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Abstract

This paper develops asymptotic approximations for kernel-based semiparametric estimators

under assumptions accommodating slower-than-usual rates of convergence of their nonpara-

metric ingredients. Our first main result is a distributional approximation for semiparametric

estimators that differs from existing approximations by accounting for a bias. This bias is non-

negligible in general, and therefore poses a challenge for inference. Our second main result

shows that some (but not all) nonparametric bootstrap distributional approximations provide

an automatic method of correcting for the bias. Our general theory is illustrated by means of

examples and its main finite sample implications are corroborated in a simulation study.
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1 Introduction

The importance of semiparametric estimators is widely recognized, yet the consensus opinion seems

to be that existing large sample results suffer from the serious shortcoming that the finite sample

distributions of these estimators are much more sensitive to the properties of their (slowly converg-

ing) nonparametric ingredients than conventional asymptotic theory would suggest. In other words,

the conventional approach to asymptotic analysis of semiparametric estimators, while delivering

very tractable distributional approximations, effectively ignores certain features of these estimators

that are important in samples of realistic size. Motivated by this observation, and with the ultimate

goal of developing more “robust” inference procedures based on semiparametric estimators, this

paper obtains two main results. (We employ a certain well-defined sense of “robustness” discussed

precisely below.)

First, we revisit the large sample properties of kernel-based semiparametric estimators and ob-

tain novel distributional approximations for members of this large class. By design, these approxi-

mations capture certain features of their nonparametric ingredient that are ignored by conventional

approximations. Moreover, as a consequence of their method of construction, our approximations

are demonstrably more robust than conventional ones in the sense that we allow for (but do not re-

quire) nonparametric ingredients whose precision is low enough (in an order of magnitude sense) to

render conventional distributional approximations invalid. Accordingly, our approximations lead to

an improved understanding of the finite and large sample properties of semiparametric estimators.

Relative to conventional approximations, the distinguishing feature of the distributional approx-

imations developed herein is that they explicitly account for the presence of a (possibly) first-order

bias effect, which emerges when the precision of the first-step nonparametric estimator is sufficiently

low. The presence of the bias unearthed by our first main result poses potentially serious challenges

for inference: for instance, the commonly used “estimator ± 1.96 × standard error” approach to

construct an approximate 95% confidence interval for a scalar parameter of interest is invalid in

the presence of a non-negligible bias. Nonetheless, our second main result shows that a carefully

implemented nonparametric bootstrap distributional approximation provides an automatic method

of bias correction and that the associated percentile confidence intervals are asymptotically valid

even in the presence of a non-negligible bias. In addition to being of theoretical interest, this result

therefore offers guidance for empirical work.

For the semiparametric estimators we consider, the precision of the nonparametric ingredi-

ent is governed by the bandwidth associated with the kernel-based first-step estimator. In the

development of our results, we use this bandwidth as a technical device to shed light on the in-

terplay between the distributional properties of the semiparametric estimator and the precision of

its nonparametric ingredient. In particular, because the rate of convergence of the nonparametric

ingredient is low when the bandwidth is “small”, the bandwidths for which our results offer new

insights are those that are small and we therefore use the term “small bandwidth asymptotics” to

highlight the distinguishing feature of the technical approach we take in this paper. This termi-

nology is consistent with that used in earlier work of ours, but in important respects the results
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obtained herein differ from those currently available in the literature.

Cattaneo, Crump, and Jansson (2010, 2014a) study the density-weighted average derivative

estimator of Powell, Stock, and Stoker (1989) and show that the distinguishing feature emerging

from the small bandwidth distributional approximation for that particular estimator is the presence

of a variance effect, while Cattaneo, Crump, and Jansson (2014b) show that the variance effect in

question cannot be corrected for by using the standard nonparametric bootstrap. In contrast, this

paper is concerned with a class of estimators for which the distinguishing feature of their small

bandwidth asymptotic distribution is the presence of a bias effect. A well-known member of the

class of estimators studied in this paper is the weighted average derivative estimator analyzed in

Cattaneo, Crump, and Jansson (2013) and, as a consequence, our first main result can be interpreted

as a nontrivial generalization of one of the results in that paper, since the results herein cover a large

class of two-step (possibly over-identified and non-differentiable) GMM settings. Furthermore, our

second main result offering bootstrap-based automatic bias reduction and valid inference appears

to be new in the literature.

At a conceptual level, our small bandwidth approach is very similar to the “dimension asymp-

totics” approach taken in the seminal work of Mammen (1989) and, although the technical details

are rather different, some of our main conclusions are similar to his. For a more detailed explana-

tion of the connection between small bandwidth asymptotics and dimension asymptotics, see Enno

Mammen’s discussion of Cattaneo, Crump, and Jansson (2013). The approach we take is also sim-

ilar to the approach taken by Abadie and Imbens (2006, 2008), but our main conclusion regarding

the bootstrap (and subsampling) is quite different from that of Abadie and Imbens (2008).

The literature on two-step semiparametric estimators is vast, but our first main result differs

from most existing results in at least two respects. First, due to the presence of a bias, our distri-

butional conclusions differ from those obtained in the work surveyed by Andrews (1994b), Newey

and McFadden (1994), Chen (2007), and Ichimura and Todd (2007). Second, a seemingly novel

technical feature of our work is that reliance on a heretofore ubiquitous stochastic equicontinuity

condition is avoided and that avoiding such condition is necessary, in general, in order for the bias

we highlight to be non-negligible; that is, our generalization of existing distributional conclusions

cannot be accomplished without avoiding reliance on a stochastic equicontinuity condition that has

featured prominently in earlier work.

Our second main result concerns the bootstrap. Previous work on bootstrap validity for gen-

eral classes of semiparametric models under standard conditions includes Chen, Linton, and van

Keilegom (2003) and Cheng and Huang (2010). Our result is qualitatively similar to the bootstrap

consistency results of these papers, but in at least two respects our results broaden the scope of

resampling-based inference in a possibly surprising way. First, we show that some (but not all)

standard bootstrap-based distributional approximations deliver an automatic bias correction. Sec-

ond, whereas all previous bootstrap consistency results have been obtained for settings in which

subsampling-based inference procedures are also valid, the bias effect that is central to our work

turns out to render subsampling-based inference procedures invalid in general. To the extent that
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subsampling can be regarded as a “regularized” version of the bootstrap (e.g., Bickel and Li, 2006),

it therefore seems surprising that the standard nonparametric bootstrap in its simplest form turns

out to be asymptotically valid in the setting of this paper.

Other work related to ours includes Chernozhukov, Escanciano, Ichimura, and Newey (2016)

and Robins, Li, Tchetgen, and van der Vaart (2008). When specialized to kernel-based estima-

tors, the local robustness property discussed by Chernozhukov, Escanciano, Ichimura, and Newey

(2016) can be interpreted as an application of “large bandwidth asymptotics” and their results are

complementary to ours in the sense that they ensure robustness to “large” bandwidths by paying

more careful attention to the smoothing bias that our theory is largely silent about. The work on

higher-order influence functions by Robins, Li, Tchetgen, and van der Vaart (2008) is similar to

ours at least insofar as its uses higher-order U -statistics and focuses on settings where nonpara-

metric ingredients converge at slow rates, but unlike us they focus on problems for which optimal

interval estimates exhibit a slower-than-usual rate of convergence and even when specialized to the

average density example studied below the results obtained using their approach (e.g., Robins, Li,

Tchetgen, and van der Vaart, 2016; Robins, Li, Mukherjee, Tchetgen, and van der Vaart, 2017)

appears to be quite different from ours.

The paper proceeds as follows. Section 2 introduces the setup and gives our first main result.

Section 3 gives an in-depth discussion of that result, including both connections to previous the-

oretical work on semiparametrics and implications for empirical work employing semiparametric

inference procedures. Section 4 presents our second main result, a bootstrap analog of the main

result from Section 2. Section 5 is concerned with generic verification of the high-level assumptions

under which our main results are obtained, while Section 6 illustrates how the latter sufficient

conditions for our high-level assumptions can be verified in the context of the specific example of

inverse probability weighting (IPW) estimation with possibly non-differentiable moment functions.

Finally, Section 7 offers simulation evidence, and Section 8 concludes.

Three distinct examples are considered in the paper. The first of these is mainly pedagogical

and serves the dual purposes of illustrating our main results in a canonical setting while at the same

time demonstrating the fact that the complications we highlight are present even in the simplest

of examples. Our second example, the IPW example already mentioned, is more substantive and a

representative member of a class of estimators which is very popular in a variety of settings in ap-

plied work, including program evaluation, missing data, measurement error, and data combination.

Finally, the simulation results make use of an estimator which is easy to compute, yet somewhat

challenging to analyze and base inference on, namely a so-called “Hit Rate” estimator. Technical

details for all three examples are provided in the supplemental appendix, which also contains some

additional technical results that may be of independent interest.
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2 Kernel-Based Semiparametric Estimators

Suppose θ0 ∈ Θ ⊆ Rdθ is an estimand representable as the solution (with respect to θ ∈ Θ) to an

equation of the form

G(θ, γ0) = 0, G(θ, γ) = Eg(z, θ, γ),

where g is a known functional, z is a random vector, and γ0 is an unknown function. Letting

z1, . . . , zn denote i.i.d. copies of z and assuming that γ̂n is a nonparametric estimator of γ0, a

natural estimator θ̂n of θ0 is given by a minimizer (with respect to θ ∈ Θ) of

Ĝn(θ, γ̂n)′ŴnĜn(θ, γ̂n), Ĝn(θ, γ) =
1
n

n∑

i=1

g(zi, θ, γ),

where Ŵn is some (possibly random) symmetric, positive semi-definite matrix.

Estimators of this kind, often referred to as semiparametric two-step estimators, are widely

used in practice and have received considerable attention in the literature. A common feature of

existing distributional results for semiparametric two-step estimators, including those surveyed by

Andrews (1994b), Newey and McFadden (1994), Chen (2007) and Ichimura and Todd (2007), is

that they are developed under assumptions ensuring that the limiting distribution of θ̂n depends

on γ̂n only through the estimand γ0. To be specific, existing asymptotic results are of the form

√
n(θ̂n − θ0) N (0, Σ0), (1)

where  denotes weak convergence and where it follows from Newey (1994a, Proposition 1) that

the asymptotic variance Σ0 depends on γ̂n only through its probability limit (under general mis-

specification) and not on the method used to construct γ̂n (e.g., kernels, local polynomials, or

series) and/or on the value of the “tuning” parameter(s) associated with the chosen method (e.g.,

the kernel and the bandwidth for kernel estimators). While the simplicity of the limiting distribu-

tion in (1) is desirable insofar as it facilitates inference on θ0, the rather extreme insensitivity of

this distributional approximation with respect to the specifics of the nuisance parameter estimator

γ̂n is arguably unsatisfactory because folklore and simulation evidence suggests that in samples of

realistic size the distributional properties of θ̂n do in fact depend somewhat heavily on the specifics

of γ̂n.

The insensitivity of the distributional conclusion (1) with respect to the specifics of the first-step

estimator γ̂n is driven in large part by assumptions ensuring that γ̂n converges sufficiently rapidly

to γ0. To be specific, assumptions of the form γ̂n − γ0 = oP(n−1/4) are ubiquitous in the literature

on semiparametric two-step estimators and the simplicity of (1) is largely due to these convergence

rate assumptions. As a means to the end of developing more reliable distributional approximations

for θ̂n, this paper allows for (but does not require) milder-than-usual convergence rate requirements

on γ̂n as a theoretical device to obtain distributional approximations for semiparametric estima-

tors that have the intuitive appeal of featuring an explicit dependence (even asymptotically) on
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some of the specific features underlying the estimator γ̂n. Therefore, unlike conventional approx-

imations currently available in the literature, our distribution theory for two-step semiparametric

estimators is able to explicitly account for the effect of the first-step estimator on the distributional

approximation. More specifically, we obtain results of the form

√
n(θ̂n − θ0 −Bn) N (0, Σ0), (2)

where Σ0 is the usual asymptotic variance of a semiparametric estimator (i.e., the same as in (1))

and Bn is a non-random “bias” term. Because the distribution theory developed herein is consis-

tent with conventional results when the latter are applicable, the bias Bn in (2) is asymptotically

negligible (i.e., o(n−1/2)) under conventional assumptions, but in general Bn turns out to be non-

negligible under seemingly mild departures from those assumptions. Moreover, the magnitude and

functional form of Bn turns out to depend on the specifics of the estimator γ̂n used in the construc-

tion of θ̂n. In other words, we find that although the asymptotic variance of θ̂n remains insensitive

with respect to the type of first step nonparametric estimator also under our (weaker) assumptions,

the specific structure of γ̂n does exert a first-order effect on θ̂n through Bn when milder-than-usual

convergence rate requirements are placed on γ̂n.

The result (2) follows from three easy-to-interpret high-level conditions in the important special

case where the first-step estimator γ̂n is kernel-based in the sense that

γ̂n = (γ̂n,1, . . . , γ̂n,dγ
)′, γ̂n,k(z, θ) =

1
n

n∑

j=1

wk(zj , θ)κn,k[xk(z, θ) − xk(zj , θ)], (3)

where κn,k(x) = κk(x/hn,k)/hdk
n,k, hn,k = o(1) is a bandwidth, κk is a (kernel-like) function, and wk

and xk are known functions of dimensions one and dk, respectively. Nonparametric estimators that

can be written in the form (3) include kernel estimators (e.g., of the form discussed by Newey and

McFadden, 1994, Section 8.3) and local polynomial regression estimators (e.g., Fan and Gijbels,

1997). On the other hand, series estimators are not of this form, and we therefore use the term

“kernel-based” when referring to the estimator in (3).

Our first high-level condition is the following.

Condition AL (Approximate Linearity) For some non-random Jn and J0, Jn → J0 and

θ̂n − θ0 = JnĜn(θ0, γ̂n) + oP(n
−1/2).

Condition AL is referred to as “approximate linearity” in recognition of the fact that the condi-

tion effectively approximates Ĝn(θ, γ) with a function that is linear/affine with respect to θ. In par-

ticular, Condition AL is simply a representation, the displayed equality holding with Jn = J0 = Idθ

and without any oP(n−1/2) term, in the important special case where g(z, θ, γ) = g(z, 0, γ)−θ and θ̂n

is defined as the solution to Ĝn(θ, γ̂n) = 0. More generally, standard heuristics suggest that, under

suitable regularity conditions, Condition AL will hold with Jn = J0 = −(Ġ′
0W0Ġ0)−1Ġ′

0W0, where
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Ġ0 = ∂G(θ, γ0)/∂θ′
∣
∣
θ=θ0

and where W0 is the probability limit of Ŵn. Lemma 1 below gives condi-

tions under which these heuristics can be made rigorous also when γ̂n exhibits a slower-than-usual

rate of convergence.

Under Condition AL, the large sample properties of θ̂n are governed by

Ĝn(θ0, γ̂n) =
1
n

n∑

i=1

g0(zi, γ̂n), g0(z, γ) = g(z, θ0, γ).

Analyzing this object without assuming a faster-than-n1/4 rate of convergence on the part of γ̂n

turns out to be challenging partly because the standard method of accounting for the depen-

dence/overlap between the arguments zi and γ̂n of the summand g0(zi, γ̂n) turns out to be invalid

when γ̂n converges at a slower-than-usual rate. Specifically, as further discussed and exemplified in

Section 3.1, it turns out that a commonly employed stochastic equicontinuity condition typically

requires (and/or is applicable only when one assumes) that the rate of convergence of γ̂n exceeds

n1/4.

Analyzing Ĝn(θ0, γ̂n) without imposing further structure on g and/or relying on stochastic

equicontinuity nevertheless turns out to be feasible when γ̂n is kernel-based, the reason being that

in this case Ĝn(θ0, γ̂n) admits a representation of the form

Ĝn(θ0, γ̂n) =
1
n

n∑

i=1

gn(zi, γ̂
(i)
n ), (4)

where gn is some function and where

γ̂(i)
n = (γ̂(i)

n,1, . . . , γ̂
(i)
n,dγ

)′, γ̂
(i)
n,k(z, θ) =

1
n − 1

n∑

j=1,j 6=i

wk(zj , θ)κn,k[xk(z, θ) − xk(zj , θ)],

is the ith “leave-one-out” estimator of γ0. To be specific, the fact that γ̂n is kernel-based implies

that each γ̂n,k is additively separable between zi and {zj : j 6= i} :

γ̂n,k(z, θ) = n−1γ̂i
n,k(z, θ) + (1 − n−1)γ̂(i)

n,k(z, θ),

where

γ̂i
n = (γ̂i

n,1, . . . , γ̂
i
n,dγ

)′, γ̂i
n,k(z, θ) = wk(zi, θ)κn,k[xk(z, θ) − xk(zi, θ)].

As a consequence, the function

gn(zi, γ) = g0(zi, n
−1γ̂i

n + (1 − n−1)γ)

satisfies gn(zi, γ̂
(i)
n ) = g0(zi, γ̂n), implying in particular that the representation (4) is valid.

In addition to delivering (4), the assumption that γ̂n is kernel-based makes it possible to for-

mulate primitive conditions under which the following high-level assumption is satisfied.
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Condition AS (Asymptotic Separability) For some ḡn,

1
√

n

n∑

i=1

[gn(zi, γ̂
(i)
n ) − gn(zi, γn)] =

1
√

n

n∑

i=1

[ḡn(zi, γ̂
(i)
n ) − ḡn(zi, γn)] + oP(1),

=
1
√

n

n∑

i=1

[Ḡn(γ̂(i)
n ) − Ḡn(γn)] + oP(1),

where γn(∙) = Eγ̂n(∙) and Ḡn(γ) = Eḡn(z, γ).

The main part of Condition AS is the second equality and the function ḡn is introduced to

facilitate verification of that part (and of Condition AN below). Indeed, while the first part of

Condition AS holds (without any oP(1) term) when ḡn = gn, the second part of Condition AS

is considerably easier to verify when ḡn(z, ∙) is a low-order polynomial approximation to gn(z, ∙).

When the rate of convergence of γ̂n exceeds n1/6 (but not necessarily n1/4), the simplest polynomial

approximation to gn(z, ∙) satisfying the first part of Condition AS is usually a quadratic one of the

form

ḡn(z, γ) = gn(z, γn) + gn,γ(z)[γ − γn] +
1
2
gn,γγ(z)[γ − γn, γ − γn], (5)

where gn,γ(z)[∙] and gn,γγ(z)[∙, ∙] are linear and bilinear functionals, respectively. Conditions under

which the second part of Condition AS is satisfied when ḡn is of the form (5) will be given in Lemma

2 below.

Condition AS implies that the separable (between zi and γ̂
(i)
n ) approximation

gn(zi, γ̂
(i)
n ) ≈ gn(zi, γn) + Ḡn(γ̂(i)

n ) − Ḡn(γn)

to gn(zi, γ̂
(i)
n ) is asymptotically valid in the sense that it satisfies

√
nĜn(θ0, γ̂n) =

1
√

n

n∑

i=1

gn(zi, γ̂
(i)
n ) =

1
√

n

n∑

i=1

[gn(zi, γn) + Ḡn(γ̂(i)
n ) − Ḡn(γn)] + oP(1). (6)

Because averages of terms (such as gn(zi, γn) and Ḡn(γ̂(i)
n )− Ḡn(γn)) that each depend on one, but

not both, of zi and γ̂
(i)
n are much easier to analyze than averages of terms (such as gn(zi, γ̂

(i)
n )) that

depend on both zi and γ̂
(i)
n , Condition AS therefore greatly simplifies the analysis of Ĝn(θ0, γ̂n).

In addition to the notational nuisance of having to employ additional sub- and super-scripts

in many places, a more substantive complication that must be addressed when proceeding under

Condition AS is that it turns out that the leading term in (6) has a nonnegligible mean in general.

Whereas the limiting distribution of
√

nĜn(θ0, γ̂n) is normal with mean zero under conventional

asymptotics, the simplest asymptotic normality result about the leading term in (6) that one can

hope for more generally is therefore the following, primitive sufficient conditions for which will be

given in Lemma 3 below.
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Condition AN (Asymptotic Normality) For some non-random Bn and Ω0,

1
√

n

n∑

i=1

[gn(zi, γn) + Ḡn(γ̂(i)
n ) − Ḡn(γn) − Bn] N (0, Ω0).

Combining Conditions AL, AS, and AN, we obtain (2). For later reference, we state this

observation as a theorem.

Theorem 1 If γ̂n is kernel-based and if Conditions AL, AS, and AN are satisfied, then (2) holds

with Σ0 = J0Ω0J ′
0 and Bn = JnBn.

3 Discussion of Theorem 1

Theorem 1 differs in three important ways from existing “master theorems” concerning the asymp-

totic distribution of semiparametric two-step estimators. First, although the high-level assumptions

of Theorem 1 look remarkably similar to their natural counterparts in the existing literature, our

Assumption AS differs in a subtle, yet crucial, way from a heretofore ubiquitous stochastic equicon-

tinuity assumption. Second, Theorem 1 sheds new light on the bias properties of semiparametric

two-step estimators. Finally, and perhaps most interestingly from the perspective of empirical

practice, Theorem 1 has important implications for inference. The following subsections discuss

these three differences in turn and illustrates them by means of the following canonical example.

Example 1: Average Density. Suppose z1, . . . , zn are i.i.d. copies of a continuously distributed

random vector z ∈ Rd with a density γ0. Then a kernel-based estimator of θ0 = Eγ0(z), the average

density, is given by

θ̂
AD

n =
1
n

n∑

i=1

γ̂n(zi), γ̂n(z) =
1
n

n∑

j=1

Kn(z − zj),

where Kn(z) = K(z/hn)/hd
n, hn is a bandwidth, and K is a kernel. The estimator θ̂

AD

n can be

interpreted as the solution to Ĝn(θ, γ̂n) = 0, where

g(z, θ, γ) = gAD(z, θ, γ) = γ(z) − θ.

Under standard regularity conditions (e.g., those given in Section SA.1 of the Supplementary Ap-

pendix), θ̂
AD

n can be analyzed using the results of this paper, as can the related estimators θ̂
ISD

n and

θ̂
LR

n introduced below. �

3.1 Asymptotics without Stochastic Equicontinuity

In the existing semiparametrics literature, the analysis of objects such as Ĝn(θ0, γ̂n) invariably

proceeds under an assumption of the following kind.
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Condition SE (Stochastic Equicontinuity) For some ḡ0,

1
√

n

n∑

i=1

[g0(zi, γ̂n) − g0(zi, γ0)] =
1
√

n

n∑

i=1

[ḡ0(zi, γ̂n) − ḡ0(zi, γ0)] + oP(1),

=
1
√

n

n∑

i=1

[Ḡ0(γ̂n) − Ḡ0(γ0)] + oP(1),

where Ḡ0(γ) = Eḡ0(z, γ).

Like Condition AS, Condition SE is an “asymptotic separability” condition insofar as it implies

that the separable (between zi and γ̂n) approximation

g0(zi, γ̂n) ≈ g0(zi, γ0) + Ḡ0(γ̂n) − Ḡ0(γ0)

to g0(zi, γ̂n) is asymptotically valid in the sense that

√
nĜn(θ0, γ̂n) =

1
√

n

n∑

i=1

g0(zi, γ̂n) =
1
√

n

n∑

i=1

[g0(zi, γ0) + Ḡ0(γ̂n) − Ḡ0(γ0)] + oP(1).

We refer to the condition using the label “SE” because the second (and main) part of the condition

reduces to well known stochastic equicontinuity conditions for suitable choices of ḡ0. In particular,

the second part of Condition SE reduces to Assumption 5.2 of Newey (1994a) when ḡ0(z, γ) is linear

in γ and to (2.8) of Andrews (1994a) and (3.34) of Andrews (1994b) when ḡ0 = g0.

On the surface, Condition AS might appear to be nothing more than a “leave-one-out” coun-

terpart of Condition SE. Crucially, however, the primitive conditions required to verify the second

parts of AS and SE can often differ significantly.

Example 1 (continued). Turning first to Condition AS and setting ḡADn = gADn , the first part

of that condition is automatically satisfied and the second part becomes

1
√

n

n∑

i=1

[γ̂(i)
n (zi) − 2γn(zi) + θn] = oP(1),

where

γ̂(i)
n (z) =

1
n − 1

n∑

j=1,j 6=i

Kn(z − zj), γn(∙) = Eγ̂n(∙), θn = Eγn(z).

It follows from a simple variance calculation that Condition AS is satisfied if nhd
n → ∞.

On the other hand, setting ḡAD0 = gAD0 the first part of Condition SE is automatically satisfied

and the second part becomes

1
√

n

n∑

i=1

[γ̂n(zi) − γn(zi) − γ0(zi) + θ0] = oP(1).
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It follows from a direct calculation that if nhd
n → ∞, then

1
√

n

n∑

i=1

[γ̂n(zi) − γn(zi) − γ0(zi) + θ0] =
1

√
nh2d

n

K(0) + oP(1),

so Condition SE requires the stronger condition nh2d
n → ∞ unless K(0) = 0.

To interpret the bandwidth requirements nhd
n → ∞ and nh2d

n → ∞ associated with Conditions

AS and SE in this example it is helpful to recall that the (pointwise) rate of convergence of γ̂n −γn

is
√

nhd
n; that is, γ̂n(z) − γn(z) = OP(1/

√
nhd

n) for any z ∈ Rd. The conditions nhd
n → ∞ and

nh2d
n → ∞ therefore correspond loosely to the requirements of consistency and faster-than-n1/4-

consistency, respectively, on the part of the nonparametric ingredient γ̂n. �

Although exceedingly simple in some respects, the average density example is representative

in the sense that while the second part of Condition AS typically holds whenever γ̂n is consistent

(in a suitable sense), the second part of Condition SE typically requires γ̂n to be faster-than-

n1/4-consistent. As a consequence, reliance on Condition SE must be avoided, in general, when

accommodating nonparametric components whose convergence rate is no faster than n1/4. More

importantly, perhaps, the average density example illustrates the fact that reliance on Condition SE

must be avoided, in general, when the goal is to generalize (1), as the term K(0)/
√

nhd
n quantifying

the departure from Condition SE turns out to be the main source of the bias of the average density

estimator.

In other words, in addition to being an interesting technical challenge that can be motivated

by the desire to accommodate nonparametric components whose convergence rate is no faster than

n1/4, relaxing Condition SE is of fundamental importance when the goal is to obtain more refined

distributional approximations than (1). We are unaware of previous work pointing out the need

to, let alone providing a solution to the question of how to, avoid reliance on Condition SE (or the

like) when generalizing (1) and/or accommodating nonparametric components whose convergence

rate is no faster than n1/4. Our proposed Condition AS is arguably an attractive alternative to

Condition SE because it inherits one of the main benefits of the conventional Condition SE (namely,

“asymptotic separability”) without imposing unduly strong convergence rate requirements on γ̂n.

A drawback of Condition AS in its present formulation is that γ̂n is assumed to be kernel-based.

Although doing so is beyond the scope of the present paper, it would be of interest to relax that

assumption.

We are aware of only two exceptions to the rule that Condition SE requires γ̂n to be faster-than-

n1/4-consistent. The first of these exceptions occurs when g0(zi, γ) and gn(zi, γ) coincide (apart

from a non-important factor of proportionality). An important example of this phenomenon is

provided by the “leave in” version of Powell, Stock, and Stoker’s (1989) estimator: As pointed out

in their footnote 6, that estimator satisfies g0(zi, γ) = (1−n−1)gn(zi, γ) because symmetric kernels

satisfy K ′(0) = 0. The other exception occurs when g0(z, γ) is already additively separable between

10



z and γ, as is the case for the consumer surplus estimator of Hausman and Newey (1995) where

the associated g0(z, γ) does not depend on z at all. Both exceptions can be illustrated by means

of Example 1.

Example 1 (continued). The function gAD0 satisfies gAD0 (zi, γ) = (1−n−1)gADn (zi, γ) when K(0) = 0,

so in this case Condition SE holds whenever Condition AS does.

An alternative estimator of θ0 =
∫
Rd γ0(u)2du is the integrated squared density estimator

θ̂
ISD

n =
∫

Rd

γ̂n(u)2du,

which can be interpreted as the solution to Ĝn(θ, γ̂n) = 0, where

g(z, θ, γ) = gISD(z, θ, γ) =
∫

Rd

γ(u)2du − θ.

Because gISD0 (z, γ) =
∫
Rd γ(u)2du − θ0 does not even depend on z, (asymptotic) “separability”

between z and γ is of course automatic and, indeed, both parts of Condition SE are satisfied

(without any oP(1) terms) when ḡISD0 = gISD0 . (Setting ḡISDn = gISDn and applying Lemma 2 below,

Condition AS can also be shown to hold provided nhd
n → ∞.) �

3.2 Bias Properties

Under the conditions of Theorem 1, the main determinant of the bias Bn in (2) is Bn of Condition

AN. When Condition AS is satisfied with a ḡn of the form (5), the functional Ḡn is also quadratic.

Indeed, defining

Gn(γ) = Egn(z, γ), Gn,γ [η] = Egn,γ(z)[η], Gn,γγ [η, ϕ] = Egn,γγ(z)[η, ϕ],

we have

Ḡn(γ) = Gn(γn) + Gn,γ [γ − γn] +
1
2
Gn,γγ [γ − γn, γ − γn].

Because γ̂i,n − γn has mean zero, the leading term in (6) therefore satisfies

E[gn(zi, γn) + Ḡn(γ̂(i)
n ) − Ḡn(γn)] = BS

n + BLI
n + BNL

n ,

where

BS
n = G0(γn), G0(γ) = Eg0(z, γ),

is a “smoothing” bias term, while

BLI
n = Gn(γn) − G0(γn) and BNL

n =
1
2n
EGn,γγ [γ̂i

n − γn, γ̂i
n − γn]

11



are generic versions of what Cattaneo, Crump, and Jansson (2013) refer to as “leave in” and

“nonlinearity” bias terms, respectively.

The smoothing bias BS
n is familiar from the conventional theory and we have nothing new to

say about it, but because one of our main results (namely, Theorem 2 below) effectively requires

the smoothing bias to be asymptotically negligible (i.e., BS
n = o(n−1/2)) we give a brief discussion

of sufficient conditions for this to occur. In most cases the magnitude of BS
n coincides with that of

the smoothing bias γn − γ0 of the first-step estimator γ̂n, leading to the familiar conclusion that

undersmoothing is required in order to achieve BS
n = o(n−1/2). An exception to this rule might occur

when the moment function g(z, θ, γ) is “locally robust” in the sense of Chernozhukov, Escanciano,

Ichimura, and Newey (2016), as θ̂n then has the “small bias property” discussed by Newey, Hsieh,

and Robins (2004); i.e., the magnitude of BS
n is smaller than that of γn − γ0.

Example 1 (continued). The bias γn − γ0 of γ̂n satisfies
∫
Rd [γn(u) − γ0(u)]2du = O(h2P

n ),

as hn → 0, where P is the order of the kernel K. As a consequence,

GAD
0 (γn) =

∫

Rd

[γn(u) − γ0(u)]γ0(u)du = O(hP
n ),

so the smoothing bias associated with θ̂
AD

n is asymptotically negligible provided nh2P
n → 0, a

condition which requires undersmoothing because the MSE-optimal bandwidth for γ̂n satisfies

hn ∼ n−1/(2P+d).

The condition for the smoothing bias associated with θ̂
ISD

n to be asymptotically negligible is the

same as that for θ̂
AD

n , the reason being that

GISD
0 (γn) = 2GAD

0 (γn) +
∫

Rd

[γn(u) − γ0(u)]2du = 2GAD
0 (γn) + O(h2P

n ).

On the other hand, the estimator

θ̂
LR

n = 2θ̂
AD

n − θ̂
ISD

n =
2
n

n∑

i=1

γ̂n(zi) −
∫

Rd

γ̂n(u)2du

has the small bias property, as it can be interpreted as the solution to Ĝn(θ, γ̂n) = 0 with

g(z, θ, γ) = gLR(z, θ, γ) = 2gAD(z, θ, γ) − gISD(z, θ, γ) = 2γ(z) −
∫

Rd

γ(u)2du − θ,

where gLR is locally robust because it follows from the foregoing that

GLR
0 (γn) = −

∫

Rd

[γn(u) − γ0(u)]2du = O(h2P
n ).

As a consequence, the smoothing bias associated with θ̂
LR

n is asymptotically negligible provided

nh4P
n → 0, a condition which does not require undersmoothing when P > d/2. �
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The leave-in and nonlinearity biases are usually asymptotically negligible whenever the rate of

convergence of γ̂n exceeds n1/4. As a consequence, these biases play no role in the conventional

theory. In contrast, it turns out that one or both of BLI
n and BNL

n will typically be nonnegligible

when the rate of convergence of γ̂n is no faster than n1/4. To be specific, when γ̂n − γn 6= oP(n1/4)

one typically finds that BLI
n is nonnegligible whenever Condition SE fails while BNL

n is nonnegligible

whenever g0(z, γ) is nonlinear in γ.

Example 1 (continued). Because

GAD
n (γn) − GAD

0 (γn) =
1

nhd
n

K(0) + O(n−1),

the leave-in bias associated with θ̂
AD

n is nonnegligible unless either nh2d
n → ∞ or K(0) = 0, the

former being the condition under which the rate of convergence of γ̂n exceeds n1/4 and the latter

being the condition under which Condition SE is satisfied by gAD. On the other hand, because

gAD0 (z, γ) = γ(z) − θ0 is linear in γ, GAD
n,γγ [∙, ∙] = 0 and the nonlinearity bias associated with θ̂

AD

n is

zero. In summary, we therefore find that if nh2P
n → 0 and if nhd

n → ∞, then

E[gADn (zi, γn) + ḠAD
n (γ̂(i)

n ) − ḠAD
n (γn)] = BAD

n + o(n−1/2), BAD
n =

1
nhd

n

K(0).

When nhd
n → ∞, Condition SE is satisfied by gISD and the leave-in bias associated with θ̂

ISD

n is

negligible because

GISD
n (γn) − GISD

0 (γn) = O(n−1).

On the other hand, because gISD0 (z, γ) =
∫
Rd γ(u)2du − θ0 is nonlinear in γ, the nonlinearity bias

associated with θ̂
ISD

n is nonzero. Indeed,

EGISD
n,γγ [γ̂i

n − γn, γ̂i
n − γn] =

2
hd

n

∫

Rd

∫

Rd

K (v)2 γ0(u − vhn)dudv + O(1 + n−1h−d
n ),

so the nonlinearity bias associated with θ̂
ISD

n is nonnegligible unless nh2d
n → ∞. In summary, we

therefore find that if nh2P
n → 0 and if nhd

n → ∞, then

E[gISDn (zi, γn) + ḠISD
n (γ̂(i)

n ) − ḠISD
n (γn)] = BISD

n + o(n−1/2),

where

BISD
n =

1
nhd

n

∫

Rd

∫

Rd

K (v)2 γ0(u − vhn)dudv.

Finally, being a linear combination of θ̂
AD

n and θ̂
ISD

n , the locally robust estimator θ̂
LR

n has non-

negligible leave-in and nonlinearity biases associated with it unless nh2d
n → ∞. To be specific, it
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follows from the foregoing that if nh4P
n → 0 and if nhd

n → ∞, then

E[gLRn (zi, γn) + ḠLR
n (γ̂(i)

n ) − ḠLR
n (γn)] = BLR

n + o(n−1/2),

where

BLR
n =

1
nhd

n

[2K(0) −
∫

Rd

∫

Rd

K (v)2 γ0(u − vhn)dudv]. �

3.3 Inference

Because (2) generalizes to the familiar result (1) by accommodating Bn 6= 0, it is natural to

investigate whether inference procedures designed to be valid under (1) remain valid also when

Bn 6= 0 in (2). For the purposes of that investigation the remainder of this section assumes for

specificity, but without loss of relevance, that dθ = 1 (i.e., that θ0 is scalar) and that Σ0 is positive.

When θ̂n is assumed to satisfy (1) it is common to base inference on a distributional approxi-

mation of the form
√

n(θ̂n − θ0)∼̇N (0, Σ̂n), where Σ̂n is some estimator of Σ0. If Σ̂n is consistent,

then the distributional approximation is itself consistent in the sense that

sup
t∈Rdθ

∣
∣
∣P[

√
n(θ̂n − θ0) ≤ t] − P[N (0, Σ̂n) ≤ t]

∣
∣
∣ = o(1),

a fact which in turn implies for instance that the asymptotic coverage probability of the following

“Normal” confidence interval for θ0 is 1 − α :

CINn,1−α =
[
θ̂n − q̂n,1−α/2 , θ̂n − q̂n,α/2

]
,

where q̂n,α = inf{q ∈ R : P[N (0, Σ̂n) ≤ q] ≥ α} = Φ−1(α)
√

Σ̂n/n, with Φ(∙) the standard normal

cdf. As it turns out, replacing (1) with (2) severely affects the properties of the confidence interval

CINn,1−α. Indeed, if Σ̂n is consistent and if (2) holds, then it can be shown that

P[θ0 ∈ CINn,1−α] = Φ
[
Φ−1(1 − α/2) −

√
nBn/

√
Σ0

]
− Φ

[
Φ−1(α/2) −

√
nBn/

√
Σ0

]
+ o(1),

implying in particular that CINn,1−α is asymptotically valid if and only if Bn = o(n−1/2).

A conceptually distinct distributional approximation is provided by the bootstrap. In standard

notation, the bootstrap approximation to the cdf of
√

n(θ̂n − θ0) is given by P∗[
√

n(θ̂
∗
n − θ̂n) ≤ ∙],

where θ̂
∗
n denotes a bootstrap analogue of θ̂n and P∗ denotes a probability computed under the

bootstrap distribution conditional on the data. Assuming (1) holds, it is well understood that

asymptotically valid inference procedures can be based on the bootstrap whenever the bootstrap

consistency condition

sup
t∈Rdθ

∣
∣
∣P[

√
n(θ̂n − θ0) ≤ t] − P∗[

√
n(θ̂

∗
n − θ̂n) ≤ t]

∣
∣
∣ = oP(1) (7)

is satisfied.
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For instance, (7) ensures that certain bootstrap-based variance estimators are consistent under

(1). As a consequence, a fully “automatic” (in the sense that it can be implemented without even

characterizing Σ0) version of CINn,1−α can be constructed by basing the variance estimator on the

bootstrap, but because bootstrap-based variance estimators are consistent also under (2) (when (7)

holds) the corresponding interval CINn,1−α is asymptotically invalid under (2).

Three other well-known examples of bootstrap-based confidence intervals for θ0 with asymptotic

coverage probability 1 − α under (1) and (7) are the “Efron” interval

CIEn,1−α =
[
θ̂n + q∗n,α/2 , θ̂n + q∗n,1−α/2

]
,

the “percentile” interval

CIPn,1−α =
[
θ̂n − q∗n,1−α/2 , θ̂n − q∗n,α/2

]
,

and the “symmetric” interval

CISn,1−α =
[
θ̂n − Q∗

n,1−α , θ̂n + Q∗
n,1−α

]
,

where q∗n,α = inf{q ∈ R : P∗[(θ̂
∗
n − θ̂n) ≤ q] ≥ α} and Q∗

n,α = inf{Q ∈ R : P∗[|θ̂
∗
n − θ̂n| ≤ Q] ≥ α}.

Like CINn,1−α, the interval CIEn,1−α is typically asymptotically invalid under (2). Indeed, if (2)

and (7) hold, then it can be shown that

P[θ0 ∈ CIEn,1−α] = Φ
[
Φ−1(1 − α/2) − 2

√
nBn/

√
Σ0

]
− Φ

[
Φ−1(α/2) − 2

√
nBn/

√
Σ0

]
+ o(1),

implying in particular that CIEn,1−α is asymptotically invalid when Bn 6= o(n−1/2), being even more

sensitive to the bias Bn than CINn,1−α. On the other hand, it can be shown that (2) and (7) are

sufficient to guarantee asymptotic validity of the intervals CIPn,1−α and CISn,1−α; that is, if (2) and

(7) hold, then

P[θ0 ∈ CIPn,1−α] → 1 − α and P[θ0 ∈ CISn,1−α] → 1 − α.

Specializing to the “knife-edge” case where Bn ∼ n−1/2, our main qualitative findings can be

summarized as follows.

Proposition 1 Suppose (2) holds with Bn = B/
√

n + o(n−1/2) for some B 6= 0. If Σ̂n →P Σ0 and

if (7) holds, then

lim
n→∞

P[θ0 ∈ CIEn,1−α] < lim
n→∞

P[θ0 ∈ CINn,1−α] < lim
n→∞

P[θ0 ∈ CIPn,1−α] = lim
n→∞

P[θ0 ∈ CISn,1−α] = 1 − α.

The main constructive message of Proposition 1 and the discussion preceding it is that replacing

(1) with (2) would not have a serious consequences for the coverage probabilities of the intervals

CIPn,1−α and CISn,1−α if validity of (7) could be established also under (2). Conditions for this to

occur are given in the next section.

Although CIPn,1−α and CISn,1−α enjoy similar coverage properties, their efficiency properties can
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be very different. Indeed, if (2) and (7) hold, then CIPn,1−α is rate-optimal in the sense that its

width q∗n,1−α/2 − q∗n,α/2 is OP(n−1/2). In contrast, CISn,1−α has width 2Q∗
n,1−α = 2|Bn| + Op(n−1/2),

implying in particular that it is not even rate-optimal when
√

n|Bn| → ∞. More generally, CISn,1−α

is (asymptotically) wider than CIPn,1−α whenever Bn 6= o(n−1/2).

We close this section by briefly discussing three additional types of confidence intervals that are

known to be “robust” in the sense that they do not require a consistent estimator of Σ0 or even the

full force of the
√

n-normality property (1). First, the inference procedure of Ibragimov and Müller

(2010) can be adapted to the current setup to produce a confidence interval whose asymptotic

validity follows from (1) even if Σ0 does not admit a consistent estimator. Second, in the more

general case where
√

n(θ̂n − θ0) has a (non-degenerate) limiting distribution which is symmetric

about zero, then the procedure recently proposed by Canay, Romano, and Shaikh (2017) can be

used to construct an asymptotically valid confidence interval for θ0. Finally, in the yet more general

case where one makes only the “minimal” assumption that
√

n(θ̂n−θ0) has a (non-degenerate) lim-

iting distribution, then the subsampling approximation to the distribution of
√

n(θ̂n − θ0) is known

to be consistent (e.g., Politis and Romano (1994)). Like CINn,1−α and CIEn,1−α, confidence intervals

based on the procedures of Ibragimov and Müller (2010) and Canay, Romano, and Shaikh (2017)

are asymptotically invalid if Bn 6= o(n−1/2). Subsampling-based confidence intervals, on the other

hand, are valid provided
√

nBn is convergent (not necessarily to zero), but even these intervals

are invalid in general if Bn 6= O(n−1/2). In particular, and perhaps surprisingly in light of the fact

that subsampling is often regarded as a “regularized” version of the bootstrap (e.g., Bickel and Li

(2006)), one by-product of the results of this paper is a remarkably simple example of an instance

where the bootstrap-based confidence intervals CIPn,1−α and CISn,1−α are asymptotically valid even

though subsampling-based confidence intervals are not.

Example 1 (continued). If the bandwidth is of the form hn = Cn−1/η, where C > 0 and

η ∈ (d, 2P ) are user-chosen constants, then

√
n(θ̂

AD

n − θ0 −B
AD
n ) N (0, Σ0), Σ0 = 4V[γ0(z)].

Unless K(0) = 0, asymptotic validity of the confidence intervals CINn,1−α and CIEn,1−α therefore fails

whenever η ∈ (d, 2d]. The same is true for the intervals based on the procedures of Ibragimov and

Müller (2010) and Canay, Romano, and Shaikh (2017). Subsampling-based confidence intervals,

on the other hand, are valid when η = 2d, but even these intervals can be shown to be invalid for

η ∈ (d, 2d). In contrast, as further discussed below the intervals CIPn,1−α and CISn,1−α turn out to be

valid also when η ∈ (d, 2d).

Similar remarks apply to θ̂
ISD

n and θ̂
LR

n , as

√
n(θ̂

ISD

n − θ0 −B
ISD
n ) N (0, Σ0) and

√
n(θ̂

LR

n − θ0 −B
LR
n ) N (0, Σ0)

whenever η ∈ (d, 2P ) and η ∈ (d, 4P ), respectively. �
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4 Bootstrap Consistency

One consequence of replacing (1) with (2) is that the statistics
√

n(θ̂n−θ0) might cease to be tight,

as
√

n(θ̂n − θ0) =
√

nBn + OP(1) when (2) holds. Proving bootstrap consistency without existence

of limiting distributions (or even tightness) can be difficult in general (e.g., Radulovic (1998)), but

thankfully the present setting has enough structure to enable us to give a simple characterization of

bootstrap consistency. Indeed, suppose (2) and the following bootstrap counterpart thereof hold:

√
n(θ̂

∗
n − θ̂n −B∗

n) P N (0, Σ∗
0), (8)

where B∗
n and Σ∗

0 are some non-random matrices and where  P denotes weak convergence in

probability. Assuming Σ0 is positive definite, it then follows from the relation

sup
t∈Rdθ

∣
∣
∣P[

√
n(θ̂n − θ0 −Bn) ≤ t] − P∗[

√
n(θ̂

∗
n − θ̂n −Bn) ≤ t]

∣
∣
∣

= sup
t∈Rdθ

∣
∣
∣P[

√
n(θ̂n − θ0) ≤ t] − P∗[

√
n(θ̂

∗
n − θ̂n) ≤ t]

∣
∣
∣

that a necessary and sufficient condition for (7) is that B∗
n = Bn + o(n−1/2) and Σ∗

0 = Σ0.

This characterization is very useful because it turns out that (8) can be often verified by imi-

tating the proof of (2). To give a precise statement, let θ̂
∗
n be a minimizer of

Ĝ∗
n(θ, γ̂∗

n)′Ŵ ∗
nĜ∗

n(θ, γ̂∗
n), Ĝ∗

n(θ, γ) =
1
n

n∑

i=1

g(z∗i,n, θ, γ),

where z∗1,n, . . . , z∗n,n is a random sample with replacement from z1, . . . , zn, Ŵ ∗
n is some bootstrap

counterpart of Ŵn, and where

γ̂∗
n = (γ̂∗

n,1, . . . , γ̂
∗
n,dγ

)′, γ̂∗
n,k(z, θ) =

1
n

n∑

j=1

wk(z
∗
j,n, θ)κn,k[xk(z, θ) − xk(z

∗
j,n, θ)].

Under regularity conditions, it follows from a bootstrap counterpart of Condition AL that the large

sample properties of θ̂
∗
n are governed by Ĝ∗

n(θ̂n, γ̂∗
n). Moreover, in perfect analogy with (4), the fact

that γ̂∗
n is kernel-based implies that

Ĝ∗
n(θ̂n, γ̂∗

n) =
1
n

n∑

i=1

g∗0(z
∗
i,n, γ̂∗

n) =
1
n

n∑

i=1

g∗n(z∗i,n, γ̂∗,(i)
n ), (9)

where

γ̂∗,(i)
n = (γ̂∗,(i)

n,1 , . . . , γ̂
∗,(i)
n,dγ

)′, γ̂
∗,(i)
n,k (z, θ) =

1
n − 1

n∑

j=1,j 6=i

wk(z
∗
j,n, θ)κn,k[xk(z, θ) − xk(z

∗
j,n, θ)],
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is the ith “leave-one-out” estimator of γ0 and where, defining

γ̂∗,i
n = (γ̂∗,i

n,1, . . . , γ̂
∗,i
n,dγ

)′, γ̂∗,i
n,k(z, θ) = wk(z

∗
i,n, θ)κn,k[xk(z, θ) − xk(z

∗
i,n, θ)],

the functions g∗n and g∗0 satisfy

g∗n(z∗i,n, γ) = g∗0 [z
∗
i,n, n−1γ̂∗,i

n + (1 − n−1)γ], g∗0(z, γ) = g(z, θ̂n, γ).

As a consequence, θ̂
∗
n enjoys large sample properties analogous to those of θ̂n provided bootstrap

analogues of Conditions AS and AN hold.

Theorem 2 below gives a precise statement. That statement involves the following bootstrap

analogues of Conditions AL, AS and AN.

Condition AL* For some non-random J ∗
n and J ∗

0 , J ∗
n → J ∗

0 and

θ̂
∗
n − θ̂n = J ∗

n Ĝ∗
n(θ̂n, γ̂∗

n) + oP(n
−1/2).

Condition AS* For some function ḡ∗n,

1
√

n

n∑

i=1

[g∗n(z∗i,n, γ̂∗,(i)
n ) − g∗n(z∗i,n, γ̂n)] =

1
√

n

n∑

i=1

[ḡ∗n(z∗i,n, γ̂∗,(i)
n ) − ḡ∗n(z∗i,n, γ̂n)] + oP(1),

=
1
√

n

n∑

i=1

[Ḡ∗
n(γ̂∗,(i)

n ) − Ḡ∗
n(γ̂n)] + oP(1),

where Ḡ∗
n(γ) = E∗ḡ∗n(z∗i,n, γ) and where E∗[∙] denotes E[∙|z1, . . . , zn].

Condition AN* For some non-random B∗
n and Ω∗

0,

1
√

n

n∑

i=1

[g∗n(z∗i,n, γ̂n) + Ḡ∗
n(γ̂∗,(i)

n ) − Ḡ∗
n(γ̂n) − B∗

n] P N (0, Ω∗
0).

Theorem 2 If γ̂∗
n is kernel-based and if Conditions AL*, AS*, and AN* are satisfied, then (8)

holds with Σ∗
0 = J ∗

0 Ω∗
0J

∗′
0 and B∗

n = J ∗
nB

∗
n. In particular, (7) is satisfied if (2) holds and if

B∗
n = Bn + o(n−1/2) and Σ∗

0 = Σ0, where Σ0 is positive definite.

As further demonstrated in Section 5.4, Conditions AL*, AS*, and AN* are natural bootstrap

analogues of the conditions of Theorem 1 not only in appearance, but also in the sense that they

can be verified by mimicking the verification of their counterparts in Theorem 1. Moreover, in most

cases the conditions for bootstrap consistency given in Theorem 2 are satisfied under conditions

similar to those imposed in order to obtain (2). In particular, bootstrap consistency does not re-

quire faster-than-n1/4-consistency on the part of γ̂n.

18



Example 1 (continued). If hn → 0 and if nhd
n → ∞, then θ̂

AD,∗
n , θ̂

ISD,∗
n , and θ̂

LR,∗
n all satisfy

(8) with Σ∗
0 = 4Vγ0(z) and B∗

n equal to BAD
n , BISD

n , and BLR
n , respectively. As a consequence, if the

bandwidth is of the form hn = Cn−1/η, then θ̂
AD,∗
n , θ̂

ISD,∗
n , and θ̂

LR,∗
n satisfy (7) whenever η ∈ (d, 2P ),

η ∈ (d, 2P ), and η ∈ (d, 4P ), respectively. �

Remark 1 We deliberately study only the simplest version of the bootstrap. As in Hahn (1996),

doing so is sufficient when the goal is to establish first-order asymptotic validity, but we conjecture

that bootstrap consistency results can be obtained for various modifications of the simple nonpara-

metric bootstrap, including those proposed by Brown and Newey (2002) and Hall and Horowitz

(1996) to handle overidentified models. Similarly, to highlight the fact that asymptotic pivotality

plays no role in our theory we use the bootstrap to approximate the distribution of
√

n(θ̂n − θ0)

rather than a Studentized version thereof.

5 Verifying the Assumptions of Theorems 1 and 2

The purpose of this section is to present tools that can be used to verify those elements of the

assumptions of Theorems 1 and 2 that have no obvious counterpart in the conventional theory on

semiparametric two-step estimators.

5.1 Condition AL

Letting Ġ(γ) denote ∂G(θ, γ)/∂θ′
∣
∣
θ=θ0

whenever the derivative exists (and zero otherwise), stan-

dard heuristics suggest that under suitable regularity conditions Condition AL will hold with

Jn = J0 = −(Ġ′
0W0Ġ0)−1Ġ′

0W0, where Ġ0 = Ġ(γ0) and where W0 is the probability limit of

Ŵn. When Ĝn(θ0, γ̂n) = OP(n−1/2), these standard heuristics can be made rigorous with the help

of Pakes and Pollard (1989, Theorem 3.3), a variant of which is given by the ρ = 2 version of

Lemma 1 below.

However, the condition Ĝn(θ0, γ̂n) = OP(n−1/2) fails, in general, when the weaker Conditions

AS and AN are used to obtain distributional approximations, so in order to justify our reliance on

Condition AL it is important to have sufficient conditions for Condition AL that do not require

Ĝn(θ0, γ̂n) = OP(n−1/2). This observation motivates condition (iv) of the following result, whose

formulation and content is in the spirit of Pakes and Pollard (1989, Theorem 3.3).

Lemma 1 Suppose that θ̂n − θ0 = op(1), that Ġ′
0W0Ġ0 has rank dθ, and that, for some ρ ∈ [2, 4)

and for some non-random Wn and Ġn with Wn − W0 = o(1) and Ġn − Ġ0 = o(1) :

(i) Ĝn(θ̂n, γ̂n)′ŴnĜn(θ̂n, γ̂n) ≤ infθ∈Θ Ĝn(θ, γ̂n)′ŴnĜn(θ, γ̂n) + oP(n−1);

(ii) for every δn = o(1),

sup
‖θ−θ0‖≤δn

‖G(θ, γ̂n) − G(θ0, γ̂n) − Ġ(γ̂n)(θ − θ0)‖
‖θ − θ0‖ρ/2

= oP(1);
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(iii) for every δn = o(1),

sup
‖θ−θ0‖≤δn

‖Ĝn(θ, γ̂n) − G(θ, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)‖
1 + n1/ρ‖θ − θ0‖

= oP(n
−1/ρ);

(iv) Ĝn(θ0, γ̂n) = OP(n−1/ρ);

(v) θ0 is an interior point of Θ;

(vi) Ŵn − Wn = oP(n1/ρ−1/2) and Ġ (γ̂n) − Ġn = oP(n1/ρ−1/2);

(vii) Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n−1/2) and, for every δn = O(n−1/ρ),

sup
‖θ−θ0‖≤δn

‖Ĝn(θ, γ̂n) − G(θ, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)‖ = oP(n
−1/2).

Then Condition AL holds with

Jn = −(Ġ′
nWnĠn)−1Ġ′

nWn and J0 = −(Ġ′
0W0Ġ0)

−1Ġ′
0W0.

As already mentioned, Lemma 1 effectively becomes of a variant of Pakes and Pollard (1989,

Theorem 3.3) when ρ = 2. In particular, when ρ = 2, condition (iv) becomes Ĝn(θ0, γ̂n) =

OP(n−1/2), conditions (i)-(iii) and (v) reduce to natural analogs of those of Pakes and Pollard

(1989, Theorem 3.3), condition (vi) becomes Ŵn − W0 = oP(1) and Ġ (γ̂n) − Ġ0 = oP(1), and

condition (vii) is implied by the other conditions of the lemma.

In Lemma 1, the magnitude of the departure from standard asymptotics is therefore governed

by the parameter ρ. The introduction of this parameter is motivated by the fact that although

Ĝn(θ0, γ̂n) = OP(n−1/2) can fail to hold under Conditions AS and AN, the weaker condition (iv)

in Lemma 1 typically holds even when its ρ = 2 version does not.

To be more precise, when ρ > 2, conditions (iii) and (iv) of Lemma 1 are weaker than their

ρ = 2 counterparts whereas conditions (ii), (vi), and (vii) are stronger than their ρ = 2 counterparts.

Importantly, however, the technical tools routinely applied to verify the conditions of results such

as Lemma 1 in the standard (i.e., ρ = 2) case can also be used to verify most (if not all) of the

conditions even when a failure of Ĝn(θ0, γ̂n) = OP(n−1/2) implies that ρ > 2 is required in condition

(iv). In particular, even when ρ > 2 condition (ii) is a relatively mild smoothness condition on G

and condition (iii) can be verified using standard empirical process techniques, as can the displayed

part of condition (vii).

In Section 6, we illustrate how to verify the conditions of Lemma 1 with ρ = 3 for the case of

IPW estimators with possibly non-smooth moment conditions.

Remark 2 While the property Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n−1/2) assumed in condition (vii) is

implied by the other conditions of the lemma when ρ = 2, verification of this property seems to

require additional conditions when ρ > 2. As explained in a subsection following the proof of Lemma

1, one possibility is to require that g is of dimension dθ, while another possibility is to require ρ < 3

and that oP(n−1/2) can be replaced by oP(n1/ρ−1) in the displayed part of condition (vii).
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5.2 Condition AS

When ḡn is of the form (5), the error in the approximation

gn(zi, γ̂
(i)
n ) ≈ ḡn(zi, γ̂

(i)
n ) + gn(zi, γn) − ḡn(zi, γn)

is usually “cubic” in γ̂
(i)
n − γn (in some suitable sense), in which case the first part of Condition

AS is satisfied provided γ̂
(i)
n − γn = oP(n−1/6) (in some suitable sense). The ease with which these

heuristics can be made rigorous depends in part on the smoothness of g, but suffice it to say that a

condition of the form γ̂n−γn = oP(n−1/6) has been found to be sufficient in all of the cases we have

examined, including even the non-differentiable-in-γ example used in the Monte Carlo experiment

of Section 7 (and analyzed in Section SA.3 of the supplemental appendix).

Whereas it is usually most efficient to proceed on a case-by-case basis when verifying the first

part of Condition AS, the second part of the condition admits general sufficient conditions that are

both mild and relatively simple. A common way of verifying the second part of Condition SE (i.e.,

the stochastic equicontinuity counterpart of Condition AS) is to exhibit a sequence Γn satisfying

P(γ̂n ∈ Γn) → 1 and

sup
γ∈Γn

∥
∥
∥
∥
∥

1
√

n

n∑

i=1

[ḡ0(zi, γ) − Ḡ0(γ) − ḡ0(zi, γ0) + Ḡ0(γ0)]

∥
∥
∥
∥
∥

= oP(1),

where empirical process results (e.g., maximal inequalities) can be used to formulate primitive

sufficient conditions for the latter (see, e.g., Andrews (1994b, Condition (3.36)), Chen, Linton, and

van Keilegom (2003, Conditions (2.4) and (2.5′)), and references therein). An analogous approach

does not seem applicable when the goal is to formulate primitive sufficient conditions for the second

part of Condition AS, as the dependence of γ̂
(i)
n on i implies that the second part of Condition AS

cannot be deduced with the help of a result of the form

sup
γ∈Γn

∥
∥
∥
∥
∥

1
√

n

n∑

i=1

[ḡn(zi, γ) − Ḡn(γ) − ḡn(zi, γn) + Ḡn(γn)]

∥
∥
∥
∥
∥

= oP(1).

Instead, the proof of the following lemma exploits the fact that the object of interest can be

expressed as a linear combination of U -statistics when γ̂n is kernel-based. Here, and else where

in the paper, it is tacitly assumed that the indices i, j, and k are distinct, unless explicitly noted

otherwise.

Lemma 2 Suppose that γ̂n is kernel-based, that ḡn is of the form (5), and that

V(gn,γ(zi)[γ̂
j
n − γn]) = o(n), V(gn,γγ(zi)[γ̂

j
n − γn, γ̂k

n − γn]) = o(n2),

V(E(gn,γγ(zi)[γ̂
j
n − γn, γ̂j

n − γn]|zi)) = o(n2), V(gn,γγ(zi)[γ̂
j
n − γn, γ̂j

n − γn]) = o(n3).

Then the second part of Condition AS is satisfied.
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5.3 Condition AN

When ḡn is of the form (5), we have

1
√

n

n∑

i=1

[gn(zi, γn) + Ḡn(γ̂(i)
n ) − Ḡn(γn)] =

1
√

n

n∑

i=1

ψn(zi) +
√

nB̂n,

where

ψn(zi) = gn(zi, γn) − Gn(γn) + δn(zi), δn(zi) = Gn,γ [γ̂i
n − γn],

and

B̂n = Gn(γn) +
1
2

1
n

n∑

i=1

Gn,γγ [γ̂(i)
n − γn, γ̂(i)

n − γn].

Direct calculations can usually be used to demonstrate existence of a function ψ0 satisfying

E‖ψn(z) − ψ0(z)‖2 → 0, E‖ψ0(z)‖2 < ∞. (10)

Indeed, under general conditions, (10) holds with ψ0(z) = g0(z, γ0) + δ0(z), where δ0(z) is the

“correction term” discussed by Newey (1994a). If (10) holds, then Condition AN is satisfied if also

B̂n = Bn + oP(n−1/2). A simple sufficient condition for this to occur is given in the next result.

Lemma 3 Suppose that γ̂n is kernel-based, that ḡn is of the form (5), that (10) holds, and that

V(Gn,γγ [γ̂i
n − γn, γ̂i

n − γn]) = o(n2), V(Gn,γγ [γ̂i
n − γn, γ̂j

n − γn]) = o(n).

Then Condition AN holds with Ω0 = V[ψ0(z)] and any Bn = EB̂n + o(n−1/2).

5.4 Conditions AL*, AS*, and AN*

Condition AL* can often be verified with the help of the following bootstrap analogue of Lemma

1.

Lemma 4 Suppose that the assumptions of Lemma 1 are satisfied, that θ̂
∗
n − θ0 = oP(1), and that:

(i*) Ĝ∗
n(θ̂

∗
n, γ̂∗

n)′Ŵ ∗
nĜ∗

n(θ̂
∗
n, γ̂∗

n) ≤ infθ∈Θ Ĝ∗
n(θ, γ̂∗

n)′Ŵ ∗
nĜ∗

n(θ, γ̂∗
n) + oP(n−1);

(ii*) for every δn = o(1),

sup
‖θ−θ0‖≤δn

‖G(θ, γ̂∗
n) − G(θ0, γ̂

∗
n) − Ġ(γ̂∗

n)(θ − θ0)‖
‖θ − θ0‖ρ/2

= oP(1);

(iii*) for every δn = o(1),

sup
‖θ−θ0‖≤δn

‖Ĝ∗
n(θ, γ̂∗

n) − G(θ, γ̂∗
n) − Ĝ∗

n(θ0, γ̂
∗
n) + G(θ0, γ̂

∗
n)‖

1 + n1/ρ‖θ − θ0‖
= oP(n

−1/ρ);
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(iv*) Ĝ∗
n(θ0, γ̂

∗
n) = OP(n−1/ρ);

(vi*) Ŵ ∗
n − Wn = oP(n1/ρ−1/2) and Ġ (γ̂∗

n) − Ġn = oP(n1/ρ−1/2);

(vii*) Ġ(γ̂∗
n)′Ŵ ∗

nĜ∗
n(θ̂

∗
n, γ̂∗

n) = oP(n−1/2) and, for every δn = O(n−1/ρ),

sup
‖θ−θ0‖≤δn

‖Ĝ∗
n(θ, γ̂∗

n) − G(θ, γ̂∗
n) − Ĝ∗

n(θ0, γ̂
∗
n) + G(θ0, γ̂

∗
n)‖ = oP(n

−1/2).

Then Condition AL* holds with J ∗
n = Jn and J ∗

0 = J0.

When the first part of Condition AS is satisfied with ḡn of the form (5), there usually exist

linear and bilinear functionals g∗n,γ(z)[∙] and g∗n,γγ(z)[∙, ∙] such that the first part of Condition AS*

is satisfied with

ḡ∗n(z, γ) = g∗n(z, γ̂n) + g∗n,γ(z)[γ − γ̂n] +
1
2
g∗n,γγ(z)[γ − γ̂n, γ − γ̂n]. (11)

Conditions under which the second part of Condition AS* holds when ḡ∗n is of the form (11) are

given in the following bootstrap analogue of Lemma 2.

Lemma 5 Suppose that γ̂∗
n is kernel-based, that ḡ∗n is of the form (11), and that

V∗(g∗n,γ(z∗i,n)[γ̂∗,j
n − γ̂n]) = oP(n), V∗(g∗n,γγ(z∗i,n)[γ̂∗,j

n − γ̂n, γ̂∗,k
n − γ̂n]) = oP(n

2),

V∗(E∗(g∗n,γγ(z∗i,n)[γ̂∗,j
n −γ̂n, γ̂∗,j

n −γ̂n]|z∗i,n)) = oP(n
2), V∗(g∗n,γγ(z∗i,n)[γ̂∗,j

n −γ̂n, γ̂∗,j
n −γ̂n]) = oP(n

3),

where V∗[∙] denotes V[∙|z1, . . . , zn]. Then the second part of Condition AS* is satisfied.

Finally, when ḡ∗n is of the form (11), we have

1
√

n

n∑

i=1

[g∗n(z∗i,n, γ̂n) + Ḡ∗
n(γ̂∗,(i)

n ) − Ḡ∗
n(γ̂n)] =

1
√

n

n∑

i=1

ψ∗
n(z∗i,n) +

√
nB̂∗

n,

where

ψ∗
n(z∗i,n) = g∗n(z∗i,n, γ̂n) − G∗

n(γ̂n) + δ∗n(z∗i,n), δ∗n(z∗i,n) = G∗
n,γ [γ̂∗,i

n − γ̂n],

and

B̂∗
n = G∗

n(γ̂n) +
1
2

1
n

n∑

i=1

G∗
n,γγ [γ̂∗,(i)

n − γ̂n, γ̂∗,(i)
n − γ̂n],

with

G∗
n(γ) = E∗g∗n(z∗i,n, γ), G∗

n,γ [η] = E∗g∗n,γ(z∗i,n)[η], G∗
n,γγ [η, ϕ] = E∗g∗n,γγ(z∗i,n)[η, ϕ].

Direct calculations can usually be used to show that

E∗‖ψ∗
n(z∗i,n) − ψn(z∗i,n)‖2 = oP(1), (12)
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in which case the following bootstrap analogue of Lemma 3 can be used to verify Condition AN*.

Lemma 6 Suppose that the assumptions of Lemma 3 are satisfied, that γ̂∗
n is kernel-based, that ḡ∗n

is of the form (11), that (12) holds, and that

V∗(G∗
n,γγ [γ̂∗,i

n − γ̂n, γ̂∗,i
n − γ̂n]) = oP(n

2), V∗(G∗
n,γγ [γ̂∗,i

n − γ̂n, γ̂∗,j
n − γ̂n]) = oP(n),

E∗B̂∗
n = EB̂∗

n + oP(n
−1/2).

Then Condition AN* holds with Ω∗
0 = Ω0 and any B∗

n = EB̂∗
n + o(n−1/2).

Remark 3 If the conditions of Lemma 6 are satisfied, then Ω̂n = n−1
∑n

i=1 ψ∗
n(zi)ψ∗

n(zi)′ is a

consistent estimator of Ω0. Although Ω̂n emerges here as a by-product of our analysis of the bootstrap

it is interesting to note that it can be interpreted as a variant of the “delta-method” variance

estimator of Newey (1994b).

6 Example: Inverse Probability Weighting

In the previous sections, the average density example was chosen for illustrative purposes because

it highlights exactly those parts of our high-level assumptions that differ from conventional ones,

namely Condition AN (which quantifies the departure from conventional conclusions) and the

second part of Condition AS (which enables us to depart from conventional assumptions). Indeed,

the estimators discussed in connection with Example 1 were intentionally chosen in such a way that

Condition AL and the first part of Condition AS are representations in the sense that they hold

without any oP(n−1/2) and oP(1) terms.

To substantiate the claim that Example 1 is nevertheless representative, this section examines a

more substantive and complicated class of estimators, namely IPW estimators. For these estimators,

Condition AL and the first part of Condition AS are not merely representations, but as discussed

in what follows they nevertheless remain verifiable under assumptions that are sufficiently weak

to permit us to obtain distributional results that differ from conventional ones, a difference that

once again is quantified by Condition AN and can be brought to light thanks to the second part of

Conditions AS.

Suppose z1, . . . , zn are i.i.d. copies of z = (y, t, x′)′, where y ∈ R is a scalar dependent variable,

t ∈ {0, 1} is a binary indicator, and x ∈ X ⊆ Rd is a continuous covariate with density f0. Assuming

the estimand θ0 ∈ Θ ⊆ Rdθ is the unique solution to an equation of the form

E

[
t

q0(x)
m(y; θ)

]

= 0, q0(x) = E(t|x) = P[t = 1|x],
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where m is a known Rdθ -valued function, an IPW estimator θ̂n of θ0 is one that satisfies

1
n

n∑

i=1

ti
q̂n(xi)

m(yi; θ̂n) = oP(n
−1/2),

where q̂n is an estimator of (the propensity score) q0.

In what follows we assume that q0 is estimated using a local polynomial estimator of order

P > 3d/4−1. To describe this estimator, define dP = (P +d−1)!/[P !(d−1)!], and let bP (x) ∈ RdP

denote the P -th order polynomial basis expansion based on x = (x1, . . . , xd)′ ∈ Rd; that is,

bP (x) =









1

[x]1

...

[x]P









, [x]p =









xp
1

xp−1
1 x2

...

xp
d









.

Also, let

γ̂x,n(x) = vecP [
1
n

n∑

i=1

Kx,n(xi − x)], Kx,n(u) = bP,n(u)bP,n(u)′Kn(u),

and

γ̂t,n(x) =
1
n

n∑

i=1

tiKt,n(xi − x), Kt,n(u) = bP,n(u)Kn(u),

where bP,n(u) = bP (u/hn), Kn(u) = K(u/hn)/hd
n, hn is a bandwidth, K is a kernel, and where

vecP : RdP×dP → Rd2
P is the vectorization operator. The P th order local polynomial estimator of

q0(x) is given by q(x; γ̂n), where

q(x; γ) = e′P (vec−1
P [γx(x)])−1γt(x), γ = (γ′

x, γ′
t)
′,

eP is the first unit vector in RdP , and vec−1
P : Rd2

P → RdP×dP is the inverse of vecP .

Because γ̂n is kernel-based, the associated IPW estimator θ̂n is a kernel-based two-step semi-

parametric, which can be analyzed using the results of the previous sections by representing the

defining property of θ̂n as

Ĝn(θ̂n, γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n
−1), Ŵn = Idθ

,

where

g(z, θ, γ) =
t

q(x; γ)
m(y; θ)

is neither linear in γ nor (necessarily) differentiable in θ. Doing so, it is shown in Section A.2

of the supplemental appendix that under regularity conditions and if nh
3d/2
n /(log n)3/2 → ∞ and

nh2P+2
n → 0, then the conditions of Theorems 1 and 2 are satisfied. In what follows, we briefly

describe the main steps in the proof(s).
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First, consider Condition AL. Under the stated bandwidth conditions, it follows from the dis-

cussion below that Ĝn(θ0, γ̂n) = OP(n−1/3). Accordingly, we set ρ = 3 when verifying Condition

AL with the help of Lemma 1. To define the other main objects of that lemma, set Wn = W0 = Idθ

and let

γx,n(x) = vecP [
∫

Rd

Kx(u)f0(x + uhn)du], Kx(u) = bP (u)bP (u)′K(u),

γt,n(x) =
∫

Rd

Kt(u)q0(x + uhn)f0(x + uhn)du, Kt(u) = bP (u)K(u),

and

γx,0(x) = f0(x) vecP [
∫

Rd

Kx(u)du], γt,0(x) = q0(x)f0(x)
∫

Rd

Kt(u)du.

The functional G can be represented as

G(θ, γ) = E

[
q0(x)
q(x; γ)

r0(x; θ)

]

, r0(x; θ) = E[m(y; θ)|x, t = 1],

and satisfies G(θ, γ0) = 0 if and only if θ = θ0 because q(x; γ0) = q0(x). Moreover, under regularity

conditions, including differentiability of r0(x; ∙), we have

Ġ(γ) = E

[
q0(x)
q(x; γ)

ṙ0(x)

]

, ṙ0(x) =
∂

∂θ
r0(x; θ)

∣
∣
∣
∣
θ=θ0

.

Apart from condition (iv), the hardest-to-verify conditions of Lemma 1 are (iii) and the displayed

part of (vii). We verify these conditions with the help of empirical process techniques and using

the fact that

max
1≤i≤n

||γ̂n(xi) − γn(xi)|| = oP(n
−1/6)

when nh
3d/2
n /(log n)3/2 → ∞.

Next, consider Condition AS. Because g(z, θ, γ) is a smooth functional of γ, it is natural to

set ḡn equal to a second-order Taylor approximation to gn obtained by expanding around γ = γn.

Simple bounding arguments can be used to show that the resulting ḡn satisfies the first part of

Condition AS because max1≤i≤n ||γ̂n(xi) − γn(xi)|| = oP(n−1/6). Moreover, because ḡn is of the

form (5), Lemma 2 can be used to show that the second part of Condition AS is satisfied whenever

nhd
n → ∞.

Condition AN is also satisfied, as can be shown using Lemma 3. To be specific, (10) holds with

ψ0(z) =
t

q0(x)
m(y; θ0) −

r0(x; θ0)
q0(x)

(t − q0(x)),
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while lengthy calculations show that if nh
3d/2
n /(log n)3/2 → ∞ and nh2P+2

n → 0, then we can set

Bn = −
K(0)
nhd

n

(e′P Γ−1
x eP )

∫

X

1 − q0(u)
q0(u)

r0(u; θ0)du

+
1

nhd
n

∫

Rd

∫

Rd

r0(u; θ0)f0(u)
q0(u)2

e′P Γx,n(u)−1Kt(v)Kt(v)′Γx,n(u)−1eP σ2
t (u + vhn)f0(u + vhn)dudv,

where

Γx,n(x) = vec−1
P (γx,n(x)), Γx =

∫

Rd

Kx(u)du, σ2
t (x) = q0(x)(1 − q0(x)).

Because Conditions AN and AL both hold, with ||Bn|| = O(n−1h−d
n ) in the latter, we have

Ĝn(θ0, γ̂n) = OP(n−1/2 + ||Bn||) = OP(n−1/3) when nh
3d/2
n /(log n)3/2 → ∞. In other words, condi-

tion (iv) of Lemma 1 holds with ρ = 3.

To summarize, if nh
3d/2
n /(log n)3/2 → ∞ and if nh2P+2

n → 0, then the conditions of Theorem 1

are satisfied and (2) holds with

Bn = −Ġ−1
n Bn, Ġn = E

[
q0(x)

q(x; γn)
ṙ0(x)

]

,

and

Σ0 = Ġ−1
0 V[ψ0(z)]Ġ−1

0 , Ġ0 = E [ṙ0(x)] .

Proceeding in a similar way, Conditions AL*, AS*, and AN* can be verified using Lemmas 4, 5,

and 6, respectively. Moreover, B∗
n can be set equal to Bn in Lemma 6, so it follows from Theorem

2 that the bootstrap consistency condition (7) is satisfied.

Importantly, while perhaps not the weakest possible, the bandwidth conditions we impose are

sufficiently weak to permit θ̂n to exhibit a non-negligible asymptotic bias. To be specific, the

bandwidth condition nh
3d/2
n /(log n)3/2 → ∞ allows for the possibility that nh2d

n 9 ∞, in which

case Bn = O(n−1h−d
n ) 6= o(n−1/2).

7 Simulation Evidence

We conducted a small-scale Monte Carlo experiment to explore some of the implications of our

theoretical results in samples of moderate size. Because the simulation study involves bootstrap

procedures, computational considerations let us to consider a closed form estimator and a relatively

small sample size.

The estimator we consider is the one previously analyzed in the Hit Rate example of Chen,

Linton, and van Keilegom (2003), which we also re-analyze using our results in Section SA.3 of the

supplemental appendix. To describe this estimator, let z1, . . . , zn be i.i.d. copies of z = (y, x′)′,

where y ∈ R is a scalar dependent variable and x ∈ Rd is a continuous covariate with density

γ0. The parameter of interest is the scalar θ0 = P[y ≥ γ0(x)] = E[1(y ≥ γ0(x))], a kernel-based
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semiparametric estimator of which is given by

θ̂n =
1
n

n∑

i=1

1(yi ≥ γ̂n(xi)), γ̂n(x) =
1
n

n∑

j=1

Kn (xj − x) ,

where Kn(x) = K(x/hn)/hd
n, hn is a bandwidth, and K is a kernel.

Although the estimator θ̂n is in closed form (i.e., satisfies Condition AL without any oP(n−1/2)

term), the estimator is significantly more complicated than the average density estimators of Ex-

ample 1 because it is a non-smooth functional of γ̂n. Nevertheless, it is shown in Section SA.3 of

the supplemental appendix that θ̂n can be analyzed using the results of this paper. In particular,

under the regularity conditions given there, we show that if nh
3d/2
n /(log n)3/2 → ∞ and if nh2P

n → 0,

with P the kernel order, then the conditions of Theorems 1 and 2 are satisfied with Σ∗
0 = Σ0 and

B∗
n = Bn = O[1/(nhd

n)]. The explicit formulas for all the biases and variance quantities are given

in the supplemental appendix for brevity.

We consider S = 1, 000 replications for the Monte Carlo experiment, where for each replication

we generate a random sample of size n = 1, 000 from a model of the form

(
yi

xi

)

∼ N

((
μy

0

)

,

(
σ2

y 0′

0 σ2
xId

))

.

As described in Table 1, a total of 25 different configurations of μy, σ
2
y, σ

2
x, d, and P were considered.

Some of these models (namely, those with (d, P ) ∈ {(1, 2), (2, 2)}) are not covered by conventional

first-order asymptotic results (because P is too small), but because our large-sample results only

require P > 3d/4 all of the models listed in Table 1 are covered by the results of this paper.

We focus on the performance of three 95% confidence intervals, namely the (feasible) bootstrap-

based intervals CIE0.95 and CIP0.95 and an infeasible version of CIN0.95 obtained by setting Σ̂n equal

to n times the simulation variance of θ̂n. We use the simulation variance of θ̂n to avoid rendering

our results sensitive to the choice of additional tuning parameters needed in order to estimate the

(complicated) asymptotic variance of θ̂n. In the simulations, for each replication we approximate

the bootstrap distribution by resampling B = 1, 000 times. For each model, we report results for a

range of bandwidths hn, partly with the aim of judging the relevance of one of the main predictions

of our theory (e.g., Proposition 1), namely that

P[θ0 ∈ CIE0.95] ≤ P[θ0 ∈ CIN0.95] ≤ P[θ0 ∈ CIP0.95] ≈ 0.95,

with strict inequalities for “small” bandwidths, that is, whenever nh2d
n 6→ ∞.

Tables 2–6 report the main results. For each model, we consider a grid of bandwidths of the form

hn = c ∙ hopt, where c ∈ {0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1} and where hopt is an “optimal” (in a certain

sense) bandwidth characterized in Section.3.4 of the supplemental appendix. For implementation,

we set K(u) = k(u1)k(u2) ∙ ∙ ∙ k(ud) for u = (u1, u2, ∙ ∙ ∙ , ud)′ ∈ Rd, with k(∙) a P -th order univariate

kernel, where k(v) = φ(v) if P = 2 and k(v) = (3 − v2)φ(v)/2 if P = 4, and φ(v) = dΦ(v)/dv.
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Each table includes coverage rates and average interval length for three 95% confidence intervals

CIE0.95, CIN0.95, and CIP0.95, as well as the bias divided by the square root of the simulation variance

(B/SE) and the mean square error (MSE) of each estimator θ̂n. The simulations are time consuming

because for each bandwidth and each simulation replication we need to approximate the standard

(bootstrap) distribution of θ̂
∗
n. For this reason, we focus exclusively on a few low-dimension models,

d ∈ {1, 2, 3}, although we did experiment with higher dimensions and found that the results reported

herein are exacerbated as the dimension increases, which is not surprising (given the structure of

the “small” bandwidth bias) but nevertheless important from a practical point of view.

Overall, the bootstrap-based confidence interval CIP0.95 performs better than its rivals in the

simulations. In particular, and as predicted by our theory, the automatic bias reduction property

of CIP0.95 established in this paper for “small” bandwidths is found to be quantitatively important.

Furthermore, even when the bias appears to be small, CIP0.95 continues to exhibit good properties.

More specifically, our findings show that for d = 1, all three inference procedures perform well,

as the bias highlighted in this paper is of relatively small importance. On the other hand, and more

importantly, for d = 2 we find an important bias for “small” bandwidths. This bias is accounted

for when using the percentile bootstrap (i.e., CIP0.95), but not when using the Efron’s bootstrap (i.e.,

CIE0.95) or the infeasible version of CIN0.95 that employs the actual simulation (unknown in practice)

variance of the estimator. Indeed, the ranking across inference procedures in terms of coverage is

in perfect agreement with our theoretical predictions.

8 Conclusion

This paper has developed “small bandwidth” asymptotic results for a large class of two-step kernel-

based semiparametric estimators. Our first main result, Theorem 1, differs from those obtained

in earlier work on semiparametric two-step estimators by accommodating a non-negligible bias. A

noteworthy feature of the assumptions of this theorem is that reliance on a commonly employed

stochastic equicontinuity condition is avoided. The second main result, Theorem 2, shows that the

bootstrap provides an automatic method of correcting for the bias even when it is non-negligible.

The findings of this paper are pointwise in two distinct respects. First, the distribution of

observables is held fixed when developing large sample theory. Second, the results are obtained for

a fixed bandwidth sequence. It would be of interest to develop uniform versions of Theorems 1 and

2 along the lines of Romano and Shaikh (2012) and Einmahl and Mason (2005), respectively.

Although the size of the class of estimators covered by our results is nontrivial it would be

of interest to explore whether conclusions analogous to ours can be obtained for semiparametric

two-step estimators whose first step involves other types of nonparametric estimators (e.g., sieve

estimators of M -regression functions, possibly after model selection as in Belloni, Chernozhukov,

Fernández-Val, and Hansen (2017) and references therein). In this paper we focus on kernel-

based estimators because of their analytical tractability, but we conjecture that our results can be

extended to cover other nonparametric first-step estimators. In future work we intend to attempt
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to substantiate this conjecture.

Appendix A: Proofs

A.1 Proof of Theorem 1

The proof is elementary:

√
n(θ̂n − θ0 − JnBn) = [J0 + o(1)]

1
√

n

n∑

i=1

[gn(zi, γ̂
(i)
n ) − Bn] + oP(1)

= [J0 + o(1)]
1
√

n

n∑

i=1

[gn(zi, γn) + Ḡn(γ̂(i)
n ) − Ḡn(γn) − Bn] + oP(1)

 N (0,J0Ω0J
′
0),

where the first equality uses Condition AL and (4), the second equality uses Condition AS, and the

last line uses Condition AN.

A.2 Proof of Theorem 2

The proof is elementary:

√
n(θ̂

∗
n − θ̂n − J ∗

nB
∗
n) = [J ∗

0 + o(1)]
1
√

n

n∑

i=1

[g∗n(z∗i,n, γ̂∗,(i)
n ) − B∗

n] + oP(1)

= [J ∗
0 + o(1)]

1
√

n

n∑

i=1

[g∗n(z∗i,n, γ̂n) + Ḡ∗
n(γ̂∗,(i)

n ) − Ḡ∗
n(γ̂n) − B∗

n] + oP(1)

 P N (0,J ∗
0 Ω∗

0J
∗′
0 ),

where the first equality uses Condition AL* and (9), the second equality uses Condition AS*, and

the last line uses Condition AN*.

A.3 Proof of Lemma 1

Using (iv), (vi), and Ġ(γ̂n)′ŴnĠ(γ̂n) →P Ġ′
0W0Ġ0 > 0, we have

(Ĵn − Jn)Ĝn(θ0, γ̂n) = oP(n
−1/2), Ĵn = −[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′Ŵn.

As a consequence, it suffices to show that θ̂n − θ0 − ĴnĜn(θ0, γ̂n) = oP(n−1/2). To do so, let

Ln(θ) = Ġ(γ̂n)′Ŵn[Ĝn(θ0, γ̂n) + Ġ(γ̂n)(θ − θ0)].
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Because Ġ(γ̂n)′ŴnĠ(γ̂n) →P Ġ′
0W0Ġ0 > 0 and

Ln(θ̂n) = Ġ(γ̂n)′ŴnĠ(γ̂n)[θ̂n − θ0 − ĴnĜn(θ0, γ̂n)],

it suffices to show that Ln(θ̂n) = oP(n−1/2).

If θ̂n − θ0 = OP(n−1/ρ), then

‖G(θ̂n, γ̂n) − G(θ0, γ̂n) − Ġ(γ̂n)(θ̂n − θ0)‖ = ‖θ̂n − θ0‖
ρ/2oP(1) = oP(n

−1/2)

and

‖Ĝn(θ̂n, γ̂n) − G(θ̂n, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)‖ = oP(n
−1/2)

by (ii) and (vii), respectively. As a consequence, by the triangle inequality,

‖Ln(θ̂n)‖ ≤ ‖Ġ(γ̂n)′Ŵn‖‖Ĝn(θ̂n, γ̂n) − G(θ̂n, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)‖

+‖Ġ(γ̂n)′Ŵn‖‖G(θ̂n, γ̂n) − G(θ0, γ̂n) − Ġ(γ̂n)(θ̂n − θ0)‖

+‖Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n)‖

= oP(n
−1/2),

where the equality uses ‖Ġ(γ̂n)′Ŵn‖ = OP(1) and Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n−1/2). The proof can

be therefore be completed by showing that θ̂n − θ0 = OP(n−1/ρ).

Proof of θ̂n − θ0 = OP(n−1/ρ). Because θ̂n − θ0 = oP(1), Ŵ
1/2
n Ġ(γ̂n) − W

1/2
0 Ġ0 = oP(1), and

Ġ′
0W0Ġ0 > 0, condition (ii) implies that

‖θ̂n − θ0‖ ≤ ‖Ŵ 1/2
n [G(θ̂n, γ̂n) − G(θ0, γ̂n)]‖OP(1),

so it suffices to show that Ŵ
1/2
n [G(θ̂n, γ̂n) − G(θ0, γ̂n)] ≤ OP(n−1/ρ) + ‖θ̂n − θ0‖oP(1).

Using (i) and (iv), we have Ŵ
1/2
n Ĝn(θ̂n, γ̂n) = OP(n−1/ρ) because

Ĝn(θ̂n, γ̂n)′ŴnĜn(θ̂n, γ̂n) ≤ Ĝn(θ0, γ̂n)′ŴnĜn(θ0, γ̂n) + oP(n
−1) = OP(n

−2/ρ).

Also, using θ̂n − θ0 = oP(1) and (iii),

‖Ŵ 1/2
n [Ĝn(θ̂n, γ̂n) − G(θ̂n, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)]‖ = oP(n

−1/ρ) + ‖θ̂n − θ0‖oP(1),

so

‖Ŵ 1/2
n [G(θ̂n, γ̂n) − G(θ0, γ̂n)]‖ ≤ ‖Ŵ 1/2

n [Ĝn(θ̂n, γ̂n) − G(θ̂n, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)]‖

+‖Ŵ 1/2
n Ĝn(θ̂n, γ̂n)‖ + ‖Ŵ 1/2

n Ĝn(θ0, γ̂n)‖

= OP(n
−1/ρ) + ‖θ̂n − θ0‖oP(1),
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where the inequality uses the triangle inequality and the equality uses (iv).

A.4 Verifying Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n
−1/2).

Suppose the conditions of Lemma 1 are satisfied, with the possible exception of

Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n
−1/2). (A-1)

Because Ġ(γ̂n)′ŴnĠ(γ̂n) →P Ġ′
0W0Ġ0 > 0, (A − 1) holds provided

Ĝn(θ̂n, γ̂n)′ŴnĠ(γ̂n)[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n) = oP(n
−1).

To give conditions under which the latter holds, let θ̃n = θ̂n + ĴnĜn(θ̂n, γ̂n), which satisfies

θ̃n − θ0 = OP(n−1/ρ) because θ̂n − θ0 = OP(n−1/ρ) and Ŵ
1/2
n Ĝn(θ̂n, γ̂n) = OP(n−1/ρ).

Defining

Rn = Ĝn(θ̃n, γ̂n) − Ĝn(θ̂n, γ̂n) − Ġ(γ̂n)(θ̃n − θ̂n),

and using the fact that θ0 is an interior point of Θ, we have

Ĝn(θ̂n, γ̂n)′ŴnĜn(θ̂n, γ̂n) ≤ Ĝn(θ̃n, γ̂n)′ŴnĜn(θ̃n, γ̂n) + oP(n
−1)

= Ĝn(θ̂n, γ̂n)′ŴnĜn(θ̂n, γ̂n)

−Ĝn(θ̂n, γ̂n)′ŴnĠ(γ̂n)[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n)

+2R′
n[Ŵn − ŴnĠ(γ̂n)[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′Ŵn]Ĝn(θ̂n, γ̂n)

+R′
nŴnRn + oP(n

−1),

which rearranges as

Ĝn(θ̂n, γ̂n)′ŴnĠ(γ̂n)[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′ŴnĜn(θ̂n, γ̂n)

≤ 2R′
n[Ŵn − ŴnĠ(γ̂n)[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′Ŵn]Ĝn(θ̂n, γ̂n) + R′

nŴnRn + oP(n
−1)

= 2R′
n[Ŵn − ŴnĠ(γ̂n)[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′Ŵn]Ĝn(θ̂n, γ̂n) + oP(n

−1),

where the equality uses

‖Rn‖ ≤ ‖Ĝn(θ̂n, γ̂n) − G(θ̂n, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)‖

+‖Ĝn(θ̃n, γ̂n) − G(θ̃n, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)]‖

+‖θ̂n − θ0‖
2OP(1) + ‖θ̃n − θ0‖

2OP(1)

= oP(n
−1/2).

The desired result therefore follows if either

Ŵn − ŴnĠ(γ̂n)[Ġ(γ̂n)′ŴnĠ(γ̂n)]−1Ġ(γ̂n)′Ŵn = OP(n
−1/2)
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or Rn = oP(n1/ρ−1). The latter condition is satisfied if ρ < 3 and if, for every δn = O(n−1/ρ),

sup
‖θ−θ0‖≤δn

‖Ĝn(θ, γ̂n) − G(θ, γ̂n) − Ĝn(θ0, γ̂n) + G(θ0, γ̂n)‖ = oP(n
1/ρ−1).

The former condition is satisfied if either g is of dimension dθ or if

Ŵn = Ġ(γ̂n)Ġ(γ̂n)′ + OP(n
−1/2).

A.5 Proof of Lemma 2

By construction, n−1/2
∑n

i=1[ḡn(zi, γ̂
(i)
n )−Ḡn(γ̂(i)

n )−ḡn(zi, γn)+Ḡn(γn)] has mean zero, so it suffices

to show that its variance converges to zero. Using the decomposition

1
√

n

n∑

i=1

[ḡn(zi, γ̂
(i)
n ) − Ḡn(γ̂(i)

n ) − ḡn(zi, γn) + Ḡn(γn)]

=
1

√
n(n − 1)

n∑

i=1

n∑

j=1,j 6=i

(gn,γ(zi)[γ̂
j
n − γn] − Gn,γ [γ̂j

n − γn])

+
1

2
√

n(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

(gn,γγ(zi)[γ̂
j
n − γn, γ̂j

n − γn] − Gn,γγ [γ̂j
n − γn, γ̂j

n − γn])

+
1

2
√

n(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

n∑

k=1,k /∈{i,j}

(gn,γγ(zi)[γ̂
j
n − γn, γ̂k

n − γn] − Gn,γγ [γ̂j
n − γn, γ̂k

n − γn]),

and Hoeffding’s theorem for U -statistics, we have

V(
1
√

n

n∑

i=1

[ḡn(zi, γ̂
(i)
n ) − Ḡn(γ̂(i)

n ) − ḡn(zi, γn) + Ḡn(γn)])

=
1
n

O(V(gn,γ(zi)[γ̂
j
n − γn])) +

1
n2

O(V(gn,γγ(zi)[γ̂
j
n − γn, γ̂k

n − γn]))

+
1
n2

O(V[E(gn,γγ(zi)[γ̂
j
n − γn, γ̂j

n − γn]|zi)]) +
1
n3

O(V(gn,γγ(zi)[γ̂
j
n − γn, γ̂j

n − γn]))

= o(1),

where the last equality uses the assumptions displayed in the statement of the lemma.
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A.6 Proof of Lemma 3

Because

1
√

n

n∑

i=1

Gn,γγ [γ̂(i)
n − γn, γ̂(i)

n − γn] =
1

(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

Gn,γγ [γ̂j
n − γn, γ̂j

n − γn]

+
1

(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

n∑

k=1,k /∈{i,j}

Gn,γγ [γ̂j
n − γn, γ̂k

n − γn]

=
1

n − 1

n∑

i=1

Gn,γγ [γ̂i
n − γn, γ̂i

n − γn]

+
n − 2

(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

Gn,γγ [γ̂i
n − γn, γ̂j

n − γn],

it follows from Hoeffding’s theorem for U -statistics that if the assumptions displayed in the state-

ment of the lemma are satisfied, then

V(
√

nB̂n) =
1
n2

O(V(Gn,γγ [γ̂i
n − γn, γ̂i

n − γn])) +
1
n

O(V(Gn,γγ [γ̂i
n − γn, γ̂j

n − γn])) = o(1),

implying in particular that
√

n(B̂n − EB̂n) = oP(1).

If also (10) is satisfied, then Condition AN holds with Ω0 = V[ψ0(z)] and any Bn = EB̂n +

o(n−1/2) because

1
√

n

n∑

i=1

[gn(zi, γn) + Ḡn(γ̂(i)
n ) − Ḡn(γn) − Bn]

=
1
√

n

n∑

i=1

ψn(zi) +
√

n(B̂n − EB̂n) +
√

n(EB̂n − Bn)

=
1
√

n

n∑

i=1

ψ0(zi) + oP (1) N (0, Ω0).

A.7 Proof of Lemma 4

Using (iv*), (vi*), and Ġ(γ̂∗
n)′Ŵ ∗

nĠ(γ̂∗
n) →P Ġ′

0W0Ġ0 > 0, we have

(Ĵ ∗
n − Jn)Ĝ∗

n(θ̂n, γ̂∗
n) = oP(n

−1/2), Ĵ ∗
n = −[Ġ(γ̂∗

n)′Ŵ ∗
nĠ(γ̂∗

n)]−1Ġ(γ̂∗
n)′Ŵ ∗

n .

As a consequence, it suffices to show that θ̂
∗
n − θ̂n − Ĵ ∗

n Ĝ∗
n(θ̂n, γ̂∗

n) = oP(n−1/2). To do so, let

L∗
n(θ) = Ġ(γ̂∗

n)′Ŵ ∗
n [Ĝ∗

n(θ̂n, γ̂∗
n) + Ġ(γ̂∗

n)(θ − θ̂n)].
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Because Ġ(γ̂∗
n)′Ŵ ∗

nĠ(γ̂∗
n) →P Ġ′

0W0Ġ0 > 0 and

L∗
n(θ̂

∗
n) = Ġ(γ̂∗

n)′Ŵ ∗
nĠ(γ̂∗

n)[θ̂
∗
n − θ̂n − Ĵ ∗

n Ĝ∗
n(θ̂n, γ̂∗

n)],

it suffices to show that L∗
n(θ̂

∗
n) = oP(n−1/2).

Because θ̂n − θ0 = OP(n−1/ρ),

‖G(θ̂n, γ̂∗
n) − G(θ0, γ̂

∗
n) − Ġ(γ̂n)(θ̂n − θ0)‖ = ‖θ̂n − θ0‖

ρ/2oP(1) = oP(n
−1/2),

and

‖Ĝ∗
n(θ̂n, γ̂∗

n) − G(θ̂n, γ̂∗
n) − Ĝ∗

n(θ0, γ̂
∗
n) + G(θ0, γ̂

∗
n)‖ = oP(n

−1/2)

by (ii*) and (vii*), respectively. If also θ̂
∗
n − θ0 = OP(n−1/ρ), then

‖G(θ̂
∗
n, γ̂∗

n) − G(θ0, γ̂
∗
n) − Ġ(γ̂∗

n)(θ̂
∗
n − θ0)‖ = ‖θ̂

∗
n − θ0‖

ρ/2oP(1) = oP(n
−1/2),

and

‖Ĝ∗
n(θ̂

∗
n, γ̂∗

n) − G(θ̂
∗
n, γ̂∗

n) − Ĝ∗
n(θ0, γ̂

∗
n) + G(θ0, γ̂

∗
n)‖ = oP(n

−1/2)

by (ii*) and (vii*), respectively. As a consequence, by the triangle inequality,

‖L∗
n(θ̂

∗
n)‖ ≤ ‖Ġ(γ̂∗

n)′Ŵ ∗
n‖‖Ĝ

∗
n(θ̂n, γ̂∗

n) − G(θ̂n, γ̂∗
n) − Ĝ∗

n(θ0, γ̂
∗
n) + G(θ0, γ̂

∗
n)‖

+‖Ġ(γ̂∗
n)′Ŵ ∗

n‖‖G(θ̂n, γ̂∗
n) − G(θ0, γ̂

∗
n) − Ġ(γ̂n)(θ̂n − θ0)‖

+‖Ġ(γ̂∗
n)′Ŵ ∗

n‖‖Ĝ
∗
n(θ̂

∗
n, γ̂∗

n) − G(θ̂
∗
n, γ̂∗

n) − Ĝ∗
n(θ0, γ̂

∗
n) + G(θ0, γ̂

∗
n)‖

+‖Ġ(γ̂n)′Ŵn‖‖G(θ̂
∗
n, γ̂∗

n) − G(θ0, γ̂
∗
n) − Ġ(γ̂∗

n)(θ̂
∗
n − θ0)‖

+‖Ġ(γ̂∗
n)′Ŵ ∗

nĜ∗
n(θ̂

∗
n, γ̂∗

n)‖

= oP(n
−1/2),

where the equality uses ‖Ġ(γ̂∗
n)′Ŵ ∗

n‖ = OP(1) and Ġ(γ̂∗
n)′Ŵ ∗

nĜ∗
n(θ̂

∗
n, γ̂∗

n) = oP(n−1/2). The proof

can be therefore be completed by showing that θ̂
∗
n − θ0 = OP(n−1/ρ).

Proof of θ̂
∗
n − θ0 = OP(n−1/ρ). Because θ̂

∗
n − θ0 = oP(1) and Ŵ

1/2
n Ġ(γ̂∗

n) − W
1/2
0 Ġ0 = oP(1),

condition (ii*) implies that

‖θ̂
∗
n − θ0‖ ≤ ‖Ŵ ∗1/2

n [G(θ̂
∗
n, γ̂∗

n) − G(θ0, γ̂
∗
n)]‖OP(1),

so it suffices to show that Ŵ
∗1/2
n [G(θ̂

∗
n, γ̂∗

n) − G(θ0, γ̂
∗
n)] ≤ OP(n−1/ρ) + ‖θ̂

∗
n − θ0‖oP(1).

Using (i*) and (iv*), we have Ŵ
∗1/2
n Ĝ∗

n(θ̂
∗
n, γ̂∗

n) = OP(n−1/ρ) because

Ĝ∗
n(θ̂

∗
n, γ̂∗

n)′Ŵ ∗
nĜ∗

n(θ̂
∗
n, γ̂∗

n) ≤ Ĝ∗
n(θ0, γ̂

∗
n)′Ŵ ∗

nĜ∗
n(θ0, γ̂

∗
n) + oP(n

−1) = OP(n
−2/ρ).
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Also, using θ̂
∗
n − θ0 = oP(1) and (iii*),

‖Ŵ ∗1/2
n [Ĝ∗

n(θ̂
∗
n, γ̂∗

n) − G(θ̂
∗
n, γ̂∗

n) − Ĝ∗
n(θ0, γ̂

∗
n) + G(θ0, γ̂

∗
n)]‖ = oP(n

−1/ρ) + ‖θ̂
∗
n − θ0‖oP(1),

so

‖Ŵ ∗1/2
n [G(θ̂

∗
n, γ̂∗

n) − G(θ0, γ̂
∗
n)]‖ ≤ ‖Ŵ ∗1/2

n [Ĝ∗
n(θ̂

∗
n, γ̂∗

n) − G(θ̂
∗
n, γ̂∗

n) − Ĝ∗
n(θ0, γ̂

∗
n) + G(θ0, γ̂

∗
n)]‖

+‖Ŵ ∗1/2
n Ĝ∗

n(θ̂
∗
n, γ̂∗

n)‖ + ‖Ŵ ∗1/2
n Ĝ∗

n(θ0, γ̂
∗
n)‖

= OP(n
−1/ρ) + ‖θ̂n − θ0‖oP(1),

where the inequality uses the triangle inequality and the equality uses (iv*).

A.8 Proof of Lemma 5

By construction,

E∗(
1
√

n

n∑

i=1

[ḡ∗n(z∗i,n, γ̂∗,(i)
n ) − Ḡ∗

n(γ̂∗,(i)
n ) − ḡ∗n(z∗i,n, γ̂n) + Ḡ∗

n(γ̂n)]) = 0.

Moreover, using the decomposition

1
√

n

n∑

i=1

[ḡ∗n(z∗i,n, γ̂∗,(i)
n ) − Ḡ∗

n(γ̂∗,(i)
n ) − ḡ∗n(z∗i,n, γ̂n) + Ḡ∗

n(γ̂n)]

=
1

√
n(n − 1)

n∑

i=1

n∑

j=1,j 6=i

(g∗n,γ(z∗i,n)[γ̂∗,j
n − γ̂n] − G∗

n,γ [γ̂∗,j
n − γ̂n])

+
1

2
√

n(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

(g∗n,γγ(z∗i,n)[γ̂∗,j
n − γ̂n, γ̂∗,j

n − γ̂n] − G∗
n,γγ [γ̂∗,j

n − γ̂n, γ̂∗,j
n − γ̂n])

+
1

2
√

n(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

n∑

k=1,k /∈{i,j}

(g∗n,γγ(z∗i,n)[γ̂∗,j
n − γ̂n, γ̂∗,k

n − γ̂n] − G∗
n,γγ [γ̂∗,j

n − γ̂n, γ̂∗,k
n − γ̂n]),

and proceeding as in the proof of Lemma 2, it follows from the assumptions displayed in the

statement of Lemma 5 that

V∗(
1
√

n

n∑

i=1

[ḡn(zi, γ̂
(i)
n ) − Ḡn(γ̂(i)

n ) − ḡn(zi, γn) + Ḡn(γn)]) = oP(1).
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A.9 Proof of Lemma 6

Because

1
√

n

n∑

i=1

G∗
n,γγ [γ̂∗,(i)

n − γ̂n, γ̂∗,(i)
n − γ̂n] =

1
n − 1

n∑

i=1

G∗
n,γγ [γ̂∗,i

n − γ̂n, γ̂∗,i
n − γ̂n]

+
n − 2

(n − 1)2

n∑

i=1

n∑

j=1,j 6=i

G∗
n,γγ [γ̂∗,i

n − γ̂n, γ̂∗,j
n − γ̂n],

it follows from Hoeffding’s theorem for U -statistics that if the assumptions displayed in the state-

ment of the lemma are satisfied, then

√
n(B̂∗

n − EB̂∗
n) =

√
n(B̂∗

n − E∗B̂∗
n) +

√
n(E∗B̂∗

n − EB̂∗
n) = oP(1),

and therefore

1
√

n

n∑

i=1

[g∗n(z∗i,n, γ̂n) + Ḡ∗
n(γ̂(i)

n ) − Ḡ∗
n(γ̂n) − B∗

n] =
1
√

n

n∑

i=1

ψ∗
n(z∗i,n) + oP(1)

for any B∗
n = EB̂∗

n + o(n−1/2). If also (12) is satisfied, then

1
√

n

n∑

i=1

ψ∗
n(z∗i,n) =

1
√

n

n∑

i=1

ψn(z∗i,n) −
1
√

n

n∑

i=1

ψn(zi) + oP (1)

=
1
√

n

n∑

i=1

ψ0(z
∗
i,n) −

1
√

n

n∑

i=1

ψ0(zi,n) + oP (1) P N (0, Ω0),

where the second equality uses (10).
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Table 1: Simulation Data Generating Processes.

Model d P μy σy σx θ0 Σ0 BSB
0 BS

0 hopt

M1 1 2 1/2 1/2 1/2 0.449 0.322 −0.253 0.402 0.086
M2 1 4 1/2 1/2 1/2 0.449 0.322 −0.374 0.544 0.233
M3 2 2 1/2 1/2 1/2 0.633 0.296 −0.115 0.517 0.122
M4 2 4 1/2 1/2 1/2 0.633 0.296 −0.260 0.826 0.261
M5 3 4 1/2 1/2 1/2 0.732 0.226 −0.142 0.681 0.298

M6 1 2 1/2 1/3 1/3 0.229 0.209 −0.079 0.101 0.092
M7 1 4 1/2 1/3 1/3 0.229 0.209 −0.092 −4.072 0.089
M8 2 2 1/2 1/3 1/3 0.356 0.305 −0.079 0.585 0.108
M9 2 4 1/2 1/3 1/3 0.356 0.305 −0.162 −3.960 0.165
M10 3 4 1/2 1/3 1/3 0.457 0.358 −0.127 −2.195 0.238

M11 1 2 1/2 1/4 1/3 0.208 0.203 −0.070 −0.297 0.049
M12 1 4 1/2 1/4 1/3 0.208 0.203 −0.077 −7.057 0.077
M13 2 2 1/2 1/4 1/3 0.351 0.319 −0.081 0.278 0.131
M14 2 4 1/2 1/4 1/3 0.351 0.319 −0.167 −6.784 0.152
M15 3 4 1/2 1/4 1/3 0.464 0.385 −0.133 −4.332 0.218

M16 1 2 3/4 3/4 1/4 0.327 0.283 −0.108 1.318 0.043
M17 1 4 3/4 3/4 1/4 0.327 0.283 −0.153 3.338 0.136
M18 2 2 3/4 3/4 1/4 0.318 0.266 −0.040 1.018 0.079
M19 2 4 3/4 3/4 1/4 0.318 0.266 −0.084 −7.957 0.132
M20 3 4 3/4 3/4 1/4 0.328 0.261 −0.053 −15.813 0.158

M21 1 2 1 1/2 1/5 0.280 0.276 −0.049 1.029 0.036
M22 1 4 1 1/2 1/5 0.280 0.276 −0.054 −27.472 0.055
M23 2 2 1 1/2 1/5 0.252 0.229 −0.029 −1.514 0.066
M24 2 4 1 1/2 1/5 0.252 0.229 −0.060 −73.575 0.086
M25 3 4 1 1/2 1/5 0.241 0.210 −0.035 −74.966 0.120
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Table 2: Simulation Results for Models M1–M5 (n = 1, 000, B = 1, 000, S = 1, 000).

BW CR IL B/SE MSE
hn c E N P E N P

M1: d = 1, P = 2
0.043 0.5 0.930 0.942 0.935 0.072 0.070 0.072 −0.258 1.070
0.051 0.6 0.942 0.944 0.939 0.072 0.070 0.072 −0.185 1.034
0.060 0.7 0.947 0.948 0.942 0.072 0.070 0.072 −0.124 1.014
0.069 0.8 0.952 0.948 0.939 0.072 0.070 0.072 −0.067 1.003
0.077 0.9 0.954 0.946 0.940 0.071 0.070 0.071 −0.016 1.000

hopt = 0.086 1.0 0.955 0.946 0.939 0.071 0.070 0.071 0.032 1.000
0.094 1.1 0.957 0.946 0.937 0.071 0.070 0.071 0.084 1.003

M2: d = 1, P = 4
0.117 0.5 0.949 0.944 0.940 0.072 0.070 0.072 −0.141 1.015
0.140 0.6 0.952 0.946 0.941 0.072 0.070 0.072 −0.104 1.007
0.163 0.7 0.951 0.947 0.941 0.071 0.070 0.071 −0.070 1.001
0.186 0.8 0.954 0.949 0.940 0.071 0.070 0.071 −0.041 0.999
0.210 0.9 0.954 0.949 0.940 0.071 0.070 0.071 −0.010 0.996

hopt = 0.233 1.0 0.953 0.948 0.941 0.071 0.070 0.071 0.025 1.000
0.256 1.1 0.953 0.946 0.939 0.071 0.070 0.071 0.065 1.004

M3: d = 2, P = 2
0.061 0.5 0.082 0.657 0.935 0.073 0.068 0.073 −1.606 3.709
0.073 0.6 0.407 0.828 0.936 0.072 0.068 0.072 −1.022 2.114
0.085 0.7 0.688 0.899 0.932 0.071 0.068 0.071 −0.644 1.457
0.098 0.8 0.833 0.933 0.929 0.070 0.068 0.070 −0.373 1.158
0.110 0.9 0.904 0.946 0.927 0.069 0.067 0.069 −0.155 1.030

hopt = 0.122 1.0 0.943 0.948 0.918 0.069 0.067 0.069 0.033 1.000
0.134 1.1 0.959 0.944 0.903 0.068 0.067 0.068 0.201 1.033

M4: d = 2, P = 4
0.130 0.5 0.642 0.873 0.939 0.071 0.069 0.071 −0.810 1.724
0.156 0.6 0.814 0.921 0.943 0.071 0.068 0.071 −0.534 1.328
0.183 0.7 0.887 0.934 0.941 0.070 0.068 0.070 −0.353 1.152
0.209 0.8 0.926 0.945 0.943 0.069 0.068 0.069 −0.219 1.065
0.235 0.9 0.942 0.952 0.941 0.069 0.068 0.069 −0.103 1.024

hopt = 0.261 1.0 0.953 0.953 0.937 0.068 0.067 0.068 0.005 1.000
0.287 1.1 0.958 0.951 0.931 0.068 0.067 0.068 0.114 1.006

M5: d = 3, P = 4
0.149 0.5 0.000 0.242 0.931 0.070 0.063 0.070 −2.669 9.069
0.179 0.6 0.123 0.682 0.936 0.066 0.062 0.066 −1.511 3.544
0.209 0.7 0.543 0.861 0.941 0.064 0.061 0.064 −0.901 1.903
0.238 0.8 0.799 0.910 0.939 0.062 0.060 0.062 −0.528 1.317
0.268 0.9 0.897 0.939 0.935 0.061 0.060 0.061 −0.266 1.086

hopt = 0.298 1.0 0.935 0.948 0.930 0.060 0.060 0.060 −0.060 1.000
0.328 1.1 0.947 0.948 0.918 0.059 0.059 0.059 0.125 1.005

Notes : (i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt; (ii) Columns
under CR report coverage error for 95% confidence intervals; (iii) Columns under IL report average interval length
for 95% confidence intervals; and (iv) Columns B/SE and MSE report, respectively, simulation bias relative to
simulation standard error and simulation mean square error of θ̂n(hn).
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Table 3: Simulation Results for Models M6–M10 (n = 1, 000, B = 1, 000, S = 1, 000).

BW CR IL B/SE MSE
hn c E N P E N P

M6: d = 1, P = 2
0.046 0.5 0.956 0.943 0.933 0.058 0.056 0.058 −0.095 1.004
0.055 0.6 0.956 0.945 0.937 0.058 0.056 0.058 −0.066 1.000
0.064 0.7 0.958 0.944 0.938 0.057 0.056 0.057 −0.040 0.999
0.074 0.8 0.958 0.945 0.938 0.057 0.056 0.057 −0.014 0.998
0.083 0.9 0.957 0.947 0.942 0.057 0.056 0.057 0.016 0.997

hopt = 0.092 1.0 0.958 0.946 0.943 0.057 0.056 0.057 0.048 1.000
0.101 1.1 0.958 0.944 0.941 0.057 0.056 0.057 0.084 1.009

M7: d = 1, P = 4
0.045 0.5 0.957 0.944 0.927 0.058 0.056 0.058 −0.143 1.001
0.053 0.6 0.959 0.944 0.933 0.058 0.056 0.058 −0.118 0.999
0.062 0.7 0.957 0.944 0.930 0.058 0.056 0.058 −0.102 1.005
0.071 0.8 0.958 0.944 0.934 0.058 0.056 0.058 −0.092 1.005
0.080 0.9 0.958 0.945 0.935 0.058 0.056 0.058 −0.088 1.000

hopt = 0.089 1.0 0.959 0.945 0.937 0.058 0.056 0.058 −0.084 1.000
0.098 1.1 0.957 0.945 0.937 0.058 0.056 0.058 −0.084 0.997

M8: d = 2, P = 2
0.054 0.5 0.116 0.674 0.896 0.065 0.066 0.065 −1.504 2.931
0.065 0.6 0.477 0.839 0.913 0.067 0.067 0.067 −0.952 1.761
0.075 0.7 0.730 0.915 0.913 0.068 0.067 0.068 −0.584 1.266
0.086 0.8 0.863 0.941 0.916 0.069 0.068 0.069 −0.315 1.054
0.097 0.9 0.927 0.950 0.915 0.069 0.068 0.069 −0.091 0.978

hopt = 0.108 1.0 0.953 0.951 0.903 0.070 0.069 0.070 0.113 1.000
0.118 1.1 0.960 0.940 0.890 0.070 0.070 0.070 0.308 1.100

M9: d = 2, P = 4
0.083 0.5 0.193 0.709 0.899 0.066 0.066 0.066 −1.408 2.433
0.099 0.6 0.533 0.830 0.912 0.067 0.067 0.067 −0.977 1.633
0.116 0.7 0.725 0.884 0.922 0.068 0.067 0.068 −0.731 1.294
0.132 0.8 0.817 0.910 0.926 0.068 0.067 0.068 −0.580 1.128
0.149 0.9 0.867 0.926 0.928 0.068 0.067 0.068 −0.479 1.047

hopt = 0.165 1.0 0.898 0.930 0.932 0.068 0.067 0.068 −0.417 1.000
0.182 1.1 0.914 0.941 0.934 0.068 0.067 0.068 −0.373 0.972

M10: d = 3, P = 4
0.119 0.5 0.000 0.008 0.832 0.065 0.068 0.065 −4.375 14.886
0.143 0.6 0.001 0.312 0.887 0.070 0.071 0.070 −2.441 5.643
0.167 0.7 0.138 0.675 0.913 0.073 0.072 0.073 −1.514 2.760
0.190 0.8 0.502 0.831 0.923 0.074 0.073 0.074 −0.989 1.696
0.214 0.9 0.753 0.909 0.927 0.075 0.074 0.075 −0.626 1.226

hopt = 0.238 1.0 0.883 0.935 0.933 0.076 0.075 0.076 −0.324 1.000
0.262 1.1 0.936 0.950 0.924 0.077 0.076 0.077 −0.029 0.938

Notes : (i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt; (ii) Columns
under CR report coverage error for 95% confidence intervals; (iii) Columns under IL report average interval length
for 95% confidence intervals; and (iv) Columns B/SE and MSE report, respectively, simulation bias relative to
simulation standard error and simulation mean square error of θ̂n(hn).
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Table 4: Simulation Results for Models M11–M15 (n = 1, 000, B = 1, 000, S = 1, 000).

BW CR IL B/SE MSE
hn c E N P E N P

M11: d = 1, P = 2
0.024 0.5 0.950 0.940 0.929 0.056 0.054 0.056 −0.224 1.033
0.029 0.6 0.956 0.943 0.928 0.056 0.054 0.056 −0.194 1.025
0.034 0.7 0.959 0.944 0.933 0.056 0.054 0.056 −0.176 1.014
0.039 0.8 0.959 0.946 0.931 0.056 0.054 0.056 −0.164 1.009
0.044 0.9 0.960 0.947 0.934 0.056 0.054 0.056 −0.156 1.007

hopt = 0.049 1.0 0.959 0.946 0.934 0.056 0.053 0.056 −0.153 1.000
0.054 1.1 0.960 0.946 0.932 0.055 0.053 0.055 −0.151 0.995

M12: d = 1, P = 4
0.039 0.5 0.964 0.943 0.931 0.057 0.054 0.057 −0.151 0.995
0.046 0.6 0.965 0.947 0.931 0.057 0.054 0.057 −0.127 0.997
0.054 0.7 0.966 0.953 0.932 0.057 0.054 0.057 −0.110 0.999
0.062 0.8 0.967 0.952 0.929 0.057 0.054 0.057 −0.101 1.002
0.069 0.9 0.965 0.952 0.933 0.057 0.054 0.057 −0.096 1.003

hopt = 0.077 1.0 0.965 0.952 0.934 0.056 0.054 0.056 −0.093 1.000
0.085 1.1 0.965 0.948 0.933 0.056 0.054 0.056 −0.093 0.992

M13: d = 2, P = 2
0.065 0.5 0.424 0.817 0.905 0.067 0.066 0.067 −1.052 1.845
0.078 0.6 0.719 0.898 0.916 0.068 0.067 0.068 −0.657 1.278
0.092 0.7 0.862 0.941 0.923 0.068 0.067 0.068 −0.382 1.025
0.105 0.8 0.923 0.950 0.924 0.069 0.067 0.069 −0.157 0.927
0.118 0.9 0.950 0.949 0.921 0.069 0.068 0.069 0.051 0.920

hopt = 0.131 1.0 0.963 0.941 0.910 0.070 0.069 0.070 0.259 1.000
0.144 1.1 0.955 0.922 0.884 0.070 0.070 0.070 0.480 1.182

M14: d = 2, P = 4
0.076 0.5 0.042 0.593 0.882 0.065 0.065 0.065 −1.750 2.937
0.091 0.6 0.334 0.766 0.903 0.067 0.066 0.067 −1.213 1.859
0.106 0.7 0.589 0.848 0.909 0.068 0.067 0.068 −0.913 1.395
0.122 0.8 0.735 0.886 0.918 0.068 0.067 0.068 −0.735 1.176
0.137 0.9 0.812 0.904 0.919 0.068 0.067 0.068 −0.624 1.062

hopt = 0.152 1.0 0.854 0.913 0.923 0.068 0.067 0.068 −0.559 1.000
0.167 1.1 0.875 0.919 0.927 0.068 0.067 0.068 −0.527 0.965

M15: d = 3, P = 4
0.109 0.5 0.000 0.000 0.750 0.059 0.066 0.059 −6.304 20.100
0.131 0.6 0.000 0.063 0.864 0.068 0.070 0.068 −3.478 7.287
0.152 0.7 0.005 0.412 0.904 0.072 0.072 0.072 −2.172 3.351
0.174 0.8 0.183 0.684 0.920 0.074 0.073 0.074 −1.477 1.915
0.196 0.9 0.490 0.813 0.926 0.075 0.073 0.075 −1.055 1.297

hopt = 0.218 1.0 0.714 0.884 0.927 0.075 0.074 0.075 −0.759 1.000
0.239 1.1 0.840 0.918 0.933 0.076 0.075 0.076 −0.518 0.821

Notes : (i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt; (ii) Columns
under CR report coverage error for 95% confidence intervals; (iii) Columns under IL report average interval length
for 95% confidence intervals; and (iv) Columns B/SE and MSE report, respectively, simulation bias relative to
simulation standard error and simulation mean square error of θ̂n(hn).
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Table 5: Simulation Results for Models M16–M20 (n = 1, 000, B = 1, 000, S = 1, 000).

BW CR IL B/SE MSE
hn c E N P E N P

M16: d = 1, P = 2
0.022 0.5 0.934 0.946 0.929 0.067 0.065 0.067 −0.239 1.038
0.026 0.6 0.943 0.947 0.931 0.067 0.066 0.067 −0.174 1.018
0.030 0.7 0.948 0.948 0.934 0.067 0.066 0.067 −0.120 1.007
0.035 0.8 0.951 0.948 0.933 0.067 0.066 0.067 −0.069 0.999
0.039 0.9 0.955 0.949 0.938 0.067 0.066 0.067 −0.024 0.996

hopt = 0.043 1.0 0.956 0.949 0.934 0.067 0.066 0.067 0.020 1.000
0.048 1.1 0.957 0.949 0.938 0.067 0.066 0.067 0.065 1.003

M17: d = 1, P = 4
0.068 0.5 0.952 0.947 0.937 0.067 0.066 0.067 −0.113 0.994
0.081 0.6 0.954 0.948 0.938 0.067 0.066 0.067 −0.084 0.995
0.095 0.7 0.956 0.949 0.941 0.067 0.066 0.067 −0.058 0.994
0.108 0.8 0.956 0.950 0.940 0.067 0.066 0.067 −0.032 0.992
0.122 0.9 0.955 0.948 0.940 0.067 0.066 0.067 −0.004 0.994

hopt = 0.136 1.0 0.955 0.946 0.940 0.067 0.066 0.067 0.032 1.000
0.149 1.1 0.955 0.947 0.939 0.067 0.066 0.067 0.077 1.008

M18: d = 2, P = 2
0.040 0.5 0.125 0.670 0.895 0.061 0.062 0.061 −1.480 2.855
0.048 0.6 0.474 0.847 0.913 0.063 0.063 0.063 −0.937 1.723
0.056 0.7 0.726 0.911 0.917 0.064 0.064 0.064 −0.584 1.254
0.063 0.8 0.857 0.937 0.918 0.065 0.064 0.065 −0.320 1.055
0.071 0.9 0.921 0.952 0.917 0.065 0.065 0.065 −0.106 0.989

hopt = 0.079 1.0 0.948 0.952 0.908 0.066 0.066 0.066 0.093 1.000
0.087 1.1 0.959 0.941 0.902 0.066 0.066 0.066 0.279 1.077

M19: d = 2, P = 4
0.066 0.5 0.344 0.787 0.907 0.063 0.063 0.063 −1.193 2.079
0.079 0.6 0.634 0.872 0.913 0.064 0.063 0.064 −0.828 1.474
0.092 0.7 0.784 0.909 0.924 0.064 0.063 0.064 −0.615 1.218
0.105 0.8 0.856 0.926 0.929 0.064 0.064 0.064 −0.483 1.094
0.119 0.9 0.891 0.932 0.933 0.065 0.064 0.065 −0.390 1.037

hopt = 0.132 1.0 0.916 0.937 0.932 0.065 0.064 0.065 −0.328 1.000
0.145 1.1 0.929 0.941 0.934 0.065 0.064 0.065 −0.274 0.975

M20: d = 3, P = 4
0.079 0.5 0.000 0.000 0.347 0.045 0.053 0.045 −7.498 19.190
0.095 0.6 0.000 0.012 0.796 0.054 0.057 0.054 −4.172 7.176
0.111 0.7 0.000 0.260 0.868 0.059 0.060 0.059 −2.618 3.329
0.127 0.8 0.062 0.543 0.888 0.061 0.061 0.061 −1.813 1.902
0.143 0.9 0.300 0.729 0.904 0.062 0.062 0.062 −1.362 1.293

hopt = 0.158 1.0 0.542 0.809 0.915 0.063 0.062 0.063 −1.085 1.000
0.174 1.1 0.684 0.853 0.919 0.064 0.063 0.064 −0.902 0.848

Notes : (i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt; (ii) Columns
under CR report coverage error for 95% confidence intervals; (iii) Columns under IL report average interval length
for 95% confidence intervals; and (iv) Columns B/SE and MSE report, respectively, simulation bias relative to
simulation standard error and simulation mean square error of θ̂n(hn).
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Table 6: Simulation Results for Models M21–M25 (n = 1, 000, B = 1, 000, S = 1, 000).

BW CR IL B/SE MSE
hn c E N P E N P

M21: d = 1, P = 2
0.018 0.5 0.954 0.946 0.935 0.066 0.063 0.066 −0.146 1.008
0.022 0.6 0.956 0.949 0.932 0.066 0.063 0.066 −0.106 1.010
0.025 0.7 0.957 0.948 0.932 0.066 0.063 0.066 −0.072 1.007
0.029 0.8 0.957 0.948 0.934 0.066 0.063 0.066 −0.042 1.004
0.033 0.9 0.958 0.947 0.938 0.065 0.063 0.065 −0.014 1.002

hopt = 0.036 1.0 0.958 0.950 0.940 0.065 0.063 0.065 0.014 1.000
0.040 1.1 0.958 0.951 0.940 0.065 0.063 0.065 0.043 1.001

M22: d = 1, P = 4
0.027 0.5 0.961 0.950 0.936 0.066 0.063 0.066 −0.126 0.995
0.033 0.6 0.961 0.949 0.932 0.066 0.064 0.066 −0.101 1.003
0.038 0.7 0.959 0.947 0.932 0.066 0.064 0.066 −0.087 1.004
0.044 0.8 0.958 0.948 0.931 0.066 0.064 0.066 −0.078 1.004
0.049 0.9 0.957 0.948 0.936 0.066 0.064 0.066 −0.074 1.002

hopt = 0.055 1.0 0.956 0.949 0.938 0.066 0.064 0.066 −0.071 1.000
0.060 1.1 0.956 0.947 0.939 0.065 0.064 0.065 −0.070 0.995

M23: d = 2, P = 2
0.033 0.5 0.013 0.473 0.874 0.053 0.053 0.053 −2.055 2.946
0.040 0.6 0.192 0.676 0.894 0.055 0.054 0.055 −1.484 1.861
0.046 0.7 0.438 0.775 0.904 0.056 0.054 0.056 −1.174 1.395
0.053 0.8 0.606 0.821 0.912 0.056 0.055 0.056 −0.992 1.175
0.060 0.9 0.709 0.851 0.910 0.056 0.055 0.056 −0.886 1.060

hopt = 0.066 1.0 0.766 0.876 0.909 0.056 0.055 0.056 −0.818 1.000
0.073 1.1 0.802 0.884 0.908 0.056 0.055 0.056 −0.777 0.962

M24: d = 2, P = 4
0.043 0.5 0.001 0.341 0.848 0.052 0.053 0.052 −2.395 3.862
0.052 0.6 0.078 0.619 0.882 0.055 0.054 0.055 −1.643 2.233
0.060 0.7 0.337 0.775 0.898 0.056 0.055 0.056 −1.229 1.545
0.069 0.8 0.557 0.838 0.909 0.057 0.055 0.057 −0.983 1.219
0.078 0.9 0.687 0.865 0.918 0.057 0.055 0.057 −0.854 1.067

hopt = 0.086 1.0 0.757 0.875 0.917 0.057 0.055 0.057 −0.788 1.000
0.095 1.1 0.792 0.883 0.912 0.057 0.055 0.057 −0.767 0.975

M25: d = 3, P = 4
0.060 0.5 0.000 0.000 0.000 0.022 0.033 0.022 −18.517 23.105
0.072 0.6 0.000 0.000 0.122 0.033 0.042 0.033 −8.922 8.607
0.084 0.7 0.000 0.001 0.665 0.041 0.046 0.041 −5.296 3.754
0.096 0.8 0.000 0.050 0.800 0.047 0.049 0.047 −3.587 1.982
0.108 0.9 0.000 0.228 0.825 0.049 0.050 0.049 −2.723 1.284

hopt = 0.120 1.0 0.020 0.351 0.812 0.051 0.051 0.051 −2.316 1.000
0.132 1.1 0.082 0.406 0.775 0.052 0.052 0.052 −2.160 0.906

Notes : (i) Columns under BW report grid of bandwidths and multiplicative factor c relative to hopt; (ii) Columns
under CR report coverage error for 95% confidence intervals; (iii) Columns under IL report average interval length
for 95% confidence intervals; and (iv) Columns B/SE and MSE report, respectively, simulation bias relative to
simulation standard error and simulation mean square error of θ̂n(hn).
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