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Abbreviations
CA cholic acid
CDCA chenodeoxycholic acid
CDC-gly glycochenodeoxycholate
CDC-tau taurochenodeoxycholate
norCDCA 24nor-chenodeoxycholic acid
norUDCA 24nor-ursodeoxycholic acid
Papp permeability observed experimentally
Pm permeability coefficient for the membrane
Puwl permeability coefficient of the unstirred water

layer
UCA ursocholic acid
UDCA ursodeoxycholic acid

Unconjugated bile acids are not only formed in the mam-
malian intestine by bacterial enzymes, but are also used as
therapeutic agents for the treatment of cholestatic liver dis-
ease and for cholesterol gallstone prevention and dissolu-
tion. Ursodeoxycholic acid (UDCA) is used for the
treatment of primary biliary cholangitis (formerly termed
primary biliary cirrhosis) where it decreases the need for
liver transplantation (Borg, 2006). UDCA is also used for

the prevention of gallstone formation in obese patients who
have rapid weight loss after bariatric surgery (Sugerman
et al., 1995). Recently, 24-norUDCA (a homolog of UDCA
with one less carbon atom in the side chain) has been
shown to improve liver tests in primary sclerosing cholan-
gitis (Fickert et al., 2017). A semisynthetic bile acid, obeti-
cholic acid, is the 6α-ethyl derivative of CDCA and a
potent agonist of the nuclear receptor FXR (Farnesoid X
receptor). Obeticholic acid has been shown to improve liver
tests in patients with primary biliary cholangitis who have
not responded to treatment with UDCA (Nevens, 2016)
and is being tested in other liver diseases.
Bile acids used for therapy are formulated in the form of

protonated acid. This physical form has extremely low
aqueous solubility (<100 μM), and crystal dissolution is
generally considered to be rate limiting in their absorption.
Nonetheless, it seems important to define the rate of uptake
of unconjugated bile acids from an aqueous solution in
which the bile acid is largely present in the form of the
water-soluble bile acid anion. We report here the rate of
passive intestinal absorption of six polyhydroxy unconju-
gated bile acids from a perfused jejunal segment of the
anesthetized rat. We determined the influence of the
unstirred water layer by including D-glucose in the perfus-
ate, a solute whose rate of uptake is determined solely by
the thickness of the unstirred water layer (Levitt, Fume,
Strocchi, Anderson, & Levitt, 1990; Anderson, Levine,
Levitt, Kneip, & Levitt, 1968).
Male Wister rats weighing 350–400 g were used. A jeju-

nal segment of the anesthetized rat was perfused using a
bidirectional pump to minimize the unstirred water layer
(Doluisio, Billips, Dittert, Sugita, & Swintosky, 1969). The
perfusate (pH 7.3) contained phosphate buffer, bile acid,
glucose, and a polymeric dye (Polycyanine) as a
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nonabsorbable marker to correct for water movement into
or out of the perfused segment (Dupas, Moreau, & Hof-
mann, 1985). Samples (25 μL) of the perfusate were
obtained by means of a fine catheter inserted through the
intestinal wall into the lumen, enabling calculation of the
first-order disappearance rate.
Bile acids labeled with 14C or 3H were synthesized in

this laboratory and were radio purified by zonal scanning.
The bile acid concentration in perfusates was 0.1 mM, a
concentration at which only bile acid monomers are pre-
sent. At least four studies were conducted for each unconju-
gated bile acid and pairwise comparisons for rates of
absorption were tested for statistical significance using Stu-
dent’s t-test. Concentrations of labeled bile acids were
determined by liquid scintillation counting or in some
instances by a sensitive enzymatic assay (Roda, Kricka,
DeLuca, & Hofmann, 1982). This study was approved by
the Committee on Animal Care and Protection of the Uni-
versity of California San Diego.
The influence of nuclear substitution on membrane per-

meability was determined for four natural C24 bile acids
chenodeoxycholic acid (CDCA), UDCA, cholic acid (CA),
and ursocholic acid (UCA). Their structure is given in
Table 1. The influence of side-chain length was assessed
using two C23 bile acids (24-norCDCA and 24-norUDCA)
that have four rather than five carbon atoms in the side
chain. The effect of conjugation on absorption was defined
using the glycine and taurine conjugates of CDCA.
Calculated values for the permeability of the membrane

and the lipid membrane were obtained using the equations
shown in Box 1 (Ho & Higuchi, 1974), and are summa-
rized in Table 1. Nuclear hydroxylation had a marked effect
on membrane permeation as dihydroxy bile acids were
absorbed more rapidly than trihydroxy bile acids
(CDCA > CA; UDCA > UCA (p < 0.05 for each pair). In

addition, changing the orientation of the hydroxyl group at
C-7 from α to β greatly decreased the rate of absorption:
CDCA > UDCA; CA > UCA) (p < 0.05 for all compari-
sons). Side-chain length had a variable effect
(CDCA < norCDCA) but absorption of norUDCA did not
differ from that of UDCA. Uptake of CDCA was so rapid
that it was entirely controlled by the thickness of the
unstirred water layer. The glycine and taurine conjugates of
CDCA showed negligible absorption, in agreement with
previous studies (Wilson, 1981). Based on the work of
Marcus et al. (1991), it is reasonable to equate disappear-
ance from the lumen as being equivalent to absorption from
the small intestine. Anesthesia has been shown to increase
the thickness of the unstirred layer (Levitt et al., 1990), so
that the calculated Puwl values are only valid for the experi-
mental conditions of this study. The values of Pm (mem-
brane permeability) should be rather similar across species
as they are normalized to the epithelial area.
Our measurements of net absorption are in general agree-

ment with previous studies of unconjugated bile acid
absorption in humans (Krag & Phillips, 1974; van Berge
Henegouwen & Hofmann, 1977), in the rabbit (Aldini
et al., 1996), and in the rat (Schiff, Small, & Pietsch, 1972;
Wilson, 1981), but provide new information on the effect
of side-chain length. Such information may be of interest
as norUDCA is now in clinical trials for the treatment of
cholestatic liver disease (Fickert et al., 2017).
We conclude that the rate of unconjugated bile acid

absorption from the jejunum is influenced markedly by the
pattern of bile acid hydroxylation and to a lesser extent by
the side-chain length. CDCA is absorbed so rapidly that its
uptake is largely determined by the thickness of the
unstirred water layer. Changing the C-7 hydroxy group
from an α to a β configuration greatly decreases the rate of
absorption. C23 24-NorCDCA and 24-norUDCA were well

Table 1 Permeability coefficients of bile acids (×104) cm/s (mean �standard deviation) in the perfused rat jejunum at pH 7.3a

Bile acid Structure Papp Puwl Pm % Puwl controlled
b

Unconjugated

CDCA C24, 3αOH, 7αOH 1.03 � 0.18 1.08 � 0.19 22.2 � 10.0 95

norCDCA C23, 3αOH, 7αOH 0.78 � 0.19 0.91 �0.13 5.46 � 3.52 85

UDCA C24, 3αOH, 7βOH 0.67 � 0.05 1.20 � 0.52 1.52 � 1.47 56

norUDCA C23, 3αOH, 7βOH 0.64 � 0.15 0.99 �0.14 1.81 �0.82 65

CA C24, 3αOH, 7αOH, 12αOH 0.52 � 0.24 0.68 � 0.27 1.25 � 0.48 76

UCA C24, 3αOH, 7βOH, 12αOH 0.24 � 0.08 0.87 � 0.06 0.33 � 0.16 27

Conjugate

CDC-tau C24–CDC-taurine 0.05 ~0.05 <10

CDC-gly C24–CDC-glycine 0.1–0.2 ~0.05 <10

aCDC-gly, glycochenodeoxycholate; CDC-tau, taurochenodeoxycholate; Papp, apparent permeability; Pm, permeability of the membrane; Puwl,
permeability of the unstirred water layer.
bCalculated as Papp/Puwl (×100).

466 Lipids

Lipids (2018) 53: 465–468



absorbed from the jejunum, presumably also by passive
means.
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Box 1. Calculation of permeability coefficients
From the first equation:

K =
A
V
� 1

1
Puwl

+ 1
Pm +Pp

ð1Þ

where K is the first-order rate constant given by the absorption of glucose or a given bile acid; A is the geometric area of
the perfused jejunal segment of length L; V is the volume of solution in the perfused segment.

A
V
=2

ffiffiffiffiffiffi
πL
V :

r

PuwlB is the undisturbed water layer permeability of bile acid; PuwlG is the undisturbed water layer permeability of glu-
cose; PmB is membrane permeability of bile acid; Pp is pore permeability. In the case of bile acids PP is the insignificant
because the size of the bile acid molecules precludes paracellular absorption:

1
Puwl B

+
1

PmB
=

A
V �KB

ð2Þ

and for glucose (unstirred water layer rate controlled) wherein Puwl ⋘ Pm,

1
PuwlG

=
A

V �KG
ð3Þ

Aqueous diffusion relationships, accounting for the molecular sizes of glucose and the bile acids, leads to the following
ratio:

Puwl B
PuwlG

=
MG

MB

� �1
3

ð4Þ

where M is the molecular weight. From Equations 2–4 we arrive at the following equation.

PmB =
A
V
� 1

1
KB

− 1
KG

MB
MG

� �1
3
=

1
1

PEXP B

− 1

Puwl B

ð5Þ

PmB values were calculated for each experiment.
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