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S1 Model assumptions and behavior for different values of the

competition coefficient shape parameter ρ

In the main text we focused on the value ρ = 4 in the competition coefficient function when
looking at species abundance distribution patterns. This parameter controls how “box-like”
the competition coefficient function is: larger values of ρ correspond to more box-like shapes,
as ρ → ∞ (Figure S1). Here we comment on biological assumptions and model behavior
related to different values of ρ.

In the deterministic Lotka–Volterra model (Eq. 1 in main text), though values of ρ less
than two are mathematically meaningful, they have been shown to be biologically unrealistic
(Adler and Mosquera, 2000; Barabás et al., 2012, 2013), as they are derived in situations
in which species to utilize their resources or environments in discontinuous ways (i.e. with
consumption varying discontinuously as a function of which resource among a continuous
array of resources (e.g. seeds of different sizes) one is considering), or more broadly, situations
in which species interact with regulating factors discontinuously. Therefore, only the ρ ≥ 2
case is of interest.

The particular choice of ρ = 2 has historical significance, as it was used by MacArthur
and Levins (1967) in deriving the principle of limiting similarity. It also derives from the
assumption that species have Gaussian-shaped resource utilization curves under fast re-
source dynamics, where the competition coefficient boils down to a measure of the over-
lap in utilization curves (MacArthur and Levins, 1967). Although this serves as a biologi-
cally plausible-sounding example case, we really know very little about the correspondence
between competition coefficients and ecological interactions nature, other than that there
seems to be a relationship with trait differences (Johansson and Keddy, 1991; Jiang et al.,
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2010; Burns and Strauss, 2011). This makes intuitive sense because if traits drive ecological
strategies, then species with similar traits will have similar strategies and hence compete
more strongly. Species interactions with their resources (or more broadly “limiting factors”
(Levin, 1970)), and the competitive interactions that occur through these resources, are likely
not typically as simple as modeled by MacArthur. Any number of assumptions about the
nature of competition can produce different forms of the competition coefficient (Abrams,
1975; Hernández-Garćıa et al., 2009). Here we do not have any specific biological picture in
mind for what leads to different values of ρ. Variation in ρ provides a range of competition
functions that decline with increasing trait differences.

An issue with the parameter choice of ρ = 2 is that it does not always lead to the emer-
gence of niche structuring. For example, an infinite number of species arbitrarily close in
traits can coexist with ρ = 2, a constant carrying capacity, and fully periodic boundary condi-
tions (i.e. where competition is an infinite sum of the coefficients as functions of the distances
between two species as you continue to go around the circular axis) (Hernández-Garćıa et al.,
2009; Pigolotti et al., 2010). However, if the boundary conditions are truncated, meaning
that competition is just a single term that is a function of the closest distance between two
species (wij = min(|ui − uj| , 1 − |ui − uj|)), then the clumpy niche pattern emerges on the
niche axis (Pigolotti et al., 2010), and transient species can persist for thousands of gener-
ations (Fort et al., 2009; Scheffer and van Nes, 2006). Limiting similarity also arises if the
trait axis is taken to be finite and noncircular (Szabó and Meszéna, 2006).

Note that we use the truncated form of the boundary conditions here. However, for ρ = 2
we actually do not see a clear clumping pattern emerge over the course of our stochastic
simulations as shown in Figure S2, possibly because we have immigration of new species in
our model that may outpace the formation of the niche structure, though this needs further
investigation. Even though no visible niche structuring forms with ρ = 2 in our model, we
do see a slight difference from neutrality in the SAD (Figure S4) for this case.

If a Gaussian function of a species trait is used instead of a constant for carrying capac-
ity, the Lotka-Volterra model taken with competition coefficients using ρ = 2 can produce
a community with no limits to similarity in coexisting species (i.e. no niche structure)
(Roughgarden, 1979). However, even the slightest change to the function, such as from a
single species having a slightly higher than expected carrying capacity, leads to a niche-
structured community (Gyllenberg and Meszéna, 2005; Meszéna et al., 2006; Barabás and
Meszéna, 2009). Though ρ = 2 is very commonly used, patterns of coexistence for the model
with this parameter are highly sensitive to the slightest changes in the carrying capacity and
implementation of boundary conditions. Given that estimated parameters in real systems
will naturally vary, this lack of robustness is a concern and suggests that model behavior
with ρ = 2 may not be representative of model behavior across a broad range of feasible ρ

values.
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For all ρ values greater than two, niche structuring occurs regardless of choices of bound-
ary conditions and carrying capacity functions. We chose to focus on results for ρ = 4 because
the niche structuring found in this case is more typical of what the model produces across
ρ values. Figure S3 shows some of the abundance patterns for other ρ values we explored,
and Figure S4 shows some of the corresponding SADs for those cases. The niche structure
resulting from our model becomes stronger as ρ increases. Though the visible differences are
somewhat subtle, the densities near the centers of the niches increase as ρ increases. For
ρ = 100, the species near the centers of the niches can reach higher abundances than are
observed in the other cases. Note it seems our choice of ρ = 4 is conservative compared to
higher ρ values in that resulting SADs are increasingly different from the neutral case as ρ
is increased, at least in all but the two highest abundance classes, where trends with ρ are
more complicated.
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Appendix Figure S2: No clustering is visible when ρ = 2. Example final configuration
of a 5-niche communities using the competition coefficients shown in Figure S1, with shape
parameter ρ = 2, showing the abundances of all species in the community (conveyed by the
height of the stems), organized by trait value. K = 2500.
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Appendix Figure S3: Emergent clustering is strong for ρ ≥ 4. Example final configu-
rations of 5-niche communities using the competition coefficients shown in Figure S1, with
shape parameters (a) ρ = 4, (b) ρ = 6, (c) ρ = 10, and (d) ρ = 100, each showing the
abundances of all species in the community (conveyed by the height of the stems), organized
by trait value.
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Appendix Figure S4: Variation in the species abundance distribution (SAD) with com-
petition coefficient shape parameter ρ. Shown are SADs for the neutral case and for 5-niche
communities with shape parameters ρ = 2, 4, 6, 10, and 100. (K = 21, 455 for the neutral
case, and K = 6000, 5410, 5000, 4783, 4500 respectively for the niche cases.) As in main text,
SADs are shown in a Preston-style plot of the proportion of species in logarithmically-scaled
abundance classes delineated as in Volkov et al. (2003), lines are used to connect values
in each abundance class, and values are the average over the ending configuration of 1000
simulations.
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Appendix Figure S5: (a) Absolute differences (mean niche − mean neutral) and (b)
relative differences ((mean niche − mean neutral)/mean neutral) between the mean niche
and neutral species abundance distributions (SADs) for SADs resulting from simulations of
our niche model (solid lines) and for the distributions predicted by the model of Chisholm
and Pacala (dashed lines), for the 5-, 20-, and 50-niche cases with ρ = 4. Shown are the
differences in the mean proportion of species in the community in logarithmically scaled
abundance classes, with those classes delineated as in Volkov et al. (2003) and as in the
main text.
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Appendix Figure S6: Stem plots for five-niche communities with restricted trait ranges.
a) 1/4 trait span: each niche spans an interval of size 0.5, which is 1/4 the size of the full
range. b) 1/2 trait span: each niche spans an interval size of 0.1, which is 1/2 the size of the
full range.
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Appendix Figure S7: Average competition strength and abundances within a single niche
in a 5-niche community (ρ = 4), showing that the trend in total competition strength is
dominated by the trend in between-niche competition, and that abundance is maximized
where both total and between-niche competition are minimized. (a) Relative strength of
outside and within-niche competition. A fixed set of equally spaced traits ui = 1...Sn,
where Sn is the average number of species within a niche, is used as a test set on which
to compute outside and within-niche competition from existing species. The test set is
placed in the centermost niche of each final simulation configuration for consistency, and
competition strength from existing outside and inside species is averaged over 1000 simulation
configurations. (b) Average abundance across a single niche. Abundances from each of five
niches over 1000 simulations are binned and averaged.
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