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1. Proof of the main results

We present several useful lemmas before proving the theoretical results in the main text.

Lemma 1: For a categorical covariate Xj with Rj categories, let ŜT |Xj(t|r) be the Kaplan-

Meier estimator of conditional survival function within the subsample Xj = r, r = 1, . . . , Rj.

Under conditions (C1) and (C5), we have

P ( max
16r6Rj

sup
t∈[0,τ ]

|ŜT |Xj(t|r)− ST |Xj(t|r)| > ε) 6 d3R exp(−d4ε
2θ25

1 n
1−3κ),

where d3 and d4 are positive constants, R = max16j6pRj.

Proof. By the inequality in the last paragraph on page 1161 of Dabrowska (1989), we have

P (max
r

sup
t∈[0,τ ]

|ŜT |Xj(t|r)− ST |Xj(t|r)| > ε)

6 d3Rj exp(−d4ε
2θ25

1 min
r
nrR

−2
j )

6 d3R exp(−d4ε
2θ25

1 min
r
nrR

−2)

where nr is the subsample size of Xj = r. By condition (C6), we have minr nr > n/R =

n1−κ. �

Lemma 2: Under (C1)-(C5), for a categorical covariate Xj with Rj categories, we have

P ( max
16r6Rj

sup
t∈[0,τ ]

|f̂T |Xj(t|r)− fT |Xj(t|r)| > ε) 6 d3R exp

(
− 1

4
d4ε

2θ25
1 n

1−3κh2
n

)
,

where R = max16j6pRj.
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Proof. Note that

sup
t∈[0,τ ]

|f̂T |Xj(t|r)− fT |Xj(t|r)|

6 sup
t∈[0,τ ]

∣∣∣∣− ∫ Khn(t− s)dŜT |Xj(s|r) +

∫
Khn(t− s)dST |Xj(s|r)

∣∣∣∣
+ sup

t∈[0,τ ]

∣∣∣∣− ∫ Khn(t− s)dST |Xj(s|r)− fT |Xj(t|r)
∣∣∣∣

6 sup
t∈[0,τ ]

∣∣∣∣− ∫ Khn(t− s)d[ŜT |Xj(s|r)− ST |Xj(s|r)]
∣∣∣∣

+ sup
t∈[0,τ ]

∣∣∣∣− ∫ Khn(t− s)dST |Xj(s|r)− fT |Xj(t|r)
∣∣∣∣

=: I1 + I2.

Assume that there exists a constant C0 such that |K| 6 C0. Integration by parts yields that

I1 =

∣∣∣∣− [ŜT |Xj(s|r)− ST |Xj(s|r)]Khn(t− s)|τ0 +

∫
[ŜT |Xj(s|r)− ST |Xj(s|r)]dKhn(t− s)

∣∣∣∣
6 C0h

−1
n sup

t∈[0,τ ]

|ŜT |Xj(t|r)− ST |Xj(t|r)|+ VKh
−1
n sup

t∈[0,τ ]

|ŜT |Xj(t|r)− ST |Xj(t|r)|

6 (C0 + VK)h−1
n max

r
sup
t∈[0,τ ]

|ŜT |Xj(t|r)− ST |Xj(t|r)|.

For I2, we have

I2 = sup
t∈[0,τ ]

∣∣∣∣ ∫ Khn(s− t)fT |Xj(s|r)ds− fT |Xj(t|r)
∣∣∣∣

= sup
t∈[0,τ ]

∣∣∣∣ ∫ K(u)fT |Xj(t+ uhn|r)du− fT |Xj(t|r)
∣∣∣∣ = O(h2

n).

Note that P (I2 > ε/2) = 0. Therefore, by Lemma 1, we have

P (max
r

sup
t∈[0,τ ]

|f̂T |Xj(t|r)− fT |Xj(t|r) > ε|

6 P (I1 >
ε

2
) + P (I2 >

ε

2
)

6 P ( sup
t∈[0,τ ]

|ŜT |Xj(t|r)− ST |Xj(t|r)| >
εhn
2

)

6 d3R exp

(
− 1

4
d4ε

2θ25
1 n

1−3κh2
n

)
.

�

Lemma 3: Under (C1)-(C5), for a categorical covariate Xj with Rj categories, i.e., Xj =
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r for 1 6 r 6 Rj, we have

P (|Î(γ)
j − I

(γ)
j | > ε) 6 d6R exp(−d5ε

2n1−3κh2
n),

where d5 and d6 are positive constants.

Proof. Note that

|Î(γ)
j − I

(γ)
j |

=

∣∣∣∣max
r1,r2

sup
t∈[0,τ ]

∣∣∣∣∫ t

0

f̂γT |Xj(s|Xj = r1)ds−
∫ t

0

f̂γT |Xj(s|Xj = r2)ds

∣∣∣∣
−max

r1,r2
sup
t∈[0,τ ]

∣∣∣∣∫ t

0

fγT |Xj(s|Xj = r1)ds−
∫ t

0

fγT |Xj(s|Xj = r2)ds

∣∣∣∣ ∣∣∣∣
6 max

r1
sup
t∈[0,τ ]

∣∣∣∣∫ t

0

f̂γT |Xj(s|Xj = r1)ds−
∫ t

0

fγT |Xj(s|Xj = r1)ds

∣∣∣∣
+ max

r2
sup
t∈[0,τ ]

∣∣∣∣∫ t

0

f̂γT |Xj(s|Xj = r2)ds−
∫ t

0

fγT |Xj(s|Xj = r2)ds

∣∣∣∣
=: I31 + I32.

By Lemma 2 and the mean value theorem,

f̂γT |Xj(t|Xj = r1)− fγT |Xj(t|Xj = r1)

= {fT |Xj(t|Xj = r1) + [f̂T |Xj(t|Xj = r1)− fT |Xj(t|Xj = r1)]}γ − fγT |Xj(t|Xj = r1)

= γ{fT |Xj(t|Xj = r1) + ζ∗[f̂T |Xj(t|Xj = r1)− fT |Xj(t|Xj = r1)]}γ−1

×[f̂T |Xj(t|Xj = r1)− fT |Xj(t|Xj = r1)]

=: γψ(ζ∗)[f̂T |Xj(t|Xj = r1)− fT |Xj(t|Xj = r1)],

where ζ∗ is a constant between 0 and 1. For γ > 1, we have

|ψ(ζ∗)| = |{fT |Xj(t|Xj = r1) + ζ∗[f̂T |Xj(t|Xj = r1)− fT |Xj(t|Xj = r1)]}γ−1|

6 [3fT |Xj(t|Xj = r1)]γ−1

6 3γ−1[ sup
t∈[0,τ ]

fT |Xj(t|Xj = r1)]γ−1,
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and for γ < 1, we have

|ψ(ζ∗)| = |{fT |Xj(t|Xj = r1) + ζ∗[f̂T |Xj(t|Xj = r1)− fT |Xj(t|Xj = r1)]}γ−1|

6

[
1

2
fT |Xj(t|Xj = r1)

]γ−1

6

(
1

2

)γ−1

[ inf
s∈[0,τ ]

fT |Xj(t|Xj = r1)]γ−1.

Let

G1(γ) =


3γ−1[supt∈[0,τ ] fT |Xj(t|Xj = r1)]γ−1, if γ > 1,

1, if γ = 1,

(1
2
)γ−1[inft∈[0,τ ] fT |Xj(t|Xj = r1)]γ−1, if γ < 1.

Then we have

I31 = max
r1

sup
t∈[0,τ ]

∣∣∣∣∫ t

0

f̂γT |Xj(s|Xj = r1)ds−
∫ t

0

fγT |Xj(s|Xj = r1)ds

∣∣∣∣
6 max

r1
sup
t∈[0,τ ]

∫ t

0

∣∣∣f̂γT |Xj(s|Xj = r1)− fγT |Xj(s|Xj = r1)
∣∣∣ ds

6 |γ|G1(γ)τ max
r

sup
t∈[0,τ ]

|f̂T |Xj(t|r)− fT |Xj(t|r)|.

Similarly,

I32 6 |γ|G2(γ)τ max
r

sup
t∈[0,τ ]

|f̂T |Xj(t|r)− fT |Xj(t|r)|,

where

G2(γ) =


3γ−1[supt∈[0,τ ] fT |Xj(t|Xj = r2)]γ−1, if γ > 1,

1, if γ = 1,

(1
2
)γ−1[inft∈[0,τ ] fT |Xj(t|Xj = r2)]γ−1, if γ < 1.

The result follows from Lemma 2. �
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Proof of Theorem 1. By Lemma 3, we have

P (M⊂ M̂1) > P

(
|Î(γ)
j − I

(γ)
j | 6 cn−v

)
> P (max

16j6p
|Î(γ)
j − I

(γ)
j | 6 cn−v)

> 1−
p∑
j=1

P (|Î(γ)
j − I

(γ)
j | > cn−v)

> 1−
p∑
j=1

[
d6R exp

(
− 1

4
d5c

2n1−3κ−2vh2
n

)]
= 1−O(pnκ) exp

(
− 1

4
d5c

2n1−3κ−2vh2
n

)
= 1−O(p exp{−b0n

1−3κ−2vh2
n + κ log n}),

where b0 is a positive constant. �

Proof of Corollary 1. Under the assumption
∑p

j=1 I
(γ)
j = O(ζ), it is easy to obtain that the

cardinality of {j : I(γ)
j > cn−v} is no greater than O(nζ+v). Hence, on the set

Ωn = { sup
16j6p

|Î(γ)
j − I

(γ)
j | 6 cn−v},

we have

{j : Î(γ)
j > 2cn−v} 6 {j : I(γ)

j > cn−v} = O(nζ+v).

By Lemma 3, we have

P ( sup
16j6p

|Î(γ)
j − I

(γ)
j | > cn−v) 6 O(R) exp(−d5ε

2n1−3κ−2v).

�

Let qj(r) be the r/Rj theoretical quantile of Xj, for r = 1, · · · , Rj. For notational simplicity,

let Ĵr = [q̂j(r−1), q̂j(r)) and Jr = [qj(r−1), qj(r)) in the following statements.

Lemma 4: For continuous covariate Xj, let ŜT |Xj(t|Xj ∈ Ĵr) be the Kaplan-Meier es-

timator of the conditional survival function within the subsample Xj ∈ Ĵr, and assume

conditions (C1),(C5) and (C6) hold. Then,

P (max
r

sup
t∈[0,τ ]

|ŜT |Xj(t|Xj ∈ Ĵr)− ST |Xj(t|Xj ∈ Jr)| > ε) 6 d7R exp(−d8ε
2n1−3κ−2ρ),
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for any 1 6 r 6 Rj, and R = max16j6pRj, where d7 and d8 are positive constants.

Proof. By consistency of q̂j(r), it is easy to obtain that,

FXj(q̂j(r))− FXj(q̂j(r−1)) > 0.5[FXj(qj(r))− FXj(qj(r−1))].

By the mean value theorem,

|ST |Xj(t|Xj ∈ Ĵr)− ST |Xj(t|Xj ∈ Jr)|

=

∣∣∣∣P (T > t,Xj < q̂j(r))− P (T > t,Xj < q̂j(r−1))

FXj(q̂j(r))− FXj(q̂j(r−1))

−
P (T > t,Xj < qj(r))− P (T > t,Xj < qj(r−1))

FXj(qj(r))− FXj(qj(r−1))

∣∣∣∣
6

∣∣∣∣P (T > t,Xj < q̂j(r))− P (T > t,Xj < q̂j(r−1))

FXj(q̂j(r))− FXj(q̂j(r−1))

−
P (T > t,Xj < qj(r))− P (T > t,Xj < qj(r−1))

FXj(q̂j(r))− FXj(q̂j(r−1))

∣∣∣∣
+

∣∣∣∣P (T > t,Xj < qj(r))− P (T > t,Xj < qj(r−1))

FXj(q̂j(r))− FXj(q̂j(r−1))

−
P (T > t,Xj < qj(r))− P (T > t,Xj < qj(r−1))

FXj(qj(r))− FXj(qj(r−1))

∣∣∣∣
6

2

FXj(qj(r))− FXj(qj(r−1))

[
|P (T > t,Xj < q̂j(r))− P (T > t,Xj < qj(r))|

+|P (T > t,Xj < q̂j(r−1))− P (T > t,Xj < qj(r−1))|
]

+
2

[FXj(qj(r))− FXj(qj(r−1))]2
[|FXj(q̂j(r−1))− FXj(qj(r−1))|+ |FXj(q̂j(r))− FXj(qj(r))|]

=: I41 + I42 + I43 + I44.

For I41, we have

I41 =
2

FXj(qj(r))− FXj(qj(r−1))
|P (T > t,Xj < q̂j(r))− P (T > t,Xj < qj(r))|

6
2

FXj(qj(r))− FXj(qj(r−1))

∣∣∣∣ ∫ ∞
t

fT |Xj(s|q∗j(r))fXj(q∗j(r))ds
∣∣∣∣max

r
|q̂j(r) − qj(r)|,
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where q∗j(r) lies between q̂j(r) and qj(r). Hence,

P

(
I41 >

ε

8

)
6 P

(
max
r
|q̂j(r) − qj(r)| >

ε[FXj(qj(r))− FXj(qj(r−1))]

16|
∫∞
t
fT |Xj(s|q∗j(r))fXj(q∗j(r))ds|

)
6 b2Rj exp(−b1n

1−2ρε2)

6 b2R exp(−b1n
1−2ρε2),

where b1 and b2 are positive constants, and the second inequality is obtained by Lemma A.2

from Ni and Fang (2016). Similarly, we can have P (I4k > ε/8) 6 b2kR exp(−bkn1−2ρε2), for

k = 2, 3, 4 and where bk and b2k are positive constants. Therefore, we have

P (max
r

sup
t∈[0,τ ]

|ŜT |Xj(t|Xj ∈ Ĵr)− ST |Xj(t|Xj ∈ Jr)| > ε)

6 P (max
r

sup
t∈[0,τ ]

|ŜT |Xj(t|Xj ∈ Ĵr)− ST |Xj(t|Xj ∈ Ĵr)| > ε/2)

+P (max
r

sup
t∈[0,τ ]

|ST |Xj(t|Xj ∈ Ĵr)− ST |Xj(t|Xj ∈ Jr)| > ε/2)

6 d3R exp(−d4(ε/2)2θ25
2 n

1−3κ) +
4∑

k=1

P

(
I4k >

ε

8

)
6 d7R exp(d8ε

2n1−3κ−2ρ).

�

Lemma 5: Under (C1)-(C4) and (C6), for a continuous covariate Xj, we have

P (max
r

sup
t∈[0,τ ]

|f̂T |Xj(t|Xj ∈ Ĵr)− fT |Xj(t|Xj ∈ Jr)| > ε) 6 d9 exp(−d10ε
2n1−3κ−2ρ−2µ),

where d9, d10 are positive constants.

Proof. The proof of this lemma is similar to that of Lemma 2, and is omitted. �

Lemma 6: Under (C1)-(C4) and (C6), for a continuous covariate Xj, we have

P (|Î(γ)
j − I

(γ)
j | > ε) 6 d11R exp(−d12ε

2n1−3κ−2ρ−2µ),

where d11, d12 are positive constants, and R = max16j6pRj.
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Proof. The proof of this lemma is similar to that of Lemma 3. By Lemmas 4 and 5, it is easy

to obtain the conclusion. �

Proof of Theorem 2. By Lemma 6, the proof of this theorem is similar to that of Theorem

1, and hence is omitted. �

Proof of Corollary 2. The proof of it is similar to that of Corollary 1, and we omit it here. �

For simplicity, let Ĵur = [q̂ju(r−1), q̂ju(r)), and Jur = [qju(r−1), qju(r)).

Lemma 7: Under (C1)-(C4) and (C6), for a continuous covariate Xj, we have

P (|Ĩ(γ)
j − I

(γ)
jo | > ε) 6 d13NR exp(−d14ε

2n1−3κ−2ρ−2µ),

where d13, d14 are positive constants, and R = max16j6p,16u6N Rju.

Proof. Note that

|Ĩ(γ)
j − I

(γ)
jo |

6
N∑
u=1

|Î(γ)
j,Λju
− I(γ)

j,Λjuo
|

6
N∑
u=1

[
max
r1

sup
t∈[0,τ ]

∣∣∣∣∫ t

0

f̂γT |Xj(s|Xj ∈ Ĵur1)ds−
∫ t

0

fγT |Xj(s|Xj ∈ Jur1)ds
∣∣∣∣

+ max
r2

sup
t∈[0,τ ]

∣∣∣∣∫ t

0

f̂γT |Xj(s|Xj ∈ Ĵur2)ds−
∫ t

0

fγT |Xj(s|Xj ∈ Jur2)ds
∣∣∣∣ ].

By Lemma 6, similar to the proof of Lemma 3, it is easy to obtain the conclusion. �

Proof of Theorem 3. By Lemma 7, the proof is similar to that of Theorem 1, and hence is

omitted. �

Proof of Corollary 3. The proof is similar to that of Corollary 1, and is omitted. �

2. On the Choice of bandwidth hn

From Theorem 2.2 of Lo et al. (1989), we can obtain that

E[f̂T (t)] = f(t) +
f ′′(t)h2

n

2

∫
s2K(s)ds+ o(hn) + o((nhn)−1/2),

V ar[f̂T (t)] =
1

nhn

f(t)

P (Yi > t)

∫
K2(s)ds+ o((nhn)−1).
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Obviously there is a trade-off: when hn increases, the bias becomes larger, while the variance

become smaller; when hn decreases, the bias becomes smaller, while the variance become

larger. An optimal hn could be selected by minimizing the mean squared error (MSE) of

f̂(t), which strikes a balance between bias and variance:

MSE =

[
f ′′(t)h2

n

2

∫
s2K(s)ds

]2

+
1

nhn

f(t)

P (Yi > t)

∫
K2(s)ds+ o((nhn)−1) + o(h4

n).

It follows that the minimal of MSE could be achieved when hn = O(n−1/5). That is, the

optimal bandwidth is in the order O(n−1/5).

To explore how the bandwidth can impact the results with various γ, we present in

Figure S1 the boxplots of the MMS for IPOD in Example 1 with (n, p) = (500, 1000), γ =

0.1, 0.5, 0.8, 1, 1.2, 1.5, 2.0, 2.5, 3.0, and hn = h0n
−1/5 with h0 = 0.4, 2, 5, 10, respectively.

Figure S1 shows a U-shaped relationship between γ and MMS. The impact of the bandwidth

appeared negligible unless the bandwidth was too narrow or too wide. In addition, if a γ

was too distant from 1, it did not help detect differences in distributions and produced less

meaningful results. On the other hand, using γ from 0.7 to 1.5 might help IPOD detect early

or late differences.

[Supplemental Material, Figure 1 about here.]

3. Additional Numerical Results

Example 5. The survival time was generated from a Cox model, λ(t|X) = 0.2 exp(βTX)

where the covariates Xj were from a multivariate normal distribution and β = (0.3T
5 ,0

T
p−5)T.

For the true covariance, we considered an exchangeable correlation structure with an equal

correlation of 0.5. The censoring times Ci were independently generated from a uniform dis-

tribution U [0, c], with c chosen to give approximately 20% and 50% of censoring proportions.

Example 5*. The setup was the same as in Example 5 except that the censoring times Ci were
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covariate-dependent and generated from λC(t|X) = c exp(βTX), where β = (0.3T
2 ,0

T
p−2)T,

and c was chosen to give approximately 20% and 50% of censoring proportions.

[Supplemental Material, Table 1 about here.]

Table S1 indicates that when the censoring time depended on covariates (Example 5*), the

results were not impacted, suggesting the validity of the results under dependent censoring.

[Supplemental Material, Table 2 about here.]

Table S2 reports the average computing time under Example 1 by various screening

methods. It shows that the IPOD procedure is on par with the competing methods, but

more computationally efficient than SII and CRIS, the nonparametric competitors.
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Figure S1: The boxplots of MMS obtained from IPOD with various γ’s and bandwidths
under Example 1.
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Table S1: Comparisons of competing methods with (n, p) = (500, 1000) in terms of MMS
(with interquartile range in parentheses), TPR, and PIT

Method MMS TPR PIT MMS TPR PIT

Example 5 CR=20% CR=50%

IPOD (γ = .8) 46 (73) 0.93 0.71 89 (153) 0.86 0.47

IPOD (γ = 1) 29 (51) 0.96 0.80 66 (116) 0.90 0.56

IPOD (γ = 1.2) 23 (42) 0.97 0.86 49 (83) 0.92 0.66

PSIS 6 (5) 1.00 0.99 14 (28) 0.98 0.90

CRIS 7 (6) 1.00 0.98 30 (70) 0.94 0.74

CS 5 (1) 1.00 1.00 8 (10) 0.99 0.96

SII 13 (21) 0.99 0.94 20 (31) 0.98 0.90

Example 5* CR=20% CR=50%

IPOD (γ = 0.8) 46 (63) 0.94 0.70 100 (162) 0.85 0.44

IPOD (γ = 1) 32 (45) 0.96 0.81 70(124) 0.89 0.54

IPOD (γ = 1.2) 23 (47) 0.97 0.85 58 (98) 0.91 0.63

PSIS 6 (7) 1.00 0.98 15 (27) 0.98 0.88

CRIS 7 (9) 1.00 0.98 30 (62) 0.95 0.78

CS 5 (1) 1.00 1.00 7 (9) 0.99 0.97

SII 24 (69) 0.95 0.77 273 (330) 0.70 0.15
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Table S2: Average runtime (seconds) of different screening methods in Example 1 on a CPU
with 2.9 GHz Intel Core i5 and 8GB of memory

PSIS CS CRIS SII IPOD

(n, p) = (500, 1000) 3.59 3.17 127.55 356.92 5.60
(n, p) = (300, 10000) 29.21 28.74 458.28 1259.82 40.01
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