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Abstract 
 

Coffee leaf rust is a common agricultural disease in the tropics, caused by the fungal 

pathogen Hemileia vastatrix. Recent epidemics throughout Latin America has caused devastating 

economic loss and re-invigorated research into new disease management. Because H. vastatrix 

uses wind for transmission and humidity for germination, I propose that coffee leaf rust disease 

dynamics can be influenced by shade trees that modify the abiotic environment. Specifically, I 

hypothesize that tree stands will disrupt wind transmission of fungal spores but that increasing 

canopy cover will reduce evaporation, increase local humidity, and increase rust germination. I 

explored the effect of trees on rust density on a highland coffee farm in Chiapas, Mexico where I 

measured and modeled the influence of tree density, canopy cover, evaporation rate, and coffee 

plant density on disease incidence and severity.  

Coffee plants were significantly less likely to become infected at higher tree and coffee 

plant densities, but canopy cover increased the likelihood of infection. The proportion of leaves 

infected was influenced only by higher coffee densities, and evaporation rates had no correlation 

with infection or other structural variables. These results suggest that vegetation structures – 

including both trees and coffee plants themselves – reduce the probability of plants contracting 

the coffee leaf rust, potentially by blocking spore dispersal. However, once infected, the disease 

severity is not influenced by humidity, as previously proposed. I suspect that areas with higher 

coffee densities are more likely to contain different varieties, some of which are more resistant 

than others, so that disease severity is influenced by the dilution effect. These results suggest that 

tree stands have complex, multidimensional effects on the coffee leaf rust, and that their use in 

disease management may not be straightforward.  
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Effect of shade trees on microclimate conditions and coffee leaf rust 
 

Introduction 

Coffee leaf rust is an agricultural disease commonly found on coffee farms throughout the 

tropics, but the recent epidemic (2012-onwards) in Mesoamerica has caused significant 

economic loss, threatening farmers’ livelihood and increasing food insecurity in the region 

(Cressey, 2013; Avelino et al., 2015). The disease is caused by the fungal agent Hemileia 

vastatrix, whose uredospores penetrate the coffee plant stomata and form orange lesions on the 

leaves’ undersurface (Diniz et al., 2011). New uredospores emerge on the leaf’s surface and are 

dispersed by wind, rain splash, or physical contact with uninfected leaves (Kushalappa, 1989). 

The lesions eventually become necrotic, leading to defoliation and, in severe cases, death of 

branches and significant crop loss. Given the importance of this disease, farmers, researchers, 

and government entities are keen to find effective management strategies. 

 Current disease management largely falls under three categories: chemical control, 

developing resistant coffee plant varieties, and agroecological control (McCook & Vandermeer, 

2015). Chemical control is a common strategy with substantial drawbacks: fungicides are 

expensive, they eliminate potentially beneficial mycoparasites, and proper application requires a 

strict spraying regime at critical points during the growing season (Belan et al., 2014). Given 

their costs, farmers are more likely to abandon fungicide application or switch to cheaper, less 

effective alternatives when profits are low, increasing disease incidence (Avelino et al., 2015). 

Alternatively, a number of new coffee varieties have been developed to be resistant to coffee leaf 

rust (de Brito et al., 2010; Caicedo et al., 2013; Shigueoka et al., 2014; van der Vossen et al., 

2015), many derived from the popular “Hibrido de Timor” cultivar (Diola et al., 2011; Del 

Grossi et al., 2013; Romero et al., 2014). However, H. vastatrix have evolved to infect 

previously resistant varieties (Gichuru et al., 2012; Diola et al., 2013), indicating that new 

resistant varieties will be continuously needed. 
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Agroecological control is the deliberate use of ecological interactions to control pest 

abundance. Coffee farms contain a variety of ecological interactions (e.g. competition, 

multitrophic interactions, and trait-mediated indirect interactions) that prevent coffee plant 

enemies from becoming pests (Perfecto et al., 2014). H. vastatrix is parasitized by the white halo 

fungus, Lecanicillium lecanii (Vandermeer et al., 2009; Jackson et al., 2012), and its spores are 

predated upon by the Mycodiplosis hemileiae larvae (Hajian-Forooshani et al., 2016). There is 

also evidence that shade trees may alter the germination and dispersal dynamics of H. vastatrix 

(Avelino et al., 2012; López-Bravo et al., 2012). Relative to chemical control and the 

development of resistant coffee varieties, much less is known about the agroecological control of 

the coffee leaf rust. However, it may be cheaper and more ecologically sound for farmers to 

leverage pre-existing species interactions as natural pest control (Vandermeer et al., 2010). This 

creates agricultural systems that are likely to be more autonomous and resilient (Lewis et al., 

1997).  

Shade trees provide a variety of ecosystem services, including pest control (Mouen 

Bedimo et al., 2008; Jonsson et al., 2014); improving soil quality (Meylan et al., 2017); habitat 

for native tropical species (Moguel & Toledo, 1999); and additional income from fruits and 

timber resources for farmers (Rice, 2011; Cerda et al., 2014; Somarriba et al., 2014). On coffee 

farms, shade trees may have additional influences on coffee leaf rust. H. vastatrix germinates 

better in higher relative humidity (Capucho et al., 2012) and leaf wetness (Salustiano et al., 

2009), so much so that relative air humidity has been used to predict coffee leaf rust epidemics 

(Meira et al., 2008). Additionally, wind is a major dispersal mechanism for H. vastatrix spores, 

with the occasional long-distance wind-dispersal hypothesized to have introduced the pathogen 

to Latin America across the Atlantic Ocean (Schieber & Zentmyer, 1984). Trees alter the local 

understory humidity and wind conditions experienced by H. vastatrix, which in turn may alter 

the germination and dispersal of the fungus. This suggests a potential for shade trees to provide 

pest control services for the coffee leaf rust. 

Two recent studies have found significant influence of shade trees on microclimate 

conditions and coffee leaf rust. (Avelino et al., 2012) found higher disease severity in areas with 

less forest cover and in areas with more open pastures, proposing that tree stands serve as 

windbreaks that disrupt fungal spore dispersal. However, (López-Bravo et al., 2012) found that 

increased canopy cover also reduces intra-day temperature variations and increases leaf wetness 
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in the understory, promoting H. vastatrix germination. In terms of pest control, there appears to 

be two conflicting effects of shade trees: they may increase disease severity by increasing 

understory humidity and fungal germination, while simultaneously reducing disease incidence by 

blocking wind transmission of fungal spores.  

This study builds on previous work by closely examining the mechanisms by which 

shade trees alter H. vastatrix dispersal and germination at the local scale. I conducted a survey in 

a shaded, highland coffee plantation to measure key structural variables (tree density, canopy 

cover, and coffee density), their effects on key microclimate factors (evaporation rates and wind 

velocity), and their correlations with coffee leaf rust disease incidence and severity. I 

hypothesized that both mechanisms are in play, such that trees, while potentially reducing 

disease transmission, may promote spore germination. 

Methods 

Study site 

This study was conducted on Finca Irlanda, a 300-hectare certified shaded organic coffee farm in 

the Soconusco region of Chiapas, Mexico (Figure 1). The farm grows a variety of Coffea arabica 

– including Bourbon, Catimor, Catuai, and Caturra. Trees are maintained throughout the farm 

with annual pruning. In 2003-2004, a 45-hectare plot was established where all trees greater than 

10cm in circumference were tagged and identified. There are roughly a hundred different woody 

species in the plot, with the five most common species making up 71% of the individuals: Inga 

micheliana (37%), Alchornea latifolia (9%), Inga rodrigueziana (7%), Conostegia xalapensis 

(7%), Veronia deppeana (6%), and Inga vera (5%). Every two years, the entire plot is re-

surveyed to add new trees as they appear and record those that die.  

Survey measurements 

A grid of 128 50x50m2 sites was established within the 45-hectare plot, surrounded by a half-

hectare boundary to avoid edge effects (Figure 2). At the center of each site, 5 coffee plants were 

selected (for a total of 640 plants), and the total number of infected and uninfected leaves were 

counted. If possible, the coffee variety was identified. All plants were surveyed from July 5 

through August 25, 2016. 

 I measured five predictor variables at the center of each 128 sites, in-between the five 

monitored coffee plants: tree distance, coffee density, canopy cover, evaporation rate, and wind 
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velocity. Local tree distance is a proxy for tree density, and was measured as the average 

distance (in meters) of the three trees nearest to the center of the site. Coffee density was 

measured as the number of coffee plants within a 3-meter radius of the center point. Percent 

canopy cover was estimated by averaging four readings of a concave densiometer facing north, 

south, east, and west (Lemmon, 1957) while standing at the center of the site. All canopy cover 

readings were collected by the same researcher, and care was taken to exclude coffee plant 

leaves from canopy readings.  

I measured evaporation rate as the water weight lost from qualitative filter paper, 

controlled for surface area, over five minutes (g/mm2/s) at each site. Sites were measured at 

different times and on different days, so I expected evaporation rates to vary within the day (e.g., 

evaporation rates were highest around noon) and between days (e.g., some days were warmer 

and drier). I controlled for hourly variation by generating a polynomial regression from all 

evaporation measurements as a function of time, calculating the residual of a datum at the time 

the measurement was taken, then using that residual to estimate the evaporation rate of that site 

at 10:00 AM UTC-6:00. To account for daily variation, I re-sampled a site every day. I 

controlled for daily variations by dividing the evaporation rate of each site by the evaporation 

rate of the site that was re-measured that day. Adjustments for daily variation were made after 

adjustments for hourly variations were accounted for.  

I measured wind velocity using a Kestrel 200 anemometer held at 1.5m height, and took 

the velocity as an average over 5 minutes (m/s). Wind velocities were also corrected for hourly 

and daily variations using the same method as was used for evaporation rates. All five 

measurements were taken between 07:00 AM and 02:00 PM UTC-6:00, from June 1 through 

July 20, 2016. 

Analysis 

To understand the influence of tree distance and canopy cover on understory wind velocity and 

evaporation rates, respectively, I calculated Pearson’s correlation coefficient for all pairs of 

predictor variables. If there was a significant relationship between predictors, I examined their 

relationship using a linear regression. I modeled the disease incidence and severity on the five 

predictors using a general linear model for a binomial distribution with zero inflation, controlled 

for the total number of leaves on the plant (Zeileis et al., 2008). This analysis examines the 

relationship between the landscape variables and the probability of disease incidence (as 
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determined by the presence of infected leaves) and disease severity (as measured by the 

proportion of leaves infected). Disease incidence is indicative of wind dispersal, since increasing 

wind velocity brings more spores to the area and increases the likelihood that at least one spore 

will infect a coffee plant. Disease severity is indicative of ideal germination conditions, where 

sites with abiotic conditions more ideal for germination will result in a greater number of leaves 

infected. 

Results 

All landscape structure variables were not evidently deviant from a normal distribution except 

for evaporation rate and wind velocity; evaporation rate was log-transformed for all subsequent 

analyses (Table 1). During field surveys, I determined that the Kestrel 200 handheld anemometer 

did not provide an accurate characterization of the wind velocity in the region. The instrument 

was not sensitive enough for measurements below 0.3m/s, resulting in an over-abundance of zero 

values, and wind velocities can change dramatically between 5-minute intervals. Therefore, I 

excluded wind measurements from subsequent analyses. 

Pearson correlation coefficient and linear regression showed significant negative 

relationship between tree distance and canopy cover. There was no significant relationship 

between evaporation rate and tree distance or canopy cover (Figure 3, Table 2). 

 Of the 640 coffee plants measured between July 5 through August 25, 121 plants were 

either dead or had no leaves, leaving 519 plants for subsequent analyses. A general linear model 

showed that disease incidence (i.e. presence of infected leaves) was positively correlated with 

tree distance (p=0.0015) and canopy cover (p=0.0016), and negatively correlated with coffee 

density (p<0.001) (Table 3). There was no correlation between disease incidence and evaporation 

rate. There was a negative relationship between the disease severity (i.e. the proportion of leaves 

infected) and coffee density that is almost significant (p=0.0521). There were no correlations 

between disease severity and tree distance, canopy cover, or evaporation rate. 

Discussion 

This is one of the first studies to examine the effects of continuously increasing tree density and 

canopy cover on coffee leaf rust disease at a local scale, and the influence of vegetation density 

on disease agrees with previous work comparing shaded vs unshaded sites. Increasing tree 

distance (i.e. decreasing tree density) significantly increased coffee leaf rust incidence. These 
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results agree in part with (Avelino et al., 2012), who found a significant positive relationship 

between the proportion of open pasture and coffee leaf rust incidence, likely due to open pasture 

facilitating wind dispersal of H. vastatrix spores. However, they did not find a correlation 

between tree density and coffee leaf rust incidence. This may be due to the larger scales at which 

their study was conducted (50m, 100m, 150m, and higher), and suggests that the effect of trees 

on disease transmission may change at different spatial scales. I was unable to connect these 

trends with wind velocity and establish more support for the influence of trees as a windbreak. 

Future studies may combine structural measurements with characterization of wind velocities, as 

well as measurements of aerial spore load, to establish stronger connections between vegetation 

density and wind transmission of fungal pathogens. 

Increasing canopy cover significantly increased disease incidence, but did not influence 

disease severity. On the other hand, (López-Bravo et al., 2012) found that shaded sites (with 

29% and 57% canopy cover on average) had significantly less disease severity, as measured by 

proportion of leaves infected accumulated over time. In both cases, it seems that canopy cover is 

having some positive effect on H. vastatrix abundance. In this study, differences in methodology 

might be responsible for the lack of significant influence of canopy cover on disease severity. 

For example, this study measured canopy cover as a continuous variable ranging from 21.74% to 

94.8% and did not include an unshaded state (Table 1), which has been found to have significant 

less disease severity compared to shaded conditions (Mouen Bedimo et al., 2008; López-Bravo 

et al., 2012). Future studies should take care to include the full range of canopy cover when 

possible. 

Canopy cover did not correlate with evaporation rates in this study, and evaporation rates 

did not correlate with disease incidence or severity. This suggests that the effect of canopy cover 

on coffee leaf rust disease may not be through modification of understory humidity. Baseline 

humidity levels in the tropics may be high enough that increasing canopy cover does not 

sufficiently alter germination conditions for H. vastatrix. Experts also suggest that daily morning 

dew may be sufficient to promote rust germination (Graciela Huerta, personal communications, 

2016). Canopy cover may be promoting coffee leaf rust by altering other environmental variables 

that were not measured in this study, such as temperature, radiation, and light exposure, all of 

which have optimal ranges for H. vastatrix germination (Salustiano et al., 2008; Capucho et al., 

2012). Additionally, we know very little about the influence of canopy cover on H. vastatrix 
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spore dispersal via the splash effect, where rainfall scatters spores to infect neighboring plants. 

Increasing canopy cover may pool rainwater into larger droplets, which would fall with greater 

force and scatter fungal spores more effectively. While canopy cover may not influence fungal 

spores via altering understory humidity levels, it may still alter other physical variables relevant 

to germination and dispersal of coffee leaf rust. 

 Coffee plant density was negatively correlated with both disease incidence and severity. 

This effect is counterintuitive, as higher concentrations of coffee plants might be expected to 

amplify infection rates by increasing the availability of hosts. However, managers at Finca 

Irlanda often remove older coffee plants when their productivity declines, then replant at higher 

densities while adding new resistant varieties over time. Thus, areas with higher coffee densities 

may contain more resistant varieties (personal observations), which would lower the rates of 

disease incidence and severity observed in the field. Coffee plant density explained much of the 

variation in our data: removing it eliminated any significant correlations observed with tree 

density and canopy cover for both disease incidence and severity. Future surveys should take 

care to include the effect of resistant varieties as a factor influencing disease, whenever they are 

present. These findings also suggest that breeding resistant coffee plant varieties will continue to 

play a key role in coffee leaf rust management strategies (Talhinhas et al., 2017).  

Results from this study support the hypothesis that the physical structure of local 

vegetation has a significant influence on the coffee leaf rust disease. Higher tree density may 

disrupt wind-transmission of fungal spores, though these effects may be counter-balanced by the 

positive relationship between canopy cover and disease incidence. Unlike other ecological 

interactions (Jackson et al., 2012; Hajian-Forooshani et al., 2016), shade trees have a 

multidimensional interaction with H. vastatrix where different components (tree density, canopy 

cover) have independent and opposite effects on the pathogen. Given these opposing effects on 

the pathogen, much care should be taken when using these results to inform management 

recommendations. More studies should be done to understand the mechanism by which canopy 

cover influences disease incidence. Altering abundance and structure of shade trees may also 

affect its influence on 1) other coffee pests, 2) other ecosystem services (Staver et al., 2001), and 

3) the effect of shading on primary coffee production. Shade trees exist in a complex web of 

ecological interactions. The use of agroecological management strategies requires a holistic 

evaluation of this interaction web that, while more difficult, may create more resilient 
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agricultural systems in the long term (Lewis et al., 1997). 
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Tables and Figures  
 

 
Figure 1. Locator map of study site (red star) in Chiapas, Mexico. 
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Figure 2. Diagram of the 45-hectare study plot, with 128 sampling sites, on the coffee farm. 
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Table 1. Data value distribution for independent and dependent variables measured. 

Measurement Min. Median Max. Mean 
Coffee density (3m radius) 0 6 21 7.40 
Average tree distance (m) 1.30 4.33 20.08 4.64 

Canopy cover (%) 21.74 74.91 94.80 70.46 
Evaporation rate (g/mm2/s) 5.36 x 10-9 2.42 x 10-8 5.13 x 10-8 5.13 x 10-8 

Wind velocity (m/s) 0.00 0.15 0.90 0.22 

# leaves infected (per plant) 0 1 695 19.89 
Proportion of leaves 

infected (%, per plant) 
0 0.47 63.18 3.68 
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Figure 3. Correlation between independent variables, with standardized evaporation rate log-
transformed. One outlier datum was removed for average tree distance. Refer to Table 1 for 

summary statistics. 
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Table 2. Pearson correlation coefficients for between predictor variables. 

 Avg. tree 
distance 

Canopy 
cover 

Coffee 
density 

Evaporation 
rate 

Avg. tree distance 1.0000 -0.3089 0.0889 0.0142 
Canopy cover  1.0000 0.2309 0.0573 
Coffee density   1.0000 0.3373 

Evaporation rate    1.0000 
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Table 3. GLM output for disease incidence (the presence of infected leaves) and disease severity 
(the proportion of leaves infected). 

 Disease incidence Disease severity 
 Estimate p-value Estimate p-value 

Avg. tree distance 0.9891 0.0015 -0.0533 0.5235 
Canopy cover 0.1026 0.0016 -0.0026 0.7580 

Evaporation rate 0.5365 0.1206 0.0532 0.5158 
Coffee density -0.5380 0.0009 -0.0400 0.0521 
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