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Key Points: 

 

In the 900 cm-1 atmospheric window channel several Radiative Transfer Models have less than 2 K bias 
relative to collocated observations by the Atmospheric Infrared Sounder and a better than 0.95 correlation 
between the histogram derived from the observations and those derived from the calculations. Differences 
in the bias between observations and calculations for the 2616 cm-1 atmospheric window channel at night 
are not inconsistent with results at 900 cm-1. For day time data the differences are much larger due to 
differences in the way scattering of the solar reflected light is treated.  
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Differences in the cloud physics and cloud overlap assumptions between Radiative Transfer Models result 
in a standard deviation of the pairwise difference of between 6 and 12 K. Differences due to the cloud 
overlap assumption alone results in a 3 K standard deviation, an order of magnitude larger than the 
uncertainty of the observations.  

The radiative effects of a bias in the cloud model in the  European Center for Medium range Weather 
Forecasting are much less than the scatter in the differences between the AIRS observations and Radiative 
Transfer Models calculations  or the differences between calculations by different Radiative Transfer 
Models for the same clouds. 
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Abstract 
 
Data from hyperspectral infrared sounders are routinely ingested worldwide by National Weather Centers 
(NWCs). The cloud-free fraction of this data is used for initializing forecasts which include temperature, 
water vapor, water cloud and ice cloud profiles on a global grid. Although the data from these sounders 
are sensitive to the vertical distribution of ice and liquid water in clouds, this information is not fully 
utilized. In the future, this information could be used for validating clouds in NWC models and for 
initializing forecasts. We evaluate how well the calculated radiances from hyperspectral Radiative 
Transfer Models (RTMs) compare to cloudy radiances observed by AIRS and to one another. Vertical 
profiles of the clouds, temperature and water vapor from ECMWF (European Center for Medium-range 
Weather Forecasting) were used as input for the RTMs. For non-frozen ocean day and night data, the 
histograms derived from the calculations by several RTMs at 900 cm-1 have a better than 0.95 correlation 
with the histogram derived from the AIRS observations, with a bias relative to AIRS of typically less than 
2 K. Differences in the cloud physics and cloud overlap assumptions result in little bias between the 
RTMs, but the standard deviation of the differences ranges from 6 to 12 K. Results at 2616 cm-1 at night 
are reasonably consistent with results at 900 cm-1. Except for RTMs which use full scattering calculations, 
the bias and histogram correlations at 2616 cm-1 are inferior to those at 900 cm-1 for daytime calculations.   
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1. Introduction 
 
Clouds are a key component of the Earth’s weather and climate system. The data from hyperspectral 
infrared sounders have the information content to sense the vertical distribution of temperature and water 
vapor in clear air and of ice and liquid water inside semi-transparent clouds. The data from four 
hyperspectral sounders in polar orbit are routinely ingested by the National Weather Centers (NWCs) 
(e.g. Collard and McNally, 2009): The Atmospheric Infrared Sounder (AIRS, Aumann et al., 2003) on the 
Earth Observing System (EOS) Aqua satellite, the Crosstrack Infrared Sounder (CrIS, Glumb et al., 2003) 
on the Suomi National Polar-orbiting Platform (SNPP) satellite, and the Infrared Atmospheric Sounder 
Interferometer (IASI, Blumstein et al., 2008, Hilton et al., 2012) on MetOp A and B each makes more 
than two million observations of the state of the atmosphere and the clouds each day. The NWCs 
predominantly use the cloud-free portion of these data to initialize forecasts that provide temperature, 
water vapor, water cloud and ice cloud profiles on a global grid every three hours.  Using cloudy 
observations in forecast models is difficult (Errico et al., 2007, Bennartz and Greenwald, 2011) and 
although all-sky microwave radiances are now used (e.g. Geer et al., 2017), the use of infrared radiances 
represents a harder problem. NWCs make use of some cloudy scenes, such as low-level cloud or fully 
overcast scenes, but the cloud information is still not used to initialize forecasts (Guidard et al., 2011, 
Lavanant et al., 2011). A number of NWCs and university research groups have developed fast and 
accurate Radiative Transfer Models (RTMs) for infrared sounders, which include the effects of cloud and 
aerosol scattering. The names and associated organizations of the RTM developers are summarized in 
Table 1. Summaries of the RTMs are found in Appendix 3. While each RTM has been subject to its own 
validation, our paper is the first to compare results from major RTMs for cloudy hyperspectral infrared 
applications on the same data set to collocated observations and to each other.  
 
The objective of our paper was to evaluate the degree to which the radiative effects of clouds in NWC 
models agree with collocated hyperspectral observation. The availability of RTMs with a high degree of 
radiometric fidelity relative to observation, or at least the availability of tools to assess this fidelity, are 
expected to lead to the increased utilization of hyperspectral sounder data in the forecast. We selected 
AIRS observations and AIRS RTMs for our analysis to follow the Saunders et al., (2007) RTM analysis 
under cloud-free conditions. 
 
2. Data, Participants and Evaluation 
 
2.1. Data  
 
We selected data provided by the European Center for Medium-range Weather Forecasting (ECMWF, 
2009) as representative for the definition of the atmospheric states with clouds. The ECMWF description 
of the atmospheric state (temperature, water vapor and cloud vertical profiles, and surface temperature) 
has been widely documented and validated (e.g., Tiedtke 1989, Tiedtke 1993, Tompkins et al., 2007, 
Köhler et al., 2011, Kazumori et al., 2016). Details are in Appendix 1.  
 
For the inter-comparison of RTMs we used AIRS observations from March 1, 2009 and the matching 
atmospheric state defined by ECMWF. A subset of this data was created using the difference between the 
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ECMWF estimate of the surface temperature (stemp) and the brightness temperature measured in the 
1231 cm-1 window channel (bt1231), (stemp-bt1231). This difference is a measure of the radiometric 
effect of clouds. Under clear conditions the difference is less than 2 K, but the difference can increase to 
as much as 100 K in the presence of cold clouds in the tropics. We limited the size of this dataset to 
control the magnitude of the computational effort involved in scattering calculations by using stratified 
sampling. This method selected a representative mix of cloudy conditions from the AIRS data, which 
resulted in 7377 unique cases. The surface emissivity and surface reflectance were obtained from a 
monthly climatology (Zhou et al., 2012). The surface reflectance was assumed to be Lambertian. Details 
of the selection algorithm are given in Appendix 2. 
 
2.2. Participants and RTM methodology 
 
Table 1 summarizes the affiliation of the developers of cloud-capable RTMs at major NWCs, government 
and university facilities. Six RTMs were used: (1) SARTA, (2) RTTOV, (3) HT-FRTC, (4) PCRTM, (5) 
CRTM, and (6) σ-IASI. Largely based on discussions at the 2016 AGU meeting, every RTM team, except 
the RTTOV teams, submitted revised results. Five of the RTM developers generated variants related to 
details of how cloud overlap, cloud type and scattering were handled. Details on the individual RTMs are 
summarized in Appendix 3.   
 
All RTMs calculated cloudy radiances using a linear combination of clear sky calculations and scattering 
calculations for one or more cloud columns. The results of the clear sky column calculations from all 
these RTMs were nearly identical, consistent with Saunders et al., (2007). The cloudy spectra were 
calculated as the linear combination of clear and cloudy columns based on the cloud fraction. The 
Maximum Overlap (MO) model is the simplest case:  
 
                                                   𝑅𝑀𝑂 = 𝐶𝐹 𝑅𝐹𝑂 + (1 − 𝐶𝐹) 𝑅𝐶𝐿𝑅      (1) 
 
RMO is the spectrum calculated with the MO assumption and CF is defined as the maximum cloud fraction 
in the cloud coverage profile. Some RTMs set CF equal to the total cloud cover (tcc) specified in the 
ECMWF record.  RCLR is the clear sky spectrum, and RFO is the spectrum assuming full overcast (i.e., 
clouds fill the entire satellite footprint). Some RTMs allow the user to make more complicated overlap 
assumptions. The Maximum Random Overlap (MRO) assumption states that any continuous vertical 
cloud profile is maximally overlapped, and the discontinuous parts of the vertical cloud profile are 
randomly overlapped (Hogan and Illingworth, 2000).  If two cloud slabs are used, the MRO radiance is:  
 

𝑅𝑀𝑅𝑂 = 𝐶𝐹1 (1 − 𝐶𝐹2) 𝑅𝐶1 + 𝐶𝐹2 (1 − 𝐶𝐹1) 𝑅𝐶2 + 𝐶𝐹1 𝐶𝐹2 𝑅𝐶𝐿𝐷 +(1 − 𝐶𝐹1) (1 − 𝐶𝐹2) 𝑅𝐶𝐿𝑅               (2) 
 

where CF1 is the maximum cloud fraction of the first cloud slab, CF2 is the maximum cloud fraction of 
the second cloud slab, RC1 is the calculation where only the first cloud slab is included, RC2 is the 
calculation where only the second cloud slab is included, RCLD is the calculation where both clouds are 
included, and RCLR is the clear sky calculation.  There are several variants of the overlap assumption, 
including Maximum Overlap (MO), Exponential Random Overlap (ERO) and the Random Overlap (RO). 
We indicated these variants in the names of the models, e.g. CRTM_mro is the cloudy spectrum 
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calculated using CRTM with the MRO assumption. Most RTM developers submitted results with a 
number of variants. 
 
2.3. Evaluation  
 
The inter-comparison of the RTMs used three methods: 
 
1) The pairwise comparison of the observed AIRS spectra with the calculated spectra: We calculated the 
mean and standard deviation (stddev). This comparison is complicated by several factors: a) The 
collocation error: The location and local time of the AIRS data obtained with a 12-km footprint 
(effectively 1/8 degree lat/lon in the tropics) is not a good match to the temporal (3 hour) and spatial grid 
(approximate 25 km) of the ECMWF data available to this study;   b) The total cloud cover is specified in 
the ECMWF data, the cloud fraction, liquid water and ice water content are  specified for each level, but 
the cloud overlap is not specified. Each RTM can handle the cloud overlap with different assumptions. c) 
The ECMWF description of the cloud in 91 levels is itself subject to random and systematic errors. d) The 
liquid water and ice cloud particle size distributions are not directly specified. For a sufficiently large data 
set, factor (a) should have zero bias, but will cause a large stddev. Factors (b), (c) and (d) may create a 
bias as well as a large stddev.    
 
2) Characterization of the radiometric effect of clouds using histograms of (stemp-bt): Here stemp is the 
surface temperature from ECMWF and bt is the AIRS observed or RTM calculated brightness 
temperature in an atmospheric window channel. In the absence of a solar reflected component, (stemp-bt) 
increases from near zero under clear conditions to 100 K with increasing cloudiness. Under ideal 
conditions of a perfect matchup between AIRS and ECMWF, perfect clouds and thermodynamic profiles 
in the ECWMF model, and a perfect RTM, the two histograms will be identical. We evaluate the 
closeness of the match between observations and calculations by calculate the histogram correlation. 
Small residual biases that result from compensatory large positive and negative differences between AIRS 
and the RTM calculations under different conditions of cloudiness (or cloud types) are revealed as 
distortions of the histograms, resulting in a lowered correlation with the observations. This approach is 
not sensitive to random errors in the ECMWF cloud forecasts (e.g. the miss-location of clouds) but 
remains vulnerable to systematic errors; nevertheless, known systematic errors in ECMWF cloud 
forecasts are globally infrequent and limited to specific meteorological conditions (Kazumori et al., 
2016). Infrequent ECMWF cloud errors are not likely to impact the histogram correlation because of the 
wide variety of cloud conditions in our data set. 
 
3) The pairwise comparison of results from different RTMs: This approach has the advantage that it 
sidesteps matchup uncertainties with ECMWF. All RTMs use the same cloud model description. The 
comparison reveals the radiometric effect of differences between RTMs in cloud microphysics 
assumptions, cloud overlap assumptions, and scattering algorithms. 

3. Results 

Figure 1 illustrates typical spectral patterns in the mean of the pairwise difference between AIRS spectra  
and the spectra calculated using six representative RTMs for 1377 night and 1437 day non-frozen ocean 

This article is protected by copyright. All rights reserved.



 

© 2018 California Institute of Technology. U.S. Government sponsorship acknowledged.  
 

cases, respectively. For wavenumbers lower than 1700 cm-1 there is a relatively day/night independent, 
spectrally correlated pattern in the mean of the difference between AIRS and different RTMs. For 
wavenumbers above 2200 cm-1 the pattern for the different RTMs is inconsistent even for the nighttime 
data. This inconsistency is even larger for the daytime data due to the differences in the way the RTMs 
deal with scattering and solar reflected radiation. For the detailed evaluation of the RTMs we focus on the 
two representative atmospheric window channels at 900 and 2616 cm-1.  
 
Figure 2 illustrates the comparison between AIRS and three RTMs at 900 cm-1 for the same two cases as 
Figure 1 using histograms of (stemp-bt900). The peak of the histogram in all cases is near +10 K, i.e., 
relatively little cloudiness or low clouds. The coldest cloud tops are 100 K colder than stemp. The black 
trace is derived from the AIRS observation. HT_CRO and HT_SRO results are nearly identical, even 
though HT_CRO uses Chou scaling, while HT_SRO uses a full scattering calculation (both RTMs use the 
RO assumption).  SARTA traced the AIRS histogram somewhat better than either HT variant for 
nighttime cases with (stemp-bt900) between 40 and 70 K, with SARTA finding many more cases than 
AIRS, while the HT RTMs had less cases. SARTA uses Chou scaling and the RO assumption similar to 
HT_CRO.  However, SARTA takes multi-leveled clouds and converts them into two single layer clouds, 
one for ice clouds and one for water clouds. 
  
For daytime cases (Figure 2b), both SARTA and HT RTMs deviated from the AIRS trace for (stemp-
bt900) cases between 15 and 70 K.  Similar to the nighttime case, SARTA had more cases than AIRS in 
this range, while both versions of HT had less cases than AIRS between 15 and 30 K.  
 
Figure 3 illustrates the histogram comparison using the same three RTMs and the same day and night 
non-frozen ocean cases as Figure 2, but at 2616 cm-1. In this figure the agreements between the RTMs and 
AIRS at night is much better than during the day. In fact, the histograms from SARTA and both HT 
RTMs are more closely matched to the AIRS histogram for cases between 15 and 70 K than the 
histograms at 900 cm-1 (Figure 2a). During the day the full scattering calculations used by HT_SRO result 
in histograms without the long tail for high clouds (stemp-bt2616 > 60 K) seen in the HT_CRO 
histogram.  
 
3.1. Numerical summary of histogram correlations, bias and standard deviations 

 
Table 2 summarizes the histogram correlations and the bias relative to AIRS for the day and night non-
frozen ocean cases at 900 cm-1. The results shown are separated into six groups, with each group 
representing the six RTM developers. The histogram correlations with AIRS exceeded 0.95 for five of the 
six groups for day and night cases. The histogram correlations were slightly higher for the night cases 
than for the day cases. This observation may be related to a day/night dependence of the cloud structure 
or microphysics properties. A more in depth study of his observation is beyond the scope of this paper. 
The row labeled “clear column RTM” used SARTA without clouds. The mean bias relative to AIRS for 
all RTMs was +0.3 K (range -4.2 K to +2.2 K) for the day cases, and +0.8 K (range -3.6 K to +2.8 K) for 
the night cases. The number following the ± in Table 2 is the standard deviation of the differences, 
typically 22 K for the day, 20 K for the night cases.  Using the typical standard deviation for nighttime, 
the probable error in the mean is about 22/√1377 = 0.6 K (assuming random sampling and uncorrelated 
errors). Bias differences of more than three times the probable error, 2 K, are significant. 
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When the RTM calculations are compared to one another the effect of the collocation error is eliminated, 
since we are comparing calculations for the same cloud conditions. Results are shown in Table 3 for the 
1437 day non-frozen ocean cases using four RTMs as references: CRTM_mro, HT_SMRO, 
PCRTM_MRO4 and RTTOV_MRO. For the “5 group” summary in the last row we used only the first 
entry from each group, excluding the RTM used as the reference.  The bias between RTMs was -0.2 K, 
+1.5 K, +0.3 K and -3.4 K, and the standard deviations were 12.3 K, 7.6 K, 8.7 K and 6.5 K, respectively 
for the four reference RTMs.     
 
In order to explore the extent to which a small bias on a global scale may be the result of compensating 
biases, we divided the data into latitude zones. Results are summarized in Table 4 for the tropical zone 
(|lat| < 30 degree) with 3644 cases; 2662 cases for the extratropical zone (|lat| > 30) degree, limited to 
non-frozen surface cases using stemp > 275 K; and 1070 cases from the polar zone (|lat| > 60) degree. 
Based on the last column in Table 4, which shows the difference between the mean tropical and the mean 
mid-latitude bias, some RTMs show a latitude dependence in the bias of several degree K.      
 
Table 5 summarizes the results at 2616 cm-1 for day and night non-frozen ocean.  The bottom row 
summarizes the results in terms of a mean bias and stddev, excluding RTMs with less than 0.9 histogram 
correlation with AIRS. At night 16 of the 18 RTMs had a mean bias relative to AIRS of -1.8 K with 20 K 
stddev and 5 of the six RTM teams produced results with histogram correlation with AIRS better than 
0.95. During the day only two of the six RTM teams produced results with histogram correlations with 
AIRS better than 0.95. For these cases the mean bias was +2.4 K, and the mean stddev was 16 K.   
 
4. Discussion of the Results 
 
Under clear conditions at night, SARTA, PCRTM and RTTOV have previously been shown to agree with 
each other and with AIRS within 0.05 K bias and 0.1 K standard deviation (Saunders et al., 2007). The 
current versions of SARTA, PCRTM and RTTOV, including CRTM, σ-IASI and HT-FRTC under clear 
conditions all have shown the same level of agreement. Under cloudy conditions the agreement is not as 
close and the magnitudes of the differences are wavenumber dependent. 
 
4.1. The longwave region 
 
We define the longwave region as portions of the spectrum with wavenumbers lower than 1700 cm-1. In 
this region, the differences between AIRS and RTMs are relatively day/night independent (Figure 1) and 
range between ±4 K. The correlation between the histogram calculated from the AIRS observations and 
the histograms calculated for several of the RTMs at 900 cm-1 (Table 2 and Figure 2) exceeds 0.97. The 
bias averaged over 17 of 18 RTMs at 900 cm-1 for the day and night non-frozen oceans was +0.3 K and 
+0.8 K respectively (Table 2). However, Table 4 shows that the low bias for the non-frozen oceans for 
some RTMs was due to the compensating effects of a bias for the tropical zone balanced by a bias of the 
opposite signs in the mid-latitude and polar zones. A high correlation between the observed and 
calculated histograms and a zone independent low bias are a measure of the skill of the RTM and the 
statistical fidelity of the ECMWF specification of the atmospheric state, including clouds. The bias 
between the clear column RTM calculations and AIRS observations is more than -25 K (Table 2). The 
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typically 20 K standard deviation of the difference between AIRS and the RTMs is essentially the same 
with and without clouds. This indicates that the high standard deviation of (AIRS-RTM) is dominated by 
the mismatch between the clouds observed by AIRS and the clouds specified by the ECMWF model.  
 
RTTOV_MRO is biased about 4 K high relative to AIRS (Table 2). As shown in Table 3, where we 
compare the RTMs to reference RTMs, all RTMs are biased low relative to RTTOV_MRO.  
RTTOV_MRO used the OPAC cumulus cloud type option. RTTOV_CMSS used the RO overlap scheme 
and was optimized for mid to upper tropospheric sounding channels, not for window channels.  
RTTOV_CMSS shows much less bias relative to AIRS than RTTOV_MRO in the global analysis (Table 
2), but shows a large bias of opposite signs for the zonal bias (Table 4). These observations suggest that a 
combination of cloud types (derived from the cloud, temperature or water vapor profiles) may produce a 
closer match to observations than choosing one cloud type. Future work will examine the impact of cloud 
type assumptions on the RTMs’ match to observations. 
 
The typical standard deviation of the RTMs relative to AIRS, 20 K, decreases to a range of 6 to 12 K 
when the RTMs are compared to one another (Table 3), excluding siblings within the same RTM group. 
Since the RTMs used the same cloud input profile, the decrease from 20 K to 12 K (or less) is dominated 
by the elimination of the collocation error.  The standard deviations of the differences are in this case 
related to differences in the way the ECMWF cloud description is converted to cloud microphysical 
parameters and then to the radiances calculated by the RTMs. When this conversion is identical, as in the 
case of CRTM_mro and CRTM_2col, the standard deviation of the difference was 3 K, and was due to 
the difference in the overlap assumption alone. 
 
4.2. The shortwave region 
 
We define the shortwave region as portions of the spectrum with wavenumbers greater than 2000 cm-1.  
By inspection of Figure 1 we already noted that the spectral patterns for the different RTMs are less 
consistent in the shortwave region than in the longwave region, even for the night data. However, at night 
three of the six RTMs (Figure 1) have less than 2 K bias relative to AIRS and five of the six RTMs have 
histogram correlations better than 0.95 (Table 5). At night the histogram correlations at 2616 cm-1 are not 
inconsistent with those at 900 cm-1. During the day the results from only two of the six RTM teams 
reached histogram correlations better than 0.95, and the bias values relative to AIRS were much larger 
than those at night and the result at 900 cm-1. If cloud scattering parameters at 2616 cm-1 were too weak, it 
would have impacted the night calculations as well, but the night calculations (for three of the RTMs) 
agree reasonably well with AIRS. The degradation of the results during the day is probably related to the 
use of Chou scaling, which was not designed for shortwave calculations (Chou et al., 1999).  This is 
clearly shown in the comparison of HT_CRO (with the Chou approximation) and HT_SRO (using full 
scattering) in Figure 3. The tail of the histogram of HT_CRO at (stemp-bt2616) extends all the way to 
100 K for the coldest clouds, while the tail of the histogram of HT_SRO stops at 60 K. The 
PCRTM_MRO also uses full scattering. SARTA and RTTOV used Chou scaling, while CRTM used the 
advanced doubling adding method (Liu and Weng, 2006). Full scattering calculations usually are assumed 
to be costly in terms of computation time, but this need not be the case. For example, PCRTM performs 
full scattering calculations with multiple streams and multiple scatterings performed offline to generate 
lookup tables. However, even by employing full scattering, the HT_SRO histogram at 2616 cm-1 (Figure 
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3b) showed fewer clear or low cloud cases (stemp-bt2616 < 0 K) calculated by the RTMs than were 
observed by AIRS.  This suggests that the reflectance from the Earth’s surface has a stronger angular 
dependence than Lambertian scattering. 
 
In the discussion of the histograms calculated from the RTMs at 900 cm-1 we noted the differences 
between  AIRS observations and the RTMs for 40<(stemp-bt900)<70 K cases (Figure 2). This effect is 
much less pronounced at 2616 cm-1, particularly at night (Figure 3a).  We believe that in this region a 
significant portion of the scenes contains multiple cloud types. This may amplify any systematic bias that 
exists in the assumptions about cloud microphysics and their assumed spectral dependence. The 
interpretation of these differences in terms of cloud types is outside of the scope of this paper.  
 
4.3. ECMWF cloud bias and RTM cloud bias 
 
The bias in the RTMs relative to AIRS has two components:  
 
1) The ECMWF cloud description is vulnerable to systematic errors.  
2) The methodologies used by the RTMs to convert the cloud description into radiances are likely  
 to contain assumptions which lead to systematic biases.  
  
In order to quantify this bias we assume that the results from the six RTM teams represent plausible and 
sufficiently independent radiometric realizations of the cloud effects. At 900 cm-1 the RTMs show a bias 
in the range from +1.5K to -3.4K relative to one another (Table 3).  Relative to AIRS the RTMs have a 
+0.3 K (+0.8 K) mean bias for the day (night) non-frozen oceans (Table 2). These results indicate that the 
radiative effect of a bias in the ECMWF clouds could be of the order of 1 K.  
 
The difference between the mean tropical and mean mid-latitude bias (Table 4, last column) for each 
RTM could reveal a cloud type dependence in the ECMWF clouds or in the RTM cloud algorithms. 
Several of the six RTM groups have a zonal bias lower than 2 K.  The low zonal bias seen in the results 
from these RTMs is consistent with the radiative effect of a zonal ECMWF cloud bias of less than 2 K. 
The observation that several of the RTMs achieve a low zonal bias and a high histogram correlation 
relative to the observations indicates that the low global bias is not the result of compensatory much 
larger cloud-type dependent biases.  
 
We interpret the zonal bias seen in the three other RTM groups, which ranges from 4 K to 8 K, as a cloud-
type dependence in those RTMs. The RTTOV_CMSS has a 5 K zonal bias, compared to 0.2 K for 
RTTOV_MRO (Table 4). On the other hand, RTTOV_CMSS shows much less bias relative to AIRS than 
RTTOV_MRO (Table 2). Both use a single (but different) cloud type.  A combination of cloud types 
(derived from the cloud, temperature or water vapor profiles) may produce a closer match to observations 
than choosing one cloud type.  A future analysis of cloud-type effects on the RTMs could include data 
acquired in cloudy conditions from other instruments. 
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5. Summary 

 
The objective of our paper was to evaluate the degree to which the radiative effects of clouds in NWC 
models agree with collocated hyperspectral observations.  We selected AIRS observations and AIRS 
RTMs for our analysis. We selected data provided by the European Center for Medium-range Weather 
Forecasting (ECMWF, 2009) as representative for the definition of the atmospheric states with clouds. . 
We used the bias and histogram correlations relative to AIRS observations for the 2616 and 900 cm-1 
atmospheric window channels as performance metrics. For some RTMs the histogram calculated at 900 
cm-1 has a correlation of better than 0.95 with the histogram derived from the AIRS observations, with a 
bias relative to AIRS of less than 2 K for non-frozen ocean day and night data. However, several of the 
six RTM groups showed between zero and 2 K bias between the tropical zone and the mid-latitude zone 
at 900 cm-1, while others had a bias between 4 K and 8 K. This observation and the high histogram 
correlation with AIRS shows that the ECMWF cloud prescription may have a bias, but the radiative effect 
of the bias at 900 cm-1 is most likely less than 2 K, relatively insignificant compared to the bias 
introduced by some RTMs. The results for the 2616 cm−1 window channel are consistent with day and 
night results at 900 cm-1 only when full scattering calculations were used. For these cases the correlation 
between the histogram deduced from the AIRS observations and the histograms calculated by the RTMs 
exceeds 0.95 and the bias at night is less than 2 K relative to AIRS. During the day the AIRS observations 
at 2616 cm-1 are 2 to 4 K higher than the RTM calculations with full scattering. This suggests that the 
reflectance of the surface has a steeper angular dependence than Lambertian. 
 
Our study created a testable dataset, baseline results, and testing methodology to support continuing RTM 
development, with the goal of increasing the utilization of hyperspectral observations in the forecast. As 
illustrated in Figure 1, there is no need (with the current state of the art RTMs) to make these calculations 
for all channels, since just one or two surface channels will provide valuable insights. However, the 
selection of a shortwave channel requires an RTM with full scattering. The choice of the RTM and how 
many channels to use comes down to computer resource requirements.  
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Appendixes 
 
A1. Model Profiles (Alan Geer) 
 
Model profiles were taken from the ECMWF operational global weather forecasting system on 01 
March, 2009. The best available estimate of the atmospheric state was taken every 3 hrs, being a 
mix of analysis and very short-range forecast. At the time, cycle 35r1 of the ECMWF system was 
operational and full documentation is available from ECMWF (2009). This describes cycle 33r1, 
but there were no major changes going to 35r1. The model fields used 91 levels. An additional 
level at 0.005 hPa was added using the US Standard Atmosphere to avoid ambiguity when 
different RTMs were using the model fields. The forecast model uses T799 (roughly 25km) 
spatial binning. Each AIRS position and observing time from 1 March 2009 was associated with 
nearest forecast time and interpolated across the 35r1 grid points in time and space.  
 
Analyses and forecasts are based on clouds and precipitation models using three main schemes: 
convection by a mass-flux scheme (Tiedtke 1989, Bechtold et al., 2004), large-scale cloud and 
precipitation, including the possibility of ice supersaturation (Tiedtke 1993, Tompkins et al., 2004), 
and an eddy-mass flux turbulent diffusion scheme for the boundary layer, representing stratocumulus 
(Köhler et al., 2011). Together these contribute to producing the vertical profile of cloud water, cloud 
ice and cloud fraction at every grid point. Where necessary to assume an overlap formulation for 
clouds in the radiation scheme, a generalized formulation was assumed, increasing from maximum to 
random overlap with increasing cloud layer separation (Barker, 2008).  
 
The ECMWF analysis is a combination of short-range forecast and observational information, including 
satellite radiances, satellite-retrieved atmospheric motion vectors, nearsurface wind vectors from 
scatterometers, Global Navigation Satellite System (GNSS) radio-occultation measurements, and 
conventional data sources including ground stations, ships, radiosondes and aircraft. Of particular 
relevance to the current study is that AIRS and IASI radiances are assimilated, but in clear-sky areas only 
(Collard and McNally, 2009). As a consequence, the cloud description in the ECMWF model does not 
contain AIRS cloud information. Further, clouds and precipitation are constrained in the analysis by the 
assimilation of cloud and precipitation-affected microwave-imager radiances (Bauer et al., 2006). 
 
A2. Selection of the test data set (Evan Manning) 

Each day AIRS produces 3 million spectra, each with 2378 spectral channels. The locations of the spectra 
are biased towards the polar areas due to the high inclination of the EOS Aqua orbit. In order to test the 
relative performance of cloudy RTAs we created a data set with emphasis on cloud variability. This data 
set was created using stratified sampling:  the clouds are roughly characterized by the difference between 
the surface temperature (stemp), provided by ECMWF, and the brightness temperatures measured in five 
sounding regions from AIRS, including the brightness temperatures at 1231 cm-1 (bt1231).  We traversed 
the spectra in time order and assigned to each spectrum a tag which combined the following elements: 
  1) Day vs Night (the divide was solar zenith angle = 90) (2 bins) 
  2) Land/Sea + Latitude band.  30 degree bins.  Non-polar bins were divided into land and sea.  Sea was   
defined as any AIRS footprint containing less the 1% land.  (10 bins) 
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  3) bt1231 in 10 K increments between 170 and 360 K (19 bins) 
  4) stemp-bt1231 in 10 K increments from -40 to +210 K (26 bins) 
  5) We defined five broad spectral bands at [650, 800], [800, 1200], [1200, 1700], [1700, 2400], and 
[2400, 2700] cm-1.  For each band we used the mean brightness temperature in the band minus bt1231, 
bt_band-bt1231, to define 20 bins in 10 K increments from -110 to +110 K (20 bins per band). 

This allows for up to 2*10*19*26*205 ~ 30 billion bins, but most bins were empty. Each spectrum's tag 
was compared to the tags of the spectra previously collected.  If the tag did not match any, then the new 
spectrum was added to the data set. This procedure created 7377 uniquely tagged spectra. The latitude, 
longitude, solar zenith and solar azimuth angles and the ECMWF definition of the state of the atmosphere 
associated with this set and the associated AIRS spectral radiances were posted on the anonymous FTP 
site at “ftp://thunder.jpl.nasa.gov/hha/Cloudy_RTA/atm.state”. The rta7377readme.20160518.txt explains 
the details. 
 
The distribution of the 7377 test cases does not match the distribution of clouds in a global grid, but the 
set spans the natural variability of spectra, which is dominated by clouds. The emphasis on clouds is 
illustrated in Figure A1. The red trace in Figure A1 is the distribution of the cloud effect (stemp-bt1231) 
for a global area representative random sample of the non-frozen oceans. A large fraction of the ocean is 
covered by relatively low or broken clouds. The peak of the random sampled distribution is at 5 K. Only 
7% of the non-frozen oceans are associated (stemp-bt1231)>50 K, (roughly correponding to brightness 
temperatures colder than 250 K). The blue trace in Figure A1 is the distribution of the cloud effect in the 
test set. The peak of the distribution is at 8 K, and 30% of the test data are associated with (stemp-
bt1231)>50 K. 
 
A3. RTM model summaries. 
 
A3.1. CRTM (Moradi and Wilson) 

The Community Radiative Transfer Model, CRTM, (Nalli et al., 2016), is a fast radiative transfer model 
developed by the Joint Center for Satellite Data Assimilation (JCSDA) that is widely  used in the U.S. 
(including at the NASA Global Modelling and Assimilation Office, GMAO) to assimilate satellite 
radiances. The current version is 2.2.3. CRTM is capable of simulating microwave and infrared radiances 
using atmospheric profiles of pressure, temperature, humidity, and other species such as ozone. CRTM 
also includes capabilities to simulate satellite cloudy radiances.  The ice cloud single scattering properties 
are based on Baum et al., (2011). All spectra were calculated with CRTM 2.2.3.  However, within this 
version CRTM gives the user wide flexibility for the cloud overlap assumption and the cloud 
composition. Six cloud types can be defined at the same time:  water, ice, rain, snow, graupel, and hail. 
The calculations presented in this paper used only water and ice clouds based on cloud liquid and ice 
water content profiles. 

CRTM requires pressure values at levels as well as layer-averaged, and the layer averages of temperature, 
water vapor and other absorbers as input to perform clear-sky calculations. The top pressure level is fixed 
at 0.005 hPa.  For the calculation of cloudy radiances CRTM requires cloud liquid water content in g/m2 

and the effective radii of water and ice particles. 
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The same version of CRTM was used, but with different assumptions. The results identified as 
CRTM_tcc uses Eq. 1 with the MO assumption and tcc, the total cloud fraction specified by ECMWF. 
The effective radius of the particles was calculated using Eq. 3 in Ou et al., (1995) for ice clouds and Eq. 
2 in Bower et al., (1994) for water clouds. The CRTM_2col and the CRTM_mro calculations used the 
2col and MRO assumption, respectively, with the identical cloud microphysics. The parameterization for 
ice particle effective radius used a 4th order empirical polynomial given by Ou (1995), same as 
CRTM_tcc.  The effective water particle radius was logarithmically interpolated from 10 microns at the 
surface to 45 microns at the top of atmosphere, consistent with the ECMWF documentation. Following 
Eq. 1, CRTM_2col uses the maximum cloud fraction specified by each ECMWF cloud coverage profile 
to calculate CF. This value is close to, but not exactly the same as tcc.  

The CRTM results were received on 2016/09/06, revised 2017/03/09 
 
A3.2. PCRTM (Xiuhong Chen, Xianglei Huang, Xu Liu, Qiguang Yang, and Wan Wu) 
 
The Principal Component-based Radiative Transfer Model (PCRTM) is a fast and accurate forward 
model for hyperspectral instruments with thousands of spectral channels.  It uses principal components to 
compress spectral information and reduces computational time by performing radiative transfer 
calculations at just a few hundred monochromatic frequencies (Liu, 2006, Liu, 2016).  The molecular 
absorption coefficients of gases are based on a lookup table calculated off-line using a line-by-line 
radiative transfer model based on HITRAN2008.  Both ice and water clouds were parameterized into 
transmittance and reflectance matrices for the isotropic thermal scattering. The ice cloud matrices were 
obtained using single scattering properties from Baum et al., (2011) and a 32-stream Discrete Ordinates 
Radiative Transfer (DISORT) (Stamnes et al., 1988). The water clouds were obtained the same way by 
using the refractive indices from Segelstein (1981). The anisotropic solar scattering is modeled according 
to Liu et al., (2016) and Yang et al., (2014).  Transmittance and reflectance lookup tables were obtained 
under various conditions for parameters such as cloud optical depth, cloud effective size, wavelength, and 
solar and satellite zenith angles and azimuth angles (Yang et al., 2014).  The non-LTE effect was 
calculated according to the parameterization described by DeSouza-Machado et al., (2007). 
  
When generating input parameters for the PCRTM from the ECMWF fields, ice cloud optical depths were 
calculated from ice water content as in Ebert and Curry (1992). Warm cloud optical depth based on cloud 
liquid water content follows Fouquart (1987). The effect of different cloud overlapping assumptions on 
the simulated radiance has been discussed in Chen et al., (2013).  The PCRTM_MRO and PCRTM_ERO 
entries in tables 2-4 represent the results obtained with a maximum random overlap (MRO) assumption 
and an exponential random overlap (ERO) assumption, respectively. The cloud fraction and cloud profiles 
are used to generate 50 sub-columns (Chen et al., 2013) for both overlapping assumptions. The 
PCRTM_ERO2 and PCRTM_MRO4 represent the simulation results using less sub-columns, namely 2 
sub-columns for the ERO and 4 sub-columns for the MRO, respectively.    
 
The PCRTM model has been used to perform cloud and atmospheric temperature and water vapor vertical 
profile retrievals from hyperspectral instruments such as IASI, CrIS, and AIRS (Liu et al., 2009, Wu et 
al., 2017, Liu et al., 2017).  Two validations of the PCRTM under cloudy conditions were given by Chen 
et al., (2013).  One validation case used NOAA/GFDL data with the random overlap (RO) assumption, 
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the other one used ECMWF with MRO assumption. Validations showed satisfactory consistency between 
the calculated OLR and the counterparts from the GCM/analysis. 
 
The PCRTM spectra were received 2017/02/24, revised with full scattering 2017/07/14. 
 
A3.3. SARTA (Sergio DeSouza-Machado and L. Strow) 
 
SARTA RTM uses a four-column RO cloud overlap assumption. The clear column calculations use 
SARTA V6.0 (Strow et al., 2006). The absorption coefficients of gases are from line-by-line calculations 
based on HITRAN2008. The ECMWF clouds are converted into two thick slabs. Typically this is an ice 
cloud between zi_top and zi_bottom, and a water cloud between zw_top and zw_bottom. The Mie 
scattering parameters for water clouds use a modified gamma droplet size distribution of 
effective variance 0.1 (dimensionless) and effective radius (typically) of 20 μm. The cirrus cloud 
scattering parameters are based on Baum et al. (2007, 2011), and the ice effective particle size is 
estimated from a temperature-based parametrization by Ou and Liou (1995), where the ECMWF 
temperature profile is used to associate the ice cloud  slab top pressure with a cloud top 
temperature. The effective absorption due to each slab is then calculated using PCLSAM (Chou 
et al, 1999) scattering code and used in the SARTA TwoSlab RTM (DeSouza-Machado et. al., 
2018). Each pixel is then divided into four columns:  
 
Case 1) A clear column from the surface to the Top Of the Atmosphere (TOA).  
Case 2) A clear column between the surface and zw_bottom. Between zw_bottom and zw_top the pre-

calculated water cloud absorption is added.  
Case 3) A clear column between the surface and zi_bottom. Between zi_bottom and zi_top the pre-

calculated ice cloud absorption is added.  
Case 4) The transmittance calculated from case 2) up to the zi_bottom is continued with the transmittance 

from there to TOA using the transmittance calculated from case 3.  
 
A cloud fraction for each case is then chosen such that all of the ice cloud and a random portion of the 
water cloud is seen from TOA, such that the ECMWF specified total cloud cover (tcc) is satisfied. Details 
are summarized in Machado and Strow (2016) and in DeSouza-Machado et al., (2018). The difference 
between SARTA_TwoSlab(C) and SARTA_TwoSlab(P) is due to the difference in the way the 
boundaries of the thick slabs are calculated. The small differences between the results from the two 
SARTA versions show that the results are not very sensitive to these details.  
 
The SARTA results were received 2016/11/08, revised to be consistent with DeSouza-Machado et al., 
(2018) 2017/02/27 
 
A3.4. RTTOV (J. Vidot and M. Matricardi) 
 
The fast radiative transfer model RTTOV (Saunders et al., 1999) is widely used by a number of NWCs to 
assimilate infrared radiance observations. In this study, we used RTTOV Version 12.  The predictors of the 
fast atmospheric transmittances were calculated with the line-by-line model LBLRTM 12.2 (Clough et al., 
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2005; Alvarado et al., 2013) that uses the AER3.2 spectroscopic database (mostly based on HITRAN 
2008 but with many improvements regarding line mixing and absorption line parameters) and MTCKD 
2.5.2 (Mlawer et al., 2012). The scattering by clouds is modeled using the Chou-scaling approximation 
(Chou et al., 1999). The liquid and ice cloud optical properties are parameterized following the work of 
Matricardi (2005) and Vidot et al., (2015), respectively. Within the RTTOV version the user has the 
option to select a limited number of cloud type and the cloud overlap assumptions.  RTTOV_mro used 
the OPAC cumulus cloud type and the MRO assumption (Matricardi, 2005). Additionally, a much faster, 
experimental version of the cloud overlap method has been tested in RTTOV. This method is named 
CMSS (Cloud fraction Maximum Single Stream). It simulates cloudy infrared radiances using Eq. 1 with 
CF set to the maximum cloud fraction in the layers above a certain pressure level (here fixed to 750 hPa). 
This method is optimized for mid-and upper-tropospheric sounding channels.  
 
The RTTOV results were received 2016/12/09 
 
A3.5. HT-FRTC (Havemann) 
 
For the AIRS radiance simulations presented in this paper, the Havemann-Taylor Fast Radiative Transfer 
Code (HT-FRTC) has been specifically trained for the infrared part of the electromagnetic spectrum. The 
HT-FRTC does only monochromatic radiative transfer calculations. The gaseous absorption of all the 
trace gases included in HITRAN 2008 is included in the form of lookup tables. During the code training 
phase monochromatic calculations are performed at a very high spectral resolution (10-3 cm-1) for a 
diverse set of 1000 atmospheric profiles and surface conditions. The training run included vertical profiles 
of liquid and ice cloud. The results of the radiance calculations for the training profiles at the very high 
spectral resolution were then used to calculate the principal components which are the eigenvectors of the 
covariance matrix containing the radiance spectra. The HT-FRTC works slightly different to other codes 
like PCRTM in that the principal components are not derived for the spectra of any particular instrument 
but rather at the full very high spectral resolution. This means that the spectra for any number of 
instruments can be calculated in a single fast code run. It requires just an offline convolution of the highly 
resolved principal components with the instrument response functions. For the simulations in this paper 
only the first 100 principal components which contain most of the variance were used. The weights of the 
principal components are predicted from a small number of radiance calculations at about 100 
monochromatic frequencies. The optimal set of frequencies for prediction are selected by a k-means 
clustering algorithm which operates on all frequencies (2.5 million). A linear regression is carried out on 
the results on the training profiles (the dependent profiles). This regression then allows the prediction of 
the principal component weights for any independent profiles by calculating the radiances only at the 100 
selected monochromatic frequencies.  
 
For the simulations presented in this paper an effective radius of ten micrometers was used throughout for 
cloud liquid droplets. The cirrus optical properties that were used in the simulations are due to Baran 
(Baran et al., 2014). Baran has developed an ensemble model of cirrus particles of different shapes and 
sizes. The optical properties are parametrized solely in terms of cirrus cloud temperature and cirrus cloud 
ice water content. The same parametrization is applied to all types of cirrus. The HT-FRTC allows two 
different treatments of scattering. Scattering can be treated approximately as a modification to the 
extinction by using the Chou scaling approximation (Chou et al. 1999) or the scattering phase function 
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can be fully accounted for. In this case a monochromatic version of the Edwards-Slingo spherical 
harmonics radiation code is called which has been incorporated into the HT-FRTC (Edwards and Slingo, 
1996 and Thelen and Edwards, 2013). Calculations with Chou scaling are indicated by “C and full 
scattering calculations by “S”. 
 
The HT-FRTC has been run for three different cloud overlap assumptions (MRO, MO and RO). In all 
cases five cloud columns were used. The columns were constructed from the horizontal cloud fraction 
provided for each atmospheric level, which prescribed how many of the cloud columns would be clear 
and how many fully overcast at each level. The different overlap assumptions then determine the how the 
cloudy layers are stacked in the vertical. In the case of MO, all the cloudy layers are concentrated in the 
same columns as much as possible, in the case of RO the cloudy layers are distributed randomly across 
the columns and in the case of MRO the cloudy columns are maximally overlapped in adjacent vertical 
layers which are both cloudy but randomly distributed if there happens to be a cloud-free layer in 
between. One HT-FRTC fast code run is done per cloud column. In the tables the type of scattering 
treatment and the kind of overlap is indicated. As an example, SMRO indicates full scattering calculations 
applied to the five individual cloud columns that were generated using the MRO assumption. 
 
The HTFRTC results were received with Chou scaling 2017/01/19, revised with full scattering 
2017/04/17.  
 
A3.6. σ-IASI-as (Liuzzi, Masiello and Serio) 
 
The σ-IASI-as RTM is an advanced version of the σ-IASI model (Amato et al., 2002) with respect to 
cloud and aerosol treatment (Liuzzi et al., 2017). The model computes the Earth/atmosphere-emitted 
radiance in the spectral range 100–3000 cm-1. In its current version, the model can generate radiances in 
both upwelling and downwelling modes. Although initially developed for IASI, σ-IASI-as is presently a 
generic radiative transfer model, which is well suited for nadir viewing satellite, airplane (Grieco et al., 
2007) and ground-based (Bhawar et al., 2008) infrared sensors with a sampling rate in the range 0.1–2 
cm-1. 
 
The σ-IASI-as RTM calculation of gas optical depths is based on a pseudo-monochromatic scheme, in 
which transmittances are calculated on an equally spaced wavenumber grid by means of a look-up table. 
For each atmospheric layer, atmospheric species, and wavenumbers, optical depths are pre-computed 
and stored. Then, they are rescaled with air pressure and temperature. The dependence on temperature is 
parameterized by a second-order polynomial. This allows optical depths to be generated at any 
wavenumber using the version 12.2 of LBLRTM (Clough et al., 2005), equipped with the spectral library 
AER v_3.2 (essentially based on HITRAN 2012 spectral database – with the continuum model MT-CKD 
v_2.5.2 (Mlawer et al., 2012). 
 
The σ-IASI-as RTM simulates the impact of the presence of clouds and aerosols with a physically based 
method that computes their extinction as a function of the effective ice or liquid water particle or droplet 
radii and concentrations (Liuzzi et al., 2017). The model exploits an ab-initio approach embodying Mie 
routines which are called iteratively within the calculation of single-layer transmittances. The results of 
Mie calculations are manipulated according to the scheme described in Chou et al., (1999) for 
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calculating effective aerosol and cloud optical depths taking into account the multiple scattering effects 
through the so-called scaling approximation. With the scaling approximation, radiative transfer 
equations for a cloudy/aerosols atmosphere are identical to those for a clear atmosphere, and the 
difficulties in applying a multiple-scattering algorithm to a partly cloudy atmosphere (assuming 
homogeneous clouds) are avoided. The RTM used for the calculation of the σ-IASI spectra was 
identified as version 2017.as.lr. The calculations used the MO assumption and tcc specified by ECMWF.  
 
The σ-IASI results were received on 2016/11/29, revised 2017/03/17. 
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RTM name Base Model 
Spectroscopy 

Participant Organization 

SARTA HITRAN2008 DeSouza-Machado 
Strow 

UMBC 
 

RTTOV HITRAN2008 Vidot 
Matricardi 

NWPSAF (France) 
ECMWF (EU) 

HT-FRTC HITRAN2008 Havemann U.K. Met Office 
PCRTM HITRAN2008 Xianglei Huang 

Xu Liu 
U. Michigan 
LARC 

CRTM HITRAN2008 Moradi,   
Wilson 

NASA GMAO  
NASA JPL 

σ-IASI-as HITRAN2012 Liuzzi 
Masiello 

U. Basilicata, Italy 

 

Table 1. Cloudy RTM developers who participated in the comparison. 
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AIRS-bt900 day 
correlation 

day bias ± 
stddev [K] 
1437 cases 

 night 
correlation 

night bias ± 
stddev [K] 
1377 cases 

day-night 
bias [K] 

       
SARTA_TwoSlab(C) 0.9502 -2.33±22.1  0.9707 -0.96±19.5 -1.3 
SARTA_TwoSlab(P) 0.9621 +2.23±22.9  0.9710 +2.80±20.4 -0.6 

       
PCRTM_ERO 0.9629 +0.53±21.5  0.9792 +1.37±19.5 -0.8 
PCRTM_MRO 0.9591 -0.21±21.1  0.9796 -0.36±19.1 -0.5 
PCRTM_ERO2 0.9680 +0.96±22.8  0.9785 +1.37±21.1 -0.5 
PCRTM_MRO4 0.9715 -0.53±22.36  0.9625 +0.38±19.85 -0.8 

       
HT_CMO 0.9773 +1.09±22.58  0.9591 +1.12±20.36 -0.0 
HT_CRO 0.9695 +2.18±22.26  0.9638 +2.53±20.04 -0.3 

HT_CMRO 0.9774 +1.15±22.56  0.9613 +1.26±20.29 -0.1 
HT_SMRO 0.9764 +0.60±22.54  0.9591 +1.12±20.36 -0.5 
HT_SRO 0.9692 +1.69±22.22  0.9629 +2.47±20.07 -0.7 

HT_SMRO 0.9765 +0.67±22.52  0.9590 +1.18±20.34 -0.5 
       

RTTOV_MRO 0.9666 -4.22±21.42  0.9748 -3.65±19.5 -0.8 
RTTOV_CMSS 0.9107 +0.69±21.62  0.9105 +1.04±20.0 -0.4 

       
σ-IASI 0.9261 +0.75±20.9  0.9437 +2.02±19.2 -1.3 

       
CRTM_tcc 0.8816 -0.98±21.1  0.8915 +1.46±19.97 -0.5 
CRTM_mro 0.9552 -0.72±23.9  0.9819 -0.10±20.8 -0.6 
CRTM_2col 0.9553 +0.12±23.9  0.9817 +0.71±21.3 -0.6 

       
clear  column RTM 

(SARTA) 
0.4168 -29.57±22.8  0.4631 -25.78±22.1 +3.8 

       
corr > 0.9 
mean bias 

mean stddev 

 17 of 18 
+0.3 
22 

  17 of 18 
+0.8 
20 

 

 
Table 2. Histogram correlation and bias for day and night non-frozen ocean cases at 900 cm-1.   
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bt900 (RTM-
reference) 

Reference 
CRTM_mro 
bias ± stddev 

[K] 
 

Reference 
HT_SMRO bias 

± stddev [K] 
 

Reference 
PCRTM_MRO4 

bias ± stddev 
[K] 

 

Reference 
RTTOV_MRO 

bias ± stddev [K] 

SARTA TwoSlab(C) 
  

+1.69±12.10 2.99±11.79 +1.79±10.52 -1.90±11.63 
SARTA TwoSlab(P) 

 
-2.72±11.32 -1.58±10.69 -2.75±9.76 -6.47±10.79 

     
PCRTM_ERO -1.28±9.90 +0.12±6.83 -1.00±6.39 -4.78±6.59 
PCRTM_MRO -0.32±13.89 1.22±9.60 -0.06±9.80 -3.65±9.47 
PCRTM_ERO2 -1.28±12.58 -0.06±9.69 -1.27±9.46 -4.94±9.64 
PCRTM MRO4 -0.13±11.44 +1.26±7.57 0.00±0.00 +3.59±7.51 

     
HT_CMO -1.65±12.54 -0.43±0.39 -1.68±7.69 -5.31±5.72 
HT_CRO -2.75±12.19 -1.40±1.79 -2.74±7.44 -6.41±5.87 

HT_CMRO -1.72±12.55 -0.48±0.35 -1.75±7.69 -5.38±5.73 
HT_SMO -1.17±12.41 +0.04±0.17 -1.20±7.58 -4.83±5.57 
HT_SRO -2.25±12.08 -0.91±1.82 -2.25±7.35 -5.91±5.74 

HT_SMRO -1.24±12.42 0.00±0.00 -1.26±7.57 -4.90±5.57 
     

RTTOV_MRO +3.65±12.70 +4.90±5.57 +3.59±7.51 0.00±0.00 
RTTOV_CMSS -1.34±10.35 -0.02±5.62 -1.23±6.93 -4.92±6.45 

     
σ-IASI-as -1.49±12.85 -0.10±6.85 -1.37±7.99 -5.00±4.34 

     
CRTM_tcc +0.20±14.02 +1.64±14.07 +0.43±11.86 -3.26±10.57 
CRTM_mro 0.00±0.00 +1.24±12.42 +0.13±11.44 -3.65±12.70 
CRTM_2col -0.60±3.43 +0.47±12.22 +0.65±11.22 -4.29±12.75 

     
5 group bias 

5 group stddev 
-0.2 
12.3 

+1.5 
7.6 

+0.3 
8.7 

-3.4 
6.5 

 
Table 3. Bias and standard deviation of bt900 calculated for 1437 day non-frozen ocean cases relative to 

CRTM_mro, HT_SMRO, PCRTM_MRO4 and RTTOV_MRO. 
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bt900 (AIRS observed 

– calculated) [K] 
Tropical zone 

3644 cases bias 
± stddev  [K] 

Mid latitude 
2662 cases  bias ± 

stddev  [K] 

Polar 
1070 cases  bias ± 

stddev  [K] 

 Tropical– 
midlatitude 

bias [K] 

SARTA TwoSlab(C) +0.41±22.59 -4.66±14.84 +3.19±10.15  +5.0 
 
 

SARTA TwoSlab(P) +4.15±23.51 -2.57±15.02 +0.79±10.06  +6.7 
      

PCRTM_ERO +2.63±22.48 -2.86±13.86 -0.53±9.60  +5.5 
PCRTM_MRO +0.35±22.01 -3.42±13.93 -0.56±9.63  +3.8 
PCRTM_ERO2 +3.21±24.33 -2.65±14.84 -0.41±9.79  +5.9 

PCRTM MRO4 +0.94±23.19 -3.12±14.36 -0.32±9.81  +4.1 
      

HT_CMO +1.12±23.41 -0.84±14.99 +1.39±9.65  +2.0 
HT_CRO +2.97±23.08 -0.17±14.68 +1.48±9.58  +3.1 

HT_CMRO +1.17±23.40 -0.78±14.97 +1.40±9.65  +2.0 
HT_SMO +0.92±23.39 -1.08±14.98 +1.15±9.72  2.0 

 HT_SRO +2.76±23.06 -0.42±14.68 +1.24±9.65  3.2 
HT_SMRO +0.97±23.38 -1.03±14.96 +1.16±9.72  2.0 

      
RTTOV_MRO -4.33±22.32 -4.50±14.49 -0.24±9.77  0.2 
RTTOV_CMSS +2.71±22.24 -2.35±14.05 -0.06±10.13  5.1 

      
σ-IASI-as +1.23±22.35 +0.19±14.45 +2.21±9.34  1.0 

      
CRTM_tcc +2.60±22.39 -2.76±15.14 +0.73±9.98  5.4 
CRTM_mro +1.95±24.62 -5.60±14.67 -1.68±10.50  7.6 
CRTM_2col +2.94±24.57 -5.24±14.73 -1.69±10.60  8.2 

 
Table 4. Bias and standard deviation between AIRS bt900 and different RTMs separated into the tropical, 

mid-latitude and polar zones (as defined in the text). 
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bt2616 (AIRS 

observed –calculated) 
day 

correlation 
day bias ± stddev 
[K] 1437 cases 

 night 
correlation 

night bias ± stddev  
[K] 1377 cases 

      
SARTA TwoSlab(C) 0.8744 +5.00±14.79  0.9738 -3.06±18.40 
SARTA TwoSlab(P) 0.8779 +7.05±15.57  0.9746 -0.37±19.45 

      
PCRTM_ERO 0.9855 +1.55±15.90  0.9371 -0.29±19.23 
PCRTM_MRO 0.9846 +0.73±15.84  0.9334 -1.88±18.84 
PCRTM_ERO2 0.9804 +2.52±16.79  0.9563 +0.58±20.56 

 PCRTM_MRO4 0.9766 +0.91±16.22  0.9446 -1.25±19.47 
      

HT_CMO 0.6669 +15.04±20.11  0.9075 -2.53±20.49 
HT_CRO 0.6492 +15.97±19.76  0.9809 -1.43±20.12 

HT_CMRO 0.6653 +15.13±20.10  0.9074 -2.46±20.47 
HT_SMO 0.9215 +3.69±15.86  0.9791 -2.11±20.59 
HT_SRO 0.9628 +3.87±15.83  0.9736 -0.83±20.14 

HT_SMRO 0.9245 +3.65±15.88  0.9799 -2.02±20.56 
      

RTTOV_MRO 0.8948 +4.81±15.86  0.9574 -6.48±19.85 
RTTOV_CMSS 0.8803 +8.07±15.26  0.9605 -2.38±19.02 

      
σ-IASI_as 0.4809 +20.94±18.94 (*)  0.8739 +5.37±19.50 

      
CRTM_tcc 0.3991 +20.55±17.60  0.6623 +6.38±20.52 
CRTM_mro 0.6680 +13.90±18.74  0.9604 -2.16±19.58 
CRTM_2col 0.6410 +15.33±18.59  0.9486 -1.04±19.63 

      
corr > 0.9 

Summary mean (stdev) 
 7 of 18 

+2.4 (16) 
  16 of 18 

-1.8 (20) 

 
Table 5. Histogram correlation, bias and standard deviation at 2616 cm-1 

for day and night non-frozen ocean. (*)  solar reflected component not implemented  
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a) Night 
 

b) Day 
Figure 1. Mean difference between AIRS and six RTM implementations for non-frozen ocean cases.  
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a) Night 

 
b) Day 

Figure 2. Histograms for (stemp-bt900) observed by AIRS and calculated by three representative RTMs  
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a) Night 
 

b) Day 
Figure 3. Histograms for stemp-bt2616 observed by AIRS and calculated by three representative RTMs 
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Figure A1.  The red trace shows the distribution of the cloud effect (stemp-bt1231) for an area- 
representative random sample of the non-frozen oceans. The blue trace is the distribution of the stratified 
sample. 
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