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Abstract
This paper studies the market viability with proportional

transaction costs. Instead of requiring the existence of

strictly consistent price systems as in the literature, we show

that strictly consistent local martingale systems (SCLMS)

can successfully serve as the dual elements such that the

market viability can be verified. We introduce two weaker

notions of no arbitrage conditions on market models named

no unbounded profit with bounded risk (NUPBR) and no

local arbitrage with bounded portfolios (NLABPs). In par-

ticular, we show that the NUPBR and NLABP conditions in

the robust sense are equivalent to the existence of SCLMS

for general market models. We also discuss the implications

for the utility maximization problem.
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1 INTRODUCTION

In the fundamental theorem of asset pricing with proportional transaction costs, consistent price sys-
tems (CPS) introduced by Jouini and Kallal (1995) and Cvitanić and Karatzas (1996) take the role of

the dual elements instead of the equivalent (local) martingale measures. The CPS (�̃�,ℚ) is defined as

follows:

Definition 1.1. Given the stock price (𝑆𝑡)𝑡∈[0,𝑇 ] with transaction cost (𝜆𝑡)𝑡∈[0,𝑇 ] such that 0 < 𝜆𝑡 < 1
a.s. for all 𝑡 ∈ [0, 𝑇 ], we call the pair (�̃�,ℚ) a CPS if

(1 − 𝜆𝑡)𝑆𝑡 ≤ �̃�𝑡 ≤ (1 + 𝜆𝑡)𝑆𝑡, ℙ-a.s. ∀𝑡 ∈ [0, 𝑇 ],
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where (�̃�𝑡)𝑡∈[0,𝑇 ] is a local martingale under ℚ and ℚ ∼ ℙ. Moreover, if we have

inf
𝑡∈[0,𝑇 ]

(
𝜆𝑡𝑆𝑡 − |𝑆𝑡 − �̃�𝑡|) > 0, ℙ-a.s.,

the pair (�̃�,ℚ) is said to be a strictly CPS (SCPS).

We should note that whether �̃� is required to be a local martingale or a true martingale in the above

definition depends on the numéraire and numéraire-based admissibility of self-financing portfolios;

see section 5 of Rásonyi and Schachermayer (2010) and Schachermayer (2015) for details. Sufficient

conditions for the existence of a CPS for stock price processes with strictly positive and continuous

paths have been extensively studied in the literature. One well-known example is the conditional full

support condition proposed by Guasoni, Rásonyi, and Schachermayer (2008). Other related sufficient

conditions are discussed in Bayraktar and Sayit (2010), Maris, Mbakop, and Sayit (2011), and Sayit and

Viens (2011). Recently, for continuous price processes, Rásonyi and Schachermayer (2010) built the

equivalence between the absence of arbitrage with general strategies for any small constant transaction

cost 𝜆 > 0 and the existence of a CPS for any small transaction cost 𝜆 > 0. Later, Guasoni, Lépinette,

and Rásonyi (2012) investigated the general càdlàg processes and linked two equivalent assertions,

i.e., the robust no free lunch with vanishing risk (NFLVR) for simple strategies and the existence of an

SCPS.

On the other hand, in the market without transaction costs, the existing literature analyzed models

that do not satisfy all the stringent requirements in the fundamental theorem of asset pricing. Compared

to the NFLVR condition on terminal wealth originally defined by Delbaen and Schachermayer (1994),

a weaker condition, which is called the no unbounded profit with bounded risk (NUPBR) condition in

Karatzas and Kardaras (2007), serves as a reasonable substitute so that one can still solve the classical

option hedging and utility maximization problems. Karatzas and Kardaras (2007), Becherer (2001),

Christensen and Larsen (2007), Imkeller and Perkowski (2015), and Choulli, Deng, and Ma (2015)

showed the equivalence between the NUPBR condition, the existence of a strictly positive local mar-

tingale deflator process, the existence of an optimal solution to the utility maximization problem, and

the existence of a numéraire portfolio.

Motivated by these results obtained in frictionless markets, we aim to determine a similar minimal

condition on the market with frictions under which the utility maximization problems still admit opti-

mal solutions. However, due to the special nature of transaction costs, definitions of self-financing and

admissibility of working portfolios differ from the usual ones on stochastic integrands for semimartin-

gales. It is revealed in this paper that we need the stock price process 𝑆 to simultaneously meet two

weaker conditions, i.e., the NUPBR and the no local arbitrage with bounded portfolios (NLABP) on

liquidation value processes in the robust sense of Definition 2.7. It is worth noting that our NUPBR

and NLABP conditions are still weaker than the NFLVR requirement in Guasoni et al. (2012) and even

if both NUPBR and NLABP are satisfied, an arbitrage opportunity may still exist in the market. The

main contribution of this paper is the equivalent characterization of the existence of a strictly consistent

local martingale systems (SCLMS) (�̃�, 𝑍), which is defined as follows.

Definition 1.2. Given the stock price (𝑆𝑡)𝑡∈[0,𝑇 ] with transaction cost 𝜆𝑡 ∈ (0.1) a.s. for all 𝑡 ∈ [0, 𝑇 ],
we call a pair (�̃�, 𝑍) a CLMS if �̃� is a semimartingale satisfying

(1 − 𝜆𝑡)𝑆𝑡 ≤ �̃�𝑡 ≤ (1 + 𝜆𝑡)𝑆𝑡, ℙ-a.s., ∀𝑡 ∈ [0, 𝑇 ],
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and there exists a strictly positive local martingale𝑍𝑡 with𝑍0 = 1 such that �̃�𝑡𝑍𝑡 is a local martingale.
We shall denote loc(𝜆) the set of all CLMS with transaction cost (𝜆𝑡)𝑡∈[0,𝑇 ]. Moreover, if

inf
𝑡∈[0,𝑇 ]

(
𝜆𝑡𝑆𝑡 − |𝑆𝑡 − �̃�𝑡|) > 0, ℙ-a.s.,

we shall call the pair (�̃�, 𝑍) an SCLMS and denote by 𝑠
loc(𝜆) the set of all SCLMS.

It is clear that the definition of a CLMS is a generalization of the classical CPS; i.e., any pair of

CPS is a CLMS. However, the opposite is not necessarily true as 𝑍 can be a strict local martingale.

In Section 4, some examples of market models are presented, which demonstrate that an SCLMS may

exist even when a CPS does not exist.

The second contribution of this paper is the result that shows that NUPBR and NLABP conditions

in the robust sense guarantee the existence of a solution to the utility maximization problem defined

on the terminal liquidation value. We also discuss the existence of a numéraire portfolio as a corollary.

Therefore, NUPBR and NLABP conditions in the robust sense serve as sufficient conditions on the

market viability in the sense that optimal portfolio problems admit solutions. Meanwhile, it is also

shown that the market viability implies that the corresponding𝑆 meets the NUPBR condition, although

not in the robust sense, which illustrates that our market assumptions are minimal conditions to some

extent.

To emphasize the mathematical differences between our setting and the frictionless market models in

the literature, we discuss different types of arbitrage opportunities with transaction costs. In particular,

we should point out that the NLABP condition in the main theorem is a new feature that appears

for the first time. The construction of arbitrage opportunities in our setting with transaction costs is

unique because the wealth process in frictionless market models has two counterparts, namely, the

liquidation value process (see (2.2)) and the cost value process (see (3.11)). This difference leads to

distinct arguments and proofs concerning the absence of arbitrage.

The rest of this paper is organized as follows: In Section 2, we introduce the market model with

transaction costs and define the NUPBR and NLABP conditions on the terminal liquidation value. The

equivalence between the NUPBR and NLABP conditions in the robust sense and the existence of the

SCLMS is stated at the end of this section. The proof of the main theorem is given in Section 3. In

Section 4, we discuss concrete examples of market models, for both continuous processes and jump

processes, in which a CPS fails to exist, but we can find an SCLMS. Section 5 discusses the utility

maximization problems under NUPBR and NLABP conditions in the robust sense. The discussion

of various types of arbitrage opportunities and the comparison to the frictionless market models are

provided in the first part of Section 6. In the second part of this section, we discuss our admissibility

criterion.

2 SETUP AND THE MAIN RESULT

The financial market consists of one risk-free bond 𝐵, normalized to be 1, and one risky asset 𝑆.

The given probability space (Ω, , (𝑡)𝑡∈[0,𝑇 ],ℙ) is assumed to satisfy all the usual conditions of right

continuity and completeness. 0 is assumed to be trivial. The following is a standing assumption that

will hold in the rest of the paper:

Assumption 2.1. (𝑆𝑡)𝑡∈[0,𝑇 ] is adapted to (𝑡)𝑡∈[0,𝑇 ] with strictly positive and locally bounded càdlàg
paths. The transaction cost process (𝜆𝑡)𝑡∈[0,𝑇 ] is adapted to (𝑡)𝑡∈[0,𝑇 ] with càdlàg paths such that
𝜆𝑡 ∈ (0, 1) a.s. for all 𝑡 ∈ [0, 𝑇 ].
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We adopt the notion of self-financing admissible strategies defined in Schachermayer (2015):

Definition 2.2. A self-financing trading strategy starting with zero is a pair of predictable, finite vari-
ation processes (𝜙0

𝑡 , 𝜙
1
𝑡 )𝑡∈[0,𝑇 ] such that

(1) 𝜙0
0 = 𝜙1

0 = 0,

(2) denoting by 𝜙0
𝑡 = 𝜙0,↑

𝑡 − 𝜙0,↓
𝑡 and 𝜙1

𝑡 = 𝜙1,↑
𝑡 − 𝜙1,↓

𝑡 , the canonical decompositions of 𝜙0 and 𝜙1

into the difference of two increasing processes, starting at 𝜙0,↑
0 = 𝜙0,↓

0 = 𝜙1,↑
0 = 𝜙1,↓

0 = 0, these
processes satisfy

𝜙0,↑
𝑡 ≤ ∫

𝑡

0
(1 − 𝜆𝑢)𝑆𝑢𝑑𝜙

1,↓
𝑢 , 𝜙0,↓

𝑡 ≥ ∫
𝑡

0
(1 + 𝜆𝑢)𝑆𝑢𝑑𝜙

1,↑
𝑢 , a.s. for 0 ≤ 𝑡 ≤ 𝑇 , (2.1)

where the two integrals in (2.1) are defined as predictable Stieltjes integrals and

∫
𝑡

𝑠

(1−𝜆𝑢)𝑆𝑢𝑑𝜙
1,↓
𝑢 ≜ ∫

𝑡

𝑠

(1 − 𝜆𝑢)𝑆𝑢𝑑𝜙
1,↓,𝑐
𝑢 +

∑
𝑠<𝑢≤𝑡

(1 − 𝜆𝑢−)𝑆𝑢− △ 𝜙1,↓
𝑢 +

∑
𝑠≤𝑢<𝑡

(1 − 𝜆𝑢)𝑆𝑢 △+ 𝜙1,↓
𝑢

and

∫
𝑡

𝑠

(1 + 𝜆𝑢)𝑆𝑢𝑑𝜙
1,↑
𝑢 ≜ ∫

𝑡

𝑠

(1+𝜆𝑢)𝑆𝑢𝑑𝜙
1,↑,𝑐
𝑢 +

∑
𝑠<𝑢≤𝑡

(1 + 𝜆𝑢−)𝑆𝑢− △ 𝜙1,↑
𝑢 +

∑
𝑠≤𝑢<𝑡

(1 + 𝜆𝑢)𝑆𝑢 △+ 𝜙1,↑
𝑢 .

Here, △𝜙𝑡 ≜ 𝜙𝑡 − 𝜙𝑡− and △+𝜙𝑡 ≜ 𝜙𝑡+ − 𝜙𝑡. As discussed in Schachermayer (2015), because 𝑆
is càdlàg , we need to take care of both left and right jumps of the portfolio process 𝜙. In general,
three values 𝜙𝜏−, 𝜙𝜏 , and 𝜙𝜏+ can be different. If the stopping time 𝜏 is totally inaccessible, the
predictability of 𝜙 implies that △𝜙𝜏 = 0 almost surely. But if the stopping time 𝜏 is predictable,
it may happen that both △𝜙𝜏 ≠ 0 and △+𝜙𝜏 ≠ 0.

In general, for any càdlàg process 𝑋 and predictable finite variation process 𝜙, the predictable
Stieltjes integral above can be rewritten as

∫
𝑡

0
𝑋𝑢𝑑𝜙𝑢 = ∫

𝑡

0
𝑋𝑢𝑑𝜙𝑢− −

∑
𝑠≤𝑡

(𝜙𝑠 − 𝜙𝑠−)△𝑋𝑠.

(See appendix A of Guasoni et al., 2012, for a detailed discussion on predictable Stieltjes integrals.)
At the initial time, we assume that the investor starts with the position (𝑥, 0) in bond and stock assets

for the given constant 𝑥 ≥ 0. The trading strategy 𝜙 = (𝜙0, 𝜙1) is called 𝑥-admissible if the liquidation
value 𝑉 liq,𝑥

𝑡 satisfies

𝑉
liq,𝑥
𝑡 (𝜙0, 𝜙1) ≜ 𝑥 + 𝜙0

𝑡 +
(
𝜙1
𝑡

)+ (1 − 𝜆𝑡)𝑆𝑡 −
(
𝜙1
𝑡

)− (1 + 𝜆𝑡)𝑆𝑡 ≥ 0, (2.2)

ℙ-a.s. for 𝑡 ∈ [0, 𝑇 ]. We shall denote 𝑥(𝜆) (short as 𝑥) as the set of all 𝑥-admissible portfolios with
the transaction cost (𝜆𝑡)𝑡∈[0,𝑇 ] and let  =

⋃
𝑥≥0𝑥. Moreover, we will also denote 𝑥(𝜆) as the set

of the terminal liquidation value 𝑉 liq
𝑇

under the admissible portfolio (𝜙0, 𝜙1) ∈ 𝑥(𝜆).

Parallel to the frictionless market, a weak no arbitrage condition can be defined via the boundedness

in probability property of some target subset of 𝕃0. The following definition of NUPBR is analogous

to that of Karatzas and Kardaras (2007).
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Definition 2.3. We say that 𝑆 admits an unbounded profit with bounded risk (UPBR) with the trans-
action cost 𝜆 if there exists a sequence of admissible portfolios (𝜙0,𝑛, 𝜙1,𝑛)𝑛∈ℕ in 1(𝜆) and the corre-
sponding terminal liquidation value (𝑉 liq,1

𝑇
(𝜙0,𝑛, 𝜙1,𝑛))𝑛∈ℕ is unbounded in probability, i.e.,

lim
𝑚→∞

sup
𝑛∈ℕ

ℙ
(
𝑉

liq,1
𝑇

(𝜙0,𝑛, 𝜙1,𝑛) ≥ 𝑚
)
> 0. (2.3)

If no such sequence exists, we say that the stock price process 𝑆 satisfies the NUPBR condition under
the transaction cost 𝜆.

In order to provide the sufficient and necessary conditions on the existence of SCLMS, we also

need to introduce another weak no arbitrage condition. To this end, let bd
𝑥 (𝜆) (short as bd

𝑥 ) denote

the 𝑥-admissible bounded portfolios such that the position in the stock is uniformly bounded by some

constant 𝑀 > 0 in the following sense:

bd
𝑥 (𝜆) ≜ {(𝜙0, 𝜙1) ∶ |𝜙1

𝑡 | ≤ 𝑀, ℙ-a.s., 𝑡 ∈ [0, 𝑇 ] for some 𝑀 > 0 where (𝜙0, 𝜙1) ∈ 𝑥(𝜆)}. (2.4)

Moreover, we denote bd =
⋃

𝑥≥0bd
𝑥 .

Definition 2.4. We say that 𝑆 satisfies NLABPs with the transaction cost 𝜆 if there exists a sequence of
stopping times 𝜏𝑛 ↗ 𝑇 as 𝑛 → ∞ such that for each 𝑛 ∈ ℕ, we cannot find (𝜙0,𝑛, 𝜙1,𝑛) ∈ bd(𝜆) that
satisfies

ℙ
(
𝑉

liq,0
𝜏𝑛

(𝜙0,𝑛, 𝜙1,𝑛) ≥ 0
)
= 1 and ℙ

(
𝑉

liq,0
𝜏𝑛

(𝜙0,𝑛, 𝜙1,𝑛) > 0
)
> 0. (2.5)

It is noted that the NUPBR condition is defined on the set 𝑥 for a fixed 𝑥 > 0, for instance 𝑥 = 1,

which is consistent with the definition of the utility maximization problem with a fixed initial position.

The NLABP condition is defined for all admissible portfolios on the set . However, these two defini-

tions are consistent because if we have a sequence of portfolios in 1 that leads to UPBR; by rescaling,

we also obtain UPBR for any 𝑥, 𝑥 > 0.

For the completeness of the paper as well as the comparison between different concepts, the standard

no arbitrage condition on liquidation values is provided next.

Definition 2.5. We say that 𝑆 admits arbitrage with the transaction costs 𝜆 if there exits an admissible
portfolio (𝜙0, 𝜙1) ∈ (𝜆) such that

𝑉
liq,0
0 (𝜙0, 𝜙1) = 0, ℙ

(
𝑉

liq,0
𝑇

(𝜙0, 𝜙1) ≥ 0
)
= 1 and ℙ

(
𝑉

liq,0
𝑇

(𝜙0, 𝜙1) > 0
)
> 0.

If no such portfolio exists, we say that the stock price process 𝑆 satisfies the NA condition under the
transaction cost 𝜆.

Remark 2.6. Comparing Definitions 2.4 and 2.5, it is clear that our NLABP is equivalent to the NA
condition with bounded portfolios for a localizing sequence {𝜏𝑛}𝑛∈ℕ. It is important to note that (NA)
⇒ (NLABP); however, (NLABP) does not imply (NA) in general. We refer the reader to a discussion
and example 3.1 in section 3 of Choulli et al. (2015) noting that NA can hold locally but fail globally
in frictionless markets. Moreover, the NUPBR condition and the NLABP condition may not imply
each other. Given the assumption that NUPBR and NLABP are satisfied, we may still have arbitrage
opportunities at time 𝑇 using some unbounded 𝑥-admissible portfolios (𝜙0, 𝜙1) ∈ 𝑥. The NFLVR
condition in Guasoni et al. (2012) clearly implies both NUPBR and NLABP; therefore, we claim that
our conditions are weaker assumptions on market models than the usual conditions in the literature.
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Some slightly stronger conditions are needed for the main result of this paper.

Definition 2.7. We say that 𝑆 satisfies the NUPBR and NLABP conditions with the transaction cost 𝜆
in the robust sense if there exist another stock price process (𝑆′

𝑡 )𝑡∈[0,𝑇 ] and the transaction cost process
(𝜆′𝑡)𝑡∈[0,𝑇 ] satisfying Assumption 2.1 such that

inf
𝑡∈[0,𝑇 ]

(
(1 + 𝜆𝑡)𝑆𝑡 − (1 + 𝜆′𝑡)𝑆

′
𝑡

)
> 0 a.s. and inf

𝑡∈[0,𝑇 ]

(
(1 − 𝜆′𝑡)𝑆

′
𝑡 − (1 − 𝜆𝑡)𝑆𝑡

)
> 0, a.s.

and the stock price process 𝑆′ satisfies the NUPBR and NLABP conditions at the same time with
the transaction cost 𝜆′. In particular, if we only consider the case where the stock price process 𝑆′

satisfies the NUPBR condition with the transaction cost 𝜆′, we say that 𝑆 satisfies the robust NUPBR
(RNUPBR) with the transaction cost 𝜆.

As the main result of this paper, the following theorem provides the equivalence between NUPBR

and NLABP conditions in the robust sense and the existence of SCLMS. Its proof is delivered in the

next section.

Theorem 2.8. The following two assertions are equivalent:

(1) 𝑆 satisfies the NUPBR and NLABP conditions with the transaction cost 𝜆 in the robust sense of
Definition 2.7.

(2) There exists an SCLMS (�̃�, 𝑍) for the market with transaction cost 𝜆, i.e., 𝑠
loc(𝜆) ≠ ∅.

Remark 2.9. Compared to the frictionless markets in which we have the equivalence between the
NUPBR condition on terminal wealth and the existence of local martingale deflators (see Karatzas and
Kardaras, 2007), our equivalence characterization in the markets with transaction costs involves two
conditions, i.e., NUPBR and NLABP. The self-financing and admissibility conditions in our framework
are more restrictive than those in frictionless markets and different types of convergence are required
in the two settings. For example, some convergence results for predictable Stieltjes integrals (theorem
A.9 of Guasoni et al., 2012) and the integration by parts formula (proposition A.16 of Guasoni et al.,
2012) play important roles in our proof; however, the literature in frictionless markets relies on the
convergence results of stochastic integrals w.r.t. semimartingales.

Actually, in frictionless markets, the NLABP condition on wealth processes may always hold because
either there is no local arbitrage (LA) for the wealth process (𝐻 ⋅ 𝑆) or there is an LA but the portfolio
process 𝐻 is not necessarily bounded but is usually only required to be predictable and 𝑆-integrable.
On the other hand, our stock price process 𝑆 is not necessarily a semimartingale and the liquidation
value process lacks the supermartingale property, which is naturally possessed by each wealth pro-
cess discounted by local martingale deflators in frictionless markets. For the equivalence between the
NUPBR condition and the existence of local martingale deflators in models without transaction costs,
the proof in Takaoka and Schweizer (2014) relies on the fact that the numéraire portfolio process is a
supermartingale and a change of the numéraire and the proof in Karatzas and Kardaras (2007) is based
on some probability characteristics of the semimartingale price process 𝑆. However, these results no
longer hold in our setting. As discussed in Section 5, we do not expect the numéraire portfolio process
to be a supermartingale. Some new ideas to support the proof of the equivalence in Theorem 2.8 are
required. In particular, both NUPBR and NLABP are needed to guarantee our main result.
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3 PROOF OF THE THEOREM 2.8

The proof of Theorem 2.8 is split into several steps. We first show that (2) ⇒ (1).

3.1 Proof of (𝟐) ⇒ (𝟏)

Proposition 3.1. If there exists an SCLMS (�̃�, 𝑍𝑡) ∈ 𝑠
loc(𝜆), the stock price process 𝑆 satisfies the

NUPBR and NLABP conditions with the transaction cost 𝜆 in the robust sense.

Proof. Due to the existence of an SCLMS (�̃�, 𝑍) such that inf 𝑡∈[0,𝑇 ](𝜆𝑡𝑆𝑡 − |𝑆𝑡 − �̃�𝑡|) > 0 a.s., we

can define 𝜉𝑡 = inf 𝑠∈[0,𝑡](𝜆𝑠𝑆𝑠 − |𝑆𝑠 − �̃�𝑠|) and get that 𝜉𝑡 > 0 a.s. for all 𝑡 ∈ [0, 𝑇 ]. Moreover, it is

easy to see that

(1 − 𝜆𝑡)𝑆𝑡 + 𝜉𝑡
𝜆𝑡

1 + 𝜆𝑡
< �̃�𝑡 < (1 + 𝜆𝑡)𝑆𝑡 − 𝜉𝑡

𝜆𝑡
1 + 𝜆𝑡

a.s. ∀𝑡 ∈ [0, 𝑇 ],

as 0 < 𝜆𝑡
1+𝜆𝑡

< 1. We can therefore choose 𝑆′
𝑡 = 𝑆𝑡 for all 𝑡 ∈ [0, 𝑇 ] and 𝜆′𝑡 = 𝜆𝑡 − 𝜉𝑡

𝜆𝑡
(1+𝜆𝑡)𝑆𝑡

. First of

all, it is straightforward to verify that

inf
𝑡∈[0,𝑇 ]

((
1 − 𝜆′𝑡

)
𝑆′
𝑡 − (1 − 𝜆𝑡)𝑆𝑡

)
> 0, a.s.

and inf
𝑡∈[0,𝑇 ]

(
(1 + 𝜆𝑡)𝑆𝑡 −

(
1 + 𝜆′𝑡

)
𝑆′
𝑡

)
> 0, a.s.

as well as inf 𝑡∈[0,𝑇 ](𝜆′𝑡𝑆
′
𝑡 − |𝑆′

𝑡 − �̃�𝑡|) > 0 a.s. Also, it holds that 0 < 𝜆′𝑡 < 1 for 𝑡 ∈ [0, 𝑇 ]. To see this,

it is sufficient to show that

0 <
𝜉𝑡

(1 + 𝜆𝑡)𝑆𝑡

< 1 a.s. ∀𝑡 ∈ [0, 𝑇 ],

which is a direct consequence of the definition of (𝜉𝑡)𝑡∈[0,𝑇 ].
Thus, it is enough to prove that the smaller spread [(1 − 𝜆′𝑡)𝑆

′
𝑡 , (1 + 𝜆′𝑡)𝑆

′
𝑡 ] satisfies the NUPBR and

NLABP conditions with the transaction cost 𝜆′. Denote by 1(𝜆′;𝑆′) the set of terminal liquidation

value under 1-admissible self-financing portfolios. We first show that 1(𝜆′;𝑆′) is bounded in proba-

bility. To this end, let us first verify that

sup
𝑉

liq,1
𝑇

∈1(𝜆′;𝑆′)
𝔼
[
𝑉

liq,1
𝑇

𝑍𝑇

]
< ∞. (3.1)

�̃�𝑍 is a local martingale by the definition of SCLMS (�̃�, 𝑍). We claim that for any admissible portfolio

𝜙 ∈ 1(𝜆′;𝑆′), the following holds:

𝑉
liq,1
𝑡 (𝜙0, 𝜙1) ≤ 1 + ∫

𝑡

0
𝜙1
𝑢𝑑�̃�𝑢 a.s. ∀𝑡 ∈ [0, 𝑇 ], (3.2)

where ∫ 𝑡

0 𝜙
1
𝑢𝑑�̃�𝑢 is interpreted as a stochastic integral. The liquidation value process can also be rewrit-

ten as

𝑉
liq,1
𝑡 (𝜙0, 𝜙1) = 1 + 𝜙0

𝑡 + 𝜙1
𝑡 𝑆

′
𝑡 − 𝜆′𝑡

|||𝜙1
𝑡
|||𝑆′

𝑡 .
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Using integration by parts (see proposition A.16 of Guasoni et al., 2012), we obtain

𝑉
liq,1
𝑡 −

(
1 + ∫

𝑡

0
𝜙1
𝑢𝑑�̃�𝑢

)
= 𝜙0

𝑡 + 𝜙1
𝑡 𝑆

′
𝑡 − 𝜙1

𝑡 �̃�𝑡 + ∫
𝑡

0
�̃�𝑢𝑑𝜙

1
𝑢 − 𝜆′𝑡

|||𝜙1
𝑡
|||𝑆′

𝑡

= 𝜙0
𝑡 + ∫

𝑡

0
�̃�𝑢𝑑𝜙

1
𝑢 + 𝜙1

𝑡

(
𝑆′
𝑡 − �̃�𝑡

)
− 𝜆′𝑡

|||𝜙1
𝑡
|||𝑆′

𝑡 , (3.3)

where the ∫ 𝑡

0 �̃�𝑢𝑑𝜙
1
𝑢 is a predictable Stieltjes integral. By (2.1) and the fact (1 − 𝜆′𝑡)𝑆

′
𝑡 < �̃�𝑡 < (1 +

𝜆′𝑡)𝑆
′
𝑡 a.s. for all 𝑡 ∈ [0, 𝑇 ], we have that 𝜙0

𝑡 + ∫ 𝑡

0 �̃�𝑢𝑑𝜙
1
𝑢 ≤ 0 and

𝜙1
𝑡

(
𝑆′
𝑡 − �̃�𝑡

)
− 𝜆′𝑡

|||𝜙1
𝑡
|||𝑆′

𝑡 ≤ 0, a.s. ∀𝑡 ∈ [0, 𝑇 ],

which implies that 𝑉
liq,1
𝑡 (𝜙0, 𝜙1) ≤ 1 + ∫ 𝑡

0 𝜙
1
𝑢𝑑�̃�𝑢 a.s. for 𝑡 ∈ [0, 𝑇 ].

Let 𝑋𝑡 = 1 + ∫ 𝑡

0 𝜙
1
𝑢𝑑�̃�𝑢. The integration by parts formula yields that

𝑍𝑡𝑋𝑡 = 1 + ∫
𝑡

0

(
𝑋𝑢− − 𝜙1

𝑢�̃�𝑢−
)
𝑑𝑍𝑢 + ∫

𝑡

0
𝜙1
𝑢𝑑(�̃�𝑢𝑍𝑢).

Due to the Ansel–Stricker theorem (see Ansel & Stricker, 1994), we get 𝑍𝑡𝑋𝑡 is a local martingale and

therefore a supermartingale as 𝑋𝑡 ≥ 𝑉
liq,1
𝑡 (𝜙0, 𝜙1) ≥ 0.

Therefore, it follows that

𝔼
[
𝑉

liq,1
𝑇

𝑍𝑇

] ≤ 𝔼[𝑋𝑇𝑍𝑇 ] ≤ 𝑋0𝑍0 = 1.

The fact that the right-hand side is independent of the choice of 𝑉
liq,1
𝑇

yields that (3.1) holds true.

By (3.1) and the fact that𝑍𝑡 is strictly positive for all 𝑡 ∈ [0, 𝑇 ] and hence𝑍𝑇 > 0, ℙ-a.s., lemma 3.2

of Imkeller and Perkowski (2015) implies that the set 1(𝜆′;𝑆′) is bounded in probability. Therefore,

the conclusion holds that 𝑆′ satisfies the NUPBR condition.

On the other hand, to show that 𝑆′ satisfies the NLABP condition is straightforward. Due to the fact

that �̃�𝑍 and 𝑍 are local martingales, there exists a localizing sequence {𝜏𝑛}𝑛∈ℕ such that �̃�𝑡∧𝜏𝑛𝑍𝑡∧𝜏𝑛
and 𝑍𝑡∧𝜏𝑛 are true martingales. For the same sequence {𝜏𝑛}𝑛∈ℕ, suppose that for some 𝑛 ∈ ℕ, there

exists some bounded admissible portfolio (𝜙0, 𝜙1) ∈ bd(𝜆) such that (2.5) holds for the stopping time

𝜏𝑛. Define the probability measure ℚ ∼ ℙ by
𝑑ℚ
𝑑ℙ = 𝑍𝜏𝑛

. It follows that �̃�𝑡∧𝜏𝑛 is a martingale under ℚ.

Moreover, as |𝜙1
𝑡 | ≤ 𝑀 a.s. for some 𝑀 > 0, the stochastic integral ∫ 𝑡∧𝜏𝑛

0 𝜙1
𝑢𝑑�̃�𝑢 is a true martingale

under ℚ. Therefore, we can deduce that

𝔼ℚ
[
𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1)
] ≤ 𝔼ℚ

[
∫

𝜏𝑛

0
𝜙1
𝑢𝑑�̃�𝑢

]
= 0.

However, this is a contradiction to ℚ(𝑉 liq,0
𝜏𝑛

(𝜙0, 𝜙1) ≥ 0) = 1 and ℚ(𝑉 liq,0
𝜏𝑛

(𝜙0, 𝜙1) > 0) > 0 by the fact

that ℚ ∼ ℙ as well as (2.5). Therefore, we obtain a sequence of stopping times 𝜏𝑛 ↗ 𝑇 that satisfies

Definition 2.4 and 𝑆′ satisfies the NLABP condition. □
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3.2 Proof of (𝟏) ⇒ (𝟐)
The proof of this direction requires more preparation. To begin with, it is noted that the set 𝑥(𝜆) itself

is not convex. We thereby shall consider its solid hull defined by

(1) ≜ {
𝑉 ∈ 𝕃0+ ∶ 𝑉 ≤ 𝑉

liq,1
𝑇

∈ 1(𝜆)
}
. (3.4)

Clearly, (𝑥) = {𝑉 ∈ 𝕃0+ ∶ 𝑉 ≤ 𝑉
liq,𝑥

𝑇
∈ 𝑥(𝜆)} = 𝑥(1) and (𝑥) is convex and solid.

Lemma 3.2. If the stock price process (𝑆𝑡)𝑡∈[0,𝑇 ] satisfies RNUPBR with the transaction cost (𝜆𝑡)𝑡∈[0,𝑇 ],
the set {‖𝜙1‖𝑇 ∶ (𝜙0, 𝜙1) ∈ 1(𝜆;𝑆)}, where ‖𝜙1‖𝑇 denotes the total variation of 𝜙1 on [0, 𝑇 ], is
bounded in probability.

Proof. Let (𝜆′, 𝑆′) be as in Definition 2.7. For any 𝜙 = (𝜙0, 𝜙1) ∈ 1(𝜆;𝑆) ⊂ 1(𝜆′;𝑆′), we have

0 ≤ 𝑉
liq,1;𝑆,𝜆
𝑡 (𝜙0, 𝜙1) ≤ 1 + ∫

𝑡

0
(1 − 𝜆𝑢)𝑆𝑢𝑑𝜙

1,↓
𝑢 − ∫

𝑡

0
(1 + 𝜆𝑢)𝑆𝑢𝑑𝜙

1,↑
𝑢 + 𝜙1

𝑡 𝑆𝑡 − 𝜆𝑡
|||𝜙1

𝑡
|||𝑆𝑡

= 1 + ∫
𝑡

0

(
1 − 𝜆′𝑢

)
𝑆′
𝑢𝑑𝜙

1,↓
𝑢 − ∫

𝑡

0

(
1 + 𝜆′𝑢

)
𝑆′
𝑢𝑑𝜙

1,↑
𝑢 + 𝜙1

𝑡 𝑆
′
𝑡 − 𝜆′𝑡

|||𝜙1
𝑡
|||𝑆′

𝑡

− ∫
𝑡

0

((
1 − 𝜆′𝑢

)
𝑆′
𝑢 − (1 − 𝜆𝑢)𝑆𝑢

)
𝑑𝜙1,↓

𝑢 − ∫
𝑡

0

(
(1 + 𝜆𝑢)𝑆𝑢 −

(
1 + 𝜆′𝑢

)
𝑆′
𝑢

)
𝑑𝜙1,↑

𝑢

+ 𝜙1
𝑡

(
𝑆𝑡 − 𝑆′

𝑡

)
− |||𝜙1

𝑡
||| (𝜆𝑡𝑆𝑡 − 𝜆′𝑡𝑆

′
𝑡

)
a.s. ∀𝑡 ∈ [0, 𝑇 ].

(3.5)

Let us define 𝜉𝑡 = inf 𝑠≤𝑡((1 − 𝜆′𝑠)𝑆
′
𝑠 − (1 − 𝜆𝑠)𝑆𝑠) and 𝜂𝑡 = inf 𝑠≤𝑡((1 + 𝜆𝑠)𝑆𝑠 − (1 + 𝜆′𝑠)𝑆

′
𝑠). Because

𝜙1
𝑡 (𝑆𝑡 − 𝑆′

𝑡 ) − |𝜙1
𝑡 |(𝜆𝑡𝑆𝑡 − 𝜆′𝑡𝑆

′
𝑡 ) < 0 for all 𝑡 ∈ [0, 𝑇 ], it follows from (3.5) that

(𝜉𝑇 ∧ 𝜂𝑇 )‖𝜙1‖𝑇 ≤ ∫
𝑇

0

((
1 − 𝜆′𝑢

)
𝑆′
𝑢 −

(
1 − 𝜆𝑢

)
𝑆𝑢

)
𝑑𝜙1,↓

𝑢 + ∫
𝑇

0

((
1 + 𝜆𝑢

)
𝑆𝑢 −

(
1 + 𝜆′𝑢

)
𝑆′
𝑢

)
𝑑𝜙1,↑

𝑢

≤ 1 + ∫
𝑇

0

(
1 − 𝜆′𝑢

)
𝑆′
𝑢𝑑𝜙

1,↓
𝑢 − ∫

𝑇

0

(
1 + 𝜆′𝑢

)
𝑆′
𝑢𝑑𝜙

1,↑
𝑢 + 𝜙1

𝑇
𝑆′
𝑇
− 𝜆′

𝑇
|||𝜙1

𝑇
|||𝑆′

𝑇

= 𝑉
liq,1;𝑆′,𝜆′

𝑇
a.s.

The assumption that 𝑆 satisfies the RNUPBR condition on [0, 𝑇 ] yields that 1(𝜆′;𝑆′) is bounded in

probability. By assumption 𝜉𝑇 > 0 and 𝜂𝑇 > 0 a.s. and lemma 3.1 of Guasoni (2002), we obtain that

the set {‖𝜙‖𝑇 , 𝜙 ∈ 1(𝜆;𝑆)} is bounded in probability. □

The proof of the following result is also crucial in establishing the existence of the optimal solution

of the utility maximization problem as well as the existence of a numéraire portfolio in Section 5.

Proposition 3.3. If (𝑆𝑡)𝑡∈[0,𝑇 ] satisfies the RNUPBR with transaction cost (𝜆𝑡)𝑡∈[0,𝑇 ], the set (1) is
closed under convergence in probability.

Proof. Take a sequence 𝑉 𝑛
𝑇
∈ (1) such that 𝑉 𝑛

𝑇
→ 𝑉𝑇 in probability. By passing to a subsequence,

we can assume without loss of generality that 𝑉 𝑛
𝑇
→ 𝑉𝑇 a.s. The proof boils down to proving that

𝑉𝑇 ∈ (1). Consider now a sequence 𝑋𝑛 ∈ 1 satisfying 𝑉 𝑛
𝑇
≤ 𝑋𝑛

𝑇
a.s. By the definition of 1, there

exist a sequence (𝜙0,𝑛, 𝜙1,𝑛) ∈ 1 and 𝑋𝑛
𝑡 = 1 + 𝜙0,𝑛

𝑡 + 𝜙1,𝑛
𝑡 𝑆𝑡 − 𝜆𝑡|𝜙1,𝑛

𝑡 |𝑆𝑡 for all 𝑡 ∈ [0, 𝑇 ].
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Lemma 3.2 states that the set {‖𝜙1‖𝑇 ∶ (𝜙0, 𝜙1) ∈ 1} is bounded in probability. Due to lemma B.4

of Guasoni et al. (2012), we can deduce that there exists a sequence of forward convex combinations

𝜃𝑛 ∈ conv(𝜙1,𝑛, 𝜙1,𝑛+1,…) such that 𝜃𝑛 converges pointwise to a predictable and finite variation pro-

cess �̂�1 such that the sequence ‖𝜃𝑛‖ also converges to ‖�̂�1‖ pointwise. The latter convergence implies

that the sequence (‖𝜃𝑛‖𝑡)𝑛∈ℕ converges to ‖�̂�1‖𝑡 in probability for each 𝑡 ∈ [0, 𝑇 ], which, in turn, leads

to the fact that the set {‖𝜃𝑛‖𝑡}𝑛∈ℕ is bounded in probability for each 𝑡 ∈ [0, 𝑇 ]. Similar to the proof of

lemma 4.3 of Guasoni (2002), we can write{
lim sup
𝑛→∞

‖𝜃𝑛‖𝑡 > 𝑀

}
=
{
lim inf
𝑛→∞

‖𝜃𝑛‖𝑡 > 𝑀
}
=
⋃
𝑘

⋂
𝑛≥𝑘

{‖𝜃𝑛‖𝑡 > 𝑀},

which gives that

ℙ
(
lim sup
𝑛→∞

‖𝜃𝑛‖𝑡 > 𝑀

)
= ℙ

(⋃
𝑘

⋂
𝑛≥𝑘

{‖𝜃𝑛‖𝑡 > 𝑀}

)
≤ sup

𝑛
ℙ(‖𝜃𝑛‖𝑡 > 𝑀).

For each 𝑡 ∈ [0, 𝑇 ], as the set {‖𝜃𝑛‖𝑡}𝑛∈ℕ is bounded in probability, we can obtain that

lim
𝑀→∞

ℙ
(
lim sup
𝑛→∞

‖𝜃𝑛‖𝑡 > 𝑀

)
= 0,

which implies that lim sup
𝑛→∞

‖𝜃𝑛‖𝑡 < ∞ a.s. and hence sup𝑛≥1 ‖𝜃𝑛‖𝑡 < ∞ a.s. for 𝑡 ∈ [0, 𝑇 ]. As a result,

we can apply the assertion (iii) of theorem A.9 of Guasoni et al. (2012), to obtain the pointwise con-

vergence of predictable Stieltjes integrals

lim
𝑛→∞∫

𝑡

0
𝑆𝑢𝑑𝜃

𝑛
𝑢 = ∫

𝑡

0
𝑆𝑢𝑑�̂�

1
𝑢, (3.6)

which holds for any càdlàg process 𝑆.

Using the same sequence of convex combinations in the definition of 𝜃𝑛, without loss of generality,

we can consider𝑋𝑛 as the resulting process after the forward convex combinations. Similarly, we define

𝜃0,𝑛 = conv(𝜙0,𝑛, 𝜙0,𝑛+1,…) following the same convex combinations. It follows that

𝑋𝑛
𝑡 ≤ 1 + 𝜃0,𝑛𝑡 + 𝜃𝑛𝑡 𝑆𝑡 − 𝜆𝑡

||𝜃𝑛𝑡 ||𝑆𝑡, a.s. ∀𝑡 ∈ [0, 𝑇 ].

Therefore, we obtain that

𝑋𝑛
𝑡 ≤ 1 + ∫

𝑡

0
(1 − 𝜆𝑢)𝑆𝑢𝑑𝜃

𝑛,↓
𝑢 − ∫

𝑡

0
(1 + 𝜆𝑢)𝑆𝑢𝑑𝜃

𝑛,↑
𝑢 + 𝜃𝑛𝑡 𝑆𝑡 − 𝜆𝑡

||𝜃𝑛𝑡 ||𝑆𝑡

= 1 + ∫
𝑡

0
𝑆𝑢𝑑𝜃

𝑛
𝑢 − ∫

𝑡

0
𝜆𝑢𝑆𝑢𝑑‖𝜃𝑛‖𝑢 + 𝜃𝑛𝑡 𝑆𝑡 − 𝜆𝑡

||𝜃𝑛𝑡 ||𝑆𝑡, a.s. ∀𝑡 ∈ [0, 𝑇 ].

(3.7)

Due to (iv) of theorem A.9 of Guasoni et al. (2012), the lower semicontinuity property holds in the

sense that

∫
𝑡

0
𝑆𝑢𝑑‖�̂�1‖𝑢 ≤ lim inf

𝑛→∞ ∫
𝑡

0
𝑆𝑢𝑑‖𝜃𝑛‖𝑢, a.s. ∀𝑡 ∈ [0, 𝑇 ]. (3.8)
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Letting 𝑛 → ∞ in (3.7) and using (3.6) and (3.8), we can obtain

lim
𝑛→∞

𝑋𝑛
𝑡 ≤ 1 + ∫

𝑡

0
𝑆𝑢𝑑�̂�

1
𝑢 − ∫

𝑡

0
𝜆𝑢𝑆𝑢𝑑‖�̂�1‖𝑢 + �̂�1

𝑡 𝑆𝑡 − 𝜆𝑡
|||�̂�1

𝑡
|||𝑆𝑡

= 1 + ∫
𝑡

0
(1 − 𝜆𝑢)𝑆𝑢𝑑�̂�

1,↓
𝑢 − ∫

𝑡

0
(1 + 𝜆𝑢)𝑆𝑢𝑑�̂�

1,↑
𝑢 + �̂�1

𝑡 𝑆𝑡 − 𝜆𝑡
|||�̂�1

𝑡
|||𝑆𝑡

= 1 + �̂�0
𝑡 + �̂�1

𝑡 𝑆𝑡 − 𝜆𝑡
|||�̂�1

𝑡
|||𝑆𝑡, a.s.

for 𝑡 ∈ [0, 𝑇 ], where �̂�0
𝑡 ≜ ∫ 𝑡

0 (1 − 𝜆𝑠)𝑆𝑠𝑑�̂�
1,↓
𝑠 − ∫ 𝑡

0 (1 + 𝜆𝑠)𝑆𝑠𝑑�̂�
1,↑
𝑠 for all 𝑡 ∈ [0, 𝑇 ]. By definition,

(�̂�0, �̂�1) is a self-financing portfolio. Moreover, because 𝑋𝑛
𝑡 ≥ 0 a.s. for all 𝑡 ∈ [0, 𝑇 ] and 𝑛 ∈ ℕ, we

can see that (�̂�0, �̂�1) ∈ 1. It follows from 𝑉 𝑛
𝑇
→ 𝑉𝑇 a.s. that

𝑉𝑇 ≤ �̂�𝑇 ∈ 1, a.s.

where

�̂�𝑡 ≜ 1 + �̂�0
𝑡 + �̂�1

𝑡 𝑆𝑡 − 𝜆𝑡
|||�̂�1

𝑡
|||𝑆𝑡, ∀𝑡 ∈ [0, 𝑇 ].

Therefore, 𝑉 ∈ (1), which completes the proof. □

For the proof of the next few results, we shall consider the stopped liquidation values starting with

zero initial position and 𝑥-admissible portfolios, 𝑥 ≥ 0. For any stopping time 𝜏, let us define the convex

and solid set

𝐂𝜏 (𝑥) ≜ {𝑉 ∈ 𝕃0 ∶ 𝑉 ≤ 𝑉
liq,0
𝜏 (𝜙0, 𝜙1) for (𝜙0, 𝜙1) ∈ 𝑥}, (3.9)

and

𝐂𝜏 =
⋃
𝑥≥0

𝐂𝜏 (𝑥). (3.10)

Fix the initial position (𝑥, 0). For each self-financing portfolio (𝜙0, 𝜙1), we call the process

𝑉 cost,𝑥(𝜙0, 𝜙1) the cost value to enter the portfolio position (𝜙0, 𝜙1), which is defined as

𝑉 cost,𝑥
𝑡 (𝜙0, 𝜙1) ≜ 𝑥 + 𝜙0

𝑡 +
(
𝜙1
𝑡

)+ (1 + 𝜆𝑡)𝑆𝑡 −
(
𝜙1
𝑡

)− (1 − 𝜆𝑡)𝑆𝑡, 𝑡 ∈ [0, 𝑇 ]. (3.11)

For the same pair of self-financing portfolio process (𝜙0, 𝜙1), it follows that

𝑉 cost,𝑥
𝑡 (𝜙0, 𝜙1) = 𝑉

liq,𝑥
𝑡 (𝜙0, 𝜙1) + 2𝜆𝑡𝑆𝑡

|||𝜙1
𝑡
||| , 𝑡 ∈ [0, 𝑇 ]. (3.12)

Remark 3.4. To understand the financial interpretation of the cost value process 𝑉 cost,𝑥, let us consider
two investors 𝐴 and 𝐵. Starting from the initial time, investor 𝐴 holds the initial position (𝑥, 0) in two
accounts and uses the portfolio (𝜙0, 𝜙1) during the time period [0, 𝑇 ]. On the other hand, investor 𝐵
does not follow the market until an intermediate time 𝑡. At time 𝑡, investor 𝐵 wants the same position
(𝜙0

𝑡 , 𝜙
1
𝑡 ) that 𝐴 holds in two accounts. The process 𝑉 cost,𝑥

𝑡 represents the total cash amount that 𝐵
needs to enter this position pair at time 𝑡. It is noted that B needs enough cash to cover not only the
bank and stock accounts, but also the transaction cost necessary to replicate the position 𝜙1

𝑡 .
In the frictionless market with the semimartingale stock price process 𝑆, the condition of self-

financing portfolios can be relaxed to predictable and 𝑆-integrable portfolios. In these circumstances,



BAYRAKTAR AND YU 811

the definition of liquidation value processes (𝑉 liq,𝑥
𝑡 )𝑡∈[0,𝑇 ] and the definition of cost value processes

(𝑉 cost,𝑥
𝑡 )𝑡∈[0,𝑇 ] coincide and they are both equivalent to the definition of wealth processes (𝑋𝑡)𝑡∈[0,𝑇 ] =

(𝑥 + (𝜙1 ⋅ 𝑆)𝑡)𝑡∈[0,𝑇 ].

For a fixed level 𝑀 > 0 and a stopping time 𝜏 ≤ 𝑇 , let us consider a subset 𝐂𝜏
𝑀
(𝑥) of the set 𝐂𝜏 (𝑥)

defined by

𝐂𝜏
𝑀
(𝑥) ≜ {𝑉 ∶ 𝑉 ≤ 𝑉

liq,0
𝜏 (𝜙0, 𝜙1) where (𝜙0, 𝜙1) ∈ 𝑥 and

|||𝜙1
𝑡
||| ≤ 𝑀, ℙ-a.s. on [[0, 𝜏]]}.

We also define 𝐂𝜏
𝑀

≜ ⋃
𝑥≥0𝐂𝜏

𝑀
(𝑥). It is clear that the set 𝐂𝜏

𝑀
is not empty, as the constant zero is an

element. For 𝑀 large enough, proposition A.11 of Guasoni et al. (2012), which gives that (𝜙0, 𝜙1) is

locally bounded, implies that the set 𝐂𝜏
𝑀

contains some nonzero elements.

Lemma 3.5. Assume that the stock price process (𝑆𝑡)𝑡∈[0,𝑇 ] satisfies the NLABP condition with the
transaction cost (𝜆𝑡)𝑡∈[0,𝑇 ]. Given a fixed level 𝑀 > 0 large enough and the same sequence of stopping
times 𝜏𝑛 ↗ 𝑇 as in Definition 2.4, for each 𝑛 ∈ ℕ, we have that for any 𝑥 > 0 and any 𝑥-admissible
portfolio (𝜙0, 𝜙1) ∈ 𝑥 with |𝜙1

𝑡 | ≤ 𝑀 , ℙ-a.s. on [[0, 𝜏𝑛]], we have

𝑉
liq,0
𝜏𝑛

(𝜙0, 𝜙1) ≥ −𝑎 a.s. ⇒ 𝑉 cost,0
𝑡 (𝜙0, 𝜙1) ≥ −𝑎, a.s. ∀𝑡 ≤ 𝜏𝑛, (3.13)

for any 0 < 𝑎 < 𝑥.

Proof. Suppose not, i.e., for some 𝑛 ∈ ℕ and the corresponding stopping time 𝜏𝑛, there exists 𝑎 >

0 and a fixed pair of 𝑥-admissible portfolio (𝜙0, 𝜙1) ∈ 𝑥 such that |𝜙1
𝑡 | ≤ 𝑀 for 0 ≤ 𝑡 ≤ 𝜏𝑛 and

𝑉
liq,0
𝜏𝑛

(𝜙0, 𝜙1) ∈ 𝐂𝜏𝑛
𝑀
(𝑥) and

𝑉
liq,0
𝜏𝑛

(𝜙0, 𝜙1) ≥ −𝑎, a.s.,

but for some stopping time 𝑠 s.t. ℙ(𝑠 < 𝜏𝑛) = 1, we have

ℙ
(
𝑉

liq,0
𝑠

(
𝜙0, 𝜙1) + 2𝜆𝑠𝑆𝑠

|||𝜙1
𝑠
||| < −𝑎

)
> 0.

Denote the set 𝐷 ≜ {𝑉 liq,0
𝑠 (𝜙0, 𝜙1) + 2𝜆𝑠𝑆𝑠|𝜙1

𝑠| < −𝑎}.

Based on the fixed bounded pair (𝜙0, 𝜙1), we shall construct a new pair of self-financing portfolio

(�̄�0, �̄�1) ∈ 𝑥′ with the initial position (𝑥′, 0) for some 𝑥′ > 0. To this end, given the previous 𝜏𝑛 and

𝑠, the new pair (�̄�0, �̄�1) is defined by

�̄�1
𝑡 ≜ 𝜙1

𝑡 𝟏]]𝑠,𝜏𝑛]]𝟏𝐷,

�̄�0
𝑡 ≜

((
𝜙0
𝑡 − 𝑉 cost,0

𝑠 (𝜙0, 𝜙1)
)
𝟏]]𝑠,𝜏𝑛]] +

(
𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1) − 𝑉 cost,0
𝑠 (𝜙0, 𝜙1)

)
𝟏]]𝜏𝑛,𝑇 ]]

)
𝟏𝐷.

To check that (�̄�0, �̄�1) is self-financing, we observe that

△�̄�0
𝑡 = △�̄�1,↑

𝑡 = △�̄�1,↓
𝑡 = 0, 0 ≤ 𝑡 ≤ 𝑠,

△+�̄�
0
𝑡 = △+�̄�

1,↑
𝑡 = △+�̄�

1,↓
𝑡 = 0, 0 ≤ 𝑡 < 𝑠.

At the time 𝑠, we have

△+�̄�
1,↑
𝑠 = (𝜙1

𝑠)
+𝟏𝐷 and △+ �̄�1,↓

𝑠 =
(
𝜙1
𝑠

)− 𝟏𝐷.
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As for �̄�0, we can deduce that

△+�̄�
0
𝑠 =

(
𝜙0
𝑠 − 𝜙0

𝑠 − (1 + 𝜆𝑠)𝑆𝑠

(
𝜙1
𝑠

)+ + (1 − 𝜆𝑠)𝑆𝑠

(
𝜙1
𝑠

)−) 𝟏𝐷

=
(
−(1 + 𝜆𝑠)𝑆𝑠

(
𝜙1
𝑠

)+ + (1 − 𝜆𝑠)𝑆𝑠

(
𝜙1
𝑠

)−) 𝟏𝐷

= − (1 + 𝜆𝑠)𝑆𝑠 △+ �̄�1,↑
𝑠 + (1 − 𝜆𝑠)𝑆𝑠 △+ �̄�1,↓

𝑠 .

For the stochastic interval ]]𝑠, 𝜏𝑛[[, it is clear that

𝑑�̄�1
𝑡 = 𝑑𝜙1

𝑡 and 𝑑�̄�0
𝑡 = 𝑑𝜙0

𝑡 .

Therefore, (�̄�0, 𝜙1) is self-financing on ]]𝑠, 𝜏𝑛[[ as (𝜙0, 𝜙1) is self-financing on ]]𝑠, 𝜏𝑛[[.
At last, at the stopping time 𝜏𝑛, it is clear that

△+�̄�
1,↑
𝜏𝑛

=
(
𝜙1
𝜏𝑛

)−
𝟏𝐷 and △+ �̄�1,↓

𝜏𝑛
=
(
𝜙1
𝜏𝑛

)+
𝟏𝐷.

We therefore also have

△+�̄�
0
𝜏𝑛

=
(
𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1) − 𝑉 cost,0
𝑠 (𝜙0, 𝜙1) −

(
𝜙0
𝜏𝑛
− 𝑉 cost,0

𝑠 (𝜙0, 𝜙1)
))

𝟏𝐷

=
(
𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1) − 𝜙0
𝜏𝑛

)
𝟏𝐷

=
(
(1 − 𝜆𝜏𝑛 )𝑆𝜏𝑛

(
𝜙1
𝜏𝑛

)+
− (1 + 𝜆𝜏𝑛)𝑆𝜏𝑛

(
𝜙1
𝜏𝑛

)−
)
𝟏𝐷

= (1 − 𝜆𝜏𝑛 )𝑆𝜏𝑛
△+ �̄�1,↓

𝑠 − (1 + 𝜆𝜏𝑛 )𝑆𝜏𝑛
△+ �̄�1,↑

𝜏𝑛
.

For the stochastic interval ]]𝜏𝑛, 𝑇 ]], we clearly know that 𝑑�̄�1
𝑡 = 𝑑�̄�0

𝑡 = 0. Putting all pieces together, we

arrive at the conclusion that the pair (�̄�0, �̄�1) is self-financing. Moreover, |𝜙1| ≤ 𝑀 on ]]𝑠, 𝜏𝑛]] implies

that (�̄�0, �̄�1) is also bounded in the sense that |�̄�1
𝑡 | ≤ 𝑀 , ℙ-a.s., 𝑡 ∈ [0, 𝑇 ] for some 𝑀 > 0.

In order to show that (�̄�0, 𝜙1) is also admissible, we first define the constant 𝑥′ = 𝑥 − 𝑎 > 0 and

notice that for the stochastic interval [[0, 𝑠]],

𝑉
liq,𝑥′

𝑡 (�̄�0, �̄�1) = 𝑥′ > 0, a.s.

Now, on the stochastic interval ]]𝑠, 𝜏𝑛[[, we have

𝑉
liq,𝑥′

𝑡 (�̄�0, �̄�1) = 𝑥′ + �̄�0
𝑡 + (1 − 𝜆𝑡)𝑆𝑡

(
�̄�1
𝑡

)+ − (1 + 𝜆𝑡)𝑆𝑡

(
�̄�1
𝑡

)−
= 𝑥′ +

(
𝑉

liq,0
𝑡 (𝜙0, 𝜙1) − 𝑉 cost,0

𝑠 (𝜙0, 𝜙1)
)
𝟏𝐷

≥ 𝑥′ + (−𝑥 + 𝑎)𝟏𝐷 ≥ 𝑥′ − 𝑥 + 𝑎 = 0, a.s.
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where we recall that (𝜙0, 𝜙1) ∈ bd
𝑥 . Similarly, on the stochastic interval [[𝜏𝑛, 𝑇 ]], we have

𝑉
liq,𝑥′

𝑡 (�̄�0, �̄�1) = 𝑥′ + �̄�0
𝑡 + (1 − 𝜆𝑡)𝑆𝑡

(
�̄�1
𝑡

)+ − (1 + 𝜆𝑡)𝑆𝑡

(
�̄�1
𝑡

)−
= 𝑥′ +

(
𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1) − 𝑉 cost,0
𝑠 (𝜙0, 𝜙1)

)
𝟏𝐷

> 𝑥′ + (−𝑎 + 𝑎)𝟏𝐷 = 𝑥′, a.s.

In particular, we have 𝑉
liq,𝑥′
𝜏𝑛

(�̄�0, �̄�1) > 𝑥′ a.s., so the bounded portfolio (�̄�0, �̄�1) ∈ bd
𝑥′

leads to an

arbitrage opportunity for the liquidation value process locally at the stopping time 𝜏𝑛. We obtain a

contradiction to the NLABP condition in Definition 2.4. As a consequence, the implication (3.13)

holds. □

Lemma 3.6. Assume that the stock price process (𝑆𝑡)𝑡∈[0,𝑇 ] satisfies the NLABP condition with the
transaction cost (𝜆𝑡)𝑡∈[0,𝑇 ]. Given a fixed level 𝑀 > 0 large enough and the same sequence of stopping
times 𝜏𝑛 ↗ 𝑇 as in Definition 2.4, for each 𝑛 ∈ ℕ, we have 𝐂𝜏𝑛

𝑀
∩ 𝕃∞+ = {0}.

Proof. According to the definition of 𝐂𝜏𝑛
𝑀

, it is equivalent to prove that 𝐂𝜏𝑛
𝑀
(𝑥) ∩ 𝕃∞+ = {0} for any 𝑥 >

0. Suppose that the above claim does not hold. Then, for some 𝑛 ∈ ℕ and the corresponding stopping

time 𝜏𝑛, there exists a pair of portfolios (𝜙0, 𝜙1) ∈ 𝑥 for some 𝑥 > 0 such that |𝜙1
𝑡 | ≤ 𝑀 for 0 ≤ 𝑡 ≤ 𝜏𝑛

and

ℙ
(
𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1) ≥ 0
)
= 1 and ℙ

(
𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1) > 0
)
> 0.

Obviously, this is a contradiction to the definition of the NLABP condition that completes the

proof. □

As the stock price (𝑆𝑡)𝑡∈[0,𝑇 ] is locally bounded, there is an increasing sequence of constants

𝛼(𝑛) ↗ +∞ and an increasing sequence of stopping times 𝜌𝑛 ↗ 𝑇 such that 𝑆𝑡 ≤ 𝛼(𝑛) on the stochas-

tic interval [[0, 𝜌𝑛]]. Given the sequence of stopping times {𝜏𝑛}𝑛∈ℕ in Definition 2.4, let us consider the

new sequence of stopping times

𝜏0 ≜ 0, 𝜏𝑛 ≜ 𝜏𝑛 ∧ 𝜌𝑛, for 𝑛 ∈ ℕ. (3.14)

Remark 3.7. It is easy to verify that the statements in Lemmas 3.5 and 3.6 holds for the sequence of
stopping times (𝜏𝑛)𝑛∈ℕ defined by (3.14) and that the stock price process 𝑆 is bounded up to 𝜏𝑛 for
each 𝑛 ∈ ℕ.

Lemma 3.8. Assume that the stock price process 𝑆 satisfies the RNUPBR and NLABP conditions
with the transaction cost 𝜆. Given the fixed level 𝑀 > 0 large enough and the sequence of stop-
ping times {𝜏𝑛}𝑛∈ℕ defined in (3.14), for each 𝑛 ∈ ℕ, we have that 𝐂𝜏𝑛

𝑀
is Fatou closed; i.e., if there

exists a sequence (𝑉 𝑚)𝑚∈ℕ in 𝐂𝜏𝑛
𝑀

such that 𝑉 𝑚 ≥ −𝑎 for some 𝑎 > 0 and 𝑉 𝑚 converges to some
𝜏𝑛

-measurable random variable 𝑉 , ℙ-a.s., then we have that 𝑉 ∈ 𝐂𝜏𝑛
𝑀

.

Proof. Given the sequence (𝑉 𝑚)𝑚∈ℕ ⊂ 𝐂𝜏𝑛
𝑀

, for each 𝑚, there exists a portfolio (𝜙0,𝑚, 𝜙1,𝑚) ∈ 𝑥(𝑚)
for some 𝑥(𝑚) > 0 (we write 𝑥(𝑚) to emphasize the dependence of 𝑥 on 𝑚) and |𝜙1,𝑚

𝑡 | ≤ 𝑀 for the

fixed bound level 𝑀 and stopping time 𝜏𝑛 such that 𝑉 𝑚 ≤ 𝑉
liq,0
𝜏𝑛

(𝜙0,𝑚, 𝜙1,𝑚). Lemma 3.5 and Remark
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3.7 guarantee that 𝑉
liq,0
𝜏𝑛

(𝜙0,𝑚, 𝜙1,𝑚) ≥ −𝑎 implies that 𝑉 cost,0
𝑡 (𝜙0,𝑚, 𝜙1,𝑚) ≥ −𝑎 for 0 ≤ 𝑡 ≤ 𝜏𝑛. In par-

ticular, for each 𝑚 > 0, we get

𝑉
liq,0
𝑡 (𝜙0,𝑚, 𝜙1,𝑚) ≥ −2𝜆𝑡𝑆𝑡

|||𝜙1,𝑚
𝑡

||| − 𝑎 ≥ −2𝛼(𝑛)𝑀 − 𝑎, a.s. for 0 ≤ 𝑡 ≤ 𝜏𝑛.

Therefore, we can apply Lemma 3.2 with the initial position 𝑥 = 2𝛼(𝑛)𝑀 + 𝑎 and obtain that the

set {‖𝜙1‖𝜏𝑛 ∶ (𝜙0, 𝜙1) ∈ 2𝛼(𝑛)𝑀+𝑎(𝜆;𝑆)} is also bounded in probability. Moreover, by choosing the

initial position 𝑥 = 2𝛼(𝑛)𝑀 + 𝑎 and time interval 0 ≤ 𝑡 ≤ 𝜏𝑛, Proposition 3.3 leads to the fact that

𝐂𝜏𝑛 (2𝛼(𝑛)𝑀 + 𝑎;𝑆, 𝜆) is closed under convergence in probability.

Recall that the set {‖𝜙1‖𝜏𝑛 ∶ (𝜙0, 𝜙1) ∈ 2𝛼(𝑛)𝑀+𝑎(𝜆;𝑆)} is bounded in probability and 𝑉 𝑚 con-

verges to 𝑉 , ℙ-a.s. Following an argument used in the first part of the proof Proposition 3.3, which uses

the compactness lemma of finite variation processes (see, e.g., lemma B.4 of Guasoni et al., 2012), we

can assume (up to choosing a sequence of forward convex combinations) that the sequence (𝜙0,𝑚, 𝜙1,𝑚)
converges pointwise to a predictable and finite variation process (𝜙0,∗, 𝜙1,∗) ∈ 2𝛼(𝑛)𝑀+𝑎. Because

𝐂𝜏𝑛 (2𝛼(𝑛)𝑀 + 𝑎;𝑆, 𝜆) is closed under convergence in probability, it follows that 𝑉
liq,0
𝜏𝑛

(𝜙0,𝑚, 𝜙1,𝑚)
converges ℙ-a.s. to the random variable 𝑉

liq,0
𝜏𝑛

(𝜙0,∗, 𝜙1,∗). Moreover, as |𝜙1,𝑚
𝑡 | ≤ 𝑀 for the fixed level

𝑀 > 0 and 0 ≤ 𝑡 ≤ 𝜏𝑛, we obtain that |𝜙1,∗
𝑡 | ≤ 𝑀 for 0 ≤ 𝑡 ≤ 𝜏𝑛. Therefore, we can conclude that

𝑉 ≤ 𝑉
liq,0
𝜏𝑛

(𝜙0,∗, 𝜙1,∗), i.e., 𝑉 ∈ 𝐂𝜏𝑛
𝑀
(2𝛼(𝑛)𝑀 + 𝑎; 𝜆, 𝑆) ⊂ 𝐂𝜏𝑛

𝑀
, which completes the proof. □

Lemma 3.9. If the stock price process 𝑆 with the transaction cost 𝜆 satisfies the NUPBR and NLABP
conditions in the robust sense with the smaller bid–ask spread pair (𝑆′, 𝜆′), there exists another bid–
ask spread pair (�̆�, �̆�) satisfying Assumption 2.1, which stays strictly between the two spreads in the
sense that

inf
𝑡∈[0,𝑇 ]

(
(1 + �̆�𝑡)�̆�𝑡 −

(
1 + 𝜆′𝑡

)
𝑆′
𝑡

)
> 0, inf

𝑡∈[0,𝑇 ]

(
(1 + 𝜆𝑡)𝑆𝑡 − (1 + �̆�𝑡)�̆�𝑡

)
> 0,

and inf
𝑡∈[0,𝑇 ]

((
1 − 𝜆′𝑡

)
𝑆′
𝑡 − (1 − �̆�𝑡)�̆�𝑡

)
> 0, inf

𝑡∈[0,𝑇 ]

(
(1 − �̆�𝑡)�̆�𝑡 − (1 − 𝜆𝑡)𝑆𝑡

)
> 0, a.s.

(3.15)

Moreover, the stock price process (�̆�𝑡)𝑡∈[0,𝑇 ] satisfies the RNUPBR and NLABP conditions with the
transaction costs (�̆�𝑡)𝑡∈[0,𝑇 ].

Proof. Assume that the pair (𝑆, 𝜆) satisfies the NUPBR and NLABP conditions with the smaller spread

pair (𝑆′, 𝜆′). Let us define the auxiliary pair of processes

�̆�𝑡 ≜ 𝑆𝑡 + 𝑆′
𝑡

2
, �̆�𝑡 ≜ 𝜆𝑡𝑆𝑡 + 𝜆′𝑡𝑆

′
𝑡

𝑆𝑡 + 𝑆′
𝑡

∈ (0, 1), ∀𝑡 ∈ [0, 𝑇 ]. (3.16)

It is clear that the new pair (�̆�, �̆�) satisfies Assumption 2.1. We claim that the stock price process �̆�

with transaction costs �̆� satisfies the inequalities (3.15). Indeed, it is enough to notice that

inf
𝑡∈[0,𝑇 ]

(
(1 + �̆�𝑡)�̆�𝑡 −

(
1 + 𝜆′𝑡

)
𝑆′
𝑡

)
= inf

𝑡∈[0,𝑇 ]

(
(1 + 𝜆𝑡)𝑆𝑡 −

(
1 + �̆�𝑡

)
�̆�𝑡

)
= inf

𝑡∈[0,𝑇 ]

(1
2
(1 + 𝜆𝑡)𝑆𝑡 −

1
2
(
1 + 𝜆′𝑡

)
𝑆′
𝑡

)
> 0, a.s.
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Similarly, we also have

inf
𝑡∈[0,𝑇 ]

(
(1 − 𝜆′𝑡)𝑆

′
𝑡 − (1 − �̆�𝑡)�̆�𝑡

)
= inf

𝑡∈[0,𝑇 ]

(
(1 − �̆�𝑡)�̆�𝑡 − (1 − 𝜆𝑡)𝑆𝑡

)
= inf

𝑡∈[0,𝑇 ]

(1
2
(1 − 𝜆′𝑡)𝑆

′
𝑡 −

1
2
(1 − 𝜆𝑡)𝑆𝑡

)
> 0, a.s.

Therefore, the inequalities in (3.15) are verified.

Recall that the stock price process 𝑆′ with the transaction cost 𝜆′ satisfies the NUPBR and NLABP

conditions. We aim to verify that the stock price process �̆� with the transaction cost �̆� satisfies the

RNUPBR and NLABP conditions.

First, it is trivial to see that �̆� satisfies RNUPBR as the pair (𝑆′, 𝜆′) satisfies the NUPBR condition.

On the other hand, if (𝜙0, 𝜙1) is self-financing for the pair (�̆�, �̆�) such that (2.1) is satisfied, then (𝜙0, 𝜙1)
is also self-financing for the pair (𝑆′, 𝜆′) because (1 − �̆�𝑡)�̆�𝑡 < (1 − 𝜆′𝑡)𝑆𝑡 and (1 + �̆�𝑡)�̆�𝑡 > (1 + 𝜆′𝑡)𝑆𝑡

a.s., 𝑡 ∈ [0, 𝑇 ]. In addition, we also get that 𝑉
liq,𝑥;�̆�,�̆�
𝑡 (𝜙0, 𝜙1) < 𝑉

liq,𝑥;𝑆′,𝜆′

𝑡 (𝜙0, 𝜙1) a.s., 𝑡 ∈ [0, 𝑇 ], for

the same self-financing portfolio (𝜙0, 𝜙1). It thereby follows that 𝑥(�̆�; �̆�) ⊂ 𝑥(𝜆′;𝑆′). If there exists

an arbitrage opportunity with a stopping time 𝜏 whereℙ(𝜏 < 𝑇 ) > 0 and a bounded portfolio (𝜙0, 𝜙1) ∈
bd

𝑥 (�̆�; �̆�), it is obvious that (𝜙0, 𝜙1) also leads to an LA opportunity for the pair (𝑆′, 𝜆′). In other words,

we can deduce that if the stock price process 𝑆′ satisfies the NLABP condition with the transaction

cost 𝜆′, then the stock price process �̆� also satisfies the NLABP condition with the transaction cost

�̆�. □

The following result is the last important preparation for the proof of the implication (1) ⇒ (2) in

Theorem 2.8; see lemma 6.3 and its proof in Guasoni et al. (2012).

Lemma 3.10. Let (𝑋𝑡)𝑡∈[0,𝑇 ] and (𝑌𝑡)𝑡∈[0,𝑇 ] be two càdlàg bounded processes. The following conditions
are equivalent:

(i) There exists a càdlàg martingale (𝑀𝑡)𝑡∈[0,𝑇 ] such that

𝑋 ≤ 𝑀 ≤ 𝑌 , a.s.

(ii) For all stopping times 𝜎, 𝜏 such that 0 ≤ 𝜎 ≤ 𝜏 ≤ 𝑇 a.s., we have

𝔼[𝑋𝜏 |𝜎] ≤ 𝑌𝜎 and 𝔼[𝑌𝜏 |𝜎] ≥ 𝑋𝜎 a.s.

We now proceed to finish the proof of Theorem 2.8.

Proof of (1) ⇒ (2) of Theorem 2.8. If the stock price process 𝑆 satisfies the NUPBR and NLABP

conditions in the robust sense with the transaction cost 𝜆, Lemma 3.9 guarantees the existence of

the auxiliary pair (�̆�, �̆�) such that �̆� satisfies the RNUPBR condition and NLABP condition with the

transaction cost �̆�.

In the next few steps, let us consider the market model with the stock price process �̆� and the trans-

action cost �̆�. If we replace the pair (𝑆, 𝜆) by the auxiliary pair (�̆�, �̆�), all conclusions from Lemma 3.2

to Lemma 3.8 still hold for (�̆�, �̆�). For some fixed large level 𝑀 > 0, consider the set 𝐂𝜏𝑛
𝑀
(�̆�, �̆�). Com-

bining the facts that 𝐂𝜏𝑛
𝑀
(�̆�, �̆�) ∩ 𝕃∞ is Fatou closed (due to Lemma 3.8) and 𝐂𝜏𝑛

𝑀
(�̆�, �̆�) ∩ 𝕃∞+ = {0}

(due to Lemma 3.6) where the stopping times {𝜏𝑛}𝑛∈ℕ are defined in (3.14), there exists a probabil-

ity measure ℚ𝑛 equivalent to ℙ such that for any 𝑉 ∈ 𝐂𝜏𝑛
𝑀
(�̆�, �̆�) ∩ 𝕃∞, we have 𝔼ℚ𝑛[𝑉 ] ≤ 0, where

we used lemma 5.5.2 of Kabanov and Safarian (2009) (which relates Fatou-closedness to weak-star

closedness) and the Kreps–Yan separation theorem (see, e.g., theorem B.3 of Guasoni et al., 2012).
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In particular, for each 𝑛 ∈ ℕ, let us only consider the subset �̄�𝜏𝑛
𝑀
(�̆�, �̆�) such that the portfolio process

𝜙1 is a nonpositive process or a nonnegative process on [[0, 𝜏𝑛]] and 𝜙1
𝜏𝑛

= 0; i.e., the position in the

stock at the terminal time 𝜏𝑛 will be liquidated,

�̄�𝜏𝑛
𝑀
(�̆�, �̆�) ≜ {

𝑉 ∶ 𝑉 ≤ 𝑉
liq,0
𝜏𝑛

(𝜙0, 𝜙1) ∈ 𝑥 where 𝜙1 is a nonpositive or a nonnegative process

𝜙1
𝜏𝑛

= 0, and |𝜙1
𝑡 | ≤ 𝑀, ℙ-a.s. on [[0, 𝜏𝑛]]

}
with 𝑀 large enough for which we have 𝔼ℚ𝑛[𝑉 ] ≤ 0 for all 𝑉 ∈ �̄�𝜏𝑛

𝑀
(�̆�, �̆�) ∩ 𝕃∞ ⊂ 𝐂𝜏𝑛

𝑀
(�̆�, �̆�) ∩ 𝕃∞.

Let us recall that �̆�𝑡 ≤ 2𝛼(𝑛) for 𝑡 ≤ 𝜏𝑛 as the original stock price process 𝑆𝑡 ≤ 𝛼(𝑛) for 𝑡 ≤ 𝜏𝑛. We

consider the following portfolio in the market driven by �̆� with transaction costs �̆�,

�̃�0 ≜ [
(1 − �̆�𝜂)�̆�𝜂𝟏]]𝜂,𝜎[[(𝑡) +

(
(1 − �̆�𝜂)�̆�𝜂 − (1 + �̆�𝜎)�̆�𝜎

)
𝟏[[𝜎,𝜏𝑛]]

]
𝟏𝐴,

�̃�1 ≜ −𝟏]]𝜂,𝜎[[(𝑡)𝟏𝐴,
(3.17)

for any stopping time 𝜂 ≤ 𝜎 ≤ 𝜏𝑛 and 𝐴 ∈ 𝜂 . Similar to the proof of Lemma 3.5, it is not hard to check

that (�̃�0, �̃�1) is self-financing.

Similarly, we consider the portfolio

�̂�0 ≜ [
−(1 + �̆�𝜂)�̆�𝜂𝟏]]𝜂,𝜎[[(𝑡) +

(
−(1 + �̆�𝜂)�̆�𝜂 + (1 − �̆�𝜎)�̆�𝜎

)
𝟏[[𝜎,𝜏𝑛]]

]
𝟏𝐴,

�̂�1 ≜ 𝟏]]𝜂,𝜎[[(𝑡)𝟏𝐴,

for any stopping time 𝜂 ≤ 𝜎 ≤ 𝜏𝑛 and 𝐴 ∈ 𝜂 . We can similarly verify that (�̂�0, �̂�1) is also self-

financing.

It is also easy to show that 𝑉
liq,0
𝜏𝑛

(�̃�0, �̃�1) ∈ �̄�𝜏𝑛
𝑀
(�̆�, �̆�) ∩ 𝕃∞ and 𝑉

liq,0
𝜏𝑛

(�̂�0, �̂�1) ∈ �̄�𝜏𝑛
𝑀
(�̆�, �̆�) ∩ 𝕃∞

as �̃�1 is nonpositive, �̂� is nonnegative, and |�̃�|, |�̂�|, and �̆� are all uniformly bounded on [[0, 𝜏𝑛]]. In

particular, we have

𝑉
liq,0
𝜏𝑛

(
�̃�0, �̃�1) = �̃�0

𝜏𝑛
+
(
�̃�1
𝜏𝑛

)+
(1 − �̆�𝜏𝑛)�̆�𝜏𝑛

−
(
�̃�1
𝜏𝑛

)−
(1 + �̆�𝜏𝑛 )�̆�𝜏𝑛

=
(
(1 − �̆�𝜂)�̆�𝜂 − (1 + �̆�𝜎)�̆�𝜎

)
𝟏𝐴,

𝑉
liq,0
𝜏𝑛

(�̂�0, �̂�1) = �̂�0
𝜏𝑛
+
(
�̂�1
𝜏𝑛

)+
(1 − �̆�𝜏𝑛 )�̆�𝜏𝑛

−
(
�̂�1
𝜏𝑛

)−
(1 + �̆�𝜏𝑛 )�̆�𝜏𝑛

=
(
−(1 + �̆�𝜂)�̆�𝜂 + (1 − �̆�𝜎)�̆�𝜎

)
𝟏𝐴.

By the inequalities 𝔼ℚ𝑛 [𝑉 liq,0
𝜏𝑛

(�̃�0, �̃�1)] ≤ 0 and 𝔼ℚ𝑛 [𝑉 liq,0
𝜏𝑛

(�̂�0, �̂�1)] ≤ 0, it is easy to obtain that

𝔼ℚ𝑛 [�̆�𝜎(1 + �̆�𝜎)|𝜂] ≥ �̆�𝜂(1 − �̆�𝜂),

𝔼ℚ𝑛 [�̆�𝜎(1 − �̆�𝜎)|𝜂] ≤ �̆�𝜂(1 + �̆�𝜂).

Lemma 3.10 implies the existence of a càdlàg martingale �̃�𝑛 under ℚ𝑛 such that

�̆�𝑡(1 − �̆�𝑡) ≤ �̃�𝑛
𝑡 ≤ �̆�𝑡(1 + �̆�𝑡), a.s. for 0 ≤ 𝑡 ≤ 𝜏𝑛. (3.18)
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So far, for each 𝑛 ∈ ℕ, we obtain the pair (ℚ𝑛, �̃�𝑛) on [[0, 𝜏𝑛]] such that �̃�𝑛 is a martingale under

ℚ𝑛 and �̃�𝑛 evolves inside the spread [(1 − �̆�)�̆�, (1 + �̆�)�̆�]. However, in general, we may not have the

concatenation property of two measures ℚ𝑛 and ℚ𝑛−1 such that ℚ𝑛|𝜏𝑛−1
= ℚ𝑛−1|𝜏𝑛−1

. Therefore, we

cannot simply paste the processes {�̃�𝑛}𝑛∈ℕ together over the whole interval [0, 𝑇 ] to obtain the desired

process �̃�. To finish the proof, we need several further steps using the elements (ℚ𝑛, �̃�𝑛) that we already

have.

For each ℚ𝑛, let us consider the density process and the corresponding stochastic exponential

𝑍𝑛
𝑡 ≜ 𝔼

[
𝑑ℚ𝑛

𝑑ℙ
|||𝑡

]
, 𝑡 ∈ [0, 𝑇 ],

𝑡(𝑌 𝑛) ≜ 𝑍𝑛
𝑡∧𝜏𝑛

, 𝑡 ∈ [0, 𝑇 ],

where 𝑌 𝑛 is a local martingale.
Similar to the proof of lemma 3.5 of Choulli et al. (2015), we define the stochastic process using

stochastic integrals

𝑌 ≜
∞∑
𝑛=1

𝟏]]𝜏𝑛−1,𝜏𝑛]] ⋅ 𝑌
𝑛.

It is easy to see that (𝑌𝑡)𝑡∈[0,𝑇 ] is a local martingale with initial value 𝑌0 = 0 as

𝑌𝑡∧𝜏𝑛 =

(
𝑛∑

𝑘=1
𝟏]]𝜏𝑘−1,𝜏𝑘]] ⋅ 𝑌

𝑘

)
𝑡

is a true martingale. As a consequence, the stochastic exponential (𝑌 ) is a local martingale. Denote

{𝜈𝑛}𝑛∈ℕ the localizing sequence of the local martingale (𝑌 ), we shall consider the new localizing

sequence {𝜈𝑛 ∧ 𝜏𝑛}𝑛∈ℕ that converges to 𝑇 . To simplify the notation, let us still denote this sequence

of stopping times by {𝜏𝑛}𝑛∈ℕ.

Notice that (𝑌 𝑛) > 0 for all 𝑛 ∈ ℕ as it is the density process of
𝑑ℚ𝑛

𝑑ℙ . It follows that (𝑌 ) > 0
because 1 +△𝑌 = 1 +△𝑌 𝑛 > 0 on ]]𝜏𝑘−1, 𝜏𝑘]], 𝑛 ∈ ℕ.

Let us focus on the positive local martingale

𝑍 ≜ (𝑌 ), (3.19)

and consider the sequence of probability measures induced by

𝑑ℚ̂𝑛

𝑑ℙ
≜ 𝑍𝜏𝑛

= (𝑌 )𝜏𝑛 = (𝑌𝜏𝑛).
Clearly, the sequence of probability measures {ℚ̂𝑛}𝑛∈ℕ satisfies the desired concatenation property.

We now claim that for any 𝑉 ∈ �̄�𝜏𝑛
𝑀
(�̆�, �̆�) ∩ 𝕃∞, the inequality 𝔼ℚ̂𝑛 [𝑉 ] ≤ 0 still holds. To prove the

claim, we recall the existence of (𝜙0, 𝜙1) ∈ 𝑥 for some 𝑥 ≥ 0 where𝜙1 is either a nonpositive process

or a nonnegative process with 𝜙𝜏1
= 0 and |𝜙1| ≤ 𝑀 , ℙ-a.s. on [[0, 𝜏𝑛]] such that 𝑉 ≤ 𝑉

liq,0
𝜏𝑛

(𝜙0, 𝜙1).
Case 1: The portfolio process 𝜙1 is a nonpositive process on [[0, 𝜏𝑛]].
For each fixed choice of 𝑛 ∈ ℕ, we first consider the fictitious stock price processes constructed

inductively for 1 ≤ 𝑘 ≤ 𝑛. First, for 0 ≤ 𝑡 ≤ 𝜏1, let us define the stock process

�̄�1
𝑡 ≜ �̃�1

𝑡 ,

which is a martingale under ℚ1 and stays in the spread [(1 − �̆�)�̆�, (1 + �̆�)�̆�].
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Next, for all 𝜏1 ≤ 𝑡 ≤ 𝜏2, we consider two auxiliary processes

𝑋′
𝑡 ≜ ess sup

𝜏∈𝑡

𝔼ℚ2

[
�̆�𝜏

(
1 +

�̄�1
𝜏1
− �̆�𝜏1

�̆�𝜏1
�̆�𝜏1

�̆�𝜏

)|||𝑡

]
,

𝑌 ′
𝑡 ≜ ess inf

𝜏∈𝑡

𝔼ℚ2
[
�̆�𝜏 (1 + �̆�𝜏 )

|||𝑡

]
,

where 𝑡 denotes the set of all stopping times 𝜏 with values such that 𝑡 ≤ 𝜏 ≤ 𝜏2. For 0 ≤ 𝑡 ≤ 𝜏1, we

shall define the processes

𝑋𝑡 ≜ 𝔼ℚ2
[
𝑋′

𝜏1
|𝑡

]
, 𝑌𝑡 ≜ 𝔼ℚ2

[
𝑌 ′
𝜏1
|𝑡

]
.

Next, for 𝜏1 ≤ 𝑡 ≤ 𝜏2, we define 𝑋𝑡 ≜ 𝑋′
𝑡 and 𝑌𝑡 ≜ 𝑌 ′

𝑡 . Similar to the proof of lemma 6.3 of Guasoni

et al. (2012), we get that (𝑋)𝑡∧𝜏2 is a supermartingale and (𝑌 )𝑡∧𝜏2 is a submartingale under ℚ2. In

addition, the fact that (1 − �̆�𝜏1 )�̆�𝜏1
≤ �̄�1

𝜏1
= �̃�1

𝜏1
≤ (1 + �̆�𝜏1 )�̆�𝜏1

implies that

(1 − �̆�𝑡)�̆�𝑡 ≤ �̆�𝑡

(
1 +

�̄�𝜏1
− �̆�𝜏1

�̆�𝜏1
�̆�𝜏1

�̆�𝑡

)
≤ (1 + �̆�𝑡)�̆�𝑡

for all 𝜏1 ≤ 𝑡 ≤ 𝜏2. Therefore, by lemma 6.2 of Guasoni et al. (2012), there exists a martingale𝑀2 under

ℚ2 such that 𝑋𝑡 ≤ 𝑀2
𝑡 ≤ 𝑌𝑡 for 0 ≤ 𝑡 ≤ 𝜏2. In particular, we have that (1 − �̆�𝑡)�̆�𝑡 ≤ 𝑀2

𝑡 ≤ (1 + �̆�𝑡)�̆�𝑡

for 𝜏1 ≤ 𝑡 ≤ 𝜏2 and also

𝑀2
𝜏1

≥ �̆�𝜏1

(
1 +

�̄�𝜏1
− �̆�𝜏1

�̆�𝜏1
�̆�𝜏1

�̆�𝜏1

)
= �̄�1

𝜏1
, ℚ2-a.s.

We now consider the auxiliary stock price process for 0 ≤ 𝑡 ≤ 𝜏2 defined by

�̄�2
𝑡 ≜

{
�̃�2
𝑡 , for 0 ≤ 𝑡 < 𝜏1,

max
(
�̃�2
𝑡 ,𝑀

2
𝑡

)
, for 𝜏1 ≤ 𝑡 ≤ 𝜏2.

It is easy to show that (�̄�2)𝑡∧𝜏2 is a submartingale under ℚ2 as both �̃�2 and 𝑀2 are martingales under

ℚ2 for 0 ≤ 𝑡 ≤ 𝜏2. Moreover, by its construction, we obtain that �̄�2 stays in the spread, i.e., (1 − �̆�𝑡)�̆�𝑡 ≤
�̄�2
𝑡 ≤ (1 + �̆�𝑡)�̆�𝑡 for 0 ≤ 𝑡 ≤ 𝜏2 as well as the ordering �̄�2

𝜏1
≥ �̄�1

𝜏1
ℚ2-a.s.

By repeating this construction, for 2 ≤ 𝑘 ≤ 𝑛, we can first get the existence of a martingale𝑀𝑘 under

ℚ𝑘 for 0 ≤ 𝑡 ≤ 𝜏𝑘 that satisfies (1 − �̆�𝑡)�̆�𝑡 ≤ 𝑀𝑘
𝑡 ≤ (1 + �̆�𝑡)�̆�𝑡 for 𝜏𝑘−1 ≤ 𝑡 ≤ 𝜏𝑘 and 𝑀𝑘

𝜏𝑘−1
≥ �̄�𝑘−1

𝜏𝑘−1
ℚ𝑘-a.s. Let us then define

�̄�𝑘
𝑡 ≜

{
�̃�𝑘
𝑡 , for 0 ≤ 𝑡 < 𝜏𝑘−1,

max(�̃�𝑘
𝑡 ,𝑀

𝑘
𝑡 ), for 𝜏𝑘−1 ≤ 𝑡 ≤ 𝜏𝑘.

We obtain a sequence of processes {�̄�𝑘}1≤𝑘≤𝑛 such that �̄�𝑘
𝑡 is a submartingale under ℚ𝑘 and satisfies

the spread constraint (1 − �̆�𝑡)�̆�𝑡 ≤ �̄�𝑘
𝑡 ≤ (1 + �̆�𝑡)�̆�𝑡 for 0 ≤ 𝑡 ≤ 𝜏𝑘 , and at each stopping time, we have

the inequality

�̄�𝑘
𝜏𝑘−1

≥ �̄�𝑘−1
𝜏𝑘−1

, ℚ𝑘-a.s. (3.20)
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For the future purpose, we complete the definition of each auxiliary process �̄�𝑘
𝑡 after 𝑡 ≥ 𝜏𝑘 by setting

�̄�𝑘
𝑡 = �̄�𝑘

𝜏𝑘
, 𝑡 ≥ 𝜏𝑘, for 𝑘 = 1,… , 𝑛.

Let us consider the fictitious semimartingale stock price process defined by

𝑆♢
𝑡 ≜

{
�̄�𝑘
𝑡 , for 𝜏𝑘−1 ≤ 𝑡 < 𝜏𝑘, 𝑘 = 1,… , 𝑛

�̄�𝑛
𝜏𝑛
, for 𝑡 ≥ 𝜏𝑛.

It is clear that (1 − 𝜆𝑡)𝑆𝑡 ≤ 𝑆♢
𝑡 ≤ (1 + 𝜆𝑡)𝑆𝑡 for 0 ≤ 𝑡 ≤ 𝜏𝑛. Similar to the proof of Proposition 3.1,

we can deduce that

𝑉
liq,0
𝑡∧𝜏𝑛

(𝜙0, 𝜙1) ≤ (𝜙1 ⋅ 𝑆♢)𝑡∧𝜏𝑛 =
𝑛∑

𝑘=1

(
𝜙1 ⋅ (𝟏[[𝜏𝑘−1,𝜏𝑘[[�̄�

𝑘)
)
𝑡∧𝜏𝑛

.

We aim to prove that

𝔼ℚ̂𝑛

[
𝑛∑

𝑘=1

(
𝜙1 ⋅ (𝟏[[𝜏𝑘−1,𝜏𝑘[[�̄�

𝑘)
)
𝜏𝑛

]
=

𝑛∑
𝑘=1

𝔼
[
(𝑌𝜏𝑛 )

(
𝜙1 ⋅ (𝟏[[𝜏𝑘−1,𝜏𝑘[[�̄�

𝑘)
)
𝜏𝑛

]
≤ 0. (3.21)

For 1 ≤ 𝑘 ≤ 𝑛, using the integration by parts, we can deduce that(
𝜙1 ⋅ (𝟏[[𝜏𝑘−1,𝜏𝑘[[�̄�

𝑘)
)
𝜏𝑛

=
(
𝜙1𝟏]]𝜏𝑘−1,𝜏𝑘]] ⋅ �̄�

𝑘
)
𝜏𝑛

+
(
𝜙1
𝜏𝑘−1

�̄�𝑘
𝜏𝑘−1

− 𝜙1
𝜏𝑘
�̄�𝑘
𝜏𝑘

)
.

Consequently, proving (3.21) is equivalent to showing that the following holds:

𝔼

[
(𝑌𝜏𝑛 )

𝑛∑
𝑘=1

(
𝜙1𝟏]]𝜏𝑘−1,𝜏𝑘]] ⋅ �̄�

𝑘
)
𝜏𝑛

+ (𝑌𝜏𝑛)
𝑛∑

𝑘=1

(
𝜙1
𝜏𝑘−1

�̄�𝑘
𝜏𝑘−1

− 𝜙1
𝜏𝑘
�̄�𝑘
𝜏𝑘

)] ≤ 0. (3.22)

For the first part in (3.22), we claim that (𝑌 )𝑡∧𝜏𝑛(𝜙1𝟏]]𝜏𝑘−1,𝜏𝑘]] ⋅ �̄�
𝑘)𝑡∧𝜏𝑛 is a local supermartingale

under ℙ. Similar to the proof of lemma 3.5 of Choulli et al. (2015), Itô's lemma yields that it is equiv-

alent to prove that (
𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙

1 ⋅ �̄�𝑘 + 𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙
1 ⋅ [�̄�𝑘, 𝑌 ]

)
𝑡∧𝜏𝑛

is a local supermartingale under ℙ with initial value 0. However, it is clear by the definition of 𝑌 that(
𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙

1 ⋅ �̄�𝑘 + 𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙
1 ⋅ [�̄�𝑘, 𝑌 ]

)
𝑡
=
(
𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙

1 ⋅ �̄�𝑘 + 𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙
1 ⋅ [�̄�𝑘, 𝑌 𝑘]

)
𝑡
.

Notice that �̄�𝑘 is a submartingale under ℚ𝑘. Therefore, (𝑌 𝑘)𝑡∧𝜏𝑛 �̄�
𝑘
𝑡∧𝜏𝑛

is a submartingale under ℙ.

We claim that (�̄�𝑘 + [�̄�𝑘, 𝑌 𝑘])𝑡∧𝜏𝑛 is also a submartingale under ℙ. To prove the claim, we can use the

product rule and obtain that

𝑑
((𝑌 𝑘)𝑡�̄�𝑘

𝑡

)
= �̄�𝑘𝑑(𝑌 𝑘)𝑡 + (𝑌 𝑘)𝑑

(
�̄�𝑘 + [�̄�𝑘, 𝑌 𝑘]

)
𝑡
.

The first term on the right-hand side is a true martingale on [0, 𝜏𝑛] due to the fact that (�̄�𝑘)𝑡∧𝜏𝑛
is uniformly bounded. Therefore, we get that ((𝑌 𝑘) ⋅ (�̄�𝑘 + [�̄�𝑘, 𝑌 𝑘]))𝑡∧𝜏𝑛 is a submartingale. Let

us consider the semimartingale decomposition of the process (�̄�𝑘 + [�̄�𝑘, 𝑌 𝑘])𝑡∧𝜏𝑛 = 𝑀𝑡 + 𝐴𝑡, where
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𝑀𝑡 is a local martingale and 𝐴𝑡 is a finite variation process. By the submartingale decomposition

of ((𝑌 𝑘) ⋅ (�̄�𝑘 + [�̄�𝑘, 𝑌 𝑘]))𝑡∧𝜏𝑛 , we conclude that the finite variation process ∫ 𝑡∧𝜏𝑛
0 (𝑌 𝑘)𝑢𝑑𝐴𝑢 is

an increasing finite variation process for 𝑡 ≤ 𝜏𝑛. Let us write 𝐴𝑡 in terms of its Jordan decompo-

sition 𝐴𝑡 = 𝐴↑
𝑡 − 𝐴↓

𝑡 and ‖𝐴‖𝑡 = 𝐴↑
𝑡 + 𝐴↓

𝑡 . Then, it is easy to see that both ∫ 𝑡∧𝜏𝑛
0 (𝑌 𝑘)𝑢𝑑𝐴

↑
𝑢 and

∫ 𝑡∧𝜏𝑛
0 (𝑌 𝑘)𝑢𝑑𝐴

↓
𝑢 are increasing processes and

‖‖‖‖‖∫
𝑡∧𝜏𝑛

0
(𝑌 𝑘)𝑢𝑑𝐴𝑢

‖‖‖‖‖ = ∫
𝑡∧𝜏𝑛

0
(𝑌 𝑘)𝑢𝑑‖𝐴‖𝑢 = ∫

𝑡∧𝜏𝑛

0
(𝑌 𝑘)𝑢𝑑𝐴↑

𝑢 + ∫
𝑡∧𝜏𝑛

0
(𝑌 𝑘)𝑢𝑑𝐴↓

𝑢.

Therefore, the integral ∫ 𝑡∧𝜏𝑛
0 (𝑌 𝑘)𝑢𝑑𝐴𝑢 has the Jordan decomposition

∫
𝑡∧𝜏𝑛

0
(𝑌 𝑘)𝑢𝑑𝐴𝑢 = ∫

𝑡∧𝜏𝑛

0
(𝑌 𝑘)𝑢𝑑𝐴↑

𝑢 − ∫
𝑡∧𝜏𝑛

0
(𝑌 𝑘)𝑢𝑑𝐴↓

𝑢.

On the other hand, ∫ 𝑡∧𝜏𝑛
0 (𝑌 𝑘)𝑢𝑑𝐴𝑢 is an increasing process from the uniqueness (up to a con-

stant difference) of the Jordan decomposition. We therefore have that ∫ 𝑡∧𝜏𝑛
0 (𝑌 𝑘)𝑢𝑑𝐴

↓
𝑢 = 0. Because

(𝑌 𝑘)𝑡∧𝜏𝑛 > 0 ℙ-a.s. for all 𝑡, we obtain that 𝐴↓
𝑡 = 0 for all 𝑡. It follows that the finite variation pro-

cess 𝐴𝑡 is an increasing process. As a consequence, we get that (�̄�𝑘 + [�̄�𝑘, 𝑌 𝑘])𝑡∧𝜏𝑛 = 𝑀𝑡 + 𝐴𝑡 is a

submartingale.

Recalling that 𝜙1 is a nonpositive process, we derive that the stochastic integral(
𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙

1 ⋅ �̄�𝑘 + 𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙
1 ⋅ [�̄�𝑘, 𝑌 𝑘]

)
𝑡∧𝜏𝑛

is a local supermartingale under ℙ. It follows that (𝑌𝑡∧𝜏𝑛)(𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙1 ⋅ �̄�𝑘)𝑡∧𝜏𝑛 is a local supermartin-

gale under ℙ. Recalling that (𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙
1 ⋅ �̄�𝑘)𝑡∧𝜏𝑛 is bounded below by some constant, we deduce that

(𝑌𝑡∧𝜏𝑛)(𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙1 ⋅ �̄�𝑘)𝑡∧𝜏𝑛 is bounded below by the martingale (𝑌𝑡∧𝜏𝑛). Fatou's lemma yields that

(𝑌𝑡∧𝜏𝑛)(𝟏]]𝜏𝑘−1,𝜏𝑘]]𝜙1 ⋅ �̄�𝑘)𝑡∧𝜏𝑛 is a supermartingale under ℙ, which implies that

𝔼

[
(𝑌𝜏𝑛 )

𝑛∑
𝑘=1

(
𝜙1𝟏]]𝜏𝑘−1,𝜏𝑘]] ⋅ �̄�

𝑘
)
𝜏𝑛

]
≤ 0.

For the second part in (3.22), we can rearrange the summation and write

𝑛∑
𝑘=1

(
𝜙1
𝜏𝑘−1

�̄�𝑘
𝜏𝑘−1

− 𝜙1
𝜏𝑘
�̄�𝑘
𝜏𝑘

)
=

𝑛∑
𝑘=1

𝜙1
𝜏𝑘−1

(
�̄�𝑘
𝜏𝑘−1

− �̄�𝑘−1
𝜏𝑘−1

)
,

due to the condition that 𝜙1
𝜏𝑛

= 0 as well as the standing assumption that 𝜙1
𝜏0

= 𝜙1
0 = 0. From the

construction of �̄�𝑘, we already know that �̄�𝑘
𝜏𝑘−1

− �̄�𝑘−1
𝜏𝑘−1

≥ 0, ℚ𝑘-a.s. and hence ℚ̂𝑘-a.s. from (3.20).

Using the assumption that 𝜙1 is nonpositive, we immediately obtain

𝔼

[
(𝑌𝜏𝑛)

𝑛∑
𝑘=1

(
𝜙1
𝜏𝑘−1

�̄�𝑘
𝜏𝑘−1

− 𝜙1
𝜏𝑘
�̄�𝑘
𝜏𝑘

)] ≤ 0,

which yields that (3.22) holds and therefore (3.21) is verified.

Case 2: The portfolio process 𝜙1 is a nonnegative process on [[0, 𝜏𝑛]].
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The proof follows the arguments in Case 1 with small modifications. We therefore only sketch some

of the steps. We will mimic the idea in Case 1 for the construction of fictitious stock price processes.

First, for 0 ≤ 𝑡 ≤ 𝜏1, we can define

�̈�1
𝑡 ≜ �̃�1

𝑡 .

For 𝜏1 ≤ 𝑡 ≤ 𝜏2, we first consider two auxiliary processes

𝑋′′
𝑡 ≜ ess sup

𝜏∈𝑡

𝔼ℚ2
[
�̆�𝜏 (1 − �̆�𝜏 )

|||𝑡

]
,

𝑌 ′′
𝑡 ≜ ess inf

𝜏∈𝑡

𝔼ℚ2

[
�̆�𝜏

(
1 +

�̈�1
𝜏1
− �̆�𝜏1

�̆�𝜏1
�̆�𝜏1

�̆�𝜏

)|||||| 𝑡

]
,

where 𝑡 denotes the set of all stopping times 𝜏 with values 𝑡 ≤ 𝜏 ≤ 𝜏2. Let us further define

𝑋𝑡 ≜ 𝔼ℚ2
[
𝑋′′

𝜏1
|𝑡

]
, 𝑌𝑡 ≜ 𝔼ℚ2

[
𝑌 ′′
𝜏1
|𝑡

]
.

For 𝜏1 ≤ 𝑡 ≤ 𝜏2, it follows that 𝑋𝑡 ≜ 𝑋′′
𝑡 and 𝑌𝑡 ≜ 𝑌 ′′

𝑡 . We then get that (𝑋)𝑡∧𝜏1 is a supermartingale

and (𝑌 )𝑡∧𝜏1 is a submartingale under ℚ2. Moreover, similar to Case 1, there exists a martingale �̈�2

under ℚ2 and 𝑋𝑡 ≤ �̈�2
𝑡 ≤ 𝑌𝑡 for 0 ≤ 𝑡 ≤ 𝜏2 and (1 − �̆�𝑡)�̆�𝑡 ≤ �̈�2

𝑡 ≤ (1 + �̆�𝑡)�̆�𝑡 for 𝜏1 ≤ 𝑡 ≤ 𝜏2 as well

as �̈�2
𝜏1

≤ �̈�1
𝜏1

, ℚ2-a.s.

Let us define the auxiliary stock price process for 0 ≤ 𝑡 ≤ 𝜏2 as

�̈�2
𝑡 ≜

{
�̃�2
𝑡 , for 0 ≤ 𝑡 < 𝜏1,

min
(
�̃�2
𝑡 , �̈�

2
𝑡

)
, for 𝜏1 ≤ 𝑡 ≤ 𝜏2.

It is easy to check that �̈�2 is a supermartingale under ℚ2 for 0 ≤ 𝑡 ≤ 𝜏2 and (1 − �̆�𝑡)�̆�𝑡 ≤ �̈�2
𝑡 ≤

(1 + �̆�𝑡)�̆�𝑡 for 0 ≤ 𝑡 ≤ 𝜏2 and �̈�2
𝜏1

≤ �̈�1
𝜏1

. By repeating this procedure, we obtain a sequence of auxiliary

processes {�̈�𝑘}1≤𝑘≤𝑛 such that �̈�𝑘 is a supermartingale under ℚ𝑘 and (1 − �̆�𝑡)�̆�𝑡 ≤ �̈�𝑘
𝑡 ≤ (1 + �̆�𝑡)�̆�𝑡 for

0 ≤ 𝑡 ≤ 𝜏𝑘. Moreover, we have the inequality �̈�𝑘
𝜏𝑘−1

≤ �̈�𝑘−1
𝜏𝑘−1

, ℚ𝑘-a.s.

We will consider the fictitious semimartingale stock price process

𝑆
♯
𝑡 ≜

{
�̈�𝑘
𝑡 , for 𝜏𝑘−1 ≤ 𝑡 < 𝜏𝑘, 𝑘 = 1,… , 𝑛

�̈�𝑛
𝜏𝑛
, for 𝑡 ≥ 𝜏𝑛.

Eventually, similar to the proof in Case 1, it is enough to prove that

𝔼ℚ̂𝑛
[
(𝜙1 ⋅ 𝑆♯)𝜏𝑛

]
= 𝔼

[
(𝑌𝜏𝑛)

𝑛∑
𝑘=1

(
𝜙1𝟏]]𝜏𝑘−1,𝜏𝑘]] ⋅ �̈�

𝑘
)
𝜏𝑛

+ (𝑌𝜏𝑛)
𝑛∑

𝑘=1

(
𝜙1
𝜏𝑘−1

�̈�𝑘
𝜏𝑘−1

− 𝜙1
𝜏𝑘
�̈�𝑘
𝜏𝑘

)] ≤ 0.

(3.23)

But the inequality in (3.23) can be verified using the same proof as for (3.22) but replacing the sub-

martingale with the supermartingale and using the facts that 𝜙1 is nonnegative and �̈�𝑘
𝜏𝑘−1

≤ �̈�𝑘−1
𝜏𝑘−1

,

ℚ𝑘-a.s. and hence ℚ̂𝑘-a.s. for 1 ≤ 𝑘 ≤ 𝑛.
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Finally, we have shown that 𝔼ℚ̂𝑛 [𝑉 ] ≤ 0 for all 𝑉 ∈ �̄�𝜏𝑛
𝑀
(�̆�, �̆�). For the new sequence of probability

measures {ℚ̂𝑛}𝑛∈ℕ, we can consider the special trading strategies defined in (3.17) and (3.18) again.

As �̃�1 in (3.17) is nonpositive and �̂�1 in (3.18) is nonnegative, it follows that

𝔼ℚ̂𝑛[𝑉 liq,0
𝜏𝑛

(�̃�0, �̃�1)] ≤ 0, 𝔼ℚ̂𝑛 [𝑉 liq,0
𝜏𝑛

(�̂�0, �̂�1)] ≤ 0.

Following the proofs of lemmas 6.2 and 6.3 of Guasoni et al. (2012), we not only can obtain the

existence of �̂�𝑛
𝑡 for 0 ≤ 𝑡 ≤ 𝜏𝑛 such that (1 − �̆�𝑡)�̆�𝑡 ≤ �̂�𝑛

𝑡 ≤ (1 + �̆�𝑡)�̆�𝑡 and �̂�𝑛 is a martingale under

ℚ̂𝑛 for 0 ≤ 𝑡 ≤ 𝜏𝑛, but also get that �̂�𝑛 and �̂�𝑛+1 coincide ℙ-a.s. on [[0, 𝜏𝑛]] due to the fact that ℚ̂𝑛 =
ℚ̂𝑛+1|𝜏𝑛

.

Recalling the definition of �̆� and �̆� in (3.16), we obtain that for 0 ≤ 𝑡 ≤ 𝜏𝑛,

inf
0≤𝑡≤𝜏𝑛

(
𝑆𝑡(1 + 𝜆𝑡) − �̂�𝑛

𝑡

)
> inf

0≤𝑡≤𝜏𝑛
(1
2
𝑆𝑡(1 + 𝜆𝑡) +

1
2
𝑆′
𝑡

(
1 + 𝜆′𝑡

)
− �̂�𝑛

𝑡

)
= inf

0≤𝑡≤𝜏𝑛
(
�̆�𝑡(1 + �̆�𝑡) − �̂�𝑛

𝑡

) ≥ 0, a.s.

Similarly, we can also check that

inf
0≤𝑡≤𝜏𝑛

(
�̂�𝑛
𝑡 − 𝑆𝑡(1 − 𝜆𝑡)

)
> 0, a.s.

To finish the proof, we will paste the processes {�̂�𝑛}𝑛∈ℕ together over the whole horizon [0, 𝑇 ] to

get the process �̃�. We claim that for the local martingale 𝑍 defined in (3.19), the process �̃�𝑍 is also

a local martingale. To see this, for any stopping time 𝜏, we have �̃�0 = 𝔼ℚ̂𝑛[�̃�𝜏𝑛∧𝜏 ] = 𝔼[𝑍𝜏𝑛
�̂�𝜏𝑛∧𝜏 ] =

𝔼[𝑍𝜏𝑛∧𝜏 �̂�𝜏𝑛∧𝜏 ] = 𝔼[𝑍𝜏𝑛∧𝜏 �̃�𝜏𝑛∧𝜏 ] for all 𝑛 ∈ ℕ. It follows that the process �̃�𝑍 is a local martingale with

the same localizing sequence {𝜏𝑛}𝑛∈ℕ defined in (3.14). □

4 EXAMPLES

Two examples are constructed in this section, in which one stock price process is continuous and

another stock price has jumps, in order to demonstrate that the existence of an SCLMS is weaker than

the existence of a (S)CPS.

4.1 The case of continuous stock price
This example is essentially due to some of the results obtained in Rásonyi and Schachermayer (2010).

We first provide a sufficient condition for the existence of an SCLMS that will be used in constructing

the example. To this end, we shall first introduce the concept of obvious arbitrage (OA) in Rásonyi and

Schachermayer (2010).

Definition 4.1. Let S have continuous paths. We say that 𝑆 allows for an OA, if there are 𝛼 > 0 and
[0, 𝑇 ] ∪ {+∞}-valued stopping times 𝜎 ≤ 𝜏 such that {𝜎 < +∞} = {𝜏 < +∞}, ℙ(𝜎 < +∞) > 0 and

𝑆𝜏

𝑆𝜎

≥ 1 + 𝛼, on {𝜎 < +∞},

or
𝑆𝜏

𝑆𝜎

≤ 1
1 + 𝛼

, on {𝜎 < +∞}.
(4.1)
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Proposition 4.2. Assume that the continuous stock price 𝑆 does not admit an OA. Then there exists
SCLMS with any constant transaction cost 𝜆 ∈ (0, 1), i.e., loc(𝜆) ≠ ∅ for any constant 𝜆 ∈ (0, 1), and
hence 𝑠

loc(𝜆) ≠ ∅.

Proof. Proposition 1 of Rásonyi and Schachermayer (2010) proved that there exists a sequence of

stopping times 𝜌𝜆𝑛 such that the stopped process 𝑆𝜌𝜆𝑛 admits a 𝜆-CPS (�̃�𝑛,ℚ𝑛). Moreover, according to

their proof, one has the concatenation property; i.e., on each [[0, 𝜌𝜆
𝑛−1]], we get that �̃�𝑛

𝑡 equals �̃�𝑛−1
𝑡 and

ℚ𝑛−1|
𝜌𝜆
𝑛−1

= ℚ𝑛|
𝜌𝜆
𝑛−1

. Therefore, for each 𝑛 ∈ ℕ, we can define ℙ-martingales 𝑍𝑛 by

𝑍𝑛
𝑇
≜ 𝑑(ℚ𝑛|𝜌𝜆𝑛

)
𝑑(ℙ|𝜌𝜆𝑛

)
.

It is clear that 𝑍𝑛
𝑡 > 0; furthermore, we have 𝑍𝑛 = 𝑍𝑛−1 on the stochastic interval [[0, 𝜌𝜆

𝑛−1]]. There-

fore, by pasting the process (𝑍𝑛)𝑛∈ℕ, one can define a ℙ-local martingale such that 𝑍𝑡 > 0 for all

𝑡 ∈ [0, 𝑇 ]. Similarly, we can paste the process (�̃�𝑛)𝑛∈ℕ. As �̃�𝑛𝑍𝑛 is a ℙ-UI martingale according to

the construction of each �̃�𝑛, it is easy to see that �̃�𝑍 is a ℙ-local martingale. The existence of a CLMS

(�̃�, 𝑍) is then verified.

For any 𝜆 ∈ (0, 1), we can find a CLMS (�̃�′, 𝑍′) for the stock price 𝑆 with smaller transaction cost

𝜆′ ∈ (0, 𝜆) (by the above arguments). Clearly, (�̃�′, 𝑍′) is a pair of SCLMS for the stock price 𝑆 with

transaction cost 𝜆 and 𝑠
loc

≠ ∅. □

Remark 4.3. We want to point out that the no OA condition is not necessary for the existence of
SCLMS. The following example from Rásonyi (2015) illustrates this point: Define 𝑋𝑡 ≜ exp(𝑊𝑡 −

𝑡

2 ),
𝑡 ≥ 0 where 𝑊𝑡 is a Brownian motion and (𝑡)𝑡≥0 is its natural filtration. Define the a.s. finite stopping
time

𝜏 ≜ inf
{
𝑡 ∶ 𝑋𝑡 =

1
2

}
,

and set

𝑆𝑡 = 𝑋𝜏∧tan 𝑡, 0 ≤ 𝑡 <
𝜋

2
; 𝑆𝜋

2
= 1

2
.

Define also 𝑡 = tan 𝑡, 0 ≤ 𝑡 <
𝜋

2 , and  𝜋

2
= ∞. Clearly, the stock price process 𝑆 admits an OA

by setting 𝜎 = 0 and 𝜏 = 𝜋

2 . However, the process 𝑆𝑡 is a 𝑡-local martingale, proved by Prokaj and
Rásonyi (2011). We can see that (�̃�,ℚ) ≜ (𝑆,ℙ) is a pair of SCPS for any transaction cost 𝜆 ∈ (0, 1)
and hence an SCLMS.

It is worth noting that the existence of an OA opportunity in this example is not a contradiction to
the NA condition in Definition 2.5. Indeed, to take advantage of the OA opportunity, one will choose
to short sell the stock 𝑆 at time 𝑡 = 0 and wait until time 𝜏 to buy it to cover the position. However,
by the definitions of 𝑆 and 𝑋, this simple strategy is not admissible for any initial position 𝑥 > 0 as
the liquidation value process may go to −∞ at some stopping time 𝑡 < 𝜏. Therefore, this market model
still satisfies the usual NA condition of Definition 2.5 and there exists a pair of SCPS.

As an application of Proposition 4.2, we will demonstrate that an SCLMS might exist even when a

CPS may not.
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Example 4.4. Let (𝑊𝑡)𝑡≥0 be a standard Brownian motion with respect to (Ω, ,ℙ0), and define 𝑋𝑡 =
exp(𝑊𝑡 −

𝑡

2 ). Define the sequence of stopping times (𝜌𝑛)∞𝑛=1 by 𝜌0 = 0, 𝜌1 = inf{𝑡 ≥ 0 ∶ 𝑋𝑡 = 2−2 or 2}
and, for 𝑛 ≥ 1, let

𝜌𝑛+1 = 𝜌𝑛𝟏{𝑋𝜌𝑛
≠2−2𝑛} + 𝜎𝑛+1𝟏{𝑋𝜌𝑛

=2−2𝑛},

where

𝜎𝑛+1 = inf{𝑡 ≥ 0 ∶ 𝑋𝑡 = 2−2𝑛+1 or 2−𝑛+1}.

Define the stopping time

𝜏 = min{𝜌𝑛 ∶ 𝑋𝜌𝑛
= 2−𝑛+2}

and the stock price process 𝑆

𝑆𝑡 = 𝑋𝑡∧𝜏 , 0 ≤ 𝑡 < ∞. (4.2)

Next, define a probability ℙ on  by

𝑑ℙ
𝑑ℙ0 =

∞∑
𝑛=1

2−𝑛

ℙ0(𝜏 = 𝜌𝑛)
𝟏{𝜏=𝜌𝑛}.

The market model consists of the price process 𝑆 under the probability ℙ. (One can then choose a
deterministic time change from [0,+∞] to [0, 𝑇 ] to turn this into a finite horizon model.) Proposition 7
of Rásonyi and Schachermayer (2010) proved that (𝑆𝑡)0≤𝑡≤𝑇 satisfies the assumptions in Proposition
4.2. As a result, there exists an SCLMS (�̃�, 𝑍) with constant transaction cost 𝜆 ∈ (0, 1). However,
they also showed that there is no CPS for the same transaction cost 𝜆 ∈ (0, 1). The argument is by
contradiction: Here ℙ is constructed so that ℙ(𝜏 = ∞) = 0. However, if a CPS (�̃�,ℚ) exists, it would
have to be that ℚ(𝜏 = ∞) > 0, which yields a contradiction.

4.2 The case of jump process
We will rely on the results of Ruf and Runggaldier (2013) to construct our example.

Example 4.5. Let 𝑌 be a compensated ℙ0-Poisson process with intensity 𝛽 = 1
𝑇
≤ 1 started from one,

stopped when it hits zero or when it first jumps. Denote by 𝜏 the first hitting time of zero and by 𝜌

the first jump time. Set 𝑆 = 𝑌 and consider the constant transaction cost 𝜆 ∈ (0, 1). Then, ℙ0(𝑌𝑇 =
0) = exp(−1). Let the initial wealth be 𝑥 = 1 − exp(−1) and define the self-financing portfolio 𝜙∗ =
(𝜙0,∗, 𝜙1,∗) by

𝜙1,∗
𝑡 = 𝑒−1+𝛽𝑡𝟏{𝑡≤𝜏∧𝜌}, 𝜙0,∗

𝑡 = −∫
𝑡

0
(1 + 𝜆)𝑆𝑢𝑑𝜙

1,∗
𝑢 .

We can derive that

𝑉
liq,𝑥
𝑇

(𝜙0,∗, 𝜙1,∗) = 𝑉
liq,𝑥
𝜏∧𝜌 (𝜙0,∗, 𝜙1,∗) = 𝑥 + 𝜙0,∗

𝜏∧𝜌 + 𝜙1,∗
𝜏∧𝜌𝑆𝜏∧𝜌 − 𝜆|𝜙1,∗

𝜏∧𝜌|𝑆𝜏∧𝜌

= 𝑥 + 𝜙1,∗
0 𝑆0 + ∫

𝜏∧𝜌

0
𝜙1,∗
𝑡 𝑑𝑆𝑡 − 𝜆∫

𝜏∧𝜌

0
𝑆𝑡𝑑𝜙

1,∗
𝑡 − 𝜆𝜙1,∗

𝜏∧𝜌𝑆𝜏∧𝜌,
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which can be computed explicitly as

𝑉
liq,𝑥
𝑇

(𝜙0,∗, 𝜙1,∗) = 𝑥 + 𝑒−1 + 𝑒−1+𝛽𝜌𝟏{𝜌≤𝜏} − 𝛽 ∫
𝜏∧𝜌

0
𝑒−1+𝛽𝑡𝑑𝑡 − 𝜆∫

𝜏∧𝜌

0
𝑆𝑡𝛽𝑒

−1+𝛽𝑡𝑑𝑡

+ 𝜆(2 − 𝛽𝜌)𝑒−1+𝛽𝜌𝟏{𝜌≤𝜏} − 𝜆𝑒−1+𝛽(𝜏∧𝜌)𝑆𝜏∧𝜌

≥ 𝑥 + 𝑒−1 + (1 + 𝜆)𝑒−1+𝛽𝜌𝟏{𝜌≤𝜏} + (𝑒−1 − 𝑒−1+𝛽(𝜏∧𝜌))

+ 2𝜆(𝑒−1 − 𝑒−1+𝛽(𝜏∧𝜌)) − 2𝜆𝑒−1+𝛽(𝜏∧𝜌)

= 𝑥 +
[
(2 + 2𝜆)𝑒−1 − 3𝜆𝑒−1+𝛽𝜌

]
𝟏{𝜌≤𝜏} +

[
(2 + 2𝜆)𝑒−1 − (1 + 4𝜆)

]
𝟏{𝜏<𝜌}.

The first inequality holds as 𝑆𝑡 ≤ 2 for any 𝑡 ∈ [0, 𝑇 ] and 𝛽𝜌 ≤ 1 on {𝜌 ≤ 𝜏}, and the last equality
holds due to the fact that 𝛽𝜏 = 1 on the event {𝜏 ≤ 𝜌}. Let us choose 𝜆 > 0 small enough such that

𝑥 + (2 + 2𝜆)𝑒−1 − (1 + 4𝜆) ≥ 0,

which gives that 𝜆 ≤ 1
4𝑒−2 . Then, we always have

[
𝑥 + (2 + 2𝜆)𝑒−1 − (1 + 4𝜆)

]
𝟏{𝜏<𝜌} ≥ 0.

Recall that we have 𝛽𝜌 ≤ 1 on {𝜌 ≤ 𝜏}. With the choice of 𝜆 ≤ 1
4𝑒−2 , it is easy to verify that on {𝜌 ≤ 𝜏},

the following holds:

𝑥 + (2 + 2𝜆)𝑒−1 − 3𝜆𝑒−1+𝛽𝜌 ≥ 1.

We obtain that if 𝜆 ≤ 1
4𝑒−2 , then

𝑉
liq,𝑥
𝑇

(𝜙0,∗, 𝜙1,∗) ≥ 𝟏{𝜌≤𝜏} = 𝟏{𝑌𝑇 >0}, a.s.

Moreover, for any 𝑡 < 𝜏 ∧ 𝜌, it is easy to see that

𝑉
liq,𝑥
𝑡 (𝜙0,∗, 𝜙1,∗) = 𝑥 − ∫

𝑡

0
(1 + 𝜆)(1 − 𝛽𝑠)𝛽𝑒−1+𝛽𝑠𝑑𝑠 + (1 − 𝜆)𝑒−1+𝛽𝑡(1 − 𝛽𝑡)

≥ 𝑥 − (1 + 𝜆)𝑡𝛽 1
𝑒
≥ 𝑥 − (1 + 𝜆)1

𝑒
> 0 a.s.,

because (1 − 𝛽𝑡)𝑒−1+𝛽𝑡 is decreasing in 𝑡 and 1 − 1
𝑒
− (1 + 𝜆) 1

𝑒
> 0 if 𝜆 ≤ 1

4𝑒−2 . It is then verified that
𝜙∗ is 𝑥-admissible, i.e., 𝜙∗ ∈ 𝑥.

Let us define the probability ℙ by

𝑑ℙ
𝑑ℙ0 = 𝑌𝑇 .

The process 1
𝑌

is a positive ℙ-strict local martingale with ℙ( 1
𝑌𝑇

> 0) = 1; see theorem 2.1 of Carr,

Fisher, and Ruf (2014). Now, because the process 1
𝑌

is a ℙ-local martingale and 𝑆

𝑌
= 1 is a ℙ-

martingale, (�̃�, 𝑍) = (𝑆, 1
𝑌
) is an SCLMS.
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The nonexistence of a CPS can be proved by a contradiction argument. Let (�̃�,ℚ) be a CPS. For
the fixed 𝑥 = 1 − 𝑒−1 and for any 𝜙 = (𝜙0, 𝜙1) ∈ 𝑥, as in the proof of Proposition 3.1, we have

0 ≤ 𝑉
liq,𝑥
𝑇

(𝜙0, 𝜙1) ≤ 𝑥 + ∫
𝑇

0
𝜙1
𝑡 𝑑�̃�𝑡, ℙ-a.s.

The local martingale property of �̃� under ℚ implies that 𝑥 + ∫ 𝑇

0 𝜙1
𝑡 𝑑�̃�𝑡 is a supermartingale under

the same measure. As a result,

𝔼ℚ
[
𝑉

liq,𝑥
𝑇

(𝜙0, 𝜙1)
] ≤ 𝑥 < 1,

for any 𝜙 ∈ 𝑥, which is now a contradiction to the fact that 𝑉 liq,𝑥
𝑇

(𝜙0,∗, 𝜙1,∗) ≥ 𝟏{𝑌𝑇 >0} = 1, ℙ-a.s.
(and hence ℚ-a.s.).

5 UTILITY MAXIMIZATION PROBLEMS

In this section, we will discuss the market viability property by showing the relationship between

the existence of an SCLMS, the existence of an optimal solution to the utility maximization problem

defined on the terminal liquidation value, and the existence of numéraire portfolios.

5.1 Utility maximization problems
We first show that the NUPBR and NLABP conditions in the robust sense are sufficient conditions on

the market models for the market viability, which are generally weaker than the usual conditions in the

existing literature. Some standard conditions on preferences are required.

Assumption 5.1. The utility function 𝑈 (⋅) is defined on (0,∞) and 𝑈 (⋅) is continuously differentiable,
strictly increasing, and strictly concave. Without loss of generality, let us also assume 𝑈 (∞) > 0. We
further assume that the utility function satisfies the Inada conditions and the reasonable asymptotic
elasticity, i.e.,

𝑈 ′(0) = +∞, 𝑈 ′(∞) = 0, AE[𝑈 ] = lim sup
𝑥→∞

𝑥𝑈 ′(𝑥)
𝑈 (𝑥)

< 1.

The utility maximization problem on the terminal liquidation value process is defined by

𝑢(𝑥) = sup
(𝜙0,𝜙1)∈𝑥(𝜆)

𝔼
[
𝑈
(
𝑉

liq,𝑥

𝑇
(𝜙0, 𝜙1)

)]
= sup

𝑉
liq,𝑥

𝑇
∈𝑥(𝜆)

𝔼
[
𝑈
(
𝑉

liq,𝑥

𝑇

)]
. (5.1)

Due to the monotonicity of the function 𝑈 (⋅), it follows that

𝑢(𝑥) = sup
𝑉𝑇∈(𝑥)

𝔼[𝑈 (𝑉𝑇 )].

where the convex solid set (𝑥) is defined in (3.4).

The next theorem is the second main result of this paper.

Theorem 5.2. Suppose that there exists some 𝑥 > 0 such that 𝑢(𝑥) < +∞ (and hence for all 𝑥 > 0).
Consider the following three assertions:
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(1) 𝑆 satisfies the NUPBR and NLABP conditions with the transaction cost 𝜆 in the robust sense.
(2) For any initial wealth 𝑥 > 0, there exists a unique optimal portfolio (𝜙0,∗, 𝜙1,∗) ∈ 𝑥(𝜆), i.e.,

𝑉 ∗,𝑥
𝑇

∈ 𝑥(𝜆) such that

𝑢(𝑥) = 𝔼
[
𝑈
(
𝑉 ∗,𝑥
𝑇

)]
.

(3) 𝑆 satisfies the NUPBR condition with the transaction cost 𝜆.

We have the following implications: (1) ⇒ (2) ⇒ (3).

Remark 5.3. As discussed in Section 3, under the assumption that 𝑆 satisfies the NUPBR and NLABP
conditions with transaction cost 𝜆, we may still have arbitrage opportunities in the sense of Defini-
tion 2.5. Theorem 5.2 (1) ⇒ (2) states that as long as these arbitrage opportunities do not lead to
UPBR or violate the NLABP condition, the optimal portfolio problem is still well defined. Either some
types of arbitrages are not preferred by the investors, or they are too small or not scalable to result in
infinitely large wealth.

Proof of (2) ⇒ (3). To this end, let us prove that 𝑆 satisfies the NUPBR condition first.

Suppose that the utility maximization problem (5.1) admits an optimal solution for the market model

with the stock price process𝑆 and the transaction cost 𝜆. We need to check that the set1(𝜆) is bounded

in probability.

The conditions AE[𝑈 ] < 1 and 𝑈 (∞) > 0 yield the existence of constants 𝛼 > 0 and 𝛾 > 0 (see

Kramkov & Schachermayer, 1999) such that 𝑈 (𝛼) > 0 and

𝑥𝑈 ′(𝑥) < 𝛾𝑈 (𝑥), for all 𝑥 ≥ 𝛼. (5.2)

For any 𝑉
liq,1
𝑇

∈ 1(𝜆), it is clear that 𝑉
liq,1
𝑇

+ 𝛼 ∈ 1+𝛼(𝜆) as we can always keep the cash 𝛼 > 0 in

the riskless asset. Now, let us consider the investor with initial wealth 1 + 𝛼, and assume that 𝑉 ∗,1+𝛼
𝑇

is optimal for the utility maximization problem

sup
𝑉

liq,1+𝛼
𝑇

∈1+𝛼(𝜆)
𝔼
[
𝑈
(
𝑉

liq,1+𝛼
𝑇

)]
= 𝔼

[
𝑈
(
𝑉 ∗,1+𝛼
𝑇

)]
< ∞.

For any 𝑉
liq,1
𝑇

∈ 1(𝜆), we claim that (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)𝑈 ′(𝑉 ∗,1+𝛼
𝑇

) is integrable and in particular,

𝔼
[(
𝑉

liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)
𝑈 ′

(
𝑉 ∗,1+𝛼
𝑇

)] ≤ 0. (5.3)

We will first demonstrate this claim. To this end, for any fixed 𝜖 ∈ (0, 12 ), we define 𝑉 𝜖
𝑇
= (1 −

𝜖)𝑉 ∗,1+𝛼
𝑇

+ 𝜖(𝑉 liq,1
𝑇

+ 𝛼). Due to the convexity of the set 𝜆(1 + 𝛼), we have 𝑉 𝜖
𝑇
∈ 𝜆(1 + 𝛼). The

optimality of 𝑉 ∗,1+𝛼
𝑇

together with the concavity of 𝑈 (𝑥) implies that

0 ≥ 1
𝜖
𝔼
[
𝑈
(
𝑉 𝜖
𝑇

)
− 𝑈

(
𝑉 ∗,1+𝛼
𝑇

)] ≥ 1
𝜖
𝔼
[(
𝑉 𝜖
𝑇
− 𝑉 ∗,1+𝛼

𝑇

)
𝑈 ′ (𝑉 𝜖

𝑇

)]
= 𝔼

[(
𝑉

liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)
𝑈 ′ (𝑉 𝜖

𝑇

)]
, (5.4)

if we have that (𝑉 𝜖
𝑇
− 𝑉 ∗,1+𝛼

𝑇
)𝑈 ′(𝑉 𝜖

𝑇
) is integrable. Here, the second term in (5.4) is finite because

−∞ < 𝑈 (𝜖𝛼) ≤ 𝔼[𝑈 (𝑉 𝜖
𝑇
)] < 𝔼[𝑈 (𝑉 ∗,1+𝛼

𝑇
)] < ∞. For the third term, the concavity of 𝑈 (𝑥) gives the
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upper bound (𝑉 𝜖
𝑇
− 𝑉 ∗,1+𝛼

𝑇
)𝑈 ′(𝑉 𝜖

𝑇
) ≤ 𝑈 (𝑉 𝜖

𝑇
) − 𝑈 (𝑉 ∗,1+𝛼

𝑇
). Therefore, (5.4) holds if we can verify that

the lower bound −(𝑉 𝜖
𝑇
− 𝑉 ∗,1+𝛼

𝑇
)−𝑈 ′(𝑉 𝜖

𝑇
) is also integrable.

We show next that the family {(𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′(𝑉 𝜖
𝑇
), 𝜖 ∈ (0, 12 )} is dominated by an inte-

grable random variable. Let us write

(𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′(𝑉 𝜖
𝑇
) = (𝑉 liq,1

𝑇
+ 𝛼 − 𝑉 ∗,1+𝛼

𝑇
)−𝑈 ′(𝑉 𝜖

𝑇
)𝟏{𝑉 ∗,1+𝛼

𝑇
≤𝛼}

+ (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′(𝑉 𝜖
𝑇
)𝟏{𝑉 ∗,1+𝛼

𝑇
≥2𝛼}

+ (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′(𝑉 𝜖
𝑇
)𝟏{𝛼<𝑉 ∗,1+𝛼

𝑇
<2𝛼}.

(5.5)

For the first term in (5.5), we can see that

(𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′(𝑉 𝜖
𝑇
)𝟏{𝑉 ∗,1+𝛼

𝑇
≤𝛼} = 0, a.s.

For the second term in (5.5), we obtain an estimate by the monotonicity of 𝑈 ′(𝑥) and 𝑈 (𝑥) and

(5.2):

(𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)− 𝑈 ′(𝑉 𝜖
𝑇
)𝟏{𝑉 ∗,1+𝛼

𝑇
≥2𝛼}

≤ (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′((1 − 𝜖)𝑉 ∗,1+𝛼
𝑇

)𝟏{𝑉 ∗,1+𝛼
𝑇

≥2𝛼}

≤ (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′( 1
2
𝑉 ∗,1+𝛼
𝑇

)𝟏{𝑉 ∗,1+𝛼
𝑇

≥2𝛼}

≤ 𝛾
𝑉 ∗,1+𝛼
𝑇

1
2𝑉

∗,1+𝛼
𝑇

𝑈 (1
2
𝑉 ∗,1+𝛼
𝑇

)𝟏{𝑉 ∗,1+𝛼
𝑇

≥2𝛼}

≤ 2𝛾𝑈+(1
2
𝑉 ∗,1+𝛼
𝑇

) ≤ 2𝛾𝑈+(𝑉 ∗,1+𝛼
𝑇

).

The right-hand side is integrable as we know that 𝑢(1 + 𝛼) = 𝔼[𝑈 (𝑉 ∗,1+𝛼
𝑇

)] < ∞.

For the last term in (5.5), again, by the monotonicity of 𝑈 ′(𝑥), we obtain

(𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)− 𝑈 ′(𝑉 𝜖
𝑇
)𝟏{𝛼<𝑉 ∗,1+𝛼

𝑇
<2𝛼}

≤ (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′( 1
2
𝑉 ∗,1+𝛼
𝑇

)𝟏{𝛼<𝑉 ∗,1+𝛼
𝑇

<2𝛼}

≤ 𝑉 ∗,1+𝛼
𝑇

𝑈 ′( 1
2
𝑉 ∗,1+𝛼
𝑇

)𝟏{𝛼<𝑉 ∗,1+𝛼
𝑇

<2𝛼}

≤ 2𝛼𝑈 ′( 1
2
𝛼) < ∞.
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Hence, we can conclude that {(𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)−𝑈 ′(𝑉 𝜖
𝑇
), 𝜖 ∈ (0, 12 )} is bounded above by a non-

negative integrable random variable, which we will denote by Γ, and hence 𝔼[(𝑉 𝜖
𝑇
− 𝑉 ∗,1+𝛼

𝑇
)𝑈 ′(𝑉 𝜖

𝑇
)] >

−∞ and the inequality (5.4) is verified. Applying Fatou's lemma

𝔼
[
(𝑉 liq,1

𝑇
+ 𝛼 − 𝑉 ∗,1+𝛼

𝑇
)𝑈 ′(𝑉 ∗,1+𝛼

𝑇
)
] ≤ lim inf

𝜖→0
𝔼
[
(𝑉 liq,1

𝑇
+ 𝛼 − 𝑉 ∗,1+𝛼

𝑇
)𝑈 ′(𝑉 𝜖

𝑇
)
] ≤ 0,

where we used the facts that (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)𝑈 ′(𝑉 𝜖
𝑇
) ≥ −(𝑉 liq,1

𝑇
+ 𝛼 − 𝑉 ∗,1+𝛼

𝑇
)−𝑈 ′(𝑉 𝜖

𝑇
) ≥ −Γ and

that Γ is a nonnegative integrable random variable. Equation (5.3) holds as a consequence.

Because (𝑉 liq,1
𝑇

+ 𝛼 − 𝑉 ∗,1+𝛼
𝑇

)𝑈 ′(𝑉 ∗,1+𝛼
𝑇

) is integrable for any 𝑉
liq,1
𝑇

, by taking the special case

𝑉
liq,1
𝑇

= 0 as we are allowed to throw away cash, we conclude that (𝑉 ∗,1+𝛼
𝑇

− 𝛼)𝑈 ′(𝑉 ∗,1+𝛼
𝑇

) is also

integrable. Therefore, it follows from (5.3) and the concavity of 𝑈 that

sup
𝑉

liq,1
𝑇

∈1(𝜆)
𝔼
[
𝑉

liq,1
𝑇

𝑈 ′(𝑉 ∗,1+𝛼
𝑇

)
] ≤ 𝔼

[
(𝑉 ∗,1+𝛼

𝑇
− 𝛼)𝑈 ′(𝑉 ∗,1+𝛼

𝑇
)
]

≤ 𝔼[𝑈 (𝑉 ∗,1+𝛼
𝑇

)] − 𝑈 (𝛼) < ∞.

If we can show 𝑈 ′(𝑉 ∗,1+𝛼
𝑇

) > 0 a.s., then by lemma 3.2 of Imkeller and Perkowski (2015), we can

conclude that the set 1(𝜆) is bounded in probability. We will prove this by a contradiction argument

and assume ℙ(𝑈 ′(𝑉 ∗,1+𝛼
𝑇

) = 0) > 0. Consider the two cases:

Case 1: If 𝑈 (∞) = ∞.

It is easy to get ℙ(𝑈 (𝑉 ∗,1+𝛼
𝑇

) = ∞) > 0 as 𝑈 ′(∞) = 0. We obtained a contradiction to the fact that

𝑢(1 + 𝛼) = 𝔼[𝑈 (𝑉 ∗,1+𝛼
𝑇

)] < ∞.

Case 2: If 0 < 𝑈 (∞) < ∞.

We only get that ℙ(𝐴) > 0 for 𝐴 ≜ {𝑉 ∗,1+𝛼
𝑇

= ∞}. Using (5.2), we obtain that

𝔼[𝑈 ′(𝑉 ∗,1+𝛼
𝑇

)𝟏𝐴] < 𝛾𝔼

[
𝑈 (𝑉 ∗,1+𝛼

𝑇
)

𝑉 ∗,1+𝛼
𝑇

𝟏𝐴

]
.

But the fact that 𝑈 ′(∞) = 0 leads to 𝔼[𝑈 ′(𝑉 ∗,1+𝛼
𝑇

)𝟏𝐴] = 0. For the right-hand side, we know that

0 < 𝑈 (∞) < ∞ and therefore 𝔼[𝑈 (𝑉 ∗,1+𝛼
𝑇

)

𝑉 ∗,1+𝛼
𝑇

𝟏𝐴] = 0, which is a contradiction to the strict inequality.

In conclusion, we deduce that ℙ(𝑈 ′(𝑉 ∗,1+𝛼
𝑇

) > 0) = 1, which completes the proof of the implication

(2) ⇒ (3); i.e., 𝑆 satisfies the NUPBR condition with the transaction cost 𝜆.

Proof of (1) ⇒ (2). We first build the bipolarity result for the set (𝑥). Let us first define the polar of

this set:

(𝑦) = ((𝑥))◦ = {𝑌𝑇 ∈ 𝕃0+ ∶ 𝑌0 = 𝑦 and 𝔼[𝑉𝑇 𝑌𝑇 ] ≤ 𝑥𝑦, ∀𝑉𝑇 ∈ (𝑥)}. (5.6)

As 𝑆 satisfies the NUPBR and NLABP conditions with the transaction cost 𝜆 in the robust sense,

Theorem 2.8 gives the existence of the SCLMS (�̃�, 𝑍). Following verbatim the proof of (3.1) for the

pair (𝑆, 𝜆) instead of (𝑆′, 𝜆′), we can obtain that

sup
𝑉

liq,𝑥

𝑇
∈𝑥(𝜆;𝑆)

𝔼[𝑉 liq,𝑥

𝑇
𝑍𝑇 ] ≤ 𝑥, (5.7)
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which implies that

 ≜ {𝑍𝑇 ∈ 𝕃0+ ∶ (�̃�, 𝑍) ∈ 𝑠
loc
} ⊆ (1).

Hence, we conclude that (1) is not empty as  is not empty. Clearly, we have (𝑦) = 𝑦(1) and

(1) = ((1))◦. Moreover, because (1) is convex, solid, and closed under the convergence in proba-

bility (due to Proposition 3.3), we have that

(1) = ((1))◦, and (1) = ((1))◦, (5.8)

due to the bipolar theorem of Brannath and Schachermayer (1999). Due to (5.7), we also have that

(1) is bounded in probability because 1 is bounded in probability, and that it contains the constant 1.

Therefore, it is clear that the constant 𝑥 ∈ (𝑥) and we have (𝑦) ⊆ 𝕃1. Now we can apply theorem 3.1

and theorem 3.2 of Kramkov and Schachermayer (1999) to conclude that for each 𝑦 > 0, there exists

an optimal solution 𝑌 ∗
𝑇
(𝑦) to the dual optimization problem

𝑣(𝑦) = inf
𝑌∈(𝑦)

𝔼
[
𝑉 (𝑌𝑇 )

]
, (5.9)

and we have a conjugate duality between the primal and dual value functions

𝑣(𝑦) = sup
𝑥>0

[𝑢(𝑥) − 𝑥𝑦], 𝑦 > 0; 𝑢(𝑥) = inf
𝑦>0

[𝑣(𝑦) + 𝑥𝑦], 𝑥 > 0.

Moreover, the unique optimal solution 𝑉 ∗,𝑥
𝑇

to the utility maximization problem is given by

𝑉 ∗,𝑥
𝑇

= 𝐼(𝑌 ∗
𝑇
(𝑦)),

where 𝑦 = 𝑢′(𝑥) and 𝔼[𝑉 ∗,𝑥
𝑇

𝑌 ∗
𝑇
(𝑦)] = 𝑥𝑦. □

5.2 Existence of numéraire portfolios
Here, we briefly discuss the existence of a numéraire portfolio and some other related concepts as a

corollary of Theorem 5.2 and Proposition 3.3. We first define some relevant notions.

Definition 5.4. A liquidation value process 𝑉 ∈ 1(𝜆) is called

(i) a numéraire portfolio, denoted by 𝑉 num , if

𝔼

[
𝑉

liq,1
𝑇

𝑉𝑇

]
≤ 1;

(ii) a log-optimal portfolio, denoted by 𝑉 log, if

𝔼[log(𝑉 liq,1
𝑇

)] ≤ 𝔼[log(𝑉𝑇 )];

(iii) a growth-optimal or relatively log-optimal portfolio, denoted by 𝑉 gop, if

𝔼

[
log

(
𝑉

liq,1
𝑇

𝑉𝑇

)]
≤ 0,

for all 𝑉 liq,1 ∈ 1(𝜆).
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Corollary 5.5. Consider the following assertions:

(1) 𝑆 satisfies the NUPBR and NLABP conditions with the transaction cost 𝜆.
(2) The numéraire portfolio 𝑉 num for 𝑆 with the transaction cost 𝜆 exists and 𝑉 num

𝑇
< +∞ a.s.

(3) The growth-optimal portfolio 𝑉 gop for 𝑆 with the transaction cost 𝜆 exists and 𝑉
gop
𝑇

< +∞ a.s.
(4) 𝑆 satisfies the NUPBR condition with the transaction cost 𝜆.
(5) The log-optimal portfolio 𝑉 log for 𝑆 with the transaction cost 𝜆 exists.

We have implications (1) ⇒ (2) ⇔ (3) ⇒ (4). Moreover, if 𝑢(𝑥) < ∞ in (5.1) with 𝑈 (𝑥) = log(𝑥),
we have the equivalence (2) ⇔ (3) ⇔ (5) and 𝑉

log
𝑇

= 𝑉
gop
𝑇

= 𝑉 num
𝑇

.

Proof of (1) ⇒ (2). The proof follows the line of arguments presented in the proof of theorem 5.1 of

Christensen and Larsen (2007). We provide this for the sake of completeness. Consider the functions

𝑓𝑛(𝑥) defined by

𝑓𝑛(𝑥) ≜ log(𝑥)𝟏{𝑥≤𝑛} + 𝑔𝑛(𝑥)𝟏{𝑥>𝑛},

where 𝑔𝑛 is bounded, concave such that 𝑓𝑛 is two times continuous differentiable satisfying the Inada

conditions and 𝑔′𝑛 is a convex function less than
1
𝑥

. Clearly, 𝑓𝑛(𝑥) → log(𝑥) as 𝑛 → ∞ for all 𝑥 > 0.

According to our Theorem 5.2, if 𝑆 satisfies the NUPBR and NLABP conditions in the robust sense,

there exists a unique optimal solution 𝑉 ∗,𝑛 of the following utility maximization problem:

sup
𝑉

liq

𝑇
∈(1)

𝔼[𝑓𝑛(𝑉
liq

𝑇
)].

By choosing the forward convex combination 𝑉 𝑛 ∈ conv{𝑉 ∗,𝑛, 𝑉 ∗,𝑛+1,…} and passing to the subse-

quence if necessary, we can assume that 𝑉 𝑛 converges almost surely to some 𝑉 ∗. Moreover, because

(1) is closed and bounded in probability, we have 𝑉 ∗ ∈ (1) and 𝑉 ∗ < +∞ a.s. Notice that 𝑓 ′
𝑛(𝑥) ≤ 1

𝑥

and 𝑓 ′
𝑛(𝑥) →

1
𝑥

for all 𝑥. We obtain that

𝔼

[
𝑉

liq

𝑇

𝑉 ∗
𝑇

]
≤ lim inf

𝑛→∞
𝔼
[
𝑉

liq

𝑇
𝑓 ′
𝑛(𝑉

𝑛
𝑇
)
]
.

Let us assume that 𝑉
liq

𝑇
is bounded. Recalling that 𝑉 𝑛 =

∑∞
𝑘=𝑛 𝜃𝑘𝑉

∗,𝑘, we get

𝔼
[
𝑉

liq

𝑇
𝑓 ′
𝑛(𝑉

𝑛
𝑇
)
] ≤ 𝔼

[
𝑉

liq

𝑇

∞∑
𝑘=𝑛

𝜃𝑘𝑓
′
𝑛(𝑉

∗,𝑘
𝑇

)

]

= 𝔼

[
𝑉

liq

𝑇

∞∑
𝑘=𝑛

𝜃𝑘𝑓
′
𝑘
(𝑉 ∗,𝑘

𝑇
)

]
+ 𝔼

[
𝑉

liq

𝑇

∞∑
𝑘=𝑛

𝜃𝑘(𝑓 ′
𝑛(𝑉

∗,𝑘
𝑇

) − 𝑓 ′
𝑘
(𝑉 ∗,𝑘

𝑇
))

]
.

For the first term, it is easy to see from the proof of Theorem 5.2 that

𝔼

[
𝑉

liq

𝑇

∞∑
𝑘=𝑛

𝜃𝑘𝑓
′
𝑘
(𝑉 ∗,𝑘

𝑇
)

]
=

∞∑
𝑘=𝑛

𝜃𝑘𝔼
[
𝑉

liq

𝑇
𝑓 ′
𝑘
(𝑉 ∗,𝑘

𝑇
)
] ≤ ∞∑

𝑘=𝑛
𝜃𝑘𝔼

[
𝑉 ∗,𝑘
𝑇

𝑓 ′
𝑘
(𝑉 ∗,𝑘

𝑇
)
] ≤ 1.
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It follows that

𝔼
[
𝑉

liq

𝑇
𝑓 ′
𝑛(𝑉

𝑛
𝑇
)
] ≤ 1 + 𝔼

[
𝑉

liq

𝑇

∞∑
𝑘=𝑛

𝜃𝑘(𝑓 ′
𝑛(𝑉

∗,𝑘
𝑇

) − 𝑓 ′
𝑘
(𝑉 ∗,𝑘

𝑇
))

]

= 1 + 𝔼

[
𝑉

liq

𝑇

∞∑
𝑘=𝑛

𝜃𝑘(𝑓 ′
𝑛(𝑉

∗,𝑘
𝑇

) − 𝑓 ′
𝑘
(𝑉 ∗,𝑘

𝑇
))𝟏{𝑉 ∗,𝑘

𝑇
≥𝑛}

]

≤ 1 + 𝔼

[
𝑉

liq

𝑇

∞∑
𝑘=𝑛

𝜃𝑘
1

𝑉 ∗,𝑘
𝑇

𝟏{𝑉 ∗,𝑘
𝑇

≥𝑛}
]
≤ 1 +

𝔼
[
𝑉

liq

𝑇

]
𝑛

,

from which it follows that 𝔼[𝑉
liq

𝑇

𝑉 ∗
𝑇

] ≤ 1. When 𝑉
liq

𝑇
is not bounded, we can prove the same result for

𝑉
liq,𝑀

𝑇
= 𝑉

liq

𝑇
∧𝑀 for 𝑀 > 0, and then apply the monotone convergence theorem to get the same

conclusion. Hence, we proved the existence of a numéraire portfolio 𝑉 num = 𝑉 ∗ and 𝑉 num
𝑇

< +∞ a.s.

Proof of (2) ⇒ (3). This follows by an application of Jensen's inequality, and by setting 𝑉 gop = 𝑉 num,

we get

𝔼

[
log

(
𝑉

liq

𝑇

𝑉
gop

𝑇

)]
≤ log𝔼

[
𝑉

liq

𝑇

𝑉
gop

𝑇

]
≤ 0.

Proof of (3) ⇒ (2). The existence of 𝑉
gop

𝑇
implies that

0 ≤ 𝔼[log𝑉 gop

𝑇
− log𝑉 liq

𝑇
],

for all 𝑉
liq

𝑇
∈ 1. For each fixed 𝑉

liq

𝑇
∈ 1, define 𝑉 𝜖

𝑇
= (1 − 𝜖)𝑉 gop

𝑇
+ 𝜖𝑉

liq

𝑇
∈ (1). As 1 + log(𝑥) ≤

𝑥, we obtain

0 ≤ 𝔼[log𝑉 gop

𝑇
− log𝑉 𝜖

𝑇
] ≤ 𝔼

[
𝑉

gop

𝑇
− 𝑉 𝜖

𝑇

𝑉 𝜖
𝑇

]
= 𝜖𝔼

[
𝑉

gop

𝑇
− 𝑉

liq

𝑇

𝑉 𝜖
𝑇

]
.

Therefore, we derive that

𝔼

[
𝑉

liq

𝑇

𝑉 𝜖
𝑇

]
≤ 𝔼

[
𝑉

gop

𝑇

𝑉 𝜖
𝑇

]
. (5.10)

Observing that for 𝜖 <
1
2 , we have

𝑉
liq

𝑇
− 𝑉

gop

𝑇

𝑉 𝜖
𝑇

≥ −2,

we apply Fatou's lemma to (5.10) to obtain

𝔼

[
𝑉

liq

𝑇

𝑉
gop

𝑇

]
≤ 1.
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Proof of (2) ⇒ (4). Let 𝑉 num
𝑇

∈ 1 be such that sup
𝑉

liq

𝑇
∈1

𝔼[ 𝑉
liq

𝑇

𝑉 num
𝑇

] ≤ 1 and 𝑉 num
𝑇

< +∞ a.s. Clearly,

1
𝑉 num
𝑇

> 0 a.s. As a result, it is clear that 1 is bounded in probability, and hence 𝑆 satisfies NUPBR

with transaction cost 𝜆.

Under the additional assumption that 𝑢(𝑥) < ∞ with 𝑈 (𝑥) = log 𝑥, the proof of (2) ⇔ (5) follows

almost exactly the proof of proposition 4.3 of Becherer (2001). □

6 ADDITIONAL DISCUSSIONS

6.1 A discussion on no arbitrage conditions
Based on our proofs in Section 3, we aim to briefly discuss different types of arbitrage opportunities

in market models with transaction costs and compare them to the ones in the frictionless case.

First of all, to distinguish the major difference between our paper and the literature on market viabil-

ity in frictionless markets, it is worth noting that the NUPBR condition in Karatzas and Kardaras (2007)

implies the NLABP condition in market models without transactions. To wit, it is well known that the

NUPBR condition is equivalent to the existence of a local martingale deflator 𝑌 . Given the localizing

sequence {𝜏𝑛}𝑛∈ℕ for 𝑌 , we obtain the equivalent local martingale measures ℚ𝑛 on [[0, 𝜏𝑛]]. The fun-

damental theorem of asset pricing in Delbaen and Schachermayer (1994) asserts that the market model

satisfies the NA condition locally on each [[0, 𝜏𝑛]]. Therefore, we always have (NUPBR)⇒(NLA)⇒
(NLABP). However, in our setting, the NUPBR condition in Definition 2.3 and the NLABP condition

in Definition 2.4 may not imply each other. This special feature caused by transaction costs is the main

motivation of this paper.

Second, it is also of interest to examine some of the conclusions in Delbaen and Schachermayer

(1995) using the cost value process 𝑉 cost,𝑥 defined in (3.11). In particular, instead of the two kinds

of arbitrages discussed in lemma 3.1 in Delbaen and Schachermayer (1995), there are three different

kinds of arbitrages in our setting with transaction costs. To compare different notions of arbitrage

opportunities, it is actually difficult to use our NLABP condition in Definition 2.4 that requires NA

locally for a sequence of stopping times. In other words, the opposite of NLABP is too abstract to

describe. To this end, we shall consider the following stronger notion of arbitrage.

Definition 6.1. We say that 𝑆 admits an LA with the transaction cost 𝜆 if there exists a stopping time 𝜏
(we only consider stopping times valued in [0, 𝑇 ] in this paper) with ℙ(𝜏 < 𝑇 ) > 0 and an admissible
portfolio (𝜙0, 𝜙1) ∈ (𝜆) such that,

ℙ
(
𝑉

liq,0
𝜏 (𝜙0, 𝜙1) ≥ 0

)
= 1, and ℙ

(
𝑉

liq,0
𝜏 (𝜙0, 𝜙1) > 0 | 𝜏 < 𝑇

)
> 0. (6.1)

If we cannot find such a stopping time and portfolio, we say that the stock price process 𝑆 satisfies the
strong-NLA condition under the transaction cost 𝜆.

It follows that the strong-NLA condition implies the NLABP condition in Definition 2.4.

For the rest of our discussion, let us recall lemma 3.1 of Delbaen and Schachermayer (1995) (a

slightly modified version) from the infinite horizon to the finite horizon.

Lemma 6.2. If the càdlàg semimartingale 𝑆 admits an arbitrage with respect to general admissible
integrands, then there is an 𝑆-integrable strategy 𝐻 satisfying either of the following:

(i) (𝐻 ⋅ 𝑆) is nonnegative and the arbitrage is scalable.
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(ii) 𝐻 is 1-admissible and there exist 𝜖 > 0 and a stopping time 𝜏 with ℙ(𝜏 < 𝑇 ) > 0 such that 𝐻 =
𝐻𝟏]]𝜏,𝑇 ]] and (𝐻 ⋅ 𝑆)𝑇 ≥ 𝜖 on the set {𝜏 < 𝑇 }.

From the proof in Delbaen and Schachermayer (1995), the case (ii) corresponds to the scenario in

which the process (𝐻 ⋅ 𝑆) becomes negative with positive probability. It is clear that a scalable arbitrage

(SA) in case (i) is an UPBR, whereas case (ii) describes a more conventional form of arbitrage. An LA

may happen in case (ii).

A special example in case (i) is called an immediate arbitrage (IA) as defined below (see also defi-

nition 3.2 of Delbaen and Schachermayer, 1995).

Definition 6.3. In frictionless market models, we say that the semimartingale 𝑆 admits an IA at the
stopping time 𝜏 where ℙ(𝜏 < 𝑇 ) > 0 if there exists an 𝑆-integrable strategy 𝐻 such that 𝐻 = 𝐻𝟏]]𝜏,𝑇 ]]
and (𝐻 ⋅ 𝑆)𝑡 > 0 for 𝑡 > 𝜏 ℙ a.s.

It is easy to see that the IA implies an UPBR on the terminal wealth because 𝐻 is scalable and the

sequence 𝐻𝑛 ≜ 𝑛𝐻 for 𝑛 ∈ ℕ leads to an UPBR. Therefore, the no immediate arbitrage (NIA) condi-

tion is closely related to the NUPBR condition defined in Karatzas and Kardaras (2007) in frictionless

markets.

In the presence of transaction costs, the notion of IA becomes more delicate because when the

investor wants to take advantage of this arbitrage opportunity and enter the portfolio position at time

𝜏 and liquidate it immediately after 𝜏, the transaction cost 2𝜆𝜏𝑆𝜏 |𝜙1
𝜏 | has to be paid. Therefore, we

cannot define the IA simply by identifying the sign of the liquidation value process. In fact, we need

to impose conditions on both the liquidation value process and the cost value process.

Definition 6.4. We say that 𝑆 admits an IA at the stopping time 𝜏 if ℙ(𝜏 < 𝑇 ) > 0 and there exists a
portfolio (𝜙0, 𝜙1) such that 𝑉 cost,0

𝜏 (𝜙0, 𝜙1) < 𝑉
liq,0
𝑡 (𝜙0, 𝜙1) on ]]𝜏, 𝑇 ]].

Therefore, there must be a jump size of at least 2𝜆𝜏𝑆𝜏 |𝜙1
𝜏 | at the stopping time 𝜏 for the emergence

of an IA. The following result is a simple observation based on Definition 6.4.

Unlike the discussion in Lemma 6.2, which is simply based on whether the arbitrage wealth process

is negative or not, the types of arbitrages we consider depend on the delicate comparison between the

liquidation value process and the cost value process. For any admissible arbitrage portfolio (𝜙0, 𝜙1) (in

the sense of Definition 2.5), one of the following holds:

(1) We have 𝑉
liq,0
𝑡 (𝜙0, 𝜙1) ≥ 0 for all 𝑡 ∈ [0, 𝑇 ].

(2) There exists some stopping time 𝜏 < 𝑇 such that ℙ(𝑉 liq,0
𝜏 (𝜙0, 𝜙1) < 0) > 0. Two subcases may

occur:

(a) There exists some [0, 𝑇 ]-valued stopping times 𝑠1 and 𝑠2 with ℙ(𝑠1 < 𝑠2 < 𝑇 ) > 0
such that 𝑉 cost,0

𝑠1
(𝜙0, 𝜙1) ≤ 𝑉

liq,0
𝑠2

(𝜙0, 𝜙1) on the set {𝑠1 < 𝑠2 < 𝑇 } and ℙ(𝑉 cost,0
𝑠1

(𝜙0, 𝜙1) <
𝑉

liq,0
𝑠2

(𝜙0, 𝜙1)|𝑠1 < 𝑠2 < 𝑇 ) > 0.

(b) For any [0, 𝑇 ]-valued stopping times 𝑠1, 𝑠2 with ℙ(𝑠1 < 𝑠2 < 𝑇 ) > 0, we have

ℙ(𝑉 cost,0
𝑠1

(𝜙0, 𝜙1) > 𝑉
liq,0
𝑠2

(𝜙0, 𝜙1)|𝑠1 < 𝑠2 < 𝑇 ) > 0 or 𝑉 cost,0
𝑠1

(𝜙0, 𝜙1) = 𝑉
liq,0
𝑠2

(𝜙0, 𝜙1)
on the set {𝑠1 < 𝑠2 < 𝑇 }.

We obtain the following categorization of arbitrage opportunities based on the comparison between

𝑉 liq,0 and 𝑉 cost,0.

Lemma 6.5. If there is an arbitrage in the sense of Definition 2.5, then there is a self-financing portfolio
(𝜙0, 𝜙1) satisfying one of the following:
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(i) 𝑉
liq,0
𝑡 (𝜙0, 𝜙1) ≥ 0 for 𝑡 ∈ [0, 𝑇 ] (and therefore the arbitrage is scalable).

(ii) There exists two [0, 𝑇 ]-valued stopping times 𝜏1 and 𝜏2 with ℙ(𝜏1 < 𝜏2 < 𝑇 ) > 0 such that 𝜙1 is
supported on ]]𝜏1, 𝜏2]] with ℙ(𝑉 liq,0

𝜏2
(𝜙0, 𝜙1) > 0|𝜏2 < 𝑇 ) > 0 and ℙ(𝑉 liq,0

𝜏2
(𝜙0, 𝜙1) ≥ 0) = 1 (and

therefore it is an LA).
(iii) For any [0, 𝑇 ]-valued stopping time 𝜏 such that ℙ(𝜏 < 𝑇 ) > 0, we either have ℙ(𝑉 liq,0

𝜏 (𝜙0, 𝜙1) <
0|𝜏 < 𝑇 ) > 0 or 𝑉 liq,0

𝜏 (𝜙0, 𝜙1) = 0 on the set {𝜏 < 𝑇 } (and therefore it is neither an SA nor an
LA).

Proof. Clearly, (1) and (i) are equivalent.

When (2)(a) holds, there exists stopping times 𝑠1 and 𝑠2 with ℙ(𝑠1 < 𝑠2 < 𝑇 ) > 0 such that

𝑉 cost,0
𝑠1

(𝜙0, 𝜙1) ≤ 𝑉
liq,0
𝑠2

(𝜙0, 𝜙1) on the set {𝑠1 < 𝑠2 < 𝑇 } and ℙ(𝑉 cost,0
𝑠1

(𝜙0, 𝜙1) < 𝑉
liq,0
𝑠2

(𝜙0, 𝜙1)|𝑠1 <
𝑠2 < 𝑇 ) > 0. Define the stopping time 𝜏1 ≜ 𝑠1 and 𝜏2 ≜ 𝑠2. We consider the following portfolio:

�̂�1
𝑡 = 𝜙1

𝑡 𝟏]]𝜏1,𝜏2]],

�̂�0
𝑡 = (𝜙0

𝑡 − 𝑉 cost,0
𝜏1

(𝜙0, 𝜙1))𝟏]]𝜏1,𝜏2]] + (𝑉 liq,0
𝜏2

(𝜙0, 𝜙1) − 𝑉 cost,0
𝜏1

(𝜙0, 𝜙1))𝟏]]𝜏2,𝑇 ]].
(6.2)

It is easy to check that (�̂�0, 𝜙1) satisfies (ii).

When (2)(b) holds and there exists an LA, we obtain a contradiction when 𝑠1 = 0 and

𝑉 cost,0
0 (𝜙0, 𝜙1) = 0. Therefore, (iii) is satisfied. □

Remark 6.6. It is easy to observe that the SA in case (𝑖) is an UPBR and (𝑖𝑖) corresponds to an LA
opportunity. Let (TA) be the type of arbitrage that only happens at the terminal time 𝑇 as in statement
(𝑖𝑖𝑖). As a result, we have identified

(Arbitrage) = (SA) ∪ (LA) ∪ (TA).

Consequently, we have

(NA) = (NSA) ∩ (Strong-NLA) ∩ (NTA),

and

(NUPBR) ⇒ NSA,

as well as

(Strong-NLA) ⇒ NLABP.

Comparing with Lemma 6.2 reveals interesting differences between types of arbitrages (including
the definition of an IA) between our paper and Delbaen and Schachermayer (1995). Recall that NFLVR
= NA+NUBPR and that in the case without transaction costs, NUBPR is enough for the existence of a
local martingale deflator (see, e.g., Karatzas & Kardaras, 2007). The NLABP condition is required in
our main result due to the special and more complicated structures of arbitrage opportunities. Also, the
trading size of |𝜙1| has an important impact on the total transaction amount that the investor needs to
pay; therefore, the arbitrage argument in our setting relies heavily on the condition that |𝜙1| is bounded
or not. (See Lemma 3.8 for the mathematical reasons behind this.) In the end, as stated in Section 3,
the existence of SCLMS is equivalent to both the NUPBR and NLABP conditions in the robust sense.
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6.2 About admissibility for utility maximization problems
Let us now switch back to the discussion on utility maximization problems in Section 5. We briefly

discuss the reason why we should choose 𝑥-admissible portfolios as in (2.2) and require the NUPBR

and NLABP conditions using only 𝑥-admissible portfolios.

To start, note that the utility maximization problem can still be well defined for a larger set of admis-

sible portfolios.

Definition 6.7. For any 𝑥 ≥ 0, the self-financing portfolio (𝜙0, 𝜙1) is called tolerable if the liquidation
value process satisfies

𝑉
liq,𝑥
𝑇

(𝜙0, 𝜙1) ≜ 𝑥 + 𝜙0
𝑇
+ (𝜙1

𝑇
)+(1 − 𝜆𝑇 )𝑆𝑇 − (𝜙1

𝑇
)−(1 + 𝜆𝑇 )𝑆𝑇 ≥ 0.

Let tol
𝑥 denote the set of all 𝑥-tolerable portfolios and tol =

⋃
𝑥≥0tol

𝑥 .

It is clear that 𝑥 ⊂ tol
𝑥 . We introduce the definition of tolerable portfolios because, for any initial

wealth 𝑥 > 0, the utility maximization problem on nonnegative terminal liquidation values is well

defined on the set tol
𝑥 even if the portfolio (𝜙0, 𝜙1) is not 𝑥-admissible. Consider

𝑤(𝑥) = sup
(𝜙0,𝜙1)∈tol

𝑥

𝔼[𝑈 (𝑉 liq,𝑥

𝑇
(𝜙0, 𝜙1))]. (6.3)

It is possible that 𝑤(𝑥) < ∞ for some 𝑥 > 0 and that the optimization problem (6.3) admits a unique

optimal solution. The natural question is whether we can discuss the market viability property for util-

ity maximization problems defined using 𝑥-tolerable portfolios. The answer is negative in general.

Although the value function 𝑤(𝑥) < ∞ is well defined, to obtain the market viability using the dual

characterization, the bipolar relationship between the appropriate primal and the dual sets and the

closedness property of the primal set are essential. These properties may not hold for 𝑥-tolerable port-

folios. Indeed, if we do not require the portfolio liquidation process to be nonnegative for all 𝑡 ∈ [0, 𝑇 ]
as in Definition 6.7 and modify the NUPBR and NLABP conditions using the enlarged set tol

𝑥 , we are

actually making much stronger assumptions on market models as we have the obvious implications

NUPBR −tol
𝑥 ⇒ NUPBR −𝑥 and NLABP −tol ⇒ NLABP −.

Moreover, the SCLMS or even the SCPS is no longer the necessary dual element for the primal set

of liquidation value processes. To see this, let (�̃�,ℚ) be a pair of SCPS. We already know that

𝑉
liq,𝑥

𝑇
(𝜙0, 𝜙1) ≤ ∫

𝑇

0
𝜙1
𝑡 𝑑�̃�𝑡, ℙ-a.s.

for some self-financing portfolio (𝜙0, 𝜙1). Assuming that (𝜙0, 𝜙1) ∈ tol
𝑥 , we obtain that 𝑀𝑡 ≜ 𝑥 +

∫ 𝑡

0 𝜙
1
𝑢𝑑�̃�𝑢 is a local martingale under ℚ. We only know that 𝑀𝑇 ≥ 0. Hence, the local martingale 𝑀𝑡

is not necessarily a supermartingale and it is difficult to verify the dual characterization

𝔼ℚ[𝑉 liq,𝑥

𝑇
] ≤ 𝔼ℚ[𝑀𝑇 ] ≤ 𝑥.

To guarantee market viability for 𝑥-tolerable portfolios, we have to introduce some artificial dual

elements 𝑌 such that

𝔼[𝑉 liq,𝑥

𝑇
(𝜙0, 𝜙1)𝑌𝑇 ] ≤ 𝑥, ∀(𝜙0, 𝜙1) ∈ tol

𝑥 .
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Unfortunately, it is in general difficult to provide the probabilistic characterization of the artificial dual

element 𝑌 . As a result, it is impossible to make reasonable assumptions that would guarantee the

existence of 𝑌 and the market viability for 𝑥-tolerable portfolios. One way to reconcile this is to restrict

the set 𝑥 to a reasonable set of working portfolio so that SCLMS and SPCS can still serve as the dual

elements. For example, we can allow the liquidation value processes to be bounded below by some

stochastic process instead of a uniform constant. See the definition of 𝑥-acceptable portfolios in market

models with transaction costs in Bayraktar and Yu (2015) and Yu (2017).

In conclusion, although the utility maximization problems may be well defined for 𝑥-tolerable port-

folios, to make the market viability property mathematically tractable, it is reasonable to restrict the

attention to the smaller set of 𝑥-admissible portfolios as we did in the previous sections.
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