Multi-Sense Embeddings Through a Word Sense Disambiguation Process

Terry Ruas William Grosky Akiko Aizawa
CIS Department CIS Department University of Tokyo
University of Michigan University of Michigan National Institute of Informatics

Dearborn, MI, USA
truas@umich.edu

Abstract

Natural Language Understanding has seen an
increasing number of publications in the last
years, especially after robust word embed-
ding models became popular. These models
gained a special place in the spotlight when
they proved themselves able to capture and
represent semantic relations underneath huge
amounts of data. Nevertheless, traditional
models often fall short in intrinsic issues of
linguistics, such as polysemy and homonymy.
Multi-sense word embeddings were devised to
alleviate these and other problems by repre-
senting each word-sense separately, but stud-
ies in this area are still in its infancy and much
can be explored. We follow this scenario
by proposing an unsupervised technique that
disambiguates and annotates words by their
specific sense, considering their context influ-
ence. These are later used to train a word em-
beddings model to produce a more accurate
vector representation. We test our approach
in 6 different benchmarks for the word simi-
larity task, showing that our approach can sus-
tain good results and often outperforms cur-
rent state-of-the-art systems.

1 Introduction

Semantic analysis is probably one of the oldest chal-
lenges in Natural Language Processing (NLP) and
still present in almost all of its downstream appli-
cations. The translation of semantics to a computer
is not an easy task to accomplish. Even among hu-
mans, the concept of what is semantics is not unan-
imous, which leads to multiple interpretations and
make things even more challenging (Putnam, 1970).

Dearborn, MI, USA
wgrosky@umich.edu

Tokyo, Japan
aizawa@nii.ac.jp

In spite of being a classical problem, its popu-
larity continues to draw attention of many research
projects. Grosky and Ruas (2017) analyzed 2,872
scientific publications (e.g. papers, journals, re-
ports) between 2005 and 2015, revealing an increas-
ing trend in publications involving Semantics and
Context Aspects in different areas of multimedia. In
these publications, methods applying different tech-
niques try to capture semantic characteristics of text
documents using clever approaches, such as: la-
tent semantic analysis, word embeddings, machine
learning, artificial neural networks (NN) and others.

After recent contributions (Bengio et al., 2003;
Mikolov et al., 2013a; Mikolov et al., 2013b; Pen-
nington et al., 2014), word embeddings techniques
have received much attention in the NLP commu-
nity. They represent words or phrases by real num-
ber vectors which are used to extract relationships
between them. Their overall performance have
demonstrated superior results in many different NLP
tasks, such as: chunking (Dhillon et al., 2011),
meaning representation (Bordes et al., 2012), ma-
chine translation (Mikolov et al., 2013b), relation
similarity (RS) (Mikolov et al., 2013c; Iacobacci et
al., 2015), sentiment analysis (Socher et al., 2013),
word sense disambiguation (WSD) (Navigli, 2009;
Chen et al., 2014), word similarity (WS) (Nee-
lakantan et al., 2014; Chen et al., 2015; Camacho-
Collados et al., 2015; Iacobacci et al., 2015) and
topic categorization (Pilehvar et al., 2017).

Notwithstanding their robustness, most conserva-
tive word embedding approaches fail to deal with
polysemy and homonymy problems (Li and Juraf-
sky, 2015). Recently, researchers have been trying

to improve their semantic representations by pro-
ducing multiple vectors (multi-sense embeddings)
based on the word’s sense, context and distribu-
tion in the corpus (Reisinger and Mooney, 2010b;
Huang et al., 2012). Another concern with tradi-
tional techniques is that they often neglect exploring
lexical structures with valuable semantic relations,
such as: WordNet (WN) (Fellbaum, 1998), Con-
ceptNet (CN) (Liu and Singh, 2004) and BabelNet
(BN) (Navigli and Ponzetto, 2012). Some publica-
tions take advantage of these structures and combine
them to multi-sense representations, improving their
overall performance even more (Camacho-Collados
et al., 2015; Rothe and Schiitze, 2015; Iacobacci et
al., 2015; Li and Jurafsky, 2015; lacobacci et al.,
2016; Pilehvar and Collier, 2016; Mancini et al.,
2017).

In this paper, we propose a model that allows
us to obtain specific word-sense vectors from any
non-annotated text document as input. For this, we
extend the disambiguation algorithm presented by
Ruas and Grosky (2017) to find the most suitable
sense of a word based on its context, which is later
trained into a NN to produce specific vectors. The
benefits of our approach are fivefold. First, we pro-
vide an unsupervised annotation algorithm that takes
the context of each word into consideration. Sec-
ond, our model disambiguates words from any part-
of-speech (POS), mitigating issues with polysemy
and homonymy. Third, the annotation and training
steps in our approach are independent, so if more
robust algorithms are available they can be easily in-
corporated. Fourth, the generated vectors keep the
same algebraic properties as traditional word em-
bedding models, such as: vec(king) - vec(man) +
vec(woman) = vec(queen). Lastly, the produced
vectors can be used in the system iteratively to im-
prove the model’s performance in the disambigua-
tion and training parts. To validate the quality of
our work, we test our approach in 6 different bench-
marks for WS, showing that our model can sus-
tain good results and sometimes outperform current
state-of-the-art systems.

2 Related Work

Distributed representation of words from docu-
ments has received substantial attention from the

NLP community in the last years, especially af-
ter the extremely popular word2vec proposed by
Mikolov et al., (2013a; 2013b). However, the idea
of representing words in an n-dimensional space
goes back to the 20th century with the bag-of-
words (BOW) (Harris, 1954). Despite its simplistic
methodology, the BOW approach brings many dis-
advantages, such as: word order is lost, data sparsity
and high dimensionality, to name a few. Bengio et
al., (2003) try to solve the latter problem by propos-
ing a neural probabilistic language model that learns
a representation while keeping a compact probabil-
ity distribution of word sequences. Collobert and
Weston (2008) later defined a faster general sin-
gle convolutional network architecture showing that
multitask and semi-supervised learning can improve
the generalization in shared tasks, such as: POS
tagging, morphological segmentation, named entity
recognition (NER) and WS. Beside these, other lan-
guage prediction tasks are also popular in the NLP
community (Schwenk et al., 2006; Zhong and Ng,
2010; Turian et al., 2010; Turney and Pantel, 2010;
Bordes et al., 2012; Zou et al., 2013)

It is undeniable that word2vec’s contributions
with continuous skip-gram (SG) and continu-
ous bag-of-words (CBOW) from Mikolov et.
al., (2013a; 2013b) brought a legion of new publi-
cations to the NLP, or more specifically, the word
embeddings, arena. Its popularity is due to, among
other things, the efficient log-linear NN language
model, robustness and low dimensionality vector
representation. Both approaches make vector rep-
resentations of words with similar contexts to have
similar values, a theory described in the Distribu-
tional Hypothesis which states “a word is character-
ized by the company it keeps” (Firth, 1957). In the
CBOW training model, one tries to predict a word
given its neighboring context, while SG does the
inverse, predicting the context given a target word.
Additional word embedding representation are also
explored by GloVe (Pennington et al., 2014) and
SENNA (Collobert et al., 2011).

(8,38) Even though our approach has a disam-
biguation step in its architecture, the presented ex-
periments and discussions focus on how the com-
bination of our WSD and word embeddings can be
used to improve results in the WS task and benefit
one another. We do have future plans to compare

our WSD technique with alternative methods, but
for now this is beyond the scope of this paper. A
considerable number of publications and panorama
of the field is detailed by Navigli’s (2009) survey.
(27)Nearly all publications in embedding words
into single vectors often suffer from the same prob-
lem, ambiguous words are represented in a unique
vector. In other words, polysemy and homonymy
are not handled properly. For example, in the sen-
tence “This club is great!” is not clear if the term
club is related to the sense of baseball club, club-
house, golf club or any other. Systems that use
standard word embeddings, like word2vec or Glo Ve,
will most likely represent all possible meanings for
the term club in one single n-dimensional vector.
Some researchers try to solve this representation
limitation by producing separate vectors for each
word-sense. Even though the number of publica-
tions in this area is still small, their early find-
ings demonstrated encouraging results in many NLP
challenges (Li and Jurafsky, 2015). One of the
earliest models was proposed by Reisinger and
Mooney (2010b), and Huang et al., (2012). Both
of them work with the concept of clustering word-
senses by their context. The former follows a proba-
bilistic approach to produce a multi-prototype vector
space model, using word sense discovery to evalu-
ate a word’s context. They set K clusters to repre-
sent the different contexts where the word is used.
The latter introduces a NN language model capa-
ble of distinguishing the semantics of words by con-
sidering their global and local clusters representing
their context. Trask et al., (2015) extended Huang
etal., (2012)’s model by leveraging supervised NLP
labels, instead of relying on unsupervised clusters
techniques to produce specific word-sense vectors.
Other techniques also take advantage of proba-
bilistic models to learn their own representation for
each sense. Tian et al., (2014) design an efficient
expectation maximization algorithm integrated with
the SG model to avoid the issues brought by cluster-
ing based approaches. Another modification of SG
is proposed by Neelakantan et al., (2014), in which
they introduce the Multi-Sense Skip-Gram (MSSG)
model. Their technique performs word sense dis-
crimination and embedding at the same time, im-
proving its efficiency. In the MSSG version, they
assume a specific number of senses for each word,

while in the Non-Parametric Multi-Sense Skip-Gram
(NP-MSSG) this number varies. Nieto Pina and Jo-
hansson (2015) also explore the SG training phase
by initializing all possible variations of word-senses,
but only train the most probable ones according to
their maximization objective. Other publications us-
ing pre-trained word embeddings to process them
into word-sense vectors are described in (Pilehvar
and Collier, 2016; Johansson and Pifia, 2015).

In multi-sense embeddings approaches the use
of lexical resources to improve their performance
in NLP tasks is quite common. WN!, CN? and
BN? are examples of popular resources used to ob-
tain word-sense vectors. Based on BN, Iacobacci
et al’s, (2015) system learns word-sense embed-
dings for WS and RS tasks, moving from a word
to sense embedding representation. Rothe and
Schiitze (2015; 2017) use WN in their so called
AutoExtend to produce token embeddings from a
set of synonyms (synsets) and lexemes using a pre-
existing word embeddings model. Their approach
is detached from any word-type representation, so
it can be easily translated to other learning tech-
niques. Camacho-Collados et al., (2015; 2016) pro-
posed a semantic vector representation for BN called
NASARI which is extended to a multilingual sce-
nario. lacobacci et al., (2016) showed how WSD
systems can have their performance improved if
word embeddings are used. Pilehvar et al., (2017)
developed a graph-based WSD algorithm to improve
performance in downstream NLP applications (e.g.
topic categorization, polarity detection). More re-
cently, Mancini et al.,’s (2017) algorithm associates
the words to the most connected senses in a sentence
to produce their embeddings.

Chen et al., (2014) system performs WSD on
vector embeddings and uses them to learn word-
sense representations from the relevant occurrences.
Their WSD technique considers only the most simi-
lar words in WN’s glosses* in the process. Likewise,
Chen et al., (2015) also use WN’s glosses and con-
text clustering to produce word-sense vectors via a
convolutional NN, which also needs to be trained.

1https ://wordnet .princeton.edu
http://conceptnet.io
Shttps://babelnet.org
*nttps://wordnet.princeton.edu/
documentation/wngloss7wn

https://wordnet.princeton.edu
http://conceptnet.io
https://babelnet.org
https://wordnet.princeton.edu/documentation/wngloss7wn
https://wordnet.princeton.edu/documentation/wngloss7wn

Our approach, on the other hand, considers all the
words in WN’s glosses, not just the most similar
ones. In addition, there is no extra training or hy-
perparameter adjustments other than those required
by a standard word2vec implementation.

3 (3, 12) Synset Disambiguation,
Annotation and Embedding

The main idea of our process is to have a modular
system with two independent tasks: (i) disambigua-
tion followed by annotation and (ii) word embed-
dings training. This configuration allows us to in-
corporate more robust techniques in the future, spe-
cially for the training step. In the first task, we
process a collection of articles (documents) from
two Wikipedia Dumps (Section 5) to transform each
word in the corpus into a synset by using WN as
our lexical resource (Miller, 1995; Fellbaum, 1998).
This is done through one of two algorithms: Most
Suitable Sense Annotation (MSSA) (Section 3.1),
Most Suitable Sense Annotation N Refined (MSSA-
NR) (Section 3.2) and Most Suitable Sense Annota-
tion - Dijkstra (MSSA-D) (Section 3.3). In the sec-
ond task, we use Mikolov et al., (2013a; 2013b)’s
word2vec to train the produced corpus and obtain
n-dimensional vectors of each word-sense, repre-
sented by synsets (multi-sense embeddings).

(3) In their initial form, both MSSA and MSSA-
D use Google News vectors® to help disambiguate
the word-senses in the corpus. MSSA works lo-
cally, trying to choose the best representation for a
word-sense given its context window, one at a time.
MSSA-D on the other hand, has a more global per-
spective since it considers the lowest overall cost of
the word-senses from first to the last word in a docu-
ment. Once the synset embeddings models are avail-
able, we can feed the system again and improve the
disambiguation step in either MSSA or MSSA-D al-
gorithms, relieving it from the original Google News
vectors dependency. We call this approach MSSA-
NR, where N represents the number of iterations
for the produced synsets is used in the disambigua-
tion setp. Different from other systems (Chen et al.,
2014; Chen et al., 2015; Rothe and Schiitze, 2015),
our method has only one training phase and does not

Shttps://code.google.com/archive/p/
word2vec/

rely on any extra hyperparameters other than those
required in the original word2vec implementation.
In the following sections we will explain the details
of our approach illustrated in Figure 3.

Most Suitable Synset Annotation Word Embeddings Algorithm

v
<
=
@
@
-
o
o
=
°
=
7
m

2o
7 <
=
S 2
20
5%
@

@

1
1
1
{ GoogleNews (i) nitial 1
| Token Embedding| __Vectors :
|

h

Model
Synset

[P, Vectors (ii) Iterative

Figure 1: General system architecture of MSSA, MSSA-
D and MSSA-NR.

3.1 (3) Most Suitable Sense Annotation
(MSSA)

As Ruas and Grosky (2017) presented, each eval-
uated word w; takes into consideration its context,
represented by its surrounding neighboring words,
w;—1 and w;41 as illustrated in Algorithm 1.(38) We
also use WN as our lexical database to extract all
synsets from each word in the text, but our algorithm
works for any word mapped in WN, not just nouns.
(39) In our approach, all text is preprocessed by:
normalizing all tokens in lowercase, removing punc-
tuation, html tags, numbers, common English stop-
words and discarding all words not present in WN.
After the initial data cleaning, we extract all pair of
synsets and glosses for each word w; in a sliding
context window of 3 words. (lines 4:13). (18) Our
hypothesis is similar to the one proposed by Mikolov
et al., (2013a)’ CBOW, which uses the context to
predict a given word. However, since our algorithm
considers all synsets from w;, w;—1 and w;4+1, we
currently limit this word context window to restrict
the number of comparisons necessary to infer the
most suitable meaning for w;. It is in our plans to
incorporate a larger context without compromising
the overall performance for this step. Next, after
removing common English words from the glosses,
(19) we retrieve and average the embeddings from
the remaining tokens on it by using Google News

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

vectors®, which we call gloss — average — vector.
(11) If there are no remaining tokens in the gloss
or no vectors in the model an empty vector will
be assigned for that synset-gloss pair. However,
this scenario is very unlikely since the words in the
glosses have their vector extracted from a model
trained on a huge corpus. This process is done for
all synset-glosses for each element w; (current),
w;i—1 (former) and w; 41 (later) respectively, (29)
where N, M and P represent their total number of
available synset-glosses per word (lines 14:17). The
gloss-average-vector for each synset, from the words
in the sliding window, is used to calculate the sim-
ilarity with its immediate neighbors and the sense
for a_current with the highest value is stored. In
other words, for each word w; we calculate the co-
sine similarity against w;_; and w;4; with respect
to their synset-glosses vectors and return the synset
for a_current that produces the best result (line 18).
The synset with the highest similarity, regarding its
neighbors word-sense, is then chosen to represent
each word w; and added to a list of tokens (Line 19).
The first and the last tokens are treated differently
since they do not have a complete context window
(lines 8 and 11).

In the initial configuration, we use Google News
vectors as our standard word embeddings model (tm
in Lines 14:17), which was trained over 100 billion
words and contains 300-dimensional vectors for 3
million unique words and phrases (Mikolov et al.,
2013b). This model can work as an initialization
seed in our approach, as we can use the synsets em-
beddings and re-feed our system so in the next it-
eration we use our calculated vectors of synsets to
disambiguate the word-senses in the corpus.

3.2 (20,21,3)Most Suitable Sense Annotation N
Refined (MSSA-NR)

Once we train our own model based on synset to-
kens, we can feed the system with it again and ob-
tain a faster synset representation to be trained in
the word embedding algorithm. We hypothesize that
by using a disambiguated and granular embeddings
we will obtain a more refined synset model. The
algorithm for this approach is similar to the one pre-

*https://code.google.com/archive/p/
word2vec/

Algorithm 1 Most Suitable Sense Annotation
(MSSA)

Require: d = {wj, ..., wn} : w;3 in lexical database (WordNet)

1: function MSSA(d, tm, ld) > Where
d - document containing words wy,, tm - trained word embedding
model, ld - lexical data base

2 list_of _tokens = @)

3 for i = 0 ton do

4 current = synset-glosses(w;, Id)

5 ifi # 0 A i # n then

6: former = synset-glosses(w;_1, Id)

7.

8

9

latter = synset-glosses(w; 41, ld)
else if i = O then
former = None

10: latter = synset-glosses(w; 41, ld)

11: else

12: former = synset-glosses(w; 1, ld)

13: latter = None

14: for sc,s¢,s; in (current, former, latter) do > Where
0<c<N,0<f<Mand0<s<P

15: a_current <— gloss-avg-vec(sc, tm)

16: a-former <— gloss-avg-vec(s s, tm)

17: a_latter +— gloss-avg-vec(s;, tm)

18: t = bestscore(a_current, a_former, a_latter)

> (30) Where the cosine similarity is performed between
(a_current,a_former) and (a_-current,a_latter), returning the
synset with the highest score for a_current
19: list_of_tokens +— ¢
20: return list_of tokens(synsets)

sented in Section 3.1, so we are still using the same
training cleaned corpus composed by Wikipedia ar-
ticles, but the processing inner steps are a little dif-
ferent.

We identify this refined case as MSSA-NR, where
N represents the number of times we feed the sys-
tem with the generated vectors by our own ap-
proach. Algorithm 2 starts similar to Algorithm 1
as we also use WN as our lexical database and
still work with the same sliding context window
for the words. The main difference relies between
lines 4 and 17, where since our embeddings are
made of synsets we do not need to extract the pairs
of synset-glosses nor calculate the gloss-average-
vector for each synset. Instead, we just extract all
synsets available in WN for w; (current), w;—1
(former) and w;41 (later) (lines 4:13) and directly
retrieve their respective vector embeddings from the
synset model trained, where), R and S repre-
sent their total number of available synsets per word
(lines 4:13). Since MSSA-NR is using an embed-
ding model on the same corpus it was firstly gen-
erated, all the words will have at least one synset
mapped, so there is no risk of not finding a vec-
tor for a given word. After we retrieve the vec-

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/

Algorithm 2 Most Suitable Sense Annotation N Re-
fined (MSSA-NR)

Require: d = {wj, ..., wn} : w;3 in lexical database (WordNet)

1: function MSSA-NR(d, tsm, ld) > Where d - document
containing words wn,, tsm - trained synset embedding model, Id -
lexical data base

list_of _tokens = @
for i = 0ton do
current = synsets(w;, Id)

2
3
4:
5: ifi # 0 A i # n then
6.
7
8
9

former = synsets(w;_1, ld)

latter = synsets(w;1, Id)
else if ¢ = 0 then

former = None

10: latter = synsets(w;11, Id)

11: else

12: former = synsets(w;_1, ld)

13: latter = None

14: for sc,s¢,s; in (current, former, latter) do > Where
0<e¢<Q0<f<Rand0<s<§$S

15: a_current <— synset-vec(s., tsm)

16: a-former <— synset-vec(s ¢, tsm)

17: a_latter <+— synset-vec(s;, tsm)

18: t = bestscore(a_current, a_former, a_latter)

> Where the cosine similarity is performed between
(a_current,a_former) and (a-current,a_latter), returning the
synset with the highest score for a_current
19: list_of_tokens +— ¢
20: return list_of tokens(synsets)

tor values for all synsets we calculate the simi-
larity of them for the pairs (a_current,a_former)
and (a_current,a_later) and return the synset for
a_current that produces the best result (lines 18 and
19).

The hope is that, over many passes, the results
will converge to some value. We can stop the pro-
cess after a finite number of passes, when we are sat-
isfied that the results do not change much, or when
the cost incurred for running another pass of the al-
gorithm is too high to justify another disambiguation
and annotation round.

3.3 (13,3) Most Suitable Sense Annotation -
Dijkstra (MSSA-D)

We also developed another variation for the MSSA
algorithm, in which we model the documents in the
corpus as graphs Docy(N, E), where Docy, is the
set of £ documents; N is the set of nodes, repre-
sented by word-senses (synsets) and E' is the set of
edges associating two nodes. Inspired by Dijkstra’s
algorithm (1959), we use a modified version of it to
minimize the over all cost of moving from one node
(synset) to another for all the words in the document.
The weights on the edges are represented by the

cosine distance (1 - cosine similarity) between the
gloss-average-vector of two sequential word-senses,
which help to select one word-sense from the ones
available. All the steps in MSSA-D design are the
same as the ones presented in Section 3.1 for MSSA
(Algorithm 1), with the exception there is no sliding
context window for the disambiguation part. Differ-
ent from MSSA, in the MSSA-D we analyze the dis-
ambiguation problem globally, looking for the short-
est path from one word-sense to the next. Figure 3.3
illustrates a toy example of five words in which the
highlighted path indicates the lowest cost consider-
ing their word-senses wy, ,,,, Where n is the word po-
sition associated and m its respective sense. In the
end, the objective of this algorithm is the same as
the ones presented in Sectionsfefssec:mssa and 3.2,
transform a training corpus composed by words into
a corpus of synsets to be trained by word2vec.

Figure 2: MSSA-D illustration of the shortest path from
w1 to ws through their respectives word-senses.

As in MSSA, it is also possible to apply MSSA-
NR recurrent methodology into MSSA-D and use
the produced synset embeddings instead of the
Google News vector one. In Section 5, we describe
the different setups used in our experiments to ex-
plore our techniques.

3.4 Synset to Embeddings (Synset2Vec)

Once all words are properly processed into synsets,
we feed a word2vec implementation using the
CBOW as training algorithm. This choice is justified
due to of its popularity among the compared sys-
tems, reported superiority in performance and cap-
turing the context of words in large datasets (Yu and
Dredze, 2014; Yao et al., 2017; Bojanowski et al.,
2017).

To keep our vectors interpretable - as pointed out
by Pachenko (2016) - across different platforms, we

represent each word token as key in the following
format: word#synset_of fset#pos; where word
is the word itself, normalized and in lower case;
synset_of fset is an 8 digit, zero-filled decimal in-
teger that corresponds to a unique word-sense and
pos is a part-of-speech tag (e.g. n for nouns, v for
verbs, a for adjective, s for adjective satellite and r
for adverb)’. Since we have independent tasks for
annotation and word embeddings training, if a more
robust technique is proposed in the future, we can
easily change to it.

4 (12) Multi-Sense Embeddings Measures

In a standard n-dimensional vector representation
(e.g. word2vec), there will be just one embedding
for each token to calculate any similarity measure
between them. In a multi-vector representation, each
word is associated with a set of senses, each with
a vector representation. Hence, the similarity of
these word-senses need to be calculated in a differ-
ent way. Both representations make use of several
benchmarks to evaluate how good they are in WS
tasks. These benchmarks can be grouped into two
categories, with and without context information. In
the first, a similarity score is given for two words in
isolation, without any extra information about them.
In the second, each word is presented with a sen-
tence to help contextualize its semantic value.

Considering the multi-vector representation, two
metrics were initially proposed by Reisinger and
Mooney (2010b): AvgSim and MaxSim. In AvgSim,
word similarity is calculated by considering the av-
erage similarity of all word-sense embeddings for
the pair, as shown in Equation 1.

N M
AvgSim(u, w) =N gg (w,7)) (1)

where v and w are the words to be compared; NV
and M are the total number of available senses for
u and v respectively; d(e(u, 1), e(w, 7)) is the simi-
larity measure between the word-sense embeddings
sets denoted by e(u, i) and e(w, j), for the words u
and w, and each of their senses 7 and j. In this paper,

"nttps://wordnet .princeton.edu/
documentation/wndb5wn

all similarity measures are calculated using the co-
sine similarity between any two vectors. In MaxSim,
the similarity is the maximum value among all pairs
of word-sense embeddings, as illustrated in Equa-
tion 2

max

e e

MaxzSim(u, w) = d(e(u,i), e(w, 7))

2

(28)Reisinger and Mooney (2010b) also proposed
AvgSimC and MaxSimC, these take into account the
similarity of two words when their context is avail-
able. In this scenario, the context is represented by a
sentence where each word is used, this helps to bet-
ter illustrate the meaning of them. Both, AvgSimC
and MaxSimC are described in Equations 3 and 4
respectively.

| oM
AvgSimC(u,w) P(u, ¢y, 1)
g (= N ;; 3
P(w, ¢y, j) x d(e(u,), e(w, 7))

MazSimC(u,w) = d(eg(u, i), ex(w,7)) (4)

(28)where P(u,cy,i) = d(e(u,i),cy), is defined
as the similarity of a specific word-sense e(u, i) with
its context c,, which is obtained by averaging the
vectors of all words in the sentence that accompanies
each word v and w. Different from single word vec-
tor representations, our model produces vectors for
each word-sense, so we also consider all available
vectors for the words in the context sentence as well.
er(u,i) = argmaxd(e(u,i),c,) is the maximum
similarity obtained among all word-senses e(u, 1),
with respect to its context c,,. All these terms are
defined analogously for w and j as well.

Huang et al., (2012) argued that word representa-
tions should be discriminated considering their sur-
rounding words (local context) and their role in the
entire document (global context). Their training
model produces two vector types, one representing
each word-sense and another for the word in the
entire document, evaluated through LocalSim and
GlobalSim respectively (Neelakantan et al., 2014).
Different from Huang et al., (2012) and Neelakan-
tan et al., (2014) our approach does not produce

https://wordnet.princeton.edu/documentation/wndb5wn
https://wordnet.princeton.edu/documentation/wndb5wn

global vectors during the training step, only specific
ones. Therefore, to obtain a global representation of
a word we average all word-sense vectors of u and w
available to calculate their similarity, as Equation 5
shows.

GlobalSim(u, w) = d(ji(u.1), fi(w,5)) (5)

where f[i(u,7) and fi(w, j) represent the average
of all word-sense vectors for v and w. As LocalSim,
we can use the original MaxSimC instead, since they
work under the same assumptions (Reisinger and
Mooney, 2010b; Neelakantan et al., 2014).

S Word Similarity Experiments

We designed a series of experiments for the WS
task to evaluate how our algorithms compare against
other approaches in the literature. In the next sec-
tion we will provide details on the training corpus,
benchmarks used and assessed systems.

5.1 Training Corpus

We applied our MSSA algorithms in two datasets
to transform their words into synsets, using WN
3.1 (Fellbaum, 1998) as our lexical database. These
datasets are Wikipedia Dumps composed by wiki ar-
ticles from April 2010 (WD10) (Shaoul and West-
bury, 2010) and January 2018 (WD18). While
WDI10 is commonly used as a training corpus in
many WS tasks (Huang et al., 2012; Neelakantan
et al., 2014; Iacobacci et al., 2015; Li and Jurafsky,
2015; Chen et al., 2015; Liu et al., 2015), WDI18 is
introduced by us as a variation in our experiments.
Table 1 shows the details for both training sets in our
experiments.

POS Words (10%) Synsets
WD10 WD18 | WD10 WD18
Nouns 299.41 463.31 | 55731 56546
Verbs 130.14 161.96 11975 12237
Adverbs 27.25 31.17 3091 3056
Adjectives 7577 104.03 15512 15798
Total 532.57 760.47 | 86309 87637

Table 1: Dataset token details. WD10 - Wikipedia Dump
2010 (April); WD18 - Wikipedia Dump 2018 (January).

5.2 Hyperparameters, Setup and Details

Once all words in the training corpus are processed
into synsets, we use a word2vec’s implementation to
produce our synset embeddings. The hyperparame-
ters are set as follows: CBOW for the training algo-
rithm, window size of 15, word minimum count of
10, hierarchical softmax and vector sizes of 300 and
1000 dimensions. If not specified, all the other hy-
perparameters were used with their default value®.
Our system was implemented using Python 3.6.5,
with NLTK (Natural Language Toolkit) 3.2.5, using
the gensim 3.4.0° (Rehtiek and Sojka, 2010) library.

(32,33,22)In our experiments, we evaluate our
approach with several systems described in Sec-
tions 5.4 and 5.5, using two different training
datasets (WD10 and WDI18) for the WS task as
a whole. However, in a secondary analysis we
also explored the properties of our models sepa-
rately through different perspectives. For WD10,
we discuss the effects of the number of iterations on
MSSA-NR, with —N ranging from 0 to 2. N =
0 characterizes the initial scenario in Figure 3, in
which we use Google News vectors for the disam-
biguation step. For WD18, we investigate which of
our representations of a word-sense performs bet-
ter in the task, the one considering a local context
(MSSA) or a global one (MSSA-D). The compari-
son of our recurrent model (MSSA-NR) against the
MSSA-D algorithm is not explored in the proposed
experiments, but we plan to include it in the near-
est opportunity. To analyze how our synset embed-
dings are affected by the timestamp difference in
the Wikipedia snapshot we do compare the results
of MSSA for both training corpus. The number of
dimensions used in our experiments is 300, where
there is no specific label, and 1000 indicated with
—T next to the algorithm’s name.

(26)The differences between metrics names,
benchmarks and hyperparameters make it difficult
to perform a direct comparison between systems.
Recent publications also pointed out several prob-
lems (e.g. model overfitting, subjectivity) in us-
ing WS tasks to evaluate word embeddings ap-
proaches (Berg-Kirkpatrick et al., 2012; Faruqui et

$https://radimrehurek.com/gensim/models/
word2vec.html
‘https://radimrehurek.com/gensim/

https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/

al., 2016). We try to mitigate this situation by con-
sidering some aspects, such as: general perspec-
tive of proposed architecture, detailed description
of the components used, training corpus specifica-
tion and hyperparameters. In addition, we also cat-
egorize the reported results by other systems ac-
cording to the correct metrics (AvgSim, AvgSimC,
MaxSim, MaxSimC/LocalSim and GlobalSim) de-
fined by seminal authors (Reisinger and Mooney,
2010b; Huang et al., 2012).

The results presented in Sections 5.4 and 5.5 are
organized in three blocks for each benchmark (Ta-
ble 2: 7), where they are separated by a break line
and ordered as follows:

1. Single-sense embeddings: traditional word
embeddings where all word-senses are col-
lapsed into one vector representation per word.
Approaches that concatenate a word vector
with its sense are also included;

2. Multi-sense embeddings: each word-sense
has a specific vector representation. Ap-
proaches that have a vector for both the word
and its senses separately are also included;

3. MSSA embeddings: groups all our proposed
models, only composed by multi-sense embed-
dings.

Results not reported by the authors in their sys-
tems are marked as ”-” for the given metrics.

With the exception of MSSG (Neelakantan et al.,
2014), (Chen et al., 2014) and CNN-MSSG (Chen
et al., 2015), which aretrained using the SG model,
all the compared systems either use CBOW or an
independent approach of word embeddings.

All proposed algorithms (MSSA, MSS-D,
MSSA-NR), corpora and models used in this paper
are available in a public repository '°.

5.3 Benchmarks Details

The experiments were separated into two major
categories, based on the datasets’ characteristics:
No Context Word Similarity (NCWS) and Context
Word Similarity (CWS). The former (from 1 to 5),
groups benchmarks used in WS tasks and provides

]Oto—be—provided—upon—acceptance

similarity scores for word pairs in isolation. The lat-
ter (6), is composed by only one dataset that pro-
vides a collection of word pairs with their similarity
scores. Each word is followed by sentences in which
they are used to illustrate a context where they are
applied. The benchmarks used are described as fol-
lows:

1. RG65: 65 noun pairs. Similarity scale from O
to 4 (Rubenstein and Goodenough, 1965);

2. MC28: 28 pairs of nouns that were chosen
to cover high, intermediate, and low levels of
similarity in RG65. Similarity scale from 0 to
4 (Miller and Charles, 1991; Resnik, 1995);

3. WordSim353: 353 noun pairs divided into two
sets of English word pairs. The first set con-
tains 153 word pairs (similarity) and the second
200 (relatedness). As in compared systems, we
use the concatenation of both sets. Similarity
scale from O to 10 (Finkelstein et al., 2002);

4. MEN: 3,000 word pairs, randomly selected
from words that occur at least 700 times in the
ukWaC and Wacky corpora combined, and at
least 50 times in the ESP Game. Similarity
scale from O to 50 (Bruni et al., 2012);

5. SimLex999: 666 noun-noun pairs, 222 verb-
verb pairs and 111 adjective-adjective pairs.
Similarity scale from 0 to 10 (Hill et al., 2015);

6. SCWS - Stanford Context Word Similar-
ity: 2,003 word pairs and their sentential con-
texts. It consists of 1328 noun-noun pairs, 399
verb-verb pairs, 140 verb-noun, 97 adjective-
adjective, 30 noun-adjective, 9 verb-adjective,
and 241 same-word pairs. Similarity scale from
0 to 10 (Huang et al., 2012).

We tried to keep our basic configuration as close
as possible to recent previous publications, so we
considered the cosine similarity as our similarity
measure and report the Spearman correlation value
(p) in our experiments. To guarantee a common sce-
nario between all benchmarks we normalized their
similarity scale to an interval of [-1, 1]. Very few
publications reported results for both Spearman and
Pearson correlation values, but we considered the

to-be-provided-upon-acceptance

first only, so more systems could be included in our
paper. The results reported in our experiments, for
all model variations, have high significant Spearman
order correlation, with p — value under 0.001.

Despite its similarity with our approach, one lim-
itation in our analysis is regards SensEmbed (Ia-
cobacci et al., 2015). SensEmbed uses the Tanimoto
distance for their vector comparison, which has
different properties from cosine similarity/distance
used by the other compared systems. Therefore,
even though SensEmbed presents good results, we
did not include them in our analysis.

5.4 No Context Word Similarity

In this section, we evaluate our model against
popular approaches available for 5 benchmarks:
RG65, MEN, WordSim353, SimLex999 and
MC28. We compare our results with: Pruned-TF-
IDF (Reisinger and Mooney, 2010a), SW2V (using
BN and WN with UMBC and Wikipedia Dump
from 2014) (Mancini et al., 2017), DeConf (Pilehvar
and Collier, 2016), Retro (using Glove with 6 billion
words and WN with all synsets) (Faruqui et al.,
2015), Glove (using 6 and 42 billion words) (Pen-
nington et al., 2014), Word2vec (Mikolov et al.,
2013b), (Chen et al., 2014), Word2vec (using
UMBC and WD14) (Mancini et al., 2017), (Huang
et al., 2012) and (NP)MSSG (for 50 and 300
dimensions) (Neelakantan et al., 2014).

Table 2 shows the results of MSSA against several
models for the RG65 benchmark, in which DeConf-
Sense (Pilehvar and Collier, 2016) presents the high-
est result considering the MaxSim measure. How-
ever, our model MSSA-2R-F hold superior scores
for AvgSim and GlobalSim (GloSim). Different
from DeConf, our model is capable to build on it-
self in every iteration by using the synset embed-
dings produced in the previous cycle, improving its
performance. This can be verified by the constant
increase in the Spearman correlation values reported
in our approaches (MSSA), using the WD10 dataset
for all three measures. The same two models are
also in the top results for the MEN benchmark in
Table 3. For this dataset, it seems that our model
converges quicker since there are no improvements
from MSSA-1R to MSSA-2R. We were only able
to see some progress when we moved from 300 to
400 dimensions (MSSA-2R-F). The increase of di-

Avg Max Glo
Models Sim | Sim | Sim

GloVe-42B 0.829
GloVe-6B 0.778
Retro-G6B 0.767
Retro-G6B-WN 0.842
‘Word2Vec - 0.754
DeConf-Sense 0.896
DeConf-Word - 0.761
SensEmbed 0.871 | 0.894
SW2V-Shallow - 0.740
SW2V-Babelfy - 0.700 -
MSSA(WD10) 0.779 | 0.857 | 0.830
MSSA-1R(WD10) 0.795 | 0.872 | 0.825
MSSA-2R(WD10) 0.814 | 0.869 | 0.858
MSSA-T(WD10) 0.783 | 0.878 | 0.845
MSSA-IR-T(WD10) | 0.825 | 0.871 | 0.856
MSSA-2R-T(WD10) | 0.822 | 0.878 | 0.859
MSSA(WD18) 0.828 | 0.794 | 0.821
MSSA-D(WD138) 0.801 | 0.826 | 0.817
MSSA-T(WD18) 0.776 | 0.847 | 0.816
MSSA-D-T(WD18) 0.795 | 0.839 | 0.835

Table 2: Spearman correlation score (p) on RG65 bench-
mark. Highest results reported in bold face.

Avg Max Glo
Models Sim | Sim | Sim

Retro-G6B 0.737
Retro-G6B-WN-All - 0.759
‘Word2vec(UMBC) 0.750 -
Word2vec(WD14) 0.720

Chen et al.,(2014) - 0.62
DeConf-Sense - 0.786
DeConf-Word - 0.732
SensEmbed 0.805 | 0.779
SW2V-BN-UMBC - 0.75
SW2V-WN-UMBC - 0.76
SW2V-BN-WD14 - 0.73
SW2V-WN-WD14 - 0.72 -
MSSA(WD10) 0.751 | 0.745 | 0.760
MSSA-1R(WD10) 0.781 | 0.751 | 0.790
MSSA-2R(WD10) 0.777 | 0.737 | 0.788
MSSA-T(WD10) 0.778 | 0.753 | 0.785
MSSA-IR-T(WD10) | 0.783 | 0.747 | 0.791
MSSA-2R-T(WD10) | 0.785 | 0.744 | 0.795
MSSA(WD18) 0.745 | 0.769 | 0.775
MSSA-D(WD18) 0.768 | 0.716 | 0.765
MSSA-T(WD18) 0.769 | 0.749 | 0.776
MSSA-D-T(WD18) 0.772 | 0.717 | 0.767

Table 3: Spearman correlation score (p) on MEN bench-
mark. Chen et al., (2014) and Word2Vec results were re-
ported by Mancini et al., (2017). Highest results reported
in bold face.

mensionality seems to have a positive effect in most
word embeddings models, including ours.

In Table 4, all results perform worse than
GloVe (Pennington et al., 2014) for the GloSim mea-
sure for the GloSim metric. However, to reach this

score they need to process 42 billion tokens, while
when considering just 6 billion its performance de-
creases 13.30%. We, in the other hand, with a lit-
tle less than 540 (WD10) million tokens can ob-
tain superior results with MSSA-2R-F. Even though
Pruned-TF-IDF (Reisinger and Mooney, 2010a)
shows a competitive Spearman correlation value for
GloSim, their model does not use low dimension-
ality vectors. In addition, its model relies on sev-
eral parameter adjustments, such as: pruning cutoff,
feature weighting, number of prototypes and feature
representation. Under these circumstances, several
of our models are ranked as top scores, with MSSA-
2R-F and MSSA(WD18) among the highest results
for AvgSim and MaxSim respectively.

Avg Max Glo
Models Sim | Sim | Sim

GloVe-42B - - 0.759
GloVe-6B - - 0.658
Retro-G6B - - 0.605
Retro-G6B-WN-All - - 0.612
Huang et al., (2012) 0.642 0.228
MSSG-50d 0.642 - 0.606
MSSG-300d 0.709 - 0.692
NP-MSSG-50d 0.624 - 0.615
NP-MSSG-300d 0.686 - 0.691
Pruned-TF-IDF - - 0.734
SensEmbed 0.779 | 0.714 -

SW2V-Shallow - 0.710 -

SW2V-Babelfy - 0.630 -

MSSA(WDI10) 0.725 | 0.702 | 0.727
MSSA-1R(WD10) 0.711 | 0.661 | 0.712
MSSA-2R(WD10) 0.730 | 0.662 | 0.737
MSSA-T(WD10) 0.712 | 0.669 | 0.721
MSSA-IR-T(WD10) | 0.708 | 0.666 | 0.716
MSSA-2R-T(WD10) | 0.729 | 0.667 | 0.737
MSSA(WDI8) 0.663 | 0.714 | 0.712
MSSA-D(WD18) 0.708 | 0.626 | 0.702
MSSA-T(WD18) 0.694 | 0.637 | 0.692
MSSA-D-T(WD18) 0.702 | 0.623 | 0.693

Table 4: Spearman correlation score (p) on WordSim353
benchmark. Huang et al., (2012) results were reported
by Neelakantan et al., (2014). Highest results reported in
bold face.

The last two NCWS benchmarks, SimLex999 and
MC?28, are particularly challenging for distinct rea-
sons. For SimLex999 in Table 5, our models per-
form poorly regardless of their configuration, while
DeConf presents the best results. The average Spear-
man correlation values for this dataset seems to be
low in all publications, rarely surpassing p = 0.50.
Even in our not reported models, we could not reach
satisfactory results. The same behavior was ob-

Avg Max Glo

Models Sim | Sim | Sim
‘Word2vec(UMBC) - 0.390 -
Word2vec(WD14) - 0.380 -
Chen et al.,(2014) - 0.430 -
DeConf-Sense - 0.517 -
DeConf-Word - 0.443 -
SW2V-BN-UMBC - 0.470 -
SW2V-WN-UMBC - 0.450 -
SW2V-BN-WD14 - 0.430 -
SW2V-WN-WD14 - 0.430 -
MSSA(WD10) 0.427 | 0.368 | 0.396
MSSA-1R(WD10) 0.438 | 0.369 | 0.405
MSSA-2R(WD10) 0.440 | 0.369 | 0.408
MSSA-T(WD10) 0.456 | 0.393 | 0.432
MSSA-IR-T(WDI10) | 0.468 | 0.394 | 0.441
MSSA-2R-T(WD10) | 0.469 | 0.385 | 0.439
MSSA(WD18) 0.375 | 0.438 | 0.404
MSSA-D(WD18) 0.401 0.351 0.374
MSSA-T(WD18) 0.460 | 0.389 | 0.430
MSSA-D-T(WD18) 0.425 | 0.372 | 0.391

Table 5: Spearman correlation score (p) on SimLex999
benchmark. Chen et al., (2014) and Word2Vec results
were reported by Mancini et al., (2017). Highest results
reported in bold face.

served when we tried to apply our model in only-
verbs benchmarks, such as: YP130 (Yang and Pow-
ers, 2006) and SimVerb3500 (Gerz et al., 2016).
For the former, our Spearman scores were on av-
erage p = 0.563, while for the latter p = 0.243
(MaxSim). Our suspicion is that our algorithm is
not robust enough to deal with datasets of this na-
ture. For MC28, reported in Table 6, the lack of re-
cent publications makes it hard to draw any conclu-
sions. If we consider ACL State-of-the-art Wiki'!
we would have obtained the third best result after
the human upper bound.

In all benchmarks, with the exception of Sim-
Lex999, our proposed models (MSSA) sustain com-
petitive results. Considering the MaxSim and
GloSim, we report either the first or second best
Spearman correlation values in the experiments. For
the AvgSim, our approach exhibits the highest score
in all datasets, including SimLex999.

5.5 Context Word Similarity

In this section the results reported by AutoEx-
tend(Synsets) (Rothe and Schiitze, 2015) and CNN-
VMSSG (Chen et al., 2015) were also incorporated.
For the SCWS benchmark, we did not report the re-

"https://aclweb.org/aclwiki/Similarity_
(State_of_the_art)

https://aclweb.org/aclwiki/Similarity_(State_of_the_art)
https://aclweb.org/aclwiki/Similarity_(State_of_the_art)

Avg Max Glo

Models Sim | Sim | Sim
GloVe-42B - 5 0.836
GloVe-6B . ; 0.727
MSSA(WDI0) 0.833 | 0.862 | 0842
MSSA-IR(WD10) | 0.825 | 0.883 | 0.843
MSSA-2R(WDI10) | 0.829 | 0.849 | 0.847
MSSA-T(WD10) 0.845 | 0.888 | 0.875
MSSA-IR-T(WD10) | 0.841 | 0.883 | 0.862
MSSA-2R-T(WD10) | 0.801 | 0.866 | 0.8363
MSSA(WDIS) 0775 | 0799 | 0.792
MSSA-D(WD18) 0.835 | 0.807 | 0.829
MSSA-T(WD18) 0796 | 0.834 | 0818
MSSA-D-T(WD18) | 0.801 | 0.833 | 0.821

Table 6: Spearman correlation score on MC28 bench-
mark. Highest results reported in bold face.

sults for the MaxSim measure, since almost all pub-
lications do not report them. The SCWS dataset pro-
vides pair of words given a specific context, allevi-
ating dubious interpretations (Huang et al., 2012).

Table 7 shows DeConf (Pilehvar and Collier,
2016), MSSG (Neelakantan et al., 2014) and our
model (MSSA) with the highest Spearman cor-
relation values, in descending order for AvgSim.
However, when considering MaxSimC and GloSim,
MSSA and MSSA-2R hold state-of-the-art results.
CNN-VMSSG presents the second highest results,
but its model relies on two training steps instead
of one. For AvgSimC results, it seems that our
weighting scheme was not able to capture the nu-
ances of the context for each word in a proper
manner. It would be interesting to apply the top
ranked algorithms to our model and compare their
performance. Unfortunately, DeConf is designed
to use a pre-trained single n-dimensional vector
representation to produce their multi-sense embed-
dings, thus our approach would not be easily ap-
plicable. NP-MSSG (Neelakantan et al., 2014) and
SW2V (Mancini et al., 2017) on the other hand, offer
the necessary flexibility to use our annotated corpus
to produce new embeddings.

Both MSSA and MSSA-D are trying to optimize
a cost function, but in different ways. The former
works in a local manner, minimizing its cost for the
overlapping context window, one at a time. The lat-
ter finds the least costly path from the first to the
last word-sense for the entire document. Initially,
we thought that MSSA-D would produce the best
result on average, since it considers the whole doc-
ument as its global context. However, if we analyze

Avg Avg Max Glo
Models Sim | SimC | SimC | Sim
GloVe-42B - - - 0.596
GloVe-6B - - - 0.539
Autoextend 0.626 | 0.637 - -
Chen et al., (2014) 0.662 | 0.689 - 0.642
CNN-VMSSG 0.657 | 0.664 | 0.611 | 0.663
DeConf-Sense 0.708 | 0.715 -
Huang et al., (2012) 0.628 | 0.657 | 0.261 | 0.586
MSSG-50d 0.642 | 0.669 | 0.492 | 0.621
MSSG-300d 0.672 | 0.693 | 0.573 | 0.653
NP-MSSG-50d 0.640 | 0.661 0.503 | 0.623
NP-MSSG-300d 0.673 | 0.691 0.598 | 0.655
Pruned-TF-IDF 0.604 | 0.605 - 0.625
SensEmbed - 0.624 0.589 -
MSSA(WD10) 0.667 | 0.581 0.637 | 0.667
MSSA-1R(WD10) 0.660 | 0.581 0.639 | 0.659
MSSA-2R(WD10) 0.665 | 0.585 | 0.646 | 0.665
MSSA-T(WD10) 0.659 | 0.590 | 0.617 | 0.664
MSSA-1R-T(WDI10) | 0.655 | 0.594 | 0.623 | 0.658
MSSA-2R-T(WD10) | 0.661 | 0.604 | 0.617 | 0.634
MSSA(WD18) 0.593 | 0.569 | 0.639 | 0.651
MSSA-D(WDI18) 0.640 | 0.557 | 0.613 | 0.640
MSSA-T(WD138) 0.649 | 0.588 | 0.617 | 0.654
MSSA-D-T(WDI18) 0.638 | 0.570 | 0.597 | 0.639

Table 7: Spearman correlation score (p) on SCWS bench-
mark. Huang et al., (2012) results were reported by Nee-
lakantan et al., (2014). Highest results reported in bold
face.

the results from WD18 only, this is not consistent
among all benchmarks. MSSA proved to capture the
semantic relations more accurately in several cases
(RG65, MEN, WordSim353 and SimLex) in the WS
task, especially for the MaxSim measure. Appar-
ently, the features of a local context are more dis-
criminative than universal common characteristics.

6 Final Considerations

In this paper, we proposed a system called MSSA
that automatically disambiguates and annotates any
text corpus considering a sliding context window for
each word. We have demonstrated that single vector
representation limitations can be mitigated by apply-
ing MSSA into a traditional word2vec implemen-
tation, producing more robust multi-sense embed-
dings with minimum hyperparameter tuning. Ad-
ditionally, we performed an extensive comparison
with many recent publications in the WS task and
categorized their results according to standard met-
rics (Section 4). The representation used in our
model can be easily interpreted and extended to
other NLP task beyond WS. Finally, we showed that
the combination between the proposed MSSA al-

gorithm and word2vec is able to sustain solid re-
sults in 6 different benchmarks: RG65, MEN, Word-
Sim353, SimLex999, MC28 and SCWS. Currently,
our model considers a sliding context window of
+/- 1 tokens, unigrams and non-stemmed words,
but we intend to pursue some extensions, such as:
keep common n-grams, flexible context sliding win-
dow of size k and different weighting schemes for
the context analysis. We also would like to inte-
grate MSSA with the compared systems that ob-
tained good results throughout our experiments.

References

Yoshua Bengio, Rjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of Machine Learning Research,
3:1137-1155.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein.
2012. An empirical investigation of statistical signifi-
cance in nlp. In Proceedings of the 2012 Joint Confer-
ence on Empirical Methods in Natural Language Pro-
cessing and Computational Natural Language Learn-
ing, EMNLP-CoNLL 12, pages 995-1005, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Association
for Computational Linguistics, 5:135-146.

Antoine Bordes, Xavier Glorot, Jason Weston, and
Yoshua Bengio. 2012. Joint learning of words and
meaning representations for open-text semantic pars-
ing. In In Proceedings of 15th International Confer-
ence on Artificial Intelligence and Statistics.

Elia Bruni, Gemma Boleda, Marco Baroni, and Nam-
Khanh Tran. 2012. Distributional semantics in tech-
nicolor. In Proceedings of the 50th Annual Meeting of
the Association for Computational Linguistics: Long
Papers - Volume 1, ACL ’12, pages 136—145, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

José Camacho-Collados, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. NASARI: a novel approach to
a semantically-aware representation of items. In HLT-
NAACL, pages 567-577. The Association for Compu-
tational Linguistics.

José Camacho-Collados, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Nasari: Integrating explicit
knowledge and corpus statistics for a multilingual rep-
resentation of concepts and entities. Artif. Intell.,
240:36-64.

Xinxiong Chen, Zhiyuan Liu, and Maosong Sun. 2014.
A unified model for word sense representation and dis-
ambiguation. In EMNLP, pages 1025-1035. ACL.

Tao Chen, Ruifeng Xu, Yulan He, and Xuan Wang. 2015.
Improving distributed representation of word sense via
wordnet gloss composition and context clustering. In
Proceedings of the 53rd Annual Meeting of the Associ-
ation for Computational Linguistics and the 7th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 15-20. The Association for Computa-
tional Linguistics.

Ronan Collobert and Jason Weston. 2008. A unified ar-
chitecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceed-
ings of the 25th International Conference on Machine
Learning, ICML 08, pages 160-167, New York, NY,
USA. ACM.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493-2537.

Paramveer S. Dhillon, Dean Foster, and Lyle Ungar.
2011. Multi-view learning of word embeddings via
cca. In Advances in Neural Information Processing
Systems (NIPS), volume 24.

E. W. Dijkstra. 1959. A note on two problems in con-
nexion with graphs. Numer. Math., 1(1):269-271, De-
cember.

Manaal Faruqui, Jesse Dodge, Sujay Kumar Jauhar, Chris
Dyer, Eduard H. Hovy, and Noah A. Smith. 2015.
Retrofitting word vectors to semantic lexicons. In
HLT-NAACL, pages 1606-1615. The Association for
Computational Linguistics.

Manaal Faruqui, Yulia Tsvetkov, Pushpendre Rastogi,
and Chris Dyer. 2016. Problems with evaluation of
word embeddings using word similarity tasks. CoRR,
abs/1605.02276.

Christiane Fellbaum, editor. 1998. WordNet: an elec-
tronic lexical database. MIT Press.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Eytan
Ruppin. 2002. Placing search in context: The con-
cept revisited. ACM Trans. Inf. Syst., 20(1):116-131,
January.

J. R. Firth. 1957. A synopsis of linguistic theory 1930-
55. 1952-59:1-32.

Daniela Gerz, Ivan Vulié, Felix Hill, Roi Reichart, and
Anna Korhonen. 2016. SimVerb-3500: A Large-
Scale Evaluation Set of Verb Similarity. In EMNLP.

William I Grosky and Terry L Ruas. 2017. The Con-
tinuing Reinvention of Content-Based Retrieval: Mul-
timedia Is Not Dead. IEEE MultiMedia, 24(1):6-11,
jan.

Zellig Harris. 1954. Distributional structure. Word,
10(23):146-162.
Felix Hill, Roi Reichart, and Anna Korhonen. 2015.

Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics.

Eric H. Huang, Richard Socher, Christopher D. Manning,
and Andrew Y. Ng. 2012. Improving word representa-
tions via global context and multiple word prototypes.
In Proceedings of the 50th Annual Meeting of the Asso-
ciation for Computational Linguistics: Long Papers -
Volume 1, ACL *12, pages 873—-882, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Ignacio lacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2015. Sensembed: Learning sense
embeddings for word and relational similarity. In ACL
(1), pages 95-105. The Association for Computer Lin-
guistics.

Ignacio lacobacci, Mohammad Taher Pilehvar, and
Roberto Navigli. 2016. Embeddings for word sense
disambiguation: An evaluation study. In ACL (1). The
Association for Computer Linguistics.

Richard Johansson and Luis Nieto Pifia. 2015. Embed-
ding a semantic network in a word space. In Proceed-
ings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguis-
tics: Human Language Technologies. Denver, United
States, May 31 June 5, 2015, pages 1428-1433.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense
embeddings improve natural language understanding?
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1722—-1732. Association for Computational Linguis-
tics.

H. Liu and P. Singh. 2004. Conceptnet — a prac-
tical commonsense reasoning tool-kit. BT Technology
Journal, 22(4):211-226, October.

Yang Liu, Zhiyuan Liu, Tat-Seng Chua, and Maosong
Sun. 2015. Topical word embeddings. In Proceed-
ings of the Twenty-Ninth AAAI Conference on Artifi-
cial Intelligence, AAAT’ 15, pages 2418-2424. AAAI
Press.

Massimiliano Mancini, José Camacho-Collados, Igna-
cio Jacobacci, and Roberto Navigli. 2017. Embed-
ding words and senses together via joint knowledge-
enhanced training. In CoNLL, pages 100-111. Asso-
ciation for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013a. Efficient estimation of word representa-
tions in vector space. CoRR, abs/1301.3781.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado,
and Jeffrey Dean. 2013b. Distributed representations
of words and phrases and their compositionality. In

Proceedings of the 26th International Conference on
Neural Information Processing Systems - Volume 2,
NIPS’13, pages 3111-3119, USA. Curran Associates
Inc.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.

2013c. Linguistic regularities in continuous space
word representations. In HLT-NAACL, pages 746—
751.

George A Miller and Walter G Charles. 1991. Contextual
correlates of semantic similarity. Language & Cogni-
tive Processes, 6(1):1-28.

George A. Miller. 1995. Wordnet: A lexical database for
english. COMMUNICATIONS OF THE ACM, 38:39-
41.

Roberto Navigli and Simone Paolo Ponzetto. 2012. Ba-
belNet: The automatic construction, evaluation and
application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217-250.

Roberto Navigli. 2009. Word sense disambiguation: A
survey. ACM Comput. Surv., 41(2):10:1-10:69, Febru-
ary.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In EMNLP, pages 1059-1069.
ACL.

Alexander Panchenko. 2016. Best of both worlds: Mak-
ing word sense embeddings interpretable. In Nico-
letta Calzolari (Conference Chair), Khalid Choukri,
Thierry Declerck, Sara Goggi, Marko Grobelnik,
Bente Maegaard, Joseph Mariani, Helene Mazo,
Asuncion Moreno, Jan Odijk, and Stelios Piperidis,
editors, Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), Paris, France, may. European Language Re-
sources Association (ELRA).

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In EMNLP, volume 14, pages 1532-1543.

Mohammad Taher Pilehvar and Nigel Collier. 2016. De-
conflated semantic representations. In EMNLP, pages
1680-1690. The Association for Computational Lin-
guistics.

Mohammad Taher Pilehvar, José Camacho-Collados,
Roberto Navigli, and Nigel Collier. 2017. Towards a
seamless integration of word senses into downstream
NLP applications. CoRR, abs/1710.06632.

Luis Nieto Pifia and Richard Johansson. 2015. A simple
and efficient method to generate word sense represen-
tations. In Proceedings of International Conference
in Recent Advances in Natural Language Processing,
pages 465—472.

Hilary Putnam. 1970. Is semantics possible? Metaphi-
losophy, 1(3):187-201.

Radim Rehtiek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45-50, Val-
letta, Malta, May. ELRA. http://is.muni.cz/
publication/884893/en.

Joseph Reisinger and Raymond Mooney. 2010a. A mix-
ture model with sharing for lexical semantics. In Pro-
ceedings of the 2010 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 10,
pages 1173-1182, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Joseph Reisinger and Raymond J. Mooney. 2010b.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010 An-
nual Conference of the North American Chapter of the
Association for Computational Linguistics, HLT 10,
pages 109-117, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Philip Resnik. 1995. Using information content to evalu-
ate semantic similarity in a taxonomy. In Proceedings
of the 14th International Joint Conference on Artifi-
cial Intelligence - Volume 1,1JCAI’95, pages 448-453,
San Francisco, CA, USA. Morgan Kaufmann Publish-
ers Inc.

Sascha Rothe and Hinrich Schiitze. 2015. Autoex-
tend: Extending word embeddings to embeddings for
synsets and lexemes. In ACL (1), pages 1793-1803.
The Association for Computer Linguistics.

Sascha Rothe and Hinrich Schiitze. 2017. Autoex-
tend: Combining word embeddings with semantic re-
sources. Computational Linguistics, 43(3):593-617.

Terry Ruas and William Grosky. 2017. Keyword Extrac-
tion Through Contextual Semantic Analysis of Docu-
ments. In Proceedings of the 9th International Confer-
ence on Management of Emergent Digital EcoSystems,
pages 150-156, Bangkok. ACM Press.

Herbert Rubenstein and John B. Goodenough. 1965.
Contextual correlates of synonymy. Commun. ACM,
8(10):627-633, October.

Holger Schwenk, Daniel Dchelotte, and Jean-Luc Gau-
vain. 2006. Continuous space language models for
statistical machine translation. In Proceedings of the
COLING/ACL on Main Conference Poster Sessions,
COLING-ACL ’06, pages 723—730, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Cyrus Shaoul and Chris Westbury. 2010. The westbury
lab wikipedia corpus.

Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang,
Christopher D. Manning, Andrew Ng, and Christopher
Potts. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Pro-
ceedings of the 2013 Conference on Empirical Meth-

ods in Natural Language Processing, pages 1631—
1642, Seattle, Washington, USA, October. Association
for Computational Linguistics.

Fei Tian, Hanjun Dai, Jiang Bian, Bin Gao, Rui Zhang,
Enhong Chen, and Tie-Yan Liu. 2014. A probabilistic
model for learning multi-prototype word embeddings.
In COLING 2014, 25th International Conference on
Computational Linguistics, Proceedings of the Confer-
ence: Technical Papers, August 23-29, 2014, Dublin,
Ireland, pages 151-160.

Andrew Trask, Phil Michalak, and John Liu. 2015.
sense2vec - A fast and accurate method for word sense
disambiguation in neural word embeddings. CoRR,
abs/1511.06388.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. 2010.
Word representations: A simple and general method
for semi-supervised learning. In Proceedings of the
48th Annual Meeting of the Association for Computa-
tional Linguistics, ACL *10, pages 384—394, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of semantics.
CoRR, abs/1003.1141.

Dongqiang Yang and David M. W. Powers. 2006. Verb
similarity on the taxonomy of wordnet. In In the 3rd
International WordNet Conference (GWC-06), Jeju Is-
land, Korea.

Yao Yao, Xia Li, Xiaoping Liu, Penghua Liu, Zhaotang
Liang, Jinbao Zhang, and Ke Mai. 2017. Sensing spa-
tial distribution of urban land use by integrating points-
of-interest and google word2vec model. Int. J. Geogr.
Inf. Sci., 31(4):825-848, April.

Mo Yu and Mark Dredze. 2014. Improving lexical em-
beddings with semantic knowledge. In ACL (2), pages
545-550.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation system
for free text. In Proceedings of the ACL 2010 Sys-
tem Demonstrations, ACLDemos ’10, pages 78-83,
Stroudsburg, PA, USA. Association for Computational
Linguistics.

Will Y Zou, Richard Socher, Daniel M Cer, and Christo-
pher D Manning. 2013. Bilingual word embeddings
for phrase-based machine translation. In EMNLP,
pages 1393-1398.

http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en

	Introduction
	Related Work
	 (3, 12) Synset Disambiguation, Annotation and Embedding
	 (3) Most Suitable Sense Annotation (MSSA)
	(20,21,3)Most Suitable Sense Annotation N Refined (MSSA-NR)
	(13,3) Most Suitable Sense Annotation - Dijkstra (MSSA-D)
	Synset to Embeddings (Synset2Vec)

	 (12) Multi-Sense Embeddings Measures
	Word Similarity Experiments
	Training Corpus
	Hyperparameters, Setup and Details
	Benchmarks Details
	No Context Word Similarity
	Context Word Similarity

	Final Considerations

