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We consider partial differential equations of drift‐diffusion type in the unit

interval, supplemented by either 2 conservation laws or by a conservation

law and a further boundary condition. We treat 2 different cases: (1) uniform

parabolic problems and (ii) degenerated problems at the boundaries. The for-

mer can be treated in a very general and complete way, much as the traditional

boundary value problems. The latter, however, brings new issues, and we

restrict our study to a class of forward Kolmogorov equations that arise natu-

rally when the corresponding stochastic process has either 1 or 2 absorbing

boundaries. These equations are treated by means of a uniform parabolic

regularisation, which then yields a measure solution in the vanishing

regularisation limit. Two prototypical problems from population dynamics

are treated in detail. For these problems, we show that the structure of mea-

sure‐valued solutions is such that they are absolutely continuous in the inte-

rior. However, they will also include Dirac masses at the degenerated

boundaries, which appear, irrespective of the regularity of the initial data, at

time t=0+. The time evolution of these singular masses is also explicitly

described and, as a by‐product, uniqueness of this measure solution is

obtained.

1 | INTRODUCTION

1.1 | Background

Partial differential equations (PDEs) are an ubiquitous tool for modelling a variety of phenomena in the applied sci-
ences. Typically, a PDE in any given domain will not be well‐posed, at least in the sense of uniqueness, unless further
assumptions are made on the solutions. Such assumptions can range from traditional boundary conditions in bounded
domains—eg, Dirichlet or Neumann—to integrability conditions in unbounded domains and might include a mixture
of both—as for instance, in the case of degenerated equations in part of the boundary. This is the traditional state of
affairs as presented in most of the classical introductions to the subject.1-4

From a different perspective, a number of these models are derived from integral formulations that arise naturally
from conservation laws that are expected to hold in the problem being modelled. This is well known in the literature of
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conservation laws in hyperbolic problems—cf Dafermos5—but it also appears in other settings within hyperbolic prob-
lems: Bouziani and Benouar6 and Pul'kina.7,8 In the context of parabolic operators, however, this class of problems
seems to have received much less attention.

A very similar class of problems, though, has received somewhat more attention: the solution of parabolic operators
with the specification of an integral constraint and a boundary condition. The study of these problems seems to date
back at least to Cannon9 and Deckert and Maple,10 who studied specific problems in this class for the heat equation.
A proof of existence and uniqueness for a problem in this class, with a general linear parabolic operator can be found
already in Kamynin.11 The subject has resurfaced from the late seventies to the early 90s with the previous works.12-17

Beginning in the late 90s, there is a growing interest in understanding the solutions of the heat equation subject to
the specification of the first 2 linear moments, which seems to be first addressed by Bouziani18 but also include
Bouziani19,20 and Dai and Huang.21 Numerical methods for these problems were also developed in a series of works.22,23

More recently, using a combination of variational and semigroup methods24 presents a very detailed theory for the heat
and wave equation in this setting. See also Mugnolo and Nicaise25 for companion results to diffusive equations with the
p‐Laplacian. Further discussion and references can be found in Mugnolo and Nicaise.24 See Popovych et al26 for a dis-
cussion on conservation laws of 1+1 linear parabolic equations from the point of view of Lie symmetries.

The number of linear conservation laws that can be imposed, while still leading to a well‐posed problem, is also of
relevance; in Mugnolo and Nicaise,25 a full family of moments μnð f Þ ¼ ∫ð1−xÞnfdx is considered. However, well‐
posedness of the problem requires that at most 2 of them are prescribed. We are not aware of any well‐posed linear
problem, in 1 variable, where more than 2 linearly independent conservation laws were prescribed. For the 2D case,
however, Dehghan27 imposes 4 linear conservation laws.

It is clear that conservation laws are a particular case of integral conditions that might be specified, in lieu of 1 or
more boundary conditions, to the solution of certain PDEs; see, eg, Dehghan28,29 for problems that specify 1 classical
boundary condition plus imposing 1 time‐dependent integral relationship.

In this work, we are interested, as discussed above, in linear equations with associated linear conservation laws. How-
ever, the field of non‐linear equation with non‐linear conservation laws is also a topic of interest. This includes celebrated
equations and systems, as the Korteveg‐de Vries equation and the Ablowitz‐Kaup‐Newell‐Segur system, where an infinite
number of independent conservation laws can be imposed. For an introduction to the topic, see Drazin and Johnson.30

From now on, it will be always implied that all conservation laws of interest are linear.
As far as conservation laws for degenerated parabolic problems are concerned, the earliest work that we are aware of

is due to the last 2 authors in Chalub and Souza,31 who show that a degenerated parabolic equation—the so‐called gen-
eralised Kimura equation from population genetics—subject to 2 conservation laws—namely, the conservation of prob-
ability and conservation of centering with respect to the fixation probability—is well‐posed in the space of Radon
measures. A generalisation of this problem to higher dimensions in the context of the Wright‐Fisher process is given
in Chalub and Souza,32 and a study of the PDE version for the SIS epidemiological model, which is degenerated at
the origin and needs a boundary condition at 1 is given in Chalub and Souza.33 A recent work showing that the heat
equation subject to conservation of the first 2 moments is well‐posed in all L p spaces for p≥1, and even in C0, can be
found in Bobrowski and Mugnolo.34

1.2 | Some degenerated Fokker‐Planck equations from population dynamics

The ultimate goal of this work is to understand how the solution of parabolic conservative problems, which are
degenerated at least in 1 of the boundaries, can be approximated by the solutions of nondegenerated problems. As a
by‐product, we will be able to characterise a condition that guarantees positiveness of the solution obtained. It will also
allow to obtain small test function spaces where existence and uniqueness of the solution hold.

In what follows, we shall focus on 2 examples. Our first example is the so called generalised Kimura equation31:

∂tu ¼ ∂2x xð1−xÞuð Þ−∂x xð1−xÞψðxÞuð Þ; (1)

where ðx; tÞ ∈ ½0; 1�×Rþ and ψ:½0; 1�→R is a function in a space to be defined later on (known as fitness in the biological
literature). The initial condition is given by

uðIÞ ¼ uð·; 0Þ≥0 ; x∈½0; 1�; (2)
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and the solution of this equation should obey 2 integral conditions (conservation laws):

d
dt

∫1

0
udx ¼ 0; (3)

d
dt

∫1

0
φðxÞudx ¼ 0; (4)

where φ:½0; 1�→Rþ is the unique solution of

φ″þ ψðxÞφ′ ¼ 0; with φð0Þ ¼ 0 and φð1Þ ¼ 1; ie; φðxÞ ¼ ∫x
0 e

−∫y
0 ψðzÞdzdy

∫1
0 e

−∫y
0 ψðzÞdzdy

: (5)

Equation 1 was formally derived in Kimura,35 for the constant fitness case, and extensively studied in Ethier, Ewens,
and Feller.36-38 Its first rigorous derivation, as the large population limit of the Wright‐Fisher process, appears in Ethier
and Kurtz.39 More recently rigorous derivations, starting from various stochastic processes and more general fitness
functions, can be found in Chalub and Souza31 and Champagnat et al.40 In the former, it was shown that the correct
solution—from the modelling point of view—satisfies 2 conservation laws. Such a generalised Kimura equation was
extensively studied in Chalub and Souza,41 where the measure nature of the solutions was first obtained. See also
Chalub and Souza42 for an earlier connection with solutions of the replicator dynamics and Chalub and Souza32 for gen-
eralisations to higher dimensions. Similar equations, but with slightly different conditions, were also studied in Chalub
and Souza33,43—see below. See also Epstein and Mazzeo44 for a comprehensive treatment using classical tools. A similar
equation was investigated in Yang,45 where mutations were allowed, and hence, boundaries were not absorbing. In this
case, appropriate local non‐flux condition could be imposed.

Our second example comes from epidemiology: the SIS‐PDE model that is given by

∂tp ¼ −∂x x R0ð1−xÞ−1½ �pf g þ 1
2
∂2x xðR0ð1−xÞ þ 1Þpf g; (6)

satisfying the boundary condition

1
2
ð1−R0Þpj1 þ ∂xpj1½ � þ pj1

� �
¼ 0 (7)

and the conservation law

d
dt

∫1

0
pðx; tÞdx ¼ 0: (8)

Thismodel is an intermediatemodel in between theMarkov process associated to the susceptible‐infecious‐susceptible
epidemiological model and its ordinary differential equation (ODE) counterpart. See Chalub and Souza33 for further
details.

Note that Equations 1 and 6 are degenerated Fokker‐Planck equations, for which no boundary condition can be
imposed in the degenerated boundary, other than integrability. These equations are associated to diffusion approxima-
tion of Markov chains with absorbing states and are studied, for instance, in DiBenedetto.46 Applications to biology in a
framework similar to ours can be found in the previous studies.36-38,44

1.3 | Summary of results and outline

We begin in Section 2 by defining a nondegenerated conservative parabolic problem, and the first result shows that the
conservative problem can be converted to a coupled boundary value problem and that the conservations laws must be
related to the kernel of the formal adjoint. The next step is then to define nondegenerated positive problems in terms of
the conservation laws. For a very general class of positive problems, we are able to show existence and uniqueness along
the same lines of the more classical boundary conditions, by recurring to general Sturm‐Liouville theory. In particular, if
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the coefficients of the equations are smooth, we obtain that the solutions are C∞. This section can be seen as an exten-
sion of the theory presented in Mugnolo and Nicaise.24

In Section 3, we start the study of our degenerate problems. We introduce a class of self‐adjoint elliptic perturbations
that are then readily amenable to be treated by the theory developed in the previous section. It turns out that the solu-
tions can be naturally treated as measures, and Prokohorov theorem can be used to pass to the limit as the perturbation
vanishes.47 This very weak solution then satisfies all the required conditions. A further analysis of the solution is pre-
sented in Section 4, where we consider 2 different problems that arise from population dynamics. Their solutions are
absolutely continuous in the interior but turn out to contain Dirac masses in the degenerated boundaries. The abso-
lutely continuous part is a classical solution of the corresponding PDE, and the singular masses at the endpoints appear
at t=0+, irrespective of the regularity of the initial condition. Moreover, a description of the evolution of these singular
masses is also given—in particular, for sufficiently regular coefficients, the evolution of the singular measures is given
by time integrals of boundary values of the absolutely continuous part of the solution. As a by‐product of this descrip-
tion, we show uniqueness of such measure solutions. Finally, optimal domains of test functions for the weak solutions
are also discussed.

We close this work with a discussion of the results presented in Section 5.

2 | CONSERVATIVE PARABOLIC PROBLEMS

We begin by considering uniformly parabolic problems in self‐adjoint form. To this end, let

Lv ¼ ∂x pðxÞ∂xvð Þ þ qðxÞv

defined in some finite interval I=(a, b), and with p>0, and with p; q∈L2ðIÞ∩L∞ðIÞ.
Definition 1. A (totally) conservative parabolic problem is an initial value problem of the form:

∂tv ¼ Lv; in I and t>0;
d
dt
⟨vð·; tÞ;ϕ1⟩ ¼ 0; t>0;

d
dt
⟨vð·; tÞ;ϕ2⟩ ¼ 0; t>0;

vðx; 0Þ ¼ v0ðxÞ;

8>>>>>><
>>>>>>:

(9)

where ⟨·,·⟩ denotes the inner product in L2(I) and ϕ1, ϕ2 ∈ L2(I) are not multiple of one another. The con-

ditions
d
dt

⟨vð·; tÞ;ϕi⟩ ¼ 0, i=1,2 will be termed (linear) conservation laws. From now on, we will assume

that all conservation laws (CLs) considered here are linear, and hence, we will refer to them only as CLs.

If the infinitesimal generator associated to Equation 9 is self‐adjoint, then it turns out that the possible choices for ϕ1
and ϕ2 are limited.

Theorem 2. The operator L in (9) can be taken to be self‐adjoint if, and only if, ϕ1 and ϕ2 are linearly inde-
pendent solutions of the ODE Lv=0 and if problem (9) can be recast as a coupled (nonlocal) boundary value
problem as follows:

∂tv ¼ Lv; in I and t > 0;

pðbÞ ∂xvðb; tÞϕ1ðbÞ−vðb; tÞϕ′

1ðbÞ
� �

−pðaÞ ∂xvða; tÞϕ1ðaÞ−vða; tÞϕ′

1ðaÞ
� � ¼ 0; t>0;

pðbÞ ∂xvðb; tÞϕ2ðbÞ−vðb; tÞϕ′

2ðbÞ
� �

−pðaÞ ∂xvða; tÞϕ2ðaÞ−vða; tÞϕ′

2ðaÞ
� � ¼ 0; t>0;

vðx; 0Þ ¼ v0ðxÞ:

8>>>><
>>>>:

(10)

Furthermore, we have that ϕ1 and ϕ2 are eigenfunctions of L associated to the eigenvalue λ=0.

Proof. Assume L is self‐adjoint with domain D(L). Then, the conservation conditions are equivalent to

⟨φ;Lϕi⟩ ¼ 0; i ¼ 1; 2; φ∈DðLÞ:
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Since L is self‐adjoint, it is densely defined, and hence, the identities above hold on L2(I). Therefore, we
have that Lϕi=0, i=1,2. Since they are not multiple of one another, they are linearly independent solutions
of Lv=0. Also, under the assumptions on the coefficients of L, we have that any solution to the ODE is of
class C1. Thus, since L is self‐adjoint, direct integration by parts yields (10).
Conversely, assume that problem (9) is equivalent to problem (10). Then, a direct computation shows that
L is symmetric. Since ϕ1 and ϕ2 are solutions of Lv=0, it follows immediately from proposition 2.1 in Bailey
et al48—see also Kong and Zettl49 and Weidmann50—that L can be taken to be self‐adjoint.
For the last claim, we already have that Lϕi=0, for i=1,2. Therefore, it remains to show that every ϕi satisfies
the boundary conditions. We shall check this for ϕ1—the case of ϕ2 is analogous. The first condition is eas-
ily verified by direct substitution of ϕ1 into v. To verify the second condition, we write B2 for its left‐hand
side and compute

B2 ¼ pðbÞ ϕ′

1ðbÞϕ2ðbÞ−ϕ1ðbÞϕ′

2ðbÞ
� �

−pðaÞ ϕ′

1ðaÞϕ2ðaÞ−ϕ1ðaÞϕ′

2ðaÞ
� � ¼ pðbÞWfϕ1;ϕ2gðbÞ−pðaÞWfϕ1;ϕ2gðaÞ ¼ 0;

whereWfϕ1;ϕ2gðxÞ is the Wronskian of functions ϕ1 and ϕ2 at x and, finally, the last equality follows from Abel's

theorem.

Remark 3. The proof of Theorem 2 also shows that, for self‐adjoint problems, any conservation law, in the
sense of Definition 1, must be a solution of the second‐order ODE Lv=0 and hence that only 2 linearly inde-
pendent conservation laws might be imposed in such a problem. Similar restrictions also appear when con-
sidering other problems: There are counterexamples that show that not every choice of conserved moments
yields a well‐posed problem for the porous media equation—cf Vázquez.51 However, the choice of the 0th‐
order moment (mass conservation) and a further higher‐order moment may yield a well‐posed problem as
shown in Mugnolo and Nicaise.25

Definition 4. We say that (10) is a nonnegative conservative problem, if we have a conservative problem
with ϕ1 and ϕ2 being nonnegative. If, in addition, there exists at least 1 solution of the ODE Lv=0 that is
positive everywhere, then we say that the problem is intrinsically positive.

Lemma 5. Assume that we have an intrinsically positive conservative problem, and consider the correspond-
ing spectral problem −Lu=λu, with coupled boundary conditions. Then, we can order the eigenvalues such that
we have 0=λ1=λ2<λ3≤⋯λn≤λn+1≤⋯.

Proof. Since p>0, we have that the set of eigenvalues is bounded from below and and is unbounded from
above. In particular, we can order the eigenvalues such that λ1≤λ2≤λ3≤⋯λn≤λn+1≤⋯. From Theorem 2,
we already know that 0 is an eigenvalue of multiplicity 2. Since the problem is intrinsically positive, we have
a choice of 2 linear independent eigenfunctions that are positive everywhere. From the oscillatory theory of
Sturm‐Liouville problems,50, (theorem 13.5) if we have λn=λn+1, then the corresponding eigenfunctions have
either n−1 or n zeros. Thus, if λ=0 is not the principal eigenvalue, any eigenfunction associated to it must have
at least 1 zero in the interior, and this is not possible for an intrinsically positive problem. Hence, λ1=λ2=0.
Since the problem is second order, the eigenvalues can have multiplicity at most 2, and hence, λ3>0.

Remark 6. Recall that if p, q∈L2(I), then the eigenfunctions are in H2(I). In general, if p, q ∈ Ck(I), then the
eigenfunctions will be of class Ck+2

—cf Coddington and Levinson52 and Zettl.53

In what follows, we shall assume that p and q are given, and for an intrinsically positive problem, we shall write
w1=ψ1, w2=ψ2, where ψ1 and ψ2 are eigenfunctions corresponding to the zero eigenvalue, with unit norm, and that
are positive everywhere. Furthermore, the set that {wk, k≥ 3} will correspond to the unit eigenfunctions associated to
the positive eigenvalues.

Before we state the next result, we introduce the following harmonic spaces—cf Taylor4: For nonnegative s, we
define

Hs ¼ f∈L1ðIÞ s:t: ∑
∞

k¼0
f̂ ðkÞλs=2k wj∈L2ðIÞ

� �
; f̂ ðkÞ ¼ ⟨ f ;wkÞ⟩;
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for s∈R. Notice that

‖ f ‖2s ¼ ∑
∞

k¼1
jf̂ ðkÞj2λsk

and that we have H0 ¼ L2ðIÞ and H1 ¼ H1ðIÞ. In addition, we have that H−s is the dual of Hs and that the Fourier
series characterisation is still valid.

Theorem 7. Consider the initial value problem (10) and assume that it is intrinsically positive. If we have
v0∈L2(I), then for any T>0, there exists a unique solution in the class Cð½0;TÞ;L2ðIÞÞ ∩ C∞ðð0;TÞ;H1Þ. Fur-
thermore, if v0≥0, then we have v(·,t)≥0 for every t.

Proof. The existence proof is standard, and we have that

vðx; tÞ ¼ ∑
∞

k¼1
ake−λk twk; ak ¼ ⟨v0;wk⟩:

Before we discuss uniqueness, we shall investigate the positiveness of the solutions. To show the positive-
ness of a given solution at any time, we first assume that v0>0 and that p and q are smooth. In this case, we
have that v∈Cð½0;TÞ;L2ðIÞÞ∩C∞ðð0;TÞ;C∞ðIÞÞ.
Let

vs ¼ a1w1 þ a2w2 and vt ¼ e−λ3t ∑
∞

k¼3
ake−ðλk−λ3Þtwk

be the steady and transient parts of the solution.
Since the problem is positive, we have that w1, w2>0, and thus, if v0>0, we have a1, a2>0.We also observe that

lim
t→∞

e
λ3
2 tvt ¼ 0:

Hence, there exists a timeT such that v(·,t)>0, for t≥T. Let t∗≥0 be theminimal time such that v(.,t)≥0, for t≥t∗.
Clearly, 0≤t∗<T.
Assume that t∗>0. Since v is smooth, we have that

lim
t↓t∗

inf
intðIÞ

vð·; tÞ ¼ 0: (11)

On the other hand, since the coefficients are bounded, we can assumewithout loss of generality that the strong
maximum principle holds for L. Thus, the parabolic Harnack inequality—cf Evans1 and Lieberman54—holds
for t≥t∗ and, together with Equation 11, yields that v(·, t∗)=0.
Let ϕ1 be a positive conservation law, which exists since the problem is intrinsically positive. Then, we have

0 ¼ ⟨vð·; t∗Þ;ϕ1⟩ ¼ ⟨vð·;TÞ;ϕ1⟩>0;

which is a contradiction. Therefore, t∗=0, and the solution is positive.
If v0≥0, add a positive constant K to v0, and then, by letting K→0, we obtain that v(·, t)≥0 as claimed.
Finally, the result for p; q∈L2ðIÞ∩L∞ðIÞ follows by a standard mollification argument.
For uniqueness, we first observe that, if v0≡ 0, then we must have v(·,t)≥0, for all time. As before, let
ϕ1 be a positive conservation law for (9). Then,

⟨vð·; tÞ;ϕ1⟩ ¼ ⟨v0; ϕ1⟩ ¼ 0:

Therefore, we have v(·,t)=0, and uniqueness follows.

We now want to briefly discuss the case when there is only 1 conservation law, namely:
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Definition 8. A partially conservative problem is an initial value given by

∂tv ¼ Lv; in I and t>0;
d
dt
⟨vð·; tÞ;ϕ1⟩ ¼ 0; t>0;

Bðvða; tÞ; vðb; tÞ; ∂xvða; tÞ; ∂xvðb; tÞÞ ¼ 0;

vðx; 0Þ ¼ v0ðxÞ;

8>>>>><
>>>>>:

(12)

if Lϕ1=0 and the corresponding spectral problem is self‐adjoint. We shall also say that (12) is a positive
problem if ϕ1>0.

Minor modifications of the previous arguments are necessary to prove the following:

Theorem 9. Consider the initial value problem (12), and assume that it is a positive partially conservative
problem. If we have v0∈L2(I), then, for any T>0, there exists a unique solution in the class
Cð½0;TÞ;L2ðIÞÞ∩C∞ðð0;TÞ;H1Þ. If, in addition, ∂tv−Lv satisfies the strong maximum principle, then, for
v0≥0, we have that v(·,t)≥0 for every t.

Remark 10. The heat equation with homogeneous Neumann conditions is a positive partially conservative
problem. Indeed, one can take ϕ1=1, and as an additional boundary condition that the flux in one of the
endpoints should vanish. In this case, while the existence and uniqueness are well known, Theorem 9 pro-
vides which seems to be a new alternative argument for positiveness that does not require knowledge of the
boundary behaviour of the solution.

Remark 11. For the general problem

∂tu ¼ Mu; t>0; x∈ða; bÞ;
d
dt
ðu;ϕ1Þ ¼ 0; t>0;

d
dt
ðu;ϕ2Þ ¼ 0; t>0;

uð0; xÞ ¼ u0ðxÞ

8>>>>>><
>>>>>>:

with

Mu ¼ aðxÞ∂2xuþ bðxÞ∂xuþ cðxÞu;

and with the coefficient a bounded away from 0, we set

ηðxÞ ¼ exp ∫x
a
bðsÞ
aðsÞds

� 	
:

Then, we can recast the problem as

∂tu ¼ Lu; t>0; x∈ða; bÞ;
d
dt
ðu;ψ1Þ ¼ 0; t>0;

d
dt
ðu;ψ2Þ ¼ 0; t>0;

uð0; xÞ ¼ u0ðxÞ

8>>>>>><
>>>>>>:

with

Lu ¼ a
η
∂x η∂xuð Þ þ cη

a
u

h i
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and

ψi ¼
a
η
ϕi; i ¼ 1; 2:

Then, all previous results apply, provided all the spaces are weighted with respect to the measure

dμ ¼ η
a
dx:

Notice also that all inner products, inclusive the ones in the conservation laws, are now given with respect
to the weighted measure dμ.

Remark 12. Conservative problems can be seen as a special case of the more general problem of prescribing
the value of 2 functionals along the solution. Indeed, if one prescribes the linear moments to be constant,
that are compatible with the initial conditions, one gets a conservative parabolic problem. More generally,
by considering, without loss of generality, that ϕ1 and ϕ2 have unit norm and are orthogonal, we specify

⟨vð·; tÞ;ϕi⟩ ¼ FiðtÞ; i ¼ 1; 2:

After writing

wðx; tÞ ¼ vðx; tÞ−F1ðtÞϕ1ðxÞ−F2ðtÞϕ2ðxÞ;

then, w satisfies a nonhomogeneous conservative parabolic problem. Indeed, in this case, we have

⟨wð·; tÞ;ϕi⟩ ¼ 0; i ¼ 1; 2

and

∂tw ¼ Lwþ Gðx; tÞ; Gðx; tÞ ¼ F ′

1ðtÞϕ1ðxÞ þ F ′

2ðtÞϕ2ðxÞ:

This last problem can then be solved using Duhamel principle.

3 | FROM DEGENERATED TO NONDEGENERATED PROBLEMS AND BACK

We are interested in dealing with Fokker‐Planck equations of the following type:

∂tu ¼ ∂2xðguÞ−∂x gψuð Þ ¼ 0; (13)

where we shall always assume that g∈C∞([0, 1]), that g(0)=0, and that u satisfies

d
dt

∫1

0
uðx; tÞdx ¼ 0: (14)

We shall be interested in 2 different cases:

1. g(1)=0, and u then further satisfies

d
dt

∫1

0
φðxÞuðx; tÞdx ¼ 0: (15)

2. g(1)>0, and u then further satisfies

∂xðguÞ−gψujx¼1 ¼ 0: (16)
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3.1 | Elliptic self‐adjoint perturbations

Let gε:½0; 1�→R be a positive smooth function such that

lim
ε→0

gεðxÞ ¼ gðxÞ; pointwise;

and consider the ε‐perturbed problem:

uðεÞt ¼ gεðxÞuðεÞ

 �

xx
− gεðxÞψðxÞuðεÞ

 �

x
; (17)

d
dt

∫uðεÞðx; tÞdx ¼ 0 ; (18)

d
dt

∫φðxÞuðεÞðx; tÞdx ¼ 0 ; (19)

uðεÞðx; 0Þ ¼ uðIÞðxÞ; (20)

when g(1)=0. If g(1)>0, we then replace (19) by

∂xðgεðxÞuðεÞð1; tÞÞ−gεðxÞψðxÞuðεÞðx; tÞ
��
x¼1 ¼ 0: (21)

This problem is now amenable to be treated using the ideas developed in Section 2. To write the problem in self‐
adjoint form and to obtain boundary conditions that are independent of ε, we introduce the following change of vari-
ables:

uðεÞðx; tÞ ¼ vðεÞðx; tÞ
gεðxÞ

pðxÞ; pðxÞ ¼ exp ∫x

0
ψðyÞdy

� 	
:

In this new variable, we can apply Theorem 2 and then the corresponding formulation given in (10) for Equations 17 to
20 becomes, respectively,

vðεÞt ¼ gε
p

pvðεÞx


 �
x
; (22)

vðεÞx ð1; tÞpð1Þ ¼ vðεÞx ð0; tÞ; (23)

vðεÞx ð1; tÞpð1Þ−φ′ð1ÞvðεÞð1; tÞpð1Þ ¼ −φ′ð0Þvð0; tÞ; (24)

vðεÞðIÞ: ¼ vðεÞðx; 0Þ ¼ uðIÞ
gε
p
; (25)
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provided that g(1)=0. If g(1)>0, we replaced (24) by

∂xvðεÞð1; tÞ ¼ 0: (26)

Theorem 7 applied to (22) to (25) or applying Theorem 9 with (24) replaced by (26) yields the following result:

Proposition 13. Let uðIÞ∈BMþð½0; 1�Þ, and assume that ψ∈L1((0,1),dμ). Then, we have that (22) to (24) or
(26) has a unique solution in the class Cð½0;∞Þ;BMþð½0; 1�ÞÞ∩C1ð½0;∞Þ;H1ðð0; 1ÞÞÞ. Moreover, this solution
can be written as

vðεÞ ¼ ∑
∞

k¼0
ake

−λk twk; ak ¼ ðvðεÞðIÞ;wkÞ:

In addition, if vðεÞðIÞ>0, then v(ε)(·, t)>0.

Remark 14. If ψ is continuous, then the eigenfunctions wk are C2, and hence, we have that v(ε) is a C2 clas-
sical solution for t>0.

3.2 | The vanishing perturbation limit

Since v(ε) are positive, we have also that u(ε) are positive, and because of conservation law (14), they can be seen as
Radon measures with a fixed given mass. In this case, Prohorov's theorem—cf Billingsley47—implies that we have a
(subsequence‐wise) limit as ε goes to 0. Namely,

Proposition 15. Fix T>0, and let CðTÞ ¼ ½0; 1�×½0;T�. Then, by passing a subsequence if necessary, we can
assume that u(ε)→u(0) such that uð0Þ∈BMþðCðTÞÞ.

Remark 16. First, it is important to observe that we cannot interchange the limits T→∞ and ε→0. Indeed,
from the solution in the proof of Proposition 13, we have that limt→∞uðεÞð·; tÞ is nonzero, regular, and inde-
pendent of ε, since 1 and φ are independent of ε. On the other hand, we shall see in Section 4 that the large
time limit of u(0) is a linear combination of atomic measures supported at the boundaries.

We now obtain a weak equation in weak form for the limiting measure. Let

Γ: ¼ C1
cð½0;∞Þ;DÞ;

where

D ¼ η∈C2ðð0; 1ÞÞ∩C1ð½0; 1�Þ such thatð23Þ and ð24Þ are satisfied

 �

:

The corresponding weakest formulation of (22) is given by

−∫∞

0
∫1

0
vðεÞðx; tÞpðxÞ

gεðxÞ
∂tαðx; tÞdxdt−∫

1

0
vðεÞðx; 0ÞpðxÞ

gεðxÞ
αðx; 0Þdx ¼ ∫∞

0
∫1

0
vðεÞðxÞ∂x pðxÞ∂xαðx; tÞð Þdxdt;

with α∈Γ.
Using the relationship between u(ε) and v(ε), the definition of dμ, and that p′=ψp, we obtain

−∫∞

0
uðεÞðx; tÞ∂tαðx; tÞdxdt−∫

1

0
uðεÞðx; 0Þαðx; 0Þdx ¼ ∫∞

0
∫1

0
uðεÞðxÞgεðxÞ ∂2xαðx; tÞ þ ψðxÞ∂xαðx; tÞ

� �
dxdt:

Now, we consider the limit ε→0:

Proposition 17. The limiting measure u(0) is in the class L∞ð½0;∞Þ;BMþð½0; 1�ÞÞ, and it satisfies

−∫∞

0
∫1

0
uð0Þðx; tÞ∂tαðx; tÞdxdt−∫

1

0
uð0Þðx; 0Þαðx; 0Þdx

¼ ∫∞

0
∫1

0
uð0Þðx; tÞgðxÞ ∂2xαðx; tÞ þ ψðxÞ∂xαðx; tÞ

� �
dxdt;

(27)

with test functions α∈Γ. In addition, it satisfies the conservation laws (14) and (15), when g(1)=0, and the con-
servation law (15) and the boundary condition (16), when g(1)>0.
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Proof. Convergence follows from standard arguments.47 When g(1)=0, it remains only to show the conser-
vation laws. This can be done either by appealing to standard convergence theorems and taking the limits
in (18) and (19) or, if ψ is at least continuous, as in Chalub and Souza,31 by considering test functions of the
form

αðx; tÞ ¼ βðtÞγðxÞ; βðtÞ∈C1
cðð0;∞ÞÞ; γ ∈ span f1;φg:

When g(1)>0, the conservation law (14) is verified analogously. The boundary condition (16) can be verified
by first observing that the solution has to be smooth near x=1. This can be seen by considering test func-
tions with compact support in (1/2,1]×(0,T] and then applying local parabolic regularity. Integration by
parts then yields the result.

Remark 18. Notice that regardless of the regularity of ψ, we always have that 1 is in D. On the other hand,
we have φ∈D if, and only if, ψ is continuous.

4 | FURTHER PROPERTIES OF THE WEAK SOLUTION

We now proceed to understand what properties the solution to (27) possesses. In particular, when g(1)=0, we show
uniqueness and that the solution found here is the same as the one found in Chalub and Souza41 where the test space
is taken to be C1

cð½0;∞Þ;C2ð½0; 1�ÞÞ.
Before we can state our results, we need a decomposition result for compact distributions in Chalub and Souza,41

which we recall for the convenience of the reader.

Lemma 19. (Decomposition) Denote by E′ the space of compactly supported distributions inR. Let ν∈E′ with
sing suppðνÞ⊂½0; 1�. Then, the setwise decomposition

½0; 1� ¼ f0g∪ð0; 1Þ∪f1g

yields a decomposition in ν, namely,

ν ¼ ν0 þ μþ ν1;

where νi is a compact distribution supported at x={i}, and we also have that sing suppðμÞ⊂ð0; 1Þ. Moreover, if
ν is a Radon measure, then μ∈BMðð0; 1ÞÞ and νi=ciδi, where δi are normalised atomic measures with support
in x={i}.

We are now ready to discuss the 2 classes of examples that we are considering here.

4.1 | The generalised Kimura equation

The main result is then as follows:

Theorem 20. LetD be a domain such that C2
cðð0; 1ÞÞ⊕span ðf1gÞ⊂D, and consider (27), with test functions

in D and initial condition uðIÞ∈BMþð½0; 1�Þ. Applying the decomposition in Lemma 19, we can write

uðIÞ ¼ a0δ0 þ r0 þ b0δ1; a0; b0; r0≥0: (28)

Then, any solution to (27) can be represented as

uð0Þð·; tÞ ¼ aðtÞδ0 þ r þ bðtÞδ1;

where r is the unique strong solution to (1) without any boundary condition and initial condition r0, and a, b:
[0,∞)→[0,∞) are smooth. Furthermore, we have that

aðtÞ ¼ a0 þ ∫1

0
r0ðxÞð1−φðxÞÞdx−∫

1

0
rðx; tÞð1−φðxÞÞdx;

bðtÞ ¼ b0 þ ∫1

0
uðIÞðxÞφðxÞdx−∫

1

0
rðx; tÞφðxÞdx:
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In particular, we have

uð0Þ∈C∞ðð0;∞Þ;H1Þ∩C0ð½0;∞Þ;BMþÞ;

and that u(0) is unique in this class.

Proof. Notice that C2
cðð0; 1ÞÞ⊂D. Hence, by restricting to that domain, we obtain the weak formulation to

(1) without any boundary condition and initial condition given by r0. This equation is known to be well‐
posed and to have a strong solution in C1ðð0;∞Þ;H1ð0; 1ÞÞ∩C0ð½0;∞Þ;BMþÞ.
By applying the decomposition in u(0) together with (27) and still restricting to test functions in C2

cðð0; 1ÞÞ,
we conclude that the nonatomic part of u(0) must be r.
Since u(0) is a Radon measure, Lemma 19 yields

uð0Þð·; tÞ ¼ aðtÞδ0 þ rð·; tÞ þ bðtÞδ1: (29)

The formulas for a and b follow from direct substitution of (29) in the integrated forms of (3) and (4).

Remark 21. In particular, we have that the solution is unique and that it does not depend on the particular
domain D—provided it satisfies the required condition. Notice that both D and C1

0ð½0;∞Þ;C2ð½0; 1�Þ both
satisfy this requirement, and hence, the solution obtained from the elliptical perturbations is the same as
the one obtained in Chalub and Souza.41 In particular, the asymptotic limit in time is given by

uð0Þ∞ ðxÞ ¼ a∞δ0 þ b∞δ1; ða∞; b∞Þ: ¼ lim
t→∞

ðaðtÞ; bðtÞÞ:

Further regularity in ψ allows for a more detailed description of a and b:

Theorem 22. In the same framework of Theorem 20, assume, in addition, that ψ is continuous and that
D⊃C2

cðð0; 1ÞÞ⊕span ðf1;φgÞ. Then, we have that

uð0Þ∈C∞ðð0;∞Þ;C2ð½0; 1�ÞÞ∩C0ð½0;∞Þ;BMþð½0; 1�ÞÞ:

Moreover, we have that

aðtÞ ¼ a0 þ ∫t

0
rð0; sÞds and bðtÞ ¼ b0 þ ∫ t

0
rð1; sÞds:

Proof. The extra regularity follows from the improved regularity of the eigenfunctions—cf Remark 14.
Then, direct substitution of (29) in (27), and by taking advantage of the improved regularity of r to integrate
by parts, yields

∫∞

0
aðtÞ∂tαð0; tÞdt þ a0αð0; 0Þ þ b0αð1; 0Þ þ ∫∞

0
rð0; tÞαð0; tÞdt þ ∫∞

0
rð1; tÞαð1; tÞdt ¼ 0:

Choosing test functions that vanish at either endpoint then finishes the proof.

4.2 | The SIS‐PDE model

Now, we return to the SIS‐PDE models (6) to (8). Let

FðxÞ ¼ R0ð1−xÞ þ 1 and HðxÞ ¼ x þ 2
R0

log
FðxÞ
Fð0Þ

� 	
:

Also, let

ωðxÞ ¼ PðxÞ
xFðxÞ; PðxÞ ¼ expð2HðxÞÞ;
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We shall also write

ωϵ ¼ PðxÞ
ðx þ ϵÞFðxÞ and vðεÞðx; tÞ ¼ pðx; tÞ

ωϵðxÞ :

Then, replacing the conservation law by the corresponding nonlocal boundary condition, we obtain

∂tvðεÞ ¼ 1
2ωϵðxÞ∂x PðxÞ∂xvðεÞ


 �

Pð1Þ∂xvðεÞð1; tÞ−Pð0Þ∂xvðεÞð0; tÞ ¼ 0

∂xvðεÞð1; tÞ ¼ 0;

vðεÞðx; 0Þ ¼ 1
ωϵðxÞpðIÞðxÞ:

(30)

Theorem 9 then immediately translates into the following result:

Theorem 24. For each ϵ>0, Equation 30 has a unique solution that is positive (nonnegative) if p(I) is positive
(nonnegative). We also have that v(ε)→v(0) weakly in [0,1], as ϵ→0. Let p(0) be the limiting solution in the orig-
inal variables. Then, it satisfies

∫∞

0
∫1

0
pð0Þðx; tÞ∂tϕðx; tÞdxdt

þ 1
2
∫∞

0
∫1

0
pð0Þðx; tÞx R0ð1−xÞ þ 1ð Þ∂2xϕðx; tÞdxdt

þ ∫∞

0
∫1

0
pð0Þðx; tÞx R0ð1−xÞ−1ð Þ ∂xϕðx; tÞdxdt

þ ∫1

0
pð0Þðx; 0Þϕðx; 0Þdx ¼ 0:

(31)

In particular, it satisfies the conservation law (8), and it can be written as

pð0Þðt; xÞ ¼ aðtÞδ0 þ rðx; tÞ; aðtÞ ¼ R0 þ 1
2

∫t

0
rð0; sÞdsþ a0; (32)

and where r satisfies Equation 6 with the boundary condition

1
2
ð1−R0Þrð1; tÞ þ ∂xrð1; tÞð Þ þ rð1; tÞ ¼ 0: (33)

5 | DISCUSSION

This work is a first systematic step into the theory of conservative and degenerated parabolic problems. These problems
appear in a number of modelling situations, as discussed in Section 1. We restrict ourselves to 1+1 problems and begin
by presenting the theory for the case of uniformly parabolic infinitesimal generators in Section 2, which provides a com-
prehensive formulation for such problems from the point of view of Sturm‐Liouville theory. As a by‐product of the anal-
ysis, we also present a proof of persistence of positiveness that seems to be new even for the traditional Neumann
problem for the heat equation, since it does not require the study of the solution at the boundaries. The results described
in this section can be seen as an alternative approach to Mugnolo and Nicaise24 that naturally extends to equations with
nonconstant coefficients—albeit not easily for higher dimensions. They also show how some nonlocal problems can be
brought into a framework that is similar to the treatment of more classical boundary value problems.

If the operator is degenerated at at least one of the endpoints, then 2 situations can arise: If the operator is self‐adjoint,
the analysis goes through unchanged. Otherwise, although one can still bring the problem into self‐adjoint form, it is pos-
sible that the solution in the original variables will not be integrable. An example of this situation is the generalised Kimura
equation 1, and this is studied in Sections 3.1 and 4.1. Indeed, when working in self‐adjoint variables for this problem, one
needs to enforce homogeneous Dirichlet conditions which, in turn, yield a negative‐definite problem—hence, no conser-
vation seems possible. However, by a perturbation argument, we can apply the results of Section 2, and by considering

DANILKINA ET AL. 4403



positive solutions and the weakest formulation for the problem, we can take the limit of vanishing perturbation inmeasure
space and obtain a measure solution for the original equation. This was discussed in Section 3.2.

In Section 4.2, we presented an example of a recently derived Fokker‐Plank equation 6 that arises from an epidemi-
ological problem and that is half degenerated, supplemented by 1 conservation law. The technique used to obtain mea-
sure solutions of this problem is similar to the one described previously in this section.

The degenerated examples presented already suggest that a very natural extension of this work is to study in more
detail the endpoint degenerated cases. The aim would be to provide a complete classification of these problems, when
the infinitesimal generator is not self‐adjoint.

Another natural extension is to study the case in more than 1 spatial variable. The analysis in Section 2 made an
extensive use of 1‐d Sturm‐Liouville theory; the generalisation to more dimensions is far from straightforward. One
example of interest is the generalised Kimura equation obtained in Chalub and Souza32 (more restricted examples
appear in Ewens37 and Epstein and Mazzeo44). A second possible example of interest that generalises the SIS‐PDE stud-
ied in this work is the SIR‐PDE (where a third class of individuals, the removed individuals, are considered). Although
the derivation is not complete, some preliminary results were presented in Chalub and Souza.43
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