
UNIT B1.1Magnetic Moment of a Spin, Its Equation
of Motion, and Precession

OVERVIEW

The ability to “see” protons using magnetic resonance imaging is predicated on the
proton having a mass, a charge, and a nonzero spin. The spin of a particle is analogous
to its intrinsic angular momentum. A simple way to explain angular momentum is that
when an object rotates (e.g., an ice skater), that action generates an intrinsic angular
momentum. If there were no friction in air or of the skates on the ice, the skater would
spin forever. This intrinsic angular momentum is, in fact, a vector, not a scalar, and thus
spin is also a vector. This intrinsic spin is always present. The direction of a spin vector is
usually chosen by the right-hand rule. For example, if the ice skater is spinning from her
right to left, then the spin vector is pointing up; the skater is rotating counterclockwise
when viewed from the top.

A key property determining the motion of a spin in a magnetic field is its magnetic
moment. Once this is known, the motion of the magnetic moment and energy of the
moment can be calculated. Actually, the spin of a particle with a charge and a mass
leads to a magnetic moment. An intuitive way to understand the magnetic moment is
to imagine a current loop lying in a plane (see Fig. B1.1.1). If the loop has current I
and an enclosed area A, then the magnetic moment is simply the product of the current
and area (see Equ. B1.1.8 in the Technical Discussion), with the direction n̂ parallel to
the normal direction of the plane. This direction is also determined by the right-hand
rule of the current flow. From experiment, the magnetic moment vector �µ is found to
be proportional to the spin, and the proportionality constant, γ (see Equ. B1.1.17 in the
Technical Discussion), is the gyromagnetic ratio, which is particle-dependent. For the
proton, the gyromagnetic ratio is 2.675 × 108 rad/sec/T. In many occasions, we use γ– =
42.58 MHz/T, which is the gyromagnetic ratio divided by 2π.

Because the magnetic moment is proportional to the angular momentum, it is obvious
that if a particle has no spin, then such a particle will have no magnetic moment. Both
16O and 12C are such elements and thus we cannot image these two nuclei despite their
abundance in the human body.

Now we can relate the time derivative of the angular momentum to the torque to derive
an equation of motion. In the presence of a magnetic field, the torque is the cross-product

Figure B1.1.1 A loop with current I lying in a plane. The perpendicular unit vector n̂ points up
from the side where the area A is on our left if we were to walk along the current path in the
direction of current flow. The magnetic moment for the loop is IAn̂.
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of the magnetic moment �µ and the magnetic field �B. Because the angular momentum
is proportional to the magnetic moment, we can write down a first order differential
equation of the magnetic moment which describes the motion of a spin:

(B1.1.1)

This represents part of the famous Bloch equation and basically leads to the description of
the precession of a spin in the presence of a magnetic field. Qualitatively, Equation B1.1.1
tells us that the rate of change of �µ depends on �B and that its motion is perpendicular to
both �µ and �B.

The key to grasping much of MR imaging lies in understanding the concept of precession.
Equation B1.1.1 dictates that the spin precesses (rotates) about �B at the Larmor frequency:

(B1.1.2)

This behavior is shown in Figure B1.1.2, for the magnetic moment �µ precessing clockwise
about �B. The vector direction of the Larmor frequency points in the direction opposite
to that of �B. If the spins start along the x-axis, i.e., with a zero phase, then the phase
accumulated after a time t is given by:

(B1.1.3)

where the minus sign indicates clockwise rotation. Figure B1.1.3 shows the projection of
the magnetic moment onto the x-y plane (transverse part of the magnetic moment |µ+|)
and its precession.

Equation B1.1.3 is one of the fundamental equations in MR imaging. The ability to
manipulate the phase of a set of spins in a given location (an “isochromat” of spins) will
be the backbone of future discussions related to forming echoes, velocity compensating
moving spins, and many other processes of importance in designing sequences.

Figure B1.1.2 Clockwise precession of a proton’s spin about a magnetic field. As shown, the
differential dφ is negative.
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Figure B1.1.3 The transverse part of the magnetic moment from a top view. The magnetic
moment precesses through an angle φ in the x-y plane in a time t.

TECHNICAL DISCUSSION

Torque on a Current Loop in a Magnetic Field

We begin with a study of magnetic forces on current-carrying conductors, in order to
introduce the interaction of a proton with an external magnetic field. A circular loop of
current I and area A is pictured with two different orientations in Figure B1.1.4. If an
external magnetic field �B is turned on, the loop will feel a differential force on each of
its differential segments d �� given by the basic Lorentz force law:

(B1.1.4)

This cross-product implies that the differential force is perpendicular to the plane defined
by two vectors: the current segment and the magnetic field evaluated at that segment.
It is in the direction that a right-hand screw, perpendicular to the plane, advances when
rotated from the current segment vector to the magnetic field vector.

Figure B1.1.4 Circular current loop depicted in two different orientations relative to a uniform
magnetic field. The forces on representative differential current segments are shown (one d �� is
explicitly shown in each case). The first panel (A) shows the current plane perpendicular to the
field where there is no net twist (torque); the second panel (B) shows the current plane at an
arbitrary angle to the field where there is a nonzero torque.
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The total force on the circular loop and, indeed, on any closed loop due to a uniform
(constant over space) external magnetic field is zero. As an example, the symmetrical
vector sum of the differential forces on either current loop in Figure B1.1.4 clearly
vanishes for any loop orientation. To prove this, integrate Equation B1.1.4. Both I and
�B can be taken outside the integral. For an integration around any closed path,

∮
d �� = 0,

and this demonstrates that the total force is zero. Zero total force means zero change in
the total momentum �p, from Newton’s law:

(B1.1.5)

Therefore, a current loop initially at rest in a spatially constant magnetic field stays at rest.
For the present, we also assume that the field is constant in time. But this is not the whole
story. A current loop can be rotated by the field, depending on the loop’s orientation.

Rotations can arise from forces applied off center, even when the vector sum of all forces
cancels out. The vector quantity used to describe the rotation of an object is torque ( �N ).
Discussions of torque can be found in most introductory physics textbooks. If the sum
of the differential torque contributions:

(B1.1.6)

is nonzero, the current loop can be expected to rotate about the axis along d �N . In Equation
B1.1.6, �r is the position vector from, say, the center of the loop to the point of application
of the differential force.

In the special case where the plane of the circular loop is perpendicular to a constant
magnetic field, Figure B1.1.4A, each �r is parallel to its d �F so each differential torque is
zero. Otherwise, when the plane is at some arbitrary angle to that field (Fig. B1.1.4B), it
is evident that there is a net torque rotating the loop back into the perpendicular plane.
We come back to what the proton actually does in response to a similar torque, after
discussion of a basic torque formula.

The formula for the net torque on any current distribution, which is exact in a constant
magnetic field, is given in terms of the “magnetic dipole moment” or simply “magnetic
moment” �µ with:

(B1.1.7)

with �µ itself to be discussed shortly. This cross-product can be taken with respect to
any point, but because the net force is zero, the net torque vector is independent of the
origin chosen. In place of a general argument for Equation B1.1.7, we present a specific
calculation of the torque on a circular loop. But first a formula for the magnetic moment
of a current loop is needed.

To prescribe the magnetic moment for a planar loop, imagine a right-hand screw perpen-
dicular to the plane of the loop piercing the interior of the loop. The screw is assumed
to rotate in the same sense of the current flow. Define a unit vector n̂ pointing along the
direction in which the screw advances. The magnetic moment vector for planar loops is
then given by:

(B1.1.8)

where A is the area of the loop interior. A sample planar moment is illustrated in Figure
B1.1.1, along with an alternative description of the right-hand rule.

The torque due to a constant magnetic field is to be calculated for a circular loop with
radius R and current I centered in the x-y plane. Let the field lie in the y-z plane and have



Spin Behavior

B1.1.5

Current Protocols in Magnetic Resonance Imaging Supplement 14

magnitude B. The differential torque on d �� can be written quite generally as:

(B1.1.9)

Use has been made of the double cross-product formula after combining Equation B1.1.4
and Equation B1.1.6. The “BAC-CAB” rule is �A × ( �B × �C) = �B ( �A · �C)− �C ( �A · �B).
The torque can be calculated with respect to the origin (since the net force is zero). The
magnetic field and the cylindrical unit vectors shown in Figure B1.1.5 are:

(B1.1.10)

where the angles are also illustrated in that figure. With d �� = Rdφφ̂ and �r = Rρ̂, the
second scalar product in Equation B1.1.9 is zero, and a reduction of the first scalar
product using Equation B1.1.10 yields:

(B1.1.11)

An integration of Equation B1.1.11 over the polar angle φ, with φ̂ from Equation B1.1.10,
gives the total torque. There is no net y-component because

∫ 2π

0 dφ sin φ cos φ = 0.

The integral
∫ 2π

0 dφsin2φ = π is needed for the calculation of the net x-component,
leading to:

(B1.1.12)

The average value of sin2φ or cos2φ over any multiple of π/2 is 1/2. Equation B1.1.12 is
exactly �µ × �B in view of the fact that the magnetic dipole moment for the circular loop
of Figure B1.1.5 is:

(B1.1.13)

Exact for constant fields, the torque formula (Equ. B1.1.7) is also very accurate for small
loops in a spatially varying field. The only requirement is that the loop scale (say, its
diameter D) must be much less than the typical distances over which the field changes (for
example, |�B| ∼= |∂B/∂x|D � |B|). Corrections would arise from, for example, “higher
moments” such as electric quadrupole moments. In the case of a proton, however, the
electric quadrupole moment, and all other higher moments, are zero.

Figure B1.1.5 A circular current loop lying in the x-y plane experiencing a constant magnetic
field. The field lies in the z-y plane.
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Torque and Angular Momentum

The lesson so far is that a magnetic moment, such as that corresponding to a current
loop or a bar magnet, will try to line up along the direction of an external magnetic
field. This is much the same as the way in which a falling pendulum tries to align itself
with the direction of gravity. If the moment is associated with an angular momentum (a
“spinning”), then the motion is changed. To see what the new motion is, we introduce the
general differential equation for angular momentum in the presence of external torque
and the atomic relation between intrinsic angular momenta and magnetic moments.

Nonzero total torque on a system implies that the system’s total angular momentum �J
must change according to:

(B1.1.14)

One can derive this equation, which is discussed in most introductory mechanics text-
books. We start with a single point mass case. Consider a point mass m moving at
velocity �ν(t) with position �r (t) defined by some origin. Its angular momentum relative to
that origin is therefore �J = �r × �p with �p = m�ν. Thus, by using Equation B1.1.5 and
Equation B1.1.6,

(B1.1.15)

The generality of Equation B1.1.14 follows by considering a system as a limit of many
point particles. The total angular momentum is the corresponding limit of:

(B1.1.16)

with respect to some origin.

Angular Momentum of the Proton

We next formulate the connection between the proton intrinsic angular momentum (or
what is often referred to as its “spin”) and its moment. The connections for other nuclear
particles are also of interest.

The proton spin can be thought of as leading to a circulating electric current and, hence,
an associated magnetic moment. The direct relationship between the magnetic moment
and the spin angular momentum vector is found from experiment:

(B1.1.17)

The proportionality constant γ in Equation B1.1.17 is called the gyromagnetic (or mag-
netogyric) ratio and depends on the particle or nucleus. For the proton, it is found to be:

(B1.1.18)

or, what may be referred to as “gamma-bar,”

(B1.1.19)

where T represents the Tesla unit of magnetic field and is equal to 10,000 Gauss (G). To
this accuracy, the measured value for a proton bound in H2O is the same as that for a
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free proton. Of all the numbers in MR, γ– is probably the one most often used in back-of-
the-envelope calculations. From Equation B1.1.17 we are justified, in any discussion, to
refer either to spin, or to the magnetic dipole moment, since they track each other.

Equation of Motion

Using both the relationship between the spin and the magnetic moment (via Equ. B1.1.17)
and Equation B1.1.7 for torque on a magnetic moment due to an external magnetic field
�B, we find that Equation B1.1.14 reduces to:

(B1.1.20)

This fundamental equation of motion is at the heart of the rotations and precessions that
we shall frequently discuss. It is a simple version of the Bloch equation to be presented
in Chapter B3. Important corrections arise from the interactions of spins with their
surroundings, processes which are referred to as “relaxation” phenomena.

When the time rate of change of a vector is proportional to a cross-product involving that
vector, its magnitude µ = |�µ| is unchanged, i.e., dµ/dt = 0. This can be seen from the
following identity:

(B1.1.21)

since �µ × �B is perpendicular to �µ. The magnitude may be fixed, but the direction is
changing. The instantaneous change in the magnetic moment direction is equivalent to
an instantaneous left-handed rotation about �B , the other vector in the cross-product. To
see the rotation and get the instantaneous rotation frequency, consider Figure B1.1.2. The
differential change in the moment in time dt is d�µ = γ�µ × �Bdt, which is perpendicular to
the plane defined by �µ and �B. This pushes the tip �µ (when viewing from “above” with �B
pointing at the viewer) on a clockwise precession around a circular path. The tip would
stay on that same circle if �B were constant in time. If dφ is the angle subtended by d�µ
and θ is the angle between �µ and �B, the geometry of Figure B1.1.2 indicates that:

(B1.1.22)

On the other hand:

(B1.1.23)

A comparison gives γB|dt| = |dφ| with B≡| �B|, giving the well-known Larmor precession
formula:

(B1.1.24)

along an instantaneous axis defined by a left-handed screw rotation about �B. That is:

(B1.1.25)

so that the angular velocity vector is:

(B1.1.26)

We shall use the convention that angular frequencies are positive. The rotation sense can
be indicated by specifying the angular velocity vector, about whose direction the rotation
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is right-handed. Therefore, the rotation indicated by Equation B1.1.25 is left-handed with
respect to the positive z-axis.

If the field is along the z-axis and constant in time, �B = Bẑ , the solution of Equation
B1.1.25 is:

(B1.1.27)

where φ0 is the initial angle. Again, notice the minus sign (φ is the usual azimuthal angle
defined in right-handed fashion around the z-axis); Equation B1.1.27 shows constant
left-handed precession around the field direction. From now on, we define the Larmor
frequency for the constant field case to be:

(B1.1.28)

It is possible to use the rotation picture developed above and trigonometry to derive the
behavior of �µ(t) for �B = Bẑ. In this scenario, the vector differential Equation B1.1.20
decomposes into three Cartesian equations:

(B1.1.29)

with �µ(t) = µx(t)x̂ + µy(t)ŷ + µz(t)ẑ and with time dependence dropped in the above
equations. By taking additional derivatives of the first two parts of the above equations,
we find:

(B1.1.30)

The solutions for µx(t) and µy(t) are a combination of simple trigonometric functions:

(B1.1.31)

Electrons and Other Elements

It is useful to compare the experimental values for the gyromagnetic ratios with a formula
for a simply structured system. Consider a point particle with charge q, mass m, and speed
v traversing in a circle of radius r. Recall that the angular momentum �J = �r × �p = mrvn̂
where n̂ points in a direction given by the right-hand rule applied to the motion of the
particle. The magnetic moment is the product of current and area and its vector direction
is apparently parallel to n̂. The area enclosed by this point charge is πr2 and the current
is the product of the charge q and frequency, which is the angular frequency divided by
2π. For a circular motion, the angular frequency is equal to the speed v divided by radius
r. Putting all these together in Equation B1.1.17 yields the result for the gyromagnetic
ratio of a point particle:

(B1.1.32)
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This is not an accurate formula for the nuclear particles of interest, but it does help
us understand the differences due to mass. For example, choosing the mass (1.67 ×
10−27 kg) and charge (1.60 × 10−19 C) for a proton, this gives a numerical value of
the gyromagnetic ratio of 0.48 × 108 rad/sec/T. The difference between this result and
Equation B1.1.18 is due to the more complicated motion of the proton constituents, the
“quarks.” For related reasons, a neutron has a nonvanishing magnetic moment despite its
zero overall charge.

From the mass dependence of the previous example, it is not surprising that the γ factors
can vary from one particle to another, if only because their masses may differ. Indeed,
the electron γ factor is expected to be much larger than that for the proton in view of the
inverse mass dependence. The difference between the observed ratio:

(B1.1.33)

and the measured mass ratio mp/me = 1836 (the electron mass is 9.11 × 10−31 kg) is due
to the difference in the structure of the two particles. The electron has no apparent size,
while the proton has a size on the order of 1 Fermi (10−15 m) and is a complex composite
of quarks. They do, however, have exactly the same spin.

Why do we not use electron imaging? The principal reason is the striking difference in
the frequency with which a magnetic moment precesses about a static magnetic field. The
precession frequency is proportional to the gyromagnetic ratio and, with the difference
shown in Equation B1.1.33, it is much larger for the electron. In the standard MRI
experiment, an additional, oscillating magnetic field is required; this is the RF field
produced by the RF coil whose frequency is matched with the precession frequency. For
static fields in the Tesla range, a radiofrequency field in the microwave spectrum is thus
needed for electron experiments; however, too much energy would be deposited in human
bodies, if electron spins were “excited” by these RF fields. Other problems associated
with field inhomogeneities and signal-to-noise, imply that reducing the frequency by
reducing the static field strength is not a readily available alternative.

For nuclei, the first requirement is nonzero intrinsic angular momentum (total “spin”). It
might be guessed, incorrectly, that magnetic moments of heavier nuclei would be rather
small compared to that of a proton, roughly reduced by the inverse ratio of their total
masses to the proton mass. In reality, they usually are not very much smaller, nor are they
ever very much larger. Only the “outer shell” nucleons contribute to the total angular
momentum of heavier nuclei; the total nuclear mass is not relevant to the determination
of the γ factor. In general, protons and, separately, neutrons pair up as much as possible
inside of a nucleus, with their spins and orbital motions canceling.

Consider the different nuclear cases. Each “even-even” nucleus (even numbers of protons
and even numbers of neutrons) has zero total angular momentum, and, hence, zero
magnetic moment. For this reason, we cannot image the 16O and 12C in our bodies with
the MR techniques under discussion. The magnetic moment of an even-odd nucleus can
be approximately understood in terms of the single unpaired nucleon, but admixtures of
states differing in the configurations of the other nucleons must sometimes be taken into
account. The unpaired proton and neutron in odd-odd nuclei are not in the same orbital
state and do not conspire to give zero spin, in general. For example, nitrogen has twice
the spin of hydrogen, and a nonvanishing magnetic moment.

The γ factors in Equation B1.1.17 for nuclei with nonzero angular momentum are
consequently within an order of magnitude or so of that for the proton. The relation to
the nuclear magnetic moment does involve the nuclear spin IN.
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Table B1.1.1 Spin Properties of Different Elementsa

Nucleus Spin
Magnetic
moment

γ–
Abundance in
human body

Hydrogen 1H 1/2 2.793 42.58 88 M

Sodium 23Na 3/2 2.216 11.27 80 mM

Phosphorus 31P 1/2 1.131 17.25 75 mM

Oxygen 17O 5/2 –1.893 −5.77 16 mM

Fluorine 19F 1/2 2.627 40.08 4 µM
aList of selected nuclear species with their spins (in units of h– where the proton has spin 1

2 ),
their associated magnetic moments in units of a nuclear magneton µn ≡ 5.05 × 10−27 A-m2,
gyromagnetic ratios γ– (in units of MHz/T), and their relative body abundances (1 M = 1 molar
= 1 mole/liter). For comparison, the hydrogen (1H) molarity of water is 110 M, and brain gray
matter, for example, has a water content of 80% leading to an abundance of 88 M. The quoted
body abundances will vary from tissue to tissue. Certain common elements are omitted, such as
12C and 16O, because their nuclear spins (and, hence, their nuclear magnetic moments) are zero. A
negative sign for the moment and gyromagnetic ratio refers to the fact that the magnetic moment is
anti-parallel to the angular momentum vector.

(B1.1.34)

The gyromagnetic ratios are determined by measurements, and their values are often
rather smaller than that for the proton.

Smaller values for γ are not the only reason, however, that imaging of elements other
than hydrogen is difficult in the human body. The problem is usually one of low con-
centration. Still, sodium (23Na) and phosphorus (31P) are of imaging interest in view of
their nonvanishing magnetic moments (their spins are “3/2 ” and “1/2 ”) in quantum units
h̄ in terms of which the proton has spin “1/2 ” where h̄ is defined as h divided by 2π,
where h is Planck’s constant, 6.626 × 10−34 J-sec). Their relative γ factors, spin, and
concentration are listed together with other nuclei of interest in Table B1.1.1.
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