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ABSTRACT 

Autonomous driving systems (ADS) in autonomous and semi-autonomous vehicles 
have the potential to improve driving safety and enable drivers to perform non-driving tasks 
concurrently. Drivers sometimes fail to fully leverage a vehicle’s autonomy because of a lack 
of trust. To address this issue, the present study examined the influence of risk on drivers’ 
trust. Subject tests were conducted to evaluate the effects of combined internal and external 
risk, where participants drove a simulated semi-autonomous vehicle and completed a 
secondary task at the same time. Results of this study are expected to provide new insights 
into promoting trust and acceptance of autonomy in both military and civilian settings. 

 
INTRODUCTION 

Autonomous driving systems (ADS) now enable 
drivers to engage in other tasks besides monitoring 
the vehicle. Autonomous driving can be defined as 
the ability of a vehicle to drive some distance 
without human intervention [1]. Autonomous 
driving allows human operators to fully engage in 
other important tasks without the need to 
constantly engage in the driving situation [2]. For 
example, in a military setting, an important task 
might include surveillance or mission-critical 
communications. Fully leveraged, ADS have the 
potential to make human operators more 
productive. 

The benefits of autonomous driving can never be 
fully realized unless humans trust ADS. Trust in 
ADS can be defined as the willingness of human 
operators to rely on ADS for unsupervised driving, 
and the reliance on ADS occurs when operators 
willingly cede control to the automation [3]. More 
specifically, trust is an attitude toward automation 
that affects reliance, and reliance is the actual 
trusting behavior [4]. Unfortunately, drivers often 
underutilize or refuse to rely on ADS. In this case, 
drivers either do not hand over control to the 
vehicle or cannot fully focus on the secondary 
tasks even if they cede control [2,5]. Trust plays a 
vital role in understanding driver’s unwillingness 
to rely on ADS and designing countermeasures of 
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the automation [6]. In order to achieve the 
effective use of the ADS, trust and reliance should 
maintain an appropriate level over time, such that 
the ADS can fully function towards an optimal 
performance in human vehicle cooperation [7-8]. 
Early stage study on human trust in automation 
suggested that trust and collaboration efficiency 
increased constantly with the operators’ 
familiarity of the plant operation, and the size of 
faults placed a proportional impact on the loss of 
trust [9]. Lack of trust has the potential to 
undermine any potential benefits associated with 
ADS, and an appropriate level of trust is crucial 
for drivers to understand the capabilities of the 
ADS as well as adequately monitor the automation 
[10]. 

Trust in any system is heavily dependent on the 
degree of risk associated with the system [11]. 
Risk – the degree of uncertainty associated with a 
given situation – is vital to understanding driver's 
trust and reliance on ADS [12-13]. The use of 
ADS creates a situation of uncertainty and risk, as 
smart systems that take over tasks do not work 
perfectly accurately and can also make errors [14]. 
To determine the trustworthiness of a teammate, it 
is crucial that trustor and trustee share the same 
goal, or trustor can gain adequate knowledge 
about the behaviors and ability of the trustee, and 
form senses of high ability, integrity, or 
benevolence [15]. The form of trusting belief is 
based on the perceived level of risk, and a lower 
perceived level of risk leads to higher levels of 
trust [16]. Research has compared the level of 
trust to the level of perceived risk measured using 
5-Likert scales, and shows that if trust is higher 
than perceived risk, team members will intend to 
engage in the risk taking in relationships, 
otherwise they will be unwilling to engage if 
perceived risk is higher than trust [15]. Such 
relationship holds true in human-automation 
interaction, such as the teaming between the 
human driver and the ADS [10]. Despite the 
importance of risk in understanding trust, it is not 

clear how different types of risk might influence 
trust and reliance on ADS. 

This paper examines the impacts of two types of 
risk on the trust and reliance on ADS. Internal risk 
– which refers to the risk arising due to the 
uncertainty associated with the ADS [17] – was 
manipulated by varying the reliability of the 
vehicle alarms. External risk – defined as the 
uncertainty associated with the driving situation 
[18] – was manipulated by varying the driving 
visibility. Several studies have demonstrated the 
impact of risk on whether humans rely on ADS. 
Research has shown that increase in internal risk 
both reduces trust and makes trust more important, 
and with longer exposure time under risk, the 
ratings of perceived risk level decrease even 
though the objective risk level remain high [18]. 
Also, when the automation proves itself as reliable 
in recognizing the potential dangers, such as the 
encountering of vehicles or pedestrians, the 
drivers tend to trust the ADS more and place more 
reliance in the ADS [19]. On the contrary, external 
risk is likely to increase trust and reliance on ADS, 
as the sense of vulnerability can prompt trust and 
trusting behaviors of trustors on trustees [14]. For 
example, we might expect drivers to rely more on 
ADS in the presence of road sign distractions, fog, 
etc., with trust in ADS increased as well [20-21]. 
Research also indicates that driver perceived 
uncertainty and risk is dependent on trust in ADS, 
as subjective risk can be reduced by increasing 
trustworthiness [14]. As such, the research 
questions we seek to examine are: 

● Q1: Do both internal and external risk 
moderate the relationship between trust in 
and the reliance on ADS? 

● Q2:  Is the reliance on ADS positively 
associated with better task performance? 

To answer these questions, we conducted a 
human-subject experiment in a simulated driving 
environment with 36 participants. Participants 
performed the primary driving task and the 
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secondary target detection task simultaneously. In 
the experiment, we manipulated two types of risk: 
internal risk (ADS reliability) and external risk 
(driving visibility), and measured the primary 
(e.g., lane keeping, speed, etc.) task performance, 
the secondary task performance, participants’ 
driving inputs (e.g., steering and braking) and 
subjective survey responses (e.g., experience in 
autonomy, perceived trust, risk and workload, 
etc.). Research also suggested a need to 
complement survey measures of trust traditionally 
captured after studies with real-time data [22]. We 
thus accomplish this by capturing continuous trust 
measures and physiological measures, such as 
eye-tracking, heart rate, and skin conductance. 

We seek to add to the current knowledge of the 
impacts of trust in ADS and automated vehicles 
(AVs), and leverage the results of this study by 
using the data to help us determine the parameters 
needed to develop sophisticated and robust models 
of driver's trust in ADS. Results are expected to 
inform the design and development of more 
effective ADS interfaces. The contributions of the 
paper are as follows: 

1. This study contributes to the literature by 
introducing and exploring the impact of risk on 
trust in and reliance on ADS. 

2. This study examines the combined impact of 
two different types of risk: internal and external.  
 

METHOD 

This study was designed to evaluate driver trust 
in ADS under different conditions of internal and 
external risk. This study employs an experimental 
design with two levels of internal risk (reliability 
of collision warning system) and two levels of 
external risk (visibility of the driving 
environment). These conditions were 
counterbalanced using a Latin Square design to 
minimize learning and ordering effects. 
Participants were asked to operate a simulated 

vehicle while attending to a visually demanding 
secondary task. Trust was evaluated from survey 
responses and analysis of behavioral data. 

Participants 

Thirty-six licensed drivers were recruited from 
the Ann Arbor, MI area to participate in the 
experiment. The average age of participants was 
22.74 years old, including fourteen females and 
twenty-one males, and one chose not to specify. 
All participants had normal or corrected-to-normal 
color vision as well as auditory acuity. Participants 
were paid $15 for their participation and were 
eligible to receive a cash bonus based on their 
performance in the experiment. 

Tasks 

Participants were given the task of operating a 
simulated semi-autonomous vehicle while 
attending to a visually-engaging secondary task. 
The drivers were scored for their performance on 
both the primary and the secondary tasks in each 
trial. The best performers in each condition were 
promised monetary bonuses, which encouraged 
the subjects to perform their best in all four trials. 
The simulated vehicle was equipped with lane-
keeping, cruise control, and automatic emergency 
braking. Additionally, the vehicle was equipped 
with a forward collision warning system that 
issued verbal alarms when a stopped vehicle 
appeared in front of the driven vehicle. The alarms 
were verbal messages: “stopped vehicle ahead” 
played approximately 8 seconds before reaching 
each stopped vehicle, followed by either “no 
action needed” or “take control now” depending 
on whether the stopped vehicle appeared in the 
opposite lane or the same lane as the driven 
vehicle respectively.  
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Figure 1: Simulated driving view on a standard two-lane 

divided highway. Vehicle speed and driving mode are 
displayed in a heads-up display (HUD). A stopped vehicle is 

placed in front of the ego vehicle as an obstacle. 

The primary task for the subjects was to drive the 
simulated vehicle on the road, while avoiding any 
collisions. The participants would lose points if 
they failed to avoid the stopped vehicles. The 
virtual driving environment consisted of a 
standard two-lane divided highway with a hard 
shoulder, as shown in Figure 1, with a stopped 
vehicle periodically appearing ahead. Two modes 
could be chosen during the driving, “MANUAL” 
or “AUTO.” In MANUAL mode, the vehicle 
could be manually controlled with the steering 
wheel and the gas and brake pedals, as in a normal 
car. When AUTO mode was active, the vehicle 
would maintain its forward speed and stay in its 
lane without input from user and emergency stops 
were triggered before the collision with stopped 
vehicles. Participants were informed that their 
simulated vehicle was capable of driving itself and 
delivering alarms, but would not be able to 
maneuver around a stopped vehicle on the road 
given the highway speeds. In these circumstances, 
participants would have to take control of the 
vehicle by either turning the steering wheel or 
stepping on the brake.  

 
Figure. 2: The visual search task on the touchscreen. This 
task is administered on a touchscreen and required subjects 

to manually select the target shape (the letter ‘Q’). 

Simultaneously, the subjects need to complete 
the secondary task. The secondary task was a 
modified version of the surrogate reference task 
(SuRT; [23]). The SuRT resembles a target 
recognition task, as shown in Figure 2, in which 
subjects must identify a target item (the letter ‘Q’ 
in this study) from amongst a field of distractors 
(the letter ‘O’) and manually select it on a 
touchscreen located to the right of the participant. 
The goal for the subjects was to correctly identify 
the targets as fast and as many as possible, for 
which they would receive points. In the tests, the 
participants were first shown a target shape, and 
then a field of shapes including a single instance 
of the target shape, i.e., a single letter Q amidst 
O’s. Once subjects located the target shape, they 
could tap anywhere on the screen. After they 
tapped, the Q and Os disappeared and were 
replaced by circles at their corresponding 
locations. Subjects could then tap the circle 
corresponding to the location of the target shape. 

Each time the participants correctly selected the 
location of a target shape, they earned one point. 
And each time they collided into the stopped 
vehicle, or triggered the emergency stop in the 
AUTO mode, they lost 25 points. The final scores 
were recorded to decide the winners who would 
receive monetary bonus, while simulation data 
(i.e., vehicle states, take-over behaviors, etc.) and 
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psychological measurements (i.e., GRS, heart rate) 
were collected for analysis. More details of the 
collected data and variable are introduced later in 
the Dependent Variable section. 

 
Apparatus 

The study was conducted with a static driving 
simulator with three visual channels, as shown in 
Figure 3. Autonomous Navigation Virtual 
Environment Laboratory [24] is used to create the 
virtual environment and implement the semi-
autonomous driving behavior. PEBL [25] is used 
to create the non-driving task. The task itself is 
administered on a touchscreen to the right of the 
participant where a vehicle’s center console would 
be in an actual vehicle. A head-mounted eye-
tracker is used to collect participant gaze behavior 
during the study. This device captures video of the 
wearer’s field of view and of the wearer’s right 
eye. Galvanic skin response (GSR) and heart rate 
are also collected during the study. 

 
Figure 3: Driving simulator and secondary task setup. A 

volunteer is driving with the simulated vehicle while doing 
visual-search task on a touchscreen. Markers are placed on 
each monitor and the touchscreen to identify surfaces for 

eye-tracking. 

 

 

 

Independent Variables 

The study employed a 2×2   within-subjects 
design. The two independent variables in this 
experiment were internal risk and external risk. 
Internal risk was manipulated via the reliability of 
the forward collision warning system; external risk 
was manipulated via the visibility of the road due 
to fog. Each variable had two levels: low and high, 
as presented in the table below. Each subject 
experiences all four combinations, which are 
shown in Table. 1: 

Table. 1 

 Internal risk (reliability) 

Low internal 
(100% reliable) 

High internal 
(70% reliable) 

External 
risk 
(visibility) 

Low 
external 
(high 
visibility) 

Low ext. risk - 
Low int. risk 

Low ext. risk - 
High int. risk 

High 
external 
(low 
visibility) 

High ext. risk - 
Low int. risk 

High ext. risk - 
High int. risk 

 

Under the low external risk (high visibility) 
condition, as shown in Figure 4 (a), subjects could 
see over 1000 feet down the road. Under the high 
external risk (low visibility) conditions, as shown 
in Figure 4 (b), subjects could only see about 500 
feet down the road. Fog was added to the 
simulated environment to form a low visibility 
scenario in the high external risk conditions. The 
forward collision warning played right before each 
stopped vehicle appeared in the low visibility 
conditions, i.e., when the stopped vehicle was 500 
feet ahead. Under the low internal risk (high 
reliability) condition, the forward collision 
warnings are always correct. Under the high 
internal risk (low reliability) condition, for 30% of 
the forward collisions, warnings are false positive 
alarms. The reliability levels were chosen 
considering real-life ADS systems and through the 
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feedback from the pilot study. Furthermore, false 
alarms were placed in the 2nd, the 3rd and the 5th 
encounters among the total 10 encounters, as 
studies have shown that trust is affected more by 
early failures than by later losses of reliability 
[22].  

 

 
(a) 

 

(b) 

Figure 4: The driving environment with different visibility. 
(a) High visibility case: visible distance is around 1000 feet, 

and drivers can see a stopped vehicle ahead 14 sec before 
reaching it; (b) Low visibility case: visible distance is around 

500 feet, and drivers can see a stopped vehicle ahead 7 sec 
before reaching it. 

 

 

Dependent Variables 

In the experiment, the following dependent 
variables were measured through the data 
collection: 

The survey responses were collected through 
pre-experiment and post-experiment surveys, 
which produced the preliminary results presented 
in the paper. The pre-experiment surveys 
measured the demographic and driving 
experience, the Mood via SAM [26], the driving 
risk tolerance [27], and the propensity to trust in 
automation [28]. The post-experiment surveys 
measured the perceived risk (adapted from [11]), 
the self-reported trust via Trust in Automation 
Survey [5], and the workload via NASA TLX 
[29]. 

Also, the simulation data and the physiological 
data were collected during experiment. The 
simulation data consisted of variables of four 
categories: the simulated vehicle state, the 
proximity to the nearest upcoming stopped 
vehicle, the participant take-over behavior, and the 
participant secondary task engagement which 
included scores and reaction time. The 
physiological data consisted the eye-tracking data 
with monitoring ratio and monitoring frequency, 
the heart rate (HR) data, and the galvanic skin 
response (GSR) data. These variables would be 
used in future analysis. 

Procedure 

Participants first completed a consent form to 
participate in the study. Next, participants 
completed a pre-experiment survey, which 
consisted of questions about demographic 
information as well as experience using driving 
aids, such as adaptive cruise control and forward 
collision warning. It also included questions to 
determine each participant’s risk tolerance and 
propensity to trust in automation. 
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After completing the pre-experiment survey, 
participants completed a brief training session to 
become familiar with the vehicle controls and the 
secondary task. Following training, the eye-tracker 
and GSR/heart rate monitor were fitted and 
calibrated. Participants then completed four test 
sessions, one corresponding to each of the pairs of 
internal and external risk levels. Each driving 
session lasted approximately 10 minutes. At the 
end of each session, participants completed the 
post-condition survey. The post-condition survey 
included measures for perceived risk, trust in 
automation, and perceived workload. Surveys of 
27 subjects were administered via web-form, 
while the other 11 subjects completed surveys via 
paper-form due to software constraints. Each 
experiment lasted approximately 110 minutes. 

 
PRELIMINARY OUTCOMES 

In the final results we expect to answer the 
research questions proposed in the Introduction 
section. This paper presents the preliminary 
outcomes regarding the first question, i.e., Do both 
internal and external risk moderate the 
relationship between trust in and the reliance on 
ADS? 

Analysis has been conducted on the following 
variables: self-reported trust, reliance, risk, 
workload in ADS, which were collected from post 
experiment surveys, and the secondary task 
performance. The preliminary outcome on self-
reported trust is presented in this section. The 
analysis employs the survey responses of 27 
subjects that fulfilled surveys via web-form. The 
subjective trust scores are shown in Figure 5, each 
corresponding to one risk condition:  

 
Figure 5: Self-reported driver trust on the ADS. The blue 

bars show the average trust scores under four combined risk 
scenarios calculated from the survey responses.    

The trust scores for each subject were calculated 
by averaging self-reported values with five 
different trust measures on ADS (i.e., competence, 
predictability, reliability over time, dependability, 
and responsibility), using the 7-point Likert scale 
(i.e., score 1 stands for “no trust at all”, and score 
7 stands for “complete trust”). The survey 
questions on system trustworthiness are as 
follows: 

1. Competence: To what extent did the autonomy 
perform its function properly? In other words, to 
what extent does the driving autonomy prevent 
and help prevent collisions and enable safe multi-
tasking? 

2. Predictability: To what extent can the 
autonomy’s behavior be predicted from moment to 
moment? 

3. Reliability over Time: To what extent does the 
autonomy respond similarly when it encounters 
similar circumstances at different points in time? 

4. Dependability: To what extent can you count 
on the autonomy to do its job? 

5. Responsibility: To what extent did the 
autonomy perform the task it was designed to do? 
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In other words, to what extent does the driving 
autonomy drive safely and enable safe multi-
tasking? 

The scores were collected from the post-
experiment surveys taken after each session of 
subject trials. The histogram is presented with blue 
bars showing the average of trust scores, and black 
standard error bars showing the standard 
deviation.  

As indicated in Figure 5, internal risk and 
external risk have different effects on trust. The 
results imply that the internal risk (i.e., the 
reliability of warning system) has a negative 
influence on trust in the autonomy: when the 
warning system is unreliable, the drivers tend to 
trust less in the autonomy. Meanwhile, the impact 
of external risk (i.e., the visibility of driving 
environment) is minor compared to internal risk. 
The results indicate that internal risk reduces trust 
in ADS. Also, the impact of internal risk appears 
stronger than external risk. External risk shows 
minor impact on self-reported trust, which remains 
to be investigated with other trust measures. 

Nevertheless, self-reported trust through 
questionnaires may not be fully representative of 
actual trust and trusting behaviors [2,22]. It 
remains unclear how multiple factors influence the 
measures simultaneously. Further investigation 
should be conducted with continuous trust 
measures and physiological data which might 
provide a different conclusion. 

 
CONCLUSION 

In this study, the combined influence of internal 
and external risk on driver trust and reliance in the 
ADS was evaluated. A human-in-the-loop 
experiment was conducted, where subjects drove a 
simulated semi-autonomous vehicle under 
different risk scenarios. The preliminary results on 
self-reported trust suggest that 1) internal risk 

reduces trust in ADS, and 2) internal risk has a 
greater impact on trust than external risk. 

 
FUTURE WORK 

For the next step, we will consider the 
physiological data, simulation data, and use 
continuous trust measures together with the survey 
data. Based on the results, we will build a control 
model for the mutual trust between human 
operator and the ADS in semi-autonomous 
driving, which will be able to predict real-time 
trust intentions corresponding to different 
conditions. User performance in primary and 
secondary tasks would also be evaluated and 
modeled into the automation system. The 
outcomes of this study will be used to develop 
ADS with appropriate taking-over or ceding-
control behaviors in human-vehicle cooperative 
driving.  
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