
UNIT B2.1Signal Detection

OVERVIEW

The bulk magnetization M0 represents the equilibrium value of the magnetization when
all spins have aligned themselves parallel to the main field. When this magnetization is
tipped into the transverse plane, it precesses about the main field. This precession
generates a changing flux through the face of an appropriately placed coil inducing an
electromotive force (emf) in the coil. The measured signal is proportional to the induced
emf.

The emf is the negative time derivative of the magnetic flux and can be calculated by
Faraday’s law of induction. The magnetic flux represents how much magnetic field cuts
through the area of the pick-up coil. Consider a rotating field through a square loop (Fig.
B2.1.1B). This case is close to the usual MR case where the transverse magnetization
precesses about the main field B0 at the Larmor frequency. The actual flux and its emf are
calculated in the technical discussion. Because the spin precesses very rapidly (recall the
Larmor frequency is 42.6 MHz at 1 T), the longitudinal magnetization contributes
negligibly to the change in flux per unit time. It is the precession of the magnetization M0

through the coil that induces the main signal, not the T1 or T2 relaxation of M0; however,
the coupling of M0 to the coil does induce relaxation as well, but this is beyond the scope
of this text.

Since the signal oscillates at the Larmor frequency, a demodulation of the signal is needed
in order to more easily examine the MR signal. Demodulation corresponds to the
multiplication of the signal by a sinusoid or cosinusoid with a frequency at or near the
Larmor frequency ω0. If the sample is uniform and the MR system is perfect, the signal
will oscillate exactly at the Larmor frequency. A demodulation signal is applied at the
frequency ω0 + δω. After the demodulation, two frequencies appear, one at δω and the
other one at 2ω0 + δω (see Fig. B2.1.2). Then a low-pass filter is applied to remove the
signal at the higher frequency. In MR measurements, signals are demodulated and filtered
before any image reconstruction is performed. (Usually, when people refer to the demodu-
lated signal, they mean the demodulated and filtered signal.) After Fourier-transforming
the signal, an MR imaging is created. Demodulating the signal is equivalent to looking
at the signal in the rotating reference frame.

A simple example of detecting an MR signal is the free induction decay (FID) experiment.
A π/2-pulse tips the spin into the transverse plane where it dephases or decays (the
so-called T2 decay, when no field inhomogeneities are present). An FID is performed
routinely on MRI machines to adjust the central frequency and optimize system response.
Figure B2.1.3 gives four examples of FID experiments and demodulations. In Figure
B2.1.3A, the RF field and the signal are shown in the laboratory reference frame. The
signal has a rapid oscillation with a T2 exponential decay envelope. Figure B2.1.3B shows
the RF field and the signal in the rotating frame—i.e., a demodulated signal. If the signal
is not demodulated at the Larmor frequency, an oscillation still exists. This is shown in
Figure B2.1.3C. Finally, if the total signal is from an ensemble of spins, and each spin
precesses at frequencies slightly different from the Larmor frequency, then the total signal
will decay faster than the original T2 decay. This is called T2

* decay and is shown in Figure
B2.1.3D.

If we consider an ideal MR system, the signal s(t) will be proportional to the product of
the Larmor frequency, magnetization, and object size (Vs) confined by the field-of-view,
i.e., s(t) ∝ ω0M0Vs. This implies that the signal is proportional to the square of the static
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field strength, since both ω0 and M0 depend linearly on B0; however, at high fields, noise
is proportional to the static field strength, so the signal-to-noise ratio is only linearly
proportional to the static field strength. The reason we image protons in the human body
using MRI is because almost all tissues have a very high water content. Other elements
that are MR active, such as sodium or phosphorus, are much less abundant. The relative
sensitivities of those elements to the water content of gray matter are listed in the last
column of Table B2.1.1.

TECHNICAL DISCUSSION

In Chapter B1, we discussed the spin behavior in a static magnetic field. We introduced
the bulk magnetization M0 and an RF field to tip this magnetization into the transverse
plane. We now turn our focus to how the MR signal is generated. We start with the induced
electromotive force (emf) generated by the precessing magnetization by introducing
Faraday’s law.

Faraday Induction

The emf induced in a coil by a temporal change in its magnetic flux can be calculated by
Faraday’s law of induction:

where Φ is the flux through the coil:

The vector dS
→

 has magnitude dS and is normal to the differential area in the direction
chosen for the definition of positive flux. The flux can be thought of as being proportional
to the number of field lines penetrating the effective area presented by the loops making
up the coil. The number of flux lines is a convenient picture, and is arbitrarily normalized.
Equation B2.1.2 is, by contrast, well-defined. The currents induced in a conducting loop
by a changing flux produce a field which opposes the changes induced by the external
field. The result that induced currents produce fields that oppose externally induced flux
changes is referred to as Lenz’s law.

In the application of Equation B2.1.1 to MRI, a study of elementary examples with wire
loops is helpful. The first example is a fixed coil in a time-dependent, fixed-axis magnetic

emf
d

dt

Φ= − (B2.1.1)

coil area

B dSΦ = ⋅∫
��

(B2.1.2)

Table B2.1.1 Relative Signal Strength of Different Nucleia

Nucleus i γ−i (MHz/T) ri ai si �i/�(1H) at 1 T

1H, gray matter 42.5764 1.0 1.0 1/2 1.0
23Na, average tissue 11.2686 9.1 × 10−4 1.0 3/2 8.4 × 10−5

31P, average tissue 17.2510 8.5 × 10−4 1.0 1/2 5.7 × 10−5

17O, gray matter -5.7741 0.5 3.7 × 10−4 5/2 5.4 × 10−6

19F, average tissue 40.0765 4.5 × 10−8 1.0 1/2 3.8 × 10−8

aTable of γ−, fraction of all isotopes r relative to 1H in gray matter, natural abundance a, spin s in units of h− and calculated
relative sensitivity of other elements of interest. The values presented refer to a fixed field strength. Note that a negative
value of γ− means that precession occurs in the counterclockwise direction. The product of airi and the molarity 88 M for
1H in gray matter yields the relative body abundances of Table B1.1.1.
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field. Consider a spatially invariant magnetic field making an angle θ to the normal of the
plane of the square coil shown in Figure B2.1.1A. The field is also taken to have a
harmonic time dependence with angular frequency ω and is given by:

for constant B > 0. The field B
→

(t) in Equation B2.1.3 is taken to be uniform over the space
of the coil, at any instant in time. (A magnetic field that varies in time must also vary in
space, according to Maxwell’s equations. However, such spatial variations may be ignored
for distances that are small compared to the wavelength, λ = 2πc/ω = c/(γ−B0). At 1.0 T
the free-space wavelength for electromagnetic radiation is ∼7 m.) The coil is chosen to
lie in the x-y plane so that dS

→

 = dxdyẑ. From Equations B2.1.1 and B2.1.2, the emf
generated in the coil by the time-varying magnetic field is:

At t = 0, for example, the emf is negative, producing a clockwise (negative φ̂ direction)
current in the loop. This can be verified by using the right-hand rule to see in which
direction the current would have to flow to produce a field that opposes the change in the
applied field B

→

(t). The appearance of the ω factor in Equation B2.1.4, which results from
the time derivative, is the source of a major enhancement in the MR signal.

In a standard MRI experiment, the field associated with a precessing magnetization
sweeps past fixed receiving coils. An example of this scenario is shown in Figure B2.1.1B.
The magnetic field rotating about the x-axis is given by B

→

(t) = Bcosωt ẑ + Bsinωt ŷ and
now dS

→

 = dxdyẑ. The induced emf in this case is

ˆ ˆ( ) sin (sin cos )sinB t B t B y z t= ω = θ + θ ω
� �

(B2.1.3)
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Figure B2.1.1 Two examples of loops of wires experiencing changing flux as a function of time.
(A) A square coil is stationary, and the applied field oscillates along a fixed axis. (B) A stationary
coil is immersed in a rotating, fixed-magnitude field (an example of special relevance to MR
measurements).
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The MRI Signal and the Principle of Reciprocity

When a magnetic field is applied through a sample, the motion of electrons forms the
current flow which causes the magnetization M

→

(r→,t) of the sample. The magnetization
of the sample generates a magnetic field which is the induced field due to the applied
magnetic field. This induced field is the source of the flux whose emf is picked up by
the receive coil of an MR machine. We can define the current normalized receive field
as �

→

 receive(r→) ≡ B
→

 receive(r→)/I, which is the magnetic field per unit current that would be
produced by the coil at a given point in space, and derive the flux (see Haacke et al.,
1999)

The fact that the flux in Equation B2.1.6 depends upon �
→

 receive(r→), the “receive” field that
would be produced by the detection coil at all points where the magnetization is nonzero,
is an example of the principle of reciprocity. The original expression as a surface
integration over the detection coil area has been replaced by a volume integration over
the region of nonzero magnetization. That is, the flux through the detection coil due to
the magnetization can be found instead by calculating the flux that would emanate from
the detection coil, per unit current, associated with the (rotating) magnetization.

The emf induced in the coil is expressed as:

Equation B2.1.7 is a key formula for understanding the factors which affect signal
amplitude. The dependence of the emf on the excitation or transmit field B1

transmit is implicit
in the dependence of Equation B2.1.7 on the magnetization M

→

(r→,t).

Signal from Precessing Magnetization

The fundamental signal in an MR experiment comes from the detection of the emf
predicted by Equation B2.1.7 for precessing magnetization. In this section, the prediction
is analyzed further, in terms of variables involving the static and RF fields, and the
properties of the sample of spins. The experiment described below from a given sample
is generally referred to as a “free induction decay” (FID). This experiment is discussed
in more detail in the next section.

General expression
It is assumed that the sample is immersed in a static, uniform field B0ẑ and has been
“excited” by some RF pulse so that there exists, at time t, transverse components, Mx, My

of magnetization, in addition to a longitudinal component, Mz. According to the static
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field solution of the Bloch equations, the magnitude of the transverse magnetization is
e−t/T2(r

→
) M⊥(r→,0), which relates the x and y components through:

where −ω0t describes the phase generated from the rotation of the RF field and T2(r
→) is

the usual T2 decay. The phase φ0(r
→) and magnitude M⊥(r→,0) are determined by the initial

RF pulse conditions.

The receive field laboratory components may be written quite generally in terms of the
magnitude �⊥ and angle θ�(r→) in the parametrization:

Although one still needs the z component of the magnetization along with the above
Equation B2.1.7, the z component does not effectively contribute to the emf. The key is
that the longitudinal component does not rotate at the Larmor frequency but changes at
a very slow rate as determined by 1/T1. For static fields at the Tesla level, the Larmor
frequency ω0 is at least four orders of magnitude larger than typical values of 1/T1 and
1/T2. Hence, the derivative of the e−t/T1 and e−t/T2 factors most certainly can be neglected,
compared with the derivative of the e−iω0t factor. (There are certain cases, such as in solids,
where T2 is on the order of a microsecond or less, and such approximations may no longer
be valid.) With that approximation understood, the signal can be readily shown to behave
according to:

The proportionality factor depends on amplifier gain and other factors, as determined by
the detection scheme.

Equation B2.1.10 for the signal is easily modified for the more general situation. The
replacement T2 → T2

* must be made in the presence of external field inhomogeneities,
although this distinction is ignored in the current unit. A time-independent (or time-av-
eraged) variation in the z component of the local magnetic field, other than those already
taken into account through T2′, may arise, for example, from the gradient fields used in
imaging. These field variations change the precession frequency according to:

The correction ∆ω(r→) has been ignored in the outside factor ω0 in Equation B2.1.10, but
if it cannot be omitted in the phase of the sinusoid. A simple, but relevant example is
cos(106 + θ). Variations of θ in the interval (0,2π), though minuscule with respect to one
million, can change the cosine value over the full range (−1,1). Finally, in the case where
additional fields have time dependence (e.g., when they are turned on and off), the phase
−iω(r→)t is replaced by -i∫0

t
dt′ω(r→,t′).
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(B2.1.8)

receive receivecos ( ), sin ( )x yr r⊥ ⊥≡ θ ≡ θ� �

� �
� � � � (B2.1.9)

2/ ( )3
0 0 0signal ( ,0) ( )sin( ( ) ( ))t T rd r e M r r t r r−

⊥ ⊥∝ ω ω + θ − φ∫
�

� � � �

�
� (B2.1.10)

0( ) ( )r rω = ω + ∆ω� � (B2.1.11)
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The limit where all spatial dependence can be neglected applies, for example, to studies
of small homogeneous samples. Consider all quantities inside the integral in Equation
B2.1.10 to be independent of r→. If the sample volume is Vs, then

For the precession frequency to be constant everywhere, the static field B0 must also be
uniform throughout space.

Independent coils
Whether �

→

 receive pointed in the laboratory x-direction (θ� = 0) or along the y-direction (θ�

= π/2), or any other (spatially independent) direction in the x-y plane, the received signal
magnitude remains unchanged. Only the angle θ� changes in Equation B2.1.9. In this
sense, one coil is as good as another, and two (or more) coils do not yield any more
information. The signal from two uncoupled coils (coils that have small flux “linkage”)
can be used, however, to obtain an improvement in the ratio of signal to noise. The noise
in one of these uncoupled coils is independent of the noise in the other whereas, for a
single coil, assuming that more than one channel (the real or imaginary parts) of the single
coil has been used to detect signal, the noise in one channel is the same as that in the other
(i.e., the noise is correlated between the channels). For example, a circularly polarized
(CP) receive coil satisfies the condition of having two independent channels. To the extent
that the “cross-channel” noise is uncorrelated, the CP coil will increase the signal-to-noise
ratio.

Signal demodulation
The rapid oscillations at the frequency ω0 in the above signal expressions are removed,
in practice, by an electronic step of “demodulation,” which is tantamount to viewing the
signal from a rotating reference frame. Demodulation corresponds to the multiplication
of the signal by a sinusoid or cosinusoid with a frequency at or near ω0. Strictly speaking,
the transmit or “irradiation” RF frequency ωRF is this frequency, but in most experiments
ωRF is chosen equal to ω0.

The frequencies of the original and demodulated signals are compared in Figure B2.1.2.
In this figure, the original signal oscillates at Larmor frequency ω0 and a demodulation
signal is applied at the frequency ω0 + δω. After the demodulation, two frequencies appear,
one at δω and the other one at 2ω0 + δω. Then a low-pass filter is applied to remove the
signal at the higher frequency. In MR measurements, signals are demodulated and filtered
before any image reconstruction is performed. (Usually, when people refer to the demodu-
lated signal, they mean the demodulated and filtered signal.) After Fourier transforming
the signal, an MR image is created.

Free Induction Decay Signal

The simplest MRI experiment involves detecting a global signal from a sample. Consider
a π/2-pulse applied uniformly in space to proton spins in a static magnetic field associated,
say, with any hydrogen atoms present throughout the body (a macroscopic set). The pulse
rotates the longitudinal magnetization (the excess spins) into the transverse plane after
which the tipped spins freely and collectively precess. As discussed above, the total
time-varying coherent magnetic field derived from the sum over all precessing proton
spin fields would induce a small emf in any RF coil properly oriented to detect the
corresponding flux changes. This experiment is called a free induction decay. The signal
expressions from the previous section can be applied directly to its analysis.

2/
0 0 0signal sin( ) (space-independent limit)t T

sV e M t−
⊥ ⊥∝ ω ω + θ − φ

�
� (B2.1.12)
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An FID is performed routinely on MRI machines to tune RF coils and optimize system
response. It can be used to locate the resonance peak for water and determine the RF
amplitude and duration necessary to produce a maximum signal.

Consider the following simple FID experiment. Assume that the precession frequency is
constant (ω0) over all space and that T2 is space-independent. The initial magnetization
phase and θ� are assumed to be zero over the whole sample. After demodulation at ω0,
Equation B2.1.10 becomes

Equation B2.1.13 can be used to understand several examples of signal time dependence.
In the laboratory frame, where no demodulation is applied, rapid oscillations at the
frequency ω0 are damped by the relaxation factor, as shown in Figure B2.1.3A. Demodu-
lation on-resonance removes the oscillatory behavior, leaving only the T2 envelope (Fig.
B2.1.3B). A demodulation slightly off-resonance leaves a low-frequency component, as
shown in Figure B2.1.3C. Lastly, for a number of spins whose frequencies are slightly
different from Larmor frequency, the total signal from those spins after demodulation
yields a faster decay than caused by T2 alone (Fig. B2.1.3D). The dephasing among the
spin populations causes the reduced signal, resembling a T2′ effect and the overall signal
shows a T2

* decay—i.e., signal decays according to e−t/T2* where 1/T2 = 1/T2 + 1/T2′.

Dependence on System Parameters

Let us investigate what Equation B2.1.12 tells us about the variables on which the signal
depends. Despite its lack of spatial information, this simple approximation is quite useful
in understanding various imaging issues.

Homogeneous limit
Suppose that the equilibrium magnetization M0ẑ is independent of position (i.e., the
sample is homogeneous), and it is uniformly rotated (i.e., the RF field is homogeneous)
into the transverse plane with an on-resonance π/2-pulse. Further, suppose that relaxation

2/ 3
0( ) ( ) ( ,0)t Ts t e d r r M r−

⊥ ⊥∝ ω ∫ � �

� (B2.1.13)
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Figure B2.1.2 The shifts in frequency for signals from a uniform sample due to demodulation and
filtering, with small offset δω. The thick bars represent the signal at the indicated frequencies.
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effects may be neglected, and that the static field is also perfectly homogeneous. The
proportionality in Equation B2.1.12 can be turned into an equation for the demodulated
signal amplitude, if the electronic amplification factors are ignored:

Even in the presence of T2 decay, and without demodulation, Equation B2.1.14 still
represents the peak signal obtained at t = 0 for a homogeneous sample. This signal from
imaging human yields on the order of 1 mV.

Recall that M0 is proportional to B0 and ω0 = γB0. Therefore, in the small sample limit,
Equation B2.1.14 predicts a growth of B0

2 in the signal as a function of field. A general
analysis, including spatial dependence and differences in the sampled nuclei, is compli-
cated, and electronic and sample noise must also be considered. For example, at high
fields, noise also increases linearly with B0 so that, by the above estimate, the more
pertinent quantity, the signal-to-noise ratio, is only linearly proportional to B0. It is the
increase of signal-to-noise ratio with frequency that accounts for the interest in higher-

0 0 ss M V⊥= ω � (B2.1.14)
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Figure B2.1.3 (A) The FID signal in the laboratory frame for all spins precessing at the same
Larmor frequency. The laboratory RF transmit field oscillates at that frequency. (B) The same
experiment but as measured in the Larmor rotating frame (i.e., demodulated). The rotating frame
RF field is at “rest.” (C) The demodulated FID signal when the demodulation is not exactly at the
Larmor frequency. (D) The total demodulated FID signal from several isochromats, each with slightly
different Larmor frequencies, exhibiting a decay, with slow oscillations, that is faster than T2 decay
alone, due to dephasing. The demodulation in panel D is determined by the average (fast) frequency.
Note that the laboratory signal in panel A is only suggestive since the oscillations seen in practice
are too rapid to display. The T2′ effects have not been included in any of the curves; note that the
differences in the case shown in panel D could be considered, alternatively, to be due to field
inhomogeneities.
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field imaging in MRI. Indeed, fields in excess of 10 T are already in use for NMR
microscopy experiments and whole-body imaging systems are in operation up to 8 T.
Higher fields have additional attraction for spectroscopists, since the chemical shift
dispersion increases linearly with field strength.

There are a number of technical difficulties associated with higher field imaging, however,
and whether there is an optimal field strength for MRI remains to be seen. Optimal field
strength is also likely to depend upon the application. The signal dependence on Vs is
crucial to very high resolution imaging, since the signal in each voxel is limited by its
volume and the available magnetization for the given field and temperature conditions.
In general, as resolution is increased, the available signal decreases. This is easy to
understand by considering the volume integral over the entire sample as a summation over
smaller volumes (voxels, say) within the sample. The smaller the individual volume, the
less signal it will produce. In order to obtain enough signal from the tiny volumes (≈1000
µm3) sought after by microscopists, fields of ∼7 T and higher are usually employed.

Relative signal strength
What we call the relative signal strength � of an MR experiment for a particular nuclear
species can also be analyzed through Equation B2.1.14. (The more common definition
for the sensitivity of an MR experiment is based on the signal-to-noise ratio of a given
chemical species relative to a fixed standard species, usually 1H, which is normalized to
have a sensitivity of unity.) The first step is to find the dependence of the equilibrium-
magnetization on the gyromagnetic ratio γi and spin si of a specific nucleus i:

where ai is the natural abundance (the fractional occurrence of a given stable isotope
relative to all stable isotopes). The relative signal strength �i of a given nuclear species
i can be defined from the species-dependent factors in Equation B2.1.14 combined with
Equation B2.1.15. Noting ω0 ∝ γ, we find:

The weighting ri is the relative abundance in the human body of the given element
referenced to some nucleus. In this text, signal strength is quoted relative to 1H in gray
matter.

Using γ instead of ω0 means that only for the same static field can a comparison of two
different elements be made through Equation B2.1.16. The parameters for several other
elements relative to 1H are presented in Table B2.1.1. Its sizable gyromagnetic ratio and
large fractional presence explain why 1H is the subject of choice for imaging of humans
by nuclear magnetic resonance.

Radiofrequency field effects
Up to now, we have assumed that the transmit and receive RF coils produce uniform fields
over the imaging volume. If this is not the case, the image intensity will vary as a function
of position, even for a uniform sample. The image will appear to be brighter or darker in
regions where either one or both of the RF fields, referred to by B1

transmit (tips spins) or
� receive (measures signal), vary. The changes in image intensity as a function of field
depend on flip angle and which field is being discussed. Assuming a uniform rotation by

2( 1)
io i i i iM a s s∝ + γ (B2.1.15)

3
( 1)i i i i i ir a s s≡ γ +� (B2.1.16)

Current Protocols in Magnetic Resonance Imaging

B2.1.9

Radiofrequency
Excitation and
Reception



the transmit coil, the image will be darker in regions where � receive is smaller, and brighter
where � receive is larger.

The effect of the transmit field is more complex. Consider the case of a π/2 flip angle.
Any field which is greater or less than ideal (i.e., than that strength resulting in exactly a
90° rotation), results in reduced transverse magnetization, and, therefore, a decrease in
available signal. This statement is valid for a single pulse experiment only. For example,
let us assume that two identical spins are excited by different transmit fields. The first
spin experiences B1

transmit (spin 1) = C, and receives a π/2 flip. The second spin only
experiences a field of B1

transmit (spin 2) = C/2, and therefore is rotated by 45°. As a result,
the signal (or the transverse magnetization) produced by the second spin is 1/√2 lower
than the signal from the first spin.

These effects can lead to inhomogeneity in the image if the same coil is used for tipping
the spins and detecting the signal, or if similar field profiles exist in B1

transmit and � receive.
For example, if an RF field tips a spin by an angle θ from Equation B2.1.13, the signal is
proportional to θsinθ. (The factor θ is from � receive and the factor sinθ is from the
projection of M0 on the transverse plane.) Transmit and receive coils are carefully chosen
in each imaging situation and designed to maximize image quality, but it is still necessary
to be aware of coil effects when viewing an image.
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