Table S5: Summaries of three models investigating the role of cardenolide chemistry to monarch tolerance (the slope of a regression between spore load and monarch lifespan). For models 2 & 3, we created a PCA of the centered log-ratios (CLR) of cardenolide concentrations and then included the most explanatory PCA axes in our models of tolerance to examine the strength of the chemical mechanism we found in *A. curassavica* alone. The model including CO₂ treatment is a better fit to the data suggesting that the effects of eCO₂ on monarch performance are not only mediated by cardenolide concentrations, but additionally, may function through other aspects of plant quality such cardenolide traits.

Model 1	F	p	Model 2	$oldsymbol{F}$	p	Model 3	\boldsymbol{F}	p
spore load	$F_{1,67} = 37.87$	<0.0001***	spore load	$F_{1,67} = 35.57$	< 0.0001	spore load	$F_{1,67} = 34.34$	< 0.0001
CO ₂ treatment	$F_{1,57} = 4.53$	0.0377*	PCA1	$F_{1,53} = 2.62$	0.111	PCA2	$F_{1,78} = 0.77$	0.772
spore load * CO ₂ treatment	$F_{1,64} = 6.79$	0.0114*	spore load *PCA1	$F_{1,67} = 0.01$	0.945	spore load *PCA2	$F_{1,77} = 0.03$	0.855
Residual Variance	0.20291		Residual Variance	0.20855		Residual Variance	0.2086	
AIC	137.7		AIC	140.98		AIC	144.85	