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ABSTRACT
Many gene mapping studies of complex traits have identified genes or variants that

influence multiple phenotypes. With the advent of next-generation sequencing tech-

nology, there has been substantial interest in identifying rare variants in genes that pos-

sess cross-phenotype effects. In the presence of such effects, modeling both the phe-

notypes and rare variants collectively using multivariate models can achieve higher

statistical power compared to univariate methods that either model each phenotype

separately or perform separate tests for each variant. Several studies collect pheno-

typic data over time and using such longitudinal data can further increase the power

to detect genetic associations. Although rare-variant approaches exist for testing cross-

phenotype effects at a single time point, there is no analogous method for performing

such analyses using longitudinal outcomes. In order to fill this important gap, we pro-

pose an extension of Gene Association with Multiple Traits (GAMuT) test, a method

for cross-phenotype analysis of rare variants using a framework based on the distance

covariance. The approach allows for both binary and continuous phenotypes and can

also adjust for covariates. Our simple adjustment to the GAMuT test allows it to handle

longitudinal data and to gain power by exploiting temporal correlation. The approach

is computationally efficient and applicable on a genome-wide scale due to the use of

a closed-form test whose significance can be evaluated analytically. We use simulated

data to demonstrate that our method has favorable power over competing approaches

and also apply our approach to exome chip data from the Genetic Epidemiology Net-

work of Arteriopathy.

K E Y W O R D S
complex human traits, gene mapping, longitudinal data, pleiotropy, rare variant

1 INTRODUCTION

Pleiotropy refers to the phenomenon of one genetic variant

influencing more than one distinct trait. Several studies in

recent years suggest the existence of many genetic variants

that influence multiple phenotypes (Lees, Barrett, Parkes, &

Satsangi, 2011; Liu et al., 2012). In the presence of such

cross-phenotypic effects, joint genetic analysis of multiple

phenotypes can be more accurate for phenotype prediction

and statistically more powerful for gene mapping than univari-

ate methods that model each phenotype separately (Allison

et al., 1998; Galesloot, Van Steen, Kiemeney, Janss, &

Vermeulen, 2014; Maier et al., 2015). Genetic pleiotropy

induces phenotypic correlation that is more readily detectable
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through cross-phenotype analyses using the extra information

provided by the correlation among the phenotypes. Although

several tests of pleiotropy for common variants exist, they are

usually less powerful for rare variants (Schaid et al., 2016). A

recent method called “Gene Association with Multiple Traits

(GAMuT)” (Broadaway et al., 2016) was proposed to fill this

gap for rare variants. The authors also argued that performing

cross-phenotypic tests for rare variants might be more impor-

tant than performing the same types of analyses for common

variants because population-genetic models suggest rare vari-

ants are likely to be pleiotropic in nature under the model of

infinitesimal genetic architecture (Broadaway et al., 2016).

In many studies related to genetic epidemiology, such as the

Genetic Epidemiology Network of Arteriopathy (GENOA)

study (Daniels et al., 2004), observations at multiple time

points are available for each subject. More accurate inference

can be drawn by exploiting the temporal correlation in these

measurements. However, most of the researchers tend to use

existing single time point methodologies on such data after

collapsing the repeated measurements into a single value (e.g.,

average across time points). Such a simple approach fails to

take advantage of the extra information provided by repeated

measurements and can be less powerful as a result.

A rare-variant statistical approach for cross-phenotype

analysis of longitudinal outcomes requires a framework that

can handle multiple phenotypes observed over multiple time

points and furthermore can simultaneously handle informa-

tion from multiple rare variants within a gene, because gene-

based testing can be more powerful than testing of individ-

ual variants (He et al., 2016; Kwee, Liu, Lin, Ghosh, &

Epstein, 2008; Morris & Zeggini, 2010; Wu et al., 2011).

Such an approach currently does not exist in the statistical

or genetics literature. There exist methods for longitudinal

analysis of genetic data (Fan et al., 2012; Furlotte, Eskin,

& Eyheramendy, 2012) based on random effects models

(Fitzmaurice, Laird, & Ware, 2012) or generalized estimat-

ing equations (GEE) (Zeger & Liang, 1986). However, such

models cannot be applied to test the association of the lon-

gitudinal phenotype data with an entire gene or thousands of

markers taken together in a flexible manner. A recent method

based on the longitudinal genetic random field model allows

longitudinal analysis of multiple genetic variants simultane-

ously (He et al., 2016), but no extension of the method is avail-

able for cross-phenotypic effects. Finally, there are other mul-

timarker approaches such as sequence kernel association test

(SKAT) (Wu et al., 2011) and similarity regression (SIMreg)

(Tzeng et al., 2009) that are used for gene mapping, but such

approaches do not directly apply to multiphenotype data or

longitudinal data. There has been some recent work on multi-

variate extensions to SKAT (Sun et al., 2016; Wu & Pankow,

2016). However, like GAMuT (Broadaway et al., 2016), these

methods do not apply to longitudinal data. Another method

using multivariate functional linear models (MFLMs) (Wang

et al., 2015) uses multiphenotype data, but does not apply to

longitudinal data. MFLM has also been shown to have much

inferior power compared to GAMuT and SKAT in the single

phenotype case (Broadaway et al., 2016). Moreover, the above

tests require continuous phenotypes and therefore cannot be

applied to important categorical phenotypes like presence or

absence of a disease, which is not ideal for a test of pleiotropy.

In this article, we propose an extension of the GAMuT

method for longitudinal data using some simple adjustments.

The approach utilizes the correlation across time because it

does not collapse the repeated measures, and also uses the

correlation across phenotypes. Therefore, it is appropriate for

testing the genetic association for cross-phenotype longitu-

dinal data and is especially powerful for rare variants. We

demonstrate its power and control of type I error through sim-

ulations and also apply the method to perform exome-chip

analysis of multivariate repeated measures of cardiovascular-

related phenotypes from the GENOA study (Daniels et al.,

2004).

2 METHODS

The GAMuT test (Broadaway et al., 2016) relies on

a machine-learning framework called kernel distance-

covariance (KDC) (Gretton et al., 2007; Hua & Ghosh, 2015;

Székely et al., 2007) and provides a nonparametric test for

independence between a set of phenotypes and a set of genetic

variants within a gene of interest. The framework is based on

comparing pairwise phenotypic similarity between samples

with genotypic similarity between samples. It allows for

arbitrary number of genotypes and phenotypes, and therefore

it is ideal for testing rare variants. It also allows for covariates

and is computationally efficient due to its ability to provide

analytic P values using Davies' (1980) method.

Let us start with a single time point. Suppose a sam-

ple of 𝑁 subjects has data on 𝐿 phenotypes. The phe-

notype vector for the 𝑗th subject (𝑗 = 1, 2,… , 𝑁) is 𝑃𝑗 =
(𝑃𝑗1, 𝑃𝑗1,… , 𝑃𝑗𝐿). Each phenotype can be either continu-

ous or categorical. Let 𝑃 = (𝑃𝑇
1 , 𝑃

𝑇
2 ,… , 𝑃 𝑇

𝑁
) be the phe-

notype matrix for all samples. Similarly, the genotype vec-

tor for sample 𝑗 at 𝑉 rare-variant sites in the gene of inter-

est, 𝐺𝑗 = (𝐺𝑗1, 𝐺𝑗2,… , 𝐺𝑗𝑉 ), and the genotype matrix 𝐺 =
(𝐺𝑇

1 , 𝐺
𝑇
2 ,… , 𝐺𝑇

𝑁
) for all samples can be defined. Here, 𝐺𝑗𝑣

(𝑗 = 1, 2,… , 𝑁 ; 𝑣 = 1, 2,… , 𝑉 ) is the number of copies of

the minor allele that the subject possesses at variant 𝑣. 𝑃 is an

𝑁 × 𝐿 matrix and 𝐺 is an 𝑁 × 𝑉 matrix, and kernel similar-

ity measure between these two matrices is used by GAMuT

to test the independence between the set of rare variants and

the set of phenotypes.

To apply the GAMuT test, an 𝑁 ×𝑁 phenotypic simi-

larity matrix 𝑌 and 𝑁 ×𝑁 genotypic similarity matrix 𝑋

are first defined. Different kernels can be used to define the
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similarity matrices. For example, Y can be modeled using a

projection matrix (Schork & Zapala, 2012), such that 𝑌 =
𝑃 (𝑃𝑇 𝑃 )−1𝑃𝑇 . A linear, quadratic or Gaussian kernel can

also be used. Let the kernel function 𝑦(𝑃𝑖, 𝑃𝑗) denote the

similarity between phenotype vectors of subject 𝑖 and sub-

ject 𝑗. For linear kernel, 𝑦(𝑃𝑖, 𝑃𝑗) =
∑𝐿

𝑙=1 𝑃𝑖𝑙𝑃𝑗𝑙; for quadratic

kernel, 𝑦(𝑃𝑖, 𝑃𝑗) = (1 +
∑𝐿

𝑙=1 𝑃𝑖𝑙𝑃𝑗𝑙)
2; and for Gaussian ker-

nel, 𝑦(𝑃𝑖, 𝑃𝑗) = 𝑒𝑥𝑝(−
∑𝐿

𝑙=1 (𝑃𝑖𝑙 − 𝑃𝑗𝑙)2) (Kwee et al., 2008;

Schaid, 2010; Wu et al., 2011). Similar kernels can be used

for the genotypes.

Once the similarity matrices 𝑋 and 𝑌 are defined, they

are centered as 𝑋𝑐 = 𝐻𝑋𝐻 and 𝑌𝑐 = 𝐻𝑌𝐻 , where 𝐻 =
𝐼 − 1𝑁1𝑇

𝑁
∕𝑁 is the centering matrix, 𝐼 being the identity

matrix of dimension 𝑁 , and 1𝑁 being the 𝑁 × 1 vector with

each element equal to 1. The GAMuT test statistic is then

defined as

𝑇GAMuT = 1
𝑁

trace(𝑌𝑐𝑋𝑐). (1)

Under the null hypothesis that the genotypes and the pheno-

types are independent, the test statistic has the same asymp-

totic distribution as
1
𝑁

∑𝑁

𝑖,𝑗=1 𝜆𝑋𝑖𝜆𝑌 𝑖𝑧
2
𝑖𝑗

, where 𝜆𝑋𝑖 and 𝜆𝑌 𝑖
are the 𝑖th ordered nonzero eigenvalue of 𝑋𝑐 and 𝑌𝑐 , respec-

tively, and 𝑧2
𝑖𝑗

are independent and identically distributed 𝜒2
1

random variables. Davies' method can then be used to com-

pute the P-value (Davies, 1980).

When phenotype data are available at multiple time points,

the phenotypes for 𝑗th subject at time point 𝑡 can be defined

as 𝑃
(𝑡)
𝑗

= (𝑃 (𝑡)
𝑗1 , 𝑃

(𝑡)
𝑗2 ,… , 𝑃

(𝑡)
𝑗𝐿
). If we combine all samples and

time points, it will result in a three-dimensional array, for

which it is harder to apply a kernel method. Instead, we con-

catenate the 𝑃
(𝑡)
𝑗

s for 𝑡 = 1, 2,… , 𝑇 and define the phenotype

vector for 𝑗th sample as:

𝑃𝑗 = (𝑃 (1)
𝑗
, 𝑃

(2)
𝑗
,… , 𝑃

(𝑇 )
𝑗

),

which now has dimension 1 × 𝐿𝑇 . Subsequently, the𝑁 × 𝐿𝑇
phenotype matrix 𝑃 and the genotype matrix 𝐺 are defined

similar to the single time point case. GAMuT (or any other

multiphenotype rare variant model) can be applied using these

matrices in the usual manner. For our analysis, we applied a

weighted linear kernel for modeling the genotypes. A projec-

tion matrix or a linear kernel was used for modeling the phe-

notypes. The weighting scheme for modeling the genotypes,

following (Wu et al., 2011), is based on the minor allele fre-

quency (MAF) of each variant. The observed GAMuT test

statistic is then compared with the appropriate mixture of chi-

square distribution and P values are obtained using Davies'

method.

We note that the concatenated phenotype vector differs

from the normal case because it can impose an unusual corre-

lation structure. The correlation structure among phenotypes

at the same time point (within time point correlation) may not

be similar to the correlation of the same phenotype across

time (between time point correlation). Methods that inher-

ently assume exchangeability of the phenotypes in some sense

may perform poorly on such concatenated data. However, we

have performed extensive simulation studies to verify that in

most cases, the performance of the longitudinal version of

GAMuT is better than other methods considered here (see

Section 3). We applied GAMuT using both a projection matrix

and a linear kernel for measuring phenotypic similarity. These

two versions of GAMuT were compared against competing

methods.

2.1 Simulations
Various simulations were done to verify that longitudinal

GAMuT controls the type I error at the desired level and to

compare its statistical power with that of other methods. The

model to generate longitudinal phenotype data is simple yet

realistic. For each sample 𝑗, first, we generated phenotype vec-

tors for each time point, 𝑡, independently. Let us denote the

independently generated phenotype vector at time 𝑡 for subject

𝑗 as 𝑃
(𝑡)∗
𝑗

. The model used to generate the 𝑃
(𝑡)∗
𝑗

s is the same

model used in the original GAMuT paper (Broadaway et al.,

2016) which considers different biological factors to simulate

realistic datasets. A coalescent model was used to simulate

the genotype data, whereas a multivariate normal distribution

was used to simulate the phenotype data. See the supplemen-

tary materials for a more detailed description of the simulation

procedure.

To obtain the final phenotype vectors 𝑃
(𝑡)
𝑗

s, a fixed effect

of time and an error across time is then added to these values

according to the following model:

𝑃
(𝑡)
𝑗

= 𝑃
(𝑡)∗
𝑗

+ 𝛽𝑡𝑖𝑚𝑒𝑡 + 𝜖𝑡𝑗 , (2)

where 𝜖𝑡𝑗 = (𝜖𝑡𝑗1, 𝜖𝑡𝑗2,… , 𝜖𝑡𝑗𝐿). We assume (𝜖1𝑗𝑖, 𝜖2𝑗𝑖,… ,

𝜖𝑇 𝑗𝑖) are iid from 𝑁(0,Γ) for all 𝑖 = 1, 2,… , 𝐿. The variance

covariance matrix Γ is assumed to have a first-order autore-

gression (AR(1)) or a compound symmetry (CS) structure.

The variances of 𝑃
(𝑡)∗
𝑗

and 𝜖𝑡𝑗 are both assumed to be 1. We

used several choices of the parameter 𝜌 corresponding to the

AR(1) or CS structure. This model ensures that the correla-

tion between 𝑃
(𝑡)
𝑗𝑙1

and 𝑃
(𝑡)
𝑗𝑙2

is driven by the single time point

simulation scheme and the correlation between 𝑃
(𝑡1)
𝑗

and 𝑃
(𝑡2)
𝑗

is driven by Γ. The final correlation between observations

across time is half the value of the correlations in the matrix Γ,

because the final variance of the observations is 2. We carried

out the simulations in such a way (see supplementary mate-

rials Section 1) that the final correlation between phenotypes

within a time point are between 0 and 0.3 (0.3 and 0.4 for high

correlation). The coefficients corresponding to effect of time

𝛽𝑡𝑖𝑚𝑒 were simulated using a 𝑈 (0, 1) distribution.
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We also simulated cases where the additive fixed effect of

time is not linear. However, at the model-fitting stage, the

effect of time is regressed away using a linear regression (Hua

& Ghosh, 2015). Such simulation frameworks illustrate the

performance of our approach under model misspecification.

Situations with a quadratic and a sinusoidal time effect are

considered. One important advantage of GAMuT is that it

is also applicable to categorical data. We simulated a binary

phenotype data using a probit model from the already simu-

lated continuous data, we coded the phenotype as 1 when it is

greater than some fixed value 𝑐 and 0 when it is less than 𝑐.

We chose 𝑐 to be the arithmetic mean of the phenotype. We

used a linear effect of time when simulating binary data. Only

GAMuT and univariate SKAT allow for binary data, there-

fore, we compared only these two for the binary data simula-

tions. We used linear regression to adjust for the effect of time

even in case of binary phenotypes. Adjustment using a logis-

tic regression was also compared and had very similar results

(results not shown).

A feature of longitudinal data is potential dropout over

time, resulting in missing data. We applied our approach on

the case where 20% observation are missing (completely at

random) and the effect of time is linear. kNN imputation

(Kowarik & Templ, 2016; Torgo & Torgo, 2011) was used

to impute the missing data before applying the association

tests.

For each simulated dataset, we used 1,000 samples, 10 cor-

related phenotypes and three time points (six time points in

one scenario). The correlation between the phenotypes within

a time point was either low (between 0 and 0.3) or high

(between 0.3 and 0.4). The number of associated phenotypes

varied between 0 (null case), 2, 4, 6, and 8. We used 106 for

type I error simulations and 10, 000 replications for power

simulations.

For the simulated datasets, we compared the performance

of the longitudinal version of GAMuT (using either projec-

tion matrix or linear kernel for phenotypes) with variations of

other existing approaches. In particular, we considered com-

petitors MFLM and multivariate SKAT (MSKAT) (Wu &

Pankow, 2016), which can be applied on the concatenated data

in a manner similar to GAMuT. The parameters in the MFLM

method were used as suggested by the authors (Wang et al.,

2015) and the Q-statistic was used for implementing MSKAT.

We also compared univariate SKAT for which the phenotypes

are first collapsed into single time point using arithmetic mean

and then tested individually. To adjust for the multiple testing

due to testing each phenotype individually, we used a 98%

principal component approach similar to the original GAMuT

paper (Broadaway et al., 2016). The approach finds the effec-

tive number of independent tests by computing the number

of principal components needed to explain 98% variability.

The effective number of tests is then used to adjust the P val-

ues in a way similar to Bonferroni adjustment. Similarly, an

approach combining the single time point GAMuT P values

is also included in the simulation study. The approach com-

putes the GAMuT P-value (Broadaway et al., 2016) for each

time point and combines them using a Bonferroni adjustment.

This method is referred to as “GAMuT (Multi).” A second

method GAMuT (Meta) to combine the individual GAMuT P
values is also used in one simulation scenario (see supplemen-

tary materials Section 2 for details). GAMuT (Meta) performs

meta-analysis using the estimate of the correlation structure

across the time points, which was only possible in simulations.

Therefore, it is unusable in practice and was included only to

demonstrate the power gain by the joint analysis compared to

the meta-analysis approach.

2.2 Analysis of GENOA data
High body mass index (BMI), low high-density lipoprotein

(HDL), and high blood pressure are related phenotypes that

are known to be associated with high risk of cardiovascular

diseases, stroke, and diabetes. These phenotypes are moder-

ately heritable (Hottenga et al., 2005; Vattikuti et al., 2012;

Zarkesh et al., 2012) and understanding their genetic basis

is clinically important. The GENOA study (Daniels et al.,

2004) seeks to identify genetic variants that influence risk

for hypertension and arteriosclerotic complications of hyper-

tension (Lange et al., 2002). It includes a cohort of African

American sibships from Jackson, Mississippi, that were geno-

typed for a large collection of rare variants using the Illumina

Human Exome Beadchip. Over two different time points,

data were collected on several phenotypes including BMI,

HDL, systolic blood pressure (SBP), and diastolic blood

pressure (DBP). We selected these four phenotypes for our

analysis.

Following Broadaway et al. (2016), we randomly sampled

one sibling from each sibling pair and performed standard

data cleaning on this resulting dataset of independent sub-

jects. After further data cleaning, our sample consisted of 539

subjects. For each subject, we included data from both time

points and the samples having missing data at one time point

(116 samples) were not dropped. The missing data were sub-

sequently imputed using k nearest neighbors. The data also

included covariates such as gender, age, and smoking status

(ever smoked at least 100 cigarettes) and use of antihyper-

tension or lipid-lowering medication. Following Broadaway

et al. (2016), we also calculated the top 10 genetic princi-

pal components using ancestry informative markers included

on the Illumina array. The final imputed phenotype data

along with the covariate data were analyzed using longi-

tudinal GAMuT (both projection matrix and linear kernel),

univariate SKAT, multivariate SKAT, and MFLM. The use

of the methods, including the choice of kernels and tuning

parameters, was similar to the application to the simulated

datasets.
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F I G U R E 1 QQ-plots based on application of GAMuT (Linear) on simulated null datasets

Note: Top row shows the plots for continuous phenotypes and the bottom row shows the plots for binary phenotypes (linear time effect). The correlation

structure across time is considered to be AR(1) with parameter 𝜌.

F I G U R E 2 QQ-plots based on application of GAMuT (Projection) on simulated null datasets

Note: Top row shows the plots for continuous phenotypes and the bottom row shows the plots for binary phenotypes (linear time effect). The correlation

structure across time is considered to be AR(1) with parameter 𝜌.

3 RESULTS

3.1 Type-I error simulations
In the main text, we present simulation results for datasets

generated under an AR(1) correlation structure across time.

Results for simulated datasets generated assuming a CS

structure across time have very similar results and are pro-

vided in the supplementary materials. Figures 1 and 2 show

the quantile–quantile (QQ) plots for the longitudinal ver-

sion of GAMuT, using linear kernel and projection matrix,
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T A B L E 1 Type I error of different methods under various simulations, target 𝛼 = 0.01

GAMuT (Projection) GAMuT (Linear) GAMuT (Multi)
𝝆 = 𝟎 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖 𝝆 = 𝟎 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖 𝝆 = 𝟎 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖

Linear 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.008

Linear(high correlation) 0.009 0.009 0.008 0.009 0.010 0.010 0.010 0.011 0.009 0.010 0.009 0.009

Linear (6 time points) 0.006 0.006 0.006 0.007 0.007 0.007 0.006 0.008 0.008 0.008 0.007 0.007

Quadratic 0.010 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.008 0.009

Sine 0.010 0.008 0.010 0.009 0.010 0.009 0.009 0.009 0.009 0.008 0.008 0.009

Binary 0.010 0.010 0.009 0.010 0.010 0.009 0.009 0.010 0.012 0.012 0.011 0.013

Missing 0.008 0.008 0.007 0.007 0.008 0.008 0.007 0.008 0.008 0.008 0.007 0.009

SKAT MSKAT MFLM
𝝆 = 𝟎 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖 𝝆 = 𝟎 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖 𝝆 = 𝟎 𝝆 = 𝟎.𝟐 𝝆 = 𝟎.𝟓 𝝆 = 𝟎.𝟖

Linear 0.008 0.008 0.008 0.008 0.010 0.009 0.009 0.009 0.007 0.008 0.009 0.007

Linear (high correlation) 0.007 0.007 0.007 0.007 0.009 0.009 0.008 0.009 0.007 0.007 0.008 0.009

Linear (6 time points) 0.007 0.008 0.007 0.007 0.006 0.006 0.006 0.007 0.007 0.008 0.007 0.007

Quadratic 0.008 0.008 0.008 0.007 0.010 0.009 0.009 0.009 0.007 0.008 0.009 0.007

Sine 0.008 0.008 0.008 0.007 0.010 0.008 0.010 0.009 0.008 0.008 0.009 0.007

Binary 0.007 0.007 0.008 0.006 0.010 0.010 0.009 0.010 0.010 0.009 0.008 0.009

Missing 0.008 0.009 0.008 0.009 0.008 0.008 0.007 0.007 0.008 0.009 0.008 0.009

The correlation structure across time is considered to be AR(1) with parameter 𝜌.

respectively, on simulated null datasets. The plots are pro-

vided for both linear and binary cases with no missing data.

QQ plots for datsets generated with missing data as well as

those for high correlation among phenotypes are shown in

the supplementary materials and they show similar patterns

to those in Figures 1 and 2. Table 1 shows the type I errors for

different methods under various simulation setup. It is evident

that GAMuT controls the type I error for almost all the simu-

lation models considered. For tests with small level of signif-

icance (10−5), GAMuT (and SKAT) shows a slight inflation

in type I error in a few cases (supplementary Table S1). How-

ever, the inflation is not significant and can be due to unstable

estimation of Type-I error for the very small threshold. The

only methods that show significant size inflation in some cases

are GAMuT (Multi) and MFLM.

3.2 Power simulations
Next, we compared the statistical power of the longitudi-

nal GAMuT against univariate SKAT (which uses the mean

of each phenotype across phenotypes), multivariate SKAT,

MFLM, and GAMuT (Multi). All results reported corre-

spond to an AR(1) correlation structure across time and a

genome-wide P-value threshold of 5 × 10−6. However, we

also performed simulations for CS type correlation structure

and less stringent P-value thresholds. They are reported in

the supplementary materials. Figure 3 shows the power com-

parison when a linear effect of time was assumed to simu-

late the data (see supplementary materials for quadratic and

sinusoidal time effects). Figure 4 shows the case of binary

phenotypes and Figure 5 shows the missing data scenario.

Simulations to compare the statistical power of the methods

for a larger number of time points (𝑇 = 6) was also done and

the results are shown in supplementary Figure S4. The per-

formance of the methods are similar across all the simulations

with low correlation. GAMuT (Linear) has the highest power

in all situations except the case when only two phenotypes

have genetic association and the correlation across time is 0,

which is unlikely in practice. The power of GAMuT (Linear)

increases rapidly compared to other methods with the increase

in number of associated phenotypes, illustrating its usefulness

under pleiotropy. Also, GAMuT (Linear) has much increased

power compared to other methods as the correlation of phe-

notypes across time increases. The power curves for GAMuT

(Projection) are not shown because it had very similar per-

formance as MSKAT. Univariate SKAT is the second most

powerful method when the number of associated phenotypes

is small, but MSKAT (and GAMuT(Projection)) and GAMuT

(Multi) have improved power over SKAT as the number of

associated phenotypes continues to increase.

However, when the correlation among the phenotypes are

high, MSKAT and GAMuT (Projection) performs better than

GAMuT (Linear) for low temporal correlation and/or small

number of associated phenotypes (Figure 6). Similar results

are observed for other simulation scenarios with high corre-

lation (results not shown). MFLM has inferior power com-

pared to the other four methods in every simulation set up.

As discussed in Broadaway et al. (2016), the performance of

MFLM is sensitive to departure from very specific type of

data they simulated (Wang et al., 2015). If data are simulated
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F I G U R E 3 Comparison of power curves for different methods in the linear time effect set up

Note: The correlation structure across time is considered to be AR(1) with parameter 𝜌 and the tests are done at the P-value threshold 5 × 10−6. The

value of the power function corresponding to 0 associated phenotypes shows the type I error and the horizontal dotted line indicates the level of the

test.

using the approach of (Wang et al., 2015), the performance

of MFLM is comparatively better, but GAMuT had very sim-

ilar performance and still outperforms all other approaches.

Therefore, we have not reported any result using their simula-

tion approach.

3.3 Analysis of GENOA data
We applied longitudinal GAMuT and the competing meth-

ods to the four phenotypes BMI, HDL, SBP, and DBP from

the GENOA exome-chip study. Prior to the analysis, covari-

ate adjustment was made for gender, age, smoking status, use

of antihypertension medication, use of lipid lowering medica-

tion, and ancestry on the 539 unrelated subjects. We applied

longitudinal GAMuT using both projection matrix and linear

kernel to the information collected at two time points. We

also applied MSKAT and MFLM to this same dataset. We

also applied univariate SKAT on the collapsed data using the

average value of phenotypes across time. For GAMuT and

SKAT, we applied a weighted linear kernel to quantify pair-

wise genotypic similarity, where weights were a function of

minor-allele frequency and was of the same form to that typ-

ically utilized in SKAT (Wu et al., 2011).

We used a study-wise significance threshold of 1.5 × 10−5,

which corresponds to a Bonferroni correction based on the

number of genes tested (3278). P values less than 10−3 were

considered as suggestive.

Figure 7 shows the QQ-plot for different methods. MFLM

shows sizeable inflation of P values which could not be

resolved by transformations. The MFLM method was subse-

quently dropped from the analysis of GENOA data. The other

four approaches did not show such large P-value inflation.

Figure 8 shows the genome-wide results using different

methods on the GENOA data. All the genes passing the sug-

gestive or genome-wide threshold by at least one method

are reported in Table 2. Consistent with our simulation
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F I G U R E 4 Comparison of power curves for different methods in the binary phenotypes case

Note: The correlation structure across time is considered to be AR(1) with parameter 𝜌 and the tests are done at the P-value threshold 5 × 10−6. The

value of the power function corresponding to 0 associated phenotypes shows the type I error and the horizontal dotted line indicates the level of the

test.

findings, we observed that GAMuT with a projection phe-

notype matrix yielded quite similar findings to MSKAT in

the GENOA analyses. The top two genes identified by these

two methods were 𝐸𝐹𝐶𝐴𝐵7 and 𝐶𝑂𝐿9𝐴3, with the results

from MSKAT being genome-wide significant, while the result

from GAMuT (projection) being borderline significant. No

variants in EFCAB7 or COL9A3 have been reported to be

associated with any traits in genome-wide studies. EFCAB7

(EF-hand calcium binding domain 7) may play a physiological

role in cardiac development based on a study of patients with

Ellis-van Creveld syndrome (Nguyen et al., 2016). COL9A3

(collagen type 9 alpha 3) is associated with intervertebral

disc disease, a disease frequent among older individuals (Mar-

tirosyan et al., 2016).

ZNF667 (zinc finger protein 667) and ENPP3 (ectonu-

cleotide pyrophosphatasep/phosphodiesterase 3) were

genome-wide suggestive with GAMuT with a projection

phenotype matrix. No ZNF667 variants have been reported

to be associated with any traits in genome-wide studies. The

ZNF667 protein, however, may play a role in neuroprotection

by acting as a transcriptional repressor (Yuan, Huang, Yuan,

Zhao, & Jiang, 2013). A variant in ENPP3 was associated

with response of circulating adiponection in response to

fenofibrate treatment (Aslibekyan et al., 2013). Adiponectin,

a protein secreted by adipose tissue, is associated with

improved insulin sensitivity, suppressed development of

atherosclerosis, and altered inflammation. Fenofibrate targets

circulating adiponectin levels to prevent the onset and

progression of cardiovascular disease.

The top gene identified by longitudinal GAMuT with a

linear kernel was 𝐶𝐷33, which also was borderline signif-

icant. CD33 (sialic acid-binding immunoglobulin-like lectin

3) is an established gene for Alzheimer's disease (Lambert

et al., 2013). Recently, this gene was associated with cogni-

tive decline (Nettiksimmons, Tranah, Evans, Yokoyama, &

Yaffe, 2016). Mid-life hypertension is associated with cog-

nitive decline (Gottesman et al., 2014).

Univariate SKAT analysis identified a different gene,

𝐹𝑁𝐷𝐶1 (fibronectin type III domain containing 1), which

was genome-wide significant. Interestingly, none of the

methods that directly model cross-phenotype effects showed

a strong signal for 𝐹𝑁𝐷𝐶1, suggesting perhaps that this gene

is associated only with a single phenotype rather than the

multiple phenotypes that were considered. In a case–control
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F I G U R E 5 Comparison of power curves for different methods in the missing data scenario

Note: The correlation structure across time is considered to be AR(1) with parameter 𝜌 and the tests are done at the P-value threshold 5 × 10−6. The

value of the power function corresponding to zero-associated phenotypes shows the type I error and the horizontal dotted line indicates the level of

the test.

study, several variants in FNDC1 showed suggestive asso-

ciation with coronary artery disease (Tzeng, Zhang, Chang,

Thomas, & Davidian, 2011). Several suggestive genes were

identified by each method. However, only MSKAT found

two genes just passing the genome-wide significance thresh-

old. All the genes passing the suggestive or genome-wide

threshold by at least one method are reported in Table 2. We

performed a nonparametric bootstrap analysis (with 1,000

bootstraps) for each gene to confirm that the results are stable

and not extra sensitive to sampling fluctuations. The boot-

strap confidence interval of the P values are narrow in most

cases indicating the stability of the methods (supplementary

Table S2).

4 DISCUSSION

There is increasing evidence that genetic variants can exhibit

cross-phenotypic effects and the statistical power to find such

cross-phenotypic effects can be enhanced by utilizing longitu-

dinal phenotype data collected over time. We propose a simple

extension of GAMuT for longitudinal data that can be applied

on both continuous and binary phenotypes and can adjust for

covariates. It is computationally efficient due to the use of

Davies' exact method for P value computation and becomes

usable at the genome-wide scale (software will be made avail-

able for public use and will be made available on GitHub

pages).

Instead of defining a kernel on the complicated three-

dimensional data (Phenotypes× Subjects×Time), we consid-

ered a concatenated data and have shown in simulation stud-

ies that such adjustment results in high statistical power and

achieves proper control of the type I error. The longitudinal

extension of GAMuT was also shown to have higher power

compared to other competing methods, similarly adjusted for

longitudinal data.

The concatenated data may result in a completely differ-

ent correlation structure among the columns of the phenotype
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F I G U R E 6 Comparison of power curves for different methods in the linear time effect setup when the correlations between phenotypes were

higher

Note: The correlation structure across time is considered to be AR(1) with parameter 𝜌 and the tests are done at the P-value threshold 5 × 10−6. The

value of the power function corresponding to zero-associated phenotypes shows the type I error and the horizontal dotted line indicates the level of

the test.

matrix compared to what is usually observed for a single time

point phenotype matrix. We performed extensive simulation

studies to verify that GAMuT preserves its advantages of

being highly powerful and being able to control type I error

at the desired level for such data. The construction of a pro-

jection matrix may be harder for longitudinal data and our

results indicate that the linear kernel for measuring the phe-

notypic similarity has favorable statistical power over projec-

tion matrix. For low correlation among phenotypes, GAMuT

with linear kernel dominated every other competing meth-

ods in almost every situation that were considered. However,

GAMuT (Projection) had higher power for scenarios with low

temporal correlation and/or small number of associated phe-

notypes.

Additionally, the longitudinal extension of GAMuT was

also applied on the GENOA data collected at two time points.

Every gene passing the suggestive threshold using any of the

competing methods were also detected by at least one of the

two GAMuT methods. GAMuT (Projection) was able to iden-

tify more genes passing the suggestive threshold. It is not sur-

prising because the phenotypes in this study had high correla-

tions and only four phenotypes were used. In general, we sug-

gest to use GAMuT (Projection) for longitudinal data when

the correlation among the phenotypes is high and/or the cor-

relation across time is very small. However, GAMuT (linear)

may be the better choice if many phenotypes are expected to

be associated.

In the age of information explosion, more and more data are

collected and often data are available on many phenotypes and

over several time points. Our extension of GAMuT for longi-

tudinal data can scale efficiently to handle an arbitrary num-

ber of phenotypes and time points, and enables the statistical

analysis of cross-phenotypic effect of rare variants by taking

advantage of such data to enhance statistical power and helps

to develop a better understanding of the genetic background

of important complex traits.
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F I G U R E 7 QQ-plots based on application of different methods on GENOA data

F I G U R E 8 Manhattan plots based on application of different methods on GENOA data

T A B L E 2 Genomewide results based on the application of different methods on GENOA data

Chromosome Gene name
OMIM
number

Number
of variants

GAMuT
(Projection)

GAMuT
(Linear) SKAT MSKAT

1 EFCAB7 - 6 1.98E-05 0.010 0.325 1.33E-05

6 ENPP3 602182 6 2.84E-05 0.009 0.431 3.66E-05

6 NQO2 160998 5 0.001 0.007 0.061 2.63E-04

6 FNDC1 609991 10 0.006 0.003 1.46E-05 0.005

7 ZNF655 - 5 0.009 0.006 1.94E-04 0.009

19 CD33 159590 5 1.85E-04 2.61E-05 5.25E-05 1.75E-04

19 ZNF551 - 5 0.001 0.001 0.033 0.001

19 ZNF667 611024 5 2.75E-04 0.008 0.005 2.55E-04

20 COL9A3 120270 5 1.66E-05 1.85E-04 0.031 1.43E-05
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