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Summary. We propose a C-index (index of concordance) applicable to recurrent event data. The present work addresses
the dearth of measures for quantifying a regression model’s ability to discriminate with respect to recurrent event risk. The
data which motivated the methods arise from the Dialysis Outcomes and Practice Patterns Study (DOPPS), a long-running
prospective international study of end-stage renal disease patients on hemodialysis. We derive the theoretical properties of the
measure under the proportional rates model (Lin et al., 2000), and propose computationally convenient inference procedures
based on perturbed influence functions. The methods are shown through simulations to perform well in moderate samples.
Analysis of hospitalizations among a cohort of DOPPS patients reveals substantial improvement in discrimination upon adding
country indicators to a model already containing basic clinical and demographic covariates, and further improvement upon
adding a relatively large set of comorbidity indicators.
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1. Introduction
In the analysis of clinical or epidemiologic data, the event of
interest is often recurrent (i.e., can occur multiple times for
the same subject). Examples of recurrent events include hos-
pital admissions, infections, relapses, and blood transfusions.
Methods of analysis of recurrent event data can be broadly
classified as marginal or conditional, the distinction being that
marginal methods implicitly average over the prior recurrent
event history. Conditional models are distinguished by condi-
tioning on the event history, either implicitly (e.g., through a
frailty variate correlating the events within-subject) or explic-
itly through time-dependent covariates (e.g., event counters).
Examples of marginal methods include Lawless and Nadeau
(1995), Lin et al. (2000), and Schaubel et al. (2006), while
examples of conditional methods include Andersen and Gill
(1982). A comprehensive review of recurrent event models and
methods is given by Cook and Lawless (2007).

The data which motivated our current work arise from
the renown Dialysis Outcomes and Practice Patterns Study
(DOPPS). The DOPPS is a prospective, multi-center, inter-
national study of patients receiving hemodialysis (the most
common form of dialysis). Note that dialysis is the most
common form of renal replacement therapy (RRT), which is
necessary for patients with end-stage renal disease (ESRD),
a condition characterized by kidney function that has dimin-
ished to such an extent that survival is considered impossible
without RRT.

The DOPPS has been ongoing for more than 20 years,
with data collected through five Phases. Details regarding the
design of the DOPPS study have been described by Young
et al. (2000). In Section 5, we analyze data from DOPPS

Phase 5, which is the most recently completed phase. The
recurrent event of interest is hospitalization, which is an
important event due to its connection with morbidity and
mortality, patient quality of life, health care cost and resource
utilization. Since the DOPPS contains patients from many
countries, we have a rather unique ability to directly evaluate
differences among countries with respect to hospitalization
rates. Correspondingly, we place some focus on compar-
ing covariate-adjusted hospitalization rates by country. Of
chief interest is evaluating the degree to which the fitted
model accurately discriminates hospitalization risk among
patients.

With respect to time-to-event outcomes, the majority of
analyses have focused on patient survival. Furthermore, the
limited number of DOPPS studies evaluating outcomes that
can occur repeatedly within patient (e.g., hospitalization)
have generally been restricted to time to first event. For
example, in the study of hospitalizations, the event time
would be time to first admission. Perhaps the biggest dis-
advantage of using time-to-first-event is inefficiency, in that
considerable precision is sacrificed by ignoring each patient’s
second and subsequent events. That said, a benefit (or, at
least a perceived benefit) of time-to-first-event is the ability
to utilize techniques which are well-established for univari-
ate survival data, but less (or not) developed for recurrent
events. Among the more prominent techniques are those
for model discrimination. The C-index (also known as the
index of concordance) has become the most frequently used
measure of the discriminatory ability of a survival model.
However, no such measure has been developed for recurrent
event data.
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Considerable advancement has been made in the last 15
years with respect to the breadth of analyses available for
recurrent event data. The majority of such works has focused
on developing recurrent event methods for more compli-
cated data structures. For example, Miloslavsky et al. (2004)
developed recurrent event methods for dependently censored
data. Several methods have been developed for jointly ana-
lyzing recurrent/terminal event data; for example, Ghosh
and Lin (2002), Huang and Wang (2004), Liu et al. (2004),
and Ye et al. (2007).

Despite the continuing advances in recurrent event method-
ology, there are relatively few methods available for evaluating
a fitted model. The degree of fit is generally described in terms
of predictive accuracy and/or discrimination ability, where
the former considers how closely the fitted values approximate
the observed responses. Discrimination considers the extent
to which a model accurately distinguishes higher and lower
risk subjects, and could be argued to be the more relevant
of the two criteria in settings where prediction, per se, is not
the analytic objective. A frequently used discrimination mea-
sure is the C-index. The C-index is related to the area under
the receiver-operating curve (ROC), and was considered in
the context of censored data by authors such as Harrell et al.
(1982, 1984, 1996) and Uno et al. (2007). Several methods
have been developed for ROC curves for survival data; for
example, Heagerty et al. (2000), Moskowitz and Pepe (2004),
Heagerty and Zheng (2005), and Uno et al. (2011).

In this report, we propose a C-index applicable to recur-
rent event data. Although initially motivated by a need to
evaluate the discriminatory ability of the proportional rates
model to the DOPPS data, the work addresses the lack of a
widely accepted measure of model discrimination when the
response is a recurrent event. The C-index can be interpreted
as the proportion of subject-pairs for which the survival
time ordering is concordant with the ordering of the fit-
ted model’s linear predictor. In the presence of censoring,
the denominator of the C-index is the number of subject-
pairs for which the order of the failure times is observed.
Applying this concept to recurrent event responses, two sub-
jects are comparable during follow-up time intervals during
which both subjects are uncensored. For example, in the
presence of right censoring and absence of any left trun-
cation, two subjects are comparable until the minimum of
the two censoring times; the subject pair then contributes
to the denominator if the two event counters are not tied
(at 0 or otherwise).

Using counting processes and U-processes theories, we
derive the large-sample distribution of the proposed C-index
estimator, and then propose a simulation-based method for
computing standard errors and hence confidence intervals.
Due to its popularity among practitioners, we derive the
theoretical properties of the proposed C-index assuming the
proportional rates model of Lin et al. (2000); extension of
our results to other models, such as the additive rates model
(Schaubel et al., 2006), would be straightforward.

The remainder of this report is organized as follows. In
Section 2, we notationalize the data structure and set out
the proposed measure. In Section 3, we derive the theoretical
properties, proofs for which appear in the Appendix. Simula-
tions are carried out in Section 4. The proposed methods are

applied to the afore-described DOPPS data in Section 5. In
Section 6, we provide some discussion.

2. Proposed Methods

2.1. Set-Up and Notation

Let N∗(t) denote the number of events that occur over the
interval [0, t] and C denote the follow-up or censoring time.
Assume that N∗(·) and C are independent conditional on a
p-dimensional covariate vector Z. The observed event process
is denoted as N(t) = N∗(t ∧ C) over the total observation win-
dow [0, τ], where a ∧ b = min(a, b). In the set-up of interest,
we have a random sample of n individuals, with observed data
{Ni(t), Ci,Zi; 0 ≤ t ≤ τ} (i = 1, . . . , n).

The proportional rates/means model (Lin et al., 2000) is
commonly used to analyze recurrent event data. This model
formulates the mean function for N∗(·) is associated with
covariates Z as follows,

μZ(t) ≡ E{N∗(t)|Z} = μ0(t) exp(β0
′Z), (1)

where μ0(·) is an unknown baseline mean function of the
marginal recurrent event process, and β0 is an unknown vec-
tor of regression parameters. The estimating equation for β0

is given by

U(β) =
n∑

i=1

Ui(β)

=
n∑

i=1

τ∫
0

{
Zi−

∑
k
Yk(t)Zk exp(β′Zk)∑
k
Yk(t) exp(β′Zk)

}
dNi(t)=0, (2)

where Yi(t) = I(Ci ≥ t) and I(·) is the indicator function. The
solution of (2) is β̂, and the Aalen–Breslow-type estimator for
μ0(t) is μ̂(t).

2.2. Proposed C-Index for Recurrent Events

Consider future observations on two independent patients
indexed k = 1 and k = 2 with observed data {N̊∗

k (C̊k), C̊k,
Z̊k} for k = 1, 2. A natural way to evaluate the risk dis-
crimination ability of a recurrent event rate/mean model is
to measure concordance between the observed and predicted
event counts over the time interval of common observation;
that is, μ̂Z1(C̊1 ∧ C̊2) versus μ̂Z2(C̊1 ∧ C̊2), given N̊∗

1(C̊1 ∧ C̊2)
and N̊∗

2(C̊1 ∧ C̊2). We consider event rate models which are
monotone functions of the linear predictor, β′Z̊k. Without loss
of generality, assuming that μZk

(t) is monotone increasing in

β′Z̊k, we propose summarizing the model’s risk discrimination
through the following C-index,

C(β) = Pr{β′Z̊1 > β′Z̊2|N̊∗
1(C̊1 ∧ C̊2) > N̊∗

2(C̊1 ∧ C̊2)}. (3)

Note that β may be derived from a score obtained from the
existing literature, in which case β in (3) could be replaced
by a constant vector β0 to reflect the fact that the parameter
implied by the score is known with certainty. Conversely, the
basis of the score may be an event rate model fitted to the
data at hand, such that β from (3) would be replaced by an
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estimate β̂ to reflect its randomness. In the development that
follows, we focus on the latter case, keeping in the background
the various simplifications that arise when β0 is known.

We propose that (3) be estimated by the proportion of pairs
in which the risk prediction scores and the observed event
counts are concordant, as given by

Ĉ(β)=
∑n

i=1

∑n

j=1
I{Ni(Ci∧Cj)>Nj(Ci∧Cj)}I(β′

Zi > β
′
Zj)∑n

i=1

∑n

j=1
I{Ni(Ci∧Cj)>Nj(Ci∧Cj)}

.

(4)

It is interesting to compare Ĉ(β) for recurrent event data
to a concordance index for survival data where a subject can
have at most one event (e.g., death or time-to-first recurrent
event). Let Ti be the time-to-first event for the ith sub-
ject, with Xi = Ti ∧ Ci as the observed survival time, and set
�i = I(Ti < Ci). For right-censored survival data, Harrell et al.
(1996) proposed a concordance index, which can be rewritten
using counting process notation as follows,

ĈS(β) =
∑n

i=1

∑n

j=1
�i I(Xi < Xj, β

′
Zi > β

′
Zj)∑n

i=1

∑n

j=1
�i I(Xi < Xj)

=
∑n

i=1

∑n

j=1
I{Ni(Xi∧Xj)>Nj(Xi∧Xj)}I(β′

Zi >β
′
Zj)∑n

i=1

∑n

j=1
I{Ni(Xi∧Xj)>Nj(Xi∧Xj)}

.

(5)

In survival data, a simple derivation can show that Ĉ(β) =
ĈS(β). However, when subjects can experience multiple
(recurrent) events, restricting responses to “time-to-first
event” can result in reduced discriminatory power (i.e., ĈS <

Ĉ). See Section 4.3 for an example.
We note that Ĉ(β̂) converges in probability to a censoring-

dependent quantity

C0 = Pr{β′
0Z̊1 > β′

0Z̊2|N̊∗
1(C̊1) > N̊∗

2(C̊1), C̊1 ≤ C̊2},

provided that β̂ converges to a constant vector β0 as n goes to
infinity. It is true regardless whether the model (1) holds. For
right-censored survival data, Gerds et al. (2013) showed that
Harrell’s estimator ĈS , which does not explicitly model the
censoring mechanism, performed as well as several existing
Inverse Probability of Censoring Weighted C-index estima-
tors. Correspondingly, our simulation study also showed a
good performance of the proposed C-index even under viola-
tion of the assumption of conditionally independent censoring
given the predictors. Therefore, in the interests of practical-
ity and computational simplicity, we consider an unweighted
version of the C-index.

The proposed C-index, Ĉ(β̂), discriminate event risk
between subjects based on the estimated linear predictor,

β̂
′
Z, from a regression model. However, as implied earlier,

an external score determined independently of the data at
hand could also be used. Examples include quantities such
as the Gail model for breast cancer risk (Gail and Mai,
2010); the Model for End-Stage Liver Disease (MELD) score

(Wiesner et al., 2003); and the Kidney Donor Risk Index
(KDRI) for deceased-donor kidneys (Rao et al., 2009). From
this perspective, the true value, C0, simply represents the
limiting value of the Ĉ with respect to a particular score,
irrespective of whether the risk score is based on the true
model (or any model). If an externally derived score is the
basis of risk discrimination, a consistent variance estimator
can be obtained based on the first term in equation (6).

2.3. Variance Estimation

In the Appendix, we show that W = √
n {Ĉ(β̂) − C0} is asymp-

totically normal with mean zero and variance σ2. To estimate
σ2, we use a resampling-based method. In particular, we mod-
ify the perturbation resampling method by Uno et al. (2011)
to the recurrent event setting. Specifically, we first formulate
W∗, a perturbed version of W, then show that it has the same
limiting distribution as W. Then, σ2 can be estimated as the
sample variance on B realizations of W∗.

First, we construct a perturbed W∗ that depends on two
sources of random variation, β̂ and Ĉ(β) for a fixed β. Per-
turbation of both sources can be done by the same random
quantity, resampled from any known distribution with mean
1 and variance 1. For instance, we use ε ∼ Exponential (1). By
(repeatedly) generating a random variable {εi; i = 1, . . . , n}, a
perturbed β̂ can be obtained by

β∗ = β̂ +
(

n

2

)−1 ∑
i<j

Â−1(β̂){Ui(β̂) + Uj(β̂)} εiεj/2,

where Â(β) = −n−1∂U(β)/∂β. The β̂ perturbation is done
through the estimating equation for β0 in equation (2). To
generate a perturbed counterpart of Ĉ(β), we define

Vij(β) = I{Ni(Ci ∧ Cj) > Nj(Ci ∧ Cj)}{I(β′
Zi > β

′
Zj) − Ĉ(β)}

n−2
∑n

i=1

∑n

j=1
I{Ni(Ci ∧ Cj) > Nj(Ci ∧ Cj)}

.

Then, a perturbed random variable W∗ can be generated by

W∗ =√
n

(
n

2

)−1∑
i<j

{Vij(β̂)+Vji(β̂)} εiεj/2+√
n {Ĉ(β∗)−Ĉ(β̂)}.

(6)

Finally, a two-sided 95% confidence interval can be obtained
by Ĉ(β̂) ± 1.96 σ̂/

√
n, where σ̂ is the sample standard devia-

tion of W∗, following the asymptotic normality of W∗ shown
in the Appendix.

We note that the second term of (6) needs to assume that
the risk prediction model (at least the regression components)
is correctly specified. This assumption can be avoided by
employing the nonparametric bootstrap. This gain in robust-
ness is at the expense of increased computation time. For
instance, in our analysis of the DOPPS data (Section 4),
the model-based standard error estimates using (6) were
very similar to the nonparametric bootstrap estimates (see
Tables 5–6), but took one third of the computing time
required for the nonparametric bootstrap.
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3. Simulation

We evaluated the finite sample properties of the proposed
estimator in (4) through a series of simulation studies under
scenarios which differed by the intensity of recurrent event
and the censoring mechanism. The recurrent event times were
generated from a proportional intensity model:

�Zi
(t) = �0(t)γi exp(β1Z1i + β2Z2i), (7)

where Z1i ∼ Uniform[−1, 1], Z2i ∼ Bernoulli(0.5), and true
(β1, β2)

′ = (1, 0.5). To vary the intensity of recurrent event,
we included a subject-specific random effect γi, following a
Gamma distribution with mean 1 and variance V = 0.01, 0.25,
0.5, or 1. As the V value increased, an individual tended to
experience more events, but a percentage of individuals with
zero event also increased. Hence, a total number of observed
events was similar across different V values. To investigate
sensitivity to the assumption on the censoring mechanism,
the censoring time Ci was generated from the following four
scenarios:

(i) Complete follow-up: Ci = τ for all i; set τ = 5,
(ii) Completely independent censoring,
(iii) Covariate-dependent censoring,
(iv) Outcome-dependent censoring.

In Scenario (ii), Ci was generated as the minimum of Uniform
[1, τ + 2] and τ. In Scenario (iii), Ci was generated from
Uniform[1, τ + 1] if Z2i = 0 and Exponential(1) + 1 if
Z2i = 1, and then truncated at τ. In Scenario (iv), we set
Ci = min(exp(γi), 100τ), which yielded Spearman correlations
between Ni(Ci)/Ci and Ci, ranging 0.05–0.56. In Table 1, we
fixed the baseline intensity to �0(t) = 0.5 t for all scenarios,
in order to demonstrate the dependence between the cen-
soring distribution and C-index, with the baseline intensity
equal. In contrast, in Table 2 �0(t) = νt differed across sce-
narios in order to demonstrate that similar C0 can result from
different censoring distributions. Specifically, ν was tuned to
yield similar numbers of comparable pairs among the different
censoring scenarios; we set ν = 0.5 for Scenario (i), ν = 1 for
Scenario (ii), and ν = 1.4 for Scenario (iii). For each setting,
the true value of C0 was approximated based on a random
sample of {Zi, N∗

i (·), Ci} from one hundred thousand individu-

als under true β0. To compute Ĉ, we first fitted a proportional
rates model, then used the resulting estimates β̂ to com-
pute the proposed C-index estimate from (4). Standard errors
were computed under the proposed perturbation resampling
methods.

Simulation results based on 1000 replications and n = 200
are presented in Tables 1–3. In each table, Bias equals the
difference between the average of the C-index estimates and
the true value; SD is the empirical standard deviation of the
parameter estimates; SEE is the average of the standard error
estimates; and CP is the coverage probability of the 95%
confidence intervals.

From Tables 1–2, we notice that C0 strictly decreased
as: the baseline intensity (ν) decreased; the frailty variance
(V ) increased; and the marginal proportion of subjects with
zero observed events (P{Ni(τ) = 0}) increased. However, C0

appeared only to be weakly dependent on the percentage of
censored (unobserved) N∗(τ) and the specific form of cen-
soring mechanism. In all settings we considered, including
the outcome-dependent censoring scenario, the proposed esti-
mator showed good performance. That is, the Ĉ estimates
were unbiased, while the standard error estimates closely
approximated the true variability in Ĉ. In turn, CPs were
close to the nominal level.

We also investigated the finite sample properties of the
proposed Ĉ when the proportional rates model assumption
was violated. Under this scenario, the additive rates model
E[dN∗

i (t)|Zi, γi] = {m0 + γi + β1Z1i + β2Z2i}dt with m0 = 0.2
(Schaubel et al., 2006) was used to generate recurrent event
times, with the proportional rates model used to develop a risk
score and to calculate the C-index. Table 3 shows that, even if
the risk score development model was different from the data
generation model, Ĉ accurately estimated C0 with a small
sample size, where C0 is defined with respect to the assumed
risk score development model. The standard deviations of
Ĉ were well estimated using the nonparametric bootstrap
method, whereas the model-based standard error estimates
using equation (6) were slightly over-estimated when the
frailty variance increased to V = 1.

4. Application

4.1. Dialysis Outcomes and Practice Patterns Study
(DOPPS)

The DOPPS is a prospective multi-center international study
of prevalent hemodialysis patients. Patients within each
DOPPS facility were randomly sampled, with the intention of
preserving the key characteristics of the base population of the
selected facilities. Data were obtained from Arbor Research
Collaborative for Health, which founded and serves a data
coordinating center for the DOPPS. We analyzed data from
DOPPS Phase 5, the most recently completed phase of the
study. Patients were recruited for Phase 5 between 2012 and
2015. The total sample size included approximately 17,000
prevalent hemodialysis patients, from 465 facilities in 19 dif-
ferent countries. Active follow-up began at entry to DOPPS
and continued until the earliest of death, receipt of a kidney
transplant, switch to peritoneal dialysis, transfer to another
facility, or the end of the observation period (12/31/2015).
Further detail regarding the DOPPS is available in Robinson
et al. (2012).

In the interests of constructing a cohort of (approximately)
incident end-stage renal disease patients, we included only
patients with ≤ 6 months on dialysis at DOPPS entry (n =
3692). Our study cohort included patients from the follow-
ing countries: Belgium, Canada, China, Germany, the six
Gulf Cooperation Council (GCC) countries (Bahrain, Qatar,
Kuwait, Oman, Saudi Arabia, and United Arab Emirates),
Italy, Japan, Spain, Sweden, the United Kingdom (UK), and
the United States (U.S.).

4.2. Objectives of Analysis

The recurrent event of interest is hospitalization (i.e., hos-
pital admission). Among the more than 140 peer-reviewed
articles featuring the analysis of DOPPS data, relatively few
have involved evaluating the ability of the assumed regression



738 Biometrics, June 2018

Table 1
Simulation results for the proposed Ĉ based on n = 200. The baseline intensity function was set as �0(t) = 0.5 t regardless of

censoring scenarios.

V a Censoredb P{Ni(τ) = 0}c True Bias SD SEE CP

Complete follow-up
0.01 0% 8.9% 0.804 0.002 0.016 0.017 94.7
0.25 0% 12.9% 0.745 0.001 0.020 0.020 95.5
0.5 0% 17.5% 0.707 0.002 0.022 0.022 94.9
1.0 0% 25.4% 0.667 −0.002 0.024 0.025 96.3

Completely independent censoring
0.01 24.3% 17.8% 0.770 0.001 0.020 0.020 94.2
0.25 23.1% 21.9% 0.729 0.001 0.022 0.022 94.0
0.5 21.9% 26.2% 0.702 0.000 0.024 0.024 94.1
1.0 19.9% 33.6% 0.666 0.001 0.026 0.027 95.1

Covariate-dependent censoring
0.01 42.6% 25.8% 0.749 0.001 0.022 0.022 94.8
0.25 40.9% 30.0% 0.717 0.003 0.024 0.025 93.9
0.5 38.7% 34.0% 0.696 0.002 0.025 0.026 94.7
1.0 35.2% 40.7% 0.667 0.001 0.028 0.028 94.6

Outcome-dependent censoring
0.01 41.3% 21.8% 0.765 0.003 0.020 0.021 95.4
0.25 35.9% 29.4% 0.729 0.001 0.023 0.024 95.6
0.5 33.6% 35.2% 0.707 0.002 0.025 0.025 94.6
1.0 29.8% 43.0% 0.681 0.001 0.027 0.028 95.1

a The variance of frailty γi used for generating repeated events from model (7).
b 1 − E[Ni(τ)]/E[N∗

i (τ)].
c The marginal proportion of subjects with zero observed events.

Table 2
Simulation results for the proposed Ĉ based on n = 200. The baseline intensity function �0(t) = νt was varying with different

censoring scenarios.

ν V a Censoredb P{Ni(τ) = 0}c True Bias SD SEE CP

Complete follow-up
0.5 0.01 0% 8.9% 0.804 0.002 0.016 0.017 94.7

0.25 0% 12.9% 0.745 0.001 0.020 0.020 95.5
0.5 0% 17.5% 0.707 0.002 0.022 0.022 94.9
1.0 0% 25.4% 0.667 −0.002 0.024 0.025 96.3

Completely independent censoring
1.0 0.01 26.2% 6.7% 0.809 0.000 0.015 0.015 94.3

0.25 25.6% 9.9% 0.746 0.001 0.019 0.019 95.0
0.5 24.6% 13.9% 0.712 −0.002 0.021 0.022 95.3
1.0 22.6% 21.2% 0.664 0.000 0.023 0.024 95.2

Covariate-dependent censoring
1.4 0.01 46.0% 6.2% 0.805 −0.001 0.015 0.016 95.9

0.25 45.3% 9.6% 0.744 0.001 0.019 0.020 94.2
0.5 44.2% 13.9% 0.708 0.001 0.021 0.022 95.3
1.0 41.2% 21.2% 0.664 0.001 0.023 0.025 95.5

a The variance of frailty γi used for generating repeated events from model (7).
b 1 − E[Ni(τ)]/E[N∗

i (τ)].
c The marginal proportion of subjects with zero observed events.
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Table 3
Simulation results for the proposed Ĉ based on n = 200 under the misspecified risk prediction model. The baseline intensity

function was set as �0(t) = 0.2 t regardless of censoring scenarios.

Model-based Robust

V a Censoredb P{Ni(τ) = 0}c True Bias SD SEE CP SEE CP

Complete follow-up
0.01 0% 0.0% 0.691 0.002 0.021 0.022 95.0 0.021 93.7
0.25 0% 0.2% 0.659 0.003 0.023 0.024 94.9 0.023 94.7
0.5 0% 0.5% 0.645 0.003 0.024 0.025 95.1 0.023 92.5
1.0 0% 1.0% 0.630 0.004 0.024 0.028 96.4 0.024 93.4

Completely independent censoring
0.01 26.6% 1.5% 0.656 0.003 0.022 0.023 94.5 0.022 93.1
0.25 26.4% 2.1% 0.637 0.002 0.024 0.024 94.5 0.023 94.8
0.5 26.7% 2.6% 0.627 0.003 0.024 0.026 94.6 0.024 94.9
1.0 26.6% 3.4% 0.618 0.004 0.024 0.029 97.1 0.025 94.1

Covariate-dependent censoring
0.01 46.1% 3.2% 0.633 0.003 0.024 0.025 95.8 0.024 94.3
0.25 46.2% 3.9% 0.622 0.002 0.025 0.026 95.4 0.024 95.2
0.5 46.1% 4.8% 0.615 0.004 0.024 0.027 97.4 0.025 94.8
1.0 45.9% 6.1% 0.610 0.004 0.024 0.030 96.8 0.026 94.1

a The variance of frailty γi used for generating repeated events from model (7).
b 1 − E[Ni(τ)]/E[N∗

i (τ)].
c The marginal proportion of subjects with zero observed events.

Table 4
Analysis of DOPPS data: Estimated covariate effects on hospitalization rates (based on Model 3)

Covariate β̂ SE p-value exp{β̂}
Age (per 15 yrs) −0.024 0.030 0.425 0.98
Female 0.100 0.065 0.127 1.11
Height (per 10 cm) 0.009 0.036 0.804 1.01
Dialysis ≤ 3 monthsa 0.027 0.056 0.626 1.03
Graft (ref: AVF) 0.510 0.111 <0.0001 1.67
Catheter (ref: AVF) 0.454 0.058 <0.0001 1.57
Congestive heart failure 0.165 0.061 0.007 1.18
Coronary artery disease 0.122 0.058 0.035 1.13
Cerebrovascular disease 0.142 0.060 0.019 1.15
Peripheral vascular disease 0.163 0.059 0.006 1.18
Chronic obstructive pulmonary disease 0.221 0.071 0.002 1.25
Diabetes −0.001 0.052 0.984 1.00
Cancer 0.189 0.073 0.010 1.21
Neurological disease 0.292 0.076 0.0001 1.34
Belgium (ref: U.S.) 0.381 0.097 0.0001 1.46
Canada (ref: U.S.) −0.227 0.108 0.036 0.77
China (ref: U.S.) −0.386 0.191 0.043 0.68
Germany (ref: U.S.) 0.336 0.082 <0.0001 1.40
Gulf (ref: U.S.) −0.181 0.115 0.115 0.83
Italy (ref: U.S.) −0.329 0.115 0.004 0.72
Japan (ref: U.S.) 0.001 0.097 0.996 1.00
Spain (ref: U.S.) −0.368 0.113 0.001 0.69
Sweden (ref: U.S.) 0.750 0.113 <0.0001 2.12
United Kingdom (ref: U.S.) 0.134 0.111 0.226 1.14

AVF, arteriovenous fistula
a Time since initiating dialysis as of DOPPS entry; ref: [3, 6] months.
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Table 5
Analysis of DOPPS data: Comparison of Ĉ for various

models.

Model-based Robust

Model Ĉ SE SE

1a 0.596 0.008 0.007
2b 0.630 0.008 0.008
3c 0.654 0.008 0.008

Model comparison Ĉ� Robust SE

2 versus 1 0.034 0.006
3 versus 2 0.025 0.005

aModel 1 included age, sex, height, duration of dialysis, vascular
access (AV fistula, AV graft, or tunneled catheter).
bModel 2 included all predictors in Model 1 + country (Belgium,
Canada, China, Germany, Gulf, Italy, Japan, Spain, Sweden, UK,
or U.S.).
cModel 3 included all predictors in Model 2 + eight comorbid con-
ditions.

model to discriminate patients with respect to event risk.
Motivated by this issue, we sought to quantify the improve-
ment in discrimination resulting from adjusting for country,
and further adjusting for an extensive list of comorbidity indi-
cators. That is, we evaluate the improvement in the model
based on the successive inclusion of covariates representing
key distinguishing characteristics of DOPPS: its international
component, and collection of information on an extensive list
of comorbid conditions.

4.3. Analysis of DOPPS Data

Of the n = 3692 incident patients identified, 49% and 46%
were dialyzing with fistulas and catheters, respectively, at
the study entry. A mean follow-up time was 14 months,
and maximum follow-up was 4 years. In terms of hospital-
izations, 55% of patients were never admitted, 20% were
admitted once, 11% were admitted twice, and 14% were
hospitalized >2 times.

Three different sets of potential confounding factors were
considered for the risk of hospitalization. Model 1 was the
most basic model, and included age (15-year increments), sex
(ref: male), height (10-cm increments), duration of dialysis at
DOPPS entry (ref: 3–6 month), and two separate indicators
for a graft and a catheter user (ref: fistula). In addition to
the afore-listed covariates, Model 2 further adjusted for coun-
try, while Model 3 adjusted for country and the following eight
comorbid conditions: congestive heart failure, coronary artery
disease, cerebrovascular disease, peripheral vascular disease,
chronic obstructive pulmonary disease, diabetes, cancer, and
neurological disorder. In Table 4, the estimated regression
coefficients for predictors in Model 3 are presented. The hos-
pitalization rate was significantly increased for patients with
a graft or a catheter serving as vascular access, relative to
arteriovenous fistula (AVF). Each of the comorbid conditions,
except diabetes, was associated with a significantly increased
hospitalization rate. Canada, China, Italy, and Spain had sig-
nificantly lower hospitalization rates related to the United
States. Three countries had significantly higher hospitaliza-
tion rates than the U.S.: Belgium, Germany, and Sweden, with
the latter estimated to have the highest rate.

In Table 5, we compare C-index estimates for models with
and without comorbidity and country. The standard error
estimate of Ĉ using the perturbation resampling method (see
Model-based SE) was compared with the nonparametric boot-
strap estimate (see Robust SE). Risk discrimination based on
different models was compared through Ĉ�, the difference in
Ĉ. To estimate the variance of Ĉ�, we recommend using the
nonparametric bootstrap method since its validity does not
require correctness of either of the models being compared.

Suppose Ĉ
(b)
� is the difference in C-index estimates obtained

from the bth bootstrapped set of random subjects. Then, the
the robust SE of Ĉ� was obtained as the sample standard

deviation of B = 100 realizations of Ĉ
(b)
� . A two-sided 95%

confidence interval Ĉ� ± 1.96 ∗ SE(Ĉ�) can be used for the
test for no difference in Ĉs.

Table 5 shows that Model 1, having not adjusted for coun-
try and comorbidities, resulted in Ĉ = 0.596. This implies that
59.6% of pairs were concordant, in the sense that patient pre-
dicted to have higher hospitalization risk had more hospital
admissions during the sub-interval of overlapping follow-up.

Table 6
Analysis of DOPPS data by country using Model 1 + comorbidities

Hospitalization Model-based Robust

Country Sample sizea rateb
Ĉ SE SE

Canada 315 6.7 0.644 0.030 0.030

Germany 359 10.8 0.654 0.023 0.023

Japan 631 5.0 0.645 0.022 0.021

U.S. 1047 7.7 0.619 0.018 0.015

All 3692 7.3 0.654 0.008 0.008

SE, standard error estimate.
a Patients.
b Per 100 patient-months.
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By additionally including country in the model, the discrimi-
natory power of Model 2 improved to 63% concordance, and
the improvement was statistically significant at the level of
0.05 (Ĉ� = 3.4%, SE = 0.6%). Finally, Ĉ of Model 3 improved
to 65.4% concordance by further adjusting for comorbidi-
ties; and Model 3 was significantly better than Model 2
(Ĉ� = 2.5%, SE = 0.5%).

For comparison purposes, we also carried out a time-to-first
event analysis, with the end-point re-defined as the time to
first hospital admission. We observed the ĈS decreased from
Ĉ when the time-to-first-hospitalization was used only (ĈS =
0.585, SE = 0.008 for Model 1; ĈS = 0.618, SE = 0.008 for
Model 2; ĈS = 0.641, SE = 0.008 for Model 3). This can be
explained by the fact that the use of recurrent event data
allowed a longer common observation period for risk compar-
isons (i.e., Ci ∧ Cj was longer than Xi ∧ Xj), which, in turn,
increased the corresponding model’s discriminatory power.

For those countries with more than 300 patients (Canada,
Germany, Japan and U.S.), we have also carried out sepa-
rate analyses by county and evaluated the country-specific
models using the proposed C-index. The country-specific
models included the same set of predictors (i.e., Model 1 +
comorbidities), but the resulting C-index estimates were vary-
ing country to country (Table 6). In particular, the model for
Germany obtained the highest Ĉ = 0.654 (best in predicting
a higher risk), whereas the model for U.S. yielded a notice-
ably lower Ĉ = 0.619, comparing to Ĉ = 0.644 for Canada
and Ĉ = 0.645 for Japan. The standard error estimate for Ĉ
consistently reduced as the sample size increased.

5. Discussion

Using counting processes, we have developed a C-index
applicable to recurrent event data. Theoretical properties
are derived under an assumed proportional rates model
(Lin et al., 2000). The proposed C-index can be interpreted as
the fraction of concordant subject-pairs, where concordance
refers to the within-pair ordering of the linear predictor and
the observed number of events for the follow-up subinter-
val during which both subject are uncensored. The measure
reflects a rate model’s ability to discriminate subjects with
respect to recurrent event risk. The proposed C-index per-
formed well in simulation studies. The use of perturbation
methods (in lieu of traditional closed-form variance com-
putation) permits relatively quick estimation of confidence
intervals, and hence makes the proposed inference procedures
quite attractive computationally; this is an important prop-
erty in the big data era.

In our analysis of hospitalization rates using data from
Phase 5 of the Dialysis Outcomes and Practice Patterns Study
(DOPPS), Ĉ increased by approximately 0.03 upon the addi-
tion of country to a model which contained demographic and
basic clinical covariates, and then increased by an additional
≈0.02 upon further adjustment for comorbidity indicators.
These increases are somewhat contrary to the reputation for
insensitivity the C-index has earned in the context of stan-
dard survival data. Further study would reveal whether this
is due to the nature of recurrent event data in general, or
whether our real-data example is somewhat of an anomaly. It
is true that the C-index tends to be higher for logistic regres-
sion models than for survival models, owing mostly to the

latter being subject to censoring; for example, see Sharma
et al. (2016). For right censored survival data, for a subject-
pair to be usable, at least one member of the pair has to be
an observed death. In contrast, for right censored recurrent
event data, all untied subject-pairs are usable, albeit during
the subinterval of overlapping follow-up (i.e., until the mini-
mum of the two censoring times within-pair). In the DOPPS
analysis, we actually observed that C-index with recurrent
event data was higher than that with survival data. From
this perspective, recurrent event data may lie in between sur-
vival data and binary responses with respect to the typical
sensitivity of the C-index to the addition of model covariates.

6. Supplementary Materials

The source R codes for implementing the proposed methods
are available with this article at the Biometrics website on
Wiley Online Library.
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APPENDIX

Asymptotic properties of Ĉ(β̂). To establish asymptotic
properties of Ĉ(β̂), we impose the same regularity conditions
as those in Section 2 of Lin et al. (2000). We begin with the
consistency of Ĉ(β̂). We define the denominator of Ĉ(β) by

π̂=n−2

n∑
i=1

n∑
j=1

I{Ni(Ci ∧ Cj)>Nj(Ci ∧ Cj)}=n−2

n∑
i=1

n∑
j=1

Iij.

Given that π̂ (as well as Ĉ(β)) is a functional of a U-process
indexed by a class of indicator functions, by a uniform law of
large numbers for U-processes (Nolan and Pollard, 1987) and
the independent assumption between N∗ and C, we can show
π̂ converges to Pr{N∗

1(C1) > N∗
2(C1), C1 ≤ C2} in probability.

Following the strong consistency of β̂ (Lin et al., 2000) and a
uniform law of large numbers for U-processes of Ĉ(β), we can
then show that

Ĉ(β̂) = n−2

n∑
i=1

n∑
j=1

IijI(β̂
′
Zi > β̂

′
Zj)/

{
n−2

n∑
i=1

n∑
j=1

Iij

}

converges to C0 = Pr{β′
0Z1 > β′

0Z2 | N∗
1(C1) > N∗

2(C1), C1 ≤
C2} in probability.

To show the limiting distribution of W, we decompose W
into

W = √
n {Ĉ(β0) − C0} + √

n {Ĉ(β̂) − Ĉ(β0)}. (8)

By a functional central limit theorem for U-processes (Nolan
and Pollard, 1988), the first term in (8) is asymptotically
equivalent to, for a fixed β0,

√
n{Ĉ(β0)−C0} =n−3/2

n∑
i=1

n∑
j=1

Iij{I(β′
0Zi > β

′
0Zj)

−C0}/
{

n−2

n∑
i=1

n∑
j=1

Iij

}

≈ √
n

(
n

2

)−1 ∑
i<j

{Vij(β0) + Vji(β0)}/2,

where Vij(β0)=Iij{I(β′
0Zi >β

′
0Zj)−C0}[Pr{N∗

1(C1) > N∗
2(C1),

C1 ≤ C2}]−1. Next, we show that the second term in (8) is
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asymptotically equivalent to

√
n {Ĉ(β̂) − Ĉ(β0)} = ∂βC0

√
n (β̂ − β0) + op(1),

where ∂βC0 is an approximation of the first derivative of C0

with respect to β0. The proof starts from the fact that for an
indicator function, we can find at least one continuously differ-
entiable approximation function. For simplicity, let’s consider
an indicator function I(β) = 1 if β > 0, and I(β) = 0 other-
wise. Then, there exists a continuously differentiable function
L(β, ν) such that, ∀β ∈ R, it holds that limν→∞ L(β, ν) = I(β),
where

L(β, ν) = 1

1 + exp{−ν(β + 1/
√

ν)} .

The first derivative of L(β, ν) with respect toβ is ∂L(β, ν)/∂β=
ν exp{−ν(β + 1/

√
ν)} [1 + exp{−ν(β + 1/

√
ν)}]−2. As ν goes to

positive infinity, the limit of ∂L(β, ν)/∂β approaches 0 for any
fixed β. Limits of higher order derivatives are bounded as well.
By analogical arguments, approximations of the first deriva-
tives of C0 and Ĉ(β0) exist, and they are denoted as ∂βC0

and ∂βĈ(β0), respectively. Now, applying the Taylor series

expansion at β0 from the consistency of β̂ yields

√
n {Ĉ(β̂) − Ĉ(β0)} ≈ ∂βĈ(β0)

√
n(β̂ − β0) + op(1).

We then show ∂βĈ(β0) converges to ∂βC0 in probability from

the consistency of Ĉ(β) and the continuity of C0. Note that
the asymptotic expansion of

√
n (β̂ − β0) shown by Lin et al.

(2000) can be re-written with respect to a U-statistic as
follows:

√
n (β̂ − β0) ≈ n−1/2

n∑
i=1

A−1(β0)Ui(β0)

= √
n

(
n

2

)−1 ∑
i<j

A−1(β0){Ui(β0) + Uj(β0)}/2.

Finally, it then follows, by a functional central limit theorem
for U-processes, that

W = √
n

(
n

2

)−1 ∑
i<j

W̃ij + op(1) (9)

converges in distribution to a Gaussian process with
zero mean and variance σ2 ≡ E(W̃12W̃13), where W̃ij =
{Vij(β0) + Vji(β0)}/2 + ∂βC0 A−1(β0){Ui(β0) + Uj(β0)}/2.

To approximate the distribution of W, we simulate a num-
ber of realizations from W∗, given by

W∗ =√
n

(
n

2

)−1 ∑
i<j

{Vij(β̂)+Vji(β̂)} εiεj/2+√
n {Ĉ(β∗)−Ĉ(β̂)},

by repeatedly sampling {εi; i = 1, . . . , n}, conditioning on the
observed data {Ni(t), Ci,Zi}. Note that, from the consis-
tency in β̂ and Ĉ, the limiting quantity of Vij(β̂) is Vij(β0).
After replacing all unknown quantities in W with their
respective consistent estimates and limits, the only random
components in W∗ are the i.i.d. {εi} that has mean one
and variance one. Therefore, the conditional distribution of
W∗ given {Ni(t), Ci,Zi} has the same limiting distribution
as W.


