).38 In the proposed ANN, LUT structure with 256 entry in each of them a floating point number is required.
Hence, total size of LUT for each activation function becomes 256 × 32 bit.

An approximation of an exponential function in form of piecewise linear makes its implementation simple and effi-
cient. This is expressed by a multipart function and can be obtained by a series of simple logical operations as illustrated
in Figure 6. The 3 conditions of (1) are checked by 3 comparators, which are fed from the absolute calculator module.
Then appropriate outputs, which are provided by shifter and adder modules, are selected by the multiplexer. Finally,
a sign correction module, corrects the sign of final result. Two shifter modules are used in which 1 and 2 right shifting
operations are performed.
3.4 | Postprocessing hardware

Postprocessing is performed on the segmentation mask, which is a binary image. In Figure 7, the hardware structure of
this postprocessor is illustrated. Pixels of 5 × 5 image block are shown as P1 to P25. A 25:5 compressor module is required
FIGURE 6 Piecewise linear activation

function module [Colour figure can be

viewed at wileyonlinelibrary.com]

FIGURE 7 Postprocessing module
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for counting the number of ones in the image block. For hardware implementation of 25:5 compressor, two 15:4 com-
pressors as well as a 4 bit adder are used. Then the generated binary value is compared with a threshold value (T) by
a comparator module.
4 | EXPERIMENTAL RESULTS

The performance and the accuracy of the proposed method have been tested using the publicly available digital retinal
images from databases of (DRIVE)39 and STARE.40 DRIVE database contains 40 images and STARE contains 20 images.
The performance of the proposed method is evaluated separately using 4‐fold cross validation method. Each pixel of the
image is analyzed by feeding the neural network with a 7 × 7 image block that surrounds that pixel. The threshold value
for postprocessing is set to 10.
4.1 | ANN configuration selection

Different neural networks are tested with different configurations on 2 aforementioned datasets. Four scores that are
used for comparison are accuracy (ACC), Dice score (DICE), sensitivity (SEN), and specificity (SPE), which are as follows.

ACC ¼ TP þ TN
TP þ TN þ FN þ FP

DICE ¼ 2TP
2TP þ FP þ FN

SEN ¼ TP
TP þ FN

SPE ¼ TN
TN þ FP

where TP, TN, FP, and FN are true positive, true negative, false positive, and false negative rates, respectively. Three best
networks are selected, and their results are compared in Table 1 for DRIVE and in Table 2 for STARE. In these
configurations, networks with 3 layers in the form of 20‐6‐2, 10‐6‐2, and 8‐4‐2 nodes are used. The 3 networks that
are used are 1) network with no quantization (accurate), 2) network with common weight quantization, and 3) network
using quantization with error compensation.

It is observed that in the network 20‐6‐2 there is not significant improvement in accuracy but it has higher complexity
than the other configurations. The performance comparison of these 2 structures in the case of DRIVE and STARE is
provided in Section 4.2. On the other hand, it is observed that although the 8‐4‐2 network configuration has lower com-
plexity but the loss of accuracy due to quantization is high.
4.2 | Performance comparison

The network with 10‐6‐2 configuration is considered as the best one for both 2 datasets. Results of 10‐6‐2 configuration
for DRIVE and STARE are illustrated in Tables 1 and 2, respectively. These results are for 3 cases of accurate, quantiza-
tion without error compensation, and with error compensation. It is observed that the loss of accuracy due to quantiza-
tion with error compensation is negligible. In Figures 8 and 9, the visual results of these networks on DRVE and STARE
TABLE 1 Performance comparison in different configuration on DRIVE

DRIVE ANN 8‐4‐2 ACC DICE SEN SPE

Quantization 0.9121 0.5454 0.5253 0.9555

Quantization and error compensation 0.9493 0.6833 0.5586 0.9928

Accurate 0.9580 0.7783 0.7460 0.9817

ANN 10‐6‐2 ACC DICE SEN SPE

Quantization 0.9220 0.6111 0.6207 0.9555

Quantization and error compensation 0.9421 0.7413 0.8319 0.9545

Accurate 0.9588 0.7811 0.7426 0.9830

ANN 20‐6‐2 ACC DICE SEN SPE

Quantization 0.9469 0.6529 0.5147 0.9950

Quantization and error compensation 0.9533 0.7534 0.7198 0.9794

Accurate 0.9590 0.7843 0.7531 0.9820



TABLE 2 Performance comparison in different configuration on STARE

STARE ANN 8‐4‐2 ACC DICE SEN SPE

Quantization 0.9495 0.5870 0.5325 0.9886

Quantization and error compensation 0.9504 0.6602 0.6171 0.9810

Accurate 0.9573 0.7088 0.6734 0.9830

ANN 10‐6‐2 ACC DICE SEN SPE

Quantization 0.9394 0.6702 0.7335 0.9574

Quantization and error compensation 0.9440 0.6872 0.7538 0.9608

Accurate 0.9515 0.6975 0.7060 0.9735

ANN 20‐6‐2 ACC DICE SEN SPE

Quantization 0.9199 0.6225 0.7192 0.9377

Quantization and error compensation 0.9436 0.6853 0.7446 0.9610

Accurate 0.9432 0.6913 0.7632 0.9589

FIGURE 8 Visual results of ANN on DRIVE database [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 9 Visual results of ANN on STARE database [Colour figure can be viewed at wileyonlinelibrary.com]
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are shown, respectively. The simulation results are for the cases of 1) after quantization without error compensation, and
2) with error compensation, 3) without network quantization, and 4) ground truth. These results show that the visual
quality degradation due to quantization with error compensation is acceptable. Also, visual results show that the quan-
tization without any compensation creates bad effects on segmentation results.

Also, performance of the proposed 10‐6‐2 network architecture with error compensation is compared with related
work in Table 3 for the DRIVE and STARE image dataset. In literature20,22,24,26 retinal vessel segmentation is studied
considering hardware acceleration techniques. With respect to the software accuracy, the presented method may not
be the best approach. However with comparison with the computational complexity of the different methods, the
proposed method is simplified which is easy to hardware implementation.
4.3 | Complexity analysis

In this section, simplified network structure of segmentation system on DRIVE is analyzed from the complexity point of
view. Multiplication of weights in the input stage and computation of activation function impose most computational
complexity. In this paper network weights that are in the interval of −3 to 3 are quantized into 48 intervals with
0.125 steps. Weight coefficients are quantized in the form of numbers that their multiplications can be implemented
by shifts and additions. By considering a 7 × 7 image patch as neural network input, weights and required module for
computations in the input layer are listed in Table 4.

Since a 10‐6‐2 structure is used, in the input layer we have 10 neurons and 49 pixels are fed into each neuron. Hence,
we have 490 weights at the first layer. These weights are numbers within −3 to 3 interval. To form each weight a number

http://wileyonlinelibrary.com


TABLE 3 Performance comparison ANN 10–6‐2

DRIVE STARE

Method SEN SPE ACC SEN SPE ACC

Arguello et al24 0.7209 0.9758 0.9431 0.8951 0.9384 9448

Koukounis et al22 … … 0.9019 … … 0,9009

Koukounis et al26 … … 0.9240 … … 0.9240

Costantini et al20 … … 0.9261 … … …

Fraz et al4 0.7406 0.9807 0.9480 0.7548 0.7548 0.9534

Melinscak et al5 0.7276 … 0.9466 … … …

Fu et al14 0.7603 … 0.9523 0.7412 … 0.9585

Neto et al8 0.7806 0.9629 … 0.8344 0.9443 …

Roychowdhury et al9 0.7390 0.9780 0.9490 0.7320 0.9840 0.9560

Zhao et al10 0.7354 0.9789 0.9477 0.7187 0.9767 0.9509

Wang et al11 … … 0.9461 … … 0.9521

Lázár and Hajdu et al12 0.9458 0.9492

Azzopardi et al13 0.7655 0.9704 0.9442 0.7716 0.9701 0.9497

Proposed 0.8319 0.9545 0.9421 0.7538 0.9608 0.9440

TABLE 4 Weights in the first layer of ANN

Weight
Coefficients

Number of
Coefficients

Weight
Coefficients

Number of
Coefficients

Number of
Additions

Total # of
Adders

0 57 … … 0 0

0.125 41 −0.125 60 0 0

0.25 35 −0.25 43 0 0

0.375 22 −0.375 36 1 58

0.5 27 −0.5 26 0 0

0.625 23 −0.625 16 1 39

0.75 15 −0.75 13 1 28

0.875 8 −0.875 6 2 28

1 8 −1 9 0 0

1.125 7 −1.125 7 1 14

1.25 4 −1.25 4 1 8

1.375 3 −1.375 2 2 10

1.5 3 −1.5 1 1 4

1.625 1 −1.625 3 2 8

1.75 0 −1.75 0 2 4

1.875 0 −1.875 0 3 0

2 2 −2 0 0 0

2.125 1 −2.125 1 1 2

2.25 0 −2.25 1 1 1

2.375 0 −2.375 0 2 0

2.5 0 −2.5 2 1 2
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TABLE 4 (Continued)

Weight
Coefficients

Number of
Coefficients

Weight
Coefficients

Number of
Coefficients

Number of
Additions

Total # of
Adders

2.625 0 −2.625 0 2 0

2.75 0 −2.75 0 2 0

2.875 0 −2.875 0 3 0

3 0 −3 1 1 1

TABLE 5 Design summary of the proposed 10‐6‐2 ANN

Layer Name # of Multiplier # of Addition Activation Function Modules

Layer1 Simplified (ours) Non 207 integer 10 piecewise linear
Nonsimplified (floating point) 490 floating point 490 floating point 10 nonlinear

Layer2 Simplified (ours) Non 51 integer 6 piecewise linear
Nonsimplified (floating point) 60 floating point 60 floating point 6 nonlinear

Layer3 Simplified (ours) Non 18 integer 2 piecewise linear
Nonsimplified (floating point) 12 floating point 12 floating point 2 nonlinear

TABLE 6 Hardware implementation specification of the proposed method

Method Device # of Slice LUTs # of Bonded IOB Processing Time

Koukounis et al26 Xilinx FPGA (6XC65LX150T) 39625 of 92152 … 52 ms (on 768 × 584 image size)

Proposed method Xilinx FPGA (6slx75fgg676–3) 7981 of 46648 363 49 ms (on 512 × 512 image size)
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of additions and shifts are required. Considering the proposed configuration of the network structure, the required num-
ber of hardware modules for a common implementation is very high. For example, as it is represented in Table 4, sum of
all required add modules are 207, while for nonquantized implementation we need 490 floating point multipliers. An
analysis of other input weights in other layers can be used to determine all of the required hardware modules in other
layers.

Here, a 7 × 7 image block is fed into the input layer. The size of the input layer is a dominant factor affecting the
network complexity. In this regard in the proposed ANN architecture it is attempted to design a network with minimum
input size. Design summary of all required hardware modules in proposed simplified architecture versus nonsimplified
(floating point) are reported in Table 5. As it is illustrated in Table 5, number of arithmetic units and their structures are
reduced significantly. It is proved that ANN uses less clock cycle and area when a fixed point format is used versus float-
ing point.36 Moreover, in the proposed representation by using shift and add integer operation, multiplier modules are
removed.

The computational time of our segmentation method also makes it proper to retinal diagnostic system. On average, it
required 1.63 seconds to detect blood vessels for an image from DRIVE, and 1.92 seconds for one from STARE. The
method was implemented in MATLAB 2016a using a PC configured by an Intel(R) Core(TM) i7‐4790 CPU 4.00 GHz
and 32GB of RAM. By using a simple neural network with low computational complexity, the segmentation method
can be applied in commodity hardware devices.
4.4 | FPGA implementation

For identifying the performance of the proposed method on hardware, an FPGA implementation of segmentation system
on DRIVE is performed. Proposed architecture is described in VHDL and is implemented on a XILINX Spartan6 family
6slx75fgg676‐3 device. As illustrated in Table 6, low FPGA resources are used and an image with size 512 × 512 can be
processed in 49 ms. Hardware simulation results in Table 6 show the proposed hardware ANN structure can be
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implemented on hardware with acceptable area and speed. We have also compared our method with another method
that has a hardware implementation.
5 | CONCLUSION

Real‐time retinal vessel segmentation was proposed. The main goal was to make it implementable for medical devices for
cases such as intraocular procedures. This could be highly helpful for surgical monitoring systems and portable ophthal-
moscopy devices. For segmentation purposes a neural network, as a general learning tool, was designed with a limited
number of layers and neurons. All of its parts were simplified for real‐time implementation. Activation functions were
linearized and weights were quantized. It was observed that using only weight quantization could not lead to an
acceptable accuracy, and an error compensation method was hence proposed. Simulation results indicated that the
proposed real‐time method had simple architecture and loss of accuracy due to simplification was negligible. By using
the proposed low complexity structure its hardware architecture can efficiently be embedded in medical instruments.
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