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Abstract
Targeting phylogenetic diversity (PD) in systematic conservation planning is an effi-

cient way to minimize losses across the Tree of Life. Considering representation of

genetic diversity below and above species level, also allows robust analyses within sys-

tems where taxonomy is in flux. We use dense sampling of phylogeographic diversity

for 11 lizard genera, to demonstrate how PD can be applied to a policy-ready conserva-

tion planning problem. Our analysis bypasses named taxa, using genetic data directly

to inform conservation decisions. We highlight areas that should be prioritized for eco-

logical management, and also areas that would provide the greatest benefit if added

to the multisector conservation estate. We provide a rigorous and effective approach

to represent the spectrum of genetic and species diversity in conservation planning.

K E Y W O R D S
conservation planning, evolutionary diversity, gekkonidae, lizard conservation, Marxan, phylogenetic

diversity, Scincidae, the Kimberley

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original

work is properly cited.

© 2018 The Authors. Conservation Letters published by Wiley Periodicals, Inc.

Conservation Letters. 2018;11:e12438. wileyonlinelibrary.com/journal/conl 1 of 10
https://doi.org/10.1111/conl.12438

http://orcid.org/0000-0002-2371-1767
http://orcid.org/0000-0002-7197-5409
http://orcid.org/0000-0002-6304-9827
http://orcid.org/0000-0002-8401-2783
http://orcid.org/0000-0002-5448-3226
http://orcid.org/0000-0002-1373-6186
http://orcid.org/0000-0002-6319-7213
http://orcid.org/0000-0002-5150-7501
http://orcid.org/0000-0002-8808-1452
http://orcid.org/0000-0001-5313-7279
http://creativecommons.org/licenses/by/4.0/


2 of 10 ROSAUER ET AL.

1 INTRODUCTION

In the face of rapid biodiversity loss, the use of phylogenetic

diversity (PD; Faith, 1992) in conservation assessments holds

the promise of better prioritizing investment for biodiversity

conservation (Carvalho, Velo-Antón, & Tarroso, 2017; For-

est, Grenyer, & Rouget, 2007; Pollock, Rosauer, & Thornhill,

2015; Rosauer, Pollock, Linke, & Jetz, 2017) including

genetic and species diversity. Conserving evolutionary diver-

sity contributes to ecosystem stability (Cadotte, Dinnage, &

Tilman, 2012) and the adaptability of species (Sgrò, Lowe,

& Hoffmann, 2011), however, effectively representing species

and genetic diversity in a single, fully integrated planning pro-

cess has not previously been possible. In spatial planning exer-

cises, where nature conservation is assessed alongside com-

peting resource uses, considering evolutionary relationships,

rather than counting species as independent units of diversity,

should help target sets of areas that best capture regional evo-

lutionary diversity.

An advantage of PD-based conservation assessment that

has received limited attention (Asmyhr, Linke, Hose, &

Nipperess, 2014; Rosauer, Blom, & Bourke, 2016;

Thomassen, Fuller, & Buermann, 2011), is that it does

not depend on using named taxa. This is potentially impor-

tant for at least three reasons. First, it is clear from dated

phylogenetic analyses that species are not equivalent in rep-

resenting evolutionary diversity—the quantum of diversity

represented by a species (or any other taxonomic level)

varies widely (Isaac, Turvey, Collen, Waterman, & Baillie,

2007). Second, divergent evolutionary lineages, sometimes

referred to as evolutionarily significant units (Moritz, 1994),

are often nested within species. Third, in many taxa, even

among well-known vertebrates, taxonomy is in flux or does

not adequately represent the PD. Conservation assessment

based on phylogenetic lineages has the potential to address

these issues by representing spatial patterns of diversity

independent of taxon names, if we can define evolutionary

units and describe each unit in terms two questions: “where
does it occur?” and “how is it related to other units on the
phylogeny?” This does not imply that species do not matter

for ecology, but rather reflects the reality that biological

diversity is a continuum, from local variants to species,

genera, and beyond.

Phylogenetic conservation strategies offer great poten-

tial for improved outcomes from limited resources, but to

achieve actual benefits, conservation assessment must con-

nect to existing policy and management priorities (Laity,

Laffan, & González-Orozco, 2015). We demonstrate this

here through a collaborative study in a biodiverse region

(Kimberley, northwest Australia) involving biodiversity

researchers and key landholders including the state govern-

ment, conservation organizations, Indigenous communities,

and some private leaseholders, who have common interests

in managing their country to sustain natural ecosystems and

evolutionary diversity. The then state government committed,

in its Kimberley Science and Conservation Strategy (Govern-

ment of Western Australia, 2011), to building and managing

a multisector conservation estate.

The Kimberley region comprises the western portion of

Australia's monsoonal tropics (AMT; Figure 1) covering

421,000 km2. It is a major centre of species diversity and

endemism (Bowman, Brown, & Braby, 2010), with a rapid

rate of recent species discovery (Pepper & Keogh, 2014).

Ongoing phylogeographic and phylogenetic analyses of low

dispersal species are revealing high levels of taxonomically

unrecognized lineage diversity (Afonso Silva et al., 2017;

Laver, Doughty, & Oliver, 2017; Moritz, Fujita, & Rosauer,

2016; Oliver et al., 2017; Potter, Bragg, Peter, Bi, & Moritz,

2016; Potter, Eldridge, Taggart, & Cooper, 2012) and some-

times misconstrued species boundaries (Catullo, Lanfear,

Doughty, & Keogh, 2014; Rabosky, Hutchinson, Donnellan,

Talaba, & Lovette, 2014). Thus, current taxonomy for these

groups does not adequately represent the evolutionary diver-

sity of the system. We focus here on lizards, because they are

climatically sensitive, have low rates of dispersal, strong spa-

tial structure, and are thus likely to assist in identifying evo-

lutionary refugia and areas of importance for conservation.

The Kimberley is similar in area to California, yet sparsely

populated, with less than 40,000 residents (Kimberley

Development Commission, 2011). Almost half the region's

residents are Indigenous, which is reflected in land ownership

and management under a variety of tenures, including Indige-

nous Protected Areas (IPAs) in which Aboriginal traditional

owners undertake to sustain biological and cultural values as

part of Australia's National Reserve System. In 2016, 25% of

the Kimberley was already in conservation reserves (IUCN

categories 1–6), including 7% in government conservation

areas, 14% in Indigenous conservation arrangements includ-

ing IPAs, and 2.1% managed by the Australian Wildlife Con-

servancy. Another 1% is designated for new reserves. Some

private grazing properties (1.4% of the region) are also man-

aged principally for conservation, but for the purposes of this

analysis were not included as reserves.

Despite substantial ecological effects of fire and grazing

regimes, the limited impact of intensive land uses such as

cultivation, mining, and urbanization across the Kimberley

provides flexibility for effective conservation planning to pro-

ceed before, rather than after, intensive development. Existing

public conservation areas, while having substantial biodiver-

sity value, were not allocated under a systematic conservation

planning approach (Margules & Pressey, 2000). In the context

of the government conservation priorities, we combine new

evidence on phylogeographic diversity with systematic plan-

ning tools to identify areas that: (1) have highest priority for

ecological management, irrespective of tenure, and (2) given a

5% expansion target, make the greatest additional contribution
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F I G U R E 1 Overview of the Kimberley study region, spanning parts of Western Australia and the Northern Territory. One quarter of the region

is already within reserves (IUCN categories 1–6, CAPAD database 2014)

to representing evolutionary diversity in lands managed for

conservation. We thus demonstrate the value of an approach

which allows data from taxonomic groups with incomplete

or unreliable taxonomy to inform conservation decisions, in a

system primed for its practical application.

2 MATERIALS AND METHODS

We identified evolutionarily distinct lineages across 11 genera

of lizards, modeled their distributions beyond sampled loca-

tions and then applied systematic conservation planning to

identify areas that most efficiently conserve the PD, given set

targets (Figure 2).

2.1 Biological data
This conservation analysis builds on an extensive, compar-

ative phylogeographic analysis for 46 recognized species

from 11 genera of skink and gecko lizards across the AMT

(Table 1). The spatial data and phylogenies central to this

work, were based on 4,290 specimens from field surveys

(2012 to 2015) and existing biological collections (Rosauer

et al., 2016). Mitochondrial DNA (mtDNA) from each speci-

men was used to infer the phylogenetic relationships within

each genus, and to identify 171 evolutionarily distinct lin-

eages, defined by a minimum 6% pairwise sequence diver-

gence (Rosauer et al., 2016) from their closest relatives. While

mtDNA was used for consistency across a broad range of taxa,

similar relationships were recovered when phylogenies were

inferred for several groups using from eight to hundreds of

nuclear loci (Afonso Silva et al., 2017; Moritz et al., 2016;

Potter et al. 2016). A separate phylogenetic tree was inferred

for each genus, except for the closely-related skink gen-

era Eremiascincus and Glaphyromorphus that were analyzed

together. The methods for genetic sampling and phylogenetic

inference are described in Rosauer et al. (2016), and biologi-

cal data for the study region are summarized in Table 1.

A lineage distribution model (LDM; method in Rosauer

et al., 2015) for each lineage (as prepared for Rosauer et al.,

2016) predicted its distribution beyond sampled occurrences.

The LDM method fits a distribution model for each species

based on its occurrence in environmental space, and then par-

titions that model between parapatric lineages which com-

prise that species, based on distance and connectivity to

known locations of the lineage. The resulting 171 models rep-

resent each lineage as a 0.01 degree (∼1.1 km) grid with pixel

values (0 to 1) indicating relative likelihood of occurrence.

2.2 Data structure for conservation planning
The planning units (PU) for the study were a lattice of 86,439

hexagons, of area 5 km2. Hexagons were chosen due to their

advantages over other regular shapes such as squares, when
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F I G U R E 2 Overview of the methods in this study. LDMs (a) are combined with genus level phylogenies (c) to infer the distribution of each tip

and internal branch. The model pixel values for each branch are summed within each PU (b) to record the predicted occurrence of each branch in each

PU (d). Rows in (d) each represent a single hexagonal PU and columns represent phylogenetic branches. For each conservation scenario, 100 reserve

solutions are generated, and results shown (e) as the frequency with which each PU was chosen

T A B L E 1 Summary of lizard taxa and samples in this study. Numbers of individuals, recognized species and mitochondrial lineages (Sp/Lin)

within the Kimberley and the broader AMT data set

Kimberley Whole AMT
Group Genus Samples Sp/Lin Samples Sp/Lin Published sources
Skinks Carlia 351 6/15 624 6/23 Afonso Silva et al. (2017); Potter et al. (2016)

Cryptoblepharus 150 2/14 215 2/18 Blom et al. (2016)

Ctenotus 243 14/16 1,007 24/31

Eremiascincus & Glaphyromorphus 83 3/8 185 5/17

Morethia 69 2/8 321 2/9

Geckos Crenadactylus 41 2/9 41 2/9 Doughty et al. (2016)

Gehyra 661 10/47 1,055 12/69 Oliver et al. (2016, 2017)

Heteronotia 299 2/29 694 2/58 Moritz et al. (2016)

Oedura 92 4/22 153 6/27 Laver et al. (2017); Oliver and Doughty (2016)

Pseudothecadactylus 21 1/3 95 3/7 Oliver, Laver, Smith, and Bauer (2014)

Total 2,010 46/171 4,390 64/268

boundary length is used as an indicator of spatial cohesion

(Rosauer, 2000). We clipped coastal PUs to include only land,

and lacking fine resolution data on costs of land acquisition

and management, used the land area of each PU as a surrogate

for cost of conservation. Cost per unit area was thus constant.

Each PU with >50% in current reserves was set as “reserved”.

While large areas of the Kimberley have been modified,

especially by grazing and changed fire regimes (Ziembicki,

Woinarski, & Webb, 2015), few areas have lost their cover

of native vegetation entirely. The 110 PUs with <50% native

vegetation were set as unavailable for conservation.

We followed recent studies (Asmyhr et al., 2014;

Carvalho et al., 2017; Pollock et al., 2015; Pollock, Thuiller,

& Jetz, 2017; Rosauer et al., 2017) that used mainstream

conservation planning software, Marxan and Zonation (Ball,

Possingham, & Watts, 2009; Moilanen, 2007), to select areas

to efficiently capture the PD of a region. Each branch on

the phylogeny was a separate conservation feature analogous
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T A B L E 2 Settings and results for four conservation scenarios. BLM is the boundary length modifier used in Marxan to favor solutions with

larger, less fragmented reserves

Scenario Limit
Max area
km2 % BLM Question Variant Area km2

Targets
met

Current No change 109,177 25.9 How much PD do

current reserves

capture?

Actual reserves 109,177 62.7%

A. Ignore existing tenure

– no spatial

configuration

objective

Area of current

reserves

109,177 25.9 0 Given the same area

as now reserved,

where should

management be

targeted?

Scattered reserves 67,965 99.0%

B. Ignore existing tenure

– prefer cohesive

reserves

Area of current

reserves

109,177 25.9 4 Cohesive reserves 79,931 99.2%

C. Extent from existing

reserves

Area of current

reserves + 5%

114,636 27.2 6 How could a further

5% expansion in

Western Australia

best be located?

114,639 71.7%

D. Extent from existing

reserves – named
species not PD

Area of current

reserves + 5%

114,636 27.2 6 How could a further

5% expansion in

Western Australia

best be located to

represent named
species?

114,639 97.7%a

aNote that the targets met in scenario D are for species. The result for PD (comparable to the other targets met) was 69.6%.

to a species, with a geographic range defined as the union

of the ranges of its descendent tips. This approach assigns

each branch a weighting proportional to its length, to define

its importance for conservation, in this case using Marxan's

Species Penalty Factor. Because the occurrence of each lin-

eage was represented on a 0 to 1 scale, LDMs for the tips were

used to calculate occurrence of each internal branch via Faith's

(2008) probabilistic PD framework, to produce a distribution

model for each branch.

For each PU, we recorded occurrence of each branch as the

sum of the modeled occurrence values for the pixels inter-

secting the PU. Modeled distributions were thus transferred

to PUs without the loss of information that results from con-

verting model predictions to binary presence/absence.

Thus, we prepared a data set for conservation planning,

with the occurrence of each lineage and internal branch in

each PU, along with a weighting proportional to branch

length, and the cost (area) and boundary lengths of each PU.

Scripts are available at github.com/DanRosauer/phylospatial.

2.3 Conservation scenarios
Reservation targets were set to protect 15% (Kirkpatrick,

1998) of the modeled occurrence of each branch based on

the sum of the model values in each PU, so areas with a high

model prediction for a branch would contribute more to meet-

ing its target. To avoid loss of habitat for restricted elements

of the lizard biota, and to avoid allocating limited resources

to widespread elements, a floor and ceiling were placed on

targets. New government reserves, which are planned and

approved, were treated as current reserves. We used Marxan
(Ball et al., 2009) to identify sets of PUs that would maximize

PD captured in reserves while limiting the total area reserved

and addressing spatial configuration objectives, under four

scenarios (Table 2).

Scenario A: Meet the reservation targets without exceeding

the area of current reserves, ignoring current land tenure and

the size and cohesiveness of potential reserves. This scenario

directly reflects locations of features of conservation value,

to help target management actions across land tenures.

Scenario B: Similar to A, but uses Marxan’s boundary length

modifier (BLM) to favor solutions with larger, less frag-

mented reserves.

Scenario C: Existing reserves are “locked in” as reserved,

with a 5% expansion allowed. This accounts for biodiver-

sity in existing reserves across the Kimberley region, but for

management relevance, only allows new conservation areas

within Western Australia. This scenario is most informative

for real-world management as it asks; given what we know

about the distribution of PD in our sample of lizards, which

areas offer greatest benefit for a small expansion of the Kim-

berley's multisector conservation system?

http://github.comDanRosauerphylospatial
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F I G U R E 3 Priorities for conservation in the Kimberley based on PD in 11 genera of lizards, unconstrained by existing land tenure or spatial

cohesiveness (scenario A). The blue to red color ramp indicates the frequency with which each PU was selected. Red areas were highly irreplaceable

Finally, to check how much difference our approach based

on PD would make to the choice of areas, compared to

species-based conservation planning, we ran scenario D. This

used the same settings as scenario C to add to existing pro-

tected areas, but rather than using PD, it aimed to meet rep-

resentation targets for the 46 species found in our study, thus

ignoring both relationships between species and the diversity

within them. The same taxa and species distribution models

were used, but without any splitting into units below the level

of currently recognized species.

We ran the Marxan simulated annealing algorithm

100 times for each of the four scenarios, for 5 × 107 iterations,

with the maximum area reserved for each scenario (Table 2)

enforced via the cost threshold parameter. For scenarios C
& D, currently reserved PUs were “locked in” as reserved.

All settings are archived on DataDryad. The result for each

scenario is the proportion of 100 runs where each PU was

selected.

3 RESULTS

Although 26% of the region is under existing or planned con-

servation tenure, the biodiversity captured by current reserves

met the reservation target for only 63% of PD across the 11

lizard genera (Table 2). In contrast, by selecting the same

amount of land without regard to existing land tenure or frag-

mentation (scenario A, Figure 3), the targets for PD conser-

vation were met easily, in an area only 63% as large (16% of

the Kimberley). With a greater requirement for connectivity

(scenario B, Figure S1) the area required to meet all targets,

increased to 73% the size of current reserves (19% of region).

In these scenarios, highly irreplaceable areas were found in

large parts of the wet northwest Kimberley between the Yampi

Peninsula and Kalumburu, along with many of the adjoin-

ing coastal islands. High-priority areas for conservation were

also identified in the south near Broome and Fitzroy Cross-

ing, in the east including much of the Keep River and Gre-

gory national parks, and the Ord Valley south of Kununurra

to Purnululu NP.

Expanding the existing reserve network by 5% in Western

Australia to cover 27.2% of the region (scenario C), deliv-

ered more limited but practical options to enhance the existing

multisector conservation estate, meeting 72% of the targets for

PD conservation. A trial with no area constraint met 95% of

targets by reserving 34.2% of the region. The PUs most fre-

quently selected for protection (scenario C, Figure 4) encom-

pass several main areas that would be of prime importance

for conservation of the evolutionary diversity of the Kimber-

ley's lizards, including Bigge Island (1), the Kalumburu-King

Edward River area (2), areas near the Ningbing Range and

the Lower Ord (3), scattered sites in the Argyle to Purnululu

region (4), the Devonian Reef ranges near Fitzroy Crossing

(5), and parts of Yampi Peninsula (6). Small areas close to
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F I G U R E 4 Priorities for conservation in the Kimberley based on PD in 11 genera of lizards, with a 5% expansion of reserves in the Western

Australian Kimberley (scenario C). The blue to red color ramp indicates the frequency with which each PU was selected. Red areas were highly

irreplaceable. The main regions with priorities for reserve expansion were: (1) Bigge Island, (2) Kalumburu - King Edward River area, (3) Ningbing

Range and Lower Ord, (4) Argyle - Purnululu area, (5) Devonian Reef ranges, and (6) Yampi Peninsula

Broome and several near-shore islands were also essential to

meet the conservation targets.

The species conservation result (scenario D, Figure S2) dif-

fered substantially from scenario C in its additions to the pro-

tected area network. It missed the areas found to be highly

important in the West Kimberley (numbers 1, 2, and 6 in

Figure 4), much of the Ningbing Range area (3) northeast

of Wyndham, but agreed, however, on the importance of the

ranges southeast of Fitzroy Crossing (5). This scenario met

almost all species targets (97.7%) but for the same amount of

land added to the existing reserve network, added far less PD

(6.8% compared to 9.0% in scenario C). In other words, by tar-

geting PD directly, the PD benefit of expanding the protected

areas by 5% was 31% larger.

4 DISCUSSION

Despite a firm conceptual foundation, measures of PD have

so far had limited impact in on-ground conservation planning,

and then only at species level and above. But here, with exist-

ing government intent to expand conservation-focused lands

and to support management of those lands, we have identi-

fied priority areas to capture diversity in low dispersal verte-

brates. This extends the field in two significant ways. First,

along with Carvalho et al. (2017), our approach targets diver-

sity both above and below species level, treating evolution-

ary variation consistently. By working directly with phyloge-

netic lineages, our approach is independent of named taxa,

valuing both divergence among species, and deep phylogeo-

graphic structure within species. The latter represents one

important dimension of genetic diversity which is acknowl-

edged as important in conservation policy, but rarely consid-

ered in protected area design due to the lack of appropriate

metrics.

Second, our method provides a way to include in conser-

vation planning taxonomic groups for which the taxonomy

is unreliable or in flux (Brito, 2010). This requires collection

and analysis of suitable, geographically-distributed genetic

samples across multiple species—a common element in

comparative phylogeography. Despite progress with sta-

tistical species-delimitation methods, the time required for

taxonomic revisions and differences in taxonomic prac-

tice mean that there will rarely be a 1:1 match between

genetically-identified lineages and named taxa. There is

thus great practical value in describing the distribution and

relationships of evolutionary units (Moritz et al., 2016),

mapping centres of endemism (Rosauer et al., 2016) and

applying these data to systematic conservation planning.

Along with other recent studies (Rosauer et al., 2017), we

find that planning for PD conservation alters the areas chosen

and increases the total diversity captured. But independent

of the ability to capture more diversity, we show here how to
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extend conservation assessment to unnamed taxa that would

otherwise lie beyond the scope of structured planning.

The priority areas which we found correspond well to areas

of high diversity identified in recent studies, such as the north-

west Kimberley and adjacent islands (1 in Figure 4; Gibson

et al., 2017) and the limestone Devonian Reef ranges (5 in

Figure 4) of the southern Kimberley, which host 11 genetically

divergent lineages that appear to be endemic to that area

(Oliver et al., 2017). Some of the King Edward River area

(2 in Figure 4) is already actively managed for conservation

by private leaseholders. Other areas highlighted in the analy-

sis, such as the Argyle to Purnululu region (4 in Figure 4) are

less surveyed, yet recent studies have revealed deeply diver-

gent lineages (Laver et al., 2017) or entire radiations (Köhler

& Criscione, 2015) in the east Kimberley. Clearly, more sur-

veys and analysis are needed across the region.

These results provide a valid assessment of conserva-

tion priorities, but are not comprehensive in their taxonomic

breadth or spatial sampling. The 11 genera of lizards sampled

represent a substantial subset of the diverse lizard fauna of the

Kimberley region. Further work could extend this analysis to

additional taxa, including groups that may display contrast-

ing spatial patterns of evolutionary diversity. Several groups

such as mammals, frogs (Catullo et al., 2014), and land snails

(Köhler & Criscione, 2015) have substantial genetic sampling

for the region with potential for this type of analysis. Fur-

ther work could also incorporate the effects of phylogenetic

uncertainty on the choice of priority areas (Rosauer et al.,

2017), noting that it is uncertainty over branch lengths which

could affect results, while topological uncertainty is impor-

tant only via its effect on the branch length shared between

species or lineages. Uncertainty could also be reduced

by sampling more of the genome, including nuclear DNA

to supplement the mtDNA used to infer phylogenies in this

study.

In a partnership between government, community, and pri-

vate land managers, we have systematically identified the

areas that would best contribute to the representation of evo-

lutionary history across a large and diverse region, using

genetic data for ecologically and taxonomically diverse lizard

taxa. Importantly, our analysis does not rely on current tax-

onomy, which in many cases does not adequately capture

the diversity in these groups. Our approach (Carvalho et al.,

2017) using mainstream conservation planning software may

be valuable to provide high-resolution conservation assess-

ment for biota and regions where taxonomy is in flux, or

where substantial diversity exists below the level of named

taxa.
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