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Abstract 

Human appropriation of net primary productivity (HANPP) has been proposed as a measure 
of human pressures on biodiversity; it represents the proportion of energy flow that was 
historically available to wildlife food webs but has been appropriated for human use, 
primarily through the harvesting of primary production. This study examined the spatial 
relationship between HANPP of managed terrestrial landscapes and two abiotic proxy 
metrics for biodiversity–landscape diversity and local connectedness. Our objectives were 1) 
to quantify patterns of HANPP in forestlands and croplands, comparing the extraction of 
NPP in a recent decade against the potential natural vegetation that largely existed on the US 
side of the Great Lakes prior to European settlement; and 2) to assess spatial patterns of 
HANPP in comparison to landscape diversity and local connectedness at the county scale 
across the region. Our analysis considered above and below-ground compartments of NPP 
and focused on the percent of potential NPP being appropriated (%HANPP0). The mean area-
weighted %HANPP0 across our study region was 45%, with the lowest %HANPP0 occurring 
in counties with >50% forest cover. We observed a significant (p<0.001) but weak, negative 
relationship between %HANPP0 and county means of landscape diversity (r=-0.53, r2=0.28) 
and a significant (p<0.001), moderate, negative relationship between %HANPP0 and local 
connectedness (r =-0.61, r2=0.36). Our findings are comparable to global estimate of HANPP 
on croplands and forestlands, and support previous research indicating HANPP negatively 
impacts biodiversity. We concluded the calculation of HANPP could be used as an additional 
tool for conservation professionals during regional-scale landuse planning or conservation 
decision-making, particularly in mixed-use landscapes that exhibit potential to support 
biodiversity based on abiotic proxy measures and have high amounts of primary production 
harvest.  
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Chapter 1 

Introduction 

Humans have become the dominant influence on Earth’s systems, modifying land 

cover and habitat, altering the global climate, and driving global biodiversity loss (DeFries et 

al. 2004; Pimm & Raven, 2000; Vitousek et al. 1997). To accommodate the resource needs 

of the growing human population while also accommodating the resource needs of other 

species, conservation decision-makers need a deeper understanding of the effects of human 

activities on ecological conditions for other species.  Many studies address the effects of land 

use on habitat quality, but fewer address the question of how human activities impact 

ecosystem energy dynamics.  

Human appropriation of net primary productivity (HANPP) is a measure of human 

pressures on biodiversity (Haberl et al. 2014, 2012, 2009, 2004) because it represents the 

proportion of energy flow that was historically available to wildlife food webs but has been 

appropriated for human use, primarily through the harvesting of primary production. Close to 

29% of global aboveground potential NPP (NPP0, here defined as the NPP of the potential 

natural vegetation of a landscape) was human appropriated at the turn of the twentieth 

century (Haberl et al., 2007). As human populations and needs continue to grow, there is 

considerable potential for human alteration of ecosystem energy dynamics to impact species. 

This is particularly true in cropland-dominated landscapes, which are responsible for ca. 50% 

of global HANPP and appropriate up to 85% of NPP0 (Haberl et al. 2014). Calculating 

spatial patterns of HANPP across differing socioecological landscape, such as those that 

support various cropping and forestry systems, could improve our understanding of 

interactions in human-environment systems at the landscape scale.  
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In the present study, we strive to understand the relationship of HANPP to selected 

conservation metrics and landuses and to analyze patterns of HANPP across a region of 

conservation interest:  a portion of the Great Lakes region of the Upper Midwest, USA (see 

below).  Identifying “high conservation value regions” is of key interest to conservation 

professionals. A recent study by Anderson et al. (2018) in collaboration with The Nature 

Conservancy (TNC) identified the spatial distribution of climate resilient sites in the Great 

Lakes and Tallgrass Prairie regions at a 30m scale resolution. The study defined site 

resilience as “the capacity of a site to maintain biological diversity, productivity and 

ecological function as the climate changes” (Anderson et al. 2018). Sites that score higher on 

the site resilience index are more likely to retain biodiversity going forward. Site resilience is 

a relatively new and important parameter to consider in assessing conservation value. The 

site resilience index used by Anderson et al. (2018) integrated two variables:  landscape 

diversity and local connectedness (each described below). Each of these variables was used 

by Anderson et al. (2018) as abiotic proxies for biodiversity; we obtained their spatial results 

and used these data in our analysis (hereafter we refer to these two proxies as “biodiversity 

metrics”). 

Ecosystem Energy and HANPP in Relation to Biodiversity 

NPP and HANPP are typically quantified in terms of biomass dry weight, but 

conceptually they represent flows of energy (Currie 2012, Haberl et al. 2014). The flow of 

energy in ecosystem food webs has been identified as a causal factor controlling species 

richness (the “species-energy hypothesis”; Hawkins, Porter, & Diniz-Filho, 2003; Mittelbach 

et al. 2001; Wright, 1983). Spatial variability in the total amount of energy that remains 

available to ecological food webs after human extraction of NPP may help to explain spatial 
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patterns of biodiversity.  Previous studies have found an overall negative relationship 

between HANPP and biodiversity (Haberl et al. 2012, 2009, 2004; Vačkář et al. 2016).  

Abiotic Metrics as Proxies for Biodiversity 

Biodiversity metrics are useful because spatial patterns of biodiversity and species 

richness are often unavailable at regional or larger scales. Few studies have directly 

examined the relationship between HANPP and species richness for this reason (Haberl et al. 

2014). Our study sought to develop and assess HANPP as an additional biodiversity metric 

for conservation professionals by comparing the spatial distribution of established 

biodiversity metrics to the spatial distribution of HANPP across our study region (see below).  

Anderson and Ferree (2010) provided evidence that regional biodiversity correlates 

strongly with geophysical settings, including the number of geological classes, latitude, 

elevation range, dominant vegetation, and the amount of calcareous bedrock. Multiple studies 

have noted that different forest types and vegetation occur on different soil and topographic 

types (Abrams, 1992; Host et al. 1987). Landscape diversity was defined in the study by 

Anderson et al (2018) as an estimate of “the number of microclimates available within a 

given area. It is measured by counting the variety of landforms, and the density and 

connectivity of wetlands.” A number of studies have used landscape diversity or related 

measures as an indicator of regional capacity to support biodiversity (Anderson et al. 2016, 

2018; Anderson & Ferree, 2010; Lapin and Barnes, 1995; Lawler et al. 2015; Stein, Gerstner, 

& Kreft, 2014).  

Landscape permeability, a variable that draws on fragmentation and connectivity, is 

likewise associated with biodiversity.  It has been used as an indicator of how well habitats 

can sustain species over the long term (Anderson et al. 2016, 2018). The more permeable a 
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landscape, the more species can move through it and adapt to changed circumstances and 

maintain gene flows among sub-populations (Fahrig, 2003; Lindenmayer & Fischer, 2006). 

Unlike landscape diversity, which may be largely independent of human activity when 

defined based on physiographic variables, permeability is a landscape variable driven by 

socioecological processes and human land-use (Lawler et al. 2015). Roads, deforestation, 

urban and suburban build-up–all can create barriers to the movement of species and essential 

ecological flows.  The degree to which these landscape features retard the movements and 

migrations of wildlife is captured in the concept of local connectedness, defined by Anderson 

et al (2018) as, “the number of barriers and the degree of fragmentation within the same 

area.” Different landcovers were assigned different resistance scores, with “Developed, High 

Intensity,” having the highest score (20) and natural lands (e.g. forests, wetlands, and natural 

grasslands) having the lowest (1). Cropland was assigned a score (7) just below that of 

“Developed, Low Intensity” (Table 3.3 in Anderson et al., 2018).  

Study Objectives 

Here we examine the spatial relationship between established biodiversity metrics and 

the HANPP of the dominant terrestrial landuse across a range of intensities, i.e. forestlands 

and croplands, across our study region. Our purpose is to improve the understanding of these 

landscape to regional-scale metrics for use in decision-making for biodiversity conservation. 

Our first objective was to quantify patterns of HANPP in forestland and cropland, comparing 

the extraction of NPP in a recent decade against the potential natural vegetation that largely 

existed in the region prior to European settlement. Our second objective was to assess spatial 

patterns of HANPP in comparison to landscape diversity and local connectedness (as 

provided by Anderson et al. 2018) at the county scale across the region. Together these two 
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objectives both expand the body of research on distributions of HANPP across different 

regional landscapes and begin to develop HANPP as a working metric that moves beyond 

academic discussions.   

Methods 

Study Region–The U.S. Great Lakes Socioecological Gradient 

Our study focuses on part of the Great Lakes region of the Upper Midwest, USA. The 

Great Lakes contain nearly 21 percent of global and 84 percent of the US surface fresh water 

(US EPA, 2015). The US portion of the Great Lakes basin contains approximately 10 percent 

of the US population and is responsible for seven percent of US crop production (US EPA, 

2015).  The area that we consider (Fig. 1) includes a majority of the US side of the 

hydrologic basin of the Great Lakes, including all of Michigan and portions of Wisconsin, 

Ohio, and Indiana. Two ecoregional provinces dominate this area: the Laurentian Mixed 

Forest province in the north and the Eastern Broadleaf Forest (Continental) province in the 

south, with a few counties falling within the Prairie Parkland (Temperate) province and the 

Eastern Broadleaf Forest (Oceanic) province (Bailey, 1994).  

This region’s heterogeneous landuses and landcover (LU/LC) make it an ideal 

location to study socioecological system dynamics at the landscape scale. Crop production is 

one of the most important economic drivers in the Great Lakes today, bringing in more than 

$15 billion annually in cash receipts to the lake-border states of Michigan, Wisconsin, and 

Minnesota (Sousounis & Bisanz, 2000). In our study region the southernmost areas make up 

the northern edge of the US cornbelt and field crops like corn and soybeans dominate, while 

in the mid-latitude and northern parts crops trend more toward vegetables, fruits (Sousounis 

& Bisanz, 2000), and hay (Han et al. 2012).  



 

 

6 

 The northern sectors of the study region are heavily forested with mixed coniferous 

and hardwood forests, shifting to boreal ecotones in Michigan’s Upper Peninsula (Bogue, 

2000). In these areas there is farming, particularly hay (Han et al. 2012), but cropland is 

eclipsed by forestland. Across Michigan, the forest products industry is worth $20 billion, is 

responsible for 26,000 jobs, and removes approximately 20 percent of its raw materials from 

state forestlands (The Michigan Department of Natural Resources, 2018).  

Regional demographic and economic change (Brown, 2003; Robinson, 2012; 

Theobald, 2005) and  growing interest in biofuels in the region may drive future landuse 

decisions and increase landuse intensity on both forestlands and croplands (Gustafson & 

Figure 1: Landcover map of the study region showing forest, crop, and urban lands, along with the region's 

dominant ecoregional provinces–the Eastern Broadleaf Forest (Continental; EBFC) and the Laurentian 

Mixed Forest (LMF). Approximately 38% of the study region is cropland and 46% is forestland. Landcover 

data was retrieved from https://www.mrlc.gov/nlcd11_data.php and developed by Homer et al. (2015). 

Ecoregional data was retrieved from https://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-

states/ and developed by Bailey (1994).  

 

https://www.mrlc.gov/nlcd11_data.php
https://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/
https://www.fs.fed.us/rm/ecoregions/products/map-ecoregions-united-states/
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Loehle, 2008; Slater, Keegstra, & Donohue, 2010; Kells & Swinton, 2014). Additionally, 

climate change could drive shifts in landuse and forest make-up (Breffle et al. 2013; Handler 

et al. 2014). Together these trends could impact how much biomass is extracted from the 

region and where that extraction takes place, i.e. regional landuse patterns.  

Changes in the nature and location of forest and croplands, and the intensity of 

biomass extraction on them, could affect the region’s ability to provide supporting ecological 

services. The region has undergone a transition over the last 200 years from largely 

unmanaged forests and small amounts of cropland (i.e. during management by Native 

American tribal groups) to extremely high amounts of timber extraction in the north during 

the turn of the 19th century and growing domination of large-scale cropland in the south 

(Bogue, 2000; Handler et al. 2014). The modern landscape comprises heterogeneous LU/LC 

types and varied ownership patterns–managed, fragmented forests with altered species 

compositions coupled with high amounts of cropland throughout much of the mid and 

southern regions of the Great Lakes (Handler et al. 2014; Whitney, 1987). The choices 

inherent in this history, such as how much timber to harvest, where to plant crops, or what 

types of crops to plant, have shaped the present Great Lakes socioecological system (Steen-

Adams et al. 2015). Creating future system trajectories that support biodiversity requires 

conservation professionals to balance human needs with the needs of other species; in this 

pursuit, multiple landuse planning tools that complement each other and illuminate different 

aspects of human-environment interaction are a necessity.  

Definition of HANPP  

For this paper, we adopt a widely-used set of terms related to HANPP (Haberl, 1997; 

Haberl et al. 2001, 2007; Haberl, Erb, & Krausmann, 2014).  HANPP is defined as “the 
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combined effect of harvest and productivity changes induced by land use on the availability 

of NPP in ecosystems” (Haberl et al. 2007). In other words, this is a somewhat complicated 

metric to define operationally because it arises from two factors: changes in NPP from 

human landuse compared to the potential natural vegetation (HANPPluc), together with 

extraction of NPP by human harvest (NPPh) (eqn. 1).   

 𝐻𝐴𝑁𝑃𝑃 =  𝐻𝐴𝑁𝑃𝑃𝑙𝑢𝑐 + 𝑁𝑃𝑃ℎ      (1) 

 𝐻𝐴𝑁𝑃𝑃 = 𝑁𝑃𝑃0 − (𝑁𝑃𝑃𝑎𝑐𝑡 − 𝑁𝑃𝑃ℎ)     (2)  

 𝐻𝐴𝑁𝑃𝑃𝑙𝑢𝑐 = 𝑁𝑃𝑃0 − 𝑁𝑃𝑃𝑎𝑐𝑡      (3) 

Combining equations (1) and (2) shows that under this set of definitions, HANPPluc 

can be calculated from potential natural NPP (NPP0) and actual NPP (NPPact) for the unit of 

the landscape (eqn. 3). The definitions also address the fact that timber harvests do not 

remove the entirety of the forest with every harvest by calculating NPPh of forestlands as a 

ratio of total forest inventory (Haberl et al. 2001, 2004). We consider both the above and 

below-ground compartments of NPP and focuses on the percent of NPP0 being appropriated 

(%HANPP0). We do not include removals of NPP (NPPh) due to human-caused fires or 

livestock.  

Spatial Unit of Analysis 

We rescaled all spatial data to a 500m pixel resolution and reprojected the data into 

NAD83 Conus Albers. This projection minimizes spatial distortion within our study region 

(see Appendix C for more information on spatial data transformations). We use counties as 

our spatial unit of analysis (n=188 counties) because forest and crop harvest data from the 

US Forest Service Forest Inventory and Analysis (FIA; Burrill, 2018) and the US Department 

of Agriculture (USDA; “USDA/NASS QuickStats Ad-hoc Query Tool,” 2007, 2012) are 
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aggregated to the county scale. Attempting to use the data at a finer scale introduces high 

levels of uncertainty (S. Pugh, personal communication, 2017). Additionally, using a scale 

based on counties as socio-political boundaries will interface better with policy-based 

planning and studies of demographic change. To compliment the county analysis, we also 

stratified our data by ecoregions as defined by the US Forest Service (Bailey, 1994). This 

allowed us to separate out data between counties with different dominant LU/LC patterns 

within regions where the climate (perhaps most importantly growing season length) and soil 

type are relatively similar.   

Data Aggregation and Synthesis 

All spatial analyses were performed using ArcGIS version 10.5.1 (ArcGIS ArcMap, 

2017), and all data manipulations and statistical analyses were performed using R and Excel. 

NPP units were transformed into kg C m-2 y-1 for calculations and final results. In ArcGIS, 

the zonal statistics function was used to aggregate all values to a county level mean, at which 

point values were joined to county shapefiles (Fan, 2018).  

For NPP0 (eqn. 2), we used results from Haberl et al (2007) which were calculated at 

5 arc min resolution (about 10 km pixel resolution). The researchers derived NPP0 using the 

Lund-Potsdam-Jenna Dynamic Global Vegetation Model (LPJ DGVM; Gerten et al. 2004; 

Sitch et al. 2003) results for a 5-year average over 1998 to 2002 (Haberl et al. 2007). We 

reprojected and rescaled the data and used zonal statistics to produce a table with the mean 

NPP0 in g C m-2 y-1 of each county in our study region, which we then transformed into kg C 

m-2 y-1.  
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Data for NPPact (eqn. 2) was obtained from the MODIS Net Primary Productivity 

MOD17A3H V6 product (Running et al. 2015; Appendix C) using Google Earth Engine. We 

averaged the MODIS data from 2005 to 2015, to help account for stochastic uncertainty.  

We calculated NPPh (eqn. 2) of croplands based on production and yield data 

primarily obtained from the USDA Agricultural Census (“USDA/NASS QuickStats Ad-hoc 

Query Tool,” 2007, 2012). This data was input to the equations suggested by Hicke et al 

(2004; eqn. 4 & 5) to transform field crop production (eqn. 4) into field crop NPP values in 

kg C m-2 yr-1:    

 𝑃 = ∑ 𝑃𝐶𝑖×𝑀𝑅𝑌𝑖×(1−𝑀𝐶𝑖)×𝐶
𝐻𝐼𝑖×𝑓𝐴𝐺,𝑖

𝑖     (4) 

 𝑁𝑃𝑃 =  𝑃
∑ 𝐴𝑖𝑖

      (5) 

where i indicates different crop types, PC indicates the production of a crop in reported units 

(e.g. bushels), P is production in g C yr-1, and A is crop area. We obtained the other input 

values for the equation–harvest index (HI), fraction of above ground productivity (fAG), 

moisture content (MC), and percent carbon (C) per unit dry mass–from data compiled by 

Lobell et al (2002) and Prince et al (2001; Appendix A, Table A-1). For fruit and vegetable 

crops, we used the equations and parameters presented in Monfreda et al (2008; eqn. 6 & 7; 

Appendix A, Table A-2), where NPPi represents the NPP of each crop i, EY represents 

estimated yield, DF is the dry fraction (1-moisture content), and RS is the root:shoot ratio.  

 𝑁𝑃𝑃𝑖 =  𝐸𝑌𝑖×𝐷𝐹𝑖×𝐶
𝐻𝐼𝑖×𝑅𝑆𝑖

     (6)    

 𝑁𝑃𝑃 =  ∑ ( 𝑁𝑃𝑃𝑖
𝑓𝑐𝑟𝑜𝑝𝑖

)𝑛
𝑖=1      (7) 



 

 

11 

For the forest data, we downloaded data representing volume of live trees harvested 

from forestlands in ft3 acre-1 from the FIA EVALIDator program for the years 2005-2015 

(Burrill, 2018; Appendix B). The use of ratio data accounted for the fact that not all forest is 

harvested every year. We transformed all NPPh values for forests and crops into kg C m-2 and 

calculated an area-weighted aggregate value of combined forest and crop NPPh values by 

county. 

HANPP Calculations 

  For forestland and cropland separately within each county, we calculated NPPh at 

county-scale resolution across our study region (Eqns. 1-3). Investigators often express 

HANPP as a percentage of NPP0, the NPP of potential natural vegetation in a unit of the 

landscape (we write this percentage as %HANPP0). We calculated %HANPP0 for forests and 

croplands separately within each county as well as area-weighted %HANPP0, combining 

forests and croplands within each county (eqn. 8, Table 1): 

%𝐻𝐴𝑁𝑃𝑃0 = 100 ∗ (𝑁𝑃𝑃ℎ𝐹𝑜𝑟∗𝐴𝑟𝑒𝑎𝐹𝑜𝑟+𝑁𝑃𝑃ℎ𝐴𝑔∗𝐴𝑟𝑒𝑎𝐴𝑔)
𝑁𝑃𝑃0∗𝐴𝑟𝑒𝑎𝑇𝑜𝑡𝑎𝑙

   (8) 

𝑁𝑃𝑃ℎ𝐹𝑜𝑟 is the harvested NPP of forestlands per unit area, 𝐴𝑟𝑒𝑎𝐹𝑜𝑟 is the area of forestlands, 

𝑁𝑃𝑃ℎ𝐴𝑔 is the harvested NPP of croplands per unit area, 𝐴𝑟𝑒𝑎𝐴𝑔 is the area of croplands, and 

𝐴𝑟𝑒𝑎𝑇𝑜𝑡𝑎𝑙 is the total area of managed forest plus crop lands in each county.  

 

Table 1:  Summary statistics of area-weighted %HANPP0 and %HANPP0 separated into forest and croplands. 

  Range Mean  Median Mode SD 

%HANPP0 3.2–151 47 48 76 32 

%HANPP00 of 
forestlands 

0.049 – 17 4.7 4.2 12 3.0 

%HANPP0 of 
croplands 

21–195 80 76 80 23 
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We created spatial representations of the %HANPP0 distribution across our study region by 

importing the county-scale results into ArcGIS and joining them to county shapefiles. 

Data Analysis 

 To analyze the relationship between %HANPP0 and landscape diversity and local 

connectedness, we downloaded and used the spatial data produced by Anderson et al (2018). 

We analyzed linear regressions between our HANPP results and the county mean values of 

the two biodiversity metrics, both across the entire study region and stratified by ecoregion. 

We identified four outlier counties in each relationship:  Lake and Cuyahoga Counties in 

Ohio, Milwaukee County in Wisconsin, and Wayne County, Michigan.  All of these counties 

contain major urban centers and thus exhibited outlier behavior in the relationships between 

HANPP and biodiversity metrics. Our analysis focuses on forest and croplands, so we chose 

to remove these four counties from our analysis.  

Additionally, we identified counties that combined high potential biodiversity–those 

with high levels of mean local connectedness or mean landscape diversity–with low intensity 

of human use-intensity as measured by %HANPP0.  We did so by identifying the 25th, 50th, 

and 75th percentiles of both %HANPP0 and the two biodiversity metrics and defining groups 

based on these statistics. We performed pairwise comparisons of different combinations of 

%HANPP0 and either connectedness or landscape diversity that were >50th percentile or 

<50th percentile using Wilcoxon rank sum test to examine the significance of the differences 

among groups (Table 2).  
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Table 2: Results of the pairwise comparisons using Wilcoxon rank sum test examining the differences among 
groups of different combinations of %HANPP0 and either connectedness or landscape diversity. Each group is a 
combination of two variables either above or below the 50th percentile. C1/D1 contain counties with high 
potential for effective biodiversity conservation, as they are low-extraction, high-diversity (LEHD) and low-
extraction, high-connectedness (LEHC). The C2/D2 group has high biodiversity potential due to scores on the 
indices above the 50th percentile, but also has high %HANPP0 values. These are high-extraction, high-
connectedness/diversity (HEHC and HEHD) areas where there is a potential for biodiversity-supporting habitat 
but also extractive activities going on. These are counties where conservation might be costly, but valuable, 
depending on the cause of the high %HANPP0 values and the socioeconomic drivers impacting landowner 
decision-making in the region. The C3/D3 and C4/D4 counties are both lower in priority for conservation for 
existing local biodiversity, as they score an average below the 50th percentile of each of the biodiversity metrics. 
The C1/D1 groups have the lowest average population estimate and the lowest average road density, as well as 
the highest average %forest cover. This fits with the other findings of this analysis, which indicate that highly 
forested, low-use areas are have the highest biodiversity potential. 

Group 
Category 

%HANPP0 
percentile 

Indicator Indicator 
Percentile 

Mean 
2010 
Population 
Estimate 

Significant 
Difference 
(p≤.05) 

Mean Road 
Density 
Estimate 
(m/m^2) 

Significant 
Difference 
(p≤.05) 

Mean 
%Forest 
Cover 

Significant 
Difference 
(p≤.05) 

C1 ≤50th connectedness ≥50th 41411.25 C2, C3, 
C4 0.001761446 C2, C3, 

C4 67.63474 C2, C3, C4 

C2 ≥50th connectedness ≥50th 57270.48 C1, C3 0.002157511 C1, C3 25.11274 C1, C3, C4 

C3 ≤50th connectedness ≤50th 253036.4 C1, C2 0.002906438 C1, C2 40.4669 C1, C4 

C4 ≥50th connectedness ≤50th 97638.01 C1 0.002617986 C1 14.1498 C1, C3 

D1 ≤50th landscape 
diversity  ≥50th 41280.03 D2, D3, 

D4 0.001698855 D2, D3, 
D4 67.77231 D2, D3, D4 

D2 ≥50th landscape 
diversity  ≥50th 54110.58 D1 0.00216339 D3, D4 23.52386 D3, D4 

D3 ≤50th landscape 
diversity  ≤50th 212672.4 D1 0.002833123 D1, D2 45.34228 D4 

D4 ≥50th landscape 
diversity  ≤50th 102211.2 D1 0.002651708 D2 13.9452 D1, D2, D3 

 

Results 

Spatial distribution of %HANPP0  

 In our results, forestlands accounted for an average of 4.7 percent of appropriated 

NPP0, while croplands accounted for an average of 80 percent of NPP0; the overall mean 

area-weighted %HANPP0 across our region was 45 percent. The highest %HANPP0 values 

were in the southern counties of our study region in Ohio–the north end of the U.S. corn 

belt–as well as the fertile regions of southeastern Wisconsin and counties adjacent to 

Saginaw Bay in Michigan (Fig. 2).  These are all counties with extensive and highly 

productive croplands.  An east-west corridor in southern Michigan had lower %HANPP0, as 

did the northern portion of the Michigan Lower Peninsula and the entirety of the Michigan 
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Upper Peninsula (Fig. 2) The east-west corridor in southern Michigan corresponds to a band 

of urban areas and their associated exurban fringes, while the northern, low %HANPP0 areas 

corresponded to regions of dense forest cover (Fig. 1). The lowest associated %HANPP0 

occurs in counties with >50% forest cover and >0 mean connectedness (Chapter 2, Fig. 6). 

Relationship Between %HANPP0 and Biodiversity Metrics  

A strong overall pattern in our results was that both landscape diversity and local 

connectedness exhibited lower values in counties that are experiencing high NPP extraction 

as measured by %HANPP0 (Fig. 2; Table 3). This pattern is stronger between local 

Figure 2: Map showing the spatial distribution of %HANPP0 in relation to counties with low-extraction, high-

connectedness/diversity (LEHC and LEHD). The two dominant ecoregional provinces are shown, with the LMF 

province covering the northern portions of Michigan and Wisconsin and the EBFC covering the southern portions 

of these states and northern Ohio and Indiana. Most of the LEHC/LEHD counties are in the LMF province and 

coincide with area-weighted %HANPP0 between 3.2 and 44%. The exception is a band in southern Michigan, 

which coincides with a band of mixed LU/LC, including multiple cities (Detroit, Ann Arbor, Lansing, Grand 

Rapids, Kalamazoo, Flint, and Jackson, MI; and Ekhart, OH) and their associated suburban and exurban fringes 

(Fig. 1). These counties have an area-weighted %HANPP0≤ 44% but are in the EBFC province.  
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connectedness and %HANPP0 (r = -0.61 , r2 =  0.36,  p<0.001), than between %HANPP0 and 

landscape diversity, particularly in the LMF ecoregional province where 51% of the variation 

in mean connectedness is explained by %HANPP0 (r2 = 0.51; Table 3). Forestland is more 

abundant than cropland in the LMF counties, and lower road densities and population 

(Appendix D) present fewer opportunities for both forest fragmentation and large-scale 

resource extraction.  

The relationship between %HANPP0 and landscape diversity is weak (r2=0.28) but 

highly significant (p<0.001). R2 is not improved by stratification by ecoregion, but the LMF 

ecoregional province again show higher r2 than the EBFC ecoregional province.  

 
Table 3: Linear regression results examining the relationship between %HANPP0 and the biodiversity metrics. 
Regressions were done for the whole study region and for the two main ecoregions, Laurentian Mixed Forest 
(LMF) and Eastern Broadleaf Forest (Continental) (EBFC). All relationships were stronger in the LMF 
province than in the EBFC province. 

REGRESSION  P-VALUE R R^2 
%HANPP0 vs. MEAN 
LOCAL CONNECTEDNESS 

Region overall < 2.2e-16 -0.61 0.36 

 
LMF 3.86E-13 -0.72 0.51 

 
EBFC 0.007692 -0.26 0.06 

%HANPP0  vs. MEAN 
LANDSCAPE DIVERSITY  

Region overall 6.20E-15 -0.53 0.28 

 
LMF 1.61E-06 -0.52 0.26 

 
EBFC 7.81E-02 -0.18 0.02 

 

Identifying Counties with Greatest Potential for Biodiversity Conservation 

We identified counties that fell within the bottom 50th percentile of %HANPP0 and in 

the top 50th percentiles of landscape diversity or connectedness (Table 2, Figs. 3 and 4). We 

refer to these groups as low-extraction, high-diversity (LEHD) and low-extraction, high-

connectedness (LEHC) respectively. Most of the LEHD/C counties are located in the 

northern portion of Michigan’s Lower Peninsula, Michigan’s Upper Peninsula, and northern 
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Wisconsin. They have >50% forested landcover and ≤10% crop landcover (Appendix D, 

Tables D-1 and D-2). Hay for forage or pasture is the crop that is planted over the most area 

across these counties.  

 Those falling in the opposite arrangement–high-extraction, low-connectedness 

(HELC) and high-extraction, low-diversity (HELD)–were categorized as high risk and likely 

Figure 3: The relationship between mean local connectedness and weighted %HANPP0", with 25th, 50th, 

and 75th percentile lines shown on the top graph for the whole study region and the counties stratified by 

ecoregion in the bottom two graphs. Each point represents a singel county in our study regin and the grey 

area around the line of best fit it the 95% confidence interval. We found that for the whole study region, the 

relationship between mean connectedness and %HANPP0 is moderate (r
2

=0.36) and significant (p<0.001). 

The relationship is much stronger in the LMF province, with 51% of the variation in mean connectedness 

explained by %HANPP0. In contrast, r
2

 is only .06 in the EBFC province. Counties within the bottom 50
th

 

percentile of %HANPP0 and in the top 50
th

 percentiles of connectedness are low-extraction, high-

connectedness (LEHC) counties. These counties are largely forested (≥50%) and in the LMF province. 
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high cost for biodiversity conservation due to the combined lack of biodiversity-supporting 

habitat and high intensity of resource extraction.  

 

 

Figure 4: The relationship between mean landscape diversity and %HANPP0, with the 25
th

, 50
th

, and 75
th

 

percentiles shown for the whole study region in the top graph and the counties stratified by ecoregion in the 

bottom two graphs. Each point represents a single county in our study region and the grey border around 

the line of best fit represents the 95% confidence interval. For the whole region (top graph), the relationship 

between %HANPP0 and landscape diversity is weak (r
2

=0.28) but significant (p=6.0E-15). R
2

 is not improved 

by stratification by ecoregion (bottom graphs), but the LMF province shows a higher r
2 

than the EBFC 

province. Counties within the bottom 50
th

 percentile of %HANPP0 and in the top 50
th

 percentiles of 

connectedness/diversity are low-extraction, high-diversity (LEHD) counties. These counties are largely 

forested (≥50%) and in the LMF province. 
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Counties falling in the top 50th percentile of %HANPP0 and in the top 50th percentile 

of mean local connectedness or mean landscape diversity (HEHC and HEHD respectively) 

were classified as high risk and high priority for biodiversity conservation. They have high 

potential to support biodiversity but are also being intensely used in terms of harvest of 

primary production.  

Discussion 

Quantification of HANPP on Managed Lands in the US Great Lakes Region  

Most HANPP studies have been performed at a global or national scale (Haberl et al. 

2007, 2014, 2009, 2004; Krausmann et al. 2013; Plutzar et al. 2016), with fewer examining 

the regional or local scales (Andersen et al. , 2015; Marull et al. 2016; O’Neill et al. 2007). 

Yet the landscape and regional scales are important in much conservation decision-making. 

Our analysis quantified HANPP in a region where it has not previously been examined, 

adding a new dataset to the body of regional and local HANPP research.  

We found that %HANPP0 distribution across our study region aligned well with the 

global means of  %HANPP0 in forest and crop systems, which are approximately 7% and up 

to 85%, respectively (Haberl et al. 2014). In our region, the mean %HANPP0 of cropland was 

about 80% and the mean %HANPP0 of forest lands was about 5%. The mean %HANPP0 of 

forestlands in the Great Lakes region differs more from other regions than it does from the 

global mean. In Austria (Haberl et al 2001) and Nova Scotia (O’Neill et al. 2004)–two case 

studies in similarly temperate climates–aboveground %HANPP0 on forestland was found to 

be about 25% –five times the average in our study region. This difference could be due to 

decreased activity in the  forest products industry in our region over the last several decades 

(Janowiak et al. 2014; Shivan & Potter-Witter, 2011) combined with more cropland–
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approximately 38% of total landcover in our study region as opposed to <10% in Nova 

Scotia. Although our analysis resulted in mean %HANPP0 of cropland on par with global 

means, the county-level data showed a pattern of high variation, ranging from 3.2% to 154% 

(Table 1). This large range of use-intensity indicates that not all crop-dominated landscape 

matrices extract high amounts of ecosystem energy. For instance, hay grown for pasture or 

feed dominates (in terms of area covered) in counties with %HANPP0 ≤ 30%, but it is also 

one of three crops, including grain corn and soybeans, that dominate counties with 

%HANPP0 ≥100% (data not shown). Thus, the degree of NPP extracted from the landscape 

may depend on what types of crops are planted, in what combinations, and when and how 

they are grown and harvested (e.g. type of fertilizer or irrigation used, season of planting, 

variety of crop planted.  

Increasing the percent of forestland in the landscape matrix is a possible strategy for 

increasing landscape-scale ecosystem energy retention. We found consistently low 

%HANPP0 on forestlands (≤ 17%), and in counties with ≥ 30% forestland the area-weighted 

%HANPP0 was uniformly low (<45%). This included counties outside of the forestland-

dominated LMF province, most notably the east-west band of mixed LU/LC counties that are 

both LEHC/LEHD counties and include urban areas such as Detroit, Flint, Ann Arbor, 

Lansing, Kalamazoo, and Grand Rapids. Previous research has shown a correlation between 

exurban expansion and an increase in tree cover and gross primary productivity; exurban 

landscapes also display carbon storage levels higher than those in croplands (An et al. 2011; 

Brown et al. 2008; Currie et al. 2016). Together with our findings this research suggests 

retention of forestland or afforestation can increase the potential for a mixed LU/LC 

landscape and matrix to support biodiversity at a county scale.  



 

 

20 

Despite the notable amount of NPP left in managed forestlands around the Great 

Lakes compared with that of croplands, high county %HANPP0 values lead croplands to 

more strongly influence regional mean %HANPP0. Thus, increasing forestland within a 

mixed LU/LC matrix may not decrease regional %HANPP0, although it may increase 

landscape patterns that benefit biodiversity. Regional mean %HANPP0 may not be impacted 

unless croplands undergo conversion to other LU/LC types (such as large-scale crop-to-forest 

conversions), or crop matrices and planting/harvest techniques are purposefully chosen to 

increase the amount of NPP left in the ecosystem. In mixed LU/LC areas of biodiversity 

concern, intensive row crops (e.g. corn, soybeans, sorghum) may be replaced or intermixed 

with lower-intensity perennial crops, such as hay and alfalfa systems with low harvest rates 

(Asbjornsen et al. 2014). Graham et al. (2017), in a spatial modeling analysis of an 

agricultural landscape in Illinois, found that replacement of annual row crops  with perennial 

crops was likely to benefit the biodiversity of pollinators.  

Relationship between HANPP and biodiversity metrics 

The fact that %HANPP0 exhibited a stronger relationship with connectedness than 

with landscape diversity indicates that differing physiographic conditions do not affect 

biomass removal rates as much as biomass removal rates affect the spatial patterns of habitat 

connectivity and fragmentation and thus the permeability of the landscape for wildlife 

movement. This may be due to the relatively low degree of diversity of geophysical 

conditions in our study region (e.g., as compared to mountainous landscapes). The relatively 

low landscape diversity limits the extent to which the variable can influence how much 

biomass humans extract from the ecosystem. The relationship between %HANPP0 and 

landscape diversity was much stronger in the Laurentian Mixed Forest (LMF) ecoregional 
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province (r2 = 0.26), a region that is heavily forested and has more elevation change, 

remaining wetlands, and diverse geology than the Eastern Broadleaf Forest (Continental; 

EBFC) ecoregional province (r2 = 0.02; Table 2). The difference between ecoregional 

provinces implies that the diversity of geophysical settings may act as more of a driver of 

%HANPP0 in regions with greater variation in landscape diversity, a supposition supported 

by previous research that has found topographical elements like slope, altitude, and 

roughness (the flatness/hilliness of a landscape) to be the most predictive of %HANPP0 

(Wrbka et al. 2004). However, the overall weak relationship indicates landscape diversity 

and %HANPP0 do not communicate the same information about socioecological interactions 

across a landscape. Although the relationship between %HANPP0 and mean local 

connectedness is stronger, only 36% of the variance in mean local connectedness among all 

counties could be explained by %HANPP0. Again, the relationship was stronger in the LMF 

province (r2 = 0.51) and almost non-existent in the EBFC province (r2 = 0.06).  

Wrbka et al (2004) similarly found that landform patterns–aspect, roughness, and 

elevation, variables related to topography–have a moderate to weak relationship with spatial 

patterns of HANPP, and that the relationship varies notably among geo-ecological units. The 

research group hypothesized the weak relationship was because their study area consisted of 

“cultural landscapes,” in which the disturbance regime and major energy and material fluxes 

are controlled by humans. How this control plays out, e.g. what management strategies are 

used on the land, is constrained not just by the geophysical makeup of the landscape but by 

interacting social and economic forces. These may be more or less important than ecological 

constraints in determining management practices at different times and in different spaces.   
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Our analysis consistently showed a much stronger relationship between %HANPP0 

and the biodiversity metrics in the LMF ecoregional province than in the EBFC, which 

contained more counties dominated by cropland and urban/exurban land, the most intensively 

used LU/LC types worldwide (Haberl et al. 2014). The LMF province, on the other hand, 

contains counties with high percent forest cover that is managed more irregularly (i.e. forest 

harvests occur only once every few decades or longer, large tracts of forest have protected 

status that limits resource extraction, and many private forest landowners choose not to 

harvest their forests at all; Janowiak et al. 2014; Shivan & Potter-Witter, 2011). One 

explanation is that the socioeconomic forces Wrbka et al (2004) predicted as a third 

explanatory variable may be more relevant in regions dominated by more intensive extraction 

of NPP, in which socioeconomic profits and losses are higher and with more immediate 

effects.  

HANPP as a tool for conservation decision-making 

Conservation professionals have a wealth of tools and variables at their disposal to 

aid them in evaluating where to focus conservation efforts. To date, HANPP has largely been 

studied as an academic metric with few examples of application to conservation planning. 

Our analysis indicates that there is significant variability in the spatial distribution of 

%HANPP0 that is not fully explained by the distribution of mean landscape diversity and that 

there is a similar (although lesser) variability in mean local connectedness that is not 

explained by %HANPP0. This supports the idea that %HANPP0 may contain additional 

information about landscape-scale socioecological interactions for conservation professionals 

when used in conjunction with other metrics of human impacts on biodiversity. 
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One way %HANPP0 operates as a biodiversity metric is as an ecosystem stress 

indicator. Extensive research has been done in the Great Lakes region on developing 

ecosystem stress indicators; percent crop LU/LC has been identified as a major terrestrial 

stressor on aquatic ecosystems (Johnson et al. 2015). Given that high values of crop LU/LC 

result in high %HANPP0 and evidence that tree biomass removal (e.g. clear cut harvesting) 

can negatively impact downstream water quality (Ensign & Mallin, 2001; Wang, Burns, 

Yanai, Briggs, & Germain, 2006), significant biomass removal from terrestrial landscapes 

may be a stressor on downstream aquatic ecosystems. In terrestrial ecosystems, one question 

for conservation professionals is how much energy extraction can occur on a landscape 

before it crosses a threshold of rapidly declining ecosystem services. Haberl et al (2004) 

found that there were negative impacts for species richness at %HANPP0 ≥ 50%, which in 

turn impacts biodiversity conservation.  We have found that the mean area-weighted 

%HANPP0 across forest and croplands in our study region was about 46%, suggesting the 

region may be close to a threshold past which some species that depend on landscape-scale 

support will decline.  

We identified counties above the 50th percentile of %HANPP0 as HEHC/D counties 

or HELC/D counties. HEHC/D counties are potentially at-risk–they have a high potential for 

supporting present biodiversity due to their landscape patterns, but are also being heavily 

used for resource extraction. These are counties where conservation might be costly, but 

valuable, depending on the cause of the high %HANPP0 values and the socioeconomic 

drivers impacting landowner decision-making in the region. Both these counties and 

HELC/D counties are those that may need ecological restoration either to improve local 
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biodiversity support or create corridors connecting habitats of higher conservation value 

(Jones et al. 2015).  

Habitats of higher conservation value are more likely to be found in the counties in 

our study region that have an average %HANPP0 below this 50% threshold. These LEHC/D 

counties are largely focused in the northern, heavily forested counties (Figs.1 and 2) and may 

be less costly to conserve as they already have landscapes that can support biodiversity and 

are not the site of intense resource extraction. In addition to having the highest mean percent 

forest cover, this county group has significantly lower mean road density (m m-2) and mean 

population (Table 2; Appendix D, Tables D-1 and D-2) than the other county groups.  In a 

conservation triage situation (Gerber, 2016) where limited aid must be allocated to regions 

where the aid will do the most good, the habitats in these counties are ones conservation 

professionals may want to focus on to protect and connect.  

The difference between regional mean %HANPP0 values and county-level mean 

%HANPP0 values invites the question of how landscape-scale extraction patterns translate 

into local biodiversity impacts. There is evidence that different species may be differentially 

impacted by land sparing–conserving large tracts of unused land and allowing for smaller 

areas of more intense extractive management–or land sharing–ensuring human-dominated 

lands are managed for extraction in an ecologically-friendly way (Gonthier et al. 2014; 

Kremen, 2015). Because of different responses to land management from different species, 

both strategies can prove useful in different contexts and complimentary in landscape-level 

conservation planning (Kremen, 2015). What configuration of crop and forest matrices and 

what threshold extraction level are best for meeting biodiversity objectives may thus depend 

on the particular species and ecosystem services of greatest conservation concern.  
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Conclusion 

 As a snapshot of the mean LU/LC and the accompanying landscape patterns of the 

US Great Lakes basin in the first 15 years of the 21st century, this analysis provides an initial 

quantification of the spatial patterns of HANPP in our study region and shows how HANPP 

can complement established biodiversity metrics. We observed a moderate, negative 

relationship between %HANPP0 and mean landscape diversity and local connectedness and a 

strong pattern of high %HANPP0 in cropland-dominated counties and low %HANPP0 in 

forestland-dominated counties. These relationships support previous research suggesting that 

HANPP is negatively correlated with landscape characteristics that likely control species 

richness and support previous research putting forth HANPP as a metric of human impact on 

biodiversity (Haberl et al. 2012; Haberl et al., 2004). Our findings suggest HANPP has the 

potential to be useful to conservation professionals during regional-scale landuse planning or 

conservation decision-making, particularly in landscapes with a combination of high site 

potential for biodiversity and high resource extraction activity. Further developing HANPP 

as a metric may illuminate which LU/LC development should be advocated for or against in 

the pursuit of biodiversity conservation in managed, mixed use landscapes.  

Future research could continue to improve HANPP as a metric for understanding how 

resource extraction impacts conservation goals. To maintain current levels of site resiliency, 

further understanding is needed of socioecological processes and landowner decision-

making, and how they interact with ecosystems to create specific matrices of LU/LC and use-

intensity. Additionally, the forests of the Great Lakes region are managed by a combination 

of private and public interests; taking a closer look at how different crop and forest 
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management styles impact biomass extraction levels at local scales is an important next step 

in regional HANPP analysis to support biodiversity conservation.  
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Chapter 2: Additional Results and Analysis  

The Relationship Between %HANPP0 and Landuse/Landcover 

Crop Analysis 

To supplement our understanding of how %HANPP0 differed between forest and 

croplands, we conducted a brief exploratory assessment of how %HANPP0 related to the 

types of crops being grown in a county. Out of 21 crops, we identified five as covering the 

most land in all counties (n=188): cherries, corn grown for grain, hay, soybeans, and wheat. 

Of these, cherries were the most extensive crop in only one county (Leelanau Co., 

Michigan); likewise, wheat was most extensive in only one county (Huron Co., Michigan). In 

all other counties, hay, soybeans, or grain corn were the most extensive crops (Fig. 4). 

Soybeans and grain corn are both cash crops, typically grown in large monocultures and with 

high technological inputs like fertilizer and pesticides. Hay is typically grown for pasture or 

for animal feed.  

 Most of the hay, and cherries in the single county that grows cherries over a large 

area, are grown in the Laurentian Mixed Forest (LMF) ecoregional province. All but one 

county growing large areas of grain corn are located in the Eastern Broadleaf Forest 

(Continental; EBFC) province, with the single county outside that province located in the 

Prairie Parkland (Temperate; PPT) province. One county growing predominantly hay is in 

the Eastern Broadleaf Forest (Oceanic; EBFO) province, and both soybeans and wheat are 

grown solely in the EBFC province.  

 The ten crops with the highest NPPh value throughout all counties were: apples, grain 

corn, corn for silage, sweet corn, hay, alfalfa, oats, potatoes, sorghum, and sugar beets. Hay, 

alfalfa, apples, silage corn, and oats all had n≤5; the majority of counties grew grain corn, 
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potatoes, sorghum, or sugar beets (n=10) as their most energy intensive crop. Apples, hay, 

sweet corn, and oats are the most energy intensive crops only in counties in the LMF 

province.  The other crops are split between the LMF and EBFC provinces, with one             

county in the PPT and one county in the EBFO growing grain corn as their most intensive 

crop (Fig. 5). For all crops where n>1, there is high variation in the %HANPP0 associated 

with county in which the crop is growing and multiple outlier counties (Fig. 5). Stratification 

by ecoregion shows that counties in the LMF province grow crops side-by-side with high 

forest cover; counties in the EBFC province tend to have low percent forest cover.  

The Kruskal-Wallis test showed there is a significant difference among crop types, 

both in terms of crops that cover the most area per county (p-value = 5.79e-16) and those that 

have the highest NPPh per county (p-value = 7.53e-09). The post-hoc test we used, the 

pairwise comparisons using Wilcoxon rank sum test, indicates that in terms of area there is a 

significant difference in %HANPP0 between counties growing grain corn and counties 

growing hay (p-value = 3.60E-11), and between counties growing hay and counties growing 

soybeans (p-value = 1.50E-11). In terms of NPPh values, there is a significant difference (p-

value ≤ 0.05) between 10 pairs (Tables 4 & 5).  

Table 4: Results of the pairwise comparisons using Wilcoxon rank sum test, examining the which counties 
exhibit significant differences in terms of %HANPP0 based on the crop grown over the most land area (m2) in 
each of the counties. 

 
CHERRIES CORN, 

GRAIN 
HAY SOYBEANS 

CORN, 
GRAIN 

0.095 - - - 

HAY 0.98 3.6E-11 - - 

SOYBEANS 0.095 0.094 1.5E-11 - 

WHEAT 1.0 0.29 0.23 0.48 
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Table 5: Results of the pairwise comparisons using Wilcoxon rank sum test, examining the which counties 
exhibit significant differences in terms of %HANPP0 based on the crop with the highest NPPh value (kg C m-2 
yr-1) in each of the counties 

 
APPLES CORN, 

GRAIN 
CORN, 
SILAGE 

CORN, 
SWEET 

HAY HAY, 
ALFALFA 

OATS POTATOES SORGHUM 

CORN, GRAIN 0.067 - - - - - - - - 

CORN, SILAGE 0.23 0.38 - - - - - - - 

CORN, SWEET 0.14 0.025 0.85 - - - - - - 

HAY 1.o 0.68 0.92 1.0 - - - - - 

HAY, 
ALFALFA 

0.52 0.51 0.46 0.38 0.52 - - - - 

OATS 0.38 0.067 0.41 0.41 1.0 0.41 - - - 

POTATOES 0.067 0.015 0.76 0.41 0.82 0.38 0.14 - - 

SORGHUM 0.015 0.021 0.035 0.00029 0.41 0.68 0.0095 1.2E-07 - 

SUGARBEETS 0.091 0.64 0.14 0.021 0.64 0.92 0.057 0.0349 0.38 

 

More in-depth research into the differences in HANPP among crops and crop tending 

and harvest methods should be explored to provide more precise knowledge on which 

cropland matrices are more supportive of biodiversity conservation than others in regions 

where landsharing is necessary. The impact of livestock grazing, which was not analyzed in 

this project, should also be included in a more in-depth crop energy use analysis. Hay and 

pasture were the crop uses taking up the most land area in counties with high resiliency 

potential and low %HANPP0. Thus, understanding how livestock contribute to ecosystem 

energy dynamics in a mixed forest and crop landscape is an essential next step for 

understanding the socio-ecological landscape makeup that best promotes biodiversity.  

Broad Analysis of the Relation Between %HANPP0 and Forestlands 

To analyze the relationship between HANPP and LU/LC, we performed a set of two 

regressions examining the relationship between the percent forest cover of a county and its 

%HANPP0, one as a single regional data set and one stratified by ecoregion (Fig. 6, Table 6). 

We identified four outlier counties in each relationship. These counties–Lake Co. and 

Cuyahoga  
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Co., Ohio; Milwaukee Co., Wisconsin; and Wayne Co., Michigan–were contain major urban 

centers and thus exhibited significantly different LU/LC patterns than the other counties. As 

Figure 5: The top row (a) shows %HANPP0 distributed by the crops with the highest harvest areas 
in all the counties (n=188) and the bottom row (b) shows %HANPP0 distributed by the crops with 
the highest NPPh values in all the counties. Large variations in %HANPP0 by crop suggest that 
methods and timing of crop planting or harvest may play a significant role in how much energy it 
extracts from the environment. As only the crop with the highest area is shown per column, the 
agricultural matrix of the county may also contribute to affecting the overall level of NPP 
harvested from the environment. Note the top graphs show that the crops with the highest NPPh 
value per county are different from the crops planted over the most area.  
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this analysis is focused on managed natural lands, we chose to remove these four counties 

from our analysis. We also noted the relationships between %HANPP0 and percent crop 

landcover was the inverse of its relationship with forest cover; the regression were opposite 

but nearly identical. Because of this, we chose to just use percent forest cover for the 

Figure 6: The graphs show the relationship between LU/LC and %HANPP0, r = 0.85, r2 = 0.76, p<2e-
16. The grey area shows the 95% confidence interval of the linear regression. There is considerable 
more variation about the regression line in areas of low % forest landcover and high % crop landcover 
than in areas of high % forest landcover. Most of these highly-forested counties are in the LMF 
province, where the relationship is considerably stronger (r2 = 0.85) than in the EBFC province (r2 = 
0.42).  
 



 

 

32 

remainder of our analysis, recognizing that lower percent forest cover in a county equated to 

higher percent crop landcover.  

Analysis of HANPP Due to Landuse Change 

 We chose to focus on %HANPP0 for our main analysis, but we also briefly analyzed 

HANPP due to landuse change, or HANPPluc. This part of the HANPP equation set is the 

difference between potential NPP (NPP0) and actual NPP (NPPact):  

 𝐻𝐴𝑁𝑃𝑃𝑙𝑢𝑐 = 𝑁𝑃𝑃0 − 𝑁𝑃𝑃𝑎𝑐𝑡      (3) 

It measures how much NPP is lost from the ecosystem due to changing LU/LC, like 

transitions from forestland to cropland. Through our spatial analysis, we found that the corn 

belt regions of northern Indiana and Ohio showed the most negative values for HANPPluc. 

Negative HANPPluc values occur when NPPact > NPP0, indicating the LU/LC change that 

occurred in a county resulted in an increase in available ecosystem energy as compared to 

what was there in the past. Typically, this means there has been some type of technological 

input into the landscape, such as fertilizer or irrigation, that can artificially raise productivity. 

In our study site, though, HANPPluc values decrease moving northward through the region 

(Fig. 7)–the opposite of what would be expected based on other studies (Haberl et al. 2014). 

One possible reason for this is that in the north, farming generally requires fertilizer and 

irrigation as the soils are arid and sandy. These inputs would lead to increased productivity 

on a naturally unproductive landscape. Dividing the distribution of HANPPluc between 

forestlands and croplands suggests this latter interpretation may be correct, as it is croplands 

that skew the overall HANPPluc value negative (Fig. 8). On forest lands, a little less than half 

of counties have low but positive HANPPluc values, suggesting their productivity has slightly 

decreased over time.  
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Table 6: Linear regression results examining the relationship between forest cover, %HANPP0 and the two 
biodiversity metrics, as well as HANPPluc (kg C m-2 yr-1) and the two biodiversity metrics.  
 

REGRESSION P-VALUE R R^2 

%FOREST ~ MEAN 
CONNECTEDNESS 

< 2.2e-16 0.73 0.53 

LMF < 2.2e-16 0.83 0.68 
EBFC 2.4E-13 0.65 0.41 

%FOREST ~ MEAN 
LANDSCAPE DIVERSITY  

< 2.2e-16 0.68 0.46 

LMF 1.3E-09 0.63 0.39 
EBFC 5.3E-08 0.51 0.25 

%HANPP0 ~ FORESTED 
LANDCOVER 

<2.0E-16 -0.85 0.76 

LMF < 2.2e-16 -0.88 0.78 

EBFC 2.02E-13 -0.65 0.42 
HANPPLUC ~ MEAN LOCAL 

CONNECTEDNESS 
1.3E-02 -0.18 0.028 

MEAN LANDSCAPE 
DIVERSITY~ HANPPLUC 

1.75E-01 -0.10 0.0046 

 

In addition to our spatial analysis, we performed two regression analyses using 

HANPPluc, one comparing it to each of the two biodiversity metrics (Fig. 9). We found that 

HANPPluc did not strongly correlate with either mean landscape diversity or mean local 

connectedness, but had a stronger correlation with mean local connectedness (r = -0.53, r2 = 

0.28, p<0.001; Table 6). 

Methodological Challenges 

Review of Different Crop to NPP Conversion Variables 

A note of caution in interpreting the values obtained from the NPP equations is that, 

beyond the uncertainty inherent in self-reported crops production and yields, harvest indices, 

a variable essential to translating crop production/yield into NPP, is highly variable among  



 

 

34 

 

studies. Multiple authors have noted the large differences amongst reported harvest indices, 

and numerous papers reviewed for this study presented quite different values (Smil et al. 

1983; Hay, 1995). Since we used the methods presented by Haberl et al (2007), we also 

chose to use the harvest variables used by those authors, or the references they cited, to 

maintain consistency between studies. To account for changes in crop production over time, 

we used the modifiers suggested by Krausman et al (2008, 2013). These harvest variables are 

also specified to the region, which may help mitigate high levels of uncertainty. For the 

harvest variables not given by Haberl et al (2007) or Krausman et al (2008, 2013), we used 

those given in studies cited by these research groups, primarily the model created by  

Figure 7: The spatial distribution of HANPP due to landuse change (HANPPluc). Units are in kg C m
-2

 yr
-

1

. As HANPPluc is calculated as the difference between NPP0 and NPPact, negative values indicate that 

NPPact > NPP0 . This suggests current levels of productivity are greater than those modeled from past 

ecological data.  



 

 

35 

Wirsenius (2000). For fruit and vegetable crops, which were not part of the studies done by 

the Haberl or Kruasmann research groups, we drew largely on the database created by 

Monfreda et al (2008), which is the most comprehensive list of HI values, with some values 

drawn from the work done by Smil (1999). 

To estimate the full value of appropriated NPP, we calculated the residues of each 

crop, and the partition between used residues (e.g. residue that is removed from the land to be 

used by humans) and the unused residue (e.g. residue that remained unused), noted as the 

“recovery rate”. These estimates are based on grain:straw ratios, also known as residue 

multipliers and, like the harvest indices, must be observed with caution. These numbers are 

largely reported for field crops, not fruit and vegetable crops, so residue estimates for these 

groups are based on more varied sources.  As the crop residues not removed from the land–

matter thus available to the detritivore branch of the food chain–can be assumed to be the                                                                                                      

Figure 8: Density plots showing the distribution of HANPPluc on different LU/LC types. The black 

distribution is HANPPluc on forestlands and the white distribution is HANPPluc on agricultural lands. 

The grey distribution is the weighted HANPPluc of the combined LU/LC types.  
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Figure 9(a): The spatial relationship between mean landscape diversity and HANPPluc, with shade 

indicating to what percent each county it dominated by cropland.  

Figure 9(b): The spatial relationship between HANPPluc and mean local connectedness, with shade indicating 

to what percent each county it dominated by cropland.  

Figure 9: Graphs showing the relationship between HANPPluc in kg C m -2 y-1 and the two biodiversity metrics 
(each a unitless index). Graph (a) shows how mean landscape diversity impacts HANPPluc, and (b) shows how 
HANPPluc impacts mean local connectedness. The grey area is the 95% confidence interval. Each point 
represents a county, with darker points indicating low % cropland.  
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difference between average aboveground NPP and the amount of crop harvested (Krausmann 

et al. 2008), this value can be assumed to be picked up in the MODIS satellite images and 

incorporated into the NPPact value. For this reason, we will not use these values as part of the 

overall analysis.   

Different producers deal with residues in different way–farmers may clear residue 

from the fields, till residue into the soil, or leave residue on top of soils to protect them. This 

study does not distinguish residue uses to this level of detail, but the uncertainty of residue 

fates, and how that impacts socioecological metabolisms, should be taken into consideration 

when examining the results of this study. Haberl et al (2007) also presented a “recovery rate” 

value based on that presented by Wirsenius (2000). This value was primarily estimated for 

field crops, and we could find little data for it in other areas of the literature, either for field 

crops or for the fruit and vegetable crops that make up a significant portion of the crops 

grown around the Great Lakes. For this reason, we chose not to include these values in the 

analysis.  
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Table 7: +Smil (1999) calculated HI based on the equation: (dry matter of harvested crops)/(dry matter of 
harvested crops + dry matter of crop residues). Smil (1983) collected global averages of crop residue 
multipliers, derived from FAO data from the 1970s; these are largely field crops. Neither Smil paper 
differentiated between used and unused crop residues.  
 
++We calculated HI++ using the equation suggested in Smil (1999) and the harvest data we collected from the 
USDA and different state agricultural departments, while HI+ are the values reported in Smil (1999).  
 
§Haberl et al (2007) and Krausmann et al (2008) use region-specific values drawn largely from Wirsenius 
(2000); the two rates used, harvest factors and recovery rates, are a multiplier to estimate crop residues and a 
multiplier to estimate the portion of crop residues used (extracted from the system, e.g. as fodder). There are 
several crops, largely fruit and vegetable crops, for which there is very little information available. Krausmann 
et al (2008) assumed for these crops that “crop residues to be the difference between average aboveground NPP 
per unit of cropland and the amount of primary crop harvested." Wirsenius (2000)–a source for both Krausmann 
et al (2008) and Haberl et al (2007)–defined the recovery rate as, “‘Not recovered’ simply means that the 
generated amount, or a fraction of the generated amount, is not made available for further use within or outside 
the food system. Thus, by definition, the amount ‘not recovered’ is lost (from a use point of view, that is). In the 
FPD model, ‘not recovered’ is expressed by its reverse quantity, here called ‘recovery rate’.” Wirsenius (2000) 
cautioned about the uncertainty of the residue recovery estimates used in the model he created. In cases where 
data was lacking, a standard value of 90 percent was used for all regions, but this is believed to be an 
overestimate, particularly with areas that have low yields.   
 
*The HI values for fruit and vegetables in the HI* column came from work done in Monfreda et al (2008)), 
while the field crop HI was obtained from Lobell et al (2002). Lobell et al (2002) created these estimates based 
on a review by Hay (1995) intended for a US-based study. Monfreda et al (2008) also drew on Hay’s work, as 
well as others for cereal crops. The research group’s final choice of numbers are meant to “approximates the 
distribution of global cropland NPP.” As this is the most comprehensive list of HI values, we ended up drawing 
on it for fruit and vegetable crops. we also drew the dry fraction (DF)/moisture content (MC), fraction of 
production in aboveground biomass (fAG), and percent carbon content (C) from the same sources. 

CROP 

Residue 
Multiplier

+ HI+ HI++ HI§ HI* 

Harvest 
Residue 
Factor§ 

Recovery 
Rate§ DF* 

MC
* fAG* C* 

APPLES 1.67 0.38 0.37  0.3 2.5 0.9 0.16 0.84 0.75 0.45 

CHERRIES 1.67 0.38 0.37  0.3 2.5 0.9 0.14 0.86 -0.25 0.45 

CHERRIES 1.67 0.38 0.37  0.3 2.5 0.9 0.14 0.86 0.75 0.45 

PEACHES 1.67 0.38 0.37  0.3 2.5 0.9 0.14 0.86 -0.25 0.45 

PEACHES 1.67 0.38 0.37  0.3 2.5 0.9 0.14 0.86 0.75 0.45 

GRAPES 1.67 0.38 0.37  0.3 2.5 0.9 0.19 0.81 0.75 0.45 

BLUEBERRIES 1.67 0.38 0.37  0.3 2.5 0.9 0.15 0.85 0.75 0.45 

PEAS, GREEN 0.50 0.49   0.45 1 0.9 0.13 0.87 0.85 0.45 

BEANS, SNAP 0.50 0.49 0.67  0.45 1 0.9 0.1 0.9 -0.15 0.45 

BEANS, SNAP 0.50 0.49 0.67  0.45 1 0.9 0.1 0.9 0.85 0.45 

CUCUMBERS   0.38   0.45   0.9 0.04 0.96 -0.15 0.45 
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Table 7 cont. 

CROP 

Residue 
Multiplier
+ HI+ HI++ HI§ HI* 

Harvest 
Residue 
Factor§ 

Recovery 
Rate§ DF* 

MC
* fAG* C* 

CUCUMBERS   0.38   0.45   0.9 0.04 0.96 0.85 0.45 

POTATOES 0.20 0.40 0.83 0.5 0.5 1 0.9 0.28 0.72 0.8 0.45 

CORN, SWEET 1.20 0.38 0.45  0.45 1.2 0.7 0.13 0.87 0.85 0.45 

CORN, SWEET 1.20 0.38 0.45  0.45 1.2 0.7 0.13 0.87 1.85 0.45 

CORN, GRAIN 1.20 0.40 0.45 0.45 0.45 1.2 0.7 0.89 0.11 0.85 0.45 

SOYBEANS 1.00 0.52 0.50 0.45 0.4 1.2 0.7 0.9 0.1 0.87 0.45 

WHEAT 1.50 0.40 0.40 0.45 0.4 1.2 0.7 0.89 0.11 0.83 0.45 

HAY       1 1.3 0.9 0.85 0.15 0.53 0.45 

HAY,ALFALFA      1 1.3 0.9 0.85 0.15 0.53 0.45 

SORGHUM 1.20 0.40 0.45 0.45 0.4 1.2 0.7 0.9 0.1 0.8 0.45 

SORGHUM 1.20 0.40 0.45 0.45 0.4 1.2 0.7 0.9 0.1 0.8 0.45 

BARLEY 1.20 0.40 0.45 0.45 0.4 1.2 0.7 0.88 0.12 0.67 0.45 

CORN, SILAGE 1.20 0.40 0.45  1 1.3 0.9 0.35 0.65 0.85 0.45 

SUNFLOWERS  0.52  0.35 0.35 1.9 0.5 0.9 0.1 0.94 0.45 

OATS 1.50 0.40 0.40  0.4 1.2 0.7 0.89 0.11 0.71 0.45 

SUGARBEETS 0.10 0.56 0.91 0.65 0.4 0.5 0 0.15 0.85 0.8 0.45 

 
Regional HANPP Calculation 

Calculation of HANPP at the regional scale poses multiple challenges. The primary 

challenge is a lack of comprehensive, consistent harvest data at appropriately fine scales. The 

finest scale available for forest harvest data from the USFS was the county scale, and even 

this resolution came with the caveat of high errors due to the method of data collection 

(Burrill, 2018; S. Pugh, personal communication, 2017). This leads to uncertainty in forest 

area and average harvest rates, particularly in counties with smaller amounts of forested land. 

Crop harvest data from the USDA Agricultural Census is similarly limited to the county 
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scale, and is self-reported by farmers, who may own land in multiple counties or may have 

their data removed from the census due to privacy concerns. Even when harvest data are 

available, estimating NPPh requires knowledge of harvest indices (a ratio of the harvested 

yield of a crop to total aboveground crop biomass), moisture content, and root:shoot ratios 

for the total variety of crops in the region. These variables have only been calculated for a 

handful of crops–largely cereal crops–and vary extensively throughout the literature.  

Another challenge is the ability of models that estimate NPPact to differentiate among 

different crop landcover types. The model algorithm behind MODIS NPP datasets  has been 

shown to estimate NPP levels 30 percent lower, on average, than those calculated based on 

USDA harvest data in cropland-dominated landscapes, is less spatially sensitive in terms of 

identifying croplands, and is not always able to identify different types of crops (Li et al. 

2014). The model also results in a lot of scatter, and so is highly uncertain in its NPP outputs 

for cropland (Li et al. 2014). The different resolutions and methods of calculation in which 

each data set used for this analysis originated may also have led to underestimations of 

%HANPP0 and HANPPluc. The NPPact and NPP0 models used in this analysis resulted in 

NPPact values that were consistently higher than the NPP0 values. These differences lead to 

high potential error in the HANPPluc variable, in particular, as it is calculated from NPPact and 

NPP0 alone. Although the urban development occurring in the region (Brown, 2003; 

Robinson, 2012) and the high degree of technological inputs on cropland (e.g. fertilizer) in 

some regions suggest low HANPPluc values are reasonable, the fully negative HANPPluc 

values we obtained may be a methodological artifact. These uncertainties highlight the need 

for comprehensive LU/LC data sets and models that include landscape NPP calculations at 

the local and regional resolutions needed to plan for biodiversity conservation. 
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Appendix A: Crop Data Development  

This appendix explains how we developed the crop harvest data set and transformed 

it into NPP values, including the conversion constants we used as inputs for eqn. 4-7. To 

create the data set, we used data from the USDA National Agricultural Statistics Service 

(NASS) Quick Stats tool. We downloaded field crop data for Indiana, Michigan, Wisconsin, 

and Ohio for the years 2007 and 2012. These were the most recent available years in which 

the USDA’s Agricultural Census had been collected.  
#CSV files used are downloads from the USDA’s NASS Quick Stats tool 
#packages used 

>install.packages("dplyr") 

>install.packages("readr") 

>library(readr) 

>library(plyr) 

>library(dplyr)  

#select production values from Michigan county yield data, from USDA Agricultural  Census (2012) 

>MI_countyYeild <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/AgHarvests/MI/MI_countyYeild.csv") 

>MI_countyProduction <- filter(MI_countyYeild, grepl('PRODUCTION', MI_countyYeild$'Data Item')) 

>MI_countyProduction <- MI_countyProduction[c(1:21)] 

>MI_countyArea <- filter(MI_countyYeild, grepl('ACRES HARVESTED', MI_countyYeild$'Data Item')) 

>MI_countyArea <- filter(MI_countyArea, grepl('TOTAL', MI_countyArea$Domain)) 

>MI_countyArea <- MI_countyArea[c(1:21)] 

#Wisconson 

>WI_countyYeild <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/AgHarvests/WI/WI_countyYeild.csv") 

>WI_countyProduction <- filter(WI_countyYeild, grepl('PRODUCTION', WI_countyYeild$'Data Item')) 

>WI_countyArea <- filter(WI_countyYeild, grepl('AREA', WI_countyYeild$'Data Item')) 

>WI_countyArea <- filter(WI_countyYeild, grepl('ACRES HARVESTED', WI_countyYeild$'Data Item')) 

>WI_countyArea <- filter(WI_countyArea, grepl('TOTAL', WI_countyArea$Domain)) 

#Indiana 

>IN_countyYeild <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/AgHarvests/IN/IN_countyYeild.csv") 

>IN_countyProduction <- filter(IN_countyYeild, grepl('PRODUCTION', IN_countyYeild$'Data Item')) 

>IN_countyArea <- filter(IN_countyYeild, grepl('AREA', IN_countyYeild$'Data Item')) 

>IN_countyArea <- filter(IN_countyYeild, grepl('ACRES HARVESTED', IN_countyYeild$'Data Item')) 

>IN_countyArea <- filter(IN_countyArea, grepl('TOTAL', IN_countyArea$Domain)) 

#Ohio 

>OH_countyYeild <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/AgHarvests/OH/OH_countyYeild.csv") 

>OH_countyProduction <- filter(OH_countyYeild, grepl('PRODUCTION', OH_countyYeild$'Data Item')) 

>OH_countyArea <- filter(OH_countyYeild, grepl('AREA', OH_countyYeild$'Data Item')) 

OH_countyArea <- filter(OH_countyYeild, grepl('ACRES HARVESTED', OH_countyYeild$'Data Item')) 

OH_countyArea <- filter(OH_countyArea, grepl('TOTAL', OH_countyArea$Domain)) 
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 From the census downloads, we used R to filter out all values that were not of interest 

to us and values listed as unreported, leaving production values and acreage values. Removal 

of crops that had unreported data left us with data on about 78% of field crops the census 

identified as growing in our study region. Unreported data, listed as “(D)” in the NASS 

downloads, was such due to privacy concerns for that particular grower.  

We further filtered the data so that we only examined the data pertaining to field 

crops for which we had conversion constants that would allow us to convert crop production 

values into NPP (Table A-1), and collapsed some nuances in the data. Seasonal hay varieties 

#cleaning data 

>Production12 <- filter(Production12, !grepl("CONTRACT", Production12$"Data Item")) 

>Production12 <- filter(Production12, !grepl("SURVEY", Production12$Program)) 

>Production12 <- filter(Production12, !grepl('(D)', Production12$Value))  

>Production12$uniqueID <- paste(Production12$`State ANSI`,Production12$County) 

>Production12$Commodity[grepl("CORN, SILAGE", Production12$`Data Item`)]<-"CORN, SILAGE" 

>Production12$Commodity[grepl('CORN, GRAIN', Production12$`Data Item`)]<-"CORN, GRAIN" 

>Production12$Commodity[grepl('HAY', Production12$`Data Item`)]<-"HAY" 

>Production12$Commodity[grepl('HAY, ALFALFA', Production12$`Data Item`)]<-"HAY, ALFALFA" 

>Production12$Commodity[grepl('HAYLAGE, ALFALFA', Production12$`Data Item`)]<-"HAY, ALFALFA" 

>Production12$crop <- ifelse((grepl("CORN, GRAIN", Production12$'Data Item')), "cornGrain", 

                            ifelse((grepl("CORN, SILAGE", Production12$'Data Item')), "cornSilage", 

                                   ifelse((grepl(", ALFALFA", Production12$'Data Item')), "hayAlfalfa", 

                                          ifelse((grepl("HAY", Production12$'Data Item')), "hay", 

                                                 ifelse((grepl("SOYBEANS", Production12$'Data Item')), "soy", 

                                                        ifelse((grepl("WHEAT", Production12$'Data Item')), "wheat", 

                                                               ifelse((grepl("SORGHUM", Production12$'Data Item')), "sorghum", 

                                                                      ifelse((grepl("BARLEY", Production12$'Data Item')), "barley", 

                                                                             ifelse((grepl("RICE", Production12$'Data Item')), "rice", 

                                                                                    ifelse((grepl("SUNFLOWER", Production12$'Data Item')), 

"sunflowers", 

                                                                                           ifelse((grepl("OATS", Production12$'Data Item')), 

"oats", 

                                                                                                  ifelse((grepl("SUGARBEETS", Production12$'Data 

Item')), "sugarbeets", 

                                                                                                         NA)))))))))))) 

Production12 <- Production12[c("Year","State","State ANSI","County","uniqueID", "Data Item", "crop", 

"Commodity","Value","valueUnits")] 
 

                                                                                                  

 

 

#merging the state ag data sets and area data sets 

>Production12 <- rbind(IN_countyProduction,WI_countyProduction,OH_countyProduction, 

MI_countyProduction) 

>Area12 <- rbind(IN_countyArea,MI_countyArea, WI_countyArea, OH_countyArea) 
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and “HAYLAGE” were all collapsed into “HAY,” for instance, and we did not distinguish 

between irrigated and non-irrigated crops. Filtering out crops for which we did not have 

conversion constants left us with a data set containing roughly 91 percent of the reported 

field crop production and acreage data for the four states within our study region. We 

combined the filtered field crop data with a data table of NPP conversion constants (Table A-

1) and ran eq. 4 with the two data sets. We performed a similar process to filter out the area 

on which each crop was reported as being planted. 

 

>cropVariables <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/CSVfiles/Crops&CropConversions/c

ropVariables.csv") 

>Production12 <- merge(Production12, cropVariables, by=c("crop","valueUnits"), all.x=TRUE, 

all.y=TRUE) 

>Production12 <- unique(Production12) 

#make the formula  

#remove commas from the numbers in the Value column 

>Production12$Value <- as.numeric(gsub(",", "", as.character(Production12$Value))) 

>attach(Production12) 

>for (i in length(Production12$crop)) {  

  Value=Production12$Value 

  MRY=Production12$kg.Conversion.Factors 

  MC=Production12$MC 

  C=Production12$C 

  HI=Production12$HI 

  FAG=Production12$FAG 

  i=((Value*MRY*(1-MC)*C)/(HI*FAG)) 

  Production12$P.kgC.yr <- i  

} 

detach(Production12) 

 

 
#filter field crop Area data 

>Area12$Commodity[grepl('CORN, SILAGE', Area12$`Data Item`)]<-"CORN, SILAGE" 

>Area12$Commodity[grepl('CORN, GRAIN', Area12$`Data Item`)]<-"CORN, GRAIN" 

>Area12$Commodity[grepl('HAY', Area12$`Data Item`)]<-"HAY" 

>Area12$Commodity[grepl('HAY, ALFALFA', Area12$`Data Item`)]<-"HAY, ALFALFA" 

>Area12$Commodity[grepl('HAYLAGE, ALFALFA', Area12$`Data Item`)]<-"HAY, ALFALFA" 

>Area12 <- filter(Area12, !grepl('CONTRACT', Area12$'Data Item')) 

>Area12 <- filter(Area12, !grepl('SURVEY', Area12$Program)) 

>Area12 <- filter(Area12, !grepl('(D)', Area12$Value))  
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For fruit and vegetable crops, we repeated this process for the top five fruits and top five 

vegetables grown within in our study region, in terms of how frequently they were recorded 

in the census (i.e. how many counties reported the crop being grown). Only acres harvested 

was available for fruit and vegetable data. For this reason, we used eqn. 6 and obtained yield 

estimates from alternate sources (Ohio Department of Agriculture, 2007, 2012, 2013; 

USDA’s National Agricultural Statistics Service Indiana Field Office, 2007, 2012; USDA’s 

>Area12$crop <- ifelse((grepl("CORN, GRAIN", Area12$'Data Item')), "cornGrain", 

                      ifelse((grepl("CORN, SILAGE", Area12$'Data Item')), "cornSilage", 

                             ifelse((grepl(", ALFALFA", Area12$'Data Item')), "hayAlfalfa", 

                                    ifelse((grepl("HAY", Area12$'Data Item')), "hay", 

                                           ifelse((grepl("SOYBEANS", Area12$'Data Item')), "soy", 

                                                  ifelse((grepl("WHEAT", Area12$'Data Item')), "wheat", 

                                                         ifelse((grepl("SORGHUM", Area12$'Data Item')), "sorghum", 

                                                                ifelse((grepl("BARLEY", Area12$'Data Item')), "barley", 

                                                                       ifelse((grepl("RICE", Area12$'Data Item')), "rice", 

                                                                              ifelse((grepl("SUNFLOWER", Area12$'Data Item')), 

"sunflowers", 

                                                                                     ifelse((grepl("OATS", Area12$'Data Item')), "oats", 

                                                                                            ifelse((grepl("SUGARBEETS", Area12$'Data Item')), 

"sugarbeets",  

                                                                                                   NA)))))))))))) 

>Area12reference <- Area12[c("Year","State","State ANSI","County","crop", "Commodity","Data 

Item","Value","CV (%)")] 

>write.csv(Area12reference, "Area12reference.csv") 

>Area12 <- Area12[c("Year","State","State ANSI","County","crop","Commodity","Value")] 

>Area12$uniqueID <- paste(Area12$`State ANSI`,Area12$County) 

>colnames(Area12)[7] <- "Acreage" 

>Area12$Acreage <- as.numeric(gsub(",", "", as.character(Area12$Acreage))) 

>Area12sum <- Area12 %>% group_by(Year, State, County, uniqueID, Commodity) %>% 

summarise(county.harvest.acreage=sum(Acreage)) 

>Production12 <- 

Production12[c("Year","State","County","uniqueID","Commodity","Value","valueUnits","kg.Conversion.

Factors","MC","HI","FAG","C","P.kgC.yr")] 

>FieldAgNPP12 <- merge(Production12, Area12sum, by=c("Year","State","County", "uniqueID", 

"Commodity")) 

>FieldAgNPP12$Area.m2 <- FieldAgNPP12$county.harvest.acreage*4046.86 

>write.csv(FieldAgNPP12, "FieldAgNPP12_reference.csv") 

 

##repeat for 2007 census data, then combine two years into one data table 

>FieldAgNPP0712 <- rbind(FieldAgNPP07sum,FieldAgNPP12sum) 

 

 

 

 

 

FieldAgNPP12sum <- FieldAgNPP12 %>% group_by(Year, State, County, uniqueID, Commodity, 

county.harvest.acreage, Area.m2) %>% summarise(countyP.kgC.yr=sum(P.kgC.yr)) 

FieldAgNPP12sum$NPP.kgC.yr.m2 <- FieldAgNPP12sum$countyP.kgC.yr/FieldAgNPP12sum$Area.m2 

View(FieldAgNPP12sum) 

write.csv(FieldAgNPP12sum, "FieldNPP12_reference.csv") 
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National Agricultural Statistics Service Michigan Field Office, 2008, 2013; Taylor et al. 

2012, 2013). 

library(readr) 

library(dplyr) 

> FruitNutCrops <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/CSVfiles/Crops&CropConversions/Fruit

&Nut_2007&2012.csv") 

>AreaFN <- filter(FruitNutCrops, grepl('ACRES', FruitNutCrops$'Data Item')) 

>AreaFN_cleaned <- filter(AreaFN, !grepl('NOT', AreaFN$'Data Item')) 

>AreaFN_cleaned <- filter(AreaFN_cleaned, !grepl('GROWN', AreaFN_cleaned$'Data Item')) 

>AreaFN_cleaned <- filter(AreaFN_cleaned, !grepl('NON-BEARING', AreaFN_cleaned$'Data Item')) 

>AreaFN_cleaned <- filter(AreaFN_cleaned, grepl('CENSUS', AreaFN_cleaned$Program)) 

>AreaFN_cleaned <- filter(AreaFN_cleaned, !grepl('(D)', AreaFN_cleaned$Value)) 

>AreaFN_cleaned <- filter(AreaFN_cleaned, !grepl('(Z)', AreaFN_cleaned$Value)) 

>AreaFN_cleaned$valueUnits[grepl('ACRES', AreaFN_cleaned$`Data Item`)]<-"acres" 

>AreaFN_cleaned$Commodity[grepl('BERRIES, OTHER', AreaFN_cleaned$Commodity)]<-"BERRIES" 

>AreaFN_cleaned$Commodity[grepl('NON-CITRUS TOTALS', AreaFN_cleaned$Commodity)]<-

"NONCITRUSTOTALS" 

>AreaFN_cleaned$Commodity[grepl('TREE NUT', AreaFN_cleaned$Commodity)]<-"TREENUT" 

>AreaFN_cleaned$Commodity[grepl('NON-CITRUS', AreaFN_cleaned$Commodity)]<-"NONCITRUS" 

>AreaFN_cleaned$Commodity[grepl('PLUMS & PRUNES', AreaFN_cleaned$Commodity)]<-

"PLUMS&PRUNES" 

>AreaFN_cleaned$Commodity[grepl('APPLES', AreaFN_cleaned$Commodity)]<-"APPLES" 

>write.csv(AreaFN_cleaned, "Fruit&NutAcreage_0712.csv") 

 

 >X2007_Vegetabls <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/AgHarvests/2007_Vegetabls.csv") 

>X2012_Vegetables <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/AgHarvests/2012_Vegetables.csv") 

>VegCrops <- rbind(X2007_Vegetabls, X2012_Vegetables) 

>AreaV <- filter(VegCrops, grepl('ACRES', VegCrops$'Data Item')) 

>AreaV_cleaned <- filter(AreaV, !grepl('NOT', AreaV$'Data Item')) 

>AreaV_cleaned <- filter(AreaV_cleaned, grepl('CENSUS', AreaV_cleaned$Program)) 

>AreaV_cleaned <- filter(AreaV_cleaned, !grepl('(D)', AreaV_cleaned$Value)) 

>AreaV_cleaned <- filter(AreaV_cleaned, !grepl('(Z)', AreaV_cleaned$Value)) 

>AreaV_cleaned$valueUnits[grepl('ACRES', AreaV_cleaned$`Data Item`)]<-"acres" 

>write.csv(AreaV_cleaned, "VegAcreage_0712.csv") 

> AreaFV <- rbind(AreaFN_cleaned, AreaV_cleaned) 

> library(tools) 

>AreaFV[[6]] <- tolower(AreaFV[[6]]) 

>AreaFV[[6]] <- toTitleCase(AreaFV[[6]]) 

#fruit, veg, field crop bind 

>names(AreaFV)[names(AreaFV) == 'Value'] <- 'Acreage' 

>AreaFV$Acreage <- as.numeric(gsub(",", "", as.character(AreaFV$Acreage))) 

>AreaFV$uniqueID <- paste(AreaFV$`State ANSI`,AreaFV$County) 

#remove spaces in uniqueID column 

>AreaFV$uniqueID <- gsub('\\s+', '',AreaFV$uniqueID) 

>AreaFV$uniqueID <- tolower(AreaFV$uniqueID) 
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#reduce counties to only those within our study region 

>GLBasinCounties <- read_csv("/Volumes/EMBARTO/tables/GLBasinCounties.csv") #on flash drive 

>GLBasin_AreaFV <- merge(AreaFV, GLBasinCounties, by = c("uniqueID"), all=FALSE) 

#add up the acreage of each crop to see which crops have the most acreage in the four states–select 

the top five fruit and top five vegetables 

>ddply(X, c("x"), subset, rank(Commodity)<=14) 

>X <- ddply(GLBasin_AreaFV, "Commodity", summarise, x=sum(Acreage))  

>Top10GLFV <- subset(GLBasin_AreaFV, GLBasin_AreaFV$Commodity=="SWEET 

CORN"|GLBasin_AreaFV$Commodity=="POTATOES"|GLBasin_AreaFV$Commodity=="PEAS"|GLBasin_A

reaFV$Commodity=="BLUEBERRIES"|GLBasin_AreaFV$Commodity=="GRAPES"|GLBasin_AreaFV$Com

modity=="CUCUMBERS"|GLBasin_AreaFV$Commodity=="PEACHES"|GLBasin_AreaFV$Commodity=="C

HERRIES"|GLBasin_AreaFV$Commodity=="BEANS"|GLBasin_AreaFV$Commodity=="APPLES", 

select=c("Year","State","State ANSI","County", "uniqueID", "Commodity","Data 

Item","Acreage","valueUnits")) 

>Top10GLFV <- filter(Top10GLFV, !grepl("FRESH MARKET", Top10GLFV$'Data Item')) 

>Top10GLFV$Commodity <- tolower(Top10GLFV$Commodity) 

>Top10GLFV$Commodity <- ifelse((grepl("BLUEBERRIES", Top10GLFV$'Data Item')), "BLUEBERRIES", 

                            ifelse((grepl("PEAS, GREEN",Top10GLFV$'Data Item')), "PEAS, GREEN", 

                                   ifelse((grepl("BEANS, SNAP", Top10GLFV$'Data Item')), "BEANS, SNAP", 

                                          ifelse((grepl("PEACHES", Top10GLFV$'Data Item')), "PEACHES", 

                                                 ifelse((grepl("APPLES", Top10GLFV$'Data Item')), "APPLES", 

                                                               ifelse((grepl("CHERRIES", Top10GLFV$'Data Item')), "CHERRIES", 

                                                                      ifelse((grepl("GRAPES", Top10GLFV$'Data Item')), "GRAPES", 

                                                                             ifelse((grepl("CUCUMBERS", Top10GLFV$'Data Item')), 

"CUCUMBERS", 

                                                                                    ifelse((grepl("POTATOES", Top10GLFV$'Data Item')), 

"POTATOES", 

                                                                                           ifelse((grepl("CORN", Top10GLFV$'Data Item')), 

"CORN, SWEET", 

                                                                                                  NA)))))))))) 

 

write.csv(Top10GLFV, "Top10GLFV_reference.csv") 

>write.csv(Top10GLFV, "Top10GLFV_reference.csv") 

>attach(Top10GLFV) 

#convert acres into meters^2 

>Top10GLFV$Area.m2 <- Top10GLFV$Acreage*4046.86 

>totAcreCropVar <- Top10GLFV %>% group_by(Year, State, County, uniqueID, Commodity) %>% 

>summarise(county.harvest.m2=sum(Area.m2)) 

>detach(Top10GLFV) 

>attach(totAcreCropVar) 

#differentiate perennial vs annual crops; perennial root biomass stays in the system, while annual root 

biomass does not. Thus, only annual crops need to be divided by the FAG (fraction above-ground 

productivity) variable  

#sources for perennial crops 

#http://www.michigan.gov/documents/mdard/MI_Ag_Facts__Figures_474011_7.pdf 

#fruit and nut trees "have a perennial life cycle" 

https://www.agcensus.usda.gov/Publications/2012/Full_Report/Volume_1,_Chapter_2_County_Level/

Michigan/miappxb.pdf 
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We combined all crops into a single data table to improve analysis. For some minor crops, 

such as peas, where we were unable to find production or yield data in our study counties, we 

either used average yield data collected by Midwest University Extension Services (Zandstra 

& Price, 1988) or used yields from the same year from neighboring states. We summarized 

all crop NPP calculations at the county level. 

 

 

 

>totAcreCropVar$Perennial.Annual <- ifelse((grepl("BLUEBERRIES", totAcreCropVar$Commodity)),   

"perennial",  

ifelse((grepl("APPLES", totAcreCropVar$Commodity)), "perennial",  

                                           ifelse((grepl("CHERRIES", totAcreCropVar$Commodity)), "perennial", 

                                                  ifelse((grepl("PEACHES", totAcreCropVar$Commodity)), "perennial", 

                                                         ifelse((grepl("GRAPES", totAcreCropVar$Commodity)), "perennial", 

                                                                "annual"))))) 

>fruitvegVariables <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/CSVfiles/Crops&CropConversions/fr

uitvegVariables2.csv") 

fruitvegVariables <- merge(fruitvegVariables, FVcropVariables, by=c("Commodity", "YieldUnits"), 

all=TRUE) 

>FVNPPsum <- merge(totAcreCropVar, fruitvegVariables, by=c("State","Year","Commodity"), all=TRUE) 

#use equation from Monfreda et al (2008) NPP=(EY*DF*C)/(HI*RS); where RS=Fag (ratio of below to 

above ground productivity), DF=dry faction or 1-Moisture Content, C=.45 gC/g dry matter, EY=metric 

tons of economic yield per unit area 

>FVNPPsum$EY.kg.m2 <- FVNPPsum$EY.kg.acre/4046.86 

>FVNPPsum$MRY.kg <- FVNPPsum$EY.kg.m2*FVNPPsum$county.harvest.m2 

>for (i in length(FVNPPsum$uniqueID)) { 

  MRY=FVNPPsum$MRY.kg 

  DF=FVNPPsum$DF 

  C=FVNPPsum$C 

  HI=FVNPPsum$HI 

  FAG=FVNPPsum$fAG 

  m2=FVNPPsum$county.harvest.m2 

  if(isTRUE(FVNPPsum$Perennial.Annual=="annual")){ 

    i=((MRY * DF * C) / (HI*FAG)) 

  } else { 

    i=((MRY * DF * C) / (HI)) 

  } 

  FVNPPsum$P.kgC.yr <- i 

  FVNPPsum$NPP.kgC.yr.m2 <- FVNPPsum$P.kgC.yr/m2 

} 
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Table A-1: Field crop conversion variables from Lobell et al (2002)  and Prince et al ( 2001). These values 
convert 93% of the field crop data from the Agricultural census. MC= moisture content (1-Dry Fraction (DF)), 
HI=harvest index, FAG=fraction above ground biomass (related to root:shoot ratio) and C is percent carbon.  
 

Crop Production 
Units 

Conversion Factors–Units to 
Kilograms 

MC HI FAG C 

cornGrain bu 25.4 0.11 0.45 0.85 0.45 
soy bu 27.22 0.1 0.4 0.87 0.45 
wheat  bu 27.22 0.11 0.4 0.83 0.45 
hay tons 1000 0.15 1 0.53 0.45 
hayAlfalfa tons 1000 0.15 1 0.53 0.45 
sorghum bu 27.22 0.1 0.4 0.8 0.45 
sorghum tons 1000 0.1 0.4 0.8 0.45 
barley bu 27.22 0.12 0.4 0.67 0.45 
cornSilage tons 1000 0.65 1 0.85 0.45 
sunflowers lb 0.4536 0.1 0.35 0.94 0.45 
oats bu 27.22 0.11 0.4 0.71 0.45 
sugarbeets tons 1000 0.85 0.4 0.8 0.45 

 
 
Table A-2-1: Fruit and vegetable conversion variables from Monfreda et al. (2008). These values convert the 
top 10 fruit and vegetable crops by area in the study region.  
 

Crop Yield Units Conversion Factors–Units 
to Kilograms 

HI DF MC fAG 

apples lbs/acre 0.4536 0.3 0.16 0.84 0.75 
cherries tons/acre 907.1847 0.3 0.14 0.86 -0.25 
cherries lbs/acre 0.4536 0.3 0.14 0.86 0.75 
peaches tons/acre 907.1847 0.3 0.14 0.86 -0.25 
peaches lbs/acre 0.4536 0.3 0.14 0.86 0.75 
grapes tons/acre 907.1847 0.3 0.19 0.81 0.75 
blueberries lbs/acre 0.4536 0.3 0.15 0.85 0.75 
peas, green tons/acre 907.1847 0.45 0.13 0.87 0.85 
beans, snap cwt/acre 50.8023 0.45 0.1 0.9 -0.15 
beans, snap tons/acre 907.1847 0.45 0.1 0.9 0.85 
cucumbers cwt/acre 50.8023 0.45 0.04 0.96 -0.15 
cucumbers tons/acre 907.1847 0.45 0.04 0.96 0.85 
potatoes cwt/acre 50.8023 0.5 0.28 0.72 0.8 
corn, sweet tons/acre 907.1847 0.45 0.13 0.87 0.85 
corn, sweet cwt/acre 50.8023 0.45 0.13 0.87 1.85 

 

http://journals.ametsoc.org.proxy.lib.umich.edu/doi/full/10.1175/1087-3562%282004%29008%3C0001%3ACAANPP%3E2.0.CO%3B2
http://journals.ametsoc.org.proxy.lib.umich.edu/doi/full/10.1175/1087-3562%282004%29008%3C0001%3ACAANPP%3E2.0.CO%3B2
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Appendix B: Forest Data Development 

To develop the forest harvest data input into the NPPh variable, we downloaded forest 

harvest data from the US Forest Service  Forest Inventory and Analysis EVALIDator tool 

and used a combination of R and Excel to transform the downloaded values into into NPP 

values in kg C m-2 yr-1.  

We used a ratio of forest harvest per acre. The EVALIDator tool defines the 

numerator we used as the “average annual harvest removals of live trees (trees ≥ 5in DBH), 

in cubic feet, on forest land,” and the denominator is defined as the “area of forestland, in 

acres.” We retrieved this ratio estimate for Indiana, Michigan, Ohio, and Wisconsin in the 

years 2005-2015.  

To find the density (kg C ft-3) of each species commonly found in the Forest Types by 

which the EVALIDator data was organized (Burrill, 2018), we used data from the Global 

Wood Density database. The database recorded wood density in g cm-3 (oven dry mass/fresh 

volume). To convert dry mass to C mass we used the proportions 0.521 (softwoods) and 

0.491 (hardwoods; Birdsey, 1992).  

Table B-1: Partial table showing an example of the combined data from FIA’s Database User Guide (Burrill, 
2018) and  Zanne et al.'s (2009) Global Wood Density Database, along with conversion from g cm-3 to kg C ft-3 

 
Binomial Common 

Name 
Wood 
density 
(g cm-3) 

Region Wood 
Density kg 
ft-3 

Kg C ft-3 USFS Forest Type 

Pseudotsuga 
menziesii 

Douglas-fir 0.453 NorthAmerica 13 6.7 DF 

Pinus ponderosa ponderosapine 0.38 NorthAmerica 11 5.6 na 

Pinus jeffreyi Jeffreypine 0.37 NorthAmerica 10 5.5 na 

Abies lasiocarpa subalpinefir 0.31 NorthAmerica 8.8 4.6 FirSp 

Abies balsamea balsamfir 0.33 NorthAmerica 9.3 4.9 SpFir 

Abies concolor whitefir 0.37 NorthAmerica 10 5.5 FirSp 

Abies magnifica Californiaredfir 0.36 NorthAmerica 10 5.3 FirSp 

Abies amabilis Pacificsilverfir 0.40 NorthAmerica 11 5.9 FirSp 

Abies procera noblefir 0.37 NorthAmerica 10 5.5 FirSp 
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We used R to combine the wood density data with the FIA data 

 

 Once the density was calculated in R, we further manipulated the data in Excel using 

methods developed by Dr. William Currie, Stephanie Hart, and Preeti Rao (W. Currie and P. 

Rao, personal communication, 2017).  We found that the average density of all the forest 

types that appeared in our study region (6.5 kg C ft-3) was similar to the average density value 

#GWD from Zanne, A.E., Lopez-Gonzalez, G.*, Coomes, D.A., Ilic, J., Jansen, S., Lewis, S.L., Miller, R.B., 

Swenson, N.G., Wiemann, M.C., and Chave, J. 2009. Global wood density database. Dryad. Identifier: 

http://hdl.handle.net/10255/dryad.235.  

>GlobalWoodDensityDatabase <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/ForestHarvest/GlobalWoodDensityD

atabase.csv") 

#FIA group info from https://www.fia.fs.fed.us/library/database-

documentation/current/ver70/FIADB%20User%20Guide%20P2_7-0_ntc.final.pdf 

>FIA_TreeGrpSpp <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/ForestHarvest/FIA_TreeGrpSpp.csv",

col_types = cols(East = col_character(), MAJGRP = col_character(), West = col_character())) 

>FIA_Density <- merge(FIA_TreeGrpSpp, GlobalWoodDensityDatabase, by=c("Binomial")) 

>FIA_SppGrps_East <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/ForestHarvest/FIA_SppGrps-

East.csv", col_types = cols(East = col_character())) 

>FIA_SppGrps_West <- 

read_csv("~/Desktop/MAThesis_MasterFolder/Thesis_Data_Sets/ForestHarvest/FIA_SppGrps-

West.csv", col_types = cols(West = col_character())) 

>FIA_Density <- merge(FIA_Density, FIA_SppGrps_East, by=c("East")) 

>FIA_Density <- merge(FIA_Density, FIA_SppGrps_West, by=c("West")) 

>FIA_Density <- FIA_Density[c(-12,-16)] 

>names(data)[3]<-"new_name" 

>names(FIA_Density)[15] <- "SppGrpNameEast" 

>names(FIA_Density)[17] <- "SppGrpNameWest" 

>names(FIA_Density)[5] <- "CommonName" 

>names(FIA_Density)[16] <- "HWorSW_East" 

>names(FIA_Density)[18] <- "HWorSW_West" 

>names(FIA_Density)[1] <- "SppGrpCode_W" 

>names(FIA_Density)[2] <- "SppGrpCode_E" 

>FIA_Density$`Wood density (g/cm^3), oven dry mass/fresh volume` <- 

as.numeric(FIA_Density$`Wood density (g/cm^3), oven dry mass/fresh volume`) 

#convert g/cm3 to kg/ft3 to match the FIA output 

>FIA_Density$WoodDensity.kg.ft3_ovendrymass.freshvol <- FIA_Density$`Wood density (g/cm^3), 

oven dry mass/fresh volume`*28.3168466 

#multiply density by % C to get carbon weight, numbers based on average softwood (SW) and average 

hardwood (HW) percent carbon from http://www.nrs.fs.fed.us/pubs/gtr/gtr_wo059.pdf 

>FIA_Density$kgC.ft3 <- 

ifelse(FIA_Density$HWorSW_East=="SW",FIA_Density$WoodDensity.kg.ft3_ovendrymass.freshvol*0.

521, FIA_Density$WoodDensity.kg.ft3_ovendrymass.freshvol*0.491) 

 

write.csv(FIA_Density, "FIA_Density-reference.csv") 
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(6.4 kg C ft-3; Turner et al., 2007) used in the body of research this study builds upon (W. 

Currie, S. Hart, and P. Rao, personal communication, 2017). Because of this, we ultimately 

decided to simply use 6.4 kg C ft-3 as our density value to maintain consistency throughout 

the body of research.  

 

 

 

 



60 
 

Appendix C: Spatial data development 

Potential NPP (NPP0) 

 For the NPP0 portion of the equation, we drew on the work done by the Haberl et al 

(2007). The research group calculated NPP0 in g C m-2 yr-1for the entire globe, at 5 arc min 

(≈10km pixel resolution). The data downloaded as an ASCII grid with no projection. We 

reprojected it to match the other data in NAD83 Conus Albers, and used zonal statistics to get a 

table with the summed NPP0 of each county. We divided the sums by 1000 to get the amount in 

kg C m-2 yr-1 and then joined the output sum to the Great Lakes county shapefile to get a total 

NPP0 for each county in kg C m-2 yr-1.  

Actual NPP (NPPact) 

 To calculate NPPact, we used MODIS NPP data extracted and subsetted using Google 

Earth Engine (P. Rao, personal communication, 2018). We obtained the MODIS NPP data 

between 2005 and 2015. For each year, the morning and afternoon data was averaged to account 

for potential cloud cover at different times of day. We then took the average NPPact value over 

the entire decade. This average was used to help account for errors in the data, and in the harvest 

and potential NPP data. The MODIS data is stored at a 500m pixel resolution, in units of kg C  

m-2 yr-1. We resampled the data to 1 km2 using the resample function in ArcGIS so that it would 

match the rest of the data. We then used zonal statistics to get the total NPPact per county in kg C 

m-2 yr-1. 

Detailed GIS Methods 

For manipulating spatial data, we used a combination of ArcGIS and Google Earth 

Engine (GEE). In ArcGIS, we used a number of transformations. The original data we used can 
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be seen in Table 3. The primary GIS transformations we used were on the NPPact and NPP0 data, 

but we also used the program to turn non-spatial NPPh data into spatial data. The workflow used 

can be seen in Figure C-1. We used GEE to obtain and parse MODIS data (Running et al. 2015), 

averaging it first between morning and afternoon satellite passes to reduce error due to cloud 

cover, and then taking the decadal mean (2005-2015) to use as the NPPact variable. The chosen 

period matches up with the period over which the USFS forest harvest data was sampled and 

overlaps the two years from which the crop harvest data was sampled. We downloaded the 

averaged data from GEE in 500m pixel resolution and NAD83 Conus Albers datum/projection 

and then uploaded it into ArcGIS for further manipulation.  

We used a mask made from the 2011 NLCD to make sure we only had NPPact data for the 

areas we examined in our study: managed lands, e.g. pasture/hay, crop, and the different 

landcover types that include tree cover, e.g. deciduous forests, evergreen forests, mixed forests, 

shrub/scrub (which includes young trees, such as post-harvest regrowth, and stunted trees) and 

woody wetlands. Exclude landcovers include urban areas, herbaceous wetlands, grasslands, 

barren ground, open water, and perennial ice. We did the same masking with the re-projected 

NPP0 data. We input these masked data layers into the “Zonal Statistics as Table” function to get 

the mean NPP per county in kg C m-2 yr-1 and then transferred the data to R. We used R to 

combine NPPact, NPP0 and NPPh using the equation put forward by the Haberl research group: 

HANPP=NPP0-(NPPact–NPPh). 
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Table C-1: Details of the original and final spatial data for the actual and potential NPP data layers.  

Data Layer NPPact NPPpot 
Original Coordinate 
System  Sinusoidal unprojected lat/long 

Original Projection N/A undefined 

Original Datum N/A undefined 

Original Extent global global 

Original Resolution 500m 5 arcminutes 
Original Units kgC/m2 gC/m2 

Final coordinate system NAD83 Conus Albers NAD83 Conus Albers 

Final projection  Albers  Albers   

Final datum  D_North_American_1983 D_North_American_1983 

Final units  kgC/m2 kgC/m2 

Feature Class raster raster 

Source Google Earth Engine/NASA Haberl et al (2007) 
 

Table C-2: Original spatial data sources and formats 

Project 
Use 

Data Name  Data Type Resolution Units Temporal 
granularity 

Spatial 
Extent 

Coordinate 
System, 
Datum, 
Projection 

Citation 

NPPact MYD17A3H: 
MODIS/ 
Aqua Net 
Primary 
Production 
Yearly L4 
Global 500 m 
SIN Grid 
V006 

MODIS 
NPP, 
morning 
pass 

500mx 
500m 

kg C m-2 
yr-1 

annual global Sinusoidal Running, S., Mu, Q., Zhao, 
M. (2015). MYD17A3H 
MODIS/Aqua Net Primary 
Production Yearly L4 
Global 500m SIN Grid 
V006 [Data set]. NASA 
EOSDIS Land Processes 
DAAC. doi: 
10.5067/MODIS/MYD17A
3H.006 

NPPact MOD17A3H: 
MODIS/ 
Terra Net 
Primary 
Production 
Yearly L4 
Global 500 m 
SIN Grid 
V006 

MODIS 
NPP, 
afternoon 
pass 

500mx 
500m  

kg C m-2 
yr-1 

annual global Sinusoidal Running, S., Mu, Q., Zhao, 
M. (2015). MOD17A3H 
MODIS/Terra Net Primary 
Production Yearly L4 
Global 500m SIN Grid 
V006 [Data set]. NASA 
EOSDIS Land Processes 
DAAC. doi: 
10.5067/MODIS/MOD17A
3H.006 
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Table C-2 cont.  
Project 
Use 

Data Name  Data Type Resolution Units Temporal 
granularity 

Spatial 
Extent 

Coordinate 
System, 
Datum, 
Projection 

Citation 

NPPpot NPP0: net 
primary 
production of 
the potential 
vegetation  

NPP 
ASCII grid 

5' (≈10kmx 
10km) 

g C m-2 
yr-1 

annual global unknown Helmut Haberl, Karl-Heinz 
Erb, Fridolin Krausmann, 
Veronika Gaube, Alberte 
Bondeau, Christof Plutzar, 
Somone Gingrich, 
Wolfgang Lucht and 
Marina Fischer-Kowalski. 
2007. Quantifying and 
mapping the global human 
appropriation of net 
primary production in 
Earth’s terrestrial 
ecosystem. Proceedings of 
the National Academy of 
Sciences of the USA. 104: 
12942-12947. 

NPPh Michigan 
fruit/ 
vegetable 
agricultural 
statistics 2012 

non-spatial  NA NA annual state NA USDA’s National 
Agricultural Statistics 
Service Michigan Field 
Office. (2013). Michigan 
Agricultural Statistics: 
2012-13 (Annual Statistics 
Bulletin). State of 
Michigan. Retrieved from 
https://www.nass.usda.gov/
Statistics_by_State/Michig
an/Publications/Annual_St
atistical_Bulletin/stats13/ag
stat13.pdf 

NPPh Michigan 
fruit/vegetabl
e agricultural 
statistics 2007 

non-spatial  NA NA annual state NA USDA’s National 
Agricultural Statistics 
Service Michigan Field 
Office. (2008). Michigan 
Agricultural Statistics: 
2007-2008 (Annual 
Statistics Bulletin). State of 
Michigan. Retrieved from 
https://www.nass.usda.gov/
Statistics_by_State/Michig
an/Publications/Annual_St
atistical_Bulletin/stats08/ag
stat-all-08.pdf 

NPPh Ohio 
fruit/vegetabl
e agricultural 
statistics 2007 

non-spatial  NA NA annual state NA Boggs, R. J., O’Brien, D., 
Hargett, G., Brown, C., & 
Showalter, S. (2008). 2007 
Ohio Agricultural Statistics 
(Annual Statistics Bulletin) 
(p. 106). USDA’s National 
Agricultural Statistics 
Service Ohio Field Office 
and the Ohio Department 
of Agriculture. 
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Table C-2 cont. 

Project 
Use 

Data Name  Data Type Resolution Units Temporal 
granularity 

Spatial 
Extent 

Coordinate 
System, 
Datum, 
Projection 

Citation 

NPPh Ohio 
fruit/vegetabl
e agricultural 
statistics 2007 

non-spatial  NA NA annual state NA Ohio Department of 
Agriculture. (2007). 2007 
Ohio Department of 
Agriculture Annual Report 
and Statistics. Retrieved from 
http://www.agri.ohio.gov/divs
/Admin/Docs/AnnReports/OD
A_Comm_AnnRpt_2007.pdf 

NPPh Ohio 
fruit/vegetabl
e agricultural 
statistics 2013 

non-spatial  NA NA annual state NA Ohio Department of 
Agriculture. (2013). Ohio 
Department of Agriculture 
2013 Annual Report and 
Statistics. State of Ohio. 
Retrieved from 
http://www.agri.ohio.gov/divs
/communications/docs/ODA_
Comm_AnnRpt_2013.pdf 

NPPh Ohio 
fruit/vegetabl
e agricultural 
statistics 2012 

non-spatial  NA NA annual state NA Ohio Department of 
Agriculture. (2012). Ohio 
Department of Agriculture 
2012 Annual Report and 
Statistics. State of Ohio. 
Retrieved from 
http://www.agri.ohio.gov/divs
/Admin/Docs/AnnReports/OD
A_Comm_AnnRpt_2012.pdf 

NPPh Indiana 
fruit/vegetabl
e statistics 
2007 

non-spatial  NA NA annual state NA USDA’s National Agricultural 
Statistics Service Indiana 
Field Office. (2007). Indiana 
2007-2008 Agricultural 
Statistics: Crop Summary 
(Annual Statistics Bulletin) 
(pp. 31–34). Retrieved from 
https://www.nass.usda.gov/Sta
tistics_by_State/Indiana/Publi
cations/Annual_Statistical_Bu
lletin/0708/pg31-34.pdf 

NPPh Indiana 
fruit/vegetabl
e statistics 
2012 

non-spatial  NA NA annual state NA USDA’s National Agricultural 
Statistics Service Indiana 
Field Office. (2012). Indiana 
2012-2013 Agricultural 
Statistics: Crop Summary 
(Annual Statistics Bulletin) (p. 
33). Retrieved from 
https://www.nass.usda.gov/Sta
tistics_by_State/Indiana/Publi
cations/Annual_Statistical_Bu
lletin/1213/pg33.pdf 
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Table C-2 cont.  

Project 
Use 

Data Name  Data Type Resolution Units Temporal 
granularity 

Spatial 
Extent 

Coordinate 
System, 
Datum, 
Projection 

Citation 

NPPh Wisonsin 
fruit/vegetabl
e statistics 
2007 

non-spatial  NA NA annual state NA Taylor, C., Vale, K., & 
Woodstock, H. (2013). 
2013 Wisconsin 
Agricultural Statistics 
(Annual Statistics 
Bulletin). State of 
Wisconsin: USDA’s 
National Agricultural 
Statistics Service 
Wisconsin Field Office & 
the Wisconsin Department 
of Agriculture, Trade, and 
Consumer Protection. 
Retrieved from 
https://www.nass.usda.gov/
Statistics_by_State/Wiscon
sin/Publications/Annual_St
atistical_Bulletin/bulletin2
013_web.pdf 

NPPh Wisonsin 
fruit/vegetabl
e statistics 
2012 

non-spatial  NA NA annual state NA Taylor, C., Teran, J., Vale, 
K., & Woodstock, H. 
(2012). 2012 Wisconsin 
Agricultural Statistics 
(Annual Statistics 
Bulletin). State of 
Wisconsin: USDA’s 
National Agricultural 
Statistics Service 
Wisconsin Field Office & 
the Wisconsin Department 
of Agriculture, Trade, and 
Consumer Protection. 
Retrieved from 
https://www.nass.usda.gov/
Statistics_by_State/Wiscon
sin/Publications/Annual_St
atistical_Bulletin/bulletin2
012_web.pdf 

NPPh NASS 
quickstats 

Non-
spatial 

NA NA annual Month NA USDA/NASS QuickStats 
Ad-hoc Query Tool. (n.d.). 
Retrieved March 20, 2018, 
from 
https://quickstats.nass.usda.
gov/ 
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Appendix D: Counties of Conservation Interest 

The following tables show a selection of the socioecological characteristics of 

counties of conservation interest:  

Table D-1: Landscape characteristics of counties in the top 50th percentile of mean landscape diversity and the bottom 50th 
percentile of %HANPP0.  

uniqueID 2010 Population 
Estimate 

% Crop Cover % Forest Cover Roads (m m-

2)) 
HANPP (kg C m-2) 

26alger 9579 2.224044899 87.16623678 0.001419538 0.068798305 

26baraga 8855 2.384312277 89.00044255 0.001094513 -0.013258647 

26benzie 17508 7.476621193 66.23341377 0.002377849 -0.227360752 

26chippewa 38614 9.351378271 72.0589167 0.001217388 0.027462054 

26delta 37049 6.404876776 82.23114002 0.001504923 0.136927516 

26dickinson 26155 3.490785244 87.07086753 0.00148994 0.273767546 

26gogebic 16399 1.434667474 88.45990859 0.001134048 0.208705934 

26houghton 36724 4.779193 84.5991257 0.001562639 0.037383309 

26iron 11809 2.311708194 87.48619803 0.001251963 0.355074076 

26keweenaw 2169 0.032785158 80.61870457 0.000668811 -0.364094058 

26lake 11511 5.442682817 84.17680122 0.001743847 0.10473479 

26luce 6599 1.083138408 85.78664485 0.001134001 -0.062971157 

26mackinac 11107 2.651917171 79.29143649 0.001188226 0.003732538 

26manistee 24590 10.70453876 69.71807204 0.002005764 -0.186816108 

26marquette 67083 0.94887772 86.2705184 0.001474621 0.135047444 

26montmorenc
y 

9782 4.667653105 80.7744234 0.001789231 0.163079552 

26ontonagon 6776 4.408479175 89.06289971 0.000808267 0.224583958 

26oscoda 8603 2.955789395 84.7382594 0.002125425 0.160721695 

26schoolcraft 8470 1.485621537 75.42690198 0.000984298 0.150775535 

55ashland 16143 5.155742455 86.13839531 0.001218888 0.459966304 

55bayfield 15006 6.208098537 84.53008472 0.001617959 0.345707178 

55douglas 44134 4.975037347 83.37501172 0.001350423 0.423791413 

55florence 4398 4.967081245 86.88511646 0.001297949 0.123572226 

55forest 9296 2.859472891 88.01642041 0.001298049 0.269558804 

55iron 5924 1.623343871 84.42590605 0.001093594 0.496548735 

55menominee 4268 0.476141983 91.63087942 0.001460515 -0.197771056 

55oneida 35936 2.79597911 74.02315643 0.001596073 0.390613551 

55sawyer 16566 4.338850558 80.67259868 0.001206843 0.332332539 

55vilas 21441 1.337178817 69.85573875 0.001825138 -0.041990001 
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Table D-2: Landscape characteristics of counties in the top 50th percentile of mean connectedness and the 
bottom 50th percentile of %HANPP0.  

uniqueID 2010 Population 
Estimate 

% Agricultural 
Landcover 

% Forest Cover Roads (m/m^2) HANPP (kgC/m^2) 

26alger 9579 2.224044899 87.16623678 0.001419538 2450490097 

26baraga 8855 2.384312277 89.00044255 0.001094513 2401111656 

26benzie 17508 7.476621193 66.23341377 0.002377849 899470472.8 

26cheboygan 26067 6.35743655 68.51500191 0.001740167 2064511363 

26chippewa 38614 9.351378271 72.0589167 0.001217388 4314871972 

26crawford 14054 0.822367191 80.3863929 0.002524708 1459202183 

26delta 37049 6.404876776 82.23114002 0.001504923 3075781266 

26dickinson 26155 3.490785244 87.07086753 0.00148994 2012441187 

26gogebic 16399 1.434667474 88.45990859 0.001134048 2962358928 

26houghton 36724 4.779193 84.5991257 0.001562639 2699200472 

26iron 11809 2.311708194 87.48619803 0.001251963 3136208981 

26kalkaska 17141 4.955259575 73.33107685 0.00200349 1478227304 

26keweenaw 2169 0.032785158 80.61870457 0.000668811 1525080323 

26lake 11511 5.442682817 84.17680122 0.001743847 1488236642 

26luce 6599 1.083138408 85.78664485 0.001134001 2400431913 

26mackinac 11107 2.651917171 79.29143649 0.001188226 2818715487 

26manistee 24590 10.70453876 69.71807204 0.002005764 1443313004 

26marquette 67083 0.94887772 86.2705184 0.001474621 4847832235 

26montmorency 9782 4.667653105 80.7744234 0.001789231 1456834912 

26ontonagon 6776 4.408479175 89.06289971 0.000808267 3442230165 

26oscoda 8603 2.955789395 84.7382594 0.002125425 1480146051 

26otsego 24438 7.323082158 72.79033544 0.00201794 1362131379 

26roscommon 8470 0.865577647 72.94156249 0.0022866 1501887213 

26schoolcraft 16143 1.485621537 75.42690198 0.000984298 3163659036 

55ashland 15006 5.155742455 86.13839531 0.001218888 2666929180 

55bayfield 44134 6.208098537 84.53008472 0.001617959 3902161001 

55douglas 4398 4.975037347 83.37501172 0.001350423 3477360831 

55florence 9296 4.967081245 86.88511646 0.001297949 1288483052 

55forest 5924 2.859472891 88.01642041 0.001298049 2710289727 

55iron 4268 1.623343871 84.42590605 0.001093594 2079041946 

55menominee 16566 0.476141983 91.63087942 0.001460515 945096244.3 

55oneida 35936 2.79597911 74.02315643 0.001596073 3201025347 

55sawyer 16566 4.338850558 80.67259868 0.001206843 3497470078 
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These counties all fall within the top 50th percentile of either mean landscape 

diversity or mean local connectedness, and the bottom 50th percentile of %HANPP0. Thus, 

we have identified them as sites of high conservation value, given that they have both 

landscapes supportive of long-term biodiversity protection and, at present, low resource 

extraction rates. Road data was obtained from (Elvidge et al. 2003) and population data was 

obtained from the US Census Bureua (“Annual Estimate of the Resident Population: April 1, 

2010 to July 1, 2017,” 2018).  
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