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Abstract  

Background: Prognostic biomarkers for localized prostate cancer (PCa) could improve 

personalized medicine. Our group previously identified a panel of differentially methylated 

CpGs in primary tumor tissue that predict disease aggressiveness, and here we further validated 

these biomarkers. 

Methods: Pyrosequencing was used to assess CpG methylation of eight biomarkers previously 

identified using the HumanMethylation450 array; CpGs with strongly correlated (r >0.70) 

results were considered technically validated. Logistic regression incorporating the validated 

CpGs and Gleason sum was used to define and lock a final model to stratify men with 

metastatic-lethal vs. non-recurrent PCa in a training dataset. Coefficients from the final model 

were then used to construct a DNA methylation score, which was evaluated by logistic 

regression and Receiver Operating Characteristic (ROC) curve analyses in an independent 

testing dataset.  

Results: Five CpGs were technically validated and all were retained (P <0.05) in the final model. 

The 5-CpG and Gleason sum coefficients were used to calculate a methylation score, which was 

higher in men with metastatic-lethal progression (P = 6.8x10
-6

) in the testing dataset. For each 

unit increase in the score there was a 4-fold increase in risk of metastatic-lethal events (odds 

ratio, OR = 4.0, 95% CI = 1.8-14.3). At 95% specificity, sensitivity was 74% for the score 

compared to 53% for Gleason sum alone. The score demonstrated better prediction 

performance (AUC = 0.91; pAUC = 0.037) compared to Gleason sum alone (AUC = 0.87; pAUC = 

0.025). 
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Conclusions: The DNA methylation score improved upon Gleason sum for predicting 

metastatic-lethal progression and holds promise for risk stratification of men with aggressive 

tumors. This prognostic score warrants further evaluation as a tool for improving patient 

outcomes. 

Background 

Prostate cancer (PCa) is responsible for more than 26,000 deaths each year, and men 

initially diagnosed with clinically localized disease comprise a substantial proportion of this 

mortality (1). Recent estimates indicate that over 80% of patients have tumors confined to the 

prostate at first presentation (2-4), and of those treated with radical prostatectomy many will 

have a durable cure (5, 6). However, a subset of surgically treated patients will develop 

biochemical recurrence and some will progress to metastatic, life-threatening PCa (6, 7). 

Genomic biomarkers with prognostic value for stratifying patients at high risk for metastatic 

progression and disease-specific mortality are needed to advance personalized medicine (8, 9).  

Molecular studies of tumor tissue have led to development of commercial tests based on 

gene expression scores for prediction of metastasis or PCa death after prostatectomy, with AUC 

values ranging from 0.75 to 0.82 for these mRNA-based assays (8-11). However, rigorous 

comparative effectiveness studies of these assays and prospective clinical studies are needed to 

confirm the performance characteristics of these tests. In addition, there are other fluid-based 

(12) and tumor tissue-based (13, 14) biomarker panels that may aid risk stratification of men 

diagnosed with localized disease, but these also require further evaluation.  

Alterations in DNA methylation may occur early in tumorigenesis, are the most recurrent 

events in metastatic PCa, and can impact gene expression (15, 16). We hypothesize that the 
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DNA methylation profile of a primary prostate tumor may reveal its aggressiveness potential, 

and because the stability of tumor DNA exceeds that of RNA, DNA-based biomarkers may prove 

to be more reliable. Indeed, a recent study found that the performance characteristics of DNA 

methylation-based biomarkers were superior to expression-based ones for detecting cancer in 

prostate biopsy tissue (17). 

We previously used primary tumor tissue-derived DNA samples to develop a panel of eight 

differentially methylated CpGs that improved upon Gleason sum for classifying post-

prostatectomy patients who experienced metastatic-lethal progression as compared to their 

counterparts who remained recurrence-free for at least five years following surgery. The panel 

of eight CpG sites was initially identified using epigenome-wide data from a training cohort and 

was validated in an independent dataset, with AUC values for individual CpGs in combination 

with Gleason sum ranging from 0.82 to 0.89 for prediction of metastatic-lethal outcomes (13). 

To further investigate the potential clinical utility of these DNA methylation biomarkers, we first 

performed pyrosequencing for technical validation of each CpG, created a methylation score 

based on Gleason sum and the CpGs that were technically validated and were retained in the 

final locked model, and then evaluated the score’s performance in an independent testing 

dataset.    

Methods 

Study populations  

Training Dataset 

Two independent study populations diagnosed with localized adenocarcinoma of the 

prostate and treated with radical prostatectomy were combined as a training dataset: 1) a Fred 
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Hutchinson (FH) Cancer Research Center-based cohort; and 2) an Eastern Virginia (EV) Medical 

School-based nested case-control dataset. These populations were described previously (13). 

Briefly, the FH cohort includes 344 Caucasian patients ascertained through the Seattle-Puget 

Sound SEER cancer registry for population-based studies of PCa. These men were aged 35-74 

years when diagnosed in January 1993-December 1996 (18), or in January 2002-December 2005 

(19). Clinical data, vital status, and underlying cause of death were obtained from the SEER 

registry. Cause of death was verified by review of death certificates. PCa recurrence status was 

determined from follow-up surveys, review of medical records, and contact with physicians’ 

offices. Metastatic progression was confirmed by a positive bone scan, MRI, CT or biopsy. Over 

an average 8-year follow-up period, 317 patients remained recurrence-free and 27 had 

metastatic-lethal progression. The EV study population comprises 80 Caucasian patients 

diagnosed in 1992-2009, including 31 men who developed metastasis or died of PCa and 49 

who had no evidence of recurrence during five or more years of follow-up after surgery. Clinical 

data were extracted from medical records and the EV urological patient database. Metastatic-

lethal events were identified as described for the FH cohort. The combined training dataset 

included 366 men with no evidence of recurrence and 58 who developed metastasis or died of 

PCa. The FH and EV Institutional Review Boards approved the study and all patients signed 

informed consents. 

Testing Dataset 

An independent group of Caucasian PCa patients who underwent radical prostatectomy at 

the University of Michigan (UM) was utilized as a testing dataset. Based on a nested case-

control design, men diagnosed in 1994-2005 who subsequently developed metastatic-lethal 
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PCa (N = 29) were selected as cases from the UM SPORE radical prostatectomy database of 

patients treated and followed at UM. A similar number of men diagnosed during the same time 

period and who remained recurrence-free for at least five years post-surgery (N = 29) was 

randomly selected as a comparison group. Metastatic progression was confirmed by a positive 

bone scan, CT, MRI or biopsy. Disease-specific deaths were verified by medical records. Clinical 

data on PSA at diagnosis, Gleason sum, pathologic stage, and outcomes were obtained from the 

UM SPORE radical prostatectomy database.  

Tumor tissue preparation and DNA methylation profiling 

Formalin-fixed paraffin-embedded tumor tissue blocks were obtained from radical 

prostatectomy specimens and used to make hematoxalin and eosin (H & E) stained slides, 

which were reviewed by pathologists to confirm the presence and location of adenocarcinoma. 

For the FH and EV patients, two 1-mm tumor tissue cores from the dominant lesion that were 

enriched with ≥75% tumor cells were taken for DNA purification. The RecoverAll Total Nucleic 

Acid Isolation Kit (Ambion/Applied Biosciences) was used to extract DNA.  

For the UM patients, five unstained slides (5-µm thickness) from prostatectomy FFPE blocks 

were used to macrodissect tumor tissue from areas marked by an experienced genitourinary 

pathologist on the corresponding H & E stained slides. DNA was extracted using an automated 

QIAsymphony SP Extractor with the QIAsymphony DNA Mini Kit (Qiagen) with software version 

3.5, including deparaffinization, cell lysis using protease K digest, and nucleic acid purification 

with magnetic beads. DNA yields ranged from 0.5 to greater than 1.0 microgram with A260:A280 

ratios of 1.8-2.0. All tumor DNA samples were then quantified using PicoGreen and sent to 

Illumina (Illumina, Inc., San Diego, CA) for methylation profiling. 
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The EZ DNA Methylation Kit (Zymo Research, Irvine, CA) was used to bisulfite convert tumor 

DNA samples. Controls (n= 600) on the array were used to track the bisulfite conversion 

efficiency. The Infinium® HumanMethylation450 (HM450) BeadChip array (Illumina) was used 

to measure epigenome-wide methylation using beads with target-specific probes designed to 

interrogate individual CpG sites (>485,000) (20). All samples from the FH and EV patients were 

assayed using the HM450 array as previously described (13). The UM samples were assayed in a 

single batch using the HM450 array. PCa outcome events were randomly distributed across the 

plate, laboratory personnel were blinded to clinical information and the location of samples, 

and the same laboratory technician performed all the methylation assays. 

Failed samples were identified by using the detection P-value metric (probability of a CpG 

being detected above the background level defined by negative control probes) according to 

Illumina protocols. A sample was excluded if less than 95% of the CpG sites for that sample on 

the HM450 array were detected with a detection P-value <0.05. The final number of patients in 

the training dataset was 392 (344 non-recurrent, 48 metastatic-lethal) and in the testing 

dataset was 34 (11 non-recurrent, 23 metastatic-lethal). Further, CpG sites with a detection P-

value of >0.01 were excluded. After data filtering, 477,460 CpGs were available in each of the 

FH, EV, and UM datasets.  

Pyrosequencing technical validation  

The panel of eight differentially methylated CpGs previously shown to have prognostic value 

based on HM450 array data (13) were evaluated in 36 matched tumor DNA samples (18 FH, 18 

EV) by pyrosequencing-based assays. Each DNA sample (160 ng) was bisulfite converted using 

the EZ DNA Methylation Kit (Zymo Research) and eluted in 20 µL volume for pyrosequencing. 
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For each pyrosequencing assay, primers and probes targeting sequences surrounding the 

specific CpG dinucleotide identified on the array were designed with the PyroMark Primer 

Assay Design 2.0 software (Qiagen) (Suppl. Table 1). The PCR amplification step was performed 

using the Qiagen PyroMark PCR kit (Qiagen) following the manufacturer’s instructions. The 

optimal annealing temperatures were determined by temperature gradient PCR with EpiTect 

100% methylated and unmethylated control DNA (Qiagen). The PCR samples were submitted to 

the Genomics Core at the Fred Hutchinson Cancer Research Center to complete the 

pyrosequencing runs following the manufacturer’s instructions (Qiagen). For each 

pyrosequencing assay, a series of standard DNA samples with known percentages of 

methylated DNA (0, 20%, 40%, 60%, 80%, and 100%) were used as “calibrators” to correct PCR 

bias by means of cubic polynomial regression before assessing the clinical samples (21). 

Pyrosequencing values of <0 or >100 were replaced with 0 or 100, respectively. The 

pyrosequencing assays were run using the matched (i.e., the same) tumor DNA aliquots used 

for the HM450 array in order to assess the accuracy of the array results at each CpG site and to 

establish pyrosequencing assays for this panel of CpGs that could be used for future clinical 

testing of these biomarkers.  

Statistical analysis 

The HM450 array data for the UM patients were processed using the minfi package in R as 

previously described for the FH and EV datasets (13). Briefly, the data were normalized using 

subset-quantile within array normalization (SWAN) (22). Methylation β-values and M-values 

were calculated, where β-values represent the percentage of DNA methylation at a CpG site, 

and methylation M-values are the logit transformed β-values that are approximately normally 
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distributed. M-values were used for statistical testing. Genome annotation of the CpGs was 

based on the Illumina protocol (23).  

Pyrosequencing assays were designed for technical validation of eight CpGs previously 

shown to stratify metastatic-lethal vs. non-recurrent PCa patients (13). Candidate CpGs were 

retained for further analysis if the pyrosequencing results were strongly correlated (i.e., 

Pearson correlation r >0.70) with those obtained from the HM450 array for a set of matched 

primary tumor DNA samples.  

A combination rule was formulated based on the technically validated CpGs and Gleason 

sum for predicting metastatic-lethal progression. We performed forward model selection with 

logistic regression using the combined FH and EV dataset, forcing both Gleason sum and study 

site covariates in the model. Study site was included to account for potential confounding due 

to the different study designs (FH, cohort; EV, nested case-control). At each iteration, a CpG 

was added to the model (one CpG at a time) and a likelihood ratio test was performed to 

compare the model including the single additional CpG with the model from the previous step. 

The CpG with the lowest P-value was added at each iteration until none of the remaining CpGs 

was statistically significant (i.e., P-value >0.05).  

We then tested this final locked model in the UM dataset, where we used the CpG and 

Gleason sum coefficients to calculate a methylation score for each UM patient. To explore the 

relationship between the methylation score and outcomes in the testing dataset, we stratified 

on patient status and then performed a t-test on the mean methylation score. Further analyses 

involved fitting a logistic regression model to estimate the relative risk of metastasis or death, 

with the methylation score entered into the model as a continuous variable. The odds ratio and 
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95% confidence interval was calculated. Age at diagnosis, year of diagnosis, diagnostic PSA 

level, and pathologic stage of disease were considered as potential confounders in the 

regression and prediction models.  

A Receiver Operating Characteristic (ROC) analysis was performed to evaluate the ability of 

the methylation score to distinguish patients with metastatic-lethal progression from those 

who remained recurrence-free. The area under the curve (AUC), partial area under the curve 

(pAUC), and sensitivity at 95% specificity were computed for the score and for Gleason sum 

alone. For the analysis, Gleason sum was first categorized as an ordinal variable, which was 

then treated as a continuous variable in the AUC model. The prediction models also considered 

the potential effects of age at diagnosis, year of diagnosis, study site, PSA and stage on results. 

All analyses were conducted in R (http://cran.r-project.org). 

Results 

Recent epigenome-wide tumor DNA methylation profiling by our group uncovered eight 

differentially methylated CpGs that classified radical prostatectomy patients who experienced 

metastatic-lethal progression as compared to those who remained recurrence-free for more 

than five years post-surgery (13). Five of these eight candidate CpGs were technically validated 

based on their strong correlation (r >0.70) with HM450 data using an orthogonal 

pyrosequencing-based assay (Table 1). Three CpGs that did not demonstrate a strong 

correlation between the HM450 array and pyrosequencing results were excluded from further 

analyses (Suppl. Figure 1).  

Selected clinical characteristics of the combined FH and EV dataset (training) and the UM 

dataset (testing) are shown in Table 2. In both datasets, men with no evidence of recurrence 
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were similar in age at diagnosis to those who developed metastasis or died of PCa. As expected, 

men who experienced metastatic progression had higher Gleason sum tumors, a higher 

frequency of regional stage disease based on surgical pathology, and higher diagnostic PSA 

levels. 

After quality control and data filtering using the same procedures as for the FH and EV 

datasets, DNA methylation data were available for 23 men who developed metastatic-lethal 

PCa and 11 who remained disease-free in the UM dataset. The 24 drop-outs (11 non-recurrent, 

6 metastatic-lethal) were primarily due to low input DNA as macrodissection of tumor tissue 

from five slides for these patients did not yield sufficient tumor DNA for the HM450 array. 

Importantly, the distributions of age, Gleason sum, pathologic stage and PSA level at diagnosis 

were not significantly different in either the metastatic-lethal or the non-recurrent PCa group 

when comparing those with vs. without available methylation data (all P >0.10).  

Forward model selection resulted in all five technically validated CpG biomarkers being 

retained in the final locked model with Gleason sum (all P <0.05). Study site was included in the 

model to account for the different study designs (FH, cohort; EV, nested case-control), but the 

coefficients for Gleason sum and the five CpGs were similar when study site was excluded from 

the model. Table 3 shows the genetic and epigenetic locations of these five differentially 

methylated CpGs. One of the CpGs (in the PI15 gene) was hypermethylated in metastatic-lethal 

vs. non-recurrent patients whereas the other four CpGs had lower methylation levels in 

patients with metastatic-lethal progression. Two of the CpGs, one each in the PI15 and the 

FHAD1 gene, are in the promoter region. 
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The β-coefficients for five CpGs and Gleason sum from the locked model (Table 3) were 

then applied to the UM patients to calculate a DNA methylation score, which ranged from -3.01 

to 3.70 (median -0.04) in the testing dataset (Figure 1). The mean methylation score differed 

significantly between metastatic-lethal compared to recurrence-free patients (mean difference 

= 2.49, P = 6.8x10
-6

). Based on the logistic regression analysis, each unit increase in the 

methylation score was associated with a significantly elevated odds ratio of 4.0 (95% CI = 1.8-

14.3, P = 0.006) for metastatic-lethal progression in the UM dataset. This result was not 

substantially altered when age at diagnosis, year of diagnosis, pathologic stage or diagnostic 

PSA level was included in the logistic model.  

We next evaluated the ability of the DNA methylation score to predict outcomes. A ROC 

curve analysis (Figure 2) showed that the methylation score had better predictive performance 

(AUC = 0.91; pAUC = 0.037) than Gleason sum alone (AUC = 0.87; pAUC = 0.025); the addition of 

PSA, stage and year of diagnosis did not substantially improve either prediction model. This 

represents a 4.6% higher probability of correctly classifying men at high risk for metastatic-

lethal progression, although the difference in the AUCs was not statistically significant (P = 

0.33). However, the 48% increase in the pAUC for the score relative to Gleason sum alone 

(0.037 vs. 0.025, respectively) was a significant improvement (P = 0.01). At a fixed 95% 

specificity, sensitivity increased by 0.21 (from 53% to 74%) when adding the methylation score. 

This represents a 39.6% higher probability of correctly classifying patients at high risk for 

developing metastatic-lethal events, while minimizing the probability of misclassifying low-risk 

men. This result agrees with our a priori decision to evaluate the methylation score at high 
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specificity because of our translational goal of developing a biomarker test with a low false-

positive fraction (< 5%). 

Discussion 

 Recently, we identified a panel of eight differentially methylated CpGs in primary PCa that 

stratified patients surgically treated for localized disease who subsequently developed 

metastatic progression or died of their cancer from similar patients who remained recurrence-

free for at least five years following radical prostatectomy (13). Building upon those findings, 

here we report results from technical validation of these biomarkers by pyrosequencing assays. 

In addition, a DNA methylation score based on five technically validated CpGs and Gleason sum 

was developed and tested for its ability to predict deleterious outcomes in an independent 

dataset. Each unit increase in the score was associated with a significant 4-fold increase in the 

risk of metastatic-lethal events. In an independent testing dataset, the methylation score had a 

better performance profile (AUC = 91%; pAUC = 0.037) than Gleason sum alone (AUC = 87%; 

pAUC = 0.025). Furthermore, at a fixed specificity of 95% the methylation score had a higher 

sensitivity compared to Gleason sum alone, 74% versus 53%, respectively. 

 The primary goal of this research is to improve identification of biologically aggressive 

prostate tumors, which have acquired a particular DNA methylation signature correlated with 

subsequent metastasis and lethality. Because adjuvant therapy and selection to clinical trials 

may be recommended for the subset of men classified as high-risk by the methylation score, 

our analytical strategy was to find candidate biomarkers with a high specificity, i.e., a low false-

positive rate (13). This approach should provide more confidence that a positive test result will 

in fact target early adjuvant therapy and more intense surveillance to patients at truly high risk 
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for developing metastasis, avoiding overtreatment and adverse effects of adjuvant therapies in 

men with low-risk tumors.  

 Localized PCa treated with radical prostatectomy has a spectrum of cancer-related 

outcomes, from lasting cure to biochemical recurrence, metastatic progression and disease-

specific mortality. Molecular biomarkers to identify tumors with high metastatic potential soon 

after diagnosis (e.g., at radical prostatectomy) could improve the accuracy of existing clinical 

and pathological features used for prognostication. Several earlier tumor tissue-based 

biomarker studies have been conducted in this context (8, 10), and a gene expression-based 

test (Decipher™) was developed for use specifically in radical prostatectomy patients to assess 

risk of metastasis within five years after surgery (24). The AUC for prediction of metastatic 

progression post-surgery based on the Decipher™ assay ranges from 75% to 80% across 

individual studies, which focused on patients with adverse clinicopathological features at 

surgery (10). A recent meta-analysis reported a C-index for 10-year metastatic progression of 

76% for a clinical model alone that increased to 81% with inclusion of Decipher™ (11). Relative 

to the mRNA-based assay, our tumor DNA-based methylation score for predicting metastasis-

PCa death demonstrated an AUC of 91% in an independent testing dataset, although the result 

is based on a limited number of patients. It is difficult, however, to compare AUCs across study 

populations and assays based on the different clinicopathological models and platforms used in 

these biomarker studies.  

 A few smaller investigations have reported DNA methylation alterations that associate with 

more aggressive PCa. Bahsin et al. (25) profiled the methylome of 15 prostate tumors (six low 

grade, nine high grade) obtained at radical prostatectomy and seven benign prostate samples. 
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They identified 41 significantly (FDR P ≤ 9.98x10
-5

) differentially methylated regions (DMRs) that 

were unique to the high-grade tumors. None of the genes encompassed in those DMRs, 

however, overlaps with the genes in which our validated CpGs are located. In another study of 

14 patients, matched primary tumor and pelvic lymph node metastases were profiled using the 

HM450 array (26). Comparing aggressive vs. non-aggressive primary PCa foci based on 

correlated methylation changes observed in lymph node metastases, no CpGs that 

distinguished between the two groups were found. Mundbjerg et al. (26) then profiled 

adjacent-normal samples from PCa patients for comparison and defined a 25-CpG 

aggressiveness classifier (FDR P <0.3 for 21 of the 25 probes), but the CpGs in their classifier do 

not overlap with those in our methylation score. Interestingly, the DNA methylation profile of 

the metastatic site(s) was similar to that in the primary tumor of individual patients, providing 

strong evidence that methylation changes in a primary tumor can reveal its aggressiveness 

potential. Differences in these study results may reflect differences in study design, sample size, 

and the use of intermediate outcomes in other studies as compared to our stronger endpoint of 

metastatic-lethal events.   

 Our study had a number of strengths, including a focus on the most serious disease 

phenotype, i.e., metastatic-lethal PCa. In addition, we developed pyrosequencing assays for 

technical validation of our earlier results generated using the HM450 array. Analysis of DNA 

methylation at candidate CpGs by pyrosequencing provides quantitative resolution, requires 

less tumor DNA, and is less expensive than methylation arrays, all of which are important 

considerations for future clinical studies and translation of these findings. The methylation 

score incorporates Gleason sum in its calculation, reflecting our goal of finding genomic 
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biomarkers that are complimentary (i.e., have added value) to tumor grade for predicting 

adverse outcomes. Another strength of the study is its use of independent training and testing 

datasets to define, create and then test the methylation score, which avoids over-fitting of the 

data. Lastly, as discussed in our earlier paper (13), there is biological plausibility for the genes 

encompassing the CpG sites included in the DNA methylation score contributing to tumor 

aggressiveness.  

 There are also several limitations of our study, including the small sample size of the testing 

dataset. This was further reduced due to technical drop-outs during the DNA methylation 

profiling. Although the HM450 array has a fairly low DNA input requirement (500 ng), the 

amount of tumor DNA available from five (5-µm thickness) slides proved insufficient for some 

cases. This problem may be mitigated in future studies as pyrosequencing and other recently 

developed methods for assessing DNA methylation at individual CpG sites have lower DNA 

requirements. In terms of our results, however, we did confirm that clinical and pathological 

factors related to PCa aggressiveness did not differ substantially between patients with vs. 

without methylation data in the group who developed metastatic-lethal progression or in those 

who remained recurrence-free. Thus, the men analyzed in the testing dataset were 

representative of the outcome groups of interest. A universal challenge for biomarker studies 

focused on the most serious disease phenotype is the need for a long observation period to 

ascertain outcomes in men surgically treated for clinically localized disease; many years of 

follow-up are required to accrue cases who eventually develop metastases and die of PCa. Even 

though our DNA methylation score was developed based on this strong clinical endpoint, it 

needs further evaluation in larger, ideally prospective clinical studies.  
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In summary, we have created and validated a tumor-tissue based DNA methylation score to 

predict metastatic progression and PCa death in men diagnosed with clinically localized PCa. 

Compared to Gleason sum alone, the score incorporating five CpGs and Gleason sum provided 

better prognostic stratification, with a 4.6% increase in AUC (0.91 vs. 0.87) and a 48% increase 

in pAUC (0.037 vs. 0.025). The score increased sensitivity by 0.21 (from 53% for Gleason sum 

alone to 74% for the score) at 95% specificity, representing a 39.6% improvement in 

identification of truly high-risk men who may benefit from adjuvant therapy and more intense 

surveillance for metastatic progression following radical prostatectomy. In terms of clinical 

translation, at 100% specificity the DNA methylation score was able to identify six additional 

high-risk patients (i.e., 26% of the 23 patients) with metastatic-lethal events in the testing 

dataset who would have been missed based on the use of Gleason sum alone or Gleason sum, 

diagnostic PSA and pathologic stage combined for risk stratification. This indicates that with 

high specificity (< 5% false-positives) the methylation score could markedly improve the 

selection of patients at high risk for metastatic-lethal progression, which is particularly relevant 

for those patients (over 25% in the testing dataset) who may be misclassified as low risk and 

forego potentially life-saving adjuvant treatment. Given these promising results, this prognostic 

tumor DNA methylation score warrants further evaluation for its clinical utility and ability to 

improve PCa patient outcomes.  
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Figure Legends 

 

Figure 1. Box plots of the DNA methylation score in the UM testing dataset stratified by prostate cancer 

outcome status (no recurrence or metastatic-lethal progression).  

 

Figure 2. Receiver Operating Characteristic curves for predicting metastatic-lethal vs. non-recurrent 

prostate cancer outcomes in the UM testing dataset. The dashed vertical line indicates 95% specificity, 

which corresponds to a sensitivity of 53% for Gleason sum alone compared to a sensitivity of 74% for 

the DNA methylation score. The red line shows the prediction performance of Gleason sum alone (AUC= 

0.87; pAUC= 0.025), and the blue line shows the prediction performance of the DNA methylation score 

based on Gleason sum plus five CpGs (AUC= 0.91; pAUC= 0.037). 

 

Supplementary Figure 1. Scatter plots comparing pyrosequencing and HumanMethylation450 array 

results for eight CpGs in two datasets (FH= Fred Hutchinson; EV= Eastern Virginia). 

 

 
 
 
Table 1. Correlations between pyrosequencing and HumanMethylation450 array results 

for eight differentially methylated CpG sites in men with metastatic-lethal prostate cancer 

progressiona 

CpG Gene Pearson correlation 

cg02394978 FHAD1 0.83 

cg24349665 PI15 0.82 

cg07166550 ALKBH5 0.80 

cg16713292 KLHL8 0.78 

cg21513610 ATP11A 0.76 

cg01135464 Intergenic_chr17 0.68 

cg22501793 Intergenic_chr1 0.27 
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cg02223001 Intergenic_chr16 -0.27 

aComparisons are based on 36 paired tumor DNA samples. 
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Table 2. Clinical characteristics of the prostate cancer patients with tumor DNA methylation data included in the training and testing datasets

  FH+EV patients (Training dataset)  

 Non-recurrence (N = 344) Metastatic-lethal PCa (N = 48)  Non-recurrence (N = 11) Metastatic

Characteristic  No. % Mean (SD) No. % Mean (SD) P-value
a
   No. % Mean (SD) No. 

Age at diagnosis (years)   58.4 (7.0)   59.5 (6.5) 0.30    60.6 (9.5)  

Gleason sum             

 ≤ 6 186 54.1  7 14.6  <0.01  6 54.5  0 

 7 (3+4) 125 36.3  13 27.1    3 27.3  8 

 7 (4+3) 17 4.9  10 20.8    2 18.2  4 

 8─10 16 4.7  18 37.5    0 0  11 

Pathological stage
b
              

 Local  257 74.7  11 22.9  <0.01  8 72.7  6 

 Regional  87 25.3  37 77.1    3 27.3  17 

PSA (ng/mL) at diagnosis
c
             

 < 4.0 64 18.6  5 10.4  <0.01  0 0  1 

 4.0─9.9 216 62.8  21 43.8    8 72.7  13 

 10.0─19.9 30 8.7  10 20.8    2 18.2  3 

 ≥ 20 15 4.4  9 18.8    0 0  6 

 
 
 
 
 
 
 
 

PCa = prostate cancer; FH = Fred Hutchinson; EV = Eastern Virginia Medical School; UM = University 

of Michigan 

 
 
 a
Based on a t-test (age), chi-square or Fisher’s exact test (categorical variables). 

 
 
b
Local stage = pT2, N0/NX, M0; regional stage = pT3/T4 and/or N1, M0. 

 
 
c
One UM patient without recurrence had missing data for PSA level at diagnosis. 

 
 
 
Table 3. Five technically validated CpGs used to calculate the prognostic DNA methylation score

a
  

 

CpG ID Gene Chromosome 
Genetic  

location 

Epigenetic  

location 
β-coefficient 

Higher methylation
b
 

cg24349665 PI15 8 TSS200 OpenSea 0.70 

Lower methylation
b
 

cg07166550 ALKBH5 17 Body S_Shore -0.75 
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cg21513610 ATP11A 13 Body S_Shore -0.75 

cg02394978 FHAD1 1 TSS1500 N_Shore -0.72 

cg16713292 KLHL8 4 Body OpenSea -0.33 

 
 
 
TSS = transcription start site. 

 
 
a
DNA methylation score calculated in the training dataset; the Gleason sum β-coefficient = 1.13 

 
 
b
Higher or lower DNA methylation level in primary tumor tissue of men with metastatic-lethal vs. 

 
 
non-recurrent prostate cancer. 
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