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Summary: We propose a C-index (index of concordance) applicable to recurrent event data. The

present work addresses the dearth of measures for quantifying a regression model’s ability to dis-

criminate with respect to recurrent event risk. The data which motivated the methods arise from the

Dialysis Outcomes and Practice Patterns Study (DOPPS), a long-running prospective international

study of end-stage renal disease patients on hemodialysis. We derive the theoretical properties of

the measure under the proportional rates model (Lin et al., 2000), and propose computationally

convenient inference procedures based on perturbed influence functions. The methods are shown

through simulations to perform well in moderate samples. Analysis of hospitalizations among a

cohort of DOPPS patients reveals substantial improvement in discrimination upon adding country

indicators to a model already containing basic clinical and demographic covariates, and further

improvement upon adding a relatively large set of comorbidity indicators.

Key words: C-index; Model discrimination; Proportional rates model; Recurrent events; Wild

bootstrap
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C-index for Recurrent Event Data 1

1. Introduction

In the analysis of clinical or epidemiologic data, the event of interest is often recurrent (i.e.,

can occur multiple times for the same subject). Examples of recurrent events include hospital

admissions, infections, relapses and blood transfusions. Methods of analysis of recurrent event

data can be broadly classified as marginal or conditional, the distinction being that marginal

methods implicitly average over the prior recurrent event history. Conditional models are

distinguished by conditioning on the event history, either implicitly (e.g., through a frailty

variate correlating the events within-subject) or explicitly through time-dependent covariates

(e.g., event counters). Examples of marginal methods include Lawless and Nadeau (1995),

Lin et al. (2000), and Schaubel et al. (2006), while examples of conditional methods include

Andersen and Gill (1982). A comprehensive review of recurrent event models and methods

is given by Cook and Lawless (2007).

The data which motivated our current work arise from the renown Dialysis Outcomes and

Practice Patterns Study (DOPPS). The DOPPS is a prospective, multi-center, international

study of patients receiving hemodialysis (the most common form of dialysis). Note that

dialysis is the most common form of renal replacement therapy (RRT), which is necessary for

patients with end-stage renal disease (ESRD), a condition characterized by kidney function

that has diminished to such an extent that survival is considered impossible without RRT.

The DOPPS has been ongoing for more than 20 years, with data collected through five

Phases. Details regarding the design of the DOPPS study have been described by Young

et al. (2000). In Section 5, we analyze data from DOPPS Phase 5, which is the most recently

completed phase. The recurrent event of interest is hospitalization, which is an important

event due to its connection with morbidity and mortality, patient quality of life, health care

cost and resource utilization. Since the DOPPS contains patients from many countries, we

have a rather unique ability to directly evaluate differences among countries with respect to
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hospitalization rates. Correspondingly, we place some focus on comparing covariate-adjusted

hospitalization rates by country. Of chief interest is evaluating the degree to which the fitted

model accurately discriminates hospitalization risk among patients.

With respect to time-to-event outcomes, the majority of analyses have focused on patient

survival. Furthermore, the limited number of DOPPS studies evaluating outcomes that can

occur repeatedly within patient (e.g., hospitalization) have generally been restricted to time

to first event. For example, in the study of hospitalizations, the event time would be time to

first admission. Perhaps the biggest disadvantage of using time-to-first-event is inefficiency,

in that considerable precision is sacrificed by ignoring each patient’s second and subsequent

events. That said, a benefit (or, at least a perceived benefit) of time-to-first-event is the

ability to utilize techniques which are well-established for univariate survival data, but less

(or not) developed for recurrent events. Among the more prominent techniques are those for

model discrimination. The C-index (also known as the index of concordance) has become

the most frequently used measure of the discriminatory ability of a survival model. However,

no such measure has been developed for recurrent event data.

Considerable advancement has been made in the last 15 years with respect to the breadth

of analyses available for recurrent event data. The majority of such works has focused on

developing recurrent event methods for more complicated data structures. For example,

Miloslavsky et al. (2004) developed recurrent event methods for dependently censored data.

Several methods have been developed for jointly analyzing recurrent/terminal event data;

e.g., Ghosh and Lin (2002), Huang and Wang (2004), Liu et al. (2004), and Ye et al. (2007).

Despite the continuing advances in recurrent event methodology, there are relatively few

methods available for evaluating a fitted model. The degree of fit is generally described in

terms of predictive accuracy and/or discrimination ability, where the former considers how

closely the fitted values approximate the observed responses. Discrimination considers the
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C-index for Recurrent Event Data 3

extent to which a model accurately distinguishes higher and lower risk subjects, and could

be argued to be the more relevant of the two criteria in settings where prediction, per se,

is not the analytic objective. A frequently used discrimination measure is the C-index. The

C-index is related to the area under the receiver-operating curve (ROC), and was considered

in the context of censored data by authors such as Harrell et al. (1982, 1984, 1996) and Uno

et al. (2007). Several methods have been developed for ROC curves for survival data; e.g.,

Heagerty et al. (2000), Moskowitz and Pepe (2004), Heagerty and Zheng (2005), and Uno

et al. (2011).

In this report, we propose a C-index applicable to recurrent event data. Although initially

motivated by a need to evaluate the discriminatory ability of the proportional rates model

to the DOPPS data, the work addresses the lack of a widely accepted measure of model

discrimination when the response is a recurrent event. The C-index can be interpreted as

the proportion of subject-pairs for which the survival time ordering is concordant with the

ordering of the fitted model’s linear predictor. In the presence of censoring, the denominator

of the C-index is the number of subject-pairs for which the order of the failure times is

observed. Applying this concept to recurrent event responses, two subjects are comparable

during follow-up time intervals during which both subjects are uncensored. For example,

in the presence of right censoring and absence of any left truncation, two subjects are

comparable until the minimum of the two censoring times; the subject pair then contributes

to the denominator if the two event counters are not tied (at 0 or otherwise).

Using counting processes and U-processes theories, we derive the large-sample distribution

of the proposed C-index estimator, and then propose a simulation-based method for comput-

ing standard errors and hence confidence intervals. Due to its popularity among practitioners,

we derive the theoretical properties of the proposed C-index assuming the proportional rates
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model of Lin et al. (2000); extension of our results to other models, such as the additive rates

model (Schaubel et al., 2006), would be straightforward.

The remainder of this report is organized as follows. In Section 2, we notationalize the

data structure and set out the proposed measure. In Section 3, we derive the theoretical

properties, proofs for which appear in the Appendix. Simulations are carried out in Section

4. The proposed methods are applied to the afore-described DOPPS data in Section 5. In

Section 6, we provide some discussion.

2. Proposed Methods

2.1 Set-up and Notation

Let N∗(t) denote the number of events that occur over the interval [0, t] and C denote the

follow-up or censoring time. Assume that N∗(·) and C are independent conditional on a p-

dimensional covariate vector Z. The observed event process is denoted as N(t) = N∗(t ∧C)

over the total observation window [0, τ ], where a ∧ b = min(a, b). In the set-up of interest,

we have a random sample of n individuals, with observed data {Ni(t), Ci,Zi; 0 6 t 6 τ}

(i = 1, . . . , n).

The proportional rates/means model (Lin et al., 2000) is commonly used to analyze

recurrent event data. This model formulates the mean function for N∗(·) is associated with

covariates Z as follows,

µZ(t) ≡ E{N∗(t)|Z} = µ0(t) exp(β0
′Z), (1)

where µ0(·) is an unknown baseline mean function of the marginal recurrent event process,

and β0 is an unknown vector of regression parameters. The estimating equation for β0 is

given by

U(β) =
n

∑

i=1

Ui(β) =
n

∑

i=1

∫ τ

0

{

Zi −
∑

k Yk(t)Zk exp(β
′Zk)

∑

k Yk(t) exp(β
′Zk)

}

dNi(t) = 0, (2)
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C-index for Recurrent Event Data 5

where Yi(t) = I(Ci > t) and I(·) is the indicator function. The solution of (2) is β̂, and the

Aalen-Breslow-type estimator for µ0(t) is µ̂(t).

2.2 Proposed C-index for Recurrent Events

Consider future observations on two independent patients indexed k = 1 and k = 2 with

observed data {N̊∗

k (C̊k), C̊k, Z̊k} for k = 1, 2. A natural way to evaluate the risk discrim-

ination ability of a recurrent event rate/mean model is to measure concordance between

the observed and predicted event counts over the time interval of common observation; i.e.,

µ̂Z1
(C̊1 ∧ C̊2) versus µ̂Z2

(C̊1 ∧ C̊2), given N̊∗

1 (C̊1 ∧ C̊2) and N̊∗

2 (C̊1 ∧ C̊2). We consider event

rate models which are monotone functions of the linear predictor, β′Z̊k. Without loss of

generality, assuming that µZk
(t) is monotone increasing in β′Z̊k, we propose summarizing

the model’s risk discrimination through the following C-index,

C(β) = Pr{β′Z̊1 > β′Z̊2|N̊∗

1 (C̊1 ∧ C̊2) > N̊∗

2 (C̊1 ∧ C̊2)}. (3)

Note that β may be derived from a score obtained from the existing literature, in which case

β in (3) could be replaced by a constant vector β0 to reflect the fact that the parameter

implied by the score is known with certainty. Conversely, the basis of the score may be an

event rate model fitted to the data at hand, such that β from (3) would be replaced by an

estimate β̂ to reflect its randomness. In the development that follows, we focus on the latter

case, keeping in the background the various simplifications that arise when β0 is known.

We propose that (3) be estimated by the proportion of pairs in which the risk prediction

scores and the observed event counts are concordant, as given by

Ĉ(β) =

∑n
i=1

∑n
j=1 I{Ni(Ci ∧ Cj) > Nj(Ci ∧ Cj)}I(β

′

Zi > β
′

Zj)
∑n

i=1

∑n
j=1 I{Ni(Ci ∧ Cj) > Nj(Ci ∧ Cj)}

. (4)

It is interesting to compare Ĉ(β) for recurrent event data to a concordance index for

survival data where a subject can have at most one event (e.g., death or time-to-first recurrent

event). Let Ti be the time-to-first event for the ith subject, with Xi = Ti∧Ci as the observed
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survival time, and set ∆i = I(Ti < Ci). For right-censored survival data, Harrell et al. (1996)

proposed a concordance index, which can be rewritten using counting process notation as

follows,

ĈS(β) =

∑n
i=1

∑n
j=1 ∆i I(Xi < Xj, β

′

Zi > β
′

Zj)
∑n

i=1

∑n
j=1 ∆i I(Xi < Xj)

(5)

=

∑n
i=1

∑n
j=1 I{Ni(Xi ∧Xj) > Nj(Xi ∧Xj)}I(β

′

Zi > β
′

Zj)
∑n

i=1

∑n
j=1 I{Ni(Xi ∧Xj) > Nj(Xi ∧Xj)}

.

In survival data, a simple derivation can show that Ĉ(β) = ĈS(β). However, when subjects

can experience multiple (recurrent) events, restricting responses to ‘time-to-first event’ can

result in reduced discriminatory power (i.e., ĈS < Ĉ). See Table 5 for an example.

We note that Ĉ(β̂) converges in probability to a censoring-dependent quantity

C0 = Pr{β′

0Z̊1 > β′

0Z̊2|N̊∗

1 (C̊1) > N̊∗

2 (C̊1), C̊1 6 C̊2},

provided that β̂ converges to a constant vector β0 as n goes to infinity. It is true regardless

whether the model (1) holds. For right-censored survival data, Gerds et al. (2013) showed that

Harrell’s estimator ĈS, which does not explicitly model the censoring mechanism, performed

as well as several existing Inverse Probability of Censoring Weighted C-index estimators.

Correspondingly, our simulation study also showed a good performance of the proposed C-

index even under violation of the assumption of conditionally independent censoring given

the predictors. Therefore, in the interests of practicality and computational simplicity, we

consider an unweighted version of the C-index.

The proposed C-index, Ĉ(β̂), discriminate event risk between subjects based on the esti-

mated linear predictor, β̂
′

Z, from a regression model. However, as implied earlier, an external

score determined independently of the data at hand could also be used. Examples include

quantities such as the Gail model for breast cancer risk (Gail and Mai, 2010); the Model

for End-Stage Liver Disease (MELD) score (Wiesner et al., 2003); and the Kidney Donor

Risk Index (KDRI) for deceased-donor kidneys (Rao et al., 2009). From this perspective,
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C-index for Recurrent Event Data 7

the true value, C0, simply represents the limiting value of the Ĉ with respect to a particular

score, irrespective of whether the risk score is based on the true model (or any model). If an

externally derived score is the basis of risk discrimination, a consistent variance estimator

can be obtained based on the first term in equation (6).

2.3 Variance Estimation

In the Appendix, we show that W =
√
n {Ĉ(β̂) − C0} is asymptotically normal with mean

zero and variance σ2. To estimate σ2, we use a resampling-based method. In particular, we

modify the perturbation resampling method by Uno et al. (2011) to the recurrent event

setting. Specifically, we first formulate W ∗, a perturbed version of W , then show that it has

the same limiting distribution as W . Then, σ2 can be estimated as the sample variance on

B realizations of W ∗.

First, we construct a perturbed W ∗ that depends on two sources of random variation,

β̂ and Ĉ(β) for a fixed β. Perturbation of both sources can be done by the same random

quantity, resampled from any known distribution with mean 1 and variance 1. For instance,

we use ǫ ∼ Exponential(1). By (repeatedly) generating a random variable {ǫi; i = 1, . . . , n},

a perturbed β̂ can be obtained by

β∗ = β̂ +

(

n

2

)

−1
∑

i<j

Â−1(β̂){Ui(β̂) + Uj(β̂)} ǫiǫj/2,

where Â(β) = −n−1∂U(β)/∂β. The β̂ perturbation is done through the estimating equation

for β0 in equation (2). To generate a perturbed counterpart of Ĉ(β), we define

Vij(β) =
I{Ni(Ci ∧ Cj) > Nj(Ci ∧ Cj)}{I(β

′

Zi > β
′

Zj)− Ĉ(β)}
n−2

∑n
i=1

∑n
j=1 I{Ni(Ci ∧ Cj) > Nj(Ci ∧ Cj)}

.

Then, a perturbed random variable W ∗ can be generated by

W ∗ =
√
n

(

n

2

)

−1
∑

i<j

{Vij(β̂) + Vji(β̂)} ǫiǫj/2 +
√
n {Ĉ(β∗)− Ĉ(β̂)}. (6)

Finally, a two-sided 95% confidence interval can be obtained by Ĉ(β̂)± 1.96 σ̂/
√
n, where σ̂
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is the sample standard deviation of W ∗, following the asymptotic normality of W ∗ shown in

the Appendix.

We note that the second term of (6) needs to assume that the risk prediction model

(at least the regression components) is correctly specified. This assumption can be avoided

by employing the nonparametric bootstrap. This gain in robustness is at the expense of

increased computation time. For instance, in our analysis of the DOPPS data (Section 4),

the model-based standard error estimates using (6) were very similar to the nonparametric

bootstrap estimates (see Tables 5 - 6), but took one third of the computing time required

for the nonparametric bootstrap.

3. Simulation

We evaluated the finite sample properties of the proposed estimator in (4) through a series

of simulation studies under scenarios which differed by the intensity of recurrent events and

the censoring mechanism. The recurrent event times were generated from a proportional

intensity model:

ΛZi
(t) = Λ0(t)γi exp(β1Z1i + β2Z2i), (7)

where Z1i ∼ Uniform[−1, 1], Z2i ∼ Bernoulli(0.5), and true (β1, β2)
′ = (1, 0.5). To vary the

intensity of recurrent events, we included a subject-specific random effect γi, following a

Gamma distribution with mean 1 and variance V = 0.01, 0.25, 0.5, or 1. As the V value

increased, an individual tended to experience more events, but a percentage of individuals

with zero event also increased. Hence a total number of observed events was similar across

different V values. To investigate sensitivity to the assumption on the censoring mechanism,

the censoring time Ci was generated from the following four scenarios:

1) Complete follow-up: Ci = τ for all i; set τ = 5

2) Completely independent censoring
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3) Covariate-dependent censoring

4) Outcome-dependent censoring

In Scenario 2, Ci was generated as the minimum of Uniform(1, τ + 2) and τ . In Scenario 3,

Ci was generated from Uniform(1, τ + 1) if Z2i = 0 and Exponential(1) + 1 if Z2i = 1, and

then truncated at τ . In Scenario 4, we set Ci = min(exp(γi), 100τ), which yielded Spearman

correlations between Ni(Ci)/Ci and Ci, ranging 0.05 ∼ 0.56. In Table 1, we fixed the baseline

intensity to Λ0(t) = 0.5 t for all scenarios, in order to demonstrate the dependence between

the censoring distribution and C-index, with the baseline intensity equal. In contrast, in

Table 2 Λ0(t) = νt differed across scenarios in order to demonstrate that similar C0 can result

from different censoring distributions. Specifically, ν was tuned to yield similar numbers of

comparable pairs among the different censoring scenarios; we set ν = 0.5 for Scenario 1,

ν = 1 for Scenario 2, and ν = 1.4 for Scenario 3. For each setting, the true value of C0

was approximated based on a random sample of {Zi, N
∗

i (·), Ci} from one hundred thousand

individuals under true β0. To compute Ĉ, we first fitted a proportional rates model, then

used the resulting estimates β̂ to compute the proposed C-index estimate from (4). Standard

errors were computed under the proposed perturbation resampling methods.

Simulation results based on 1000 replications and n = 200 are presented in Tables 1 - 3.

In each table, Bias equals the difference between the average of the C-index estimates and

the true value; SD is the empirical standard deviation of the parameter estimates; SEE is

the average of the standard error estimates; and CP is the coverage probability of the 95%

confidence intervals.

From Tables 1 - 2, we notice that C0 strictly decreased as: the baseline intensity (ν)

decreased; the frailty variance (V ) increased; and the marginal proportion of subjects with

zero observed events (P{Ni(τ) = 0}) increased. However, C0 appeared only to be weakly

dependent on the percentage of censored (unobserved) N∗(τ) and the specific form of cen-
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soring mechanism. In all settings we considered, including the outcome-dependent censoring

scenario, the proposed estimator showed good performance. That is, the Ĉ estimates were

unbiased, while the standard error estimates closely approximated the true variability in Ĉ.

In turn, CPs were close to the nominal level.

We also investigated the finite sample properties of the proposed Ĉ when the propor-

tional means model assumption was violated. Under this scenario, the additive rates model

E[dN∗

i (t)|Zi, γi] = {m0+γi+β1Z1i+β2Z2i}dt with m0 = 0.2 (Schaubel et al., 2006) was used

to generate recurrent event times, with the proportional means model used to develop a risk

score and to calculate the C-index. Table 3 shows that, even if the risk score development

model was different from the data generation model, Ĉ accurately estimated C0 with a

small sample size, where C0 is defined with respect to the assumed risk score development

model. The standard deviations of Ĉ were well estimated using the nonparametric bootstrap

method, whereas the model-based standard error estimates using equation (6) were slightly

over-estimated when the frailty variance increased to V = 1.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

4. Application

Dialysis Outcomes and Practice Patterns Study (DOPPS). The DOPPS is a prospective

multi-center international study of prevalent hemodialysis patients. Patients within each

DOPPS facility were randomly sampled, with the intention of preserving the key charac-

teristics of the base population of the selected facilities. Data were obtained from Arbor

Research Collaborative for Health, which founded and serves a data coordinating center for

the DOPPS. We analyzed data from DOPPS Phase 5, the most recently completed phase
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C-index for Recurrent Event Data 11

of the study. Patients were recruited for Phase 5 between 2012 and 2015. The total sample

size included approximately 17,000 prevalent hemodialysis patients, from 465 facilities in

19 different countries. Active follow-up began at entry to DOPPS and continued until the

earliest of death, receipt of a kidney transplant, switch to peritoneal dialysis, transfer to

another facility, or the end of the observation period (12/31/2015). Further detail regarding

the DOPPS is available in Robinson et al. (2012).

In the interests of constructing a cohort of (approximately) incident end-stage renal disease

patients, we included only patients with6 6 months on dialysis at DOPPS entry (n = 3, 692).

Our study cohort included patients from the following countries: Belgium, Canada, China,

Germany, the six Gulf Cooperation Council (GCC) countries (Bahrain, Qatar, Kuwait,

Oman, Saudi Arabia, and United Arab Emirates), Italy, Japan, Spain, Sweden and the

United Kingdom.

Objectives of Analysis. The recurrent event of interest is hospitalization (i.e., hospital

admission). Among the more than 140 peer-reviewed articles featuring the analysis of DOPPS

data, relatively few have involved evaluating the ability of the assumed regression model

to discriminate patients with respect to event risk. Motivated by this issue, we sought to

quantify the improvement in discrimination resulting from adjusting for country, and further

adjusting for an extensive list of comorbidity indicators. That is, we evaluate the improvement

in the model based on the successive inclusion of covariates representing key distinguishing

characteristics of DOPPS: its international component, and collection of information on an

extensive list of comorbid conditions.

Analysis of DOPPS Data. Of the n = 3, 692 incident patients identified, 49% and 46%

were dialyzing with fistulas and catheters, respectively, at the study entry. A mean follow-up

time was 14 months, and maximum follow-up was 4 years. In terms of hospitalizations, 55%

Page 12 of 27Biometrics
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of patients were never admitted, 20% were admitted once, 11% were admitted twice, and

14% were hospitalized >2 times.

Three different sets of potential confounding factors were considered for the risk of hos-

pitalization. Model 1 was the most basic model, and included age (15-year increments), sex

(ref: male), height (10-cm increments), duration of dialysis at DOPPS entry (ref: 3-6 month),

and two separate indicators for a graft and a catheter user (ref: fistula). In addition to the

afore-listed covariates, Model 2 further adjusted for country, while Model 3 adjusted for

country and the following 8 comorbid conditions: congestive heart failure, coronary artery

disease, cerebrovascular disease, peripheral vascular disease, chronic obstructive pulmonary

disease, diabetes, cancer, and neurological disorder. In Table 4, the estimated regression

coefficients for predictors in Model 3 are presented. The hospitalization rate was significantly

increased for patients with a graft or a catheter serving as vascular access, relative to arterial

vascular fistula (AVF). Each of the comorbid conditions was associated with a significantly

increased hospitalization rate. Canada, China, Italy and Spain each had significantly lower

hospitalization rates related to the United States. Three countries had significantly higher

hospitalization rates than the U.S.: Belgium, Germany and Sweden, with the latter estimated

to have the highest rate.

In Table 5, we compare C-index estimates for models with and without comorbidity and

country. The standard error estimate of Ĉ using the perturbation resampling method (see

Model-based SE) were compared with the nonparametric bootstrap estimate (see Robust

SE). Risk discrimination based on different models was compared through Ĉ∆, the difference

in Ĉ. To estimate the variance of Ĉ∆, we recommend using the nonparametric bootstrap

method since its validity does not require correctness of either of the models being compared.

Suppose Ĉ
(b)
∆ is the difference in C-index estimates obtained from the bth set of random

subjects. Then, the the robust SE of Ĉ∆ was obtained as the sample standard deviation of

Page 13 of 27 Biometrics
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C-index for Recurrent Event Data 13

B = 100 realizations of Ĉ
(b)
∆ . A two-sided 95% confidence interval Ĉ∆ ± 1.96 ∗ SE(Ĉ∆) can

be used for the test for no difference in Ĉs.

Table 5 shows that Model 1, having not adjusted for country and comorbidities, resulted

in Ĉ = 0.596. This implies that 59.6% of pairs were concordant, in the sense that pa-

tient predicted to have higher hospitalization risk had more hospital admissions during the

sub-interval of overlapping follow-up. By additionally including country in the model, the

discriminatory power of Model 2 improved to 63% concordance, and the improvement was

statistically significant at the level of .05 (Ĉ∆ = 3.4%, SE = 0.6%). Finally, Ĉ of Model

3 improved to 65.4% concordance by further adjusting for comorbidities; and Model 3 was

significantly better than Model 2 (Ĉ∆ = 2.5%, SE = 0.5%).

For comparison purposes, we also carried out a time-to-first event analysis, with the end-

point re-defined as the time to first hospital admission. We observed the ĈS decreased from

Ĉ when the time-to-first-hospitalization was used only (ĈS = 0.585, SE = 0.008 for Model

1; ĈS = 0.618, SE = 0.008 for Model 2; ĈS = 0.641, SE = 0.008 for Model 3). This can

be explained by the fact that the use of recurrent event data allowed a longer common

observation period for risk comparisons (i.e., Ci ∧ Cj was longer than Xi ∧ Xj), which, in

turn, increased the corresponding model’s discriminatory power.

For those countries with more than 300 patients (Canada, Germany, Japan and USA), we

have also carried out separate analyses by county and evaluated the country-specific models

using the proposed C-index. The country-specific models included the same set of predictors

(i.e., Model 1 + comorbidities), but the resulting C-index estimates were varying country

to country (Table 6). In particular, the model for Germany obtained the highest Ĉ = 0.654

(best in predicting a higher risk), whereas the model for USA yielded a noticeably lower

Ĉ = 0.619, comparing to Ĉ = 0.644 for Canada and Ĉ = 0.645 for Japan. The standard

error estimate for Ĉ consistently reduced as sample size increased.
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[Table 4 about here.]

[Table 5 about here.]

[Table 6 about here.]

5. Discussion

Using counting processes, we have developed a C-index applicable to recurrent event data.

Theoretical properties are derived under an assumed proportional rates model (Lin et al.,

2000). The proposed C-index can be interpreted as the fraction of concordant subject-pairs,

where concordance refers to the within-pair ordering of the linear predictor and the observed

number of events for the follow-up subinterval during which both subject are uncensored. The

measure reflects a rate model’s ability to discriminate subjects with respect to recurrent event

risk. The proposed C-index performed well in simulation studies. The use of perturbation

methods (in lieu of traditional closed-form variance computation) permits relatively quick

estimation of confidence intervals, and hence makes the proposed inference procedures quite

attractive computationally; this is an important property in the big data era.

In our analysis of hospitalization rates using data from Phase 5 of the Dialysis Outcomes

and Practice Patterns Study (DOPPS), Ĉ increased by approximately 0.03 upon the addition

of country to a model which contained demographic and basic clinical covariates, and then

increased by an additional ≈ 0.02 upon further adjustment for comorbidity indicators. These

increases are somewhat contrary to the reputation for insensitivity the C-index has earned

in the context of standard survival data. Further study would reveal whether this is due to

the nature of recurrent event data in general, or whether our real-data example is somewhat

of an anomaly. It is true that the C-index tends to be higher for logistic regression models

than for survival models, owing mostly to the latter being subject to censoring; e.g., see

Sharma et al. (2016). For right censored survival data, for a subject-pair to be usable, at
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C-index for Recurrent Event Data 15

least one member of the pair has to be an observed death. In contrast, for right censored

recurrent event data, all untied subject-pairs are usable, albeit during the subinterval of

overlapping follow-up (i.e., until the minimum of the two censoring times within-pair). In

the DOPPS analysis, we actually observed that C-index with recurrent event data was higher

than that with survival data. From this perspective, recurrent event data may lie in between

survival data and binary responses with respect to the typical sensitivity of the C-index to

the addition of model covariates.

6. Supplementary Materials

The source R codes for implementing the proposed methods are available with this paper at

the Biometrics website on Wiley Online Library.
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Appendix: Asymptotic properties of Ĉ(β̂)

To establish asymptotic properties of Ĉ(β̂), we impose the same regularity conditions as

those in Section 2 of Lin et al. (2000). We begin with the consistency of Ĉ(β̂). We define the

denominator of Ĉ(β) by

π̂ = n−2

n
∑

i=1

n
∑

j=1

I{Ni(Ci ∧ Cj) > Nj(Ci ∧ Cj)} = n−2

n
∑

i=1

n
∑

j=1

Iij.

Given that π̂ (as well as Ĉ(β)) is a functional of a U-process indexed by a class of indicator

functions, by a uniform law of large numbers for U-processes (Nolan and Pollard, 1987) and

the independent assumption between N∗ and C, we can show π̂ converges to Pr{N∗

1 (C1) >

N∗

2 (C1), C1 6 C2} in probability. Following the strong consistency of β̂ (Lin et al., 2000)
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and a uniform law of large numbers for U-processes of Ĉ(β), we can then show that

Ĉ(β̂) = n−2

n
∑

i=1

n
∑

j=1

IijI(β̂
′

Zi > β̂
′

Zj)/{n−2

n
∑

i=1

n
∑

j=1

Iij}

converges to C0 = Pr{β′

0Z1 > β′

0Z2 |N∗

1 (C1) > N∗

2 (C1), C1 6 C2} in probability.

To show the limiting distribution of W , we decompose W into

W =
√
n {Ĉ(β0)− C0}+

√
n {Ĉ(β̂)− Ĉ(β0)}. (8)

By a functional central limit theorem for U-processes (Nolan and Pollard, 1988), the first

term in (8) is asymptotically equivalent to, for a fixed β0,

√
n {Ĉ(β0)− C0} = n−3/2

n
∑

i=1

n
∑

j=1

Iij{I(β
′

0Zi > β
′

0Zj)− C0}/{n−2

n
∑

i=1

n
∑

j=1

Iij}

≈
√
n

(

n

2

)

−1
∑

i<j

{Vij(β0) + Vji(β0)}/2,

where Vij(β0) = Iij{I(β
′

0Zi > β
′

0Zj) − C0}[Pr{N∗

1 (C1) > N∗

2 (C1), C1 6 C2}]−1. Next, we

show that the second term in (8) is asymptotically equivalent to

√
n {Ĉ(β̂)− Ĉ(β0)} = ∂βC0

√
n (β̂ − β0) + op(1),

where ∂βC0 is an approximation of the first derivative of C0 with respect to β0. The proof

starts from the fact that for an indicator function, we can find at least one continuously

differentiable approximation function. For simplicity, let’s consider an indicator function

I(β) = 1 if β > 0, and I(β) = 0 otherwise. Then, there exists a continuously differentiable

function L(β, ν) such that, ∀β ∈ R, it holds that limν→∞ L(β, ν) = I(β), where

L(β, ν) =
1

1 + exp{−ν(β + 1/
√
ν)} .

The first derivative of L(β, ν) with respect to β is ∂L(β, ν)/∂β = ν exp{−ν(β + 1/
√
ν)}

[1+exp{−ν(β+1/
√
ν)}]−2. As ν goes to positive infinity, the limit of ∂L(β, ν)/∂β approaches

0 for any fixed β. Limits of higher order derivatives are bounded as well. By analogical

arguments, approximations of the first derivatives of C0 and Ĉ(β0) exist, and they are

denoted as ∂βC0 and ∂βĈ(β0), respectively. Now, applying the Taylor series expansion at β0
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from the consistency of β̂ yields

√
n {Ĉ(β̂)− Ĉ(β0)} ≈ ∂βĈ(β0)

√
n(β̂ − β0) + op(1).

We then show ∂βĈ(β0) converges to ∂βC0 in probability from the consistency of Ĉ(β) and

the continuity of C0. Note that the asymptotic expansion of
√
n (β̂−β0) shown by Lin et al.

(2000) can be re-written with respect to a U-statistic as follows:

√
n (β̂ − β0) ≈ n−1/2

n
∑

i=1

A−1(β0)Ui(β0)

=
√
n

(

n

2

)

−1
∑

i<j

A−1(β0){Ui(β0) + Uj(β0)}/2.

Finally, it then follows, by a functional central limit theorem for U-processes, that

W =
√
n

(

n

2

)

−1
∑

i<j

W̃ij + op(1) (9)

converges in distribution to a Gaussian process with zero mean and variance σ2 ≡ E(W̃12W̃13),

where W̃ij = {Vij(β0) + Vji(β0)}/2 + Ċ0 A
−1(β0){Ui(β0) + Uj(β0)}/2.

To approximate the distribution of W , we simulate a number of realizations from W ∗,

given by

W ∗ =
√
n

(

n

2

)

−1
∑

i<j

{Vij(β̂) + Vji(β̂)} ǫiǫj/2 +
√
n {Ĉ(β∗)− Ĉ(β̂)},

by repeatedly sampling {ǫi; i = 1, . . . , n}, conditioning on the observed data {Ni(t), Ci,Zi}.

Note that, from the consistency in β̂ and Ĉ, the limiting quantity of Vij(β̂) is Vij(β0). After

replacing all unknown quantities in W with their respective consistent estimates and limits,

the only random components in W ∗ are the i.i.d. {ǫi} that has mean one and variance one.

Therefore, the conditional distribution of W ∗ given {Ni(t), Ci,Zi} has the same limiting

distribution as W .
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Table 1

Simulation results for the proposed Ĉ based on n = 200. The baseline intensity function was set as Λ0(t) = 0.5 t
regardless of censoring scenarios.

V a Censb P{Ni(τ) = 0}c True Bias SD SEE CP

Complete Follow-up
0.01 0 % 8.9 % 0.804 0.002 0.016 0.017 94.7
0.25 0 % 12.9 % 0.745 0.001 0.020 0.020 95.5
0.5 0 % 17.5 % 0.707 0.002 0.022 0.022 94.9
1.0 0 % 25.4 % 0.667 -0.002 0.024 0.025 96.3

Completely independent Censoring
0.01 24.3 % 17.8 % 0.770 0.001 0.020 0.020 94.2
0.25 23.1 % 21.9 % 0.729 0.001 0.022 0.022 94.0
0.5 21.9 % 26.2 % 0.702 0.000 0.024 0.024 94.1
1.0 19.9 % 33.6 % 0.666 0.001 0.026 0.027 95.1

Covariate-dependent Censoring
0.01 42.6 % 25.8 % 0.749 0.001 0.022 0.022 94.8
0.25 40.9 % 30.0 % 0.717 0.003 0.024 0.025 93.9
0.5 38.7 % 34.0 % 0.696 0.002 0.025 0.026 94.7
1.0 35.2 % 40.7 % 0.667 0.001 0.028 0.028 94.6

Outcome-dependent Censoring
0.01 41.3 % 21.8 % 0.765 0.003 0.020 0.021 95.4
0.25 35.9 % 29.4 % 0.729 0.001 0.023 0.024 95.6
0.5 33.6 % 35.2 % 0.707 0.002 0.025 0.025 94.6
1.0 29.8 % 43.0 % 0.681 0.001 0.027 0.028 95.1

a the variance of frailty γi used for generating repeated events from model (7)
b 1− E[Ni(τ)]/E[N∗

i
(τ)]

c the marginal proportion of subjects with zero observed events
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Table 2

Simulation results for the proposed Ĉ based on n = 200. The baseline intensity function Λ0(t) = νt was varying with
different censoring scenarios.

ν V a Censb P{Ni(τ) = 0}c True Bias SD SEE CP

Complete Follow-up
0.5 0.01 0 % 8.9 % 0.804 0.002 0.016 0.017 94.7

0.25 0 % 12.9 % 0.745 0.001 0.020 0.020 95.5
0.5 0 % 17.5 % 0.707 0.002 0.022 0.022 94.9
1.0 0 % 25.4 % 0.667 -0.002 0.024 0.025 96.3

Completely independent Censoring
1.0 0.01 26.2 % 6.7 % 0.809 0.000 0.015 0.015 94.3

0.25 25.6 % 9.9 % 0.746 0.001 0.019 0.019 95.0
0.5 24.6 % 13.9 % 0.712 -0.002 0.021 0.022 95.3
1.0 22.6 % 21.2 % 0.664 0.000 0.023 0.024 95.2

Covariate-dependent Censoring
1.4 0.01 46.0 % 6.2 % 0.805 -0.001 0.015 0.016 95.9

0.25 45.3 % 9.6 % 0.744 0.001 0.019 0.020 94.2
0.5 44.2 % 13.9 % 0.708 0.001 0.021 0.022 95.3
1.0 41.2 % 21.2 % 0.664 0.001 0.023 0.025 95.5

a the variance of frailty γi used for generating repeated events from model (7)
b 1− E[Ni(τ)]/E[N∗

i
(τ)]

c the marginal proportion of subjects with zero observed events
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Table 3

Simulation results for the proposed Ĉ based on n = 200 under the misspecified risk prediction model. The baseline
intensity function was set as Λ0(t) = 0.2 t regardless of censoring scenarios.

Model-based Robust
V a Censb P{Ni(τ) = 0}c True Bias SD SEE CP SEE CP

Complete Follow-up
0.01 0 % 0.0 % 0.691 0.002 0.021 0.022 95.0 0.021 93.7
0.25 0 % 0.2 % 0.659 0.003 0.023 0.024 94.9 0.023 94.7
0.5 0 % 0.5 % 0.645 0.003 0.024 0.025 95.1 0.023 92.5
1.0 0 % 1.0 % 0.630 0.004 0.024 0.028 96.4 0.024 93.4

Completely independent Censoring
0.01 26.6 % 1.5 % 0.656 0.003 0.022 0.023 94.5 0.022 93.1
0.25 26.4 % 2.1 % 0.637 0.002 0.024 0.024 94.5 0.023 94.8
0.5 26.7 % 2.6 % 0.627 0.003 0.024 0.026 94.6 0.024 94.9
1.0 26.6 % 3.4 % 0.618 0.004 0.024 0.029 97.1 0.025 94.1

Covariate-dependent Censoring
0.01 46.1 % 3.2 % 0.633 0.003 0.024 0.025 95.8 0.024 94.3
0.25 46.2 % 3.9 % 0.622 0.002 0.025 0.026 95.4 0.024 95.2
0.5 46.1 % 4.8 % 0.615 0.004 0.024 0.027 97.4 0.025 94.8
1.0 45.9 % 6.1 % 0.610 0.004 0.024 0.030 96.8 0.026 94.1

a the variance of frailty γi used for generating repeated events from model (7)
b 1− E[Ni(τ)]/E[N∗

i
(τ)]

c the marginal proportion of subjects with zero observed events
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Table 4

Analysis of DOPPS data: Estimated covariate effects on hospitalization rates (based on Model 3).

Covariate β̂ SE p-value exp{β̂}
Age (per 15 yrs) -0.024 0.030 0.425 0.98
Female 0.100 0.065 0.127 1.11
Height (per 10 cm) 0.009 0.036 0.804 1.01
Dialysis 6 3 monthsa 0.027 0.056 0.626 1.03
Graft (ref: AVF) 0.510 0.111 <.0001 1.67
Catheter (ref: AVF) 0.454 0.058 <.0001 1.57
CHF 0.165 0.061 0.007 1.18
CAD 0.122 0.058 0.035 1.13
CeVD 0.142 0.060 0.019 1.15
PVD 0.163 0.059 0.006 1.18
COPD 0.221 0.071 0.002 1.25
Diabetes -0.001 0.052 0.984 1.00
Cancer 0.189 0.073 0.010 1.21
Neurological disease 0.292 0.076 0.0001 1.34
Belgium (ref: U.S.) 0.381 0.097 0.0001 1.46
Canada (ref: U.S.) -0.227 0.108 0.036 0.77
China (ref: U.S.) -0.386 0.191 0.043 0.68
Germany (ref: U.S.) 0.336 0.082 <.0001 1.40
Gulf (ref: U.S.) -0.181 0.115 0.115 0.83
Italy (ref: U.S.) -0.329 0.115 0.004 0.72
Japan (ref: U.S.) 0.001 0.097 0.996 1.00
Spain (ref: U.S.) -0.368 0.113 0.001 0.69
Sweden (ref: U.S.) 0.750 0.113 <.0001 2.12
UK (ref: U.S.) 0.134 0.111 0.226 1.14

Abbreviations: SE, standard error estimate; AVF, arterial vascular fistula; CHF,
congestive heart failure; CAD, coronary artery disease; CeVD, cerebrovascular disease;
PVD, peripheral vascular disease; COPD, chronic obstructive pulmonary disease; UK,
United Kingdom.

a Time since initiating dialysis as of DOPPS entry; ref: (3, 6] months.
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Table 5

Analysis of DOPPS data: Comparison of Ĉ for various models

Model-based Robust

Model Ĉ SE SE

1 0.596 0.008 0.007
2 0.630 0.008 0.008
3 0.654 0.008 0.008

Model comparison Ĉ∆ Robust SE

2 vs. 1 0.034 0.006
3 vs. 2 0.025 0.005

Model 1 included age, sex, height, duration of dialysis, vascular access
(AV fistula, AV graft, or tunneled catheter). Model 2 included all pre-
dictors in Model 1 + country (Belgium, Canada, China, Germany, Gulf,
Italy, Japan, Spain, Sweden, UK, or USA). Model 3 included all predictors
in Model 2 + comorbidity (congestive heart failure, coronary artery
disease, cerebrovascular disease, peripheral vascular disease, chronic ob-
structive pulmonary disease, diabetes, cancer, and neurological disorder).
SE is the standard error estimate.
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Table 6

Analysis of DOPPS data by country using Model 1 + comorbidities.

Hospitalization Model-based Robust

Country Sample Sizea Rateb Ĉ SE SE

Canada 315 6.7 0.644 0.030 0.030
Germany 359 10.8 0.654 0.023 0.023
Japan 631 5.0 0.645 0.022 0.021
USA 1,047 7.7 0.619 0.018 0.015

All 3,692 7.3 0.654 0.008 0.008

SE, standard error estimate
a patients
b per 100 patient-months
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