Supporting Information

Performance of Amperometric Platinized-Nafion Based Gas Phase Sensor for Determining Nitric Oxide (NO) Levels in Exhaled Human Nasal Breath.

Joanna Zajda, Nicholas J. Schmidt, Zheng Zheng, Xuewei Wang, Mark E. Meyerhoff*

Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor MI 48109-1055, USA.

*E-mail: mmeyerho@umich.edu.

Table of Contents

Figure 1-S. Configuration employed for ammonia gas generation and scrubbing with a) liquid scrubber, b) solid scrubber.

Figure 2-S. Schematic of amperometric SPE-based NO Sensor. WE = Pt-Nafion; CE = bare Pt; RE = single-junction $Ag/AgCl_{sat'd}$; 0.5 M H₂SO₄ was used as an internal electrolyte.

Figure 3-S. a) Amperometric Pt-Nafion sensor's response to NO standard gas (in N₂ background) in 500 ppbv increments. A constant total flow rate of 200 mL/min of the standard gas mix was used. b) Linear regression of calibration with error bars (n = 3), $y = 1.2637 \pm 0.0086x + 0.0546 \pm 0.0206$; R² = 0.9997.

Figure 1-S. Configuration employed for ammonia gas generation and scrubbing with a) liquid scrubber, b) solid scrubber.

Figure 2-S. Schematic of amperometric SPE-based NO Sensor. WE = Pt-Nafion; CE = bare Pt; $RE = single-junction Ag/AgCl_{sat'd}$; 0.5 M H₂SO₄ was used as an internal electrolyte.

Figure 3-S. a) Amperometric Pt-Nafion sensor's response to NO standard gas (in N₂ background) in 500 ppbv increments. A constant total flow rate of 200 mL/min of the standard gas mix was used. b) Linear regression of calibration with error bars (n = 3), y = $1.2637 \pm 0.0086x + 0.0546 \pm 0.0206$; R² = 0.9997.