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Summary

The analysis of the Kirchhoff plate is performed using rational Bézier triangles
in isogeometric analysis coupled with a feature-preserving automatic meshing
algorithm. Isogeometric analysis employs the same basis function for geometric
design as well as for numerical analysis. The proposed approach also features
an automatic meshing algorithm that admits localized geometric features (eg,
small geometric details and sharp corners) with high resolution. Moreover, the
use of rational triangular Bézier splines for domain triangulation significantly
increases the flexibility in discretizing spaces bounded by complicated nonuni-
form rational B-spline curves. To raise the global continuity to C1 for the solution
of the plate bending problem, Lagrange multipliers are leveraged to impose con-
tinuity constraints. The proposed approach also manipulates the control points
at domain boundaries in such a way that the geometry is exactly described. A
number of numerical examples consisting of static bending and free vibration
analysis of thin plates bounded by complicated nonuniform rational B-spline
curves are used to demonstrate the advantage of the proposed approach.
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1 INTRODUCTION

Numerical modeling and analysis of plates of complicated shapes has continuously been a popular research topic because
of the widespread applications of plate structures in various fields. Finite element analysis of plates can be categorized
into thin-plate analysis based on the Kirchhoff plate theory and thick-plate analysis based on the Reissner-Mindlin plate
theory. The main difference between the 2 prevailing theories lies in the fact that thin-plate analysis assumes that the
vector normal to the plate mid-surface remains normal to the mid-surface during deformation and, thus, does not take
into account transverse shear deformations, whereas thick-plate analysis does. Due to the fact that Reissner-Mindlin
plate elements can be joined with C0 continuity, the use of very simple basis functions is allowed. On the contrary, in
the Kirchhoff plate formulation, because of the presence of second-order derivatives, C1 continuity is demanded between
elements, which requires higher-order basis functions. For this reason, the C0 shear deformable Reissner-Mindlin plate
element is more propagated in commercial finite element codes. However, most of the plate structures in reality belong
to thin and very thin plates, and the use of C0 basis functions would usually result in various shear locking problems.
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Although the numerical analysis of thin plates is already a very mature field, to exactly describe the plate geometry
can be rather difficult and sometimes inaccurate, particularly when the structures have curved boundaries or com-
plicated cutouts are involved. The main reason for this lack of accuracy lies in the fact that the model created from
standard finite element analysis, which is represented by Lagrange basis functions, is only an approximation of the orig-
inal computer-aided design model, which is described by nonuniform rational B-splines (NURBS). About a decade ago,
isogeometric analysis (IGA) was proposed by Hughes et al1 as a novel approach to bridge the gap between design and
analysis. By employing the same basis functions used in geometric design to approximate field variables in an isoparamet-
ric sense, the models created using IGA possess geometric exactness. Other appealing features of IGA include high-order
continuity of basis functions, which further leads to more stable numerical conditioning, faster convergence of solutions,
and so on. NURBS-based IGA has since been applied to the analysis of thin and thick plates (see other works2-8 for a
few examples).

Nevertheless, NURBS functions, which are the main tool for IGA, exhibit a number of defects. First of all, NURBS
h-refinement propagates across the entire domain, which compromises the efficiency of the method. Secondly, the con-
trol mesh generated is restricted to a quadrilateral shape and is therefore not flexible in discretizing domains of arbitrary
topology. Moreover, the smoothness in multipatch analysis using NURBS is not satisfactory. The patch interface is
either C0-continuous or simply not closed (ie, nonphysical gaps). To regain control of the smoothness across the patch
boundaries, additional efforts such as the imposition of geometric constraints9 or the bending strip method10 are neces-
sary, which requires extra computational time. On the other hand, a variety of local refinement techniques have been
developed to overcome the problematic tensor product structure of NURBS, such as hierarchical B-splines,11,12 trun-
cated hierarchical B-splines,13 T-splines,14 locally refined splines,15 and polynomial splines over hierarchical T-meshes.16

However, the construction of the aforementioned local refinement splines relies on complicated algorithms, and the
resulting mesh is still dependent on the 4-sided geometry. On the contrary, the use of spline basis functions for
domain triangulation increases the flexibility in discretizing complex spaces. One way to realize this is to use certain
triangle-splitting algorithms such as the Powell-Sabin splines17-19 and the Clough-Tocher splines,20 depending on partic-
ular macro-triangle structures. Higher-order Powell-Sabin splines are also available to triangulate a given space.18,21,22

However, for a given space for triangulation, the Powell-Sabin triangles are sometimes not unique.23 Recently, NURBS
have been successfully converted into the nonuniform rational Powell-Sabin splines (NURPS).24 To exactly recover the
boundary NURBS curve of degree p, NURPS of degree p or higher should be used. For the recovery of the interior
domain described by NURBS of bi-degree (p1, p2), NURPS of degree p1 + p2 or higher should be used. Powell-Sabin
B-splines have been applied to study Kirchhoff-Love plate problems25 and fracture mechanics26 with satisfactory
results.

An alternative is to construct the domain triangulation through the use of rational Bézier triangles.27 This approach
is more general and does not depend on specific triangle-splitting schemes. Since rational basis functions of the
Bézier-Bernstein form are used to represent the parametric space, it has the potential to describe the exact geometry as
well. In our work, the C0 rational Bézier triangles are employed for the representation of the triangulated space. Since the
Kirchhoff plate formulation involves second-order derivatives of the basis function, at least C1 continuity is required. For
this reason, the global continuity of the triangular Bézier splines is raised to C1. Note that the approach we adopted can
be used to elevate the splines to any desired continuity Cr. Lagrange multipliers are used to impose the Dirichlet bound-
ary conditions and the continuity constraints. Considering that the use of Lagrange multipliers results in an increase
of unknowns in the system equations, which hinders efficiency, an iterative approach for the solution of the Lagrange
multiplier augmented system is provided as well.

As to the parameterization of the boundary and interior space of the model, we leverage on the recently devel-
oped algorithm TriGA.28 Specifically, a polygonal approximation of the NURBS boundary is first established through
h-refinement and a dynamic quadtree decomposition algorithm. This procedure allows us to capture sharp geometric
features with very good accuracy. With the polygonal approximation of the original NURBS curves computed, a linear
domain triangulation can then be constructed by resorting to the meshing package mesh2d29 that is available online.
After that, the linear triangular elements are raised to cubic such that there are sufficient control points for imposing
inter-element continuity constraints. The last step is to replace the control points at the boundary with those governing
the original NURBS curves. This boundary replacement algorithm is also discussed in the work of Jaxon and Qian.23 Thus,
a geometrically exact domain triangulation admitting sharp geometric features can be established.

A Kirchhoff plate formulation is implemented into the algorithm. To verify our modeling approach, a number of plate
models bounded by complicated NURBS curves are investigated in the context of static bending and free vibration analysis.
Numerical results prove the accuracy and efficiency of the proposed method.



LIU AND JEFFERS 397

2 A BRIEF REVIEW OF NURBS AND RATIONAL BÉZIER TRIANGLES

In this section, we give a brief review on the fundamentals of Bézier curves,30 NURBS,1 and the construction of rational
triangular Bézier spline spaces.28

2.1 Bézier and NURBS curve
In 1 dimension, a degree-n Bernstein polynomial is defined as follows:

Bn
i (t) =

(
𝑛

i

)
ti(1 − t)n−i, (1)

where t ∈ [0, 1],
(

𝑛

i

)
= n!

i!(n−i)!
is the binomial coefficient.

A Bézier curve S(t) is constructed as a linear combination of n + 1 Bernstein polynomials Bn
i (t) and the corresponding

set of control points bi, which can be expressed as

S (t) =
n+1∑
i=1

Bn
i (t)bi. (2)

The B-spline basis functions are related to the Bernstein basis through a Bézier extraction operator C (see the work of
Borden et al31) uniquely defined by a specified knot vector on the parametric space and is written as

N(t) = CB(t). (3)

Through projection of the B-splines from ℜd to ℜd + 1 using the weights associated with the corresponding control
points, a degree-n NURBS curve is then given as

Rn
i (t) =

Nn
i (t)wi

ncp∑
𝑗=1

Nn
𝑗
(t)w𝑗

, (4)

where ncp denotes the number of control points used to define the curve.

2.2 Rational Bézier triangles
A bivariate Bernstein polynomial can be constructed on a triangular domain as

Bn
𝑖𝑗𝑘
(u) = n!

i!𝑗!k!
ui

1u𝑗

2uk
3, (5)

where n is the polynomial order, the triplet (i, j, k) represents the ordinate index that sums up to n, and u = {u1, u2, u3}
denotes the barycentric coordinates of a point in the triangle.

The rational form of the above Bernstein basis functions is written as

Rn
𝑖𝑗𝑘

=
Bn
𝑖𝑗𝑘
(u)w𝑖𝑗𝑘∑

r+s+t=n
Bn
𝑟𝑠𝑡(u)w𝑟𝑠𝑡

, (6)

where w is the weight.
Finally, a rational triangular Bézier space can be defined as a linear combination of the rational Bernstein basis functions

Rn
𝑖𝑗𝑘
(u) and the corresponding control points bijk, ie,

T(u) =
∑

i+𝑗+k=n
Rn
𝑖𝑗𝑘
(u)b𝑖𝑗𝑘. (7)

Figure 1 illustrates the control lattice of linear, quadratic, and cubic Bézier triangles on the parametric domain,
respectively.
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FIGURE 1 Control lattice of a Bézier triangle: (A) linear, (B) quadratic, and (C) cubic [Colour figure can be viewed at
wileyonlinelibrary.com]

3 AUTOMATIC DOMAIN TRIANGULATION BASED ON DYNAMIC
QUADTREE DECOMPOSITION

Automatic mesh generation has been a very popular topic over the last few decades and is, by itself, a very complicated
process. Mesh generation using triangular segmentations is a very well developed field, and therefore, our work resorts
to a number of mesh generation algorithms that are available online, with a special leverage on TriGA28 and mesh2d.29

Our goal is to automatically generate a domain triangulation that is capable of capturing the local sharp features with
high resolution and maintaining the exact geometry from the input NURBS curves. This is done via a dynamic quadtree
decomposition algorithm presented in the work of Engvall and Evans.28 To make this paper self-contained, we briefly
discuss the algorithm. For details of the implementation aspects, the readers are recommended to look at the original
paper.

As illustrated in Figure 2, the automatic mesh generation algorithm can roughly be divided into 4 steps.

1. Constructing a polygonal approximation: the input NURBS curves are firstly subdivided through h-refinement
(ie, knot insertion) until a sufficiently close polygon approximating the NURBS curve is generated by connecting
control points. This process is guided by a prescribed threshold 𝜑 defined as the relative difference between the length
of the NURBS curve on each knot span and the length of the polygon approximating it. Mid-span knot insertion is
performed until the relative difference on every span is within the given limit.

2. Generating quadtree background mesh: the mesh is further refined by evaluating a linear sizing function for every
side of the polygonal approximation and subsequently comparing it to the side length. If the ratio exceeds a given

FIGURE 2 Automatic mesh generation process: (A) input nonuniform rational B-splines geometry, (B) polygonal construction,
(C) dynamic quadtree background mesh generation, (D) domain triangulation, and (E) degree elevation and exact boundary recovery
[Colour figure can be viewed at wileyonlinelibrary.com]
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threshold (normally 1.5), mid-span knot insertion is performed to enrich the local curve. The process iterates until
the above ratio for all the sides is below a prescribed tolerance. This part of the algorithm can be realized using the
mesh2d.m function.29

3. Triangulating polygonal domain: based on the polygonal approximation of the input NURBS boundary curves, a
linear domain triangulation can be automatically constructed with any standard meshing tool available in commercial
software or open-source toolkit (eg, the meshpoly function in mesh2d).

4. Elevating polynomial degree and recovering exact boundary: the global continuity of the polynomials is raised
to a desired order (usually bicubic as it is the standard in computer-aided design), and knots that correspond to the
polygon vertices are repeated n − 1 times such that C0 continuity at the vertices is imposed. Additionally, the control
points at the boundary edges are substituted by the control points obtained from h-refinement of the original NURBS
curves. This way, the exact boundary is recovered.

4 ENFORCING HIGH- ORDER CONTINUITY VIA LAGRANGE MULTIPLIERS

In this section, the Cr continuity constraints for inter-element continuity are explicitly defined. In order to impose the
continuity constraints, a number of approaches can be used: (i) the master-slave method, (ii) the penalty method, (iii) the
boundary minimum determining set approach, and (iv) Lagrange multipliers. The master-slave method is inferior in han-
dling arbitrary constraints. The penalty method requires careful selection of the penalty weight to avoid ill-conditioning.
In the boundary minimum determining set used in the work of Jaxon and Qian,23 solving for the reduced row echelon
form is computationally expensive. Moreover, relaxing the constraints on the boundary vertices by restraining the inter-
nal free vertices that have influence on the constrained boundary vertices requires user intervention. In addition, careful
selection of the free internal vertices is necessary to avoid inaccurate results. On the other hand, the continuity constraints
can be exactly enforced through the use of Lagrange multipliers, but this method increases the size of the problem by the
number of constraint equations. In the following, we provide an iterative solution procedure presented in the work of Lai
and Wenston,32 which solves the Lagrange multiplier augmented system without increasing the system size.

In the domain discretized by Bézier triangles, the neighboring triangles are connected with C0 continuity. However,
the formulation of the Kirchhoff plate involves second-order derivatives of the basis functions, and therefore, raising the
degree of continuity at the common edges is necessary.

Assuming 2 adjacent triangles T(v1, v2, v3) and T̃ (v4, v3, v2) that share the edge v2v3, they can be joined with Cr

differentiability if and only if 27

b̃𝛾𝑗𝑘 =
∑

𝜇+𝜈+𝜅=𝛾

𝛾!
𝜇!𝜈!𝜅!

b𝜇,k+𝜈,𝑗+𝜅u𝜇

1 u𝜈
2u𝜅

3 , (8)

where 0 ≤ 𝛾 ≤ r, 𝛾 + j + k = n, {u1, u2, u3} are the barycentric coordinates of vertex v4 relative to T. An example is shown
in Figure 3 where 2 bicubic triangles are joined with C1 continuity.

Collecting the continuity constraints computed in Equation (8), we can write them in matrix form as

Ld = G, (9)

FIGURE 3 Enforcing C1 continuity of 2 bicubic triangles (influenced ordinates are highlighted in red)
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where L is the matrix containing the coefficients of the constraints, d is the vector including the ordinate information, and
G is the right-hand side of the continuity constraint equations. G = 0 in the case of enforcing the continuity constraints.
We use G in the derivation to keep the method general. Note that, to avoid the ill-conditioning of the augmented stiffness
matrix, in which the L matrix is not of full rank, a preprocessing step is recommended to sort out the linearly independent
rows in L to use for enforcing higher-order continuity.

The Lagrange multiplier augmented system can be expressed as follows:[
K LT

L 𝟎

] [
d
𝛌

]
=
[

F
G

]
, (10)

where K is the stiffness matrix, F is the forcing vector, and 𝛌 denotes the Lagrange multiplier vector.
When a large number of continuity constraints are to be enforced, solving Equation (10) can be very costly. Alterna-

tively, an iterative approach can be used to solve the problem without increasing the matrix size. Consider a variant of
Equation (10) where the lower diagonal block of zeros is replaced by a diagonal matrix consisting of small numbers,
termed a constraint-scaling diagonal matrix, ie,[

K LT

L −𝜀I

] [
d
𝛌

]
=
[

F
G − 𝜀𝛌

]
, (11)

where 𝜀 is a small number and I is the identity matrix.
The above system can be expressed in an iterative form as

Kd(i+1) + LT𝛌(i+1) = F

Ld(i+1) − 𝜀𝛌(i+1) = G − 𝜀𝛌(i),
(12)

where i indicates the ith iteration.
Multiplication of LT to the second equation in Equation (12) and rearranging terms yields

LT𝛌(i+1) = wLTLd(i+1) − wLTG + LT𝛌(i), (13)

where w = 1
𝜀

is the weight.
Combining Equation (13) with the first equation in Equation (12) results in the following:

(K + wLTL)d(i+1) = F + wLTG − LT𝛌(i). (14)

Taking an initial guess of 𝛌(0) = 0 yields

d(1) = (K + wLTL)−1(F + wLTG). (15)

Recall from the first equation of Equation (12) that F = Kd(i) + LT𝛌(i). Substituting this into Equation (14) leads to

d(i+1) = (K + wLTL)−1 (Kd(i) + wLTG
)
. (16)

Equations (15) and (16) can be used to solve the augmented Lagrangian system iteratively. Note that this method
essentially combines the penalty method with the Lagrange multiplier method. By solving the problem iteratively, it
circumvents the problematic ill-conditioning issue exhibited in the penalty method.

5 GOVERNING EQUATIONS FOR THE KIRCHHOFF PLATE

5.1 Kinematics
Let mij be the bending moment of a plate and q the external distributed load vector. The equilibrium equation for a
Kirchhoff plate can be expressed as

m𝑖𝑗,𝑖𝑗 = q, (17)

where the comma indicates differentiation and i and j are the indexes ranging from 1 to 2, since the out-of-plane stresses
are assumed to be 0.
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Multiplying Equation (17) with the variation in transverse displacement 𝛿d and integrating over the entire domain Ω
yields the following:

∫Ω
𝛿d,𝑖𝑗m𝑖𝑗dΩ + ∫𝜕Ω

(𝛿𝑑𝑚𝑖𝑗,𝑗ni − Q)ds + ∫𝜕Ω
(−𝛿d,im𝑖𝑗n𝑗 + Mi)ds = ∫Ω

𝛿dqdΩ, (18)

where d,ij = 𝜅 ij is the curvature. The second and third terms on the left-hand side are the shear and moment boundary
conditions on the boundary 𝜕Ω, respectively. Neglecting the boundary terms yields the weak form

∫Ω
𝛿𝜅𝑖𝑗m𝑖𝑗dΩ = ∫Ω

𝛿dqdΩ. (19)

In Equation (19), the bending moments mij can be computed as

m𝑖𝑗 = −∫
t∕2

−t∕2
𝜎𝑖𝑗𝑧d𝑧, (20)

where t is the thickness of the plate.
The stress-strain relationship for a homogeneous and isotropic plate is

𝜎𝑖𝑗 =

[
𝜎11
𝜎22
𝜎12

]
= E

1 − 𝜈2

⎡⎢⎢⎣
1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤⎥⎥⎦
[

𝜀11
𝜀22

2𝜀12

]
, (21)

where E and 𝜈 represent Young's modulus and Poisson's ratio, respectively. Equation (21) can be written in shorthand as
𝜎ij = C𝜀ij. The strain vector can be rewritten in terms of transverse displacement as

𝜀11 = −z𝜕
2d
𝜕x2 , 𝜀22 = −z𝜕

2d
𝜕𝑦2 , 𝜀12 = −z 𝜕2d

𝜕x𝜕𝑦
. (22)

Substituting Equations (21) and (22) into Equation (20) leads to the moment-curvature relationship, ie,[ m11
m22
m12

]
= 𝐸𝑡3

12(1 − 𝜈2)

⎡⎢⎢⎣
1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤⎥⎥⎦
[

𝜅11
𝜅22

2𝜅12

]
. (23)

Combining Equations (23) and (19) gives

∫Ω
𝛿𝜅𝑖𝑗C𝜅𝑖𝑗dΩ = ∫Ω

𝛿dqdΩ, (24)

where C is the material matrix shown in Equation (23).

5.2 Discretized form
The input NURBS geometry is triangulated using the approach discussed in Section 3 along with the rational triangular
Bézier splines. Recall from Section 2 that R is the rational Bézier basis function used to represent a triangular patch. The
transverse displacement in one patch can then be represented using the following:

d = Rd. (25)

Differentiating Equation (25) twice with respect to the physical coordinates results in the following expression for the
curvature:

𝜅 = Bd, (26)

where B =
[
𝜕2R
𝜕x2

𝜕2R
𝜕𝑦2 2 𝜕2R

𝜕x𝜕𝑦

]T
.

Substituting Equations (25) and (26) into Equation (24) leads to the final expression of the weak form

∫Ω
𝛿dTBTCBddΩ = ∫Ω

𝛿dTR𝑞dΩ. (27)
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From the virtual work equation (ie, Equation (27)), we obtain the stiffness K and forcing terms F, ie,

K = ∫Ω
BTCBdΩ

F = ∫Ω
R𝑞dΩ.

(28)

5.3 Free vibration analysis
For the free vibration analysis of the Kirchhoff plate, the weak form of the elastodynamic equilibrium equation is written
as follows:

∫Ω
𝛿𝛆TC𝛆dΩ + ∫Ω

𝛿uT𝜌𝑡üdΩ = 0, (29)

where 𝜌 is the mass density, u is the displacement tensor, and ü represents the acceleration tensor. The displacement
tensor is defined as

u =
[

u v d
]T =

[
−z 𝜕

𝜕x
−z 𝜕

𝜕𝑦
1
]T

d, (30)

and the acceleration tensor is obtained from Equation (30) by differentiating twice in time.
Equation (29) can be concisely expressed in the form

Kd + Md̈ = 𝟎. (31)

Based on Equation (25) and integrating over the thickness, the mass matrix takes the form

M𝑖𝑗 = ∫Ω
𝜌

(
RiR𝑗 t +

𝜕Ri

𝜕x
𝜕R𝑗

𝜕x
t3

12
+ 𝜕Ri

𝜕𝑦

𝜕R𝑗

𝜕𝑦

t3

12

)
dΩ. (32)

The general solution of Equation (31) is
d = d𝜙 sin (𝜔𝑡 + 𝜃) , (33)

where 𝜔 is the frequency and d𝜙 denotes the eigenmode obtained from the following eigenvalue problem:

(K − 𝜔2M)d = 𝟎. (34)

The above problem essentially amounts to a generalized constrained eigenvalue problem, the solution of which requires
special treatment. To solve Equation (34), a solution procedure presented in the work of Lidström and Olsson33 is used
to compute a constrained stiffness matrix incorporating Lagrange multipliers. The natural frequencies and eigenmodes
governing the vibration are further obtained from the eigenvalue analysis.

6 NUMERICAL EXAMPLES

In this section, 4 numerical examples of Kirchhoff plates of complicated geometries are demonstrated in the context of
static bending and free vibration analysis. For all of the examples shown, a 28-point quadrature rule is used for the integra-
tion over the triangle, and a 5-point quadrature rule is employed for the integration over the edges to ensure the accuracy
of the solution. The results are compared to analytical solutions, if available, or converged finite element solutions using
Abaqus.

6.1 Bending of a simply supported circular plate
To verify the plate formulation, a simply supported circular plate subjected to uniform loading is analyzed. For this
example, an exact solution is available in the work of Rostamiyan et al34 and is reproduced here in Equation (35). The
geometry and material properties are illustrated in Figure 4 along with the deformed shape. Thus, we have

d (r) = −
𝑞𝑟2

0 (3 + 𝜈) r2

32D (1 + 𝜈)
+ 𝑞𝑟4

64D
+

𝑞𝑟4
0 (5 + 𝜈)

64D (1 + 𝜈)
, (35)

where r is the radius of the point at query and D = 𝐸𝑡3

12(1−𝜈2)
.
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FIGURE 4 (A) Plate geometry and material properties and (B) deflection

FIGURE 5 Automatically generated mesh with different thresholds: (A) φ ≤ 3%, (B) φ ≤ 1%, (C) φ ≤ 0.5%, and (D) φ ≤ 0.1% [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 1 Relative error in deflection using different thresholds

Threshold 𝝋 ≤ 3% ≤ 1% ≤ 0.5% ≤ 0.1% Abaqus Exact Solution

#nodes 169 481 1273 3004 37 105 237 604 –

#DOF 169 481 1273 3004 185 525 1185 3020 –
Center deflection ×10−3 −8.699 −8.690 −8.694 −8.699 −7.996 −8.430 −8.564 −8.655 −8.695

Relative error 0.046% 0.058% 0.005% 0.050% 8.039% 3.048% 1.507% 0.460% –
eL2 0.803% 0.181% 0.065% 0.012% 7.724% 2.287% 0.910% 0.311% –

Abbreviation: DOF, degree of freedom.

Four meshes with different thresholds 𝜑 are illustrated in Figure 5, from which it is easy to see that the boundary mesh
becomes finer as the threshold value 𝜑 gets smaller. The relative error at the center of the plate and the L2 relative error
norm eL2 are measured against the analytical solution. Results are also compared with uniform meshing using Abaqus
linear triangular shell element S3 (see Table 1). Note that Equation (36) was used to calculate the L2 norm eL2 . In terms
of the relative error at the center of the plate, we observe that our solution with 𝜑 ≤ 3% already outperforms the Abaqus
model with 604 nodes. The L2 relative error norm also shows faster convergence with our proposed model. Worth noting is
that the Abaqus S3 element for thin-plate analysis employs 5 degrees of freedom (DOFs) per node, whereas our proposed
element has only 1 DOF per node, which further demonstrates significant saving in computational cost.

eL2 =

√
∫
Ω

(
dh − d

)2dΩ√∫
Ω

d2dΩ
(36)

6.2 Bending of a perforated circular plate
In this example, a more complicated geometry is used to demonstrate the ability of the proposed approach in capturing
local geometric features. Specifically, a perforated circular plate with a simply supported boundary condition is subjected
to uniformly distributed load. The dimensions, loading condition, and the simulation results are shown in Figure 6. The
material properties are the same as in the first example.

http://wileyonlinelibrary.com
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FIGURE 6 (A) Plate geometry and material properties and (B) deflection

FIGURE 7 Automatically generated mesh with different thresholds: (A) φ ≤ 3%, (B) φ ≤ 1%, (C) φ ≤ 0.5%, and (D) φ ≤ 0.1% [Colour figure
can be viewed at wileyonlinelibrary.com]

TABLE 2 Relative error in deflection using different thresholds

Threshold 𝝋 ≤ 3% ≤ 1% ≤ 0.5% ≤ 0.1% Abaqus

#DOF 2949 5154 9219 17109 162600
Max deflection −0.007367 −0.008273 −0.008608 −0.008772 −0.008950
Relative error 17.687% 7.564% 3.821% 1.988% –

Abbreviation: DOF, degree of freedom.

To illustrate the capability of the proposed approach in discretizing space bounded by complicated NURBS curves, 4
meshes of the perforated plate are shown in Figure 7. As we can see, the holes in the plate are accurately captured. To
verify the deformation, our results are compared with the converged solution using the Abaqus linear shell element S3,
as listed in Table 2. Again, we observe that the results agree very well.

Note that the relative error at 𝜑≤ 3% is fairly large, but it does not indicate that 𝜑≤ 3% is not a good setting for all cases.
The threshold 𝜑 is merely a control parameter relative to the dimension of the local feature. In other words, 𝜑 ≤ 3% is
likely to result in a very satisfying result if the radius of the holes in the plate is not very small.

6.3 Free vibration of a square plate with an elliptical hole
In this section, the undamped free vibration analysis of a simply supported square plate with an elliptical hole of varying
radii is investigated. The dimension of the plate is illustrated in Figure 8. The thickness of the plate is t = 0.05 m. The
material properties are: Young's modulus E = 2 × 1011 N/m2, Poisson's ratio 𝜈 = 0.3, and mass density 𝜌 = 8000 kg/m3.
The mesh generated with 𝜑 ≤ 1% is shown in Figure 9.

The dimensionless parameter Ωnd is used to measure the natural frequency and is defined as

Ω𝑛𝑑 =
(
𝜔2𝜌𝑡𝑎4

D

) 1
4

. (37)

The solutions are compared with those modeled using the Abaqus linear shell element S4R and are listed in Table 3.
As we can see, the results are in very good agreement. The first 10 vibration modes are plotted in Figure 10 for illustrative
purposes.
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FIGURE 8 Dimension of the plate with an elliptical hole [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Automatically generated meshes for the plate with an elliptical hole for φ ≤ 1%: (A) a/b = 1, (B) a/b = 2, (C) a/b = 3, and
(D) a/b = 4 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Natural frequencies of the square plate with an elliptical hole

Mode a/b = 1 a/b = 2 a/b = 3 a/b = 4
Abaqus 𝝋 ≤ 3% 𝝋 ≤ 1% 𝝋 ≤ 0.5% Abaqus 𝝋 ≤ 1% 𝜑 ≤ 0.5% Abaqus 𝝋 ≤ 1% 𝝋 ≤ 0.5% Abaqus 𝝋 ≤ 1% 𝝋 ≤ 0.5%

#nodes 11734 585 1128 2001 11382 1314 2034 10835 1644 2505 10623 1530 2196
1 4.3876 4.5419 4.4809 4.4423 4.3725 4.5058 4.4587 4.3550 4.5108 4.4755 4.3436 4.5455 4.4970
2 6.9581 7.1086 6.9936 6.9669 6.6411 6.6689 6.6613 6.0098 6.0724 6.0484 5.3019 5.3728 5.3734
3 6.9582 7.1720 6.9937 6.9683 6.9127 6.9162 6.9227 6.9298 6.9783 6.9681 6.9975 7.1451 7.0998
4 8.7803 8.8150 8.8040 8.8067 8.6904 8.6915 8.7006 8.4595 8.4901 8.4783 7.9516 8.0177 8.0112
5 9.7965 9.8998 9.8113 9.8027 9.6815 9.6819 9.6840 9.6498 9.6792 9.6723 9.7759 9.9202 9.8772
6 10.0848 10.4552 10.3084 10.2298 10.3845 10.5686 10.5129 10.4431 10.5391 10.5203 10.3834 10.4428 10.4390
7 11.2292 11.3397 11.2882 11.2987 10.8277 10.9352 10.9038 10.4642 10.5433 10.5284 10.4189 10.4877 10.4871
8 11.2293 11.3483 11.2883 11.2994 11.2325 11.2764 11.2692 11.3071 11.3736 11.3502 10.9105 11.0077 11.0073
9 12.7027 12.9518 12.8121 12.8005 12.0485 12.1568 12.1390 11.5094 11.5863 11.5666 11.5470 11.6823 11.6525

10 12.7032 12.9707 12.8124 12.8012 12.9157 13.0627 13.0437 12.8471 13.0027 12.9357 12.2924 12.4050 12.4054
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FIGURE 10 The first 10 mode shapes of the plate with an elliptical hole (a/b = 4) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 11 Dimension of the plate with a heart-shaped hole [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 12 Automatically generated meshes for the plate with a heart-shape cutout: (A) φ ≤ 3%, (B) φ ≤ 1%, and (C) φ ≤ 0.5% [Colour
figure can be viewed at wileyonlinelibrary.com]

6.4 Free vibration of a square plate with a heart-shape cutout
In the last example, a simply supported square plate with a heart-shape cutout is used to demonstrate the performance
of the proposed plate model. The dimension of the plate is shown in Figure 11. The thickness of the plate is t = 0.05 m.
The material properties are the same as in the third example. Free vibration analysis is conducted, for which a number of

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


LIU AND JEFFERS 407

TABLE 4 Natural frequencies of the square plate with a heart-shape cutout

Mode Threshold 𝝋 Cubic Moving Kriging Radial Point
≤ 3% ≤ 1% ≤ 0.5% NURBS2 Interpolation35 Interpolation36

#nodes 384 777 1671 512 506 –
1 5.3688 5.1618 5.0386 5.193 5.3898 4.919
2 6.6041 6.4982 6.4205 6.579 7.5023 6.398
3 7.1068 6.9956 6.8818 6.597 8.3470 6.775
4 8.7629 8.6670 8.6151 7.819 10.6358 8.613
5 9.3238 9.1539 9.0555 8.812 11.0484 9.016
6 10.9440 10.7818 10.7140 9.420 12.8945 10.738
7 11.1755 11.0085 10.9480 10.742 13.7100 10.930
8 11.9959 11.7631 11.6683 10.776 14.0620 11.601
9 13.4042 12.9533 12.8590 11.919 16.6492 12.903

10 13.6026 13.3453 13.2412 13.200 17.3641 13.283

Abbreviation: NURBS, nonuniform rational B-splines.

FIGURE 13 The first 10 mode shapes of the plate with a heart-shape cutout [Colour figure can be viewed at wileyonlinelibrary.com]

reference solutions are available in the literature.8-10 The dimensionless parameter Ωnd defined in Equation (37) is used
to measure the natural frequency.

The automatically generated meshes are shown in Figure 12, in which we can observe that the proposed approach is
able to handle sharp geometric corners fairly easily. The natural frequencies and mode shapes of the first 10 modes are
listed and plotted in Table 4 and Figure 13, respectively. As we can see, the free vibration results match very well with
those in the literature.

7 CONCLUDING REMARKS

In this paper, we solved the Kirchhoff plate problem using IGA. The parameter space was represented by rational Bézier
triangles, and the analysis was further facilitated by an automatic meshing algorithm that admits local geometric features
with high resolution. Due to the use of rational Bézier splines, the proposed model was extremely flexible for representing
geometries comprised of complex topologies. In addition, the replacement of control points at domain boundaries yielded
a geometrically exact model to be analyzed. By resorting to the Lagrange multipliers, the global continuity of the domain
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triangulation was elevated to C1, which is suitable for Kirchhoff plate analysis. Numerical examples comprised of static
bending and free vibration analysis of plates bounded by complicated NURBS curves verify the accuracy and efficiency
of the proposed modeling approach. In the future, we intend to investigate the performance of the developed plate model
for stability analysis.
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