
UNIT B1.3Fundamental Properties of Magnetization

OVERVIEW

In UNIT B1.1 and UNIT B1.2, we discussed the spin properties of the proton by considering
one spin with a magnetic moment µ→. We also introduced the relation between the magnetic
moment and the angular momentum. In this unit, the concept of bulk magnetization and
quantized spin angular momentum are introduced. The dependence of the magnetization
on spin density, temperature and magnetic field is presented.

Historically, it was Stern and Gerlach in the early 1920s who discovered that angular
momentum is quantized. They shot a beam of neutral silver atoms through a vertical
magnetic field (see Fig. B1.3.1). Surprisingly, the silver beam was not simply deflected
by the magnetic field. Instead, the beam split into two beams corresponding to two
different values of the spin angular momentum of the electron. Further experiments
showed that the proton also has spin one-half and the same splitting effect. This effect is
due to the discretized energy levels of the spins and it is an example of the general Zeeman
splitting effect (see Fig. B1.3.2).

The magnetic moment vector for a typical proton is prevented from relaxing fully to an
alignment along the external magnetic field because of the thermal energy associated with
the absolute temperature T. From the technical discussion below, we can compare the
magnetic field interaction with the average thermal energy kT, where k is the Boltzmann’s
constant. At human body temperatures, the thermal energy is millions of times larger than
the quantum energy difference for parallel alignment (lower energy) versus antiparallel
alignment (higher energy) of the spin. For a proton with only two quantum spin states,
these are the only two possible alignments. The energy difference between these two states
is ∆E = h−ω where h is Planck’s constant and h− ≡ h/(2π). Significantly, the frequency in
this energy difference between these two states, ω0, is nothing other than the Larmor
precession frequency.

The extreme smallness of the quantum spin energy compared with the thermal energy
means that the fraction h−ω0/(kT) << l. In that case, the Boltzmann probability (see
Technical Discussion) demonstrates why the number of spins parallel to the magnetic
field exceeding the number anti-parallel to that field, the “spin excess,” is also very small.
Specifically, the spin excess is limited by a factor involving that fraction:

where N is the total number of spins present in the sample. It is found that the spin excess
is only one in a million spins even for a magnetic field strength as large as 0.3 T.

Since the spin excess is millions of times smaller than the total number of proton spins,
it might be guessed that no significant signal would be detected at room temperature.
However, there are Avogadro numbers of protons in a few grams of tissue. Consider the
average of the volume density of the magnetic moment, or “longitudinal equilibrium
magnetization” M0 for the component of the magnetic moment vector along the external
field direction. For a sample with ρden defined as the number of protons per unit volume
(or the “spin density”), the longitudinal equilibrium magnetization is given by the proton
magnetic moment component γh−/2 multiplied by the relative spin excess in Equation
B1.3.1 times the spin density. Using the Larmor equation, the available bulk magnetiza-
tion is given by:
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This equilibrium value, while limited by the spin excess, leads to measurable NMR
effects. Of particular note is the linear dependence of M0 with B0 and the quadratic
dependence of M0 with the gyromagnetic ratio γ. Fortuitously, the high value of γ for
protons and its high spin density make it the most attractive nucleus to image.

Practically, the detected signal is proportional to the magnetization of an ensemble of
spins (a spin isochromat). Thus, we can simply replace the magnetic moment with the
magnetization in many equations such as the Bloch equations. The beauty is that the
physics concepts behind our early discussions of energy, forces, and the equations of
motion do not change, whether we consider a single spin or a set of spins. The reader will
see this in the following technical section. The full signal dependence on B0 and γ will
only become apparent in Chapter B2.

TECHNICAL DISCUSSION

Magnetization Vector

For images of a macroscopic body, we focus on protons, introducing their local magnetic
moment per unit volume, or magnetization, as M

→
(r

→
,t). Consider a volume element

(“voxel”) with volume V small enough that external fields are, to a good approximation,
constant over V, but big enough to contain a large number of protons. The external fields
are assumed to vary spatially only over scales much larger than V

1⁄3. The bulk magnetiza-
tion is then defined through the expression:

The set of spins in V is called a spin “isochromat,” which can be defined as an ensemble
or domain of spins with the same phase. Disregarding the interactions of the protons their
environment, a sum over the (Equation B1.1.20) yields:

or

It is most advantageous to analyze the magnetization, and its differential equation, in
terms of parallel and perpendicular components defined relative to the static main magnet
field, B

→

ext = B0ẑ. The parallel, or “longitudinal” component of the magnetization is:

The transverse components are:
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The corresponding components of the cross-product in Equation B1.3.5 lead to the
decoupled equations:

and

The modeling of the proton interactions with their neighborhood leads to additional terms
in Equation B1.3.8 and Equation B1.3.9 which depend on decay parameters, and these
parameters are different in the two equations. This difference is related to the fact that, in
contrast to a given magnetic moment, the magnitude of the macroscopic magnetization
is not fixed, since it is the vector sum of (many) proton spins. The components of M

→

parallel and perpendicular to the external field “relax” differently in their approach to
equilibrium.

Equation B1.3.8 is certainly wrong for interacting protons, insomuch as their moments
try to align with the external field through the exchange of energy with the surroundings.
To understand the origin of the missing term, an energy argument is helpful.

Potential Energy

The classical formula for the potential energy associated with a magnetic moment
immersed in a magnetic field is:

This implies that the moment will tend to line up parallel to the field in order to reach its
minimum energy state, if energy can be transferred away. Since the protons are considered
to be in thermal contact with the lattice of nearby atoms, the thermal motion present in
the lattice can account for any change in a given proton spin energy (Equation B1.3.10).
In the quantum language, a spin can exchange a quantum of energy with the lattice.

The magnetization version of Equation B1.3.10 is the potential energy density:

involving only the longitudinal component of the magnetization. Although the transverse
components can be ignored in discussing the energy, it follows that, as the longitudinal
magnetization returns to its equilibrium value Mo, the transverse magnetization must
vanish. In fact, the transverse magnetization can vanish more quickly due to “dephasing”
(see Chapter B3).
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Discrete Angular Momentum and Energy

Discreteness of the energy levels of the proton’s magnetic moment interaction with a
magnetic field is related to the discreteness of the proton’s intrinsic angular momentum,
or spin. In fact, this is the historical path along which scientists came to the conclusion
that spin was quantized. In the early 1920s, Stern and Gerlach experimented with a
horizontal beam of neutral silver atoms passing through a perpendicular (vertical)
magnetic field gradient (see Fig. B1.3.1). Even with zero electric charge for the atom, a
magnetic force is exerted on any atom that possesses a nonzero magnetic moment, as is
the case for a silver atom, in a spatially varying magnetic field.

To see this, an expression for the force can be found from the gradient of the magnetic
potential energy U in Equation B1.3.10. For a field B

→
,

The field produced by the magnet in the figure has y- and z-components, and both are
spatially varying. But, averaged over time, the y-component of the magnetic moment (and
its spatial gradient) in the central region is zero. This follows from the expected classical
precession about the z-axis. Therefore, µ→ ⋅ B

→
 may be replaced by µzBz in Equation B1.3.12,

and, since µ→ is independent of position, the z-component of Equation B1.3.12 becomes:

The notation Gz for the z-derivative of the vertical component of the field gradient will
be useful in imaging discussions about “field gradients.”

The experiment of Stern and Gerlach had the two necessary ingredients entering into
Equation B1.3.13, gradients and moments. They used electromagnets with vertical pole
faces where the z-component of the field increases as the upper pole is approached (Fig.
B1.3.1A). The angular momentum of an unpaired electron in a silver atom gives rise to
an atomic magnetic moment whose component parallel to the field gradient would lead
to a deflection according to Equation B1.3.13. (In this case, the nuclear magnetic moment
is negligible; the reader is referred to the discussion in UNIT B1.1.) The relation analogous
to Equation B1.1.17 is:
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Figure B1.3.1 The historical Stern-Gerlach experiment: Using a vertical (z-axis) magnetic field gradient
from an electromagnet to split a beam of silver atoms in the direction of the gradient. Two views of the
experiment are shown. In (A), the direction of the beam is out of the page. In (B), a side view of the beam
is shown.
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in terms of the spin angular momentum J
→

e associated with the electron.

The classical conclusion from Equation B1.3.13 and Equation B1.3.14 is that the beam
should be deflected through a spread of angles, due to a continuous spread of magnetic
moment values, or, more fundamentally, a continuous spread of angular momentum
values. Working at the time when many profound quantum discoveries were being made,
Stern and Gerlach had the specific goal of searching for quantization effects, and they
found them. Instead of a smear of deflection angles, their measurements showed that the
beam split vertically into two beams, corresponding to two discrete values for the
z-component of the angular momentum of the electron. Although it was not known at that
time, we now understand the angular momentum of the unpaired silver electron to be
entirely due to its spin; there is no orbital angular momentum for this electron state. The
spin component in Equation B1.3.13 must be quantized.

With the motivation given above, let us describe, as an experimental fact, the quantization
of angular momentum for the spin vector S

→

. The magnitude of S
→

 satisfies:

with 2s+1 values of ms (i.e., −s, −s+1, ..., s−1, s) pertaining to the z-component Sz = msh−
of the spin vector and where h− is Planck’s constant (h = 6.626 × 10−34 J-sec) divided by
2π. The two deflection angles observed in the Stern-Gerlach experiment determine the
spin quantum number s for the electron. For the unpaired electron in a silver atom in the
Stern-Gerlach experiment, it must be that s = 1⁄2 and ms = ±1⁄2. The electron has “spin
one-half.” At the time of the experiment, by the way, it was not known whether an electron
had any spin at all. We see that the existence of spin itself is inferred from such
measurements.

Experiments in the years following the work of Stern and Gerlach showed that the proton
must have spin one-half as well. Thus the magnetic moment (Equation B1.1.17) is
discretized and Equation B1.3.10 leads to discrete energy values:

e e eJµ = γ
�� (B1.3.14)
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Figure B1.3.2 The Zeeman energy levels for a spin one-half system and a positive gyromagnetic
ratio. The spin is parallel to the external field B0ẑ in the lower energy state. The wavy vertical line
represents a transition from the higher to the lower state by photon emission.
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with

The two ms values are also referred to as “spin-up” and “spin-down,” respectively,
stemming from a reference to the z axis. The two proton energy levels predicted by
Equation B1.3.16 are exhibited in Fig. B1.3.2. This is an example of the general Zeeman
effect where atomic or nuclear magnetic moments in the presence of an external magnetic
field lead to splittings in the atomic or nuclear energy levels.

Boltzmann Equilibrium Values

The equilibrium value M0 was required in the solution of the Bloch equation for the
longitudinal magnetization, Mz(t). This value, arising in the relaxation limit Mz (∞) = M0,
represents the trade-off between the tendency of a spin system to align itself with the
external field (the lowest energy state), and its ability to gain energy from thermal contact.

If a particle was in thermal contact with other material, and at an absolute temperature of
T, it would retain kinetic energy on the order of kT, where k is Boltzmann’s constant. The
exchange interaction will leave this system (as well as a system of spins) in equilibrium
somewhere above the (ground) state of lowest energy, depending on how large kT is. The
probability of finding a system with energy ε, while in contact with a much larger system
(the “reservoir” depicted in Fig. B1.3.3) at a temperature T, is given by the normalized
Boltzmann probability factor:

(See any introductory thermal physics text for a discussion of the Boltzmann factor.) The
normalization divisor is the partition function, Z, the sum over all weighting factors:

A system of interest is a spin in thermal contact with the rest of a set of N spins and with
the background lattice all at a temperature T. The number N is taken to be very large,
along with the size of the lattice. To find the thermal equilibrium value of Mz, consider
the calculation of the z-component of the average total magnetic moment for N spins
distributed over all possible magnetic spin states, neglecting translational motion. This
brings together the thermal interactions and the quantum basis of the magnetization. The
quantization axis is chosen along the external field direction (the z-axis, as usual) and the

spin parallel to field
spin anti parallel to field
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Figure B1.3.3 A small system in thermal equilibrium with a reservoir at temperature T. The total
energy ε0 is conserved between the two systems. 

Supplement 1 Current Protocols in Magnetic Resonance Imaging

B1.3.6

Fundamental
Properties of

Magnetization



case of a general spin s, with magnetic number ms ≡ m, is analyzed. The thermal average
of the magnetization is

where ρden = N/V is the density of spins per unit volume in the homogeneous isochromat
of volume V. From Equation B1.3.16 and ω0= γB0, where B0 is the magnitude of the
applied (external) magnetic field,

The explicit expression for the equilibrium magnetization is

with

Equation B1.3.23 can be simplified in MR, because the nuclear magnetic energies are so
much smaller than room-temperature thermal energies. For human body temperature (310
K), and protons, the basic exponent unit in Equation B1.3.23 and Equation B1.3.24 has
the numerical value u ≅ 6.6 × 10−6B0 for B0 in Tesla. Hence, the basic exponential is unity
to within 10 parts per million for field strengths in that range, and we can make the
following approximation:

For the finite m values of interest, emu is also very close to unity, leading to a simplified
limit for Equation B1.3.23. For arbitrary spins, considering the expansion of small x in
e−x to the third order, Equation B1.3.23 yields:
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This form of M0 will be used in UNIT B2.1 for defining the relative signal strengths of
different elements in an MR experiment.

Equation B1.3.26 constitutes a quantum derivation of the experimental Curie’s law for
magnetization, which states that the magnetization should be proportional to 1/T, but with
the bonus of determining the coefficient. For a spin one-half particle, such as proton (s =
1/2), Equation B1.3.26 becomes:

Finally, let us use these results in terms of the proton spin excess, defined by the difference
between the number of spins parallel (N(↑)) and antiparallel (N(↓)) to the external field:

where N is the total number of spins in the system and the Boltzmann probability
(Equation B1.3.18) for the two spin-1⁄2 states (m = ±1⁄2 or ε = +1⁄2h−ω0) is:

In the applications to MRI, Equation B1.3.27 is very small compared to the maximum
possible magnetization (which would be the product of the spin density times the
individual spin magnetic moment). This is because the aforementioned parameter u is
very small. Since the proton spin energy, Equation B1.3.10, is tiny compared with the
thermal energy scale kT (k is the Boltzmann’s constant and T is in Kelvin) at room
temperature, there is only a minuscule energy advantage for a spin moment to be aligned
with the magnetic field. In consequence, only a very small fraction (about five in one
million for a field strength of 1.5 T) of parallel spins exceed anti-parallel spins for field
strengths of interest. Fortunately, Avogadro’s number is so large, that, for example, on the
order of 1018 excess proton spins are aligned along a 0.5 T field in one mole of water.
Hence, the magnetization M0 is still big enough to be measured.
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