Diffusion Tensor MR Imaging

OVERVIEW

Theoretical description of the motion of spins depends heavily on the nature of motion
and its relevance to specifics of the MRI (magnetic resonance imaging) procedure. In
Chapter B1, for example, the equation of motion relates to the precession of spin
magnetization in response to constant and time-varying magnetic fields. In terms of
localization concepts outlined in Chapter B4, there is an implicit assumption of motionless
spins to simplify treatments of spatial encoding. For Chapter B7, on the other hand, the
formalism is explicitly developed to address the translational movement of spins through
gradient fields. Macroscopic motion of this sort during an imaging sequence can lead to
phase and/or amplitude effects that either manifest as artifact, or are harnessed in
specialized sequences to visualize flow and kinetics. Within the context of “diffusion,”
however, the scale and nature of motions are quite distinct from those discussed thus far.
Additionally, diffusion is a physical process totally independent of magnetization and
resonance concepts. That said, NMR (nuclear magnetic resonance) is recognized as the
preferred means to noninvasively document molecular diffusion phenomena. Of great
practical importance to the MRI community, diffusion-sensitive sequences are readily
incorporated into imaging sequences to derive diffusion-based contrast of tissues in vivo.
Diffusion-weighted contrast is used extensively as a diagnostic screen for acute stroke in
the brain, but this only marks the beginning of diffusion information available to
clinicians. As outlined in UNIT 46.4, the directional dependence of diffusion (i.e., diffusion
anisotropy) may be exploited to visualize cellular order in white matter, as well as disease
processes that infiltrate and undermine this structural order. The physical principles and
methodologies involved in diffusion-weighted imaging (DWI) and diffusion tensor im-
aging (DTI) are summarized in this unit.

Diffusion imaging targets the random molecular motion of water in tissue. Molecular
diffusion within and among cells is recognized as a rather complex process that is
dependent on many factors. Several of the main factors include cell size and density, water
permeability between intracellular and extracellular spaces, and water interaction with
macromolecules. Consequently, MR images that accentuate diffusion-dependent contrast
provide indirect insight into these cellular properties.

Additional gradient pulses incorporated within the imaging sequence are used to elicit
diffusion contrast. Typically diffusion-gradient pulses are strong (i.e., near full strength)
and long (tens of milliseconds) relative to those used in routine imaging. Such gradient
pulses impart strong phase shifts to water molecules dependent on their microscopic
translational trajectories. The more mobile the water is, the greater the spread in phase
shifts, thus the greater degree of signal loss due to the spin dephasing. Diffusion sensitivity
of an imaging sequence is determined by the operator-controlled parameter called “b-fac-
tor.” Analogous to Ty in T,-weighting, an increase in the b-factor increases diffusion-
weighted contrast. However, one should be aware of potentially confusing nomenclature
used to describe diffusion. As implied above, unrestricted water, such as in CSF (cerebro-
spinal fluid), is highly mobile and will dephase to yield low signal intensity on heavily
diffusion-weighted images. Conversely, severely restricted water, e.g., within cellular
dense tissues, exhibits relatively strong signal on DWI. Thus, the contrast on DWI is often
reversed relative to conventional 7,-weighted contrast. Images acquired at multiple diffu-
sion sensitizations (i.e., b-factors) can be mathematically combined to produce an apparent
diffusion coefficient (ADC) image wherein image intensity represents water mobility.
Thus, an ADC image tends to resemble a conventional 7,-weighted image. Examples of
these various image formats are illustrated in Figures B8.1.2 and B8.1.3.
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An important feature of water movement in tissue is that diffusion may be anisotropic.
That is, structural order and directionality translates to a directional dependence of water
mobility. The greatest clinical example of this is high water mobility when measured
parallel to white matter fiber tracts and low mobility perpendicular to the tracts. Substan-
tial efforts in mathematical formalism, models, and techniques have been developed to
describe and measure anisotropic diffusion in vivo. Fortunately, many of the technical
impediments have been overcome such that anisotropic diffusion properties of the CNS
(central nervous system) are now readily imaged in clinical applications. Diffusion tensor
imaging is the most common approach to visualize diffusion in anisotropic tissues. The
tensor is a mathematical extension of the single-valued diffusion coefficient and accounts
for multiple diffusion values with direction. The multiplicity of diffusion values can be
reduced to an average diffusion coefficient with respect to direction that is equivalent to
the ADC. Several additional parameters have been devised to denote the strength of
anisotropy. Two of the more popular include the fractional anisotropy (FA) and relative
anisotropy (RA), which are defined to exhibit areas of highly directional tissues, such as
white matter in the corpus callosum, as bright areas on anisotropy (FA or RA) maps.
Lastly, the actual direction of greatest water mobility can be derived from diffusion tensor
data in each imaged voxel. The direction of the greatest water mobility is then represented
by a two-dimensional fiber plot or directionally encoded color map which augments the
FA or RA map. These representations are designed to give the reader a sense of fiber
“grain” and connectivity. Fiber “tractography” is an extreme extension of these concepts
and represents a promising area of investigation. In overly simple terms, fiber tractography
algorithms utilize information provided by DTI to derive probable continuity in fibers in
three dimensions. The resultant synthetic 3-D images of white matter fiber tracts in the
brain are visually impressive, but one should realize validation of these approaches is still
under investigation.

TECHNICAL DISCUSSION

Basic Diffusion Formalism

Molecular diffusion refers to the thermally driven random translational motion of mole-
cules in media. Diffusion is also referred to as Brownian motion where media viscosity,
temperature and the molecular mass are key aspects that determine mobility. In terms of
MR, it is the mobility of water molecules within tissue that is of interest. Unlike
relaxation, 7, and T, that have complex dependencies on translational and rotational
motions of the spins which interact with the lattice via magnetic fields, diffusion is purely
translational and is not considered an NMR process. That is, molecular diffusion occurs
independent of magnetic fields and moments. Nevertheless, NMR provides the means to
probe diffusion processes with excellent fidelity.

We begin with the Bloch equation, initially presented in uniT B3.1. Equation B3.1.20 is
modified with an additional term to become the Bloch-Torrey equation, which accounts
for diffusion as follows:

dﬂ=\(1‘71><1§w+L(Mo—Mz)ﬁ—iML+DV21\71l (B8.1.1)
dt T T,

where D represents the diffusion coefficient in units of mm?*/sec (see uniTs3.1 for definition
of other variables). As is often done, one simplifies the situation by considering the system
in the rotating frame of reference (see uniT B1.2) and assuming that any incremental field
is provided by a linear field gradient (see uNIT B4.1) such that B, 2 — G ® #2.Consistent
withdiscussionin UNITS B4.1 & B7.1, spins in a gradient field accumulate phase in proportion
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to the gradient strength, duration, and position along the gradient. However, this concept
is generalized for time-dependent position and gradient waveforms as:

o(t)= —y}é (') oF(t)dt’ (B8.1.2)

For the scenario of a large number of spins exhibiting random motion trajectories, it can
be shown that the net phase shift averaged over all spins is zero. Given this, one can pose
the solution to Equation B8.1.1 for the transverse magnetization, M |, to include a
diffusion-dependent factor that only affects amplitude, as:

M (7,0)=M D= (F,1)- A(t) (B8.1.3)

where M =0 (#,1) is the solution to the Bloch-Torrey equation in the absence of diffusion,
and A(t) incorporates any time-dependent amplitude effect of diffusion. The solution to
the diffusionless Bloch equation is known:

1
) . —iyf-_[é(t’)dt’ (B8.1.4)
Mf=O(F,l)=ML(7,O)e_”TZe 0

Consistent with formalism in UNITS B3.1 & B4.1, this solution includes 7, relaxation and a
phase dependence on position in the gradient field. From this point, standard procedures
to substitute Equations B8.1.3 and B8.1.4 into B8.1.1, then eliminate common terms, will
yield an ordinary differential equation for A(#) assuming M ,(#,0) is a constant:

1A _

~Dk (t)ek (1)

where (B8.1.5)

Finally, this is readily solved to yield the diffusion-dependent factor, which modulates the
amplitude of transverse magnetization of the NMR/MRI signal, as:

~D[k(')ok ()i’ (B8.1.6)
A(t)=Ape °

Measures of Water Diffusion in Tissue

The integral within Equation B8.1.6 is commonly referred to as the “b-factor.” In close
analogy to how Ty controls T, sensitivity, the b-factor controls sensitivity of the MRI
experiment to diffusion effects. For the simple bipolar gradient waveform (often referred
to as Stejskal-Tanner diffusion gradient pair) illustrated in Figure B8.1.1, the b-factor is:

b=(yG3)* I:A - g] (B8.1.7)
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Figure B8.1.1 Bipolar gradient waveforms used to induce diffusion-dependent signal attenuation
in (A) gradient echo or (B) spin echo sequences. Sensitivity to diffusion is controlled by the b-factor,
given by b= (y G 8)? [A — (8/3)].

Typically, only the gradient amplitude is altered, leading to a change in signal amplitude,
S,, as a function of b-value. This directly leads to calculation of the diffusion coefficient
via:

or (B8.1.8)

D=———In| —

where S is the signal without diffusion gradients (i.e., G = 0). As graphically illustrated
in Figure B8.1.2, D can be determined by a fitted slope of signal attenuation at multiple
b-values or by the log-ratio of signals at two b-values.

One can also study diffusion effects as a function of evolution time, A. In a free diffusion
environment where diffusing molecules do not encounter restrictive boundaries (e.g.,
simple fluid), the measured diffusion coefficient is independent of A. In tissue, however,
the system is far more complex, with the mobility of water molecules hindered by
macromolecules, cell membranes, and extracellular structures. Classic diffusion theory
provides an estimate of the root-mean-square (rms) displacement of a freely diffusing
molecule over the interval A to be (2DA)"? in any one direction, or (6DA)"? in three
dimensions. Assuming a diffusion coefficient D = 10~ mm?*sec and evolution time A =
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Figure B8.1.2 Simulated signal loss as a function of b-value based on representative tissue
diffusion coefficients in units of 107> mm?/sec.

50 msec, the rms displacement is 17 pwm. Given that cellular dimensions are on the order
of 1 to 10 wm and the majority of water in the brain tissue is intracellular, the probability
that a water molecule will encounter semirestrictive cellular membranes over this interval
is high. There are also active cellular transport, convective motion, flow in capillaries and
larger vessels, and bulk tissue motions that contribute to increase the apparent mobility
of water in vivo. These effects can lead to nonlinear behavior in In(S,/S,) as a function of
b-value and evolution time. In consideration of all of these complex influences, diffusion
measurements in tissues are usually referred to with the qualifier “apparent” diffusion
coefficient, or ADC.

Maximum gradient strength on clinical MRI systems is typically 20 to 40 mT/m, although
greater effective strength can be achieved by simultaneous combination of X, Y, and Z
gradients. At a gradient amplitude G = 25 mT/m, with timing values & = 30 msec and A
= 35 msec (thus T = 65 msec), the gradient waveforms in Figure B8.1.1 yield b = 1000
sec/mm?. The b-factor of 1000 sec/mm? is commonly used in clinical applications, since
it provides reasonable sensitivity to diffusion contrast in the brain while maintaining good
SNR. Assuming a normal brain ADC of 0.7 x 10~ mm?*/sec, the signal reduction factor
of brain in DWI at b = 1000 sec/mm? is exp(—0.7) or 50%. Figure B8.1.3 illustrates DW
images at b = 0 (i.e., G = 0) and b = 1000. Note that the b = 0 image resembles standard
T,-weighted contrast (T =10 sec, and T = 73 msec), whereas the b = 1000 DWI exhibits
the greatest signal loss in regions of high water mobility (e.g., CSF; cerebrospinal fluid).
A pixel-by-pixel calculation of Equation B8.1.8 yields the ADC map shown in Figure
B8.1.3C. Despite the label “apparent” diffusion coefficient, these ADC values agree with
many studies of CNS (central nervous system) tissue in humans (and other species)
performed on various systems at various field strengths. As expected, the ADC value of
CSF is close to the diffusion coefficient of pure water at body temperature (D, ., at 40°C
=3.1x 107 mm?*sec). Given the fact that ADC maps are reasonably quantitative suggests
ADC may be useful for disease characterization across patients or serially within an
individual patient.
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b=1000 sec/mm?

Figure B8.1.3 Diffusion-weighted images with (A) b= 0and (B) b= 1000 sec/mm?. (C) Calculated
ADC2) map with ROI (region-of-interest)—derived ADC values for the indicated tissues in units of 1072
mm</sec.

Even as qualitative images, DWI and ADC maps are routinely used in clinical practice.
Heavy diffusion weighting (b > 750 sec/mm?) in particular is recognized as a good
diagnostic screen for acute stroke. As the prevalent theory goes, acute ischemia leads to
cytoxic edema in which cells swell and retain excess water. The net effect of this condition
is that water mobility is reduced, thus producing a bright signal on heavy DWI. Several
other situations can lead to hyperintensity on DWI such as cellular-dense tissues (e.g., some
tumors) and viscous environments (e.g., mucinous abscess), as well as systematic effects
like coil inhomogeneity. Thus, one should keep in mind that hyperintensity on DWI does
not necessarily indicate cytotoxic edema. In addition, long-7, tissues may have residual
signal that survives diffusion weighting and thus may appear hyperintense relative to
surrounding tissues—this phenomenon is referred to as “7), shine-through.” A simple image
format that removes 7, shine-through is a noise-thresholded version of “[S,/S,].” This ratio
image retains the positive aspects of DWI (namely hyperintense acute stroke lesions) while
removing T, shine-through and coil inhomogeneity effects. The relative contrast between
DWI, ADC, and [S,/S,] ratio maps is demonstrated in Figure B8.1.4.
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Figure B8.1.4 Comparison of contrasts between (A) DWI at b= 0 and (B) DWI at b = 1000 sec/mm?;
and (C) calculated ADC map and (D) ratio image [S;, = 1000/S,, = 0]. Note that the hyperintense lesion in
(B) illustrates “T,-shine-through” and is not due to a more restricted diffusion environment as is evident
by ADC (C) and the ratio image (D).

Measures of Anisotropic Diffusion in Tissue

The next major extension to diffusion formalism relates to a potential directional depend-
ence of water mobility. Diffusion along a particular direction in tissue will depend on
directionality (if any) of structural features that impede water movement—i.e., tissues
may be “anisotropic.” The strongest example of diffusion anisotropy is in directionally
ordered white matter structures such as the corpus callosum. Diffusion parallel to this
dense band of unidirectional fibers is several fold that of diffusion perpendicular to the
fibers. At this point we choose to avoid several complex mathematical issues and state
without proof that for anisotropic systems the single diffusion coefficient is replaced with

a 3 x 3 second-rank diffusion tensor:
Diffusion
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Moreover, the generalization of Equation B8.1.8 for anisotropic diffusion becomes:
S 3 3
ln[s_b]: _22% D; (B8.1.10)
0 i=l j

J=1

where b;; are elements of the “b-matrix,” D;; are elements of the symmetric diffusion tensor
(see Equation B8.1.9), and subscripts i and j denote direction in the laboratory frame of
reference [x,y,z]. The b-matrix is the anisotropic corollary to the isotropic b-factor and is
calculated for each gradient condition of directionally sensitive diffusion acquisitions.
More specifically, the b-matrix is calculated as:

Tg (1 v
by =7 [| [G.(")ar" || [G;(t")ar" |ar (B8.1.11)
0\ 0 0

For simple gradient waveforms the b-matrix can be solved analytically, although because
additional gradient elements are incorporated, such as used in imaging, numerical
implementation of Equation B8.1.11 is preferred. At least six noncolinear diffusion
gradient directions plus b = 0 are required to determine the six unique elements of the
diffusion tensor in solving Equation B8.1.10 by linear regression. Note that there is a
distinct b-matrix calculated for each DWI acquisition. A reasonable set of gradient
combinations to achieve this is {[1,0,0]; [0,1,0]; [0,0,1]; [1,1,0]; [0,1,1]; and [1,0,1]} in
the [x,y,z] laboratory frame.

Once the diffusion tensor is determined, it becomes an issue of how to efficiently
summarize this information in an understandable format. Note that there are six tensor
elements (D,,, D,,, D,,, D, D,,, D,,) for each pixel in the image. Certainly, grayscale
images of each individual tensor element could be generated, but these would have little
informational value since each represents water mobility in the laboratory frame, whereas
a tissue-based frame is preferred. Also note that the preferred tissue-based frame varies
with each voxel. Therefore, the following metrics are derived from the diffusion tensor
for each voxel for simplified presentation in a variety of image formats.

First and foremost, it is important to maintain some measure of mobility for each
voxel—i.e., an “ADC” equivalent. Fortunately, the simple average of diagonal elements
of the diffusion tensor is representative of mobility for that voxel; hence, this is also often
referred to as ADC. Note that there is sound mathematical justification, since this average
is proportional to the trace of the diffusion tensor (trace = D, + D, + D,, = 3ADC), which
is rotationally invariant. That is, the calculated trace and ADC values are independent of
the relative orientation between laboratory and tissue frames. Also, one does not need to
determine the full diffusion tensor to accurately measure average mobility of an anisot-
ropic system. That is, diffusion-weighted images acquired along any three orthogonal
axes (typically [x,y,z] of the laboratory frame) plus b = O are sufficient to accurately
calculate an ADC equivalent to that derived via full tensor formalism as long as the
b-factors of the three orthogonal acquisitions are equal (i.e., b,,=b,, = b,,) and off-diagonal
elements of the b-matrix are negligible (i.e., b; = 0 for i # j). Moreover, one can directly
calculate ADC from the product of these three orthogonal diffusion-weighted images as:
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D, +D,, +D, 3
ADC= X = _ 1ll: S0 ]

3 3b | S,S,S,
Of course the primary motivation for diffusion tensor imaging is to extract information
relevant to directionality of tissue structures. As previously stated, the diffusion tensor is
not particularly informative if left in the laboratory frame of reference. Fortunately the
diffusion tensor can be converted to a tissue-based frame by rotational transformation. This
mathematical operation of diagonalization is performed for each voxel and yields three
non-zero diagonal elements A, A,, A, called eigenvalues, which represent the diffusivities
along the three principal axes in the tissue-based frame. Using the convention A, > A, >
A3, A, is the principal eigenvalue representing the diffusion coefficient along the direction
least restricted by structural impediments. In a unidirectional band of white matter, for
example, A, represents mobility parallel to the white matter fiber axis. In a purely isotropic
medium such as CSF, the eigenvalues are identical. The relative orientation between
laboratory and tissue-based frames are represented by unit eigenvectors, €;, which are also
provided by the diagonalization process. The principal eigenvector corresponds to the
principal eigenvalue and provides the desired directional information of fiber orientation.

Measures for the overall degree of anisotropy without regard to the direction are useful
since they represent the density of unidirectionallly ordered structures. Toward that end,
two very useful metrics are fractional anisotropy (FA), a measure of the portion of the
magnitude of the diffusion tensor due to anisotropy:

A \/7\/(% 7»2) +( 7¥3) (7“3_7‘1)2 (B8.1.13)
l

2+k2+k2

and relative anisotropy (RA), derived from a ratio of the anisotropic portion of the
diffusion tensor to the isotropic portion:

2 2 2
\/(7»1 —A) + (A =A3) (A3 =2y) (B8.1.14)
A +A, + Ay

RA =

Both anisotropy indices are dimensionless but quantitative, and acquire a value of 0.0 for
a purely isotropic medium. For a highly anisotropic cylindrically symmetric medium, A,
>> A, = A;. Both FA and RA maps can be presented as grayscale images for efficient
visual evaluation. Finally, the volume ratio (VR) which expresses the ratio of the ellipsoid
volume with axes of length A, A,, and A, (see Fig. A6.4.2) to of a sphere with radius given
by the average eigenvalue, is:

MAshy

VR =
[7‘1 A+ s )3 (B8.1.15)
3
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Figure B8.1.5 Representative FA map. Bright areas indicate anisotropic tissue such as white
matter fiber tracts.

For purely isotropic media the behavior of the metrics is:

RA —-0,FA —50,and VR —1

whereas for highly anisotropic media: (B8.1.16)
RA —+/2,FA —1,and VR -0

Thus, in a grayscale image, areas of brightness on RA and FA maps indicate anisotropy.
To stay with this convention, sometimes it is useful to show (1 — VR) maps instead of VR,
so again, brightness is an indicator of anisotropic tissue. These anisotropy maps are useful
in the investigation of white-matter integrity. A representative FA map of a normal adult
brain is shown in Figure B8.1.5.

An anisotropic tissue will manifest itself as bright on RA, FA, and (1 — VR) maps. What
is missing from these maps is an indicator of fiber direction. It can be quite instructive to
actually show the average fiber orientation in a voxel that is indicated by the eigenvector
of the major eigenvalue. This information can be illustrated through the use of a whisker
or quiver plot. At the position of each voxel, a small line segment is drawn indicating the
projection of the major eigenvector. Additionally, the strength of the anisotropy as
measured above can be used to calculate the length of the small line segments, with more
anisotropy corresponding to a longer segment; little or no anisotropy is shown as a
segment of vanishing length, or a point. In Figure B8.1.6A and B, we magnify the view
in the region of the genu to show the fiber orientation with whiskers superimposed on
anisotropy strength measured by FA.

Current Protocols in Magnetic Resonance Imaging



Figure B8.1.6 Expanded view of genu of the corpus callosum with line segments to indicate (A)
projection of major eigenvectors, and (B) line segments superimposed on an FA map. (C) Color is also
used to indicate right-left (red), anterior-posterior (green), and superior-inferior (blue) directions as shown
in the expanded view with line-segments retained. (D) The full field of view image. This black and white

facsimile of the figure is intended only as a placeholder; for full-color version of figure go to http:/www.
interscience.wiley.com/c_p/colorfigures.htm.
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To a certain extent, these whisker maps can be quite useful, but can in themselves be slightly
cumbersome to view over a large FOV. A succinct method to illustrate the direction and
magnitude of anisotropy is to encode the direction of the major eigenvector in color and
use a measure of the anisotropy as an illumination factor. The inferior-superior direction
can be encoded in blue, left-right in red, and anterior-posterior in green as given by:

(R,G,B):FA~81 (B8.1.17)

Fibers oriented at oblique angles will now take on different hues; this results in a
directionally-encoded color (DEC) fiber map. Figure B8.1.6C illustrates DEC with
whiskers superimposed, and the full DEC slice is shown in Figure B8.1.6D without the
augmentation of whiskers.

An elegant extension to two-dimensional whisker and/or color-coded displays is to track
fiber connectivity through three-dimensional space. The majority of effort in fiber-track-
ing development is to improve algorithms to be robust enough to accurately follow distinct
fiber tracks that inevitably coexist in voxels due to the limited spatial resolution of current
image acquisition techniques. Currently, success of these algorithms is heavily dependent
on SNR (signal-to-noise ratio) and resolution of the diffusion tensor images that serve as
inputs to the algorithm, as well as on the use of a priori knowledge of the origination/ter-
mination of known fiber tracts. It is worth noting that fiber-tracking algorithms can
produce cosmetically spectacular results with realistic-appearing fiber networks rendered
in three dimensions at resolutions that defy the spatial resolution of the original DTT data.
One should keep in mind that these images are somewhat synthetic and based on the model
employed in the tracking algorithm—general validation of the various algorithms is still
required. In fact, all DWI- and DTI-derived images are limited by the accuracy of the
model on which they are based. The modest spatial resolution of DTI acquisitions suggests
that a given voxel may encompass multiply oriented anisotropic domains, which violates
the single-tensor model described above. Anisotropy maps, RA and FA, commonly
indicate isotropic diffusion in voxels containing multiple crossing fibers due to this partial
volume averaging effect.

Diffusion Imaging Sequences

Two important aspects limit the selection of imaging sequences suitable for DWI and
DTI. As indicated above, at least four distinct image sets are required to estimate
diffusivity (i.e., ADC) in anisotropic tissues and at least seven image sets are required for
the full diffusion tensor. In practice, often, many more directions or averages are acquired
to improve DTI analysis, since least-squares estimation improves with more independent
directions and reduces potential bias of just a few directions. Thus, a relatively fast
imaging sequence is desirable to keep DTI imaging times within reason for clinical use.
In addition, the imaging sequence must be exceptionally immune to bulk tissue motion
artifact. Using methods outlined in uniT B7.1, the phase shift per unit motion speed is
calculable for the standard bipolar gradient waveforms of Figure B8.1.1 as:

|®,|=YGdA. (B8.1.18)

Consider again the gradient factors previously used to achieve a b-factor of 1000 sec/mm?,
namely G =25 mT/m with timing values 6 = 30 msec and A = 35 msec. The phase shift
per unit speed for this gradient is over 2 T /mm/sec. That is, if conventional phase encoding
schemes are used, the bulk tissue motion speed must be reproducible to well below the
0.1 mm/sec level, otherwise phase variability between phase-encoding steps would
substantially degrade image quality and render ADC and tensor calculations meaningless.
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The requirements for reasonably short scan times and bulk tissue motion control have
made single-shot echo planar imaging (EPI) a popular choice for integration of diffusion-
sensitization gradient pulses with imaging. While bulk tissue speeds in the brain can well
exceed 0.1 mm/sec, the speed is relatively constant over the single-shot EPI duration to
complete all phase encoding steps for a given image (=50 msec). Good-quality diffusion-
weighted EPI along three directions (plus » = 0) can be performed in less than a minute,
with more directions and averaging as needed for DTI completed in just a few minutes.
The drawbacks of single-shot EPI, such as spatial distortions due to field inhomogeneity,
are well recognized and degrade DWI/DTT as well. On balance, however, single-shot EPI
is the current default to perform DWI and DTT in the clinical setting. Alternatives such as
phase-corrected multishot EPI or fast spin echo can improve image quality, but at the
expense of longer scan times.
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