
Evaluation of Effectiveness of Brace Treatment in Scoliosis Patients 
 

by 
 

Bhavani Anantapur Bache 

A thesis submitted in partial fulfillment 
 of the requirements for the degree of  

Master of Science in Engineering  
(Electrical Engineering) 

in the University of Michigan-Dearborn 
2018 

Master’s Thesis Committee: 
 
Assistant Professor Omid Dehzangi, Co-Chair  
Assistant Professor Hafiz Malik, Co-Chair 
Professor M Shridhar 
Professor Adnan Shaout 
 

 

  



 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  

 
  

© Bhavani Anantapur Bache 2018 
 
 



 ii 

Dedication 
 
This thesis work is dedicated to my mother Usha Prabhakar, who was a source of 

motivation to me. Although she is no longer in this world, her motivation always drives me to 

push the limits of technology and strive for innovation. 

This work is also dedicated to my loving husband Vishnu, who has been a constant 

source of support and encouragement during the challenges of my graduate school and life. I’m 

thankful for having you in my life.  

This work is also dedicated to my father Prabhakar Rao, and brother Vijay who always 

love me and whose good examples have taught me to work for the things I aspire to achieve. 



 iii 

Acknowledgements 

  I would first like to thank my advisor, Dr. Omid Dehzangi, for giving me an opportunity 

to work in the Wearable Sensing and Signal Processing lab. I’m grateful for his guidance and 

support during my thesis work. He is a great teacher and explains the concepts of Data Mining 

and Machine learning in detail, which helped me during the thesis. Under his mentorship, I 

learned signal processing and data mining methodologies, which is an invaluable skill to have as 

my career moves forward. I would also like to thank Dr. Hafiz Malik for his valuable 

recommendations.   

This study was conducted in collaboration with the C.S. Mott Hospital, University of 

Michigan, and the Orthotics and Prosthetics Center, University of Michigan. I would like to 

thank Dr. Ying Li, who is a fellowship-trained pediatric orthopedic surgeon at the C.S. Mott 

Children's Hospital, University of Michigan, Ann Arbor, since 2011. A large portion of her 

clinical practice and research focuses on the treatment of pediatric patients with scoliosis and 

other spinal disorders. All subjects are patients of Dr. Li at the C.S. Mott Children's Hospital. I 

would also like to thank Jeffrey Wensman, who is the Director of Orthotic and Prosthetic 

Services. Mr. Wensman is involved in the teaching of orthotic and prosthetic residents as well as 

resident physicians in Physical Medicine and Rehabilitation and Orthopedics. Mr. Wensman 

partners in research with engineering, kinesiology and medical faculty. His current research 

topics include: additive manufacturing of orthotics and prosthetics, scoliosis management and 

powered lower limb prosthetics. He specializes in the treatment of scoliosis and other pediatric 



 iv 

conditions as well as lower limb prosthetics. All back braces (TLSOs) were designed at the 

Orthotic and Prosthetic Center at the University of Michigan, Ann Arbor. 

 

 



 v 

Table of Contents 

Dedication ii 

Acknowledgements iii 

List of Tables viii 

List of Figures ix 

Abstract ix 

Chapter 1 Introduction to Scoliosis 1 

1.1 Introduction to Idiopathic Scoliosis 1 

1.2 Causes of Idiopathic Scoliosis 1 

1.3 Symptoms of Adolescent Idiopathic scoliosis 1 

1.4 Treatment of Scoliosis 2 

Chapter 2 Related Work 3 

2.1 Related work on camera based activity recognition 3 

2.2 Related work on Activity Identification 4 

Chapter 3 Overview of the work and contribution to the thesis 7 

3.1 Compliance of brace wear 7 

3.2 The level of tightness of brace 8 

3.3 Quality of brace fit 8 



 vi 

Chapter 4 Architecture of the system 9 

4.1 Hardware Architecture 9 

4.2 Data Pre-processing 9 

4.3 Data Pre-processing 9 

4.4 Signal Processing 10 

4.5 Predictive modeling 10 

Chapter 5 Hardware Architecture 12 

Chapter 6 Data Acquisition 17 

6.1 Data Acquisition in semi-supervised setting 17 

6.2 Data Acquisition in Unsupervised setting 18 

Chapter 7 Determination of compliance of brace treatment 19 

7.1 Segmentation by average force 20 

7.2 Segmentation by average power of force 21 

Chapter 8 Calculation of baseline force 22 

8.1 Baseline Force using moving average filter 22 

8.2 Calculation of Baseline force using PCA 24 

Chapter 9 Feature Extraction 26 

9.1 Orientation of brace or pitch 26 

9.2 Resultant Acceleration 27 

9.3 Resultant Gyroscope readings 28 



 vii 

9.4 Determination of number of footsteps using power density spectrum 28 

9.5 Sequential Feature Selection 30 

Chapter 10 Experimental results 32 

10.1 Sequential Feature Select Results 32 

10.2 Training and Classification Results 33 

10.3 Results of force and compliance studies 39 

Conclusion 42 

Appendix 44 

Bibliography 47 



 viii 

List of Tables 

Table 1 The features selected for activity identification. 36 
Table 2 10CV performance for patient-1 37 
Table 3 10CV performance for patient-2 37 
Table 4 10CV performance for patient-3 38 
Table 5 Classification results for patient-1 40 
Table 6 Classification results for patient-2 41 
Table 7 Classification results for patient-3 41 
Table 8 Results of compliance and force on the brace for 6 days 42 



 ix 

List of Figures 

Figure 4-1 End to End Architecture of the system ....................................................................... 11 
Figure 5-1 Hardware architecture ................................................................................................. 12 
Figure 5-2 PCB sensor board ........................................................................................................ 13 
Figure 5-3 TI amplifier for boosting force sensor values ............................................................. 14 
Figure 5-4 Force Sensor Embedded into the brace ....................................................................... 15 
Figure 5-5 PCB sensor embedded into the brace .......................................................................... 15 
Figure 5-6 Force sensor housing ................................................................................................... 16 
Figure 5-7 Force sensor PCB fitted in mechanical housing ......................................................... 16 
Figure 5-8 Force sensor housing ................................................................................................... 16 
Figure 7-1 Segmentation by average force ................................................................................... 20 
Figure 7-2 Segmentation by average power of force .................................................................... 21 
Figure 8-1 Calculation of baseline force using Moving Average for 9 seconds of walking data. 23 
Figure 8-2 Calculation of baseline force using Moving Average for 120 seconds of sitting data.
....................................................................................................................................................... 23 
Figure 8-3 PCA Architecture ........................................................................................................ 25 
Figure 8-4 Estimation of baseline force using PCA ..................................................................... 25 
Figure 9-1 Acceleration along x, y and z axis .............................................................................. 27 
Figure 9-2 Power density for sitting, running and walking data................................................... 30 
Figure 10-1 Confusion matrix for Patient-1.................................................................................. 36 
Figure 10-2 Confusion matrix for Patient-2.................................................................................. 36 
Figure 10-3 Confusion matrix for Patient-3.................................................................................. 37 
10-4 Compliance and duration of brace wear for 26 days ............................................................ 39 
Figure 10-5 Waveforms for sitting, standing, walking, running, lying and climbing for Day 6, 
Day 8 and Day 13. ........................................................................................................................ 40 
Figure 10-6 Scatter plot for training data ...................................................................................... 42 

 



 x 

Abstract 
 

Scoliosis is a medical condition which occurs in adolescents, where an individual's spine 

develops curvature. Monitoring the effectiveness of brace treatment of scoliosis is an ongoing 

challenge that many physicians face today. A Thoracolumbosacral orthosis (TLSO) is a type of 

brace used to control the lateral curvature of the spine in scoliosis. It is a non-surgical treatment 

with the goal of preventing curve progression in patients with idiopathic scoliosis. To 

successfully monitor compliance with brace treatment, a wearable multi-modal sensor solution is 

embedded into the patient's brace. The custom-designed hardware consists of a sensor board, a 

force sensor, an accelerometer and a gyroscope. The force sensor collects the force being exerted 

on the patient's back, while the accelerometer and gyroscope generate cues to determine the 

patient's activities and lifestyle. In this dissertation, a novel data-mining method is proposed, to 

identify patient activities and evaluate the effectiveness of the brace treatment pervasively based 

on fusion of continuous force and inertial motion recordings. The proposed method evaluates 

three main factors: 1) The compliance to the brace treatment or duration of brace wear through 

the process of segmentation, 2) The level of tightness of brace by estimating the baseline force 

per segment and 3) The quality of brace fit in the presence of different activities including 

sitting, standing, climbing, walking, running and lying. The aim is to design a context-aware 

remote monitoring system for ubiquitous evaluation and enhancement of brace treatment 

compliance of adolescent idiopathic scoliosis patients. Two experimental scenarios have been 

investigated: 1) Semi-supervised scenario in which, the patient performs a series of pre-defined 
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activities at home during day long segments of brace wear, and 2) Unsupervised scenario in 

which, there is no knowledge of the patient's activities and other circumstances during pervasive 

sensor data recordings. The experimental results demonstrated that we achieved an overall 

accuracy of a 100% for activity detection. The level of tightness of brace-fit reduced gradually 

over a period of 4 weeks by 33%. Initially, at the beginning of the treatment, patients were 

instructed to wear the brace for 2 hours, and the compliance with the brace treatment was 7.8%. 

The duration of the brace wear increased gradually during the period of 4 weeks. At the end of 

week 4, the compliance reached 80%. 
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Chapter 1 Introduction to Scoliosis 
 

1.1 Introduction to Idiopathic Scoliosis 

Idiopathic scoliosis is an abnormal curvature of the spine that can worsen throughout growth, 

making it vital for doctors to treat it during the early stages. For that reason, physicians focus on 

skeletally immature adolescents who show signs and symptoms of idiopathic scoliosis. If the 

condition is seen in patients between 10 to 18 years of age, it is known as adolescent scoliosis 

[1]. Today, 3% of children below the age of 16 years are diagnosed with adolescent idiopathic 

scoliosis (AIS). 

1.2 Causes of Idiopathic Scoliosis 

There are no identifiable causes for AIS today. There are many theories about the cause of AIS 

including asymmetric growth, muscle imbalance, hormonal imbalance and genetic causes. About 

30% of the patients have a family history of the condition. Many researchers are working 

towards finding the cause of AIS [20]. 

1.3 Symptoms of Adolescent Idiopathic scoliosis 

The severity of scoliosis in a patient is measured by the Cobb angle [21]. The Cobb angle refers 

to magnitude of the spinal curvature as measured on a posteroanterior plain radiograph of the 

spine. The most common form of treatment of AIS in skeletally immature individuals is a 

Thoracolumbosacral orthosis (TLSO) [22]. While the brace does not provide a solution to fix the 
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curvature, it helps prevent worsening of the curve throughout the adolescent's growth. If 

progression of the spinal curvature is prevented, then surgery can be avoided and this is 

considered a brace treatment success [7]. 

1.4 Treatment of Scoliosis 

To ensure that the treatment is successful, it is important to monitor the quality and duration of 

brace-wear. The total number of hours of brace-wear correlates to the lack of curve progression 

[7] [12]. A braced curve that remains 45°-50° at skeletal maturity is considered a treatment 

success, as bracing is no longer effective once patients are skeletally mature. Curves that are 45°-

50° at skeletal maturity are not likely to progress during adulthood [2]. Several studies provided 

convincing evidence about the effectiveness of this treatment given appropriate usage [14]. A 

Dose-response curve has been demonstrated that the duration of brace-wear is positively 

associated with the rate of treatment success [11]. Patients who wore the brace for 0 to 6 hours 

daily had a success rate of 42%, whereas patients who wore the brace for at least 12.9 hours had 

success rates of 90 to 93% [5]. Therefore, the effectiveness of treatment depends on the duration 

of wear and tightness of the brace. However, monitoring brace compliance is a challenging task. 

Previous studies have demonstrated that when brace-wear is accurately monitored with a 

temperature sensor, adherence to brace-wear is frequently overestimated [7][2]. Patients wore the 

brace for only 47% of the prescribed time, even though physicians, orthotists, parents, and 

patients estimated that the brace was worn for 64%, 66%, 72%, and 75% of the prescribed time, 

respectively. Patients wore the brace for the same number of hours a day regardless of whether 

the prescribed time was 16 hours or 23 hours [18]. 
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Chapter 2 Related Work 
 

 
There have been tremendous advancements in the areas of wearable devices providing 

significant opportunities in monitoring patients and improving personalized healthcare. The 

electronics are now much smaller, flexible, consume low power, have a higher memory for data 

storage and have networking capabilities making enabling ubiquitous monitoring of the patients 

[13]. In this chapter, a detailed study of different works in the existing literature is presented. 

Section 2.2 discusses in detail about existing work on activity recognition. 

2.1 Related work on camera based activity recognition 

Researchers have been working on developing efficient methodologies to monitor physical 

activities of individuals and patients. Depth video sensors have been used to monitor the daily 

activities of elderly [8]. Hidden Markov Models have been used to train the predictive model and 

identify different types of activities including smart home activities, smart office activities and 

smart hospital activities. Accuracy of 92.33% has been achieved for recognition of home 

activities, 93.58% for recognition of office activities and 90.33% for recognition of smart 

hospital activities [8]. Researchers have also been working on developing systems to 

differentiate abnormal activities from normal activities. Such systems have been extremely 

useful to detect falls in the elderly. Activity analysis framework has been developed to detect 

normal and abnormal activities using RGB-D cameras. Abnormal activities include those which 
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are dangerous to the elderly including fall from sitting and standing. An accuracy of 98.1% has 

been achieved for the identification of such activities [17]. 

2.2 Related work on Activity Identification 

Monitoring day to day activities of patients affected by scoliosis is quite important to physicians. 

In this study, we aim to monitor and evaluate the duration and quality of brace wear in during 

day to day activities of the patient by correlating the force, acceleration and angular velocity 

collected by a multi-modal sensor solution.  

There has been extensive research in the areas of activity detection from accelerometer and 

gyroscope readings [6] [17] [19] [3]. Researchers have been working on developing 

methodologies using data from different sensors for activity identification. The data from 3D 

accelerometer placed on the subject's wrist, hip and a GPS receiver was used to record the 

unsupervised data for activity identification [6]. A new hybrid classifier, which combined a tree 

structure with a priori knowledge and artificial neural networks was trained for activity 

identification. Using the hybrid classifier, the accuracy achieved was 97% for lying, 87% for 

rowing, 18% for exercise bike, 97% for sitting/standing, 89% for running, 70% for nordic 

walking, 71% for walking, 78% for football and 72% for cycling with real bike. The total 

classification accuracy achieved was 89%.  

MHARS or Mobile Human Activity Recognition System, was developed to monitor day to day 

activities of patients with ambient assisted living [17]. Two accelerometers, one from the 

smartphone and other embedded into the wearable device was used to collect data. The 

smartphone was placed on the waist and leg of the patient. The wearable device was placed on 

the chest. Data was collected from 10 different subject subjects. 70% of the data was used for 

training purposes. An accuracy of 90.2% was achieved for running, 67.1% for climbing upstairs, 
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86.7% for walking, 91.2% for standing, 90.1% for sitting and 89.1% for lying. An overall 

accuracy of 83.3% was achieved for activity recognition. 

Smart phones which contain accelerometer, gyroscope and GPS sensors have been quite useful 

in monitoring day to day activities. Researchers worked on developing a hybrid classifier that 

used linear acceleration and gravity signals from Blackberry smartphone to collect the data from 

30 subjects [4]. They extracted 7 different features including moving average of sum of range of 

linear acceleration over 4 windows, Difference of x and z acceleration from y, sum of range of 

linear acceleration, standard deviation of linear acceleration, maximum slope of moving average 

sum of variances of gravity, range difference and sum of range of x and z gravity components. A 

specificity of 99.4% was achieved for standing, 98.4% for sitting and 97.9% for lying. 

Android smart phones are commonly used in monitoring the day to day activities of individuals 

[9].  The accelerometer and GPS data collected from an Android smart phone can be used for 

identification of activities. Features including mean acceleration, standard deviation for each 

axis, average absolute difference, mean resultant acceleration, time between the peaks of 

sinusoidal waves, and binned distribution have been used to train the predictive model. An 

accuracy of 93.6% has been achieved for walking, 98.3% for jogging, 61.5% for climbing 

upstairs, 55.5% for climbing downstairs, 95.7% for sitting, 93.3% for standing and an overall 

accuracy of 91.7%. 

Researchers have also been working on designing and implementing software and hardware tools 

that could provide users with insights on day to day activities. Fit bit is a tool that helps users to 

track their physical activity during the day [19]. MotionSynthesis is another toolset for data 

collection and algorithm development. It has a custom hardware which is used to collect 

Accelerometer and Gyroscope data [3]. It also has a java based diary generation tool that allows 
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users to select relevant aspects of the motion in their day to day activities, and to visualize their 

activity data. 

In this dissertation, a novel system is designed and developed that could help physicians to 

evaluate the effectiveness of treatment of patients with scoliosis, by monitoring the tightness and 

duration of the brace wear in addition to the day to day activities of the patient.   
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Chapter 3 Overview of the work and contribution to the thesis 
 

 
In this dissertation, I intend to discover an innovative and effective treatment-monitoring 

methodology by implementing a context-aware remote sensing solution. The subject size for this 

study was three patients, all of whom were females in the age group of 10-13 years. The 

experiments were conducted in three different scenarios: 1) supervised, 2) semi-supervised and 

3) unsupervised. In the supervised scenario, all three patients volunteered to perform pre-defined 

activities including sitting, standing, walking, running, lying and climbing consecutively for two 

minutes per activity daily. This results in 12 minutes of supervised data collected over a period 

of 6 days. Furthermore, under the semi-supervised scenario, all three patients recorded the 

activities they performed for six days and wrote notes on brace wear duration in a log book. In 

the unsupervised setting, the first patient's data was collected for additional 20 days and 

conducted the compliance study. The effectiveness of the treatment in patients with scoliosis was 

evaluated using three main parameters: 1) Compliance of the brace wear 2) The level of tightness 

of the brace 3) Quality of the brace fit. 

3.1 Compliance of brace wear 

The compliance study indicated the amount of time the patient wore the brace, as compared to 

the duration of wear prescribed by their doctor. We developed a unique method of segmentation 

of the force sensor readings to evaluate the duration of brace wear during the day. Two 
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methodologies for segmentation were developed, Segmentation by average force and 

Segmentation of average power of force.  

3.2 The level of tightness of brace 

The force sensor data also contains breathing patterns of the patient. A moving average filter was 

designed to determine the level of tightness of the brace.  

3.3 Quality of brace fit 

To determine the quality of brace fit, the patient data was classified into six different activities. 

The extracted data was annotated by the patient from the logs used for training a predictive 

model for activity identification. The proposed solution consists of two stages: 1) remote sensing 

and data acquisition and 2) data mining. For the remote sensing module, a sensor board 

consisting of accelerometer, gyroscope and force sensor to capture data from the patient’s body, 

was designed and fabricated. The data mining module handles processing and the analytical 

procedure performed on the captured data. After filtering out the noise from the sensor data, 

relevant features were extracted including resultant acceleration, number of footsteps in a 

window and average value of the resultant x-axis acceleration in a window. In this thesis, a 

unique methodology to detect the number of footsteps using the power density spectrum was 

developed. Sequential feature select methodology was used to select the relevant features, which 

were used to train the predictive model to identify six different activities including sitting, 

standing, walking, running, lying and climbing.  
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Chapter 4 Architecture of the system 
 

The proposed method for pervasive and context-aware monitoring of brace treatment includes 

four main modules: 1) Hardware Architecture and 2) Data pre-processing 3) Signal processing 

and predictive modeling 4) Predictive Analysis, as shown in Figure 4.1. It illustrates the end-to-

end architecture of our methodology.  

4.1 Hardware Architecture 

In this dissertation, a multi-modal sensor solution is developed with accelerometer, gyroscope 

and force sensor. The hardware architecture is discussed in detail in Chapter 5. 

4.2 Data Pre-processing 

In this dissertation, a multi-modal sensor solution is developed with accelerometer, gyroscope 

and force sensor. The hardware architecture is discussed in detail in Chapter 5.  

4.3 Data Pre-processing 

The inputs from the accelerometer, gyroscope and force sensor are sampled at a sampling 

frequency of 40Hz. The data collected from the PCB is noisy and contains non- numeric 

characters. Data cleaning modules are implemented using python script. The script reads input 

data character by character. The non-numeric samples are replaced by ‘NAN’. The ‘NAN’ 

values are replaced with the average of previous value and the next values in the attribute. 
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4.4 Signal Processing 

In the signal processing and predictive modeling system, the sampled signal is filtered using a 

5Hz low pass filter to remove high frequency noise. Features are extracted from the data and 

relevant features are selected from the sequential feature-select module.   

4.5 Predictive modeling 

The selected features are used to train the predictive model, and the trained model is used to 

identify activities in the semi-supervised data scenario.  
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Figure 4-1 End to End Architecture of the system 
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Chapter 5 Hardware Architecture 
 

The hardware design of the system consists of a multi-modal sensor data acquisition board, a 

force sensor and a motion sensor. The equipment is embedded in the brace, and data is 

continuously collected for analysis. The specifications of the sensor data acquisition board and 

the components associated with it are explained in detail further in this thesis.  

 

The sensor board contains Atmega32u4, Atmel as a baseband data processor; MPU-9250 motion 

sensor from InvenSense, which is a 9 axis MEMS sensor using the I2C channel; a custom-

designed Honeywell FSB1500NSB force sensor placed at the analog channel using 10-bit 

resolution A/D converter; and communication channels, which include a micro SD card as a data 

logger and nRF8001 from Nordic® as a Bluetooth low energy module, BLE. Figure 5.2 displays 

Figure 5-1 Hardware architecture 
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the hardware schematic and Figure 5.3 displays the sensor board that the proposed hardware 

architecture is implemented in it. 

 The FSB1500NSB sensor has a range of measuring force between 0 to 15N. Since this is not a 

significant range for measuring changes in force readings, we have amplified this range. We use 

an INA2322 CMOS TI Instrumentation Amplifier with two resistors of values, R_1=27kΩ, and 

R_2=87kΩ, to amplify the numerical value of the force sensor. Using these resistor values in 

Equation 1, we can determine that the gain is 21.1. This is done to provide higher-density and 

more precise analysis to the physician about changes in force readings. Figure 5.3 shows the 

electronic schematic for the amplifier. The value of Gain can be used in Equation 2 to determine 

the output voltage of the amplifier. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 = 5 + 5 �
𝑅𝑅2
𝑅𝑅1
� 

(1) 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 = (𝑉𝑉𝑖𝑖𝑖𝑖+ − 𝑉𝑉𝑖𝑖𝑖𝑖−) × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 
(2) 

Figure 5-2 PCB sensor board 
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Figure 5-3 TI amplifier for boosting force sensor values 

Ultimately, the maximum value that can be recorded with the modified force sensor is 1048. 

Given that the maximum value the force sensor can output is 15N, and the amplification factor 

is: 69.867, which can be rounded to 70 for documentation purposes. The proposed solution 

consists of our hardware design system embedded in a Boston-type TLSO. Figure 5.4 shows the 

customized brace with direction of axes of the motion sensor. The x-axis readings of the 

accelerometer indicate upward movement of the patient.  

 

 



 15 

The y-axis and z-axis readings give sideways and forward movement of the patient respectively. 

Figure 5.5 shows the position of force sensor inside the customized brace. Force sensor measures 

the force exerted by brace on the patient's back. 

A major challenge was to design and incorporate the most suitable sensor for this study. We tried 

several types of force sensors to ensure a highly reliable force measuring sensor. We conducted 

day long tests on force baseline changes and durability. After conducting a thorough research, we 

chose the Honeywell FSB1500NSB force sensor as one of the most commonly used force sensor 

Figure 5-5 PCB sensor embedded into the brace 

Figure 5-4 Force Sensor Embedded into the 
brace 
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in medical applications. Due to the restriction of the Honeywell force sensing area, we designed 

and developed a custom housing and assembly with the sensor to aggregate the force on the 

padding inside the brace to the sensor. We designed a 3D force aggregation mechanism in the 

housing, as shown in Figure 5.6. Figure 5.7 illustrates the force sensor fitted in the housing. This 

housing was custom-designed to make sure that the sensor does not cause any discomfort to the 

patient. 

 

 

 

 

 

 

 

Figure 5-8 Force sensor housing 

Figure 5-7 Force sensor PCB fitted in 
mechanical housing 

Figure 5-6 Force sensor housing 
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Chapter 6 Data Acquisition 
 

For this study, 3 patients were recruited to date. The hospital follows a process and has certain 

guidelines before patients can be allowed to participate in the study. For instance, some of the 

eligibility requirements to recruit patients for this study is that they must be in the age range of 

10-16 years, and have a Cobb angle in the range of 25°-40°. The data collected was analyzed in 

semi-supervised, and fully pervasive data from the patients.  

6.1 Data Acquisition in semi-supervised setting 

During semi-supervised data collection, the patients were asked to perform the pre-defined 

activities: LIE, SIT, SND, WLK, RUN and STR for duration of 2 minutes each. The patients 

were required to wear the brace for either approximately 23 hours a day, or the amount of time 

prescribed by the orthotist. During this time, data was being continuously recorded in a secure, 

digital SD card. The patients downloaded data from SD card and uploaded to a secure on-line 

drive, once a week. They recharged the battery for one hour or more when they had taken off the 

brace daily or once every two days (the battery lasts for three days). They noted down the 

timings of specific activities they did each day, in a logbook provided. This helped us to make a 

connection of the data collected to the activities of patient for evaluation purposes. Treatment 

continued for several months. The only supervised conditions are monthly-based visits to the 

Orthotist. The data is sampled at 40 Sample/Sec with 10-bit resolution. This data is passed 

through a Low Pass filter with cut off frequency of 10Hz to filter high frequency noise. In this 

work, the analysis is carried out during 6 days of semi-supervised data for all the three patients. 
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6.2 Data Acquisition in Unsupervised setting 

After the first 6 days of semi-supervised data collection, the patients continued the treatment in 

an unsupervised home environment. The patient did not provide the any details about brace wear. 

The remote sensing brace was worn as prescribed by the Orthotist. The patients downloaded data 

from SD card and uploaded to a secure on-line drive, once a week. 
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Chapter 7 Determination of compliance of brace treatment 
 

Duration of the brace wear is one of the major factors that impacts the treatment of patients with 

scoliosis. Compliance to the brace treatment is defined as the time for which the brace is worn 

relative to the prescribed time [13]. Compliance is important to physicians and patients as it 

provides important information about the patient’s ability to wear the brace. If the patient has 

difficulties in wearing the brace, physicians can have a conversation and develop strategies to 

help increase the compliance. With higher compliance, curve progression of the spine and 

chances of requiring surgery are much lower [14]. In this dissertation a new methodology is 

designed to segment the force sensor data to estimate the number of hours of brace wear in a day.  

The segmentation process allows in-brace data to train the predictive model.  Two different 

techniques are discussed to segment the filtered force sensor data of a window: 1) Segmentation 

by average force and 2) Segmentation by average power of the force signal. The patient data is 

non-stationary in nature, as the patient is involved in day to day activities at different instances of 

time. Walking, running and climbing stairs have a higher frequency, while standing, sitting or 

lying have a lower frequency. The patient data is divided into rectangular windows of 4 seconds 

each, assuming the signal is stationary in that window. The breathing pattern of the patient, 

which is captured from the force sensor, is quasi periodic, with peaks which are about 1.5 

seconds apart. By choosing a smaller window size of 1 second, it’s not possible to extract the 

frequency content of the signal. A larger window may contain more than two different activities 

of the patient and will not generate accurate results. An optimal window size of 4 seconds is 
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chosen for the purposes of analysis. The window can be represented using the Equation 3, where 

N is the number of samples in a window which is 160. 

 

7.1 Segmentation by average force 

For each 4 second window of the data, the average value of force sensor data is in the window of 

N samples is calculated using Equation 3, where each window starts at 𝑘𝑘𝑡𝑡ℎ sample and µ is the 

average value of force sensor values in that window and x[i] is the 𝑖𝑖𝑡𝑡ℎ sample.  Each window is 

incremented by 10 seconds or 40 samples. Figure 6.1 shows the details of segmentation by 

average force. Markers are generated to show the segments of data when the brace was worn.  

µ = � x[i]
𝑁𝑁−1+𝑘𝑘

𝑖𝑖=𝑘𝑘

 (3) 

 

Figure 7-1 Segmentation by average force 
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7.2 Segmentation by average power of force  

For each of the 4 second window of the data, the average power of the force sensor data is in that 

window is calculated using Equation 4, where each window starts at 𝑘𝑘𝑡𝑡ℎ sample and 𝑃𝑃𝑘𝑘 is the 

average power of force sensor data in that window and x[i] is the 𝑖𝑖𝑡𝑡ℎ sample.  Each window is 

incremented by 10 seconds or 40 samples. Figure 6.2 shows the process of segmentation using 

average power. The power values are scaled to a factor of 1/10 to compare it to the original force 

sensor values. 

𝑃𝑃𝑘𝑘 =
1
𝑁𝑁 � 𝑥𝑥[𝑖𝑖]2

𝑁𝑁−1+𝑘𝑘

𝑖𝑖=𝑘𝑘

 (4) 

 

Figure 7-2 Segmentation by average power of force 
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Chapter 8 Calculation of baseline force 
 

Tightness of the brace wear is one of the major factors that impact the brace treatment. The force 

sensor measures the force exerted by the patient’s back on the brace. In this thesis, the tightness 

of the brace is estimated from the force sensor data. The force sensor data contains the patient’s 

breathing patterns and high frequency noise. Two methods are employed, to calculate the 

baseline force exerted on the brace by the patient: 1) Moving average filter over each segment of 

data to calculate the baseline force; and 2) Employing activity specific principle component 

analysis. 

8.1 Baseline Force using moving average filter 

In this method, the baseline force for each day is calculated using the moving average filter.  

This filter is simple and fits online applications and is effective in smoothing out the patient’s 

breathing patterns or the peaks of waveforms during different activities. It computes the 𝑛𝑛𝑡𝑡ℎ 

sample of the output sequence as the average of 𝑀𝑀1 + 𝑀𝑀 2+ 1 samples of input sequence around 

the 𝑛𝑛𝑡𝑡ℎ sample.  In the equation form, it is written as [1]: 

y[n] =
1

𝑀𝑀1 + 𝑀𝑀2 + 1 � x[n − k]
𝑀𝑀2

𝑘𝑘=−𝑀𝑀1

 (5) 

In this dissertation, a moving average filter was applied on 10-second segments of data. 

Therefore, M is chosen as 400. Figure 8.1 shows the estimation of baseline force for 20 seconds 

of walking data. The moving average filter removes the high frequency components which 

indicate the walking pattern, to calculate the baseline pressure. 
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Figure 8-1 Calculation of baseline force using Moving Average for 9 seconds of walking data. 

 

Figure 8-2 Calculation of baseline force using Moving Average for 120 seconds of sitting data. 
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y[n] =
1

𝑀𝑀1 + 𝑀𝑀2 + 1 � x[n − k]
𝑀𝑀2

𝑘𝑘=−𝑀𝑀1

 (5) 

8.2 Calculation of Baseline force using PCA  

PCA is a linear transformation technique that aims to simplify the data by decomposing the 

original multivariate data into an orthonormal space while preserving relevant information (e.g. 

variance). Data is transformed into a new coordinate system where principal component are 

linear functions of the original variables and are uncorrelated. The largest variance of the 

projection lies on the first coordinate, the second largest variance lies on the second coordinate, 

and so on. This process is achieved by calculating the covariance matrix and the eigenvectors 

and eigenvalues of the covariance matrix as shown in Equation 6. 

cov(x, y) =
1

𝑁𝑁 − 1 � (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)
𝑀𝑀2

𝑘𝑘=−𝑀𝑀1

 (6) 

 

Let 𝑥𝑥𝑖𝑖 be the eigenvector which corresponds to the Eigen value ф𝑖𝑖, the eigenvectors-eigenvalues 

are calculated as shown in Equation 7. 

R𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖𝜑𝜑𝑖𝑖 (7) 

The number of eigenvalues of the covariance matrix represents the rank of this matrix. We 

employ transform PCA to the data segments and analyze the resulting principle components 

(PCs) to detect and remove activity artifacts. Since the PC space is orthonormal, then we can 

simply remove a basis vector without affecting others. Figure 8.3 shows the architecture of the 

PCA analysis used.  
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Figure 8-3 PCA Architecture 

The 4 second window containing 160 samples is divided into two sections of 80 samples each. 

The section is incremented by 0.1 seconds or 4 samples. The data which is input to the PCA has 

20 such sections with 80 samples each. Figure 8.4 illustrates the resulted PCs by decomposing 

the running data segments using PCA transform. We used the elbow point to remove the high 

energy PCs to estimate the baseline pressure. The elbow point is marked in red in Figure 8.4. 

Both methods generated similar estimations. 

 

Figure 8-4 Estimation of baseline force using PCA 
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Chapter 9 Feature Extraction 
 

After segmentation, the in-brace data is passed to the feature extraction block.  Thirteen different 

features were used for the analysis including resultant acceleration, resultant gyroscope, force 

values, acceleration along x, y and z axis, gyroscope values along x, y and z axis, mean x axis 

acceleration in a window, mean gyroscope vales in a window, mean pitch and number of 

footsteps. Figure 9.1 shows the x, y and z axis and the acceleration along the three axes. x-axis 

represents upward movement of the brace. Movement along y-axis or pitch represents the 

forward and backward movement of the brace and is a discriminative feature to differentiate 

lying from sitting and standing.  

9.1 Orientation of brace or pitch 

Euler angles are the angles that are used to represent the orientation of the body [10]. The roll, 

pitch and yaw represent the orientation of the brace with respect to x, y and z axis respectively. 

Pitch has a tremendous importance as it represents if the patient is leaning forward or lying 

down. The pitch ranges from -90° to +90°. For better analysis and readability in the scatter plots, 

we try to normalize the angle by adding 90° to the pitch. Pitch can be calculated by Equation 8 

[10]: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ =  
𝐴𝐴𝑦𝑦

�𝐴𝐴𝑥𝑥2 + 𝐴𝐴𝑧𝑧2
 (8) 

This is one of the most important features as it is the angle at which the patient leans forward. 

This is feature is important to differentiate climbing from walking as the patient must lean 
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forward a little to climb up the stairs. This feature can also help us to differentiate between sitting 

and standing from lying [11].  

 

Figure 9-1 Acceleration along x, y and z axis 

9.2 Resultant Acceleration 

If the vector A measures the acceleration in the accelerometer, the projections of A are 𝐴𝐴𝑥𝑥 , 𝐴𝐴𝑦𝑦  

and 𝐴𝐴𝑧𝑧  respectively, the magnitude of the acceleration can be calculated as using Equation 9 

[12]: 

𝐴𝐴𝑟𝑟 = �𝐴𝐴𝑥𝑥2 + 𝐴𝐴𝑦𝑦2 + 𝐴𝐴𝑧𝑧2  (9) 

The resultant acceleration represents the walking, running or climbing pattern of the patient. The 

accelerometer signal contains acceleration due to gravity. To calculate the acceleration of the 

brace and remove the effects of gravity, the mean of resultant acceleration is subtracted from the 

resultant acceleration. 
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µ𝑛𝑛 = �𝐴𝐴𝑟𝑟[𝑘𝑘]
𝑛𝑛

𝑘𝑘=1

 (10) 

𝐴𝐴𝑓𝑓[𝑘𝑘] =  𝐴𝐴𝑟𝑟[𝑘𝑘] − µ𝑛𝑛 (11) 

 

9.3 Resultant Gyroscope readings 

If the vector G measures the orientation in the Gyroscope, the projections of G are 𝐺𝐺𝑥𝑥, 𝐺𝐺𝑦𝑦 and  

𝐺𝐺𝑧𝑧 respectively, the magnitude of the gyroscope readings can be calculated using Equation 12: 

𝐺𝐺𝑟𝑟 = �𝐺𝐺𝑥𝑥2 + 𝐺𝐺𝑦𝑦2 + 𝐺𝐺𝑧𝑧2  (12) 

9.4 Determination of number of footsteps using power density spectrum 

The Fourier transform provides a better analysis when the signal is deterministic and is not 

corrupted by random noise. As the data from the accelerometer is corrupted by random noise, 

Welch’s method is used to calculate the PSD as the noise due to small movements in the brace 

are smoothed out. PSD is calculated to evaluate the changes in the power of the signal with 

frequency. The most dominant frequency in the periodogram gives information about activities 

including walking, running and climbing. Using the Welch’s method of calculation of 

periodogram, a unique equation is derived to calculate the number of footsteps in each window.  

The resultant acceleration 𝐴𝐴𝑓𝑓 is divided into L overlapping segments. A rectangular window w is 

applied to each segment. Fast Fourier Transform is applied to the windowed data. The 

periodogram is applied for each windowed segment. The periodogram computed is then 

averaged to compute the spectral estimate S(k). 
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𝐴𝐴𝑓𝑓(𝑚𝑚) = 𝐴𝐴𝑓𝑓(𝑛𝑛 + (𝑙𝑙 − 1)𝑀𝑀)  (13) 

Where 

𝑛𝑛 = 0, . . . ,𝑁𝑁 − 1  (14) 

𝑙𝑙 = 1, . . . , 𝐿𝐿 (15) 

L represents the number of overlapping windows and N represents the number of data points in 

each window, (l-1)M is the starting point of 𝑙𝑙𝑡𝑡ℎ window. The windowed periodogram 𝐴𝐴𝑓𝑓(𝑘𝑘) can 

be estimated using Equation 16: 

𝐴𝐴𝑙𝑙(𝑘𝑘) = �𝐴𝐴𝑓𝑓(n)w(n)e−
𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋
𝑁𝑁

𝑁𝑁−1

𝑛𝑛=0

 (16) 

ф𝑙𝑙(𝑘𝑘) =
1
𝑁𝑁𝑁𝑁

|𝐴𝐴𝑙𝑙(𝑘𝑘)|2, 𝑙𝑙 = 0, … , 𝐿𝐿 (17) 

 

𝐴𝐴𝑙𝑙 is the FFT of the windowed segment, ф𝑙𝑙 is the periodogram, and P denotes the power of 

window w(n): 

𝑃𝑃 = 1
𝑁𝑁
� |𝑤𝑤(𝑘𝑘)|2𝑁𝑁−1

𝑛𝑛=0   (18) 

The Welch's estimate of Power Density Spectrum is given by Equation 19: 

𝑆𝑆(𝑘𝑘) = 1
𝑁𝑁
� |ф𝑙𝑙(𝑘𝑘)|2𝐿𝐿

𝑙𝑙=1   (19) 

For each window, the power density spectrum can be calculated as Equation 20: 

𝑁𝑁𝑓𝑓 = 𝑓𝑓𝑑𝑑𝑁𝑁  (20) 

Where 𝑓𝑓𝑑𝑑   is the dominant frequency and 𝑁𝑁𝑓𝑓 is the number of footsteps in each window. 
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Figures 9.2 shows the power density spectrum of resultant acceleration with different activities. 

For PSD of sitting data, the peak is at 0Hz. PSD for walking and running have the peaks at 3.3Hz 

and 4.3Hz respectively.   

 

Figure 9-2 Power density for sitting, running and walking data. 

9.5 Sequential Feature Selection 

The acceleration is along a specific axis is important to identify the day-to-day activities of the 

patient. For instance, when the patient climbs up or down the stairs, the direction of acceleration 

is mainly on the x-axis. When the patient walks, the acceleration along z-axis is dominant. For 

stationary activities including sitting, standing or lying down, orientation of the brace or the 

angle of rotation of y-axis (pitch), can be used as a discriminative feature. For lying, the 

normalized pitch is almost 180°, whereas for sitting and standing, the normalized pitch is 

approximately 90°. The number of footsteps in a 10-second window is another discriminative 

feature that we employ in this work. To improve the identification accuracy of the predictive 
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model, we used sequential feature select methodology to select different features which are 

important to identify the activities. These features are used to train the predictive model.  
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Chapter 10 Experimental results 
 

The experimental results in this thesis are examined in semi-supervised and unsupervised 

scenarios. In this section, we discuss the results of three different phases. In the first phase, we 

discuss the results of sequential feature select. In the second phase, we discuss the results related 

to training the predictive model, cross validation results and the activity identification results in 

semi-supervised scenario. In the third phase, we discuss the experimental results of the 

compliance of brace treatment and the tightness of the brace in both, semi-supervised and 

unsupervised settings.  

10.1 Sequential Feature Select Results 

We used sequential feature selection to extract a different combination of features for all 

patients, as depicted in Table 1. These features are used for training the predictive model for each 

patient. We observe that the average x-axis acceleration in a window, pitch and the number of 

footsteps in a window are three most important discriminative features for activity identification. 

The x-axis acceleration represents the upward movement of the patient and is used as a 

discriminative feature to differentiate climbing from walking and running. Pitch represents the 

orientation of the brace along y-axis. This is used as a discriminative feature to differentiate 

sitting and standing from lying. 
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Patient  Features Selected using Sequential Feature Select methodology 

Patient-1  

Number of footsteps (1)  

Gyroscope values along y-axis (2)  

Acceleration along x-axis (3) 

Acceleration along y-axis (4) 

Gyroscope values along x-axis (5) 

Average x-axis acceleration in a window (6)  

Pitch (7) 

Patient-2   

Number of footsteps (1)  

Gyroscope values along y-axis (2)  

Acceleration along x-axis (3) 

Acceleration along y-axis (4) 

Gyroscope values along x-axis (5) 

Average x-axis acceleration in a window (6)  

Pitch (7) 

Patient-3 

Number of footsteps (1) 

Acceleration along y-axis (2) 

Force sensor values (3)  

Gyroscope values along z-axis (4) 

Pitch (5) 

Table 1:  The features selected for activity identification.  

10.2 Training and Classification Results 

For each day, there is a 12-minute window in the accelerometer and the gyroscope data, where 

the patient carried out activities including sitting, standing, walking running, lying and climbing. 

Patient wrote the duration, time and sequence of activities in the logbook provided. From the 

training data collected in the clinic, we observed that data collected from the stationary activities 

of sitting, standing and lying capture the breathing pattern of the patient. The data is quasi-

periodic with a frequency of about 1.5 seconds apart. Frequency of resultant acceleration data is 
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found to be highest for running. The activity detection accuracies of all three patients using 

different classifiers can be compared in Table 2, 3 and 4. It can be noted that the highest overall 

accuracy achieved was that of patient 2. Their overall accuracy is 100% using bagging and 

boosting, with a 10-fold cross-validation methodology. 

Accuracies 
KNN with 

K=1 

KNN with 

K=3 

KNN with 

K=5 

Complex 

decision Tree 
Boosting Bagging 

Sitting 99% 99% 99% 99% 99% 99% 

Standing 99% 99% 99% 99% 99% 99% 

Walking 95% 96% 96% 99% 99% 99% 

Climbing 86% 82% 79% 100% 100% 99% 

Lying 99% 99% 99% 99% 99% 99% 

Running 99% 99% 99% 96% 96% 90% 

Table 1: 10-CV performance for patient-1 

Accuracies KNN with 

K=1 

KNN with 

K=3 

KNN with 

K=5 

Complex 

decision Tree 

Boosting Bagging 

Sitting 95% 95% 95% 95% 99% 99% 

Standing 95% 94% 94% 89% 99% 99% 

Walking 92% 90% 89% 96% 99% 99% 

Climbing 90% 85% 9% 98% 99% 99% 

Lying 99% 99% 99% 99% 100% 99% 

Running 79% 75% 74% 95% 100% 100% 

Table 2: 10-CV performance for patient-2 

Accuracies 
KNN with 

K=1 

KNN with 

K=3 

KNN with 

K=5 

Complex 

decision Tree 
Boosting Bagging 

Sitting 99% 98% 98% 98% 99% 99% 



 35 

Standing 98% 98% 97% 94% 99% 99% 

Walking 97% 95% 93% 96% 100% 100% 

Climbing 96% 92% 91% 91% 99% 99% 

Lying 99% 99% 99% 99% 99% 99% 

Running 93% 93% 90% 98% 100% 100% 

Table 3: 10-CV performance for patient-3 

After training the predictive model, Ensemble learner is used with Ada-boost to classify semi-

supervised data. The classification results for semi-supervised data are shown in Table 2. During 

the entire 6 days of both, semi-supervised and unsupervised data, the maximum duration of 

running is 12 minutes in an entire day for all the three patients. The patient was advised to take 

the brace off during intense physical activities like playing soccer. The duration of lying is about 

5.3 hours every day for patient-2, which indicates that patient-2 sleeps with brace worn. The two-

minute data extracted for each of activity for the first 6 days is used for training the predictive 

model. Sequential feature select is used to select the relevant features to train the predictive 

model. The cross-validation results are as shown in Table 2. Lying shows the highest 

classification accuracy among all the activities as the angle of rotation of y axis helps 

differentiate it from other activities. To get a better idea on which of the features are more 

suitable for creating a model, a confusion matrix. Figures 10.1, Figure 10.2 and Figure 10.3 show 

the confusion matrices for patients 1, 2 and 3 respectively. The matrices show true positive rates 

for different activities. 
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Figure 10-2 Confusion matrix for Patient-2 

Figure 10-1 Confusion matrix for Patient-1 
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Figure 10-3 Confusion matrix for Patient-3 

Days 

 
Sitting Standing Walking Climbing Lying Running 

1 0.9 0.1 0.3 0.2 0 0 

2 1.3 0.3 0.8 0.1 0.5 0 

3 1.9 0.7 0.6 0 0.6 0.1 

4 2.1 0.7 0.8 0.1 0.5 0.1 

5 0.9 0.4 0.4 0.1 2.2 0.2 

6 2.8 0.7 0.9 0.2 4.6 0.0 

Table-4: Classification results for patient-1 

Days 

 
Sitting Standing Walking Climbing Lying Running 

1 1.1 0.3 0 0 0.1 0 

2 0.4 0.2 0.5 0 1 0 

3 3.1 1.3 0.1 0.1 5.6 0 
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4 4 1.5 0.2 0 4.7 0 

5 3.9 0.8 0.3 0.1 5.3 0 

6 1.3 1.1 0 0 2 0 

Table-5: Classification results for patient-2 

Days 

 
Sitting Standing Walking Climbing Lying Running 

1 3.6 3.5 0.4 0.3 0.8 0.1 

2 5.3 1.5 0.1 0 0.6 0 

3 3.9 0.6 0.2 0.1 0 0 

4 7.1 4.1 0.6 0.2 1.6 0.2 

5 1.4 1 0.1 0.1 4.4 0 

Table-6: Classification results for patient-3 

Days Force on brace Compliance (%) Days Force on brace Compliance (%) 

1 6.7 7.9 14 5 45.8 

2 6.6 14.1 15 5.6 63.4 

3 6.4 18.3 16 4.7 82.5 

4 6.4 19.5 17 4.6 75.4 

5 6 19.5 18 5 44.3 

6 5.6 25.6 19 5 59.6 

7 6.1 16.2 20 5.4 50.2 

8 6.3 39.4 21 5.1 40.1 

9 5.3 86.5 22 4.5 67.7 

10 4.9 56.2 23 5 64.5 

11 5.1 58.6 24 4.4 48.3 

12 5.5 80.4 25 4.9 45.9 

13 5.1 84.7 26 5 48.8 

Table-7: Results of compliance and force on the brace for 6 days of semi-supervised and 20 days 

of unsupervised data for Patient-1 
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10.3 Results of force and compliance studies  

Table 3 shows the duration of brace wear in hours, while Table 4 shows the force exerted by the 

brace or tightness of brace wear in Newton and the compliance in percentages for patient-1. The 

relation between compliance to brace treatment and tightness with which the brace is worn is 

shown in Figure 10.4. It was observed that, for the first 4 days the patient begins to become 

accustomed to the brace. On day 1, they wear the brace for 2 hours. From Week 2 onwards, 

compliance with the treatment had increased and reached almost 50%, as the patient is able to 

wear the brace for longer than 10 hours a day. A gradual reduction in the force exerted by the 

brace is observed, which indicates that the brace is getting looser, which could be due to the 

patient's wearing the TLSO more loosely or due to patient’s curve reducing while wearing the 

TLSO. This information is quite important for the physician as a loose brace may not be able to 

adequately control the spinal curvature. 
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Figure 10-5 Waveforms for sitting, standing, walking, running, lying and climbing for Day 6, Day 8 

and Day 13. 
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The waveforms generated for different activities, are shown in Figure 10.5. The figure shows 

training data for 3 days for better visualization. The baseline force was observed to be higher for 

Day 6, while it is much lower for Day 8 and Day 13. The brace was tighter during the first week, 

as the force exerted by the brace is significantly higher. As observed from the Figure 10.5, all 

activities follow a unique trend and pattern that can be further justified by observing the force 

readings associated with the respective activity. The breathing patterns of the patient can be 

observed for stationary activities like sitting, standing and lying. The frequency of waveforms is 

much higher for walking. Running data shows highest frequency for the force sensor data. 

During the entire 6 days, it was observed that the maximum duration of running is about 12 

minutes in a day. The patients were advised to take the brace off during intense physical activity 

like playing soccer. It was also observed that the duration of lying is about 4 to 5 hours every day 

for patient-2, which indicates that the patient sleeps at night with the brace on. The scatter plot in 

Figure 10.6 shows the distribution of training data over x-axis acceleration (upward 

acceleration), pitch (which represents orientation of the brace with respect to y-axis) and, the 

number of footsteps during a 10-second window. The pitch is in the range of -90° to +90°. For 

better visualization of data, the pitch value is normalized by adding 90°. For running, the number 

of footsteps are in the range of 30 to 45, and the pitch is about 90°. For walking the number of 

footsteps is between 10 and 30. Climbing is a slightly slower activity with the number of 

footsteps between 10 and 20. Pitch is roughly 20° for walking, climbing and running. Lying has 

0 footsteps but the pitch is close to 100°. The number of footsteps are 0 for sitting and standing  
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Figure 10-6 Scatter plot for training data 

as well, but the pitch is much less than lying, thus, making it easy to differentiate lying from 

sitting and standing. 

Conclusion  

In this thesis, a new data-mining methodology to evaluate the effectiveness of brace treatment 

pervasively based on accelerometer, gyroscope and force readings is proposed. Three main 

aspects of brace treatment are evaluated 1) Compliance of brace treatment by evaluating the 

duration of brace wear through segmentation 2) Level of tightness of the brace by calculating the 

baseline force exerted by the patient on the brace 3) The quality of brace-fit by estimating the 

duration of activities: LIE, SIT, SND, WLK, RUN and CLB performed daily. The quality of 

brace fit for 6 days of semi-supervised data for 3 patients is investigated.  An overall accuracy of 

99.8%, 100% and 99.9% for patients 1, 2 and 3 respectively for semi-supervised activity 
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detection is achieved. The study continued compliance and tightness for Patient-1 for the 

remaining 20 days of unsupervised data. Patient was instructed to wear the brace for 2 hours a 

day initially, gradually increasing to 23 hours a day. This was proven by the analysis as 

compliance was observed to increase from 20% to 80% after 4 weeks. Naturally, the brace is 

tightest when the patient begins treatment. As they continue wearing the brace daily, they start to 

“break-in”, making the brace more comfortable to wear. This can be calculated by measuring the 

baseline force exerted on the brace. The analysis showed that the force decreased by 33% after 4 

weeks.
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Appendix 
 

This appendix describes the user protocol provided to the patients when they sign up to participate 

in the study. The protocol is as follows: 

The purpose of this back brace is to monitor the force being exerted by your back. The force would 

be collected from the force sensor placed inside the back brace. Below you can find the main steps 

and procedures related to the back brace. After your visit with the Doctor, you are ready to follow 

the instructions listed below. 

 

Charging 

 

To charge the battery, you must connect the USB charging cable to the board. The USB charger 

and cable will be provided to you. Plug the USB charger into any wall power outlet for 2-3 hours 

a day. Once you are done charging, you may remove the USB charging cable from the board. 

 

Daily Activity Log 

Each day, you would be required to complete at the six activities listed below. Each activity is 

scheduled to last for 2 minutes. Below you will find instructions on procedure to conduct these 

tests. These activities should be recorded in the activity log each day. These activities should be 

done every day for 6 days. Remember: Each test is 2 minutes long! 
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Sitting: You may sit on a chair or a couch. Try to limit any movement. 

Standing: Stand still - try to limit any movement. 

Walking: Walk in a straight line or circle, indoors or outdoors. 

Running: Try to run at your normal speed. 

Lying down: Lie down on a flat surface, like a bed or a couch. It is all right to lie on your side. Try 

to limit any movement! 

Climbing stairs: Climb up and down the stairs at your normal speed. 

In order to record specific activities, the data button located on the brace must be pressed. This 

button will be shown to you during your visit. There are two buttons on the board so make sure 

not to mix them up. This button must be pressed each time the activity begins and ends. Before 

beginning a specific activity, press and hold the button for 2-3 seconds. Now you may begin your 

activity. Be certain to monitor the time when the activity is started and ended. This also means that 

the time should be noted when the button is pressed once at the beginning and once at the end of 

the activity. Example: You are about to go for a jog at 10:45 am. You press and hold the button 

for 2-3 seconds when you are about to start jogging. You should note the time at this point in the 

log. You end the jogging session at 11:52 am. You must now press and hold the button for 2-3 

seconds. You must now note the time that the button was pressed. For that time window, you must 

also write down the activity you did. In this example, the log should say: 

Activity: Jogging 

Start Time: 10:45 am 

End Time: 11:52 am 

In addition to the six timed activities listed above, please note down any other activities you do. 

Examples may include: Reading a book, studying, or playing sports outdoors. The more details 
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that you write down, the better we can understand what you did when you were wearing your 

brace! 

Data download 

Once a week, it will be necessary to transfer the data on the SD memory card to the Drive folder. 

The SD card must be removed from the brace and connected to the computer once a week. You 

will then open the Drive link provided to you. You must now upload all files to the Drive.  

 

To upload files from the SD card, click on the link Drive Link provided. Now select Week 1 for 

the activities done in the first week. A window will pop up which allows you to select multiple 

files. Select and upload all files in the SD card. You will see a small box on the bottom right of the 

screen showing the status of the files being uploaded. Once the files are successfully uploaded, 

you may now delete the files on your SD card. Before uploading the files however, make sure that 

the files were in-fact successfully uploaded. To do so, log out and log back in to your Drive. Then, 

click on the link provided above. Enter the folder you just uploaded the files to. If the files are still 

there, you have successfully uploaded the files. You may now delete the files after confirmation. 

To delete the files on the SD card, open the SD card drive on your computer. Once you enter the 

SD card folder, you may now select all files and delete them. Remember: only delete the files once 

you have confirmed that they have been uploaded. After deleting the files, plug the SD card back 

into the brace. Once the SD card is plugged back in, press the reset button to reset the board. Each 

week, the brace needs to be reset. This button will be shown to you. You must remember what 

each button does. In this case, the second button would reset the circuit. It is very IMPORTANT 

to reset the board in order to collect data each week. Remember to note down the timings of your 

activities. 
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