
UNIT B1.2Spin Behavior in the Rotating Reference
Frame

OVERVIEW

We have seen that, at any given point in time, the interaction of a classical magnetic
moment with an external magnetic field is equivalent to an instantaneous rotation of the
moment about the field (UNIT B1.1). For a static field, the rotation is a constant precession
about the field itself. In this unit, we wish to consider the effect of adding other magnetic
fields. We are most interested in the combination of a radiofrequency (RF) field perpen-
dicular to a much larger constant field.

The interest in the additional field stems from the need to generate a transverse component
of the magnetization. The act of turning on a perpendicular field for some period of time
should tip any magnetic moment, initially aligned along the original static field, away
from that direction. Such rotations leave the classical moment precessing at an angle
around the original static field B. (The more fundamental quantum picture allows only
two spin states for any measurements along the static direction, either parallel or
antiparallel. The use of a classical picture of a moment or spin precessing at some angle
is still appropriate in MR.) Studying the effects of an added field is most easily done in
a frame rotating at the Larmor frequency ωL = γB. Figure B1.2.1 shows a reference
(primed) frame rotating clockwise around the z = z′ axis relative to a laboratory (unprimed)
frame. To obtain a field rotating at the Larmor (angular) frequency ωL = γB for protons
would require a frequency of 42.6B MHz with B in Tesla. Current whole-body systems
range from 0.2 T (8.52 MHz) to 8 T (340.8 MHz) with the most common high-field
systems currently being 1.5 T (63.9 MHz) and 3 T (127.8 MHz).

Consider an RF field along the x′ axis in the rotating frame. Such an RF field is called a
left-circularly polarized field. The static (main) field is along the z axis and the RF field
is rotating around the main field. The total effective field observed in the rotating frame
has three components. One is the main field, another one is the RF field, and the other
one is a fictitious field generated by the rotation of the rotating frame. This field depends
on how fast the RF field rotates. If the RF field has a frequency such that the fictitious
field cancels the main field in the rotating frame, i.e., the RF field is the only field left in
the rotating frame (see Fig. B1.2.1), then we call this “on-resonance.” Under these
circumstances, the spins develop a new angular frequency, given by ω

→

1 = −γB
→

1 (the relevant
Larmor expression in the rotating frame, see Figure B1.2.2).

For the on-resonance case, even very weak RF fields can be used to rotate a spin initially
aligned along B

→
 into the plane transverse to the static field, or, for that matter, to any angle

away from its initial alignment. The angle θ swept by the spin is equal to γB1τ, where B1

is the magnitude of the RF field and τ is the time duration of how long the tipping process
applies. This is often called a θ pulse. As discussed above, the rotation will be most
effective when the resonance condition (ω = γB) is satisfied. Adding a static perpendicular
field, on the other hand, to the original static field would not yield the same kind of
rotation. According to the solutions of equation of motion of the magnetic moment worked
out in UNIT B1.1 or the technical discussion in this Unit, it instead leads to a precession
about the new, resultant field direction. When γB1τ is 90°, the magnetization will be tipped
from ẑ ′ to ŷ′ (see Figure B1.2.3A). If the fictitious field does not exactly cancel out the
main field in the rotating frame, we call it “off-resonance” (see Figure B1.2.3C). In the
laboratory frame, the spins will behave according to Figure B1.2.3B and Figure B1.2.3D
for on-resonance and off-resonance conditions, respectively.
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The RF field described above is the so-called “transmit” field; it is produced by a coil
system separate from the static field source. The precessing (or “excited”) protons produce
their own RF field at the Larmor frequency. This RF field is usually detected by an
altogether different RF coil system referred to as the “receive” coil.

TECHNICAL DISCUSSION

The Rotating Reference Frame

Suppose we are making magnetic moment measurements in a reference frame rotating at
the Larmor precession frequency (ω = γB). Such a frame will rotate clockwise around the
z axis as seen from above the origin (z > 0) in a laboratory frame with a constant magnetic
field pointing in the positive z direction (see Figure B1.2.1). From this rotating perspec-
tive, the spin is no longer precessing about ẑ. This reference frame has proven to be very
useful in describing MRI experiments, and a mathematical framework is given for it
below.

In Figure B1.2.1, a laboratory (fixed) reference frame, denoted by the unprimed Cartesian
coordinates (x,y,z) and their associated unit vectors, is compared to another frame denoted
by primed quantities (x′,y′,z′), which is rotating about the z axis with respect to the fixed
frame. The instantaneous rotation of this frame is defined by a rotational angular velocity
vector Ω

→
. The direction of this vector is the axis around which the primed frame is being

rotated and its magnitude is the angular speed of rotation in radians per second. The
angular velocity may be changing with time, Ω

→
 = Ω

→
(t).

We next consider some vector V
→
 in the laboratory frame. The time derivative of V

→
 in both

frames are related by:

where the primed derivative is defined as:

dV dV
V

dt dt

′ 
= + Ω × 
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Figure B1.2.1 The sense of the rotation of a primed reference frame in which a magnetic moment
is at rest. The primed frame rotates clockwise around the z = z ′ axis for a static magnetic field
pointing in the +ẑ direction according to a laboratory observer positioned above (z > 0) the x-y
plane. The rotation frequency of the primed reference frame is usually set to be the Larmor
precession frequency.
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This derivative represents the rate of change of the vector quantity with respect to the
rotating reference frame. The primed unit vectors represent the unit vectors in the rotating
frame. (They are time dependent because they are rotating if an observer is sitting in the
laboratory frame.) The primed subscript index of V represents the component of vector
V
→
 along that direction in the rotating frame.

Consider µ→ as the vector quantity V
→
(t) in Equation B1.2.1:

On the other hand, Equation B1.1.20, the equation of motion for the magnetic moment,
is:

Using Equation B1.2.3 in Equation B1.2.4 yields the equation of motion in the rotating
frame:

The rotating frame acts to create an “effective magnetic field” given by:

This effective field is the superposition of the external magnetic field plus a fictitious
magnetic field whose magnitude is |Ω

→
|/γ and whose direction is the same as that of the

vector Ω
→

. The rotational motion around B
→

eff is the by now familiar clockwise or left-handed
precession (for an instant, at least) looking backwards along its direction.

The freedom to choose the primed frame is a key concept in the analysis of the magnetic
moment behavior. The simplest case to consider is when Ω

→
/γ = −B

→
. Since (dµ

→
/dt)′ is now

zero from Equation B1.2.5, µ
→
 must be a constant in the primed frame. The rotating frame

simplifies our perspective of the motion of the spins.

Creating Transverse Magnetization with an RF Field

In order to detect the presence of any magnetization, it will be necessary to create a
transverse component. We already understand that to rotate the magnetization, we must
apply a magnetic field, say B

→

1, perpendicular to the magnetization. Equation B1.2.5
implies that a field applied along x̂ ′ will cause µ

→
 to rotate about x̂ ′, at least in the rotating

( )( ) ( )
ˆ ˆ ˆ( ) ( ) ( )yx z

dV tdV t dV tdV
x t y t z t

dt dt dt dt
′′ ′

′ 
′ ′ ′≡ + + 

 

�

(B1.2.2)

d d

dt dt

′µ µ = + Ω×µ  

� �

�

� (B1.2.3)

d
B

dt

µ = γµ ×
�

�

� (B1.2.4)

eff
d

B
dt
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frame. Practically, this means that B
→

1 in the laboratory frame must be a time-varying field
that acts like it is at rest in the rotating frame.

The usefulness of a rotating reference frame in the analysis of the static field is incentive
to consider such frames for the combined static plus RF fields. The motivation can be
made more compelling by the following picture: Imagine a spin precessing at a small
angle around the static field direction. To tip this spin down to a larger angle, an additional
field should be synchronized to push the spin down at a given position every time the spin
comes back around in its precession to this same position.

A “left-circularly polarized” RF field is defined by:

It is obvious that this field is “at rest” in the rotating frame. Importantly, the (generally
time-dependent) amplitude B1(t) is the full rotating frame amplitude available for spin
flipping. The 90° phase difference between the x and y coordinates of the laboratory field
has led to calling Equation B1.2.7 a “quadrature” field. It takes two orthogonal coils to
generate this field. Because of the power advantage, and other factors concerning
signal-to-noise and the need for RF spatial homogeneity, such rotating fields are com-
monly used in MR.

The Equation of Motion in Terms of the Effective Field

The equation of motion (Equation B1.2.5) in the rotating reference frame for a spin
immersed in the combination of the constant field B

→

0 = B0ẑ and the left-circularly polarized
field (Equation B1.2.7) is:

Because the rotating frame rotates around the z-axis, ẑ′ = ẑ. Appearing in Equation B1.2.8
are the Larmor frequency ω0 ≡ γB0, the RF laboratory frequency ω, and the spin-precession
frequency ω1 associated with the circularly polarized RF field (Equation B1.2.7):

The effective magnetic field is:

Equation B1.2.8 in the primed coordinates is an important result. In general, it states that
there is left-handed (clockwise) precession in the primed frame around the axis defined
by B

→

eff. We consider next the on-resonance condition where the applied RF frequency ω
matches the Larmor frequency ω0, i.e.:

lcp
1 1 1ˆ ˆ ˆ( ) ( cos sin )B t B x t y t B x′= ω − ω =
�

(B1.2.7)

0 1

eff

ˆˆ[ ( ) ]
d

z x
dt

B

′µ  ′ ′= µ × ω − ω + ω  
= γµ ×

�

�

�

�

(B1.2.8)

1 1Bω ≡ γ (B1.2.9)

eff 0 1ˆˆ[ ( ) ]/B z x′ ′≡ ω − ω + ω γ
�

(B1.2.10)
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This choice represents the origin of the “resonance” reference in the acronyms NMR and
MRI. Under this condition, the B1 field is maximally synchronized to tip the spin around
the x′-axis. The first term is then eliminated in Equation B1.2.10, leading to the corner-
stone equation of motion in the presence of an RF transmit field B1:

There is then only a precession about the x̂ ′ axis with the precessional frequency ω1 given
in Equation B1.2.12.

The RF Precession in More Detail

The fact that the magnetic resonance effect is more easily understood in the appropriate
rotating reference frame is also reflected by the manner in which an analytical solution
is found for the motion of the magnetic moment. In the rotating frame, let the RF field be
constant along x̂ ′, then:

for the on-resonance case. The magnetic moment vector motion is found by transcribing
the solution to the Bloch equation given in Equation B1.1.31 according to the substitutions
z → x′, y → z′, x → y′ or by directly solving Equation B1.2.12

with

and ω1 ≡ γB1. The general time dependent case (with arbitrary initial time t0) is solved by
the substitution µ→(0) → µ→(t0) where:

and

0 (on-resonance condition)ω = ω (B1.2.11)

1 0ˆ (when )
d

x
dt

′µ  ′= ω µ × ω = ω  

�

� (B1.2.12)
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1( )t tθ = ω (B1.2.15)

0
1( ) ( )

t

t
t dt t′ ′θ = ω∫ (B1.2.16)

1 1( ) ( )t B tω = γ (B1.2.17)
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When an RF pulse is applied for a finite time t, the spin (or the rotating frame) rotates an
angle θ(t) (Figure B1.2.2). This RF pulse is referred to as a θ-pulse. For example, if θ =
π/2, then the RF pulse is called a π/2 pulse or a 90° pulse.

The Flip-Angle Formula and a Specific Illustration

A B1 field applied on-resonance for a finite time is called an “RF pulse”. Suppose the RF
field is turned on quickly to a constant value B1x̂′ for a time interval τ and then it is just
as rapidly turned off. From the precession lessons of UNIT B1.1 (or from the explicit solutions
of the previous subsection), Equation B1.2.12 implies that the spin rotates through the
angle

around x̂′. For example, the size of B1 required for a 90° flip angle over 1.0 msec is 5.87
µT (0.0587G) for protons.

An illustration of various spin trajectories is helpful in highlighting the effectiveness of
being on-resonance for tipping spins. Trajectories in the primed and unprimed frames for
both off-resonance and on-resonance conditions are shown in Figure B1.2.3. The pictures
are generated from the solutions of the equation of motion for a constant field B1x̂ ′ in the
rotating frame. The pure on-resonance rotation about the x′ axis is demonstrated in Figure
B1.2.3A. The corresponding spiraling down found in the laboratory is shown in Figure
B1.2.3B. For the example given above, if B0 = 1 T, then the spin will rotate in the laboratory
frame more than 40,000 times before it hits the x-y plane. The off-resonance motion in
the primed frame (Figure B1.2.3C) shows the expected precession about the total field.
In Figure B1.2.3D, the laboratory picture is that of a superposition of this precession on
top of the rotation of the primed frame. On-resonance, even a weak RF field would readily
rotate the spin down into the transverse plane. By contrast, the farther off-resonance a

1Bθ = γ τ (B1.2.18)

B1 = B1 x ′ 

<

x ′=x ′′

z ′

y ′

y ′′

θ(t)=ω1t
z ′′

θ(t)=ω1t

Figure B1.2.2 The double-primed reference frame rotating about the RF field, B
→

1, which is along
the x̂ ′ direction in the primed reference frame. The spin is initially along the ẑ ′ direction and is
subsequently tipped by an angle θ(t) by the B

→

1 field. The ẑ ′′ axis remains aligned along the spin
direction during the rotation.
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spin becomes, the closer the effective field is to the static field, and the less the spin is
tipped from the vertical.
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Figure B1.2.3 An on-resonance π/2 spin flip as viewed in the rotating (A) and laboratory (B)
frames for ω = ω0 and ω1 = 0.06 ω0. An off-resonance trajectory as viewed in the primed (C) and
unprimed (D) frames corresponds to the offset value, ω = 0.85 ω0, with ω1 = 0.06 ω0. In MR
applications, the frequency ω1 would be much smaller in relation to the RF frequency, but the
spiraling would then be much too dense to illustrate.
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