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Summary. Modern biomedical studies have yielded abundant survival data with high-throughput predictors. Variable screen-
ing is a crucial first step in analyzing such data, for the purpose of identifying predictive biomarkers, understanding biological
mechanisms, and making accurate predictions. To nonparametrically quantify the relevance of each candidate variable to the
survival outcome, we propose integrated powered density (IPOD), which compares the differences in the covariate-stratified
distribution functions. The proposed new class of statistics, with a flexible weighting scheme, is general and includes the
Kolmogorov statistic as a special case. Moreover, the method does not rely on rigid regression model assumptions and can
be easily implemented. We show that our method possesses sure screening properties, and confirm the utility of the proposal
with extensive simulation studies. We apply the method to analyze a multiple myeloma study on detecting gene signatures
for cancer patients’ survival.
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1. Introduction

As a key aspect of scientific discovery is to identify
low-dimensional presentations of predictive features in a high-
dimensional space, there is an urgent need to develop a fast
but crude method to screen relevant variables, and ensure
that the unselected variables are indeed irrelevant (Fan and
Lv, 2008). In the context of integrative analysis, screening
steps are crucial in simultaneously reducing dimensional-
ity and ensuring estimation accuracy (Fan and Lv, 2010).
More broadly, screening has found wide applications, rang-
ing from quality control in the data processing step for
genome/genetic studies (Beyene et al., 2009), to identifying
predictive biomarkers for understanding biological mecha-
nisms (Heinzel et al., 2014). This article is motivated by a
clinical study (Shaughnessy et al., 2007) on multiple myeloma,
the second-most common hematological cancer, which often
results in bone lesions, immunological disorders, and renal
failure. A deeper understanding of the molecular etiology of
this disease, such as through detecting the gene signatures
that are relevant to cancer patients’ survival, would lead to
novel therapeutic targets and more accurate risk classification
systems (Mulligan et al., 2007). However, with expression level
measurements on more than 50,000 probe sets, this dataset
presents substantial challenges that defy the existing statisti-
cal tools for dimension reduction.

While screening approaches, including sure independence
screening (Fan and Lv, 2008), have been actively pursued for
fully observed outcomes, the development of high-dimensional
screening tools with survival outcomes has been less fruitful.

Limited works include a sure screening procedure for Cox’s
proportional hazards model (Fan et al., 2010), a Cox uni-
variate shrinkage estimator (Tibshirani, 2009), a marginal
maximum partial likelihood estimator (Zhao and Li, 2012),
a general class of single-index hazard rate models (Gorst-
Rasmussen and Scheike, 2013), and a conditional screening
with prior information (Hong et al., 2016). As successful as
these methods have been, their validity often hinges upon
modeling assumptions between outcomes and predictors (Lin
and Halabi, 2013), violations of which can lead to inflated
false discoveries or nondiscoveries.

There has been a surge of effort in developing model-free
screening procedures that achieve sure screening properties
under weak conditions; see Zhu et al. (2011), Li et al. (2012),
Liu et al. (2014), Shao and Zhang (2014), and Mai and Zou
(2015). However, the extension of these nonparametric works
to accommodate censored outcome data is elusive and non-
trivial. Limited works include a quantile adaptive method (He
et al., 2013) and a censored rank independence screening
method (Song et al., 2014), and a survival impact index pro-
cedure (Li et al., 2016).

In a survival setting, nonparametric variable screeners have
focused on discerning how each candidate variable influences
overall survival functions. Studying the variability of survival
functions for strata defined by each variable is one possible
way. We note that such survival differences may occur either
during the early or late period in the follow-up due to disease-
related characteristics. Therefore, screening approaches that
rely on a single screening criterion may not be able to capture
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the complex difference patterns and may lead to false nondis-
covery.

Our article proposes a model-free method for screening
ultrahigh dimensional predictors when the outcome is ran-
domly right censored. We propose an integrated powered
density (IPOD) criterion to screen predictors that are rele-
vant to the survival outcome. With an embedded weighting
scheme, IPOD flexibly compares the differences in covariate-
stratified distribution functions that occur at various time
points. The proposed framework is general, including the Kol-
mogorov filter (Mai and Zou, 2015) as a special case.

Compared to the other screening methods, our work
presents several novel contributions. First, we have introduced
a general nonparametric screening framework to accommo-
date survival outcomes and provided a convenient means to
select ultrahigh dimensional predictors of mixed types, dis-
crete, or continuous. Second, by embedding our screening
criteria in a new class of statistics, our method provides more
flexibility and power in efficiently selecting signals out of
ultrahigh dimenionsal predictors. We have established sure
screening properties, and conducted simulations to validate
the method.

The remainder is organized as follows. In Section 2, we
introduce the concept of integrated powered density and pro-
pose a model-free screening procedure to screen covariates
of different types (e.g., discrete or continuous). We present
in Section 3 the sure screening property. In Section 4, we
evaluate the finite-sample performance via simulation stud-
ies. In Section 5, we apply the method to analyze a multiple
myeloma study and identify gene signatures that are relevant
to patients’ survival. We conclude with some final remarks in
Section 6. Technical details are deferred to the Supplementary
Web Materials.

2. Integrated Powered Density (IPOD) for
Survival Outcomes

Suppose we have n observations with p covariates, where
p � n. Denote by Xij the jth covariate for subject i, and
write Xi = (Xi1, . . . , Xip)

T. Let Ti be the underlying survival
time and Ci be the potential censoring time. We observe
Yi = min{Ti, Ci} and δi = I(Ti ≤ Ci), where I(·) is the indicator
function. We assume that Ti and Ci are independent given Xi,
and (Yi, δi,Xi) are independently and identically distributed
(i.i.d). In particular, we assume (Ti, Xij), i = 1, . . . , n, are i.i.d
copies of (T, Xj), the random variables that underlie the sur-
vival time and covariates. To ensure the estimability of the
survival function, we assume that there exists a τ > 0 such
that P(Yi > τ|Xi)> 0 and restrict our analysis to [0, τ], a com-
mon practice in survival analysis (Zeng and Lin, 2007). In
practice, τ is often chosen to be the study duration.

Denote by S(·) the marginal survival function of T and
by S(t|X) the conditional survival function of T given X. To
facilitate the selection of covariates that are relevant to T , we
define the set of active covariates as

M={j : S(t|X) functionally depends onXj for some t∈(0,∞)}.

In biomedical studies, it is not unreasonable to stipulate a
sparsity condition that only a small number of biomarkers are

relevant to the disease-specific survival. That is, the cardinal-
ity of M is small relative to p. Our goal is to identify M.
As the candidate variables can be of mixed types, we start by
considering a categorical variable, say, Xj, with Rj categories
such that Xj ∈ {1, 2, . . . , Rj}. Later we will extend the method
to cover continuous covariates.

For a generic density function corresponding to a (contin-
uous) survival time, denoted by f (·), and for t ∈ (0, ∞), we

define the integrated powered density (IPOD) as
∫ t

0
f γ(s)ds,

for γ > 0. IPOD resembles the cumulative density func-
tion (CDF) and satisfies the basic properties of CDFs,
except that it does not necessarily approach to one when
t → ∞. This unique property is advantageous for using
IPOD to detect distributional differences, as exemplified in
Figure 1.

When γ = 1, IPOD is a CDF. When γ �= 1, IPOD is closely
related to the Renyi entropy with a power index γ (Cover
and Thomas, 2012). To study the relevance of covariate
Xj to the survival time T , we propose to characterize the
variability of IPOD across different categories of Xj. Specif-
ically, for each pair of categories, say, Xj = r1 and Xj = r2
(r1, r2 ∈ {1, . . . , Rj}), we compute the absolute difference of
IPOD, take the maximum over all pairs of r1, r2 and use it as
the screening criterion:

I(γ)
j = max

r1,r2∈{1,...,Rj }
sup

t∈[0,τ]

∣∣∣∣∫ t

0

f
γ

T |Xj
(s|Xj = r1)ds

−
∫ t

0

f
γ

T |Xj
(s|Xj = r2)ds

∣∣∣∣ , (1)

Figure 1. Integrated Powered Density:
∫ t

0
f γ(s|x)ds is

shown for x = 1 (solid line) and x = 0 (dashed line) with
γ = 1 and γ = 0.5, respectively. Here, f (s|x) is the density
function corresponding to the crossing hazard function of
λ(s|x) = 0.1 exp(−0.5x){s exp(−0.5x) − 2}2, which is adapted
from Zhang and Peng (2009). This figure appears in color in
the electronic version of this article.
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where fT |Xj
(s|Xj = r) denotes the conditional density func-

tion of T given Xj = r. The rationale is that I(γ)
j = 0 implies

T and Xj are independent and so does the converse. Hence,

an estimated I(γ)
j empirically gauges the relevance of Xj to T .

When γ = 1, (1) is simply the classical Kolmogorov differ-
ence, maxr1,r2∈{1,...,Rj } supt∈[0,τ] |FT |Xj

(t|Xj = r1) − FT |Xj
(t|Xj =

r2)|. However, the added power index γ in (1) may inflate
early (γ > 1) or late differences (γ < 1) and thus gives more
flexibility to detect the distributional differences. For exam-
ple, Figure 1 illustrates that IPOD with γ = 0.5 amplifies the
late differences in CDF (corresponding to γ = 1), which exem-
plifies the possible role of γ in differentiating distributions.

This leads to a natural question of which γ should be chosen
in analysis. For unbiased analysis, it is not reasonable to look
at the survival curves first, and then choose weights. How-
ever, prior medical knowledge might guide the choice of γ.
For example, late differences are more likely to occur in child-
hood cancers (National Cancer Policy Board, 2003), while
early treatment differences are more prominent in late stage
lung cancer remission (Fossella et al., 2000).

2.1. Estimation of IPOD

To estimate (1) for a given γ > 0, we need to first reliably
estimate the density of the survival time. We adopt a kernel
type density estimation. We illustrate the idea by estimating
the marginal density of T .

Denote by 0 ≡ t0 < t1 < t2 < · · · < tM the ordered observed
failure times in the data, and by ŜT (t) the Kaplan–Meier esti-
mate of ST (t), the marginal survival function of T at time t.
Then the estimated kernel density function for T is

f̂T (t)= −
∫

K

(
t − s

hn

)
dŜT (s)=

M∑
i=1

K

(
t − ti

hn

)
(ŜT (ti−1)−ŜT (ti)),

where hn > 0 is the bandwidth and K(·) is a kernel function.
Similarly, restricting samples to Xj = r, we can compute

f̂T |Xj
(t|Xj = r), the estimate of the conditional density func-

tion given Xj = r. Thus, (1) can be estimated by

Î
(γ)

j = max
r1,r2

sup
t∈[0,τ]

∣∣∣∣∫ t

0

f̂
γ

T |Xj
(s|Xj = r1)ds

−
∫ t

0

f̂
γ

T |Xj
(s|Xj = r2)ds

∣∣∣∣ . (2)

When Xj is continuous, without loss of generality, we
assume the support of Xj is the real line R. We can discretize
Xj into Rj slices by using the percentiles of the empirical dis-
tribution of Xj. That is, X̃j = r if Xj ∈ [q̂j(r−1), q̂j(r)), where
q̂j(r) is the r/Rjth percentile of the empirical distribution of Xj.
For notational convenience, we set q̂j(0) = −∞ and q̂j(Rj) = ∞.

We then replace Xj by its discretized version X̃j in (2) and
compute the corresponding IPOD statistic, which sheds light
on the dependence between T and Xj, even when the latter
is continuous. As Mai and Zou (2015) noted, discretization
could be more preferable than using the continuous version,
not only for computational convenience but also for added
discriminative power. Moreover, without discretization, the

criterion (2) requires the calculation of the pairwise-difference
of the conditional density functions for all distinct Xj values,
which is computationally intensive even for low-dimensional
covariates, let alone for the ultrahigh dimensional settings.

Finally, we use the following criterion to select active vari-
ables

M̂1 =
{

j : Î
(γ)

j > cn−v, j = 1, . . . , p

}
,

where c > 0 is a pre-specified constant, and term the proce-
dure as the IPOD screening.

When Xj is continuous with infinitely many possible val-
ues, the slicing scheme may be driven by the consideration
of retaining enough samples within each slice to control the
estimation variance. Mai and Zou (2015) noted that the
choice of slices does not affect variable screening results
much, but fusion can achieve significant improvement. We
consider a fusion-based IPOD screening as follows. Suppose
there are N different ways of slicing Xj, denoted by �ju, u =
1, . . . , N, with each slicing �ju containing Rju intervals.

Specifically, �ju =
{

[q̂ju(r−1), q̂ju(r)) : r = 1, . . . Rju, and ∪Rju

r=1

[q̂ju(r−1), q̂ju(r)) = R
}

, where the slicing point q̂ju(r) is the

r/Rjuth percentile of the empirical distribution of Xj under
partition �ju. We then replace Xj by its discretized version
X̃ju under �ju. That is, X̃ju = r if Xj ∈ [q̂ju(r−1), q̂ju(r)). For
example, we can take N = [log(n)] − 2, and Rju = u + 2, u =
1, . . . , N to ensure there are enough samples within each slice
for all slicing schemes. Our numerical experiments suggest
that at least 30 samples are needed within each slice for a
reasonable estimate.

Let Î
(γ)

j,�ju
be the IPOD screening statistic corresponding

to the slicing scheme of �ju for covariate Xj such that

Î
(γ)

j,�ju
= maxr1,r2 supt∈[0,τ]

∣∣∫ t

0
f̂

γ

T |X̃j
(s|X̃ju =r1)ds−∫ t

0
f̂

γ

T |̃Xj
(s|X̃ju =

r2)ds
∣∣. Then, the fused IPOD screening statistic Ĩ

(γ)

j is

Ĩ
(γ)

j =
N∑

u=1

Î
(γ)

j,�ju
,

leading to the following screening criterion:

M̂2 = {
j : Ĩ

(γ)

j > cn−v, j = 1, . . . , p
}
, (3)

where c > 0 is a constant. As our numerical experiment sug-
gests that the fused method performs better than the single
slicing-based, we opt to use (3) as the screening criterion in
practice.

3. Sure Screening Properties

To establish the sure screening property, we need to set regu-
larity conditions. First, we stipulate the conditions for when
all the variables are categorical.

(C1) P(T > τ|Xj) > θ1 > 0 for 1 ≤ j ≤ p, where θ1 is a pos-
itive constant.
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(C2) For any t ∈ [0, τ], fT |Xj
(t|r) is greater than a positive

constant c̃0, and has a bounded second order derivative
for r ∈ {1, . . . , Rj}, j ∈ M.

(C3) There exist c > 0 and 0 < v < 1/2 such that

minj∈M I(γ)
j ≥ 2cn−v for a specific γ.

(C4) K(·) is a symmetric probability density function
defined on a bounded support with bounded variation
VK < ∞ and bandwidth hn = O(n−μ), where μ > 0 is a
constant.

(C5) R = max1≤j≤p Rj = O(nκ), where Rj is the num-
ber of categories for Xj (j = 1, . . . , p), κ ≥ 0, and
2v + 3κ + 2μ < 1.

Condition (C1) is imposed to avoid problems with estimat-
ing the tail of the conditional survival functions, which is com-
mon in survival analysis; see Dabrowska (1989). Conditions
(C2) and (C4) are assumed for the kernel function involved
in conditional density estimation of censored data, which are
common in the nonparametric literature; see Lo et al. (1989)
and Chen et al. (2015). Condition (C3) is typical in the fea-
ture screening literature; see Condition 3 in Fan and Lv (2008)
and Ni and Fang (2016). Condition (C5) allows the number
of the classes for covariates diverge with a specific order. A
similar assumption was also made in Ni and Fang (2016).

Theorem 1. If all the covariates are categorical, under
conditions (C1)–(C5), we have

P(M ⊂ M̂1) ≥ 1 − O(p exp(−b0n
1−3κ−2v−2μ + κ log n)),

where b0 is a positive constant. Hence, if log p = O(nα) where
0 < α < 1 − 3κ − 2v − 2μ, IPOD has the sure screening prop-
erty.

Corollary 1. Under the conditions of Theorem 1, and

assuming
∑p

j=1
I(γ)

j = O(nζ) for some ζ > 0, we have

P{|M̂1| ≤ O(nζ+v)} ≥ 1 − O(p exp(−b0n
1−3κ−2v−2μ + κ log n)).

If Xj is continuous, we replace condition (C5) by the fol-
lowing:

(C6) R = max1≤j≤p Rj = O(nκ), where Rj is the number of
slices for Xj. Moreover, there exist a positive constant
c1 and 0 ≤ ρ < 1/2 such that 2v + 3κ + 2μ + 2ρ < 1
and fXj

(x) ≥ c1n
−ρ for any 1 ≤ j ≤ p, where fXj

(x) is
continuous and bounded from above on the support
of Xj.

Theorem 2. When the covariates include both continuous
and categorical types, under conditions (C1)–(C4) and (C6),
we have

P(M ⊂ M̂1) ≥ 1 − O(p exp(−b1n
1−3κ−2v−2μ−2ρ + κ log n)),

where b1 is a positive constant. Hence, if log p = O(nα) and
0 < α < 1 − 3κ − 2v − 2μ − 2ρ, IPOD has the sure screening
property.

Corollary 2. Under the conditions of Theorem 2 and

assuming
∑p

j=1
I(γ)

j = O(nζ) for some ζ > 0, we have

P(|M̂1|≤O(nζ+v))≥1−O(p exp(−b1n
1−3κ−2v−2μ−2ρ + κ log n)).

Let �juo be the partition using the theoretical quantiles
qju(r), r = 0, . . . , Rju of Xj as the slicing points. Denote the true

value of IPOD for the specific partition �juo by I(γ)
j,�juo

and let

I(γ)
jo = ∑N

u=1
I(γ)

j,�juo
. The fused IPOD screening method needs

some different regularity conditions:

(C7) There exist a c > 0 and 0 < v < 1/2 such that

minj∈M I(γ)
jo ≥ 2cn−v for a specific γ.

(C8) Let R = max1≤j≤p,1≤u≤N Rju and assume R = O(nκ).
There exist a positive constant c3 and 0 ≤ ρ < 1/2
such that 2v + 3κ + 2μ + 2ρ < 1, and fXj

(x) ≥ c3n
−ρ

for any 1 ≤ j ≤ p and fXj
(x) is bounded from above

and continuous with respect to x.

Theorem 3. When the covariates include both continuous
and categorical types, under conditions (C1)–(C2), (C4), and
(C7)–(C8), we have

P(M ⊂ M̂2) ≥ 1 − O(Np exp(−b2n
1−3κ−2v−2μ−2ρ + κ log n)),

where b2 is a positive constant. If N = O(log n) and log p =
O(nα) where 0 < α < 1 − 3κ − 2v − 2μ − 2ρ, then the fused
IPOD has the sure screening property.

Corollary 3. Under the conditions of Theorem 3 and

assuming
∑p

j=1
I(γ)

jo = O(nζ) for some ζ > 0, we have

P{|M̂2|≤O(nζ+v)}≥1−O(Np exp(−b2n
1−3κ−2v−2μ−2ρ+κ logn)).

4. Simulation Studies

The finite sample performance of the proposed method was
assessed by comparing it with the following methods that are
often used for screening survival data.

� PSIS: the principled sure independence screening for Cox
models by Zhao and Li (2012).

� CRIS: the censored rank independence screening proposed
by Song et al. (2014).

� CS: the conditional screening for survival outcome by Hong
et al. (2016).

� SII: the survival impact index by Li et al. (2016) with the
uniform weight W(t, x) = 1.

� IPOD (γ): the proposed screening with power index γ. Note
that γ = 1 corresponds to the Kolmogorov statistic.

Example 1. The survival time was generated from the pro-
portional hazards model,

h(t|X) = 0.1 exp

{
p∑

j=1

βjI(Xj ∈ {2, 3})
}

,
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where β = (0.55,0
T
p−5)

T. The covariates x underlying these
discrete variables were generated from a multivariate nor-
mal distribution with mean 0 and a covariance matrix � =
(σjj′)p×p, where σjj = 1 and σjj′ = 0.5 for j �= j′. For each j,
x∗

j was further quarterized by its quartile values: the obtained
quarterly variable Xj = 1 if x∗

j is less than the lower quartile,
2 if between the lower quartile and the median, 3 if between
the median and the upper quartile, and 4 otherwise.

Example 2. The survival time was generated from the
Cox model λ(t|X) = 2t(|X1| + |X2|), where all the covariates
Xj, j = 1, . . . , p, were generated from an independent standard
normal distribution. In this case, the marginal correlation
between each of the active variables, X1 and X2, and the
survival time is 0.

Example 3. The survival time was generated from log(t) =
g1(X1) + g2(X2) + g3(X3) + g4(X4) + ε, where g1(x) = 5x,

g2(x) = −4x(1 − x), g3(x) = 10[exp{−3(x − 1)2}+ exp{−4(x −
3)2}] − 1.5, and g4(x) = 4 sin(2πx). The vector of covariates
X was generated from the multivariate normal distribu-
tion with mean 0 and a covariance matrix � = (σjj′)p×p,

with σjj = 1 and σjj′ = ρ|j−j′ | for j �= j′, and ε ∼ N(0, 1)
is independent of X. The censoring time C was gener-
ated from a three-component normal mixture distribution
N(0, 4) − N(5, 1) + 0.5N(25, 1).

Example 4. The survival time was generated from
log(t) = g1(X1) + g2(X2) + g3(X3) + g4(X4) + 0.3(X5 + X6 +
X7 + X8 + X9 + X10) + ε, where all other conditions are the
same as in Example 3.

In all examples, we used p = 1000 and n = 300 and 500.
In Examples 1–2, the censoring times Ci were independently
generated from a uniform distribution U[0, c], with c chosen
to give approximately 20% and 50% of censoring proportions.

Table 1
Comparisons of competing methods with (n, p) = (300, 1000) and (n, p) = (500, 1000) in terms of the minimum model size to

ensure inclusion of the true model (MMS) with interquartile range in parentheses, the true positive rate (TPR), and the
probability of including all active variables (PIT)

MMS TPR PIT MMS TPR PIT MMS TPR PIT MMS TPR PIT

Method (n, p) = (300, 1000) (n, p) = (500, 1000) (n, p) = (300, 1000) (n, p) = (500, 1000)

Example 1 CR = 20% CR= = 50%
IPOD (γ = .8) 201 (254) 0.63 0.11 59 (92) 0.91 0.60 298 (279) 0.50 0.02 115 (165) 0.82 0.38
IPOD (γ = 1) 161 (218) 0.70 0.16 41 (71) 0.94 0.71 254 (277) 0.57 0.06 182 (135) 0.87 0.49
IPOD (γ = 1.2) 159 (217) 0.71 0.17 38 (65) 0.94 0.73 234 (273) 0.59 0.08 72 (112) 0.89 0.56
PSIS 855 (211) 0.06 0.00 858 (217) 0.09 0.00 874 (91) 0.05 0.00 849 (198) 0.08 0.00
CRIS 919 (133) 0.03 0.00 921 (128) 0.04 0.00 913 (155) 0.03 0.00 914 (135) 0.04 0.00
CS 834 (245) 0.24 0.00 830 (230) 0.25 0.00 842 (218) 0.24 0.00 837 (219) 0.26 0.00
SII 258 (274) 0.51 0.02 82 (110) 0.86 0.49 327 (277) 0.41 0.01 136 (181) 0.75 0.28

Example 2 CR = 20% CR = 50%
IPOD (γ = .8) 2 (2) 0.99 0.99 2 (0) 1.00 1.00 5 (10) 0.94 0.89 2 (0) 1.00 1.00
IPOD (γ = 1) 2 (3) 0.99 0.99 2 (0) 1.00 1.00 4 (11) 0.94 0.89 2 (0) 1.00 1.00
IPOD (γ = 1.2) 2 (4) 0.99 0.99 2 (0) 1.00 1.00 5 (15) 0.95 0.90 2 (1) 1.00 1.00
PSIS 721 (330) 0.03 0.00 727 (349) 0.06 0.01 700 (392) 0.07 0.01 714 (371) 0.08 0.01
CRIS 738 (339) 0.04 0.00 707 (325) 0.07 0.01 732 (324) 0.06 0.00 706 (324) 0.06 0.00
CS 461 (532) 0.54 0.09 426 (502) 0.55 0.11 457 (571) 0.56 0.12 459 (557) 0.56 0.12
SII 19 (27) 0.90 0.84 3 (4) 1.00 1.00 67 (119) 0.63 0.43 11 (32) 0.95 0.92

Example 3 ρ = 0 ρ = 0.8
IPOD (γ = 0.8) 84 (173) 0.85 0.39 22 (51) 0.96 0.83 6 (10) 0.98 0.93 4 (0) 1.00 1.00
IPOD (γ = 1) 114 (226) 0.82 0.30 35 (84) 0.92 0.69 8 (19) 0.97 0.90 4 (1) 1.00 1.00
IPOD (γ = 1.2) 158 (280) 0.81 0.24 61 (132) 0.89 0.57 14 (36) 0.95 0.80 4 (3) 0.99 0.98
PSIS 560 (466) 0.61 0.03 539 (429) 0.67 0.03 330 (624) 0.50 0.17 206 (454) 0.66 0.36
CRIS 619 (415) 0.57 0.02 579 (505) 0.62 0.03 314 (591) 0.53 0.16 183 (384) 0.73 0.37
CS 703 (505) 0.55 0.03 659 (518) 0.62 0.04 886 (993) 0.74 0.38 27 (109) 0.92 0.69
SII 376 (405) 0.69 0.04 296 (330) 0.77 0.12 24 (82) 0.90 0.64 8 (14) 0.99 0.98

Example 4 ρ = 0 ρ = 0.8
IPOD (γ = 0.8) 867 (166) 0.38 0.00 863 (178) 0.47 0.00 57 (166) 0.89 0.49 13 (19) 0.99 0.90
IPOD (γ = 1) 876 (171) 0.37 0.00 872 (156) 0.45 0.00 96 (253) 0.84 0.36 22 (47) 0.97 0.81
IPOD (γ = 1.2) 881 (171) 0.36 0.00 868 (178) 0.43 0.00 155 (347) 0.78 0.23 44 (110) 0.94 0.64
PSIS 895 (162) 0.29 0.00 882 (182) 0.36 0.00 102 (267) 0.84 0.37 31 (80) 0.96 0.73
CRIS 925 (121) 0.25 0.00 926 (112) 0.28 0.00 111 (277) 0.82 0.32 24 (51) 0.97 0.80
CS 892 (150) 0.31 0.00 877 (167) 0.38 0.00 774 (305) 0.51 0.00 689 (366) 0.68 0.01
SII 870 (163) 0.31 0.00 874 (192) 0.38 0.00 33 (95) 0.92 0.58 12 (11) 0.99 0.93
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Example 3 was adopted from Li et al. (2016). The censoring
proportions of Examples 3–4 were set around 35%. In addi-
tion, we explored the simulation studies when the censoring
times Ci were dependent on covariates; see Table S1 in the
Supplementary Web Materials.

The bandwidth hn was chosen to be h0n
−1/5 with h0 = 2

based on the exploratory analysis reported in Figure S1 in the
Supplementary Web Materials; when covariate Xj was contin-
uous, we took various slicings (3, . . . , �log(n)�) and reported
the fused results.

As the conditional screening (Hong et al., 2016) requires
prior information, we chose X1 as the conditioning variable
for Examples 1–4. For each configuration, a total of 500 sim-
ulated datasets were generated. We considered the minimum
model size (MMS) to ensure inclusion of the true model, the
true positive rate (TPR), and the probability of including all
active variables (PIT) as metrics to compare the performance
between different methods. To compute the TPR and PIT,
we selected the first [n/ log n] variables in relation to selec-
tion criteria. In general, smaller MMS and larger TPR and
PIT indicate better performance of a method in efficiently
discovering true signals.

Table 1 demonstrates that the proposed IPOD method
worked well in a variety of settings, with improving perfor-
mance as the sample size increased. This is an appealing
feature not necessarily shared by the competing methods.
For IPOD, we investigated γ = 0.8, 1, 1.2, 1.5, 1.7, but we only
presented here the results of γ = 0.8, 1, 1.2 as they well repre-
sented the overall results. More results can be found in Figure
S1 of the Supplementary Web Materials.

With active variables all being categorical as in Example 1,
the results for all competing methods were poor since these
methods were not originally developed for screening categor-
ical variables. When the marginal correlations between the
active variables and the survival time were 0 as in Examples
2, all the competing methods, including CS that even assumed
one active variable was known, had difficulty recruiting active
variables. In Example 3, where the active covariates have non-
linear relationships with the response variable, IPOD worked
better than the other methods, especially when ρ was high.
When the size of active variables was moderate as in Exam-
ple 4, the performance was poor for all methods when the

covariates were independent of each other, but was better
with higher correlations among the covariates.

Finally, it is of interest to note that the “optimal” γ varied
across examples. However, this optimal γ is rarely known in
reality. Illustrated by a real example in the next section, we
briefly discuss how to combine results from the IPOD with
different γ’s.

5. An Application

We applied the proposed methods to analyze a multiple
myeloma (MM) study (Shaughnessy et al., 2007), concerning
the development and evaluation of a gene-based prognostic
tool among 554 newly diagnosed MM patients treated on
two separate but similar protocols, namely, total treatment 2
(TT2) and total treatment 3 (TT3). The former served as the
training set (n1 = 340 patients), while the latter served as the
validation set (n2 = 214 patients). The outcome for our inves-
tigation is event-free survival. Gene expressions on 54,675
probe sets were measured for each subject using Affymetrix
U133Plus2.0 microarrays. Prior to analysis, we standardized
the gene expressions.

For comparisons, we also applied the other competing
methods, including PSIS, CRIS, SII, and CS to screen
genes that may be relevant to event-free survival. Based
on our investigation in the simulation setup, we chose γ =
0.7, 1.0, 1.3, 1.5, 1.7 for our IPOD method. In addition, we
also considered the overlapping genes selected by all these
γ’s and termed the way of obtaining these genes as compos-
ite IPOD. We took the bandwidth to be 2n

−1/5
1 . Since the

gene expressions were continuous, we chose the combination
of � = 3, . . . , �log(340)� = 6 for slicing in the proposed IPOD.
Moreover, as CS requires a pre-specified conditioning set, we
identified the candidates as the overlapping genes selected by
composite IPOD, PSIS, SII, and CRIS. These were Probes
225834, 218595, 206332, 208965, and 208966. In our analy-
sis, we used various subsets of these genes as the conditioning
sets. We found that CS was sensitive to the choice, leading to
quite variable predictive performance; see Table 3.

In a finite sample setting, there are no established ways to
select v in (3). Instead, practitioners commonly use the screen-
ing statistic to rank variables and select the top variables. We
used [n/ log(n)] as suggested by Fan and Lv (2008), which may

Table 2
Numbers of overlapping genes selected by different screening methods on the multiple myeloma training set

IPOD

γ = 0.7 γ = 1 γ = 1.3 γ = 1.5 γ = 1.7 Composite PSIS CRIS CS SII

IPOD
γ = 0.7 58
γ = 1 40 58
γ = 1.3 29 46 58
γ = 1.5 24 39 51 58
γ = 1.7 20 34 46 53 58
Composite 20 20 20 20 20 20

PSIS 18 23 20 17 16 10 58
CRIS 0 0 1 1 1 0 1 58
CS 11 10 10 8 7 6 18 5 58
SII 6 5 5 5 5 5 7 5 15 58
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Figure 2. The ranking of variable importance (vimp)
among those selected by the composite IPOD method for the
multiple myeloma training set.

have become a convention in the follow-up screening works;
see Zhao and Li (2012), He et al. (2013), Gorst-Rasmussen
and Scheike (2013), and Li et al. (2016). To proceed, we first
applied each screening method to the training data to reduce
the dimension from p = 54,675 to d = [n1/ log(n1)] = 58.

Table 2 shows the numbers of overlapping genes selected
by different methods and reveals that IPOD with different
γ’s ended up with various genes.

We next examined how variable screening helps predict the
response variable by using random survival forest (Ishwaran
et al., 2008), a nonparametric machine learning strategy for
building a predictive survival model. We fitted a random
survival forest model, based on a total of 1000 replicate
trees by using the R package, namely, randomSurvivalForest
(Ishwaran and Kogalur, 2007). In the interest of space, we
reported the results of the composite IPOD method, for which
the importance of each selected variable in the “forest” was
shown in Figure 2.

To measure the prediction accuracy, we reported the C-
index, which gauges the agreement between the observed and
predicted responses. The average C-index based on 100 boot-
strap replicates of the validation data is listed in Table 3.

Overall, IPOD performed better than or at least on par
with the other competing methods, and the IPOD with
a larger γ tends give better predictions for this particular
dataset.

Finally, we highlight some biological insight offered by our
method. Probe 222777 (WHSC1), the most important gene as
identified in Figure 2, has been found involved in the chromo-
somal translocation in multiple myeloma (Xie et al., 2013).
Over-expression of Probe 221606 (HMGN5), the second on
the list, has been linked to bladder cancer (Gan et al., 2015),
prostate cancer (Guo et al., 2015) and breast cancer (Weng
et al., 2015). On the other hand, neoplastic B-cell growth is
regulated by gene TNIP1 (Probe 207196, the third gene of
importance), whose dysfunction may cause multiple myeloma
(Naji et al., 2012). Moreover, reduction or loss of IFI16 expres-
sion (Probe 208965, the fourth gene in the list) in cells is
associated with the development of certain cancers, such as
breast and prostate cancer (Choubey et al., 2008). Finally,
CHML (Probe 226350, the last gene shown in Figure 2) is
able to induce apoptosis or programmed cancer cell death
and suppress tumor cell growth in multiple tumor lines (Zhan
et al., 2001).

6. Discussion

Motivated by a multiple myeloma genomic study, we intro-
duced a new framework for variable screening based on IPOD.
As the method is model-free, it can be applicable in a variety
of parametric, semiparametric, and nonparametric settings.
In addition, it is theoretically justifiable, and computationally
efficient. Using the proposed method, we identified a predic-
tive gene signature model which was more accurate than the
models obtained by using other screening methods.

Our work enlightens a few future directions. As our sim-
ulations revealed, the optimal γ may vary by the particular
simulation configuration. Without knowing the true model in
reality, it is challenging, conceptually and computationally,
to identify an optimal γ, even in a data-driven way. However,
the established framework may lead to some systematic ways
of combining the results from IPOD with various γ’s. For
example, we are currently investigating the means of combin-
ing the results of L possible values of γ’s using the following

Table 3
Comparisons of the C-index (standard errors) in the multiple myeloma validation set based on 100 bootstraps

IPOD

γ = .7 γ = 1 γ = 1.3 γ = 1.5 γ = 1.7 Composite

0.639 0.638 0.655 0.651 0.657 0.652
(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

PSIS CRIS CS SII

0.620 0.602 0.641 0.638
(0.003) (0.004) (0.004) (0.003)
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composite screening statistics:

I1j = max
1≤l≤L

Ĩ(γl)
j , I2j = min

1≤l≤L
Ĩ(γl)

j , I3j = Ĩ(γl)
j − I2j

I1j − I2j

,

where γl, l = 1, . . . , L. Each option has pros and cons. In I1j,
covariates selected by any γl, l = 1, . . . , L are to be included in
the final selected set. This method could guarantee recovery of
the true active set to the greatest extent in theory, though at
the cost of inflating false discoveries. In I2j, only the covariates
which are selected by all γl, l = 1, . . . , L could be included in
the final selected set. This method could guarantee exclusion
of the unimportant covariates to the greatest extent. However,
the rather restrictive criterion may lead to many false nega-
tives, which may not be ideal for knowledge discovery at the
exploratory phase. The third option I3j may be a compromise
between these two extreme cases. Through rescaling to be a
number between 0 and 1, it makes screening statistics across
γ comparable. Comprehensively evaluating and studying all
these proposals are currently undergoing and may be out of
scope of this current article. We expect to report the results
elsewhere.

7. Supplementary Materials

Web Appendices and Tables referenced in Sections 1
and 4 are available with this article at the Biometrics
website on Wiley Online Library. The multiple myeloma
dataset that we used for analysis is publicly available at
the Gene Expression Omnibus website (http://www.ncbi.

nlm.nih.gov/geo/) under GSE24080.
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