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ABSTRACT 

Major earthquakes continue to cause significant damage to infrastructure systems and the loss of 

life (e.g. 2016 Kaikoura, New Zealand; 2016 Muisne, Ecuador; 2015 Gorkha, Nepal). Following 

an earthquake, costly human-led reconnaissance studies are conducted to document structural or 

geotechnical damage and to collect perishable field data. Such efforts are faced with many 

daunting challenges including safety, resource limitations, and inaccessibility of sites. Unmanned 

Aerial Vehicles (UAV) represent a transformative tool for mitigating the effects of these 

challenges and generating spatially distributed and overall higher quality data compared to current 

manual approaches. UAVs enable multi-sensor data collection and offer a computational decision-

making platform that could significantly influence post-earthquake reconnaissance approaches. As 

demonstrated in this research, UAVs can be used to document earthquake-affected geosystems by 

creating 3D geometric models of target sites, generate 2D and 3D imagery outputs to perform 

geomechanical assessments of exposed rock masses, and characterize subsurface field conditions 

using techniques such as in situ seismic surface wave testing. UAV-camera systems were used to 

collect images of geotechnical sites to model their 3D geometry using Structure-from-Motion 

(SfM). Key examples of lessons learned from applying UAV-based SfM to reconnaissance of 

earthquake-affected sites are presented. The results of 3D modeling and the input imagery were 

used to assess the mechanical properties of landslides and rock masses. An automatic and semi-

automatic 2D fracture detection method was developed and integrated with a 3D, SfM, imaging 

framework. A UAV was then integrated with seismic surface wave testing to estimate the shear 
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wave velocity of the subsurface materials, which is a critical input parameter in seismic response 

of geosystems. The UAV was outfitted with a payload release system to autonomously deliver an 

impulsive seismic source to the ground surface for multichannel analysis of surface waves 

(MASW) tests. The UAV was found to offer a mobile but higher-energy source than conventional 

seismic surface wave techniques and is the foundational component for developing the framework 

for fully-autonomous in situ shear wave velocity profiling. 
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CHAPTER 1 

Introduction 

1.1 Background 

In recent years, the engineering community has witnessed many natural disasters (e.g., 

earthquakes, landslides, tsunamis, tropical storms) causing significant damage to infrastructure 

systems and loss of human life. When appropriate, teams of civil engineers perform costly 

reconnaissance studies to document structural or geotechnical damage and collect perishable field 

performance data of system behavior during extreme natural hazard events. Some examples of 

intensely-studied earthquakes from just the previous three years include 2016 Kaikoura, New 

Zealand (Bastin et al., 2017; Bradley et al., 2017; Dellow et al., 2017; Woods et al., 2017), 2016 

Muisne, Ecuador (Alvarado et al., 2016; Lanning et al., 2016), 2015 Gorkha, Nepal (Clark et al., 

2015; Collins and Jibson et al., 2015; Hashash et al., 2015; Kargel et al., 2015; Zekkos et al., 2017). 

Findings from reconnaissance studies are then used to refine the scientific understanding of 

geotechnical behavior so that design methods can be improved and achieve greater system 

resiliency. Findings are also a critical input to real-time decision making centered on recovery 

efforts (Murphy et al. 2015). Data collection in these harsh operational environments presents 

many challenges including: ensuring safety of personnel, perishable nature of field data, 

inaccessibility of many sites, and the challenges associated with acquiring physical measurements. 

These challenges prevent reconnaissance teams from identifying sites of interest, particularly if 

they are not accessible by roadways. The narrow scope of site identification reduces the breadth 
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of site types and causes site selection bias. A broader array of sites can be identified over time as 

more information is gathered and data from secondary sources (e.g., satellite imagery) is acquired, 

but the sites may be affected by data perishability. Pressure to collect data as rapidly as possible 

caused by perishability and the general inaccessibility of sites both reduce the scope of individual 

site investigations. The combination of these factors reduces both the breadth of sites that can be 

documented and the detail to which they are characterized. Unmanned aerial Vehicles (UAV) are 

potentially highly effective in mitigating these obstacles by improving the rate of data collection, 

improving data quality when necessary, accessing dangerous sites, and potentially being the 

catalyst for developing new site reconnaissance strategies. 

Figure 1-1 shows the current post-disaster reconnaissance paradigm (top row) of initial 

reconnaissance, deformation documentation, and in situ testing. For example, following an 

earthquake, sites of interest must be identified often from traveling on available roadways and 

initial reconnaissance is therefore hindered by a lack of information. Ground based travel is often 

obstructed, helicopters are costly or unavailable, and satellite imagery may be too coarse, 

unavailable, or obstructed. The deformation of geostructures is ideally documented by terrestrial 

LiDAR (Light Detection and Ranging) scans from limited perspectives, however, this is not always 

true. Even now, hand measurements are commonplace as the primary method of documenting 

displacements. Site characterization is typically limited by site accessibility and available 

resources. Equipment is difficult to mobilize in earthquake-affected regions. And as mentioned 

previously, the perishability of data dramatically limits both the number of sites that can be 

investigated and the scope of individual site characterization plans. The ability of UAVs to 

geometrically document sites has already started to influence post-disaster schemes on a limited 

basis. 
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During the duration of this doctoral research, UAVs have started to be used in a post-

disaster reconnaissance context primarily to leverage their mobility to acquire imagery. The 

imagery can then be used for generating 3D surface geometry models and general site 

documentation, however, this has not become the standard practice. UAV integration with all three 

stages of reconnaissance has obvious potential to transform the paradigm other than boosting the 

collection rate of imaging data. The potential scope of using UAVs in post-disaster reconnaissance 

is much broader. The capabilities of a UAV can extend well-beyond mobilization of a single 

optical sensor. They are robotic platforms with computational resources and communication 

architectures that can be outfitted with multiple sensors to acquire geometry and material 

properties at the surface and in the subsurface. Expanding computational power means that UAVs 

can be used to perform real-time data processing and, if the framework exists, conduct real-time 

decision making. Additionally, a robust communication architecture could allow a UAV to 

transmit data to stakeholders and decision makers as it is collected and interpreted, whether that 

data be collected by on-board sensors or interrogated from off-board sensors (e.g. wireless sensor 

network). 

 Figure 1-1 also shows an envisioned paradigm (bottom row) where the suite of UAV 

capabilities (computational power, communication, sensing, and mobility) has transformed the 

initial reconnaissance, deformation documentation, and site characterization phases of 

reconnaissance. In addition to augmenting the strategies employed during each of the three phases, 

an automation step has been envisioned that would introduce information acquired in other stages 

of reconnaissance as more conclusions are made at specific sites to expand on data collection and 

site selection. Figure 1-2 shows a proposed workflow for future automated UAV reconnaissance. 

The workflow in Figure 1-2 contains several stages including regional mapping to identify 
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potential sites of interest, localized mapping of individual sites, geometric documentation, and in 

situ testing. Steps in the workflow where the work presented herein has made contributions are 

highlighted in Figure 1-2. The workflow emphasizes the concept of automation, where previous 

steps can be returned to as new information is gathered and higher-resolution data needs to be 

collected. The major barriers to achieving such a transformative result are not only the 

development of data processing techniques, but the interpretation of the data, synthesis of all 

available data, and subsequent decision making. This will help reduce site selection bias by 

improving the depth and breadth of documented sites, which has a direct impact on the conclusions 

derived for the purpose of improving the resilience of critical infrastructure systems. 

The goal of this dissertation is to make contributions toward documenting geometry and 

material properties both at the surface and in the subsurface by leveraging UAV technology for 

the purpose of characterizing geotechnical reconnaissance sites. The number of potential directions 

for research is vast. The topics herein address the valuable areas of rapid documentation of 3D 

geometry, extending data used for geometric documentation to estimate material properties and 

characterize (visible) materials, and acquire subsurface properties using remote in situ tests. These 

areas are useful for achieving more effective data collection and interpretation for geotechnical 

site reconnaissance. More specifically, this research makes contributions toward the envisioned 

paradigm shift by constructing some of the foundational components in the following research 

thrusts for combined documentation of geometry and material properties: 

1. 3D imaging of geotechnical sites to document post-failure conditions. 

2. Synthesis of 3D modeling with 2D images for geomechanical assessments of rock masses. 

3. UAV-enabled subsurface imaging through in situ seismic surface wave testing. 
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1.2 Organization of the Dissertation 

The dissertation contains five chapters. Chapter 1 introduces the topic of post-disaster 

reconnaissance, the current limitations faced by engineers in conducting this work, and outlines 

the dissertation. In Chapter 2, recent impactful, novel research related to civil infrastructure 

systems is reviewed. First, basic guidance on UAV selection for civil engineering applications and 

the fundamental principles of UAVs are discussed. Second, the broad array of sensor payloads 

being used for research studies are presented. UAV-based surveying with cameras and LiDAR are 

compared (camera-based surveying is performed in the third chapter). Third, UAV interaction with 

wireless sensor networks (WSN) and high-level system operations is discussed. Examples of the 

challenges for processing UAV-collected data are then provided. Fourth, recent examples of UAVs 

applied to cutting-edge research in monitoring of infrastructure systems, construction progress 

monitoring, geotechnical engineering, and post-disaster reconnaissance. Observations on open-

ended research topics revealed by a review of the current literature are presented. 

In Chapter 3, the fundamental processes for UAV-based mapping of geotechnical sites 

using optical sensors are described. The approach used is Structure-from Motion (SfM) 

photogrammetry. SfM-associated data outputs, along with a generalized field procedure developed 

from performing surveys at geotechnical sites are described. Examples of sites surveyed in Hawaii 

and Nepal are detailed. The two landslides discussed in detail were documented with SfM and the 

point cloud was used to perform a geomechanical analysis of the rock structure in 3D. The chapter 

ends with a discussion of lessons-learned from performing aerial mapping of geotechnical sites. 

In Chapter 4, a targeted effort to characterize rock masses using 2D and 3D imagery 

collected by UAV, is presented. Specifically, a fracture detection algorithm is developed for use 

at rock sites. The algorithm is assessed on three different data sets: images extracted from an 
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orthophoto derived from a SfM-developed 3D model of a marble quarry using the principles 

learned in Chapter 3; higher-resolution images collected of a weathered, vesicular basalt rock 

mass; and a mixed set of images including broken-up or disintegrated rocks, sparse fractures, and 

poor resolution images collected by UAVs during the landslide documentation discussed in 

Chapter 3. UAV-enabled SfM results are further utilized by transforming the 3D point cloud to a 

camera coordinate system and projecting to an image plane to generate RGB-Depth images. A 

well-established unsupervised pixel clustering algorithm is then updated for use with RGBD 

images. The fracture detection and clustering algorithms are then integrated in a proposed 

workflow where the detected fractures are mapped back to 3D points produced by Chapter 3 and 

can assist with 3D geomechanical characterization. 

In Chapter 5, the foundation for a computational framework to interpret data from in situ 

seismic surface wave testing is developed. The analytical components, including dispersion 

analysis, attenuation analysis, statistical analysis, and profile modeling, are described and 

presented with examples. Finally, a UAV is modified to lift and drop a weight for generating 

seismic surface waves. The feasibility of using UAV-dropped weights relative to the commonly-

used sledgehammer is assessed and the two source types are compared. The effects of drop height, 

payload mass, and shape are investigated. Chapter 6 concludes the dissertation by summarizing 

the contributions made and their limitations, lessons learned, and directions for continuing and 

future research. 
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Figure 1-1: (Top row) current practice consists of manual reconnaissance requiring site 

access, deformation measurements, and manual site characterization processes; (bottom 

row) the UAV envisioned paradigm consists of UAVs gaining access to sites, collecting 

deformation data using SfM or LiDAR, and UAV-based site characterization through 

actuation and automation 
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Figure 1-2: Potential automated UAV reconnaissance workflow 
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CHAPTER 2 

UAVs in Civil Infrastructure Applications 

 

2.1 Introduction 

Unmanned aerial vehicles (UAVs), also commonly termed drones, are defined as aeronautical 

platforms that operate without the use of on-board human operators. Recently, UAVs have been 

the focus of both significant praise and criticism. Media coverage has primarily driven the dialogue 

on UAVs in the public sphere. From this perspective, the focus has largely been related to their 

use in military operations (BBC, 2012; Mazzetti, 2012; Syed, 2012; Savage, 2016). UAV 

technology is much more advanced in this sector and has seen about a century of development. 

For example, the Kettering Bug, a self-flying torpedo, was developed in the United States (US) 

but never used in combat (Stamp, 2013). Radio-controlled aircraft were used by the British military 

for target practice before World War II. During World War II, US and German militaries used 

radio-controlled aircrafts to fly into heavily-fortified targets (Connor, 2014). Additionally, pulse-

jet UAVs based on German Vergeltungswaffe Eins (V-1) cruise missiles were developed in the 

US and France following the war for target practice (Winter, 2000). Outside of the military realm, 

UAVs have also been used for decades by public entities such as police and fire departments in 

North American cities and this use is currently expanding (Nguyen, 2014; Mangione, 2015; FAA, 

2016; Rojas, 2016). More recently, the commercial sector has explored UAVs for use in their 

businesses (Syed, 2012; Nguyen, 2014; Boucher, 2015). In fact, many of the UAVs originally 
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developed for military purposes are now being used for civilian applications (Syed, 2012; Boucher, 

2015).  

In the early 2000s, the public began to show greater interest in UAV technologies due to 

reductions in UAV costs and the availability of more functional platforms. In response to the broad 

proliferation of interest in UAVs in the US, the Federal Aviation Administration (FAA) initiated 

a small unmanned aerial vehicle registration program in December 2015. During the first 30 days 

of this program, nearly 300,000 individual owners registered their personal UAVs (FAA, 2016). 

Regulations in the US imposed by the FAA have been met with some criticism and have created a 

debate over how extensively UAVs should be used in the national airspace system. Outside of the 

US, UAV regulations vary widely from country to country, or may not even exist. Despite 

scientific and regulatory hurdles, many scientific and engineering communities have also delved 

into UAV technology development or incorporated UAVs into their respective fields. Some 

industries (e.g., precision agriculture) have fully incorporated UAVs into their field, making them 

an integral part of their state of practice. Other fields (e.g., geotechnical and structural engineering) 

have only begun to explore the potential of UAVs but their impact is already evident, as will be 

discussed.  

Given the rapid growth in interest in UAV technology, this chapter aims to present a broad 

overview of UAV technology and how it is being adopted in the field of civil engineering. 

Emphasis is placed on the most recent technological advancements and on the breadth of 

applications UAVs have in the field of civil engineering while highlighting the research challenges 

that remain.  
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2.1.1 Structure 

The first section provides a fundamental overview of UAVs and discusses the pros and 

cons of different platform types. In this section, basic guidance is provided to readers interested in 

implementing UAVs for their own applications. To frame this guidance, the details of several 

popular commercial platforms are provided. This section is primarily geared toward researchers 

looking to begin UAV integration with their work. It should be noted that the UAV platforms 

reported on are likely to rapidly change over the coming years, however, the fundamental 

principles presented will remain. The second section presents examples of the ever-growing set of 

sensor payloads that can be carried by UAVs. Due to their popularity, the greatest emphasis is 

placed on UAV-based light detection and ranging (LiDAR) systems. The comparable nature of 

LiDAR- and image-derived point clouds is also covered. The third section provides an overview 

of UAV integration with high-level systems such as wireless sensor networks. The challenges 

associated with interpreting data collected by UAVs and combining it with other data sources is 

discussed.  The fourth section summarizes recent examples of UAVs applied to broad research 

domains of civil infrastructure including post-disaster reconnaissance, monitoring of critical 

infrastructure components, construction progress monitoring, and geotechnical engineering. These 

broad domains contain the most cutting-edge advancements in topics relevant to civil 

infrastructure systems. 

It should be noted that the literature discussed herein is not intended to serve as an 

exhaustive compilation of all applications of UAVs in civil infrastructure systems; rather, the aim 

is to present representative research efforts that highlight the transformative impact UAVs can 

have when applied in the field. The paper concludes with a discussion of the focus areas for future 

work to continue advancing UAV technologies as a valuable tool in civil infrastructure. Naturally, 
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areas of overlap exist within the topics covered herein. For example, many of the post-disaster 

reconnaissance examples presented are of geotechnical interest, however, they are not discussed 

in the subsection on geotechnical applications.  

 

2.2 Unmanned Aerial Vehicles 

When introducing UAV-related engineering literature, it is important to define some key 

terms. Unmanned aircraft systems (UAS) is a closely related term which encompasses the UAV 

itself, communication, piloting, sensing, flight planning and other critical components for UAV 

operation. Readers of engineering literature may find the terms UAS and UAV used 

interchangeably, however the distinction should be made. Thorough discussion of a UAV-related 

topic cannot be made without reference to the relevant UAS components. Remotely-operated 

UAVs are actively controlled by a pilot. Autonomous UAVs perform functions without active 

human involvement. However, varying degrees of automation will appear in most modern UAS. 

For example, a UAV may be remotely operated by a pilot but may use automation to maintain its 

position in the absence of commands from the pilot. The relative autonomy of a specific platform 

will also depend on the software used. Both manufacturer-included and third party software 

packages offer a variety of options for automating functions (e.g. image capture, stabilization, 

flight path routing, and landing). 

 

2.2.1 Platform Types 

For the purposes of this paper, the FAA definition of small UAVs as those weighing less 

than 25 kg (55 lbs.) is adopted (DOT, 2016). In fact, the vast majority of the applications identified 

in this paper use small UAVs with most weighing less than 4.5 kg (10 lbs.). UAVs can generally 
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be divided into three types: fixed-wing, rotorcraft, and vertical take-off and landing (VTOL) 

vehicles. Fixed-wing UAVs fly similarly to a traditional aircraft. Fixed-wing airframes can vary 

as much as traditional aircraft. Rotorcraft can be further divided into two sub categories: 

helicopters and multirotors. Helicopters use one rotating propeller attached to the main body while 

multirotor UAVs are propelled by multiple rotating propellers attached to arms extending from the 

UAV body. VTOL UAVs can be considered as a combination of multirotor and fixed-wing UAV 

designs (Byun et al., 2016). These platforms lift off the ground vertically, as a multirotor platform 

does, but then fly horizontally with fixed wings after takeoff. There are few VTOL UAVs 

commercially available with the platform type still under development. Examples of the different 

aircraft types are shown in Figure 2-1. Blimps and balloons have also been used as airborne sensing 

systems; however, they have a limited scope and have not been at the forefront of current research. 

Balloon platforms are most useful when sensors need to remain airborne and stationary for long 

durations. Take et al. (2007) used a helium-filled airship to monitor thermal expansion and 

wrinkling of exposed geomembrane landfill liners. More discussion of blimps and balloons in 

transportation engineering can be found in Brooks et al. (2014). 

Each type of UAV has advantages and disadvantages that may be more or less critical 

depending on the application. In general, fixed-wing flight is much more efficient in covering large 

areas. Hence, fixed-wing UAVs are generally used to cover large distances rapidly and are ideal 

for mapping applications or kilometer-scale measurements. Multirotor UAVs have flexible 

mobility and the ability to hold their position and rotate in 3D space. They are ideal for applications 

requiring precise vehicle placement and mapping of complex three-dimensional features. UAV 

platform types can be broken down further based on wing or rotor geometries. Figure 2-2 shows a 

more detailed breakdown of UAV platform types. Fixed-wing UAVs can be constructed with as 
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many wing geometries as traditional aircraft can (e.g., bi-planes or tri-planes). However, for the 

purposes of this discussion, fixed-wing UAVs will be divided into three generalized wing 

orientations (and not by the number of wings). Straight-wing UAVs appear as prototypical model 

airplanes. The wings protrude perpendicularly from the sides of the aircraft body. The wings can 

have a variety of shapes in plan-view, such as elliptical, but are typically rectangular. Straight-

wing alignments allow for good flight control at lower speeds. Swept-wing UAVs appear similar 

to straight-wing UAVs but the wings are angled (i.e., swept) towards the tail of the aircraft. The 

senseFly eBee shown in Figure 2-1a is an example of the swept wing alignment. Swept-wings 

allow for greater flight efficiency relative to straight-wing UAVs but these UAVs must maintain 

higher velocities making them less maneuverable than their straight-wing counterparts. Delta-wing 

UAVs are an exaggerated version of the swept-wing alignment. In plan view, the aircraft is shaped 

similarly to an isosceles triangle. The pros and cons of this wing alignment are the same as the 

swept-wing, but more exaggerated. 

 The types of UAV rotorcraft platforms are defined by the number and alignment of the 

rotors. There are two distinct types of rotorcraft: helicopters and multirotors. Helicopters have a 

single overhead rotor and long tail containing a small rotor in an orthogonal plane for stabilizing 

and adjusting heading. Helicopters are popular with model aircraft hobbyists and offer less 

flexibility for use in civil engineering applications. Due to being more difficult to fly manually, 

they tend to have a steeper learning curve than multirotor platforms for novice users. In general, 

multirotor platforms consist of several arms bearing rotors extending from the central body of the 

aircraft. Multirotors offer shallow learning curves and are easier to control in space. However, they 

are comparatively more complex in terms of their development. In Figure 2-3, multirotor platforms 

with three, four, six, and eight rotors are identified; these platforms are singled out because they 
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are the most popular. Obviously, a multirotor platform with any number of rotors could be 

developed. A general rule of thumb is the more rotors the UAV has, the more lift capacity it has. 

In addition, more motors offer increased flight stability making them easier to control and offer 

some redundancy in the case of motor failure. A UAV with six or more rotors may have the ability 

to remain airborne or make an emergency landing if motor failure occurs. Tri- and quadrotors do 

not offer redundancy and will crash upon failure of a single motor. The cost of the UAV platform 

also roughly scales with the number of rotors due to the need to buy more motors and larger 

batteries. 

Trirotor platforms typically have three rotors attached to arms either 120 apart (Y-

configuration) or 90-180 apart (T-configuration). While inexpensive, these platforms are less 

stable and have low lift capacities due to the small number of rotors. Quadrotor platforms are by 

far the most popular multirotor platforms and have been shown to be flexible platforms with fewer 

moving parts than hexarotors and octorotors. The quadrotor mounts the rotors to four arms each 

90 apart; to balance the frame in flight, two opposite rotors (180 apart) rotate in a clockwise 

direction while the other two rotors rotate counter-clockwise (X4 configuration). With only four 

arms, quadrotors can be constructed to a small diameter making them ideal for casual hobbyists. 

The reliability and subsequent popularity of commercial quadrotor platforms has also resulted in 

them being viewed as the iconic multirotor design.  

Hexarotors come in two frame types: either in a Y-rotor frame with arms 120 apart or in 

a HX-6 configuration which consists of six arms 60 apart. The Y-configuration includes two 

rotors on each arm and is referred to as a Y-6 configuration. As with all configurations using 

stacked motors, the top and bottom rotors rotate in opposite directions (clockwise and 

counterclockwise). In the HX-6, the rotors alternate between clockwise and counter clockwise. 
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Octorotor platforms have two configuration types: OX-8 configuration or a classical X-8 

configuration. The OX-8 configuration consists of eight arms each 45 apart with rotors alternating 

between clockwise and counterclockwise motion. The classical X-8 consists of four arms 90 apart 

with each arm supporting two rotors rotating in opposite directions. In general, the X-8 and Y-6 

configurations are resilient in the face of rotor failure. Stacking two rotors on each arm in the X-8 

and Y-6 configurations reduces their flight efficiency due to each rotor disturbing the air 

surrounding the other rotor. Stacked rotors can be beneficial because they reduce the number of 

arms on the aircraft, greatly reducing the total weight. Reducing the base weight of the UAV has 

a significant effect on flight time and allows larger payloads to be carried. In general, hexarotors 

or octorotors are used to lift heavy payloads such as multi-camera systems and other expensive 

sensors. Figure 2-3 illustrates some of the most popular multirotor layouts. 

 Year-to-year technology improvements have made UAVs more functionally rich while 

their costs have continued to decrease. Specifics on the cost of individual platforms is not provided 

as this changes rapidly and is typically tied to integration of the latest technological innovations. 

The cost of new commercial small UAVs varies widely from less than 50 USD for a low-definition 

camera quadrotor to 50,000 USD or more for a highly-specialized multirotor platform. Additional 

technology advancements increase the cost of multirotor UAVs such as multi-sensor obstacle 

avoidance, and real-time kinematic (RTK) Global Positioning System (GPS) add-ons which may 

cost several thousand USD. Other capabilities can significantly influence the cost of a UAV 

package including GPS-denied navigation, photo/video resolution and framerate, image 

processing software, and flight planning software. Platforms originally developed for military 

operations, such as the General Atomics Predator line are available for long-range surveillance 

applications at great cost. However, these military-based UAV platforms have not found many 
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uses in civil engineering because of their costs and due to the social complexities of integrating 

previously militarized UAV platforms into civilian applications (Boucher, 2015).  

 

2.2.2 Performance Characteristics 

The high demand for civilian UAVs has driven the market to provide a wide range of 

options available at many price levels. The range of UAV costs is dictated by how specialized the 

UAV platform is including the following performance attributes: vehicle type (multirotor versus 

fixed-wing), position accuracy, permissible payload, maximum flight time, sensor compatibility, 

flight controller, on-board data processing capabilities, and closed versus open-source software 

framework. The relative importance of these performance characteristics will depend on the 

specific application. Accurate and stable positioning is critical when movement leads to increased 

sensor measurement error or when the UAV must be close to the object of interest. For example, 

for inspecting bridges and rock structures, the UAV must be able to resist abrupt changes in wind 

speed while conducting close-range inspections. In general, maximizing flight time is important 

for any application and is primarily controlled by the UAV payload and battery configuration. The 

flight time required for surveying applications is a function of camera resolution and desired 

survey quality. For a given required image resolution of the target, a higher-resolution camera can 

collect the images from a greater altitude and therefore fly along a shorter flight path. Table 1 

summarizes some basic performance attributes reported by manufacturers for a range of currently 

available low-cost commercial UAV solutions from popular manufacturers. Many of the platforms 

identified in Table 1 have integrated cameras. The resolution of the photos and videos recorded by 

the cameras varies widely and can increase significantly between model generations. For example, 

between the DJI Phantom 3 Professional and the DJI Phantom 4, the camera resolution increased 
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from 12 MP to 20 MP. For platforms without integrated cameras, the user can select a camera with 

their desired resolution. State of the art digital cameras can be carried as long as payload limitations 

are met. 

In Table 1, the weight for each UAV is the out-of-the-box base weight or a typical flying 

weight for the platform. Each UAV can also carry a maximum takeoff weight which represents 

the base weight plus the weight of payloads (if so desired). Hence, the maximum payload weight 

is the difference between the maximum takeoff weight and the base weight. In general, UAVs can 

carry a greater payload than identified by the manufacturer, which can be estimated by considering 

the maximum thrust of a multirotor’s motors. When the maximum payload capacity of a platform 

is reached, it has a significant negative impact on flight performance including shorter flight time 

and potential instability. The eBee is a fixed-wing platform made of a light-weight foam material, 

both contributing to a long flight time of 50 min. The hardware associated with octorotors and 

hexarotors make these UAVs the heaviest on the list. The provided flight times correspond to the 

reported platform weight. If the payload is reduced when possible for some of the above platforms 

(e.g. Matrice 600) the flight time increases. Similarly, as payload is added to any of the platforms, 

the flight time decreases as more energy is required by the motors. Aside from the fixed wing 

eBee, the estimated flight times of these platforms range from 15 to 30 min. The flight times are 

reported from manufacturer-conducted flight endurance testing. The exact parameters, other than 

time and weight, of the flight testing are not necessarily reported. The unknown parameters will 

result in some variance with respect to flight times. These parameters may include battery level at 

flight termination, ambient or battery temperature, flight pathing, and wind. For this reason, users 

can expect variation from manufacturer-reported values when using a platform. As users gain 
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experience, they become competent at estimating flight times depending on environmental 

conditions and flight aggressiveness. 

Figure 2-4 contains a compilation of the multirotor platforms summarized in Table 1. The 

Matrice 600 and Matrice 100 UAVs have multiple points in Figure 2-4 because they have more 

extensive flight endurance testing including different battery and payload combinations. Flight 

time is normalized by total battery capacity (in terms of mAh) and shown to be a function of the 

UAV total mass. As is evident from the plot, the normalized flight time (NFT) is inversely 

proportional to the total UAV mass (MUAV). A regression analysis is performed and it is found 

that: 

𝑁𝐹𝑇 = 1.75𝑀𝑈𝐴𝑉
−0.8    (𝑅2 = 0.87)          (1) 

This relationship is important because it captures the physics of UAV flight and the energy needed 

to fly UAVs for a period of time. More importantly, it provides UAV operators a means of 

accurately predicting how long a UAV would operate if the payload is altered. As seen in 

subsequent sections, researchers often modify UAVs to carry sensing payloads of varying size and 

weight. The NFT-MUAV curve provides such researchers a means of estimating their flight times 

independent of their UAV platform. Additionally, the curve can be used to estimate the impact of 

changing battery and payload configurations on a given platform. Researchers that change their 

UAV’s payload often or have an application where the UAV’s total mass varies during flight may 

find developing a platform-specific curve similar to Figure 2-4 useful. Based on experience using 

the DJI Matrice 600 Pro hexarotor UAV, in Chapter 5, with a battery capacity of 27000 mAh, a 

takeoff weight of 9.5 kg results in an approximate flight time while hovering in 0-5 mph wind of 

35 minutes and a takeoff weight of 16.8 kg results in an approximate flight time of 16 minutes 
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while hovering in 0-5 mph wind. Equation 1 predicts 31 minutes and 19 minutes for these payload 

conditions respectively.  

As can be noted from Table 1, the most popular UAV platforms have integrated cameras 

or are intended to carry a camera as the primary sensing payload. This is a reflection of the fact 

that most UAV-based applications have been based on collecting imagery as discussed 

subsequently in this paper. When selecting a UAV platform, it is important to understand what the 

UAV will need to do and to select a UAV that meets those needs. This would be more efficient 

than pre-selecting a platform and then attempting to make significant alterations that allow the 

UAV to meet the needs of the application. Table 1 may provide guidance for novice UAV users 

looking to select an appropriate platform for their application. After exploring off-the-shelf 

products, researchers may be interested in constructing their own specialized platforms. In general, 

it is recommended that novice UAV users gain experience using lower-cost quadrotor platforms 

before expanding into larger, heavy-lift multirotors and open-source frameworks. Open-source 

software frameworks allow for the integration of external sensors into the UAS, the 

implementation of user-defined control algorithms, and operational parameters for specific 

applications. The knowledgebase for camera-equipped multirotors is vast and should allow new 

users to advance quickly assuming sufficient experience is gained and safety procedures are 

implemented. Newer users should be aware of and ensure safety components are contained in the 

UAS. This includes flight termination, return-to-home, virtual tethers, and geo-fencing. These 

components are critical in cases of lost/poor communication during flight. Communication range 

is typically not a critical consideration as most ranges for UAV to remote control extend far beyond 

what is needed for line-of-sight flying (reported to be several thousand meters). Communications 

disruption caused by physical obstruction or signal interference are much greater concerns. It is 
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recommended that novice users also avoid GPS-denied environments (e.g. tunnels, mountainous 

regions, etc.) until experience is gained and greater understanding of other navigation methods, 

such as vision-based localization is developed. Other factors, such as noise generation, may not be 

reported by the manufacturer and are not typically a major consideration for most researchers 

outside of ecological and human-interactive applications. Weather conditions must be monitored 

including precipitations, temperature, and wind. Few commercial platforms capable of handling 

precipitation, or even high-moisture, environments exist. Most multirotor platforms are highly-

susceptible to precipitation, particularly due to overexposure of motors which is necessary for heat 

dissipation. Low temperatures have a significant impact on battery performance. 

 

2.3 UAV Deployed Sensors 

The use of UAV-mounted RGB cameras is the dominant configuration in the current 

literature. This is evident in earlier reviews which focus on UAV-based imaging applications in 

civil engineering (Ezequiel et al., 2014; Chan et al., 2015; Ham et al., 2016; Jordan et al., 2017). 

However, many other types of sensors on UAVs can play a role in civil engineering for multiscale 

data collection, remote sensing, and even sample collection.  It should also be noted that non-RGB 

and multimodal imaging is becoming more common on UAVs including hyperspectral (Crocker 

et al., 2012; Lin et al., 2013) and thermal (Berni et al., 2009; Nishar et al., 2016) imaging. This 

section provides examples of non-imaging sensors used in applications relevant to infrastructure 

systems. The most popular of these sensors is LiDAR (Ngai et al., 2009; Lin et al., 2011b). LiDAR 

is mentioned several times in the applications section as both an airborne sensor and as a terrestrial 

sensor used in UAV data synthesis. The differences between LiDAR and Structure-from-Motion 

(SfM) (Snavely et al., 2008; Westoby et al., 2012) have been debated often. In this section, a 
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discussion of some of the numerous comparisons between LiDAR and image-derived point clouds 

is provided.  

 

2.3.2 Sensing Payloads 

Despite the prevalence of RGB cameras and, to a lesser extent LiDAR, other sensors have 

been implemented in a variety of fields. Many of the non-imaging sensors and their associated 

applications are summarized in Table 2. The list in Table 2 is not exhaustive and includes study 

areas outside of civil engineering to demonstrate the breadth of sensors being used on UAVs. Some 

of the sensor types, such as hyperspectral and thermal imaging, and synthetic aperture radar (SAR) 

are fundamentally similar to the RGB imaging and LiDAR techniques discussed earlier. Brooks et 

al. (2014) and Nishar et al. (2016) provide examples of thermal imaging using IR sensors from a 

UAV for bridge deck inspection and geothermal field mapping respectively. The secondary 

imaging techniques can be coupled with traditional RGB camera outputs such as orthophotos and 

3D point clouds. Combining nontraditional imaging with RGB images produces multimodal 

images which are valuable for data synthesis when analyzing infrastructure system components. 

Biological sensors are used in civil and environmental engineering fields to identify 

specific airborne contaminants or pathogens. They are categorically similar to gas and radiation 

detection because they require contact between the sensor and target. Unsurprisingly, all of the 

listed sensor types in Table 2 include a spatial data collection component. This is expected due to 

spatial mobility being a strength of UAV platforms. Magnetometers are the only sensor listed in 

Table 2 capable of probing beneath the ground surface. This is a frontier area for UAVs that has 

not been investigated extensively yet. In Chapter 5, another way to integrate UAVs with subsurface 
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sensing is introduced. In this case, the UAV is not used to carry a sensor, but is used to actively 

generate a stress wavefield at the ground surface. 

All sensors mentioned in Table 2, as well as cameras and LiDAR, require some degree of 

confidence in the UAV’s positioning. The absolute accuracy needed for the UAV positioning will 

depend heavily on sensor type and the specific application. The positioning provided by standard 

GPS units is generally suitable for collecting relatively coarse geospatial data. RTK positioning 

systems have started to be developed for small UAVs in recent years and can provide positioning 

accuracy as low as 1 cm. However, achieving such accuracy is only attainable if position is held 

for some time (minutes). For example, Turner et al. (2016) found that manually-surveyed control 

points were no longer necessary for coastal surveys of beaches when using UAV-mounted RTK-

GPS systems. Tziavou et al. (2018) recommended using a minimum of one point surveyed on the 

ground surface for control of the vertical GPS component. The innovation of UAV-based RTK-

GPS has dramatically improved the already robust aerial surveying methods used with UAVs. 

Removing the need for broadly distributed ground survey points for image-based surveying makes 

the methods even more competitive with LiDAR surveying. Advanced RTK positioning methods, 

such as those using network-based architectures, have great potential to benefit data collection for 

all integrated sensors and should be pursued in research. 

 

2.3.3 Comparison of LiDAR and Camera-Based Surveying 

The dominant photogrammetry technique adopted to derive 3D point clouds from UAV 

imagery is SfM, which utilizes sequences of two-dimensional pictures to extract features and 

derive 3D information. Camera positions and orientations are indirectly derived from the imagery 

using a bundle adjustment algorithm. Models are then scaled and georeferenced using physical 
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ground control points (GCP) with known locations. The density and location of GCPs used to scale 

a model have a significant impact on the mean error, and distribution of error within the model 

(Manousakis et al., 2016; Agüera-Vega et al., 2017). Adaptations of traditional SfM have also been 

introduced, such as methods specifically tuned for infrastructure assessment. Both LiDAR and 

optical cameras can be used to generate 3D point clouds. Many instances of aerial surveying for 

SfM are outlined in the applications section. LiDAR point clouds have the advantage that they are 

not as significantly affected as optical cameras by semi-penetrable obstacles such as vegetation or 

water. However, LiDAR scanning relies upon knowing the position and orientation of the scanner. 

This can be difficult to manage when mounted on a UAV. Comparatively, camera positions can 

be determined from consecutive images in photogrammetric techniques. LiDAR scanners are also 

much heavier than typical cameras. However, recent interest in UAV-mounted LiDAR has resulted 

in concerted efforts to make LiDAR scanners smaller and lighter. For example, the Velodyne 

LiDAR Puck has a mass less than 1 kg and is about 100 mm in diameter with a laser pulse range 

of 100 m.   

Hugenholtz et al. (2013) used a small, fixed-wing UAV to map and identify surface 

geomorphologic features. UAV imagery was used to develop a digital terrain model (DTM). The 

authors found that the error of the image-based DTM, relative to a GPS survey, was comparable 

to a LiDAR DTM of the same site. Siebert and Teizer (2014) used a UAV with mounted RGB 

camera as a surveying tool for construction projects and compared UAV-based photogrammetry 

to conventional surveying methods as ground truth. The possible sources of error in UAV 

surveying are also discussed in depth. Figure 2-5 illustrates the authors’ comparison of UAV-based 

photogrammetry to other surveying methods in terms of total coverage area and survey error; 

arrows have been added by the writers to illustrate existing and, potentially, future expansion of 
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the UAV Photogrammetry region (established by Siebert and Teizer, 2014) initiated by 

advancements in camera hardware, imaging methodologies, and UAV control. Hugenholtz et al. 

(2014) showed that cm-scale DTMs developed from UAV-based photogrammetry are a 

competitive alternative to LiDAR scans. Additional discussion on the post-processing implications 

of UAV-collected LiDAR scans is presented in the following section. 

 

2.4 System Integration and Data Processing Challenges: 

UAS contain processing power which has the potential to transform them into advanced 

computational platforms for real-time decision making for management of complex infrastructure 

systems. For example, UAVs have been integrated in many wildfire monitoring and firefighting 

schemes to protect towns and communities (Yuan et al., 2015). Barrado et al. (2010) described the 

integration of UAS in a multi-layered network including firefighter, tethered communication 

relays, and surveillance UAVs. Murphy et al. (2015) explored the integration of UAVs with 

immediate post-disaster reconnaissance and search-and-rescue efforts. Similar efforts have yet to 

be made fully incorporating UAVs into civil infrastructure systems, however, the greatest strides 

in this direction have been made in the construction management community (Ham et al., 2016). 

 

2.4.1 Wireless Sensor Networks 

It has been theorized and demonstrated that the spatial and temporal flexibility of wireless 

sensors coupled with their computational capabilities are ideal attributes for utilizing networks of 

wireless sensors with UAVs (Mascareñas et al., 2009; Maza et al., 2011; Jawhar et al., 2014; 

Zekkos et al., 2014; Malaver et al., 2015; Greenwood et al., 2016b; Zhou et al., 2016). Wireless 

sensors are a critical component of state-of-the-art structural health and infrastructure monitoring. 
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Mascareñas et al. (2009) proposed a mobile host wireless sensor network paradigm. The proposed 

paradigm utilizes wireless sensor nodes powered and interrogated by a mobile host, such as a 

UAV. This methodology would improve data collection efficiency and make for a more cost-

effective wireless sensor network integration for infrastructure monitoring. Data collection and 

sensor node interrogation by UAV makes using widely distributed sensor networks more 

attractive. Networks distributed over large spatial areas can be very expensive and time-consuming 

to maintain. Specifically, deploying WSN over large areas necessitates significant infrastructure 

such as power sources and long-range communication networks. 

Recently, there have been significant efforts made to improve incorporating UAVs with 

wireless sensor networks to both provide power and also to collect data (Fadlullah et al., 2016). 

Cobano et al. (2010) developed a path-planning method for optimal data collection from stationary 

wireless sensor nodes. Flight path waypoints were selected based on a heterogeneous distribution 

of sensor nodes while considering safety and required proximity for communication with the 

sensor nodes. Dong et al. (2014) discussed some challenges of collecting sensor data with UAVs 

such as coordinating platform velocity with sensor network density. The authors proposed an 

algorithm for mobile agents to aggregate sensor data over specific regions before transmitting 

packaged data to the UAV. Ho et al. (2015) discussed the selection of wireless sensor network 

communication topology to optimize the efficiency of communicating data. When recovering data 

from distributed networks, efficiency is critical due to the presently limited endurance of most 

small UAVs. The efficiency of wireless networks can also be improved with UAVs. Villas et al. 

(2015) proposed using the GPS receiver on-board to solve localization and time synchronization 

among sensor nodes. This would eliminate the need for individual nodes to contain their own GPS 

receiver. Kim and Choi (2015) developed an ad hoc 3D localization scheme for UAVs in GPS-
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denied environments by leveraging ground-based and airborne sensor nodes. Acquiring UAV 

position from ground-based sensor nodes presents some difficulties when expanded to 3D 

localization. Airborne sensor nodes, namely other UAVs, can be used to determine the position 

and relative distances with other communicating UAVs. 

The deployment of wireless sensors by UAVs has also been explored on a limited basis. 

Zhou et al. (2016) used a UAV to physically distribute and mount accelerometers on a simple 

beam structure using a robotic arm mounted to the UAV. The UAV placed wireless sensors on the 

structure and communicated with them to record data while introducing an impulse for modal 

analyses. Maza et al. (2011) used multiple autonomous helicopter UAVs to deploy wireless sensor 

nodes and IR cameras for a firefighting proof-of-concept test. Wireless nodes contained sensors 

for temperature, humidity, carbon monoxide, and smoke. Sensor nodes were attached to 

firefighters at the site and additional nodes were distributed by UAV to monitor the movement of 

fire to sensitive locations in a building. UAV was also used to deploy optical and IR cameras on 

the top of a building providing real-time information on fire propagation, firefighters, and victims. 

The major limitation to sensor deployment by UAVs is the limited payload capacity of small UAVs 

and the reduced flight endurance caused by sensor payloads (e.g. see Figure 2-4). 

 

2.4.2 UAV-Specific Data Reduction 

Remote sensing methods that have been incorporated on UAVs often require additional 

(and extensive) data processing (Frey et al., 2009; Harwin and Lucieer, 2012; Hirose et al., 2015). 

Examples of this include the data associated with UAV-based Synthetic Aperture Radar (SAR) 

(Frey et al., 2009), LiDAR (Brooks et al., 2014; Hirose et al 2015), magnetic surveys (Wood et 

al., 2016), and high-resolution imaging (Harwin and Lucieer, 2012). The uncertainty of UAV 
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position and pose propagates as uncertainty in the collected data, but can often be eliminated with 

correcting algorithms. The reliability of UAV-based LiDAR data is highly dependent on 

confidence in UAV pose and position estimations. In response to this, recent attempts have been 

made to improve the reliability of LiDAR data collected on a UAV through signal processing or 

synthesizing with other data sources (e.g. Lin et al., 2013). Droeschel et al. (2016) combined stereo 

cameras, ultrasonic sensors, and LiDAR to map obstacles for UAV navigation. Kaul et al. (2016) 

developed a 3D mapping system using a rotating 2D LiDAR scanner capable of 3D mapping in a 

GPS-denied environment. Hirose et al. (2015) demonstrated UAV-based LiDAR monitoring of 

structures in a GPS-denied environment. Understanding the pose and motion of the UAV is 

imperative for LiDAR measurements and becomes most difficult in GPS-denied environments. 

Hirose et al. (2015) implemented an iterative closest point algorithm to correct resulting distortions 

in the LiDAR point cloud. UAV localization was improved by feeding inertial measurement unit 

(IMU) and camera data into a Kalman filter. Brooks et al. (2014) used UAV-mounted LiDAR to 

develop 3D models of a highway bridge. A 3D SLAM algorithm was used to improve the quality 

of the LiDAR point cloud. Figure 2-6 shows the 3D LiDAR results before and after scan-matching 

alignment. Sensor payload orientation and positioning can be measured using onboard IMU 

sensors but may contain debilitating errors and must be addressed through post-processing of IMU 

data (Brooks et al., 2014; Hirose et al., 2015; Gautum et al., 2017; Klingbeil et al., 2017). 

As previously mentioned, the uncertainty of UAV position has become a less-critical 

concern in GPS-enabled environments and when utilizing some imaging methods such as SfM. 

Processing methods specifically for data collected in GPS-denied environments, such as in 

buildings or in remote valleys, must still be pursued. Vision-based methods for localization are 

being investigated extensively, partly to address this issue. 
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UAV-based photogrammetric techniques such as SfM and multi-view stereo (MVS) 

quickly became popular because they have become well-established and validated methods; they 

are also resistant to some of the problems associated with remote sensing by UAV such as pose 

estimation. This is because of the robustness of camera pose extraction from a series of images in 

photogrammetric methods and the reliability of feature detection algorithms developed for 

computer vision and image processing such as scale-invariant feature transform (SIFT) (Lowe, 

1999; Lowe, 2004). New image processing methods have been developed or expanded based on 

the collection of UAV-based images. Jahanshahi et al. (2017) approached the issue of positional 

inaccuracies and outliers in SfM, developing an algorithm to improve 3D reconstruction when 

misassociated features exist in the SfM data. The algorithm was used following standard outlier 

rejection methods within the bundle adjustment process. 

Adaptations of traditional SfM have also been introduced, such as methods specifically for 

infrastructure assessment based on the same algorithm structure. For example, Khaloo and Lattanzi 

(2017) present a dense SfM approach used to resolve small-scale details needed for infrastructure 

inspection. However, other photogrammetry and computer vision techniques can be used including 

those dependent on directly measuring camera position and orientation. Direct measurement of 

camera position and orientation can be made using onboard inertial sensors and GPS (Klingbeil et 

al., 2017). Irrespective of the method used to derive them, 3D topological models provide 

engineers with a quantitative measurement of the topologies corresponding to ground and 

structural surfaces. Carpin et al. (2013) developed a variable-resolution object detection method. 

This object search method utilizes the ability of UAVs to rapidly adjust imaging resolution by 

changing vehicle altitude. Vetrivel et al. (2015b) developed an image segmentation methodology 
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for UAVs. Images are collected by a UAV and used to produce a 3D point cloud. The point cloud 

is segmented and used to similarly segment the original UAV-collected images. 

Novel methodologies in infrastructure system monitoring and inspection can be expected 

to be extended to UAV platforms in the near future, such as the crack detection and quantification 

method developed by Jahanshahi et al. (2013), 3D crack detection developed by Torok et al. 

(2014), crack change detection method by Adhikari et al. (2016), 3D city modeling by Cornelis et 

al. (2008), and digital image correlation (Take et al., 2015). The current and future extension of 

these imaging techniques is enabled by increasing on-board computational capacity and potential 

for real-time processing as well as the addition of serial camera perspectives. 

 

2.5 UAV Applications in Civil Engineering 

Over the past decade, UAVs and other robotic systems have shown tremendous promise 

for use in a wide variety of applications in the realm of civil infrastructure systems (Lattanzi and 

Miller, 2017). Fundamentally, UAVs are revolutionizing the field by providing never-before-seen 

dynamic data collection capabilities that surpass existing methods in terms of ease, accuracy and 

cost. Using FAA UAS exemption applications as a metric, Figure 2-7 shows the broad number of 

applications submitted through January 2016 that identify an infrastructure-related use (AUVSI, 

2016). The attraction of integrating UAVs in many civil infrastructure applications is primarily 

based on accelerating accessibility to remote and dangerous sites, sensor mobility, and overall 

speed of data collection. Any application that could utilize a highly-mobile data collection or 

communication platform could conceivably incorporate UAVs as a primary data collection 

component. In particular, UAVs have begun to emerge as an essential data collection tool for 

applications involving natural hazards (e.g., earthquakes, hurricanes) where site accessibility can 
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be challenging post-event and the need to collect highly perishable data is urgent. In such 

applications, UAV-based photogrammetry provides advantages over other remote sensing 

platforms such as satellites and people on the ground (Colomina and Molina 2014). Satellites are 

limited by return time, cloud coverage, image resolution, and collect imagery in plan-view. UAVs 

can be deployed on demand and flight parameters can be adjusted to acquire the desired image 

resolution and perspective. Human teams on the ground (walking or using ground-based vehicles) 

can be challenged by treacherous terrain, physical obstacles, or dangerous site conditions. As a 

result of these challenges, UAVs also offer an economic advantage including reduction of costs 

associated with personnel, travel and site logistics. The role of UAVs can also go well beyond 

photogrammetry by offering the possibility to carry other sensor types for data collection, a role 

in processing data, and interacting with users on the ground. The top application areas in civil 

infrastructure where UAVs have had transformative impact on the state of practice are 

infrastructure system component monitoring, construction safety and progress monitoring, 

geotechnical engineering, and post-disaster reconnaissance.  These application areas are described 

in this section to provide the reader with insight to how UAVs may be used on-site with clear 

benefit to the application. It is important to identify literature reviews related to the use of UAVs 

as they may pertain to civil infrastructure. Ezequiel et al. (2014) reviewed applications in post-

disaster assessment, environmental management, and infrastructure development where UAV-

based remote sensing is used within data-sharing networks. A broad overview of application areas 

in civil engineering was reviewed by Liu et al. (2014) with a strong focus on control. Colomina 

and Molina (2014) provided an in-depth review of UAV-based photogrammetry with RGB 

cameras. The review also provides insight into remote sensing where UAVs have been utilized 

and includes details of other camera types for UAV-based remote sensing (e.g. multispectral). A 
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targeted review of UAVs as bridge inspection was presented by Chan et al. (2015). Vision-based 

efforts for monitoring infrastructure were reviewed by Ham et al. (2016) from a construction 

perspective. This review provides a useful synthesis of contributions from the robotics and 

computer vision communities.  Lattanzi and Miller (2017) presented a thorough overview of 

robotic platforms used to inspect infrastructure components. This review details inspection robots 

of several different mobility types including aerial, underwater, ground-based, and climbing 

robots. Jordan et al. (2017) provided a contextual review of UAV-based inspection of power 

facilities and structures. The review discusses the critical technologies addressing current 

implementation challenges. 

 

2.5.1 Monitoring of Infrastructure System Components 

In this section, key cases of UAVs being used for infrastructure monitoring are discussed. 

The discussion begins with monitoring linear structures such as pipelines, then bridge inspection 

and monitoring, and finish with UAVs applied to monitoring traffic conditions in transportation 

systems. For each of these topics the discussion is presented chronologically. Clearly, there is a 

large number of infrastructure system components that can be, and have been, monitored by a 

UAV. The subtopics in this section have been selected due to their prominence in transformative 

UAV research. The use of UAVs to monitor other infrastructure components and features such as 

road surfaces, power lines, concrete dams and communication towers among many others should 

not be discounted. 

As previously mentioned, UAVs can be useful, low-cost tools for visual inspection and 

monitoring of infrastructure systems at many scales (Lattanzi and Miller, 2017). In the United 

States, “infrastructure” was listed as an application for about 40% of FAA exemptions as of 20 
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January 2016 (AUVSI, 2016). Rathinam et al. (2008) used a UAV with a pre-determined flight 

path to inspect linear structures, such as pipelines. The authors proposed a real-time, vision-based 

detection algorithm for linear structures. However, frame-by-frame operations on the video feed 

were found to be too computationally intensive. UAVs have computational potential which has 

greatly improved in recent years, but the computationally-intensive nature of real-time image 

processing is a consistent point of emphasis in the literature, especially as camera technology 

(resolution, multimodal imaging) improves. Pipelines represent an infrastructure component with 

significant consequences of failure. Monitoring of pipelines over a significant spatial range is 

therefore critical to their performance. Due to the significant distances covered by similar types of 

infrastructure, such as railroads, levees, powerlines, and pipelines, rapid data collection over large 

distances is desirable. For example, Gao et al. (2011) investigated the use of UAVs for data 

collection of geologic hazards threatening pipelines. Jawhar et al. (2014) proposed a strategy for 

collecting data via UAV from sensor arrays distributed on pipelines. The characteristic nature of 

monitoring a linear structure such as a pipeline can be applied across the other examples mentioned 

above. Monitoring over large, rural areas allows infrastructure in these places to receive newfound 

attention and improves the response rate to performance changes. The risk associated with UAV 

failure is also lower relative to urban environments. However, depending on consequences, 

monitoring over such expanses can be too costly (Jawhar et al., 2014). The relative cost of using a 

UAV over large distances is much lower for fixed-wing platforms. If functions that require 

multirotor platforms must be performed, the monitoring effort could quickly become 

unsustainable. The ability of VTOL platforms to combine the benefits of fixed-wing and multirotor 

platforms will have a profound impact as their usage expands.  
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 UAV-based remote sensing for critical infrastructure is a possible method to aid visual 

inspection, or in some cases completely replace inspectors in the field. In fact, bridge inspection 

is the most widely approached topic for UAV integration in infrastructure monitoring. Ellenberg 

et al. (2014a) used a UAV for visual inspection of bridges for deformations and cracking. The 

algorithms proposed by the authors suggest placement of markers tracked in 3D by 

photogrammetry or 3D visual simultaneous localization and mapping (SLAM). Similarly, 

Ellenberg et al. (2014b) used a UAV to collect imagery of cracked masonry. Several crack 

detection algorithms were used on the imagery including edge detection, percolation approach, 

fractal method, and tensor voting. Lattanzi and Miller (2014) used a UAV to collect images of 

bridge structural elements and generate 3D models. The UAV-based imaging is demonstrated as 

a low cost, computationally efficient way to repeatedly model structures and compare to previous 

models. Brooks et al. (2014) used UAVs for bridge inspections and greatly expanded the role of 

UAVs beyond using traditional imaging by including thermal imaging as a component of bridge 

inspection. Gillins et al. (2016) also demonstrated bridge inspection with a low-cost UAV. 

Significant emphasis was placed in leveraging the mobility of the UAV to acquire images at many 

viewing angles of critical details such as fasteners, joints, and evidence of material deterioration. 

Implementations of bridge inspection are numerous but have some general limitations. There are 

few recommendations made for practical implementations which combine visual inspection with 

sensor-based health monitoring. Additionally, it is still challenging to acquire necessarily high-

resolution images of the most obscure or difficult to reach fasteners. Future work into obstacle 

avoidance and localization within the spatial challenges of bridges will help alleviate the 

limitations. Zhou et al. (2016) demonstrated the deployment of mobile wireless sensors onto a 

structure by a UAV. The demonstration was performed in a controlled environment where wireless 
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sensor nodes were distributed on a simply-supported beam structure and an impulsive source was 

introduced for modal analyses. The implementation of UAVs for the deployment and redistribution 

of wireless sensor nodes has the potential to dramatically enhance the distributed data collection 

required for infrastructure monitoring as well as improve the safety and efficiency of distributing 

sensor nodes. Eschmann and Wundsam (2017) developed a multisensor UAV bridge inspection 

platform to carry three sensors: long-wavelength IR, optical camera, and LiDAR. Each sensor 

performed different tasks which were then fused into a complete 3D visualization. Surfaces and 

deformation were recorded using the LiDAR, images from the optical camera were used to overlay 

model textures and monitor cracks, and the IR camera was used to detect moisture around cracks. 

Hackl et al. (2018) used UAV-based photogrammetry to develop 3D meshes of a 24-m span, 

reinforced concrete bridge and surrounding terrain in Switzerland. The meshes were integrated 

with hydrodynamic models to simulate complex flow scenarios and perform risk assessments. 

Khaloo et al. (2018) used a UAV to develop a 3D model of a timber truss footbridge for detecting 

defects and inspecting connections. The model was developed from over 2000 photos acquired 

from 22 different flight paths around the 85 m span bridge. The primary efforts identified in the 

literature include visual inspections of bridge components. 3D imaging is extremely popular in 

structure monitoring as well as many other fields. However, most studies utilizing robust 3D 

imaging do not demonstrate implementation of 3D outputs in further analysis. Hackl et al. (2018) 

demonstrates how detailed imagery of a bridge can be transferred to hydrodynamic models, thus 

promoting collaboration and cross-field use of data. 

Traffic surveillance and monitoring was explored as one of the first applications for UAVs 

in civil engineering (Srinivasan et al., 2004; Coifman et al., 2006). Traffic modeling based on 

UAV-collected data was demonstrated by Coifman et al. (2006). Recent efforts have been made 
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to use UAVs for streamlining roadway condition assessments. Several state departments of 

transportation (DOT) have already begun to implement UAVs in recent years (Barfuss et al., 2012; 

Brooks et al., 2014; Irizarry and Johnson, 2014). Zhang et al. (2012) used UAV-collected imagery 

to produce 3D models of distressed unpaved roads. A 3D model with absolute resolution less than 

1 cm was used to detect potholes and ruts within the roads. Dobson et al. (2013) developed a 

system for detecting damage on unpaved roads. A helicopter UAV was used to collect imagery of 

unpaved roads and produce 3D point clouds. Potholes are detected in the point clouds using Canny 

edge detection and Hough circle transform algorithms. Brooks et al. (2014) explored possible 

applications for UAVs in transportation engineering. The authors found UAVs to be cost-effective 

tools for monitoring traffic and inspecting road assets. Additional applications such as crash scene 

reconstruction, roadside slope stability assessments, and optimizing platforms for sharing UAV 

datasets are offered as needed research concentrations by the authors. Data collection on the 

performance of transportation systems within civil infrastructure is often sparse and can ignore 

specific details. For example, basic traffic counting may ignore vehicle type and speed, vision-

based data collected by UAV can provide greater detail when monitoring traffic patterns. This 

level of detail can also be acquired using fixed cameras, but a UAV can be mobilized to many 

locations without requiring equipment installation at locations where constant surveillance is 

unnecessary. The desire of state governments to develop new methodologies based on data 

collection with UAVs may help facilitate the development of positive regulatory environments.  

 

2.5.2 Construction Safety and Progress Monitoring 

Using UAVs in construction management is developing into a staple of the construction 

industry. Construction was the fifth most cited application among FAA UAS exemptions as of 20 
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January 2016, appearing in nearly half of the exemptions (AUVSI, 2016). In this section key 

examples of UAVs being used for construction management are discussed. The discussion begins 

with excavations, then considers progress monitoring for construction projects, and finishes with 

UAV-based safety concerns and interaction with construction personnel. For each of these topics 

the presentation is chronological. 

 Development of 3D models at construction sites over time to document progress has been 

the most common application of UAVs in construction management. Lin et al. (2015) proposed a 

model-driven, automated methodology for construction progress monitoring. The monitoring 

method was intended to replace manual image collection with efficient, more complete 

documentation collected via automated UAV. The proposed methodology utilizes building 

information modelling (BIM) to drive the autonomous data collection. Recent research efforts have 

also included more than updating images, with a focus on resource tracking at construction sites 

(Teizer, 2015). Lin and Golparvar-Fard (2016) developed a web-based system to track 

construction work flows utilizing BIM. Irizarry and Costa (2016) also demonstrated additional 

uses for UAVs on construction sites beyond documenting progress; images collected by the UAV 

at construction sites in the United States and Brazil were used to identify and track specific 

management tasks and became part of an asset database. The work demonstrated by the 

construction management community has pioneered the augmentation of established workflows 

with UAS. Efforts have been made to use UAV platforms to go beyond data collection and 

approach systemic integration. 

Documenting construction progress in urban excavations is critical due to the damage 

construction-induced deformations can cause to nearby infrastructure (Hashash et al., 2015a). The 

development of underground space in cities places greater emphasis on monitoring techniques for 
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subsurface excavations (Fleming et al., 2016). Fleming et al. (2016) used a low-cost UAV to 

monitor excavation bracing in an urban excavation site. UAV imagery was used to generate 3D 

models over time. One of the top challenges for using UAVs for excavation inspection and 

monitoring is that they often need to perform in GPS-denied environments. 

 UAVs have also been explored as safety inspection tools on construction sites. Innovative 

technologies such as UAVs, wireless sensor networks, and information technology are expected 

to be staples of construction and safety management (Irizarry et al., 2012). Irizarry et al. (2012) 

explored the use of low-cost UAVs as tools for safety managers on construction sites. The UAV 

provided the safety manager with rapid access to images anywhere on the site. The authors found 

that a camera-equipped UAV with a large visual interface was just as effective for the safety 

manager as making observations in plain view. Irizarry et al. (2012) also recommended specific 

features that should be required of construction safety UAVs such as autonomous flight, voice 

recognition, and a user-interface useful for collaboration. It should be noted that incorporating 

UAVs in active construction sites introduces additional safety concerns such as personnel 

distraction and increased collision risk with equipment or personnel (Irizarry et al., 2012). Training 

of construction site personnel is necessary for safe UAV integration (Irizarry and Costa, 2016). 

These factors are all critical considerations for integrating UAVs into infrastructure construction 

practices. This notion is highlighted by the envisioned next generation construction site presented 

by Ham et al. (2016). In this vision, UAV-based cameras are used to collect informative images 

which document progress, productivity, construction quality, and safety requirements. 
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2.5.3 Geological and Geotechnical Engineering 

The benefits presented by UAVs makes them potentially invaluable tools for geotechnical 

site reconnaissance and have been employed following recent events. These examples have been 

covered within the Post-Disaster Reconnaissance subsection. Terrestrial photogrammetric 

techniques have been established methods for imaging rock masses in 3D in structural geology 

(Bemis et al., 2014). Similarly, UAV-collected imagery has been used to characterize rock masses 

in 3D (Stumpf et al., 2013; Bemis et al., 2014; Salvini et al., 2015; Greenwood et al., 2016a; 

Vollgger and Cruden, 2016). Emphasis has been placed on identifying and measuring 

discontinuities to quantify spatial variations and acquire geomechanical parameters (Greenwood 

et al., 2016a; Vollgger and Cruden, 2016). Stumpf et al. (2013) mapped surface fissures at the 

Super-Sauze landslide. The mapping efforts were used to better understand the mechanics of rock 

mass and the deformation of the slope over time. Lucieer et al. (2014) collect imagery of active 

landslide sites using a UAV. The imagery was collected over time and used to develop cm-scale 

3D point clouds to measure landslide deformations. The accuracy of the image-based models was 

verified by differential GPS control points. Turner et al. (2015) used UAV-collected imagery and 

SfM photogrammetry to generate a time series of digital surface models (DSM) to measure 

landslide mass displacement over time. Salvini et al. (2015) used a UAV to collect images of rock 

masses in a marble quarry. The images were used to identify discontinuities and map them to 

identify the location and types of potential failures as part of a broad stability monitoring scheme. 

UAV-mounted cameras are powerful tools for mapping large areas rapidly and acquiring data in 

very difficult to reach locations. It is worth mentioning that the ability of UAVs to reach difficult 

locations and cover large distances has started to make them popular tools for collected imagery 

of geomorphologic features (d’Oleire-Oltmanns et al., 2012; Hugenholtz et al., 2013; Neugirg et 
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al., 2016; James et al., 2017). d’Oleire-Oltmanns et al. (2012) used SfM to monitor erosion 

processes in Morocco. Images were collected with a fixed-wing UAV and georeferenced using 

two different methods. Neugirg et al. (2016) produced 3D models over time to monitor erosion 

processes and estimate volume changes. Manousakis et al. (2016) and Saraglou et al. (2017) used 

SfM to document a rockfall caused by the 2015 Lefkada earthquake. Evidence in the UAV-

generated DSM was used to identify the rockfall kinematic behavior (rolling, bouncing, etc.) and 

input into a rockfall analysis. These approaches of synthesizing UAV-based data with data 

generated from other sources is beneficial to better understanding how UAVs can be integrated 

with current analytical practices. 

Clearly, the use of UAVs in geological and geotechnical engineering has been dominated 

by RGB imaging and relative displacement sensing. Other camera types, such as infrared (IR), 

multispectral, or hyperspectral, can be mounted on robotic platforms but have had limited use in 

geotechnical engineering. Nishar et al. (2016) used a UAV mounted with RGB and thermal 

imaging cameras to explore a geothermal field in New Zealand. Similarly, Harvey et al. (2016) 

used thermal imaging generated with a low-cost UAV to generate thermal orthophotos of the 

Waikite geothermal region in New Zealand. 

There have also been data collection methods explored beyond imaging. While imaging is 

critical for many geotechnical projects, other methods of data collection are still necessary. For 

example, Fernandes Jr. et al. (2015) used UAV-collected images to complement ground 

penetrating radar (GPR) surveys of outcropping carbonate rocks to better understand karst features 

in GPR images. Utilizing a UAV platform for additional data collection or test execution is of 

great interest and has only been explored on a very limited basis. Zekkos et al. (2014) demonstrated 

a proof-of-concept test of UAV-enabled seismic surface wave methods. The UAV dropped a 
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weight used as the impulsive source for multichannel analysis of surface waves (MASW). The 

small-scale test was performed in an indoor sand pit and an outdoor site. The authors also 

demonstrated the applicability of integrating wireless geophone vibrations sensors with the UAV 

as a data collection platform. Greenwood et al. (2016b) used a UAV to introduce an impulsive 

source to a 2D geophone array placed on a concrete surface at an indoor flight facility. Geophone 

time histories were used to back-calculate an estimate of the source position relative to the array. 

Wood et al. (2016) conducted preliminary testing of an airborne magnetic survey with a UAV. 

Magnetometers were mounted to the wingtips of a fixed-wing UAV and flown in a grid pattern. 

Aeromagnetic surveys performed with UAVs have some particular challenges, such as magnetic 

anomalies generated by aircraft components (Forrester et al., 2014).  

 

2.5.4 Post-Disaster Reconnaissance 

There is high demand for improved methods in post-disaster reconnaissance (Murphy et 

al., 2015). The discussion to follow begins with damage to structures and infrastructure 

components, then considers landslide mapping, and finishes with UAV cooperation with search-

and-rescue personnel. For each of these topic areas, the presentation of past work with UAVs is 

presented in a chronological manner. 

 UAVs have recently been incorporated into teams of immediate post-disaster 

reconnaissance experts (PEER, 2014; Rollins et al., 2014; Hashash et al., 2015b; El Mohtar et al., 

2016; Sun et al., 2016; Zekkos et al., 2016). In all these cases, small UAVs were flown equipped 

with conventional optical cameras. Images were used to develop 3D point clouds of a variety of 

targets ranging in size. Having been used for a number of years as part of post-event 

reconnaissance, operational frameworks for reconnaissance planning and execution using UAVs 
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are emerging.  For example, Murphy et al. (2015) provide a review of planning and execution 

methods for UAV-based reconnaissance, and also highlight some of the complications involved in 

performing immediate post-disaster reconnaissance with UAVs such as coordination with search-

and-rescue teams. The authors emphasized the importance of accurate geotagging of images and 

maintaining high-resolution real-time video feeds during flight. Data archiving was also identified 

as a major issue in UAV-based data collection. 

UAVs have been vital to collecting perishable data immediately after high-wind, flood, 

and seismic events. For example, Adams et al. (2013) conducted UAV-based image collection of 

tornado-induced damage in Alabama. The authors demonstrated that the UAV could collect aerial 

images with a sub-centimeter ground sampling distance (GSD) which was an improvement over 

what could be done with NOAA (National Oceanic and Atmospheric Administration)  satellite 

images. While photographs were taken using UAVs, they were only used to qualitatively assess 

damage and to make distance measurements. As part of reconnaissance after the 2014 Iquique, 

Chile earthquake, Rollins et al. (2014) collected photos of a damaged pier. Using Agisoft 

PhotoScan (Agisoft, 2017), a commercial SfM package, point clouds of the pier with a reported 

absolute resolution of about 5.5 cm were used to demonstrate the potential of UAV-collected 

imagery in a post-earthquake setting. The reconnaissance team in Iquique, Chile also used a UAV-

mounted camera to collect images and produce 3D models of the Tana Bridge and liquefaction-

induced lateral spreading adjacent to the Tana River. The resulting models had absolute resolutions 

of about 1 cm and were used to accompany field observations of lateral spreading. The Pacific 

Earthquake Engineering Research Center (PEER) also used a UAV as part of reconnaissance after 

the 2014 South Napa, California earthquake (PEER 2014). The team executed both manual and 

semi-automated UAV surveys to collect imagery of a variety of sites including damaged buildings 
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in urban and rural settings, suburban residential areas, bridges, and a water tower. Collected 

imagery was used to develop 3D point clouds using SfM photogrammetry. The 3D models were, 

in several cases, coupled with terrestrial LiDAR surveys. Terrestrial LiDAR surveys are the 

standard practice for the acquisition of relative displacement measurements in post-disaster 

scenarios. UAV-collected images were used to survey areas inaccessible to the terrestrial LiDAR 

scan such as building roofs. LiDAR scans were also used to provide scale for the photogrammetric 

models obtained from the UAV imagery. Torok et al. (2014) used a UAV to deploy a ground-

based robot used in a post-disaster structural crack detection scheme in concrete structures. SfM 

was used to reconstruct three-dimensional models of concrete structural elements with major 

cracks imaged and their width and depth profiles captured. Zekkos et al. (2016) documented the 

geometric characteristics of four damaged infrastructure projects by deploying a low-cost UAV 

within 48 hours following three different natural disasters in Greece. A point cloud model using 

SfM software package Pix4D (2017) was derived for a damaged port pier in which millimeter to 

centimeter sized crack openings could be measured. A bridge failure due to scour was also mapped, 

showing the settlement, rotation, and dip of a bridge pier. 

UAVs are especially valuable tools for difficult-to-reach sites following disasters due to 

terrain or simply due to sheer size. For example, Niethammer et al. (2012) collected imagery of 

the Super-Sauze landslide near Grenoble, France. The landslide deposit was thoroughly mapped 

to identify key features. Digital terrain models (DTM) were developed using a close-range 

photogrammetry tool chain consisting of Vision Measurement System (VMS) (VMS, 2010) and 

the dense stereo matcher GOTCHA (Gruen-Otto-Chau) (Otto and Chau, 1989). The UAV-

developed orthophotos were compared to older orthophotos of the landslide and were used to 

estimate daily average displacement rates. Murphy et al. (2015) employed multiple small UAVs 
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in response to the 2014 Oso, Washington landslide. UAV imagery was collected to address four 

priorities: low-altitude imagery of the riverbed, imagery of lower scarp section, imagery of upper 

scarp section, and mapping of potential access points. These imaging priorities allowed the UAV 

to critically assist with search-and-rescue operations. Mapping with the images allowed engineers 

and geologists to identify the possibility of additional ground movement and how to approach 

removing the debris. El Mohtar et al. (2016) collected close-range UAV-based imagery of the 

Kfarnabrakh landslide in Lebanon. A digital surface model (DSM) of the site was generated using 

the collected imagery; the model had an absolute resolution of 10 cm. The model was then 

compared to the pre-failure geometry synthesized from satellite images. Geometries were co-

registered based on notable fixtures such as buildings. The comparison yielded estimates of the 

ground surface retreat and volume of the failure mass. Hashash et al. (2015b) used a low-cost, 

commercial UAV in Nepal after the 2015 Gorkha earthquake. The UAV was used to collect an 

extensive amount of imagery of earthquake-affected sites most especially landslides and 

hydropower facilities.  Imagery was a critical aspect of qualitative assessment of geotechnical 

system performance during the Gorkha earthquake. Greenwood et al. (2016a) also collected UAV-

based imagery of seismic-induced and typhoon-enhanced landslides caused by the 2015 Gorkha 

earthquake. 3D point clouds of the landslides were created using the commercial SfM software 

package Pix4D; point clouds were used to define landslide surface geometries and identify rock 

mass failure modes. The exposed landslide rock mass imagery was segmented and 

geomechanically characterized based on fracture spacing in the 3D point cloud.  

 As previously mentioned, sites affected by extreme events can pose serious risks to search-

and-rescue personnel and scientific investigators. Risks may even include radiation, such as with 

the 2011 Fukushima nuclear disaster (Duncan and Murphy, 2014). Use on dangerous sites is one 
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area where UAVs can play a major role.  For example, Duncan and Murphy (2014) demonstrated 

the use of autonomous radiation-detecting UAVs at a simulated building collapse. It was found 

that UAVs could perform a radiological survey more efficiently than a ground-based 

reconnaissance team, while reducing the radiation exposure to the team, and reducing the number 

of team members required to perform the survey. The UAV was also used as part of decision-

making processes in the field by rapidly transmitting data to all human parties. 

Post-disaster scenarios are multi-faceted problems as demonstrated by the many 

applications of UAVs discussed above. Kochersberger et al. (2014) developed an autonomous 

helicopter UAV capable of performing several post-disaster reconnaissance tasks such as ground-

based robot deployment and retrieval, radiation measurement and source localization, and terrain 

mapping. Michael et al. (2012) coordinated ground-based robots and UAVs to map the interior of 

earthquake damaged structures and to identify access paths for first responders. The authors 

emphasized the need to not only define conditions for autonomous vehicles to interact with each 

other, but for the vehicles to interact with humans (such as search-and-rescue personnel) during 

operation. The development of unmanned vehicle platforms for post-disaster reconnaissance has 

taken different approaches: development of platforms to perform many, if not all, tasks 

(Kochersberger et al., 2014) or development of multiple platforms collaborating to performs tasks 

(Michael et al., 2012). It may be unclear which approach will become most prevalent in the future. 

UAV collaboration certainly indicates greater data collection speed, as a single, flexible platform 

consolidates the risk of UAV interactions with other vehicles and humans. It is expected that teams 

of UAVs will become the preferred approach including swarms and platforms performing 

complimentary functions that may only interact virtually. 
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2.6 Summary and Conclusions 

Novel research focused on the application of UAVs for civil infrastructure systems was 

reviewed with emphasis placed on recent, transformative advances in civil engineering. In general, 

the main thrust of UAV efforts in data collection and processing has been with imaging. Imaging 

methods such as structure-from-motion and stereo-vision have been established for an extended 

period of time. The robustness of established imaging methods, and the popularity of UAVs with 

onboard cameras has led to imaging being the early focus of research efforts. This has also led to 

new imaging methods being developed largely for vehicle automation, such as vision-based 

localization. Recent discussions in the US about integrating UAVs in the national airspace at night 

raises some interest in investigating non-vision sensors for autonomous navigation and obstacle 

avoidance such as sonar and LiDAR. In recent years, research efforts in data collection and 

processing have extended beyond imaging methods to include other sensors such as gases, 

biological pathogens, and SAR (Leuschen et al., 2014; Lu et al., 2015; Rossi and Brunelli, 2016 

among others). However, these transformative efforts are often occurring outside of civil 

engineering, but are certainly of interest for these particular sensors (e.g. modeling air quality, 

detecting methane emissions, and ground displacements). 

In civil engineering, UAVs are already used for post-disaster response, structural damage 

assessment, infrastructure inspection, rock characterization, mining, magnetic surveys, seismic 

geophysical methods, and construction monitoring. The most interesting UAV research 

developments have involved incorporating UAVs into high-functioning complex systems capable 

of interacting with humans and interfacing with data streams (e.g. Murphy et al 2015). UAVs will 

become powerful autonomous systems having the ability to develop an action plan, collect data, 

process data, perform computations, analyze results, and make next-step decisions. These 
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components of autonomous UAV systems are being explored individually. However, more efforts 

into incorporating all of these components into fully autonomous systems are needed (e.g. Song 

and Jo, 2017). Developments in UAV autonomy offer an opportunity to develop platforms to 

approach some of the multifaceted problems of infrastructure systems. Challenges exist from 

social and political perspectives as well for the integration of UAVs with science and engineering 

fields including civil infrastructure projects (Straub, 2014; Boucher, 2015; Bakx and Nyce, 2016). 
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Table 2-1: Specifications of popular commercial UAV platforms 

 

ID Platform Type 
Takeoff 

Weight 

Max 

Speed 

Flight 

Time 

Diameter/ 

Wingspan 

Integrated 

Camera? 

Open 

Source? 

Customizable 

Payload? 

1 DJI Inspire 2 X4 3440 g 18 m/s 15 min 559 mm Yes No No 

2 DJI Inspire 1 X4 3060 g 22 m/s 18 min 559 mm Yes No No 

3 DJI Mavic Pro X4 743 g 18 m/s 27 min 335 mm Yes No  No 

4 
DJI Phantom 4 

Pro 
X4 1388 g 20 m/s 30 min 350 mm Yes No No 

5 DJI Phantom 4 X4 1380 g 20 m/s 28 min 350 mm Yes No No 

6 
DJI Phantom 3 

Pro 
X4 1280 g 16 m/s 25 min 350 mm Yes No No 

7 
DJI Phantom 2 

Vision+ 
X4 1242 g 15 m/s 25 min 350 mm Yes No No 

8 DJI Phantom 2 X4 1242 g 15 m/s 25 min 350 mm No No No 

9 
Spreading 

Wings S1000 
OX8 9500 g 16 m/s 15 min 1045 mm No No Yes 

10 
Spreading 

Wings S900 
HX6 6800 g 16 m/s 18 min 900 mm No No Yes 

11 
DJI Matrice 

100 
X4 2855 g 22 m/s 17 min 650 mm No Yes Yes 

12 
DJI Matrice 

600 
HX6 15100 g 18 m/s 16 min 1833 mm No No Yes 

13 3DR Solo X4 1990 g 25 m/s 25 min 460 mm No Yes No 

14 3DR Iris X4 1282 g 23 m/s 20 min 550 mm No Yes No 

15 
Yuneec 

Typhoon 4K 
X4 1700 g 8 m/s 25 min 420 mm Yes No No 

16 
Yuneec 

Typhoon H 
HX6 1950 g 19 m/s 25 min 520 mm Yes No No 

17 
SenseFly 

Albris 
X4 1800 g 12 m/s 22 min 800 mm Yes No No 

- SenseFly eBee 
Fixed-

Wing 
690 g 25 m/s 50 min 960 mm Yes No No 
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Table 2-2: UAV-based sensors and corresponding applications 

 

Sensor Type Applications References 

Gas Detection 
Volcanology, Environmental 

Monitoring, Climatology 

Rossi and Brunelli 2016; Malaver et 

al., 2015; Rosser et al., 2015; 

McGonigle et al., 2007 

Lidar 

Civil Engineering, Glaciology, 

Forestry, Precision Agriculture, 

Mapping 

Eschmann and Wundsam, 2017; Hirose 

et al., 2015; Yang and Chen 2015; 

Zarco-Tejada et al., 2014; Lin et al., 

2013; Crocker et al., 2012; Wallace et 

al., 2012; Lin et al., 2011b; Nagai et 

al., 2009 

Biosensor 
Agriculture, Environmental 

Monitoring 
Lu et al., 2015; Techy et al., 2010 

Magnetometer 
Geophysics/Geology/Geotechnical 

Engineering 

Wood et al., 2016; Forrester et al., 

2014 

SAR Glaciology, Mapping 
Leuschen et al., 2014; Frey et al., 2009; 

Xing et al., 2009 

Temperature Glaciology Crocker et al., 2012 

Thermal 

Imaging 

Precision Agriculture, 

Geology/Geotechnical 

Engineering 

Eschmann and Wundsam, 2017; Nishar 

et al., 2016; Calderon et al., 2013; 

Berni et al., 2009a; Berni et al., 2009b 

Multispectral 

Imaging 
Precision Agriculture,  

Candiago et al., 2015; Berni et al., 

2009b;  

Hyperspectral 

Imaging 
Precision Agriculture,  

Aasen et al., 2015; Calderon et al., 

2013; Crocker et al., 2012 

 

 

 
Figure 2-1: Examples of some commercial UAVs: (a) fixed-wing senseFly eBee (SenseFly, 

2015); (b) multirotor DJI Inspire 1 (DJI, 2016); (c) VTOL FireFly 6 (BirdsEyeView 

Aerobotics, 2016) 
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Figure 2-2: Hierarchical taxonomy of UAV platform types 
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Figure 2-3: Common trirotor (Y3), quadrotor (X4), hexarotor (HX6; Y6), and octorotor 

(OX8; X8) multirotor layouts 
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Figure 2-4: Empirical relationship between total weight, flight time, and battery capacity 

derived from 26 commercially-available UAV configurations; labels correspond to index 

values in Table 2-1 

 

 

 
Figure 2-5: UAV application to surveying tasks (adapted from Siebert and Teizer, 2014) 
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Figure 2-6: LiDAR scan of bridge deck before and after altitude estimate and scan-

matching alignment (adapted from Brooks et al., 2014) 

 

 
 

Figure 2-7: Number of civil engineering-related applications cited in FAA UAS exemption 

applications; data from AUVSI (2016) 
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CHAPTER 3 

UAV-Enabled 3D Imaging of Geotechnical Sites 

 

When a natural disaster occurs, geotechnical systems supporting critical infrastructure are 

often damaged. When a geotechnical system fails, engineers need to understand how and why the 

failure occurred. Engineers attempt to characterize failures, or damage, and document the failure 

mechanism. However, the ability to document cases of damage is limited by several factors: 

 Limited initial data 

 Mobility of the reconnaissance team 

 Accessibility of sites 

 Perishability of data 

The limiting factors mentioned above are caused by the nature of disasters; they produce 

significant safety concerns and hamper infrastructure. As discussed previously, the geometric 

documentation of sites in post-disaster scenarios is often sparse and laborious. The perishability of 

data imposes time constraints and often prevents multiple passes. The quality of data must be 

optimized to balance with time constraints and as much information as possible must be extracted 

from data of limited quality. UAV-based surveying can rapidly provide nearly continuous 

geometric documentation at sites of interest. Outside of post-disaster scenarios, UAV-based 

surveying also has tremendous value for rapid site documentation and coverage, as well as a robust 

framework for repeated measurements to observe changes to sites over time. In this chapter, SfM 
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photogrammetry is used to survey and develop 3D models of geotechnical sites with a focus on 

earthquake-induced landslides. The fundamentals and general workflow of SfM are outlined and 

a generalized field procedure is presented. The site mapping performed in association with this 

work is documented and the lessons learned from performing the UAV-based mapping are 

discussed. Four sites which made the greatest contribution to lessons learned are documented in 

greater detail including two sites affected by the 2006 Kiholo Bay Earthquake on the Big Island 

of Hawaii, and two landslides caused by the 2015 Gorkha earthquake in Nepal. 

 

3.1 UAV-Based Structure-from-Motion Photogrammetry 

SFM photogrammetry is a 3D imaging method which has gained recent attention for 

mapping rock masses and geomorphologic features (Westoby et al 2012; Stumpf et al., 2013; 

Bemis et al., 2014). It has also been shown to produce 3D point clouds comparable to terrestrial 

LiDAR scanning (Hugenholtz et al., 2014; Siebert and Teizer, 2014; Tong et al., 2015). When 

performed using a UAV-mounted camera, the position of the camera and distance from the target 

can be easily controlled, and the images can be collected rapidly from many perspectives. In the 

previous chapter, studies using UAVs to perform photogrammetric techniques for a wide range of 

applications in civil infrastructure engineering and geosciences were discussed. The recent 

prevalence of UAV-based SfM has driven novel adaptations and improvements to the method and 

its underlying algorithms (e.g. Jahanshahi et al., 2017). 

 

3.1.1 Fundamentals of SfM: 

The fundamental basis of SfM allows models to be constructed at many different scales 

(e.g. landslides or small machine parts) which makes it a robust technique for various applications 



68 
 

in and outside of civil engineering. SfM uses sequences of overlapping images to extract 3D 

information of the imaged region. The extraction of 3D information is analogous to stereoscopy. 

In general, the quality of the reconstruction is a function of camera (i.e. sensor) properties and 

image overlap. A minimum of 60% overlap between sequential images is recommended (Westoby 

et al., 2012). Where SfM differs from other photogrammetric techniques is that camera location 

and orientation do not need to be known a priori. Camera locations and orientations are solved 

iteratively based on feature pattern in sequential images through a bundle adjustment algorithm 

and chooses the optimal camera solution (Snavely et al., 2008). The image matching is performed 

using feature-detection algorithms such as scale-invariant feature transform (SIFT) (Lowe, 1999; 

Lowe 2004). The bundle adjustment process also contains algorithms for locating and matching 

points in 3D as well as filtering of moving objects. 

In general, SfM is only capable of imaging features than are visible in several images 

collected with different camera orientations. As a result, it is difficult to produce models in areas 

with visual obstructions such as dense vegetation. In fact, SfM has gained popularity in forestry 

and precision agriculture where one goal of mapping is to measure tree or plant height. In places 

where vegetation is sparse, surface models can be developed and automatic or semi-automatic 

techniques exist to remove vegetation (Meng et al., 2010; Pirotti et al., 2013; Gruszczynski et al., 

2017). While modern feature-detection algorithms are capable of identifying illumination-

invariant features, dark shadows and other light-denied areas (e.g. fracture opening in a rock mass), 

or very bright area (e.g. flat surface under direct sunlight) can be difficult image to because 

repeated feature patterns cannot be identified. Similarly, images collected of patterned or textured 

surfaces without additional information are difficult to accurately resolve, because no unique 

feature patterns are available for grouping images within the bundle adjustment process. 
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3.1.2 Workflow and Outputs: 

The workflow for the 3D imaging method implemented here is outlined in Figure 3-1. The 

workflow can be segmented in to three main components: acquisition of field data, data processing, 

and output generation. The acquisition of field data includes placement and measurement of 

ground control points, flight path planning, and collection of imaging. More details on field 

component are found in the Generalized Field Procedure subsection. In data processing, the core 

SfM algorithms are applied to produce a dense 3D point cloud. A coarse 3D point cloud is first 

produced from the feature identification and bundle adjustment stage. The coarse set of 3D points 

is then densified (i.e. the spaces between points are filled in) using another 3D imaging approach, 

multi-view stereovision (MVS) (e.g. Furukawa and Ponce, 2007; Furukawa et al., 2010). MVS is 

fundamentally similar to basic stereovision where 3D points can be extracted from two images of 

the same object collected from known relative positions. After the point cloud densification is 

complete, the point cloud can be scaled and transformed to meet the imposed scaling constraints 

and geo-referenced, if GPS tags are available. The scaling can be performed using image geotags 

generated by the UAV on-board positioning system, but will not be as accurate as scaling based 

on surveyed points on the ground surface. Without introducing the scaling stage, quantitative 

measurements cannot be performed and only general qualitative observations can be made. The 

final, densified point cloud is primary output from SfM but can be used to generate additional 

outputs including digital models of terrain or surfaces, triangular mesh surfaces, and orthophotos. 

The 3D point cloud produced by SfM is highly similar to those produced by laser scanning. Robust 

comparisons between the two have been made in the literature (as described in Chapter 2). 

Orthophotos are generated from an orthorectified image, or series of images connected 

through image registration. Orthophotos are generally used for site maps and layout 
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documentation. The resolution (i.e. GSD) is uniform across the image which allows for distance 

measurements to be made. Most commonly, orthophotos are generated in plan-view, similar to 

satellite imagery. However, the orthogonal plane of the image can be arbitrary, meaning that an 

orthophoto can be produced on any plane in the SfM model. Some examples of analysis types 

orthophotos can be used for include change detection, monitoring of lateral displacements, and 

descriptions of site layout. Depending on the objective of the study, the model results can be 

presented as interpolated digital surface models (DSM) or digital terrain models (DTM). A DTM 

is a raster map with elevation assigned along a grid through interpolation of model points. In the 

DTM, objects such as buildings and trees have been removed so that the model is representative 

of the terrain (i.e. bare earth only). A DSM is a related model with complete model information 

including buildings and other objects. Repeated DSMs are useful for making temporal 

observations with change-detection methodologies. Repeated DTMs are useful for comparing pre- 

and post-failure geometry, defining topography, or measuring ground displacements. Similarly, a 

3D mesh is created by generating triangular elements connecting the 3D points together. The 

triangular mesh is useful for integrating the SfM output with other workflows and data archetypes. 

The imagery used as input to the SfM process can then be overlain on the mesh to provide color 

and texture features to the mesh elements. SfM computations were performed and outputs 

generated by the software package Pix4D (2017). SfM outputs and the input imagery were both 

used for analyses performed in this chapter. 

 

3.1.3 Generalized Field Procedure and Data Collection Considerations: 

The acquisition of field data includes placement and measurement of ground control points, 

flight path planning, and finally collection of imaging. An additional component to verify the 
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collected data is sufficient for the desired analyses, such as rapid coarse model generation, is 

suggested, especially when deployment is costly or high risk. Based on lessons learned from 

performing aerial surveys of geotechnical features (detailed examples are documented in the 

following sections), a generalized field procedure was generated with recommendations for good 

practice in field image collection for geotechnical applications. The procedure is outlined in Figure 

3-2. 

The specific flight path, velocity, and image collection rate of the survey will be dependent 

on the required image (and model) resolution for the specific application (e.g. 3 pixels per feature, 

10 pixels per feature, 5 cm per pixel, etc.). The resolution of collected imagery is defined by its 

ground sampling distance (GSD), or the nominal distance between pixel centers along the ground 

surface. For example, a GSD of 5 cm/pixel means that the pixel to pixel distance represents 5 cm 

along the imaged surface. The theoretical GSD for an image collected by a camera perpendicular 

to a flat surface is defined by: 

𝐺𝑆𝐷 =
𝐻∙𝑠𝑤

𝑓∙𝑝𝑤
            (3-1) 

Where H is distance of the camera from the surface, sw is the width of the camera sensor, f is the 

focal length of the camera lens, and pw is the width of image in pixels. Camera distortion models 

may need to be accounted for when projecting onto the ground surface. Equation 3-1 is useful for 

estimating the maximum flight height or distance from the survey target when the minimum 

required resolution of the imagery is known. Selecting flight height/distance for an aerial survey 

is important for optimizing flight parameters to minimize resource consumption (time, energy). If 

resolution requirements vary across an inspection target (e.g. fasteners versus bridge deck), the 

flight parameters can be adjusted to optimize energy conservation. Clearly the GSD of images 

collected from the same height by different cameras may vary significantly. Figure 3-3 shows four 



72 
 

design envelopes for estimating the maximum flight height as a function of the required GSD for 

different cameras mounted on UAVs. One implication of Figure 3-3 is that for a given GSD, 

camera quality can have a dramatic impact on the maximum allowable flight height and therefore 

on the flight distance and total number of images collected. 

 An approach of flight planning by estimating flight height based on the camera’s intrinsic 

parameters and including more than 60% image overlap may be appropriate for relatively flat sites 

but additional image collection must be performed for sites with multiple surfaces, topographic 

relief, and complex 3D geometric features is required. For example, when collecting data for a 

landslide, images must be collected facing the ground surface, facing the landslide scarp and 

debris, and obliquely. Oblique, or nadir, images are important for collecting information on 

protruding elements and 3D geometric features. Figure 3-4 shows 3D point clouds of a constructed, 

grass-covered “wavefield” on the University of Michigan North Campus. In Figure 3-4a, the model 

has been produced using images collected on two flight passes, one perpendicular and one oblique 

view. In Figure 3-4b, the images have been collected on a single pass with the UAV camera 

directed vertically. Clearly, there is information missing to describe the 3D geometric features of 

the wavefield. It is important to capture the additional information provided by oblique views from 

all directions. For imaging a structure with significant 3D features, such as a bridge, many passes 

will be necessary. 

 GCP acquisition is performed to pin the SfM model at known positions within a coordinate 

system. GCPs are ideally engineered objects, or targets, placed on the survey target and designed 

to be easily visible within imagery. Figure 3-5 shows an example of a GCP visible in an image 

collected by a UAV. The GCP in Figure 3-5 is approximately 500 cm2. GCPs can also be natural 

objects or features that will also be easily identifiable within the collected imagery. Using natural 
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features is typically necessary at landslide sites because targets cannot be easily, or safely, placed 

in an even distribution vertically on the slope. The distances between GCPs or the distances from 

a known point should be measured. Enough GCPs should be used to evenly distribute them across 

the target area, including near the edges. Additional GCPs can be added near areas where error 

needs to be minimized. In an ideal situation, the GCPs (or as many as possible) are measured with 

survey-grade RTK-GPS equipment. Having robust GPS positioning of the SfM model is beneficial 

because it places the model in a global coordinate system compatible with many other forms of 

geospatial data. The results of model development can then be integrated with geospatial databases 

and quickly accessed at later dates (e.g. following a future seismic event). When using natural 

GCPs, it is recommended that more than necessary be collected. Natural GCPs have a significantly 

higher chance of not being discernable in the point cloud than engineered targets. For example, if 

a landslide survey team determines that 10 natural GCPs upslope of a landslide will be necessary 

then 15-20 should be collected. Natural GCPs should not be selected near potential obstructions 

(e.g. vegetation).  

 

3.1.4 Error Assessment of SfM Models 

 As previously mentioned, GCPs should be distributed throughout the entire area of interest. 

Model errors will accumulate away from GCPs if they are concentrated in one area (Manousakis 

et al., 2016). In addition to GCPs, check points must also be collected. Check points are only 

differentiated from GCPs in that they are not included in the SfM model generation and 

georeferencing. They are collected along with GCPs during field surveys and are used after final 

model generation to provide an estimate of error in the point cloud. If check points are not evenly 

distributed through model, similarly to GCPs, the spatial distribution of error in the model will be 
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difficult to describe. This is particularly true for models that are complex in 3D. Additionally, error 

will increase as image overlap decreases or at the edges of models. 

 Figure 3-6 shows an example comparison between SfM and terrestrial Lidar scanning for 

mapping a set of landslides. The site (Landslide 3 in Table 3-2) had a series of tightly-spaced co-

seismic landslides along the Trishuli River in Nepal. The landslides were rapidly mapped (9 

minutes of flight time) at a coarse resolution of about 11 cm/pixel (see Site 6 in Table 3-3). The 

landslides were mapped simultaneously with a Riegl VZ-6000 LiDAR unit that has an accuracy 

of 15 mm and precision of 10 mm at 150 m range. The SfM point cloud is shown in Figure 3-6a. 

Figure 3-6b shows a cloud-to-cloud comparison. The mean difference between the two clouds is 

0.02 m with the standard deviation of 0.77 m. The largest differences are observed in areas of 

vegetation and at the corners of the model which are not considered reliable. Specific areas that 

were obscured to one of the platforms also generated significant differences. The findings from 

this study indicate that the SfM has a comparable accuracy. Additionally, SfM has advantages of 

being able to collect higher-resolution images by flying closer to the target and robust RGB 

attributes for the point clouds. RGB attributes can be attached to terrestrial Lidar scans but is not 

standard practice. These findings are consistent with previous studies that indicate that UAV-based 

photogrammetry can be a low cost alternative to LiDAR surveying for developing DTMs 

(Hugenholtz et al., 2013; Hugenholtz et al., 2014; Siebert and Teizer, 2014; Tong et al. 2015; Cook 

2017; Zekkos et al., 2018). 

 

3.2 Geotechnical Applications of UAV-Based SfM 

 The underlying principles of SfM were learned through application of the technique at 

numerous geotechnical sites. As a result of performing the UAV-based mapping, lessons learned 
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for practical applications during early expeditions helped refine the strategies employed in future 

mapping projects. In this section the sites where UAV-based SfM was applied are documented. 

Two practical application areas, landslide delineation and rock mass characterization are 

described. A subset of sites are detailed to demonstrate some of the key lessons learned. 

 

3.2.1 Mapping of Geotechnical Sites 

 UAV-based image collection was utilized during several field expeditions, including two 

more significant mapping efforts in Hawaii and Nepal. The first effort, on the Big Island of Hawaii, 

was part of a broader investigation of weathering processes in layered basalts and included the 

mapping of sites affected by the 2006 Kiholo Bay earthquake. Some outcomes of the study can be 

found in Von Voigtlander et al. (2018). Sites where a UAV was used to collect images are 

summarized in Table 3-1. Images were collected at four of the five sites using a DJI Phantom 2 

Vision+ (P2V) UAV. Images at the Cobble Beach site were collected using a GoPro Hero3 camera 

mounted on a 3DR X8 octorotor UAV. The P2V uses an integrated 14 MP camera and has a 

maximum reported flight time of 25 minutes. The P2V and GoPro cameras both have a fisheye 

lens which has a wide field of view but induces significant radial distortion within the image. The 

distortion is corrected in post processing but some pixels are discarded from the image and residual 

distortion (i.e. stretching) can be observed at the edges and corners of the image. For this reason it 

is recommended that more than 60% overlap be ensured for consecutive images for the fisheye 

lens. Most commercial UAV platforms now use rectilinear lenses, which is preferred for imaging 

applications. The change was partially in response to a shift in focus from hobbyists to aerial 

photography, cinematography, surveying, visual inspection/monitoring, and other industrial 
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applications. The Kauhola Point Lighthouse and Small Awini Landslide sites, which are bolded in 

Table 3-1, are discussed in further detail in this section. 

Kauhola Point Lighthouse was the first site where the UAV-based imaging techniques were 

implemented. The sites were previously affected by the Mw 6.7 2006 Kiholo Bay earthquake. The 

site is located at a 7 m high eroding sea cliff located at Kauhola Point in the northwestern side of 

the island. The site originally held a lighthouse that was moved multiple times due to erosion of 

the cliff. The foundations of old lighthouse structures still exist at the site. During the 2006 Kiholo 

Bay earthquake, a significant portion of the cliff retreated, reportedly about 2 m measured relative 

to the lighthouse. A P2V UAV was used to collect images of the sea cliffs along the perimeter of 

Kauhola Point. The survey of cliff was performed with two personnel, a pilot and a camera 

operator. The UAV was flown manually to collect 320 images of the cliff in approximately 60 

minutes of flight time. A satellite image of Kauhola Point indicating the surveyed cliff is shown in 

Figure 3-7. The flight time was much higher than expected due to significant wind (15-20 mph) 

and poor lighting conditions requiring image recollection for some portions of the cliff. The 

collected images were used in SfM to generate a 3D point cloud. The final model is shown in 

Figure 3-8. Due to poor image overlap around the center of the profile, the cliff model is 

discontinuous. The two segments of the profile could be aligned relative to observations in the 

UAV imagery and recent satellite imagery. The modeled cliff was used to provide supplemental 

information for a 2D seismic survey performed parallel to the cliff face. The identification of three 

distinct layers in the model and the 2D shear wave velocity profile are shown in Figure 3-9. The 

results of collecting imagery at the Kauhola Point Lighthouse were beneficial for preparing future 

UAV-based imaging strategies. The 3D model has limited detail for an in-depth material 
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characterization effort but has value for comparing with future measurements of the cliff as erosion 

continues or when another seismic event occurs. 

The second major mapping effort was a reconnaissance expedition to investigate coseismic 

landslides caused by the 2015 Gorkha earthquake in Nepal. The Mw 7.8 event caused widespread 

damage across Nepal. The earthquake epicenter was located about 80 km northwest of Kathmandu 

and caused a 140 km rupture along the Main Himalayan Thrust (Galetzka et al., 2015). Previous 

regional seismic events are discussed in Hayes et al. (2015). This event resulted in nearly 9000 

fatalities and over 500,000 destroyed homes which displaced millions of displaced people (NSET, 

2015). There were several post-earthquake reconnaissance investigations into the event (Chiaro et 

al., 2015; Collins and Jibson et al., 2015; Hashash et al., 2015). The earthquake caused tens of 

thousands of landslides throughout the affected region (Clark et al., 2015; Collins and Jibson et 

al., 2015; Kargel et al., 2015; Roback et al., 2018). Landsliding was magnified by the steep terrain 

and varied in size. The landslides resulted in destruction of infrastructure, loss of life and, in some 

cases, destruction of entire villages. A wide variety of landslide types has been attributed to the 

Himalaya in other studies (Timilsina et al., 2014). For this event, most of the landslides occurred 

within the Greater Himalayan and Lesser Himalayan tectonostratigraphic units. The Greater 

Himalayan units are characterized by medium to high-grade schist and gneisses with granitic 

plutons, and the Lesser Himalayan units are characterized by low-grade metasedimentary rocks 

(e.g. Schelling, 1992; Le Fort, 1986; Gansser, 1964). 

Some results generated from landslide mapping in Nepal can be found in Greenwood et al. 

(2016a) and Zekkos et al. (2017). A Phantom 3 Professional (P3P) quadrotor UAV was used to 

collect images or video of more than 20 landslides and other geohazards. Both video and photos 

were used to collect images of the investigated sites depending on the complexity of features and 
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possible flight limitations. Video allows for a dense set of images to be collected while eliminating 

the concern for acquiring the necessary overlap between images. However, processing of video 

frames recorded at high framerates is computationally intensive. In addition to the landslides, two 

other sites affected by earthquake-related hazards were investigated. The sites mapped in Nepal 

are summarized in Table 3-2. The two bolded sites in Table 3-2 are discussed in further detail in a 

following subsection. Aerial video was collected at a construction site where structures and 

equipment was destroyed by rockfall. The site was not as thoroughly mapped as desired due to 

poor GPS localization for the UAV within the valley. Most UAV platforms rely on GPS signals 

for positioning and basic autonomous navigation. In Chapter 2, research into UAV navigation in 

GPS-denied environments was mentioned. The rockfall site in Nepal is an important example 

demonstrating that GPS-denied environments are not exclusive to enclosed or indoor facilities (e.g. 

buildings, tunnels). The other site was a debris flow that traveled through a stream channel and 

blocked a river, causing severe flooding. The debris flow occurred during the monsoon season in 

Nepal during a heavy rainfall event. While the debris flow was not directly caused the earthquake, 

investigation via UAV at the site and surrounding area found that the material in the flow was 

partially sourced from coseismic landslide debris. Following UAV-based image collection of the 

debris flow fan, the UAV was used to follow the channel and potentially identify the source of the 

material. Figure 3-10 shows the path taken by the debris flow and followed by the UAV. Figure 

3-11 shows the identification of landslides contributing material to the flow. The debris flow is an 

example of a seismic geohazard not directly tied to the shaking event, but certainly a consequence 

of the event. Further investigation of the landslides was ended due to lost connection with the 

UAV. The lost connection engaged the UAV return-to-home function until wireless connection 

was regained. In this example, the UAV was used for an on-demand reconnaissance decision 
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which yielded valuable results for analysis and understanding of the debris flow event. The 

reconnaissance was performed without requiring personnel at significant distance upstream. In 

fact, the interaction of the landslides with the debris flow would not have been obvious to ground-

based reconnaissance due to the steeply inclined slopes and thick vegetation. Engagement of the 

UAV’s return-to-home failsafe limited the depth of the investigation (e.g. landslides could not be 

modeled) and highlights the importance of robust communication architectures and potential value 

of autonomous navigation. The footage collected by the UAV provided a perspective unavailable 

by conventional reconnaissance efforts, unless a costly helicopter flight was made. As mentioned 

previously, ground-based reconnaissance cannot see beyond steep slopes and thick vegetation. 

Satellite imagery is too coarse and is often obstructed by cloud cover or distorted along steep 

slopes. 

 Additional sites mapped using UAVs are documented in Table 3-3. Some of the sites from 

the expeditions in Hawaii and Nepal are listed Table 3-3 as well. The table is intended to show the 

breadth of sites investigated by the research group’s combined efforts. Table 3-3 also details the 

total flight time, approximate camera distance from target, area covered, and average GSD for 

each site. The flight parameter data has been synthesized in Figure 3-12 where total area 

normalized by average resolution is shown as a function of flight time. An affine best fit described 

by Equation 3-2 is shown on the figure with 95% confidence bounds. 

 𝐴 𝐺𝑆𝐷⁄ = 2761.7 ∙ 𝑡 + 3215.3    (3-2) 

Where A is the total 3D surface area in m2, GSD is the ground sampling distance in cm/pixel, and 

t is the flight time in minutes. Clearly, the points in Figure 3-12 are clustered below t = 20 minutes. 

This is primarily caused by the types of sites investigated and that larger sites are generally mapped 

at coarser resolutions. The figure shows that to maintain a low flight time, resolution must be 
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sacrificed when covering a greater area. Similarly, to maintain a high resolution model when 

covering a greater area, significantly more flight time must be committed. The points in the figure 

are primarily from surveys conducted using the P3P UAV. Equation 3-2 provides a method for 

estimating flight time to map a given area at a desired resolution using a UAV-camera system 

similar to the P3P. It can also be used to estimate the lowest resolution a given area can be mapped 

at with a limited flight time. For example, Sites 19 and 20 required the longest flight times due to 

mapping large areas at a resolution of 2 cm/pixel. It should be noted that Site 1 is the Kauhola 

Point Lighthouse site in Hawaii that used P2V platform. The P2V was much less resistant to wind 

than the P3P which was used to map most of the sites. As mentioned earlier, Site 1 was also the 

first site where the team implemented image collection with a UAV. Thus, this point is an outlier 

of the data shown, but also highlights the effect of technology, pilot experience, and environmental 

conditions on the time required to survey a site. Similarly, Site 18 required more time to map 

relative to its area and GSD. This was because the site included a bridge that failed due to scour. 

Bridges are much more dimensionally complex than the other mapped sites and requires a greater 

flight time to effectively document with images. 

 

3.2.2 Delineation of Landslide Geometry: 

Satellite imagery can be used to map landslide events and coarsely relate volume, 

stratigraphic unit, and slope angle. For example, Roback et al. (2018) used satellite images to map 

approximately 25,000 landslides caused by the 2015 Gorkha earthquake. UAV-based surveys were 

conducted of individual landslides, listed in Table 3-2, to better understand the mechanical 

properties of the material, post-failure geometry, and failure mechanisms. In general, it is unlikely 
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that pre-failure geometry is known in detail. Geometry may be coarsely estimated from pre-failure 

satellite imagery, airborne LiDAR survey, or recent regional UAV survey if the data is available.  

For the landslide sites in Table 3-2, the UAV was manually flown and the camera was 

operated by the pilot. GCPs, generally about 3-8 in total, were placed at accessible locations. The 

distances between these GCP targets were measured manually and tagged using a handheld GPS 

unit. The GCP targets are easily detected in imagery and, usually, in 3D point clouds. A tripod-

mounted laser was also used to measure the distance between points-of-interest on the landslides 

as described earlier in this chapter. The rate of frame extraction from videos varied to maintain at 

least 60% overlap depending on the velocity of the UAV and the distance to the object of interest. 

The SfM software Pix4D was then used with the final image sets to generate 3D point clouds of 

each site. Figure 3-13 through Figure 3-15 show an example of landslide geometry acquisition at 

a landslide in Nepal (Site 4 in Table 3-3). Figure 3-13 shows an overview of the landslide where 

the debris cone has been identified and highlighted with boundaries. Four GCPs were distributed 

at the toe of the landslide and on the debris cone and are shown in Figure 3-14. Additional points 

were acquired by tripod-mounted laser. Following the collection of images and generation of the 

3D point cloud, the model was used to delineate stratigraphy of the landslide in 3D. The landslide 

scarp exposes the rock mass structure over an area that was approximately 40 m high and 45 m 

wide.  An example cross-section through the center of the landslide scarp is shown in Figure 3-15. 

The cross-section is annotated with stratigraphy interpreted from the UAV-collected imagery and 

the 3D point cloud. From the point cloud, the thickness of each layer is measured spatially and can 

be combined with rock mass characterization as discussed in the following subsection. The slope 

is angled at about 70° from the horizontal. However, the top 5 m of the slope was angled at about 

50°. The debris cone was sloping at about 35°. It can be noted from Figure 3-15 that no information 
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below the debris cone is available. This means that there is significant uncertainty about the slope 

geometry behind the cone. 

Information about the obstructed landslide geometry can be garnered from pre-failure 

documentation. But, as previously mentioned, pre-failure geometry may not be available or of 

sufficient resolution. In that case, in situ testing is needed to estimate geometry, such as landslide 

deposit thickness. Performing in situ tests on a landslide is dangerous and costly due to the limited 

resources, topography, and risk of subsequent failure. These conditions are a motivating factor for 

the UAV-based seismic surface wave testing performed in Chapter 5. Figure 3-16 shows satellite 

images of a landslide caused by the 2006 Kiholo Bay earthquake in Hawaii. This site is the Small 

Awini Landslide listed in Table 3-1. Images were collected using a P2V UAV. The survey was 

performed in two stages: first, large scale images were collected of the landslide scarp and deposit, 

then images were collected at higher resolution of the landslide scarp to observe the stratigraphy 

and weathering condition of the rock. The images collected of the landslide scarp were used to 

assess the structure of the rock mass. It was observed, and can be seen in Figure 3-17, that there is 

distinct layering in the rock. Closer inspection of the rock reveals that the layering alternates in 

terms of structure and weathering condition. The layers alternate between blocky, less-weathered 

rock, to highly-weathered, disintegrated rock. More discussion of rock mass characterization is 

provided in the following subsection. A seismic survey was also performed on the landslide deposit 

near the UAV launch point. The landslide runout was significant, but the shear wave velocity 

profile acquired from the seismic survey can provide some indication of the deposit thickness at 

that location. Figure 3-18 shows the 3D point cloud of the landslide and the location of the seismic 

survey performed on the deposit. The shear wave velocity profile is shown in Figure 3-19. The 

shear wave velocity profile has a significant velocity jump (about 100%) at 6 m depth. This depth 
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can be interpreted as a potential rough estimate of the deposit thickness at this location. It is 

desirable to perform many in situ tests distributed across the landslide deposit to thoroughly map 

its subsurface geometry and reduce uncertainty when estimating the deposit thickness. However, 

in this case, the positioning of the lone seismic survey was precarious and further testing could not 

be conducted due to the steep, dangerous terrain. This is a limitation often faced when documenting 

landslides and other earthquake-affected sites and is, again, a motivating factor behind developing 

UAV-based in situ testing methods.  

 

3.2.3 3D Rock Mass Characterization: 

Multiple frameworks exist for performing visual interpretations of rock masses. For 

example, the International Society of Rock Mechanics (ISRM) has developed and maintained a 

visual classification system (e.g. ISRM, 1978). Figure 3-20 shows an example rock mass 

segmented and classified based on the ISRM rock mass description grades. The grades focus on 

descriptions of the weathering condition and structural state of the rock mass. Unfortunately the 

grades are difficult to relate to strength parameters for use in stability analyses. Hoek and Brown 

(1980) developed a failure criterion for broken-up rock masses. The failure criterion was 

developed to model the strength of rock masses in the absence of discontinuity-controlled failure 

modes. One component of the Hoek and Brown failure criterion is the Geological Strength Index 

(GSI). The GSI is a critical parameter for the geomechanical characterization of the rock mass 

structure. It is only a function of the rock structure and the weathering condition of discontinuities 

as interpreted from visual observations. The guidance chart for assigning GSI values from Marinos 

et al. (2005) is shown in Figure 3-21. 
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The Marinos et al. (2005) procedure for assigning GSI values to a rock mass was applied 

to the Nepal landslide site (Site 4 in Table 3-3) discussed in the previous subsection and shown in 

Figure 3-13 through Figure 3-15. The slide is indicative of a broken-up rock mass failure that 

should be mechanically characterized as Hoek and Brown strength material. The 3D point cloud 

was generated from 257 images of the site. The point cloud has a mean resolution of 6 cm/pixel. 

The UAV was flown at two distances, roughly 30 m and 70 m, away from the landslide to collect 

images perpendicular to the scarp. The UAV was flown as close as 15 m above the debris cone. 

After the stratigraphy was investigated in the 3D point cloud, each layer was characterized to 

denote discontinuities in the rock mass and overall rock structure. Figure 3-22 shows a photo of 

the landslide scarp. It can be observed that the surface layer at the top of the slope was 

approximately 5 m thick and was primarily a combination of soil and extremely weathered rock. 

The remainder of the exposed rock can be separated into two categories. A shallow layer, between 

about 5 m and 15 m from the top of slope comprised of more weathered rock with dominant 

horizontal foliation. This layer classifies as disintegrated rock per Figure 3-21. According to visual 

observations, the GSI for this layer is estimated to be 25 - 45. Horizontal fractures are spaced at 

0.4 – 0.8 m throughout the layer. The next layer is approximately 15 m from the top of the slope 

to the base. However, it should be noted that the rock mass and its geometry is partially obstructed 

by the debris cone. This second layer is less broken-up rock with perpendicular vertical and 

horizontal fracturing aligned with the slope face. This section of the rock mass classifies as blocky 

per Figure 3-21. The GSI for this layer is estimated to be 45 - 65. The spacing of vertical fractures 

is 0.3 – 0.9 m and the spacing of horizontal fractures is 2 – 3 m. Figure 3-23 shows a spatial 

delineation of the described GSI allocations overlain on the point cloud. Beyond about 40 m from 

the top of slope the rock structure is hidden by the slide debris, as mentioned above. A portion of 
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rock was exposed near the top of the debris cone and indicated dominant horizontal foliation. The 

exposed rock was located adjacent to the upslope GCP shown in Figure 3-14. The persistence of 

this foliation cannot be confirmed without excavation and further investigation of the slope. 

Using only the data and results for a SfM reconstruction of the site, critical components for 

a stability analysis can be acquired including the surface geometry and compositional strength 

parameters along the 3D surface. Some basic information is missing and would need to be acquired 

from in situ testing. For Site 4 in Table 3-3, the surface geometry and GSI of the rock were 

estimated based on UAV-collected images. To continue with a stability analysis, it would be 

necessary to have information on how the visible stratigraphy changes as it is projected back into 

the rock behind the landslide, or an indication of how rock integrity improves behind the exposed 

outcrop. This is information that could be garnered from UAV-based seismic imaging which is 

investigated in Chapter 5. With the additional information to construct a complete strength model 

and identify subsurface structure, a back-analysis of the slope failure (given pre-failure geometry) 

can be performed. Additionally, stability calculations could be performed to predict future failure 

of the new slope geometry. Marinos et al. (2005) provides guidance on projecting GSI estimates 

below outcropping rocks and the effects of moisture. It can typically be expected that degree of 

fracturing and discontinuity weathering will decrease behind the exposed rock surface. However, 

in a reconnaissance effort, the exposed rock structure is unlikely to have experienced accelerated 

weathering. Moisture negatively affects discontinuities and thus reduces GSI. The Hoek et al. 

(2002) failure criterion is defined in equation 3-3: 

𝜎′
1 = 𝜎′

3 + 𝜎𝑐𝑖 (𝑚𝑏
𝜎′

3

𝜎𝑐𝑖
+ 𝑠)

𝑎

           (3-3) 

Where σ1 and σ3 are the major and minor principal stresses respectively at failure, σci is the intact 

compressive strength of the rock, a is a rock mass constant that is a function of GSI, s is a rock 
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mass constant that is a function of GSI and disturbance factor D, and mb is a rock mass constant 

that is a function GSI, D, and mi (mi is a constant describing the material and structure, typically 

7-25). The disturbance factor penalizes the material strength based on blasting and excavation 

conditions. The disturbance factor has not yet been extended to account for the effects of major 

seismic events. Hoek-Brown failure criterion using the Hoek et al. (2002) recommendations are 

shown in Figure 3-24 where the principal stresses are normalized by the intact compressive 

strength. Curves are shown for the two rock structures identified in Figure 3-23 using their mean 

GSI allocation and approximate upper and lower bounds for mi. The mean GSI values are used as 

an example. In practice, the GSI is imprecise and a range of values should be considered (i.e. 

Figure 3-23). Estimated values for mi and σci could be acquired through additional testing of the 

material, such as physical interaction by a UAV in the redefined reconnaissance paradigm in 

Chapter 1 and potentially, in the future, predictive methods derived from high-resolution imaging.  

The final point cloud model of the rock-slope had a mean resolution of 6 cm/pixel. In 

general, features in the rock structure smaller than 6 cm could not be observed. It is possible that 

additional discontinuity sets exist but are not visible in the imagery. Areas of higher and lower 

resolution exist within the model and are dependent on the flight parameters and path taken to 

collect the images. Because of the limited point cloud density, some features that can be resolved 

in 2D images cannot be detected in the 3D point cloud. These include foliation and fractures with 

small spacing relative to the point cloud resolution. This highlights the need for high-resolution 

imagery of landslide rock masses while balancing the risk involved in executing such flights. It 

should be noted that for measuring many of these discontinuities, color, in addition to 3D point 

position is utilized. This means that in many cases discontinuities were detected based on observed 

changes in color. This implies some reliance on the accompanying 2D images for delineating 
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discontinuities and rock features in the point cloud. In order to detect discontinuities based on the 

position of 3D points, a higher density, higher resolution point cloud would be required. 

A SfM 3D model can also be used to describe landslides with structurally-controlled 

failures. Site 5 in Table 3-3 was a structurally-controlled failure caused by the 2015 Gorkha 

earthquake. The failure occurred on an approximately 150 m high slope angled at roughly 65° 

from horizontal. A point cloud overview of the rockslide is shown in Figure 3-25. Based on visual 

observations made from the ground and from the UAV, the landslide appeared to have exhibited 

a multimode failure. The slide is defined by a shallow failure of a broken-up rock mass overlain 

by soil up-slope from a wedge type failure. The distribution of GCPs and laser points collected at 

this site are shown in Figure 3-26. The collection of up-slope laser points was difficult at this site 

due to the spatial constraints at the base of the slope. The UAV collected images from 40-80 m 

away from the landslide scarp near the top of the slope. The UAV’s camera was positioned 10-15 

m away when imagery was collected of the wedge-type failure. This allowed for improved detail 

in the images of the rock structure at this critical location. 

The spacing and orientation of discontinuities were observed in 2D images and 

subsequently measured in the point cloud. The layer located in the top 12 m of the slope was 

comprised of soil and extremely weathered rock. A weathering profile is apparent with a 

decreasing degree of weathering down the slope.  At the site if the failed wedge, the visible rock 

structure is dominated by foliation with a strike of 255°, dipping at 20° to the northwest, shown in 

Figure 3-27. The wedge failure occurred at approximately one third of the slope height, about 50 

m. The source of the wedge failure is shown in Figure 3-28. A large block of the material was 

observed within the debris which most likely originated from the failed wedge. The rock in the 

area of the wedge failure had few vertical fractures and appeared to be strictly governed by 
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foliation. The foliation was also visible in some sections of the 3D model due to the imagery 

collected 10-15 m away from the wedge. By referring back to Figure 3-3 earlier in the chapter, it 

can be observed that imagery collected with the P3P from 40-80 m has a GSD of approximately 2 

- 3.5 cm/pixel and imagery collected from 10 – 15 m away has a GSD of approximately 5 

mm/pixel. The mean resolution of this model was 1.2 cm/pixel. In the sections of the model where 

the greatest resolution imagery was used, small features and discontinuities are visible. At the 

initiation of making field observations at this site, the existence of the wedge failure 50 m upslope 

was not yet confirmed until UAV imagery was collected. Additionally, the failure of cover soil 

and broken-up, extremely weathered rock near the top of the slope was not visible until 

investigated via UAV. 

 

3.3 Summary of Lessons Learned from Aerial Surveying of Geotechnical Sites 

Based on the UAV surveying performed as part of this study, recommendations are 

provided as guidance on using UAV-enabled SfM for geotechnical site reconnaissance.  

Flight Planning: Flight parameters should be clearly outlined prior to executing a flight. 

The flight plan should consider the required image resolution, battery capacity, visibility of targets, 

and any potential change to operational conditions (e.g. other aircraft, wildlife). GCPs should be 

placed to cover all areas which will be surveyed. The GCPs and checkpoints should be placed, or 

selected, in areas that will be reliably visible in the point cloud. More GCPs and check points than 

necessary should be measured to account for potential inaccessibility in the point cloud. Several 

considerations must be made when estimating the flight time required at a site. Automated flights 

can be accurately estimated based on specific path that will be followed. Pilot experience, 

environmental conditions, and UAV technology will all affect flight time, especially for manual 
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flights. Frameworks for basic automated flights to conduct surveys are available on most 

commercial platforms. However, current frameworks are not adequate for surveying areas with 

relatively significant elevation change, complex 3D geometry, or high-resolution image collection 

for analyzing small features. Advances in flight planning and obstacle avoidance technologies are 

expected to improve automated survey capabilities. This is of particular interest when collecting 

very high-resolution imagery for assessing small objects such as structural fasteners, rock 

discontinuities, and soil particle sizes. The required image resolution, and therefore flight 

parameters, is highly-dependent on the specific application. In general, at least 2 - 3 pixels per 

feature (e.g. fracture) are necessary to view in imagery. To assess grain sizes in soil or narrow 

fracturing in a rock, image resolution of 1 – 5 mm/pixel will likely be necessary. If only the major 

discontinuities in a rock mass are of interest, lower resolution imagery, 2 – 10 cm/pixel will 

typically be appropriate. Continuing novel research and development of UAVs integrating range 

detection and collision avoidance (e.g. Lidar, infrared, sonar, and stereo-vision) are making UAVs 

more accessible to these applications.  

Weather: Monitoring of weather conditions must be monitored including precipitations, 

temperature, and wind. Few commercial platforms capable of handling precipitation, or even high-

moisture, environments exist. Most multirotor platforms are highly-susceptible to precipitation, 

particularly due to overexposure of motors which are often necessary for heat dissipation. Low 

temperatures can influence the measurements made by critical IMU sensors and have a significant 

impact on battery performance. Some of the newest platforms are equipped with battery warmers 

which can raise the battery temperature to a safe level prior to flight. However, the warmers also 

consume energy. Windy conditions affect UAV stability and flight endurance. Stability is typically 

most affected by gusting wind. However, at very high payloads even low wind can cause 
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instability. This is because the UAV cannot commit additional power to resisting the wind force. 

It may also be necessary to consider that the UAV may hold in a tilted position while resisting 

wind. This may affect operations depending on the payload and operations being performed. Most 

weather conditions which bear consideration affect the UAV flight performance and sensor 

mechanics. Weather conditions will also affect the quality of data collected. For example, sunlight 

and its positioning will influence collected imagery. As mentioned previously, luminance-

invariant features make SfM robust to basic changes in lighting, but dark shadows can still affect 

results. Sunlight will also affect imagery data used for other analyses, such as those discussed later 

in this chapter. An overcast day with moderate light is preferred. 

Reconnaissance: It has been demonstrated that UAVs are powerful tools for documenting 

site geometry by collecting images for use in SfM model generation. However, during the course 

of reconnaissance efforts the UAV was found to be a useful tool for decision making and 

fundamental understanding of specific sites. At a debris flow site in Nepal, the UAV was used to 

investigate the source of debris flow material. The UAV mission was not part of the original site 

investigation plan and the results of the mission fundamentally changed the interpretation of the 

debris flow event. The perspective provided by the UAV can be used to identify features that 

would not normally be visible to a person on the ground or may not be clear from satellite imagery. 

For example, while investigating a 150 m high landslide, the multimode nature of the failure was 

not immediately obvious to reconnaissance personnel on the ground. The failure modes and 

documentation of a failed wedge were only confirmed once investigated using a UAV. The UAV 

is useful for collecting imagery at dangerous sites such as steep landslide deposits. However, in 

order to produce a high-accuracy model, a distribution of GCPs are necessary which, with current 

technology, requires them to be placed by a person at the site. Autonomous methods for performing 
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all required operations in dangerous scenarios are needed to optimize the safety of personnel and 

data quality (e.g. Greenwood et al., 2018). 
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Table 3-1: Sites in Hawaii surveyed by UAV 

 

Site Location Description 

Kauhola Point 

Lighthouse 
N20° 14.770' W155° 46.280' 6-10 m tall eroding sea cliff. 

Sapphire Cove N20° 09.733' W155° 53.906' Complex rock structure on coastline. 

Cobble Beach N20° 09.622' W155° 53.897' Beach covered in basalt cobbles 

Small Awini 

Landslide 
N20° 11.612' W155° 43.355' 

Shallow landslide caused by 2006 

Kiholo Bay earthquake. 

Large Awini 

Landslide 
N20° 10.950' W155° 43.694' 

Deep landslide caused by 2006 Kiholo 

Bay earthquake. 
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Table 3-2: Sites in Nepal surveyed by UAV 

 

Site Location Description 

Debris Flow 27° 57' 11.6" N 85° 32' 41.6" E 
Debris fan of rainfall-mobilized landslide 

debris. 

Rockfall 27° 57' 48.6" N 85° 32' 3.0" E Construction site damaged by rockfall. 

Landslide 1 28° 10' 48.8" N 85°19' 56.8" E Goldzong landslide near Syapru Besi. 

Landslide 2 

28° 1' 28.3'' N 85° 11' 26.5'' E 

Failures on vertical cliff with waterfall. 

Landslide 3 Grouped landslides on Trishuli River. 

Landslide 4 27° 56' 26.1'' N 85° 33' 5.3'' E Two roadside landslides outside of Timbu. 

Landslide 5 28° 0' 34.6" N 85° 10' 56.6" E Adjacent rainfall and coseismic landslides. 

Landslide 6 27° 57' 53.0" N 85° 32' 27.0" E Landslide north of Timbu. 

Landslide 7 27° 57' 29.6" N 85° 32' 27.8" E Landslide near debris flow site. 

Landslide 8 27° 55' 59.8"N 85° 33' 24.5" E 
Roadside landslide between Timbu and 

Melamchi. 

Landslide 9 27° 56' 39.8" N 85° 32' 59.7" E Soil Terrace south of Timbu. 

Landslide 10 27° 50' 39.9" N 85° 35' 0.0" E Soil terrace near Melamchi 

Landslide 11 27° 59' 58.2" N 85° 11' 3.2" E 
Landslide along Trishuli River near 

Betrawati. 

Landslide 12 27° 56' 48.1" N 85° 32' 56.7" E Soil terrace near Timbu. 

Landslide 13 27° 50' 50.5" N 85° 35' 14.2" E 
Broken-up failure and finer-grained landslide 

near Melamchi. 

Landslide 14 27° 56' 27.5" N 85° 33' 13.0" E Structurally-controlled failure south of Timbu. 

Landslide 15 27° 43' 49.9" N 85° 37' 50.1" E 
Soil Terrace and deep landslide along 

Idrawati River. 
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Table 3-3: Selected sites mapped using UAV-enabled SfM 

 

Site 

ID 

Site 

Description 
Location 

Total Flight 

Duration, 

(min:sec) 

Approximate 

Camera  Distance 

from Target (m) 

3D Area 

(m2 ) 

Average 

GSD 

(cm/pixel) 

1 Cliff Hawaii, USA 60 10 700 0.4 

2 Cobbles Hawaii, USA 8 6 345 0.2 

3 Coastline Hawaii, USA 9:00 13 1320 
0.4 

 

4 Rockslide 1 Nepal 5 40 3500 1.7 

5 Rockslide 2 Nepal 10 28 10000 1.2 

6 
Complex or 

Rockslides 
Nepal 9 200 329100 10.8 

7 Terrace failure Nepal 4 20 1400 0.9 

8 Debris flow Nepal 13:26 57 60700 2.5 

9 
Rockfall 

sloped area 
Lefkada, Greece 38:50 114 1223160 5.0 

10 

Egkremnoi 

Landslide 

Area 

Lefkada, 

Greece 
41:10 143 637000 6.3 

11 
Platys Yalos 

Landslide 2 
Lefkada, Greece 15 183 935835 6.9 

12 Rockfall 
Cephalonia, 

Greece 
13:10 150 340900 7.1 

13 Lixouri Port 
Cephalonia, 

Greece 
11:20 93 87300 3.9 

14 Argostoli Port 
Cephalonia, 

Greece 
19:27 84 129000 3.9 

15 
Failed 

Campaneli 

Cephalonia, 

Greece 
11:40 10 154 0.5 

16 
Fault Rupture 

site 
New Zealand 12 50 135600 2.3 

17 Landslide site New Zealand 28 94 654365 3.7 

18 
Scoured 

Bridge 
Greece 30 18 5382 0.7 

19 

Irrigation Dam 

Collapse and 

flooded area 

mapping 

Greece 70 62 390000 2.15 

20 

Anonymous 

Archaeological 

Site 

Greece 125 61 759000 2.3 

21 Retaining wall Patras, Greece 9:20 40 30890 2.1 

22 Levee 
St. Louis, MO, 

USA 
27 36 42000 1.6 

23 Sub-urban area Marousi, Greece 8 54 87344 1.7 

24 
Cliffed 

historical site 
Chios, Greece 7 83.5 58000 2.15 

25 Quarry Penteli, Greece 10 55 72000 2.8 

26 
Moira 

landslide 

Achaia 

Greece 
40 120 790000 3.9 
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Figure 3-1: 3D imaging with SfM workflow 

 

 
 

Figure 3-2: Procedure for performing geotechnical aerial survey 
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Figure 3-3: Maximum flight height to achieve GSD values for different cameras 

 

 
 

Figure 3-4: Grass-covered wavefield (crests are approximately 2 m apart) 3D point cloud 

produced with (a) oblique images and (b) without oblique images 
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Figure 3-5: Example of GCP visible in a UAV-collected image 

 

 

 
 

Figure 3-6: (a) SfM 3D point cloud (in meters) and (b) cloud-to-cloud distance comparison 

between UAV-SfM and terrestrial LiDAR

(a) 

(b) 
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Figure 3-7: Satellite image of Kauhola Point with red line indicating survey area 

 

 

 
 

Figure 3-8: Disjointed 3D model of eroding Kauhola Point cliff

7 m 
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Figure 3-9: (a) Stratigraphy interpretation from 3D model and (b) 2D Vs profile  

7 m 
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Figure 3-10: Channel followed by UAV to investigate source of debris flow 

 

 
 

Figure 3-11: Debris flow sources identified by UAV reconnaissance 
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Figure 3-12: Survey area normalized by GSD as a function of flight time for aerial surveys 

of 26 different sites 

 

 
Figure 3-13: Point cloud overview of landslide with debris cone delineated 
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Figure 3-14: GCPs placed at the landslide toe 

 

 

 
 

Figure 3-15: Cross-section through centerline of the landslide and annotated with point 

cloud measurements 
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Figure 3-16: Satellite images of Small Awini Landslide (a) about 1 month after the 2006 

Kiholo Bay earthquake and (b) in January 2014 
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Figure 3-17: UAV-collected image at top of landslide scarp showing alternating 

stratigraphy 

 

 
 

Figure 3-18: Location of shear wave velocity profile on landslide deposit 
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Figure 3-19: Shear wave velocity profile on landslide deposit 

 

 
 

Figure 3-20: Example of visual rock mass classification using the ISRM (1978) approach 

applied to a 4 m vertical cut 
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Figure 3-21: Chart used to assign GSI values for a rock mass (from Marinos et al., 2005) 
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Figure 3-22: Photo of landslide back-scarp revealing weathering profile 

 

 
 

Figure 3-23: Spatial GSI allocation on landslide scarp 
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Figure 3-24: Hoek-Brown failure criterion using information derived from SfM data and 

point cloud 
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Figure 3-25: Point cloud overview of structurally-controlled landslide 

 

 
 

Figure 3-26: Distribution of GCP and laser points used for SfM scaling 
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Figure 3-27: Illustration of foliation controlling failure and measurement location in 3D 

point cloud 

 

 
Figure 3-28: Structurally-controlled, wedge failure observed about 50 m upslope 
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CHAPTER 4 

Processing of UAV-Derived 2D and 3D Imagery Outputs for Rock Mass Characterization 

 

In this chapter, image processing techniques have been developed using UAV-enabled 

imagery as input with the goal of characterizing rock mass structure. The aim is to leverage the 

results of SfM 3D modeling to better characterize site conditions in geotechnical engineering 

practice with a focus on semi-automatic or automatic processing routines. It is envisioned that 

these computations will be executed on-board the UAV in the future and used for field decisions. 

The 3D model developed using SfM provides a wealth of information; 3D geometry is one piece 

of information that is extracted from the image set to produce outputs which are useful for 

qualitative and quantitative observations and to inform further data collection and for quantitative 

analysis. In Chapter 3, 3D point clouds were used to manually identify discontinuity sets and their 

orientations which is essential for stability analyses of these rock masses. In addition to manual 

procedures, semi-automated procedures for identifying and analyzing 3D point clouds of rock 

masses exist, but have significant limitations (Lato and Vöge, 2013; Vasuki et al., 2014; Riquelme 

et al., 2015; Chen et al. 2016 among others). In general, it is computationally intensive to operate 

in 3D. In some cases it may be more efficient to operate in 2D and relate back to 3D, as necessary. 

For example, fractures visible in 2D images may not be apparent in 3D because the 3D models 

always have a lower resolution than the source imagery. 
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First, a fracture detection method for rocks, that can be fully- or semi-automated, for 2D 

images is developed and presented. The fracture detection performance is assessed on three image 

sets representative of different image types and sources. Next, the SfM point cloud is projected 

onto an image plane to provide information on the depth of certain points and features. The re-

projection of the point cloud onto an image generates a color-depth image (i.e. RGBD). To 

leverage the incorporation of 3D information to the image, an updated version of the simple linear 

iterative clustering (SLIC) algorithm for segmenting the RGBD images has been developed. The 

depth images contain information from other camera perspectives, which is important for verifying 

results from 2D images of complex 3D structures. The updated SLIC algorithm is then synthesized 

with results produced by the fracture detection algorithm to map pixels identified as fractures in 

2D for further 3D analysis (i.e. identification of discontinuity sets via plane segmentation). 

 

4.1 Development of a 2D Fracture Detection Algorithm 

In this section, a fracture detection algorithm was developed for the purpose of mapping 

the distribution of fractures in images of rock masses for assessing strength properties and 

identifying discontinuity sets. Many crack detection algorithms have been designed for use with 

concrete structures and pavements (Jahanshahi and Masri, 2013; Torok et al., 2014; Wu et al., 

2014; Jiang and Tsai, 2015; Valença et al., 2017 among others). In general, concrete crack 

detection algorithms are designed to accurately and robustly delineate cracks on flat surfaces with 

minimal change in color or texture, and high contrast between the crack and concrete. These 

conditions are uncommon when assessing rocks. It is also desirable to extract information from 

images that may have relatively low resolutions due to being collected far away from the target 

(i.e. by UAV), which most crack detection algorithms are not designed for. Some recent crack 
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detection algorithms designed for concrete structures and pavements are shown in Table 4-1. 

Recent examples of discontinuity detection and analysis in rocks focus on fully- or semi-automated 

processes in 3D imaging outputs (e.g. point clouds) are also shown in Table 4-1. Chen et al. (2016) 

used a variation of K-means to cluster in a DSM and then optimized the segmentation and fit planes 

using random sample consensus (RANSAC) to acquire discontinuity set orientations. 

Discontinuities are identified based on exposed surfaces in the rock mass and are grouped 

accordingly. If discontinuity surfaces are not clearly exposed or cannot be simplified as a plane, 

they will not be detected. Lato and Vöge (2012) similarly detected discontinuities based on 

exposed planar surfaces using an automated method. The approach used point clouds to find planar 

surfaces considered natural discontinuities in the rock mass and intentionally ignored unnatural 

fractures, such as those caused by blasting. Riquelme et al. (2015) improved on previously-

developed approaches to defining discontinuity sets and estimating their spacing. All 3D points 

were classified relative to discontinuity sets and each set was fit by parallel planes. Persistence of 

fractures was ignored but could potentially be considered depending on the user application. These 

example methods from the literature focus on identifying sets of discontinuities in exclusively 3D 

datasets. The relative advancements in operating on 3D data sets have outpaced 2D image 

processing approaches for discontinuity assessment in recent years due to the growing popularity 

of SfM in geosciences and the desire to robustly estimate discontinuity set orientations in 3D. The 

referenced procedures perform well for accurately quantifying the spacing and orientation of 

discontinuity sets that are clearly discernable in 3D point clouds and DSMs. As observed in 

Chapter 3 when performing manual discontinuity set interpretations, there is visual information 

contained in the source imagery that is not captured in the 3D point cloud or DSM. Additionally, 
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it may be impractical or uneconomic to collect imagery at such a high resolution to resolve 

complete planes in a DSM, particularly in post-earthquake reconnaissance. 

The purpose of developing the method proposed in this section is to perform 

computationally efficient fracture detection on images of various rock masses and of varying 

resolutions that may be encountered by UAV-based data collection. It will also be demonstrated 

that the proposed method is easily integrated with established computer vision methodologies and 

workflows. The method described in this section attempts pixel-wise identification of fractures in 

rock masses. The fractures can, when SfM or equivalent 3D modeling is performed, be related 

back to the 3D point cloud and used to augment other discontinuity analysis procedures, such as 

those in Table 4-1. The semi-automated fracture detection procedure is outlined starting with an 

input image in Figure 4-1. The basic procedure computes the image gradient, estimates a gradient 

threshold, detects candidate fractures, and then performs morphological filtering to help remove 

false positives. The procedure can be fully-automated, or semi-automated by manually updating 

control parameters or activating optional algorithm components. The optional components for 

noise removal are a Gaussian filter and a modified version of Otsu’s threshold (Otsu, 1979). The 

advantages and disadvantages of applying the filter and conditions where the modified Otsu’s 

threshold is beneficial are discussed after the base algorithm is described. 

For implementation, the fully-automated procedure is recommended for real-time 

processing of sub-images, or specific image segments. This is recommended because image 

processing is computationally intensive and dramatically affected by image size, and the control 

parameters may need to be adjusted for different parts of the image especially if the image covers 

a large area (e.g. site orthophoto). While the computations performed in these algorithms are rapid 

and fairly robust, the subsequently discussed segmentation operations applied to full-size images 
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take significantly more computational effort. For large, full-size images, the complete, semi-

automated approach is recommended as a post-processing methodology.  

The fracture detection method is prepared for integration with other 2D and 3D processing 

methods. Figure 4-2 shows the framework followed where the 2D fracture detection process is 

synthesized with 3D information, when available, to analyze rock surface roughness and the 

characteristics of individual fractures detected in 2D images as discussed later in this chapter. 

When RGBD images from SfM are available, pixels classified as fractures coinciding with depth 

(i.e. 3D) points can be transformed back to 3D and merged with the existing 3D point cloud. This 

means that binary fracture classification is applied to the 3D points. Manual measurements of 

discontinuity orientation and spacing, as performed in Chapter 3, can then be performed. 

Alternatively, the fracture-labeled point cloud can be combined with 3D processing techniques 

such as the discontinuity analyses discussed previously. 

 

4.1.1 Image Gradient 

The gradient of an image describes the pixel-wise change in intensity in some direction 

across an image. Intensity is the numerical representation of light for a pixel. For example, in a 24-

bit RGB image, the intensity of each color channel (i.e. red, green, blue) is a value on [0,255]. 

Each pixel is described by a vector containing the intensity of each color channel. When converted 

to grayscale, each pixel is described by a scalar which is the magnitude of the RGB pixel vector. 

Image gradients have many uses, including being the fundamental basis for many edge detection 

methods developed over several decades. Roberts (1963) developed one of the earliest gradient-

based edge detectors. Other, more complex, edge detection methods have also been developed. 

The Canny edge detector (Canny, 1986) has been arguably the most popular edge detection 
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algorithm since its inception and sparked the development of similar edge detectors such as 

Deriche (1987). 

The gradient of an image can be defined as the partial derivative of intensity with respect 

to the vertical or horizontal axis. As the basis for this fracture detection algorithm, the image 

gradient is approximated using central finite difference method. For an input image of arbitrary 

size, the vertical or horizontal gradient is estimated by convolving a central difference operator 

with the grayscale image. Equation 4-1 estimates the image gradient in the vertical direction (dy) 

of a grayscale image (I). 

𝑑𝑦 = [
1
0

−1
] ∗ 𝐼      (4-1) 

The gradient in the horizontal direction (dx) can similarly be estimated by convolving the transpose 

of the kernel in equation 4-1 with the image. The two gradient images, vertical and horizontal, can 

be combined to provide the gradient magnitude (d) and direction (θ) in equations 4-2 and 4-3 

respectively. 

𝑑 = √𝑑𝑥
2 + 𝑑𝑦

2
      (4-2) 

𝜃 = tan−1 (
𝑑𝑦

𝑑𝑥
)     (4-3) 

Gradient values that exceed a certain threshold become classified as an edge and are candidates to 

be classified as fractures by the algorithm. Figure 4-3 shows examples of the gradient operations 

performed on a sample image. 

 

4.1.2 Estimation of Gradient Threshold 

Pixels are potentially classified as fractures if the gradient for a given pixel exceeds a 

threshold value. Effective selection of that threshold is critical for the fracture detection process. 
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For example, Figure 4-4 shows the effect of two different gradient thresholds for classifying pixels 

as potential fractures. It is possible to iteratively find a threshold value by manually checking a 

range of values, but it is desirable to perform a gradient selection automatically. Automatic 

selection of a gradient threshold is performed using the following method adapted from 

Groenewald et al. (1993) and Wang (2011): 

1. Select initial threshold (T) guess (10 is recommended for most rock images). 

2. Generate a pixel-wise binary map (b) based on the threshold. 

a. 𝑏(𝑥, 𝑦) = 1 , ∀ 𝑥, 𝑦 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑑(𝑥, 𝑦) > 𝑇 

3. Calculate the mean gradients values of fracture (df) and background (db) pixels: 

a. 𝑑𝑓 =
∑ 𝑑(𝑥,𝑦)

∑ 𝑏(𝑥,𝑦)
  , ∀ 𝑥, 𝑦 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏(𝑥, 𝑦) = 1 

b. 𝑑𝑏 =
∑ 𝑑(𝑥,𝑦)

∑ 𝑏(𝑥,𝑦)
  , ∀ 𝑥, 𝑦 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑏(𝑥, 𝑦) = 0 

4. Estimate a new threshold as a linear combination of the mean gradient values: 

a. 𝑇 = 𝑘𝑓𝑑𝑓 + 𝑘𝑏𝑑𝑏 where 𝑘𝑓 + 𝑘𝑏 = 1 

5. Return to Step 2 and repeat until threshold value converges. 

6. Output vector of 10 potential thresholds within T ± 0.15T 

 

Figure 4-5 shows an example of automatic threshold selection applied to a photo of a brick 

wall. Figure 4-5a shows a photo of the brick wall and Figure 4-5b shows the brick wall with the 

gradient threshold (T=4.6) applied, note that pixels exceeding the threshold are black in this 

example (reverse of the detailed algorithm). Figure 4-5c shows the convergence of the automatic 

threshold selection on a value. When the final threshold value is estimated, a set of ten evenly 

spaced potential threshold values is considered within ±15% of the convergence value. Generally, 

the lowest threshold from this set is then used for fracture detection. This makes the fracture map 
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more sensitive to noise and as a result increases the false positive rate. However, many of the small 

false positives and noise can be removed through morphological filtering which is performed 

following initial pixel classification and described in a subsequent section. The set of potential 

threshold values is then used to create a multi-threshold fracture map where pixels are rated based 

on their relative likelihood of being a component of a fracture. The multi-threshold fracture map 

is not subjected to the subsequently discussed morphological filtering. A rating is assigned to each 

pixel proportional to the fraction of potential thresholds it meets. For example, for a set of ten 

potential thresholds, each pixel detected by the five lowest thresholds receives a rating of 0.5 (i.e. 

detected by 50% of the threshold values). The multi-threshold fracture map is not used directly for 

quantitative analysis, but is useful for making observations of the rock mass or on the sensitivity 

to the gradient threshold. Significant spatial changes in pixel rating are indicative of the image 

needing further manual, or automatic as discussed later, segmentation. Additionally, the multi-

threshold fracture map could be used to manually select a threshold value from the output threshold 

vector, rather than using the lowest threshold value. Figure 4-6 shows an example image from a 

marble quarry and an annotated example of a multi-threshold fracture map. In Figure 4-6, white 

pixels were detected for 100% of the threshold values in T ± 0.15T. The pixels become darker 

(gray) as they are detected in fewer of the threshold values. Black pixels are not detected using 

any of the thresholds. 

The primary control parameter for the algorithm is the value of kb, and by extension kf. 

Lowering kb will reduce the expected threshold for an image, and therefore increase the number of 

fracture candidate pixels. A starting value of kb = 0.3 - 0.4 is suggested for most cases. A higher 

value (0.4 - 0.5) may be needed for bright images with widely spaced fractures. A value lower than 

0.2 is not recommended because the threshold selection may not converge. Figure 4-7 shows the 
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effect of kb on a sample image where green pixels have been classified as fracture. In Figure 4-7, 

the kb value is lowest (0.2) for Figure 4-7a and increases to 0.5 in Figure 4-7d. In Figure 4-7a the 

threshold value is too low and only the most distinct fractures are detected. In Figure 4-7b the 

threshold selection is nearly optimal; nearly 100% of the fracture lengths are captured without any 

false positives. In Figure 4-7c and Figure 4-7d, the threshold is too low and false positives begin 

to contaminate the image, primarily caused by the surface texture of the rock. 

 

4.1.3 Morphologic Filtering 

Following the selection of the gradient threshold and generation of a pixel-wise fracture 

candidate map, noise and small features are removed using a series of morphological operations. 

The first operation removes objects smaller than 4% of the smaller image dimension in pixels for 

a 4-way connected neighborhood (i.e. ignoring diagonal pixel contacts). Figure 4-8 illustrates 4-

way and 8-way pixel connectivity neighborhoods. Objects in the binary image are defined as 

independent clusters of pixels maintaining the defined connectivity (4-way or 8-way). Removing 

objects smaller than 4% of the smallest image, or region, dimension removes stray pixels, small 

clusters of noisy pixels, and weakly-connected fragments. Figure 4-9a shows a potential fracture 

map after removing the small objects. The second morphological operation shrinks the remaining 

objects to a minimal thickness (one pixel in most cases) while maintaining 8-way connectivity so 

that individual objects are not fragmented. Figure 4-9b shows a potential fracture map after 

thinning objects. The third and final operation removes objects smaller than 10% of the smaller 

image, or region, dimension in pixels for an 8-way connected neighborhood. This operation is 

performed to remove remaining small, stray objects. The 8-way neighborhood is used because of 

the thinning function applied in the previous step. Using a 4-way neighborhood would remove 
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significant portions of detected fractures. Figure 4-9c shows a potential fracture map after the 

second round of object removal. The fraction of the maximum image dimension (i.e. 4%; 10%) 

can be adjusted manually by the user if necessary. These values were found to perform well with 

the segments of UAV-collected images used in this study. The morphological filtering does 

inevitably remove some information such as smaller fractures, discontinuous delineation of larger 

fractures, and weak connections in larger fractures. The most significant effect is the removal of 

noise and false positives caused by irregular surfaces, staining, and other natural features. For 

simple images with large aperture fractures and smooth, low-noise rock surfaces, the removal of 

small objects may not be necessary. However, for natural rocks, situations with such images are 

rare. In fact, higher-resolution imagery which senses textured rock surfaces well, will very likely 

need such morphological filtering. 

 

4.1.4 Additional Fracture Detection Components 

Morphological filtering is the final step of the main fracture detection algorithm. The final 

binary image shows the network of pixels classified as fractures. Additional, optional, components 

have also been implemented into the algorithm to address more complex rock masses and a wider 

range of input images. Gaussian filters are commonly used in edge and crack detection methods 

in order to remove noise from the image prior to processing. Figure 4-10 demonstrates the effect 

of applying a Gaussian filter to images before they are used in the fracture detection method. The 

Gaussian filter is useful for removing noise such as texture on rock surfaces. The filter is not useful 

for images that do not have dramatic contrast between fracture and rock surface. As the filter 

removes surface texture, which is effectively noise, it also has a smoothing effect on fracture edges. 

The smoothing makes the intensity change at the fracture edge more gradual and therefore reduces 
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the gradient along the edge, thus making the fracture more difficult to detect. Figure 4-11a and 

Figure 4-11b show a fracture before and after blurring respectively. It is apparent from Figure 4-

11a and Figure 4-11b that several changes have occurred: noise has been reduced, the overall 

intensity of image has decreased, and apparent width of the fracture has increased from 

approximately 4-5 mm to 7-8 mm. In some cases, fractures that are 2-4 pixels wide may become 

undetectable by the algorithm. In Figure 4-11c, the smoothing of the intensity values around the 

fracture is quantified. Figure 4-11d similarly shows the change in the fracture signature within the 

image vertical gradient. Application of a Gaussian filter is recommended for high-resolution 

images (GSD < 5 mm) with high-contrast fractures. The filter can be activated by the user if 

necessary for other cases where noise becomes overly disruptive. A filter can also be coupled with 

high values of kb, which will be most sensitive. 

 Other natural features on rock surfaces can also cause issues in fracture detection. Abrupt 

changes in color, or brightness, can create distinct intensity changes in the surface of rocks. Surface 

staining, caused by chemical weathering processes, is one such feature. Figure 4-12 shows 

different degrees of staining on the exposed surface of a weathered basalt rock mass. The result 

manifests as a signature within the image gradient very similar to fractures, often making them 

indistinguishable within the image gradient. The approach taken to remove these signatures is 

implemented prior to any gradient-based operations. Pixels unlikely to be fractures based on their 

intensity values are grouped and scaled to become more similar to other pixels, thereby 

simultaneously reducing, or removing gradient values for non-fractures and potentially increasing 

the gradient at the edges of fractures. Pixels that are likely to be part of a fracture will have very 

low intensity values, typically 0 – 30 (8-bit) depending on the image. The intensity values are 

image dependent and may also vary across a single image if lighting is non-uniform. In most cases, 
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the intensity threshold can be selected automatically by using a derivative of Otsu’s method for 

image binarization (Otsu, 1979). Otsu’s method assumes that a grayscale image can be divided 

into two classes (i.e. intensity bands) and searches for the threshold that divides the classes and 

minimizes intra-class variance. Otsu’s method is most successful when the two classes have very 

distinctly separated peaks in the image histogram. For the images of interest here, the image 

histogram is dominated by non-fracture (i.e. rock surface) pixels which biases the threshold toward 

high intensities. The fracture portion of the histogram is often obscured by the presence of textures 

on the rock surface. For this example, it was found that scaling the Otsu threshold by a factor of 

0.4-0.5 (Os) provided the best results, and was used in the subsequent performance evaluation of 

basalt images in this chapter. A wider range of scaling factors may be suitable on depending the 

image (i.e. resolution, rock type, and lighting). This is typically best used with moderately to 

highly-fractured rock masses where the fracture component of the image histogram will distinctly 

peak separately from the rest of the image. For high intensity images of rocks with sparse 

fracturing, this is likely to fail, resulting in no fractures being detected. The modified Otsu’s 

threshold was found to be very successful for isolating fractures in weathered rock masses. It did 

not succeed when applied to images of high-intensity rocks (e.g. marble, limestone). While fracture 

detection is fairly successful in these rocks without the modified Otsu’s threshold, theoretically 

making it of no concern, this effect should be considered when integrating into an automated 

framework. Figure 4-13 shows an example of modified Otsu’s threshold brightening on an image 

subjected to fracture detection. The original grayscale image is shown in Figure 4-13a. Figure 4-

13b shows the image after all pixels above 50% of the image Otsu threshold are set equal to their 

mean intensity. Figure 4-13c and 4-13d show the final fracture detection for the unaltered and 
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altered images respectively. By comparing Figure 4-13c and 4-13d, it can be observed that the 

white staining on the surface of the rock is no longer triggering significant false positives. 

 

4.1.5 Performance of Fracture Detection 

The main functions of the method can be fully-automated and are most useful for images 

of rocks not affected by significantly variable discoloration caused by weathering conditions, 

image blurring, variable lighting conditions, and rocks with low contrast between fractures and the 

rock surface. An optional Gaussian filter and modified Otsu’s threshold have been incorporated to 

address the complexities mentioned above and can be automated, or controlled by the user. The 

performance of the proposed methodology has been tested on sets of specific image types. The 

first image set was extracted from an orthophoto of a marble quarry wall in Dionysos, Greece 

shown in Figure 4-14. Portions of the wall were excluded from the analysis due to the existence 

of human-made objects such as cables. The quarry wall was then divided into 18 sections of 

interest for fracture detection. Each of the image sections was approximately 500x300 pixels. The 

images have a GSD of approximately 1 cm/pixel. The detected fractures are compared to a baseline 

manual interpretation of detectable fractures. Detectable fractures are those that are manually 

detected and have a width of at least 3 pixels. Narrower fractures may still be manually detectable, 

but are not expected to be detected by the fracture detection method. A fracture is considered 

detected if the majority of its detectable length is assigned as fracture. Figure 4-15a shows an 

example of automated fracture detection applied to a sample marble image. Figure 4-15b shows a 

simplified view of manual detection used as the baseline for establishing detection rates. In Figure 

4-15a, two fractures where their full lengths have not been labeled by the automatic detection are 

highlighted. One (left) is an example of positive detection because at least 75% of the length has 
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been detected. The other (right) is an example where less than 75% of the length has been detected 

and therefore is not a positive detection. While this example appears to identify a fracture in the 

image, because less 75% of the total detectable length is identified, it is excluded from positive 

results in the subsequently discussed performance metrics. 

In computer vision and other machine learning applications, it is desirable to assess 

classification performance using a receiver operating characteristic (ROC) curve. The ROC curve 

compares the true positive rate (also called sensitivity) to the false positive rate as a single 

parameter is varied. In this case, the false positive rate cannot be computed because the total 

number of true negatives cannot be known. This is because the accuracy assessment is performed 

on a fracture-by-fracture basis, for which the total number of true negatives is not defined. For this 

reason, a true ROC curve cannot be obtained. However, it is still of interest to compare the number 

of false positives to the true positive rate in a similar fashion. Since the number of true negatives 

is unknown for this assessment, it can be treated as an information retrieval problem. Performance 

of information retrieval is quantified independently of the number of true negatives by considering 

three different parameters. Precision, defined in Equation 4-4, is the correctly-identified fraction 

of the total detected fractures. Recall (or detection rate), defined in Equation 4-5, is the correctly-

identified fraction of the total number of detectable fractures. Finally, the F-measure, defined in 

Equation 4-6, is double the harmonic mean of precision and recall. The F-measure is intended to 

quantify accuracy as a synthesis of precision and completeness.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
         (4-4) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                 (4-5) 

𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
)          (4-6) 
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Table 4-2 shows the results of fracture detection performed on the set of marble images 

while varying the parameter kb. Low values of kb did not perform well, successfully detecting less 

than 40% of fractures for values less than 0.4. About 60% of fractures were detected for kb=0.5 

and about 80% of fractures were detected for kb=0.6. Additionally, at kb=0.6, and to a lesser extent 

kb=0.5, false positives significantly affect the results. False positives are interpreted as likely 

fractures in the binary image but are not manually selected fractures. For the marble, false positives 

are primarily caused by the predominantly horizontal foliation in the rock, which may also be of 

interest from a structural and strength perspective, but not a target of the methodology being tested. 

The marble image set required a low gradient threshold to perform well as indicated by the kb=0.6 

value for 80% success. This is due to the fracture pixels having higher than expected intensity 

values. This is caused by the generally coarse resolution of the orthophoto and blurring caused by 

image generation from the DSM. Raw images are generally best for performing fracture detection, 

but generating an orthophoto is useful when the desired perspective is unavailable in the raw 

imagery or the method needs to be applied over an area much larger than a handful of image. 

Figure 4-16 shows the true positive rate versus the total number of false positives for the marble 

images as kb varies. The relative improvement of fracture detection decreases significantly above 

kb = 0.5. Additionally, the total number of false positives increases significantly above kb = 0.5. 

The precision-recall relationship for the marble images is shown in Figure 4-17. Recall did not 

improve significantly when kb was increased above 0.4. The F-measure for fracture detection on 

the marble images for the tested values of kb are shown in Table 4-3. These results indicate that 

for the marble image set, kb = 0.4-0.5 was optimal. Some example outputs are shown in Figure 4-

18 for kb = 0.5. Most of the fractures are captured well in Figure 4-18. However, some remain 

partially, or fully, undetected; the width of these fractures is around 2-4 pixels. 
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The second image set was constructed from images collected of a vertically cut weathered 

basalt outcrop in Hawaii. Some example photos of the approximately 4 m high outcrop are shown 

in Figure 4-19. The GSD of the source imagery was on average 1.7 mm/pixel but it varies due to 

the complex 3D structure of the rock mass. For this image set, 28 sub-images of fractured basalt 

in varying weathering states were extracted. The main functions of the fracture detection algorithm 

could successfully identify fractures in the set of basalt images, but the presence of noise on the 

rock surfaces generated a large amount of false positives. The noise in the images was caused by 

the presence of discoloration due to weathering processes and vesicles within the rock. When the 

modified Otsu’s threshold is applied to the images, fracture detection is more successful. Table 4-

4 shows the detection results for 28 basalt images for six different combinations of control 

parameters Os and kb. The performance characteristics (precision, recall, and F-measure) of the 

different parameter combinations are summarized in Table 4-5. Figure 4-20 shows the detection 

rate as a function of false positives. Based on the results in Table 4-5, it can be observed that Os 

was most influential on the detection rate. For Os = 0.4 the detection rate was about 70% and for 

Os = 0.5 the detection rate was about 86%. While the detection rate was roughly constant for Os = 

0.5, the amount of false positives generated increased as kb increased, therefore it is recommended 

that a lower value of kb be used. Based on this assessment, using a parameter combination of Os = 

0.5 and kb = 0.3 is recommended for similar images. Figure 4-21 contains an example image 

subjected to fracture detection using each of the parameter combinations. For this example, the 

detection remained essentially unchanged as kb was varied. Figure 4-22 shows four example 

outputs from fracture detection using kb = 0.3 and Os = 0.5. Using the modified Otsu’s threshold 

made the images less sensitive to noise caused by surface texture and discoloration. The images in 

the basalt set are not extremely fractured. As the images, or regions, become more fractured, the 
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suggested value of Os increases and approaches 1, where Os = 1 is equivalent to binarization using 

Otsu’s method. For images of highly-fractured, broken-up rocks, it is recommended that a higher 

value of Os (0.6 – 1) be selected in order to best capture the fractures.  

 A third set of images comprised of generally lower resolution extracted from UAV-based 

and ground-based photos was also tested. The image set contains 28 images of various rock types 

(sandstone, limestone, basalt, etc.) and conditions (widely spaced fractures, highly-fractured, etc.). 

The set is not intended to capture performance on any particular type of rock. The performance of 

fracture detection on the image set is summarized in Table 4-6. The algorithm performed very well 

on images of highly fractured rocks for kb = 0.4 - 0.5. The F-measure for different kb values is 

shown in Table 4-7 and maximizes between kb = 0.3 – 0.4. The fracture detection rate is compared 

to the total number of false positives in Figure 4-23 which indicates optimal performance around 

kb = 0.4. Figure 4-24 shows the precision-recall relationship. The precision-recall relationship also 

indicates kb = 0.3 – 0.4 is the best-performing parameter selection. Figure 4-25 shows example 

output for the fracture detection performed on three images with kb = 0.4. The examples in Figure 

4-25 demonstrate the automated algorithm applied to different fracture patterns, including a 

disintegrated rock. 

 

4.1.6 Limitations and Practical Considerations 

The automated fracture detection algorithm performed well when applied to a set of images 

without known special conditions such as discoloration due to weathering or intense surface 

texture. However, the generation of false positives may be of concern and could result in overly-

conservative interpretations. When augmented with a Gaussian filter, or modified Otsu’s 

thresholding to handle noise sources (weathered surfaces, texture, vesicles etc.), the performance 
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improves. Images may perform poorly if not properly segmented to separate regions of different 

brightness and pre-processing requirements. The algorithm was found to perform best in 

identifying fractures at least 3 pixels wide. However, in some brighter (i.e. higher intensity) rocks, 

thinner fractures could be detected due to high contrast. Fractures very close to 3 pixels width may 

also become segmented, meaning that their persistence is not captured due to width dropping 

below 3 pixels at certain points along the fracture length. 

To address some of the issues previously mentioned (e.g. surface weathering and texture)  

and improve performance on special image cases, the fracture detection approach has been 

integrated with the simple linear iterative clustering (SLIC), also known as superpixels, image 

segmentation algorithm detailed by Achanta et al. (2012). SLIC is an unsupervised image 

segmentation algorithm which clusters pixels based on color, brightness, and spatial proximity. 

Specific functions can then be applied to all or some of the clusters, or superpixels. An example 

of SLIC applied to a sample image is shown in Figure 4-26. SLIC can be used to simplify an image 

into tiles for easier processing in computer vision applications. In Figure 4-26b each superpixel 

has been assigned its median RGB vector as a constant color. SLIC is further discussed and 

implemented in the following section. The segmentation performed by SLIC is effective at 

separating parts of an image affected by different lighting patterns. As previously mentioned, and 

demonstrated by the fracture detection performance, spatial changes in lighting play a significant 

role in selection of a gradient threshold and subsequent identification of fractures. The images can 

be segmented using SLIC, then pixel clusters are processed individually and reconstructed into a 

final fracture map. As an example, Figure 4-27 shows a section of weathered, vesicular basalt. The 

image was segmented using SLIC into 20 superpixels and fracture detection using kb = 0.4 and Os 

= 0.5 was applied. When processing a larger image and/or more broken-up rocks, a higher value 
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of Os may be needed. The number of automatically detected fractures was compared to the number 

of manually counted fractures for each transect in Figure 4-28. The automatic detection tended to 

undercount the true number of fractures in the image. This is caused by automatic fracture 

detection missing thin fractures, which is an advantage of human interpretation over the automated 

algorithm. The point for T5 in Figure 4-28 shows that only 44% of fractures were detected. The 

significant under-detection was caused by several thin fractures not being clearly identified. The 

small fractures were not highlighted when the modified Otsu’s threshold was applied and therefore 

not identified as fractures. These fractures were not thick enough to be easily detectable by the 

algorithm but were still visible for manual interpretation. It should be assumed that thin fractures 

(2-3 pixels wide) with lower contrast will be missed when applying the modified Otsu’s threshold 

resulting in undercounting. The undercounting may be unconservative, as demonstrated by T5 in 

Figure 4-28. 

A similar comparison between the fracture detection algorithm and manual fracture 

counting for a UAV-collected image of an angular blocky rock (GSI of 50 to 70) with good 

interlocking is presented. The GSI for this material is about 50 – 70. Fractures were manually 

counted along 14 vertical transects and compared to results of fracture detection with kb = 0.4. The 

rock with detected fractures and delineated vertical transects is shown in Figure 4-29. Comparison 

with manual counting of fractures along the vertical transects is made in Figure 4-30. In general, 

the algorithm identifies the number of manually counted fractures within about 15%. Cases of both 

undercounting and overcounting are apparent in Figure 4-30. The cases of undercounting typically 

occur for fractures that have low contrast with the rock surface and are less than 3 pixels wide. 

Overcounting tends to be caused by edges on jagged surfaces protruding in 3D. Another source of 

overcounting is the attachment of false positives to true fractures. Because the false positive is 
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connected to the true fracture, it is not removed through post-detection filtering and will artificially 

increase the fracture count when intersecting the vertical transect. The jagged edges on protruding 

pieces of rock cause overcounting, but are useful for point cloud based discontinuity analyses that 

rely on using protruding surfaces to measure the strike and dip of discontinuities. 

Fracture detection is applied to a third example in Figure 4-31. The image in Figure 4-31 

is an orthophoto produced from 3D modeling of a vertical face in a quarry. The image is 4825 

pixels wide and 7960 pixels tall. The GSD of the image is 6 mm/pixel, therefore it is not expected 

that we will detect fractures thinner than 1-2 cm. However, very thin (1 cm or less) fractures may 

be partially detected due to high contrast rock surface. Figure 4-31 also shows the results of 

applying fracture detection. The image was segmented into approximately 570 superpixels and a 

value of kb = 0.35 was used. The fracture detection captures the major discontinuities effectively. 

The image was split into 13 vertical transects where fractures were manually counted and 

compared to the fracture detection algorithm results in Figure 4-32. In this case there is 

overcounting of fractures by the algorithm (about 15% in general). The overcounting is caused by 

small areas of surface staining and apparent edges in areas with jagged 3D blocks. The small 

fractures (i.e., thin, low contrast) are partially detected. When partially detected, the existence of 

a fracture is noted, but the persistence of the fracture is not captured. Figure 4-33 shows an example 

of complete and partial detection of fractures on the quarry orthophoto. The fracture detection 

accuracy could be improved by further image segmentation and selection of regions where the 

modified Otsu’s threshold should be applied. This would assist in removing false positive caused 

by discoloration. But, applying the modified Otsu’s threshold does eliminate some smaller 

fractures from detection which resulted in undercounting of fractures in the earlier example of 

weather basalt.  
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4.1.7 Example Applications in Rock Mechanics 

The detection of fractures in RGB images can be extended to practical applications such 

estimating rock strength parameters, rapid identification of low-strength areas, and correlation with 

other physical properties. In Figure 4-34, a basalt profile was subjected to fracture detection using 

Os = 0.8 and kb = 0.4 (note that detection is not sensitive to kb when using Os). The image was 

segmented into approximately 200 superpixels using SLIC. Each superpixel was processed 

separately and reconstructed into the original image. Figure 4-34a shows the image following 

fracture detection. The rock quality designation (RQD) (Deere and Deere, 1988) was computed 

automatically for 5 pixel wide (about 10 cm) vertical transects across the image. The RQD is a 

parameter measured, in practice, based on core recovery in drilling operations. RQD is an input 

parameter for the Rock Mass Rating (RMR) system and the Q-system for geomechanical 

classification of rocks. Both of these rating systems are used in practice for excavations, tunneling, 

and correlation with material properties (e.g. Young’s modulus, compressive strength). The RQD 

is defined as the summed length of rock pieces recovered from the core that are greater than 10 

cm, divided by the total drilling length (i.e. percentage of a drilling core made up of rock pieces 

10 cm long or more). The RQD is also used by practitioners as a design parameter when 

constructing facilities on rock. Figure 4-34b shows the results of dividing the image into vertical 

transects and automatically computing the RQD. The black rectangular regions at the top of the 

profile in Figure 4-34b are excluded from the RQD computation because they consist primarily of 

soil. The RQD contours appear as vertical bars because RQD provides a constant value across the 

vertical length (or recovered core). Spatial distribution of the 10 cm pieces is ignored. Figure 4-35 

shows a comparison between the automatic RQD and a manual check of eight different transects 

(labeled in Figure 4-34b). For the comparison, the automatic RQD value is taken as the average of 
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the cell containing the transect center and the two adjacent cells. Because the RQD only considers 

rock pieces 10 cm or larger, sparse false positives in the image do not affect the calculated value 

unless they appear in a piece close to the 10 cm limitation. Similarly, sparse false negatives do not 

affect the RQD value unless they split a rock into segments smaller than 10 cm. As observed in 

the basalt transect example in the previous subsection, the automatic procedure tended to 

undercount fractures in each transect, which translates to a higher reported RQD. While observing 

this bias, it should be noted that the data points are clustered in RQD = 0.6-0.8, which is due to the 

RQD of the imaged rock falling in the range of approximately 0.6-0.9.  

The ability to automatically estimate RQD is useful, however, the RQD itself has many 

limitations. For example, it does not describe the spatial distribution of fractures or potential 

changes in material. Figure 4-36b shows contoured heat map of fractures per unit length 

(fractures/m) overlain on the rock profile. The rock mass, after fracture detection, was split into 50 

cm square cells and the number of fractures per unit length was estimated within each cell. The 

purpose of this is to describe the spatial distribution of fracturing in the rock and automatically 

identify regions of intact, moderately fractured, and highly fractured rock. Highlighting these 

changes in fracturing quickly flags areas where changes in material type occurs or where more 

careful analysis is warranted (such as in 3D slope stability). The contours can be compared to a 

manual interpretation describing the rock mass using the ISRM (1978) rock mass classification 

system shown in Figure 4-36c. This example was shown briefly in Chapter 3. The ratings I through 

VI describe the rock as fresh, slightly weathered, moderately weathered, highly weathered, 

completely weathered, or residual soil. In general, the results agree well with the regions classified 

as I-II (fresh or slightly weathered) mapping to regions of mostly intact rock in the contours. 

However, the regions classified as, essentially, soil (V and VI) are detected as intact rock. Figure 
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4-37 shows the contours and profile separately and highlights instances where the heat map of 

fractures is accurately portraying conditions. The contours effectively capture different regions of 

intact rock and broken-up rock. The heat map also captures a region of seamy rock on the left side 

of the image. The results show that the fracture detection has value in automatically describing the 

distribution of rock structure and weathering along a surface. In Figure 4-38, areas where the 

contour mapping did not perform well are highlighted. Areas of soil have few detected fractures 

because, from the algorithm perspective, the soil has the appearance of a solid, textured surface. 

When using this approach, regions of rock and soil should be separated through a pre-processing, 

material type classification approach. Additionally, debris consisting of rock fragments is detected 

as a highly-fractured region, while in reality the fragments are lying over mostly intact rock. The 

filtering of surface debris could potentially be performed while considering 3D information (e.g. 

from a 3D point cloud) and deriving the visual properties unique to loose rock fragment debris. 

A 2D shear wave velocity (Vs) profile and a 2D P-wave (Vp) velocity profile were also 

generated at this site (Greenwood et al., 2017; Von Voigtlander et al., 2018). The Vs profile was 

generated using the common midpoint cross-correlation (CMPCC) 2D imaging approach for 

multichannel analysis of surface waves (Park et al., 1999; Hayashi and Suzuki, 2004). Greenwood 

et al. (2017) also performed a delineation of GSI for the outcrop that was then used to update the 

layered earth model used in Vs inversion for the purpose of improving confidence in the results. 

The final Vs profile generated by Greenwood et al. (2017) is shown in Figure 4-39 overlain on the 

outcrop. It is difficult to produce a correlation between GSI and stress wave velocity in part 

because they are both significantly affected by scale. When assessing GSI or measuring stress 

wave velocity the sample size is a controlling factor for results. For example, if a small sample is 

considered, it will ignore widely spaced fractures that outsize the sample area (i.e. a wave will not 
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propagate through the fracture nor will it be considered for GSI allocation). A correlation for 

degree of fracturing and Vs for this outcrop could be developed using the results of the automatic 

fracture detection. It is expected that fracturing will vary as a function of Vs due to the low 

resolution of the Vs profile relative to fracture detection (and contouring). To assess this, the range 

of fracture frequency (minimum and maximum) within each of the Vs contours (Figure 4-39) is 

identified from Figure 4-36b. The previously discussed cases of poor rock structure evaluation by 

the automatic fracture detection are ignored for this assessment. The minimum and maximum 

fracture frequencies are also fit by power functions (R2 > 0.83) in Figure 4-40. The minimum 

fracturing at 400 m/s in Figure 4-40 appears as an outlier. The large region at the center of the 

outcrop that is mostly intact, which is captured well by automatic fracture detection, and the Vs is 

lower than expected. This was observed by Greenwood et al. (2017) and is likely caused by 

changes in weathering behind the outcrop face. It is typically expected that weathering (and 

fracturing) will decrease behind an outcrop face. But increased fracturing is possible and dipping 

intact blocks could result in a lower than expected Vs. The derived correlation between Vs and 

fracture frequency can be used to estimate Vs in other sections of the outcropping rock if fracture 

detection is applied to those sections. The Vs was correlated to both the minimum and maximum 

observed fracturing frequency. The difference between minimum and maximum fracture 

frequency increases as Vs increases. Even if small areas of high-density fracturing exist, the Vs 

measurement involves sampling over a large area, so the extensiveness of intact rock will dominate 

the small area of high-density fracturing. 

When a 3D point cloud is available, as it is with the quarry example, and the intrinsic and 

extrinsic camera parameters are known, the detected fractures can be transformed back onto the 

3D point cloud through a reverse projection and 3D transformation. The process of transforming 
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and projecting 3D points onto an image is described in the following section. Once fracture-

classified points have been placed on the 3D point cloud, the fracture orientation relative to the 

global coordinate system can be estimated. Additionally, parameters such as RQD and fracturing-

correlated Vs or Vp can be mapped to the 3D point cloud. As this is performed, the point cloud 

becomes a virtual database of material properties that accounts for their spatial distribution. 

 

4.2 Generation and Processing of RGBD Images using 3D Imagery 

It is valuable to utilize the 3D information generated by SfM in the workflow. In this 

section, the 3D points generated by SfM are re-projected back onto the original images they were 

extracted from. This new information is layered into the RGB images to produce RGB-Depth 

(RGBD) images. RGBD images were used to analyze pavement distress by Jahanshahi et al. 

(2013b) and can be generated by depth sensors in conjunction with traditional cameras. This type 

of multimodal imagery which synthesizes multiple data types (e.g. visible color, depth, infrared, 

and other spectral bands) has become a popular research thrust as UAV-based spatial data 

collection has gained popularity across many different fields. 

 

4.2.1 Generating RGBD Images 

As a result of the SfM workflow described earlier in this chapter, a 3D point cloud is 

produced from a series of images with estimated camera locations. The camera locations and 

orientations could be known at the time of collection or could be estimated/updated during bundle 

adjustment. The extrinsic camera parameters are used to define a matrix which can translate the 

3D points into the local coordinate system. The matrix (R) is defined as: 
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𝑅 = [
cos 𝜅 sin 𝜅 0

− sin 𝜅 cos 𝜅 0
0 0 1

] [
cos 𝜑 0 − sin 𝜑

0 1 0
sin 𝜑 0 cos 𝜑

] [
1 0 0
0 cos 𝜔 sin 𝜔
0 − sin 𝜔 cos 𝜔

]           (4-7) 

Where ω, φ, and κ are the yaw, pitch and roll angles of the camera about the x, y, and z axes in 

Figure 4-41 respectively. The matrices in Equation 4-7 can be altered as necessary to fit the 

definition of the coordinate systems. Figure 4-41 shows the local coordinate system of an arbitrary 

camera. The matrix R is then used to convert the 3D points into that specific image’s local 

coordinates in equation 4-8. Equation 4-8 performs a translation followed by rotation of 3D points 

and then performs a perspective transformation using the camera intrinsic parameters. 

[
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𝑦
𝑧

] = [
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0 −𝑃𝑦
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0   0

  
1 −𝑃𝑧

0 1

] [

𝑋
𝑌
𝑍
1

]             (4-8) 

Where X, Y, and Z are coordinates of 3D points in the global (i.e. SfM) coordinate system, [Px Py 

Pz] is the camera position in the global coordinate system, and rij are the elements of R, f is the 

camera focal length, sx and sy are skew factors, cx and cy are the image center, and x, y, and z is the 

set of 3D points in the local coordinate system. The pixel coordinates on the image plane of each 

3D point are defined by equations 4-9 and 4-10. 

𝑢 = (
𝑥

𝑧
)          (4-9) 

𝑣 = (
𝑦

𝑧
)                     (4-10) 

Where u and v are the pixel coordinates as defined in Figure 4-42, x, y, and z are the coordinates 

of the 3D points, and cx and cy are the image center in pixel coordinates. The multi-stage 

transformation from 3D global coordinates to image coordinates can be performed several 

equivalent ways. It is notable that any point can be projected onto the image plane, but may reside 

outside of the image itself. Such points are removed and a new image layer is populated with depth 
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values (the distance from the image plane to the object). If any pixel is assigned more than one 

depth value, meaning that more than one point was projected onto that pixel, the closest point is 

assigned to the pixel and the others are discarded. Figure 4-43 shows an example of an RGBD 

image where the green pixels overlain on the image represent points where a depth value has been 

assigned. When reverting SfM points back onto a source image, the lateral resolution of the depth 

points will never match the resolution of the image. In order for the lateral resolution to match (i.e. 

have a depth value in every pixel), each pixel should have been used in the generation of a 3D 

point. The RGBD images have a variety of uses. As an example, Figure 4-43 shows the profile of 

a vertical cross-section taken from center of the RGBD image. This is useful because a detailed 

2D profile can be produced by defining a transect in an image without needing to operate on the 

3D point cloud. 

 

4.2.2 Framework for Depth-Enabled Superpixels 

As described in the previous section of this chapter, the SLIC segmentation algorithm is 

useful for clustering portions of a rock mass image for independent processing. The SLIC 

algorithm performs clustering on 2D color images. With the addition of a depth component to the 

image, it is desirable to use this information to enhance the image segmentation and perform 

additional sub-processing utilizing the new image mode. The original SLIC algorithm has been 

adapted for use with RGBD images.  The updated SLIC algorithm is similar to the original 

algorithm in Achanta et al. (2012) which is shown in Figure 4-44. There are two major differences 

between the updated version presented here and the original. The cluster feature vector is now 

defined as: Ck = [lk,ak,bk,xk,yk,zk]
T. And a distance measure to compare the depth component of the 

image with color and spatial proximity was developed. When performing iterative clustering, SLIC 
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computes a distance measure (D) between a pixel and a potential cluster. If a pixel-to-cluster D 

value is less than the value for the pixel’s original cluster, the pixel is assigned to the new cluster 

(described in Figure 4-44). The distance measure is calculated based on the computed Euclidean 

distances between the pixel and cluster for the color (dc) and spatial proximity domains (ds). These 

respective metrics are defined by equation 4-11 and 4-12. Equation 4-13 is then used to calculate 

the pixel-cluster distance metric. 

𝑑𝑐 = √(𝑙𝑐 − 𝑙𝑝)
2

+(𝑎𝑐 − 𝑎𝑝)
2

+(𝑏𝑐 − 𝑏𝑝)
2
       (4-11) 

𝑑𝑠 = √(𝑦𝑐 − 𝑦𝑝)
2

+(𝑥𝑐 − 𝑥𝑝)
2
        (4-12) 

𝐷 = √(
𝑑𝑐

𝑁𝑐
)

2

+ (
𝑑𝑠

𝑁𝑠
)

2

          (4-13) 

Where Nc and Ns are normalization factors for the respective distance metrics; lc ac bc and lp ap bp 

are cluster and pixel color parameters in CIE-L*a*b color space respectively; xc and yc are the 

column and row designation of the cluster center; xp and yp are the column and row designation 

for the pixel. These factors are the expected maximum values for the respective distance metrics. 

Ns is defined as the maximum spatial search distance (S): 

𝑆 = √𝑁
𝑘⁄               (4-14) 

Where N is the total number of pixels in the image and k is the desired, or target, number of 

superpixels. Nc is more complex as the maximum expected distance in the color domain is not 

necessarily known and difficult to define. Achanta et al. (2012) provided 1 – 40 as the range of 

possible values for Nc and recommended using 10 – 40. This normalization factor could then be 

used as a control parameter to alter the relative importance of color with respect to spatial 

proximity. Higher values reduce the relative importance of color compared to spatial proximity 
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and result in more regularly-shaped clusters. Lower values minimize the relative importance of 

spatial proximity and do not constrain the cluster shapes. If irregular clusters are expected, as is 

expected with rock masses, a lower value of Nc should be used. For example, Figure 4-45 shows 

the impact of changing Nc, note that using a large value forces more regular shapes and does not 

conform as well to the rock structure. Now that a new image mode, namely depth, has been 

introduced a new distance metric (dd) is needed: 

𝑑𝑑 = √(𝑧𝑐 − 𝑧𝑝)
2

+(𝑧𝑐 − 𝑧𝑝)
2
        (4-15) 

 The distance metric for comparing pixels to potential clusters then becomes: 

𝐷 = √(
𝑑𝑐

𝑁𝑐
)

2

+ (
𝑑𝑠

𝑁𝑠
)

2

+ (
𝑑𝑑

𝑁𝑑
)

2

     (4-16) 

Where Nd is the depth component normalization factor, which is similarly defined as the maximum 

expected depth distance metric between pixels and potential clusters. This is more difficult to 

describe than Nc because the range of values is unknown. However, the normalization factor must 

be tied, in some way to the scale of the image and the physical distances expected. To capture 

physical characteristics, a definition of Nd is proposed in equation 4-17. 

𝑁𝑑 = 𝐾 ∙ 𝐺𝑆𝐷      (4-17) 

Where GSD is the ground sampling distance of the image and K is a constant. Based on initial 

testing of the effect of segmentation weighting on cluster contents (i.e., color and depth 

distribution), K = 5-20 is recommended. For a GSD of 5 mm, the expected maximum value of dd 

would then be 25 – 100 mm. When selecting a value for K, the expected surface variations on the 

rock and the desired cluster size should be considered. If a very irregular surface is expected, 

especially with significant variations expected within a cluster, a large value of K should be used. 

If cluster sizes will be small and lack discontinuities and significant surface variations within them, 
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a small value of K should be used. In general, large variations will not be expected across small 

spatial distances. The selection of K could also be used to control the influence of depth data 

relative to color. For example, if the reliability of the depth data is low, its potential influence can 

be mitigated by using a large K. Figure 4-46 shows the histograms of depth values contained 

between equivalent clusters for SLIC outputs with and without considering depth (i.e. RGBD 

versus RGB) for two different values of Nc. When the RGBD SLIC method is used, intra-cluster 

variance of depth decreases. In general, RDGB clustering improves the depth variance between 

equivalent clusters, as expected. However, the RGBD clustering may actually increase the intra-

cluster variance of depth in some clusters (e.g. 1 out of 25 total clusters) as a result of improving 

all of the surrounding clusters. In those cases, the variance of depth for that cluster increases when 

depth is considered. Figure 4-47 shows the effect of altering K on the resulting clusters. Very low 

values of K, maximize the weight of depth data in the clustering. Low values may also bias 

clustering towards regions with higher resolutions. The resolution of the depth layer within the 

RGBD image will not, in general, be constant when produced from SfM results. It will be 

dependent on the spatially-variant resolution of the point cloud and how those points project onto 

the image (i.e. how much those pixels contributed to model generation). 

 

4.2.3 Estimation of Surface Roughness 

Following manual selection of a small region on the surface of the rock within an RGBD 

image, or after RGBD clustering with SLIC, an estimation of surface roughness within the 

superpixel can be made. To do this, a plane is fit to the depth information embedded in the image 

region. Roughness is then estimated by calculating the deviations from the plane. An affine fit to 

a plane for this data can be performed by considering the mean-shifted 3D points: 
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𝐴 = [𝑋 𝑌 𝑍] − 𝑚𝑒𝑎𝑛[𝑋 𝑌 𝑍]        (4-18) 

Equation 4-18 forces the assumption that the mean of the points will fall on the plane. The plane 

which fits the points in [X Y Z] is orthogonal to the first eigenvector of ATA. A planar surface can 

be described completely by a unit normal vector to the plane. Figure 4-48 shows an example of 

fitting a plane to a relatively flat surface of a vesicular basalt. Figure 4-48a shows the location of 

pixels containing a depth component. The planar fit to those depth points is shown in Figure 48b. 

Following the planar fit, Figure 48c shows the histogram of point deviations from the plane and 

the resulting value of RMS roughness (2.9 mm). While the spatial resolution of the depth 

component of the RGBD image may be sufficient to observe depth of features at the surface of the 

material, the 3D information derived from SfM is unlikely to be capable of properly capturing the 

depth similarly to larger areas concealed by shadows. When combined with outputs from fracture 

detection, identified fractures (classified pixels) can be removed from the roughness computation 

to filter erroneous results when analyzing a single block. Observing spatial changes in the surface 

roughness could provide an additional indicator of changing weathering states and rock types. For 

the case of broken up rock masses, measuring deviations from a plane could provide 3D 

information on the size of fragments. Additionally, the estimated surface roughness can be mapped 

back to the 3D point cloud and included in the point feature vectors containing material properties 

and characteristics. The roughness value may be useful when known for planar surfaces used in 

3D discontinuity analysis such as examples in Table 4-1 which do not quantify the roughness of 

discontinuities (e.g. joint roughness) which is important for understanding the strength properties 

of the discontinuity. 
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4.2.4 Isolation of Discontinuities 

As discussed earlier, it is of interest to delineate fractures and subsequently describe the 

structure of a rock mass in order to spatially assign strength parameters. To do this, information 

about the weathering state of discontinuities is also needed. Regions around fractures identified by 

the detection approach described earlier can be selected to analyze them. The information that can 

be extracted about the fracture is primarily a function of the density of the depth layer in the RGBD 

image. Figure 4-49 shows the RGBD data for an isolated fracture. Figure 4-49a shows an example 

of a detected fracture where all pixels between the fracture edges have also been classified through 

post-processing. Figure 4-49b shows the depth mode of the image, corresponding pixel color has 

been assigned to the 3D points and the fracture is visible. Figure 4-49c similarly highlights the 

detected fracture pixels mapped to the 3D points. In Figure 4-49d the same highlighted fracture is 

shown from a different perspective. The dashed lines bound points identified as being part of the 

fracture in 3D analysis but were missed in 2D fracture detection. This is caused by the perspective 

of the camera used to obtain the image, which obscures the bottom internal edge of the fracture. 

However, this information can be resolved through incorporating additional camera perspectives 

as demonstrated by the 3D points in Figure 4-49.  With the fracture isolated, it is possible to make 

observations on its aperture and roughness. It appears from Figure 4-49d that a value for depth of 

the fracture could be interpreted from the RGBD data. However, the depth is unlikely to be 

accurate due to the lack of color information within the fracture and the lack of available internal 

camera views. The credibility of SfM points within a fracture must be independently verified. A 

useful quantification of fracture depth could be acquired from other methods, such as Jahanshahi 

et al. (2013). 
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4.2.5 Mapping Detected Fractures to 3D Points 

Pixels classified as fracture and also containing a depth component can be transformed 

back into 3D and overlain on the point cloud. Figure 4-49a shows an example of a section of rock 

containing detectable fractures. After detection, the points coinciding with depth values are 

transformed back to 3D points in Figure 4-49b. The reverse transformation of a single depth image 

back to its original point cloud is not necessarily a trivial problem. Some translational information 

may be lost during forward projection onto the image. The result is that when transformed back to 

3D space in global coordinates, the points are translated away from the original point cloud. This 

can be managed with different approaches. If there are no known tie points or the translation cannot 

be determined, the entire set of 3D points (not just those classified as fracture) can also be pushed 

through a reverse transformation. The full set of points will share a coordinate system with the 

reverse transformed fracture points and can be overlain in the new coordinate system. Additionally, 

by using the full set of points in the reverse transformation, the translation needed to align with the 

original point cloud can be determined as the translation minimizing the error between the original 

and reverse transformed point clouds. Alternatively, if there are known geotagged points within 

the reverse transformed data, determining the residual translation is trivial. If more information is 

needed such as scaling and additional rotation of the point cloud, the scale and rotation matrix can 

be estimated by iteratively solving for the operations that minimize the error between point clouds. 

As another example, Figure 4-50a shows a photo of a rock mass that was part of a complex 

of landslides caused by the 2015 Gorkha earthquake in Nepal. The exposed rock structure in Figure 

4-50a is about 20 m high. A 3D point cloud was generated of this site and a subset of 3D points 

pertaining to the rock mass has been transformed and projected onto the image in Figure 4-50b. 

This shows that if only a subset of points are needed, such as if a material classification has been 
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performed and one of those materials requires further characterization, point subsets can be 

processed separately. Fracture detection was applied with kb = 0.4 which generated Figure 4-51a. 

The RGBD pixels assigned the fracture were then transformed back into 3D space and merged 

with the original point cloud. This can be performed for any number of images covering the entire 

rock mass. The 3D points with a fracture designation are highlighted in Figure 4-51b. It can be 

observed by comparing Figure 4-51a to Figure 4-51b that some of the detected fractures have lost 

some of their shape or continuity after transformation. This is because only the pixels containing 

depth information (i.e. pixels that have a corresponding point in 3D) can be mapped back to the 

point cloud. Now, each of the points has a binary label classifying it as fracture constituent or not. 

The assigning a fracture designation to the 3D points allows for easier identification of some 

fractures that were not previously apparent in the point cloud. Doing this allows for easier 

interpretation of fracture orientation in 3D, as performed in Chapter 3, because the fractures have 

been highlighted. Additionally, fractures not previously identifiable in the 3D imagery are labeled 

and can have their orientations measured, which was previously not possible. However, there were 

still fractures visible in the point cloud that were not detected in 2D as a result of incomplete recall. 

The labeled 3D points can then be subsequently included in 3D analysis methods, such as 

potentially automated estimations of rock strength parameters (e.g., GSI) or with other 

discontinuity assessments such as those that measure orientation on planar faces. In Figure 4-51b, 

examples of discontinuity sets were measured based on the fracture designations in 3D and 

strike/dip was reported and can be used for stability analysis. For example, the discontinuity 

labeled with a dip of 40° and striking at 90° is the bottom plane consisting of a set of three 

discontinuities that form a wedge. The wedge, which dips away from the rock face would be the 
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target of a structurally-controlled stability analysis and could fail similarly to the earthquake-

induced wedge failure observed in Chapter 3 at another landslide site in Nepal. 

 

4.3 Summary and Recommendations for 3D-Enabled Image Processing Framework 

In this chapter, image processing techniques have been introduced for assessing the 

structure of a rock mass. The synthesized workflow integrating the described techniques was 

summarized in Figure 4-2. When the semi-automated fracture detection method is used, the user 

can tune the algorithm to handle complex characteristics of rock masses such as surface texture 

and discoloration. The presented fracture detection algorithm, as outlined in Figure 4-1, has two 

optional pre-processing components. First, a Gaussian filter can be applied to the image to remove 

noise associated with grains, minerals, and other texture on the surface of the rock. However, using 

the filter, which is standard in many edge detection procedures, was found to be detrimental for 

images that do not have high contrast between fracture and rock surface, and for images where the 

fracture width is close to the 3 pixel minimum due to a smoothing effect on fracture edges. The 

filter is recommended for higher-resolution images (GSD < 5 mm) with high-contrast fractures. 

Alternatively, the filter can be manually activated by the user to address cases of disruptive noise 

on the rock surface. When used, the filter may need to be coupled with higher values of kb (0.4 - 

0.6). The second optional pre-processing component uses a modified version of Otsu’s threshold 

for image binarization. The Otsu’s threshold is computed on the grayscale image and scaled by a 

factor Os. Pixels with intensity values above the threshold are assigned a constant value (e.g. 

median of all pixels). Performing this function was found to greatly improve fracture detection 

performance on images of weathered, vesicular basalt. For the basalt image set, Os = 0.5 was found 

to perform the best and was significantly more influential on results than kb. However, when used 
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with large images that include high-density fracturing, larger values of Os (0.6-0.9) is 

recommended. It is recommended that the modified Otsu’s threshold be used if it is specifically 

noticed that the images will need the pre-processing or to address results with high false positive 

rates and high-contrast fractures. The fracture detection method should be applied to segmented 

images, either manually or automatically (e.g. SLIC) because control parameters may need 

adjustment across the image. However, the algorithm can be applied to full images of any size if 

desired. The fracture detection was used to estimate RQD in vertical transects across an image. 

The RQD estimate is fairly resilient to noise, for the examples tested, but provides an overestimate 

by 10-15%. A heat map of detected fracture density was compared to a manual classification. The 

heat map was useful for quickly identifying areas of intact, moderately fractured, and highly 

fractured rock. However, soil appeared similar to intact rock in the results. A pre-processing 

method to segment soil and rock is needed because the two material categories must be handled 

separately. The heat map described the spatial distribution of fracturing in the rock mass well and 

was compared to a 2D Vs profile conducted along the top of the outcrop. The minimum and 

maximum fracture frequency was correlated to Vs for the 2D profile contours. 

It has been shown that depth images (RGBD) can be produced by reducing SfM point 

clouds and synthesized with traditional 2D image processing. The depth images contain 

information from other camera perspectives which is important for verifying results from 2D 

images of complex 3D structures. An updated version of SLIC (superpixels) for RGBD images 

was developed but will require additional validation with currently undeveloped baseline datasets 

before being extended to other applications than what has been covered here. The RGBD images 

can be generated by projecting 3D points onto a SfM input image, orthophoto generated from a 

DSM, or a newly acquired image. The relative weighting of image depth for clustering was tied to 
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the GSD of the image scaled by a factor (K = 5-20). The selection of K can be made based on the 

relative uncertainty of the depth data, desired influence, or a priori knowledge of the rock structure. 

When clustering was performed on RGBD images, the intra-cluster variance of decreased and 

resulted in clusters more closely following the 3D structure of the rock. The methodology in Figure 

4-2 synthesizes the 2D fracture detection with 3D information, when available, to analyze rock 

surface roughness and the characteristics of individual fractures detected in 2D images. Using the 

same principles that allowed for the RGBD images to be generated from SfM point clouds, the 

depth-enabled pixels contained in detected fractures within each image can be transformed back 

to 3D and attached to the 3D point cloud. The fracture orientations (strike/dip) and spacing can 

then be measured, the 3D spatial density of fracturing can be estimated, or the labeled 3D points 

can be used in further 3D rock structure analyses. The reverse transformation back to the 3D point 

cloud from 2D images can translate additional information as well including Vs, fracture 

frequency, surface roughness, GSI, and RQD among many others. When mapped back to the 3D 

points, the point feature vectors store information about these material properties and 

characteristics. The properties can then be combined with other point cloud outputs or propagated 

through other 3D-based analyses. The connection of external information also causes the point 

cloud to act as database for spatially-distributed data. This is useful for managing large databases 

of earthquake-affected sites such as landslides. The individual components of the framework are 

designed to be open-ended for integration with other 2D/3D image processing techniques 

developed outside of this study. 
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Table 4-1: Recent crack and discontinuity mapping approaches 

 

Reference Data Type Material 

Vasuki et al. (2014) DSM Widely spaced rock joints. 

Lato and Vöge (2013) DSM Natural fractures in rocks. 

Chen et al. (2016) Point Cloud Planar surfaces in rock masses. 

Riquelme et al. (2015) Point Cloud Discontinuity sets in rock masses. 

Valença et al. (2017) Image and Point Cloud Concrete. 

Wu et al. (2014) Image Pavements. 

Torok et al. (2014) Mesh Severely damaged concrete. 

Jiang and Tsai (2015) Image with depth Pavements. 

Jahanshahi and Masri (2013) Image and Point Cloud Concrete. 

 

Table 4-2: Performance of fracture detection on marble images 

IMG ID Detectable Fractures kb=0.2 kb=0.3 kb=0.4 kb=0.5 kb=0.6 

M1 21 3 4 9 15 21 

M2 10 0 3 5 7 10 

M3 11 0 3 7 9 11 

M4 19 2 4 8 11 14 

M5 28 5 13 15 23 28 

M6 28 3 6 8 15 16 

M7 15 3 4 6 8 9 

M8 17 2 6 7 10 12 

M9 18 2 3 8 11 12 

M10 25 1 2 4 8 14 

M11 32 0 7 10 15 22 

M12 14 2 3 4 8 10 

M13 9 2 2 5 6 7 

M14 18 2 2 3 4 10 

M15 12 0 4 7 10 12 

M16 14 0 0 3 6 14 

M17 18 1 3 11 16 18 

M18 14 3 5 7 8 14 

       

Total: 323 31 74 127 190 254 

 

 

Table 4-3: F-measure for five values of kb in marble images 

 

kb 

0.2 0.3 0.4 0.5 0.6 

0.17 0.36 0.53 0.58 0.47 
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Table 4-4: Performance evaluation of basalt images 

IMG ID Detectable Fractures 
Os=0.4 

kb=0.3 

Os=0.4 

kb=0.4 

Os=0.4 

kb=0.5 

Os=0.5 

kb=0.3 

Os=0.5 

kb=0.4 

Os=0.5 

kb=0.5 

BA1 8 6 6 7 7 7 7 

BA2 7 3 3 3 5 5 5 

BA3 6 4 4 4 6 6 6 

BA4 5 2 2 2 4 5 5 

BA5 5 4 4 4 4 4 4 

BA6 5 3 3 3 5 5 5 

BA7 4 1 1 1 1 1 1 

BA8 4 2 2 2 2 2 2 

BA9 8 7 8 8 8 8 8 

BA10 3 3 3 3 3 3 3 

BA11 5 3 4 4 5 5 5 

BA12 8 4 4 5 6 7 7 

BA13 5 5 5 5 5 5 5 

BA14 6 5 5 5 6 6 6 

BA15 7 3 3 3 4 5 5 

BA16 14 11 12 12 12 12 12 

BA17 7 4 4 4 6 6 6 

BA18 8 5 5 5 7 7 7 

BA19 6 3 3 4 6 6 6 

BA20 7 5 5 6 6 6 6 

BA21 4 1 1 1 2 2 2 

BA22 15 10 10 11 11 11 11 

BA23 7 5 5 5 6 6 6 

BA24 5 5 5 5 5 5 5 

BA25 1 1 1 1 1 1 1 

BA26 6 4 4 4 5 5 5 

BA27 6 5 5 5 6 6 6 

BA28 10 9 9 9 10 10 10 

        

Total: 182 123 126 131 154 157 157 
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Table 4-5: Fracture detection rates in basalt images for six different combinations of 

control parameters 

 

Parameters 
kb = 0.3 

Os = 0.4 

kb = 0.4 

Os = 0.4 

kb = 0.5 

Os = 0.4 

kb = 0.3 

Os = 0.5 

kb = 0.4 

Os = 0.5 

kb = 0.5 

Os = 0.5 

Precision 0.77 0.73 0.72 0.52 0.46 0.41 

Recall 0.68 0.69 0.72 0.85 0.86 0.86 

F-measure 0.72 0.71 0.72 0.64 0.60 0.56 

 

 

Table 4-6: Performance of third image set 

IMG ID Detectable Fractures kb = 0.2 kb = 0.3 kb = 0.4 kb = 0.5 

H2 4 3 4 4 4 

H3 11 5 10 11 11 

H4 11 3 7 10 11 

IDL 3 2 2 3 3 

K1 6 4 4 5 6 

K2 9 7 9 9 9 

L5 6 2 6 6 6 

L6 14 3 11 14 14 

NP1 13 9 12 13 13 

NP4 12 8 10 12 12 

NP5 16 8 14 15 16 

NZ1 15 5 7 15 15 

NZ2 81 18 48 71 77 

NZ3 43 17 31 43 43 

NZ4 40 12 29 36 40 

NZ5 11 3 5 7 8 

NZ10 9 1 2 9 9 

NZ11 16 0 0 10 16 

NZ12 19 2 3 6 16 

NZ13 8 2 4 8 8 

NZ17 10 0 1 5 9 

NZ18 17 2 11 13 15 

NZ21 14 1 3 9 14 

S1 47 11 26 44 46 

S2 13 5 11 13 13 

S3 13 3 9 13 13 

S7 15 4 9 13 15 

S8 7 2 3 7 7 

      

Total 483 142 291 424 469 
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Table 4-7: F-measure for third image set 

 

kb 

0.2 0.3 0.4 0.5 

0.44 0.71 0.77 0.64 

 

 

 
 

Figure 4-1: Developed computation sequence fracture detection method 

 

 
 

Figure 4-2: 3D-enabled image processing framework 
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Figure 4-3: (a) Sample image; (b) grayscale image; (c) vertical image gradient; and (d) 

horizontal image gradient 

 
Figure 4-4: Effect of increasing gradient threshold 

15 

cm 
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Figure 4-5: (a) Photo of brick wall; (b) binary image of brick wall generated with threshold 

T; and (c) convergence of threshold value 

 

(a) 

(c) 

(b) 

7 cm 
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Figure 4-6: Example multi-threshold potential fracture map 
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Figure 4-7: Effect of kb on sample images: (a) kb = 0.2; (b) kb = 0.3; (c) kb = 0.4; (d) kb = 0.5 

 

 

 
Figure 4-8: (a) 4-way and (b) 8-wayconnectivity neighborhoods 
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Figure 4-9: Example marble image (M1) subjected to (a) first morphologic filtering step; 

(b) binary object thinning; and (c) second morphologic filtering step 

(a) 

(b) 

(c) 

10 

cm 
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Figure 4-10: Sample image (a) before applying Gaussian filter and (b) after 

 

 

        
Figure 4-11: Effect of blurring on fractures: (a) unfiltered fracture; (b) filtered fracture; 

(c) intensity across fracture; and (d) vertical gradient across fracture 

 

         
 

Figure 4-12: Examples of staining of weathered basalt 

 

(a) (b) 

(a) (b) 

(c) (d) 
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Figure 4-13: (a) Unaltered grayscale image; (b) image altered using modified Otsu’s 

threshold (Os = 0.5); (c) final fracture detection of unaltered image; (d) final fracture 

detection of altered image 

 

 
 

Figure 4-14: Orthophoto of marble quarry wall with human-made objects highlighted 

 

10 cm 
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Figure 4-15: (a) Example of automatic fracture detection performed on a marble image 

(M1) with examples of a positive detection and incomplete detection of fractures; and (b) 

simplified labeling of manually-detected fractures  
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Figure 4-16: True positive rate as function of total false positives for marble orthophoto 

images 

 

 
Figure 4-17: Precision-Recall Relationship for marble orthophoto images 
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Figure 4-18: Example output from fracture detection on four marble images with kb=0.5 
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Figure 4-19: Example photos of a roughly 4 m high basalt outcrop in Hawaii 
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Figure 4-20: Detection rate as a function of false positives for basalt images 

 

 
 

Figure 4-21: Example of single basalt image subjected to different control parameters 
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Figure 4-22: Example output from fracture detection on four basalt images  
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Figure 4-23: Detection rate as a function of false positives for the third image set 

 
Figure 4-24: Precision-recall relationship for third image set 
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Figure 4-25: Output from fracture detection performed on three examples from the third 

image set with kb = 0.4 

 

 
Figure 4-26: (a) SLIC (Nc=10) applied to a sample image and (b) median function applied 

to the superpixels 
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Figure 4-27: Sample transects for manual fracture counting, approximate height is 2 m 

 

 
Figure 4-28: Automatic fracture detection versus manual fracture counting for transects in 

Figure 4-27 
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Figure 4-29: Transects used to assess fracture detection of interlocked angular blocky rock 

with kb=0.4 

 

Figure 4-30: Results of fracture detection compared to manual fracture counting for 

transects in Figure 4-29
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Figure 4-31: Fracture detection with kb = 0.35 applied to the marble quarry orthophoto 
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Figure 4-32: Comparison of fracture detection results to manual counting for the quarry 

orthophoto 

 

 
 

Figure 4-33: Example of fracture detection; narrowest fractures are not detected, or are 

partially detected 
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Figure 4-34: (a) Profile subjected to fracture detection (green pixels), and (b) automatic 

RQD computation on 10 cm wide vertical transects 

 

 
Figure 4-35: Comparison between automatic RQD and manual RQD calculations for 

vertical transects labeled in Figure 4-34; automatic values are the average of three closest 

cells



175 
 

 

 
Figure 4-36: (a) Profile subjected to automatic fracture detection; (b) contours indicating fracture density (fractures per 

meter) overlain on photo of profile; and (c) manual classification of profile using the ISRM (1978) system 
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Figure 4-37: Heat map of fractures per meter and profile; examples of good performance are highlighted 
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Figure 4-38: Heat map of fractures per m and profile; examples of erroneous results are highlighted 
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Figure 4-39: 2D Vs contours generated by MASW testing above outcrop 

 
Figure 4-40: Correlation between approximate minimum and maximum fracture 

frequency and Vs generated by 2D MASW test 
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Figure 4-41: Example of camera and global coordinate systems 

 

 
Figure 4-42: Pixel coordinate system 
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Figure 4-43: Slope profile derived from RGBD image 

 

 

 
 

Figure 4-44: SLIC Procedure (from Achanta et al., 2012) 
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Figure 4-45: Impact of changing Nc in the original SLIC algorithm for an image; (a) Nc=40 

and (b) Nc=10 

 

  

  

 

Figure 4-46: Comparison between depth values within a single cluster for RGB (left) versus 

RGBD (right) SLIC for two equivalent clusters with K=10 and Nc=10 (top) and Nc=40 

(bottom) 

(a) (b) 
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Figure 4-47: Impact of K on clustering; (a) K=5, and (b) K=10 

 

 
 

Figure 4-48: (a) Manually-segmented region of RGBD image; (b) planar fit to points, and 

(c) estimation of surface roughness 
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Figure 4-49: (a) Image of detected fracture (internal pixels have also been classified); (b) 

visualization of RGBD data for the image; (c) classified fracture pixels mapped to the depth 

points; and (d) highlight of depth points identified as fracture in 3D but missed in 2D 

detection 
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Figure 4-50: (a) Photo of fractured rock; (b) fracture detection results transformed to 3D 

point cloud 

 

   
 

Figure 4-51: (a) Photo of a blocky rock mass; (b) 3D points projected to image plane 

 

(a) (b) 
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Figure 4-52: (a) Fractures identified in 2D and (b) transformed back to 3D (points are 

exaggerated) 
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CHAPTER 5 

UAV-Enabled Characterization Imaging using Multichannel Analysis of Surface Waves 

 

As discussed in Chapter 2,  UAV implementation in civil engineering has focused on 

remote sensing using optical cameras, LiDAR, and other sensing systems such as wireless sensor 

networks. The remote sensing focus of most UAV implementations has led to dramatic 

improvements to geometric documentation at sites, as has been shown in Chapter 3. It was also 

identified in Chapter 3 that even as geometric documentation of sites continues to advance rapidly, 

remote methods for subsurface characterization have not advanced significantly. Chapter 2 

identified that existing work on remote subsurface sensing using UAVs has been limited and is the 

focus of this chapter. First, an open-source MASW data processing code written in Matlab was 

developed. The function of the code is to provide a framework for performing MASW 

computations through a UAV platform. The fundamental components are described and examples 

are provided. An on-board data analysis framework is one of many components that will contribute 

to developing an autonomous system for performing in situ seismic surface wave tests. Next, an 

actuation implementation is made where UAVs are used to deploy the impulsive source for 

MASW tests. For this implementation, two UAVs were modified to lift and drop various masses 

to generate Rayleigh surface waves. This is intended to highlight the use of UAVs for physical 

interaction with the ground for subsurface sensing. The contributions of this chapter are part of the 

vision for remote, autonomous subsurface mapping to be coupled with image-based surface 
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mapping which will be critical for remote site characterization in post-earthquake geotechnical 

reconnaissance. 

 

5.1 Surface Wave Methods Background 

Surface wave methods (SWM) have become useful techniques for geotechnical site 

characterization over the past several decades. SWM are used to estimate a shear wave velocity 

(Vs) profile in the subsurface. The Vs is a key input parameter for subsurface characterization and 

seismic response analysis. The Vs is a fundamental engineering parameter which describes the 

stiffness of a geomaterial. The Vs of a material is related to the material’s small-strain shear 

modulus (Gmax) and mass density (ρ) by Equation 5-1. 

𝑉𝑠 =  √𝐺𝑚𝑎𝑥
𝜌⁄          (5-1) 

The Vs has been used for a variety of tasks in geotechnical engineering including 

liquefaction susceptibility assessment (Andrus and Stokoe, 2000), foundation settlement 

estimation (Sheehan et al., 2010), spatial variability of stiffness assessment (Greenwood et al., 

2015), fault zone mapping (Duffy et al., 2014), karst and subsurface cavity identification (Nasseri-

Moghaddam et al., 2005), and seismic site response analyses (Kramer, 1994). Vs also has many 

uses for general material characterization and stiffness assessment (Stokoe and Santamarina, 

2000). For these reasons Vs investigations are valuable for site characterization, particularly in 

areas prone to seismicity. Several active-source techniques have been established such as spectral 

analysis of surface waves (SASW), multi-offset phase analysis (MOPA), and multichannel 

analysis of surface waves (MASW). Active-source SWM generally rely on the same fundamental 

physics governing the propagation of Rayleigh surface waves in a layered half-space. Passive 

methods, such as microtremor analysis method (MAM), which uses spatial autocorrelation to 
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estimate surface wave dispersion in background vibrations at low frequencies (Okada, 2003), can 

be combined directly with active-source methods (Park et al., 2005; Sahadewa et al., 2012). MAM 

is best used with a nonlinear array (e.g. circular) to avoid the effects of dominant noise direction 

which requires array reconfiguration (Sahadewa et al., 2012).  

 

5.1.1 Rayleigh Wave Dispersion 

Rayleigh surface waves induce particle motion to different depths in the ground as a 

function of their wavelength. If material properties vary as a function of depth, different 

wavelength Rayleigh waves will travel at different velocities. This results in dispersion of different 

frequency waves as they propagate along the ground surface. The recorded phase offset of different 

frequency waves is used to develop a relationship between phase velocity and frequency (or 

wavelength) called a dispersion curve. The dispersion curve is then used to estimate a Vs profile. 

Several methods for acquiring the dispersion curve are available but generally provide the same 

results with some variability introduced by user interpretation. Many of the available dispersion 

methods for active and passive sources are listed in Table 5-1. For the active-source dispersion 

methods listed in Table 5-1, they are all capable of resolving higher mode dispersion curves. 

Considering energy concentration in higher modes is important for modeling velocity inversions 

and identifying low-velocity layers in the subsurface. As noted by Garafolo et al. (2016), when 

inverting the dispersion curve some users model the effective, or apparent, dispersion curve which 

consider how energy would theoretically split between modes. For the Vs profiling performed in 

this chapter, the Park et al. (1998) phase-shift transform method is used for dispersion analyses 

and the Xia et al. (2003) inversion approached is used with consideration for higher modes when 

appropriate. The dispersion curve is the best way to make direct comparisons between sets of data. 
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However, in practice, it is most useful to develop the Vs profile for use in further analysis and 

design. 

 

5.1.2 Dispersion Curve Inversion 

Many different inversion approaches have been developed for surface wave inversion. 

Major differences in interpretation arise depending on the approach and inversion algorithm used 

to estimate the Vs profile from the dispersion curve. Table 5-2 summarizes several of the available 

inversion techniques and the underlying algorithms. The general workflow for surface wave 

dispersion curve inversion is detailed in Figure 5-1.  

The selection of the inversion method has a much stronger influence over the final Vs 

model than the dispersion method (Garafalo et al., 2016). For example, increasing the number of 

inversion variables reduces computational efficiency and increases the number of possible 

solutions presented. Global search methods are typically inefficient and can produce unreasonable 

results. Dispersion curve misfit can be difficult to quantify and a least squares solution may not 

produce a result that is closest to truth or a reasonable dispersion curve match. Correct 

identification of higher mode dispersion curves is necessary in most algorithms which utilize them. 

The combination of the inversion method used and user bias may result in significant differences 

in the inversion results for a single dispersion curve (Cox et al., 2014). 

The convergence of the inversion solution can be improved with the inclusion of additional 

data which introduce constraints to the model. Inversion methods have been introduced that utilize 

additional information available in the raw data other than Rayleigh wave dispersion. These 

methods include borehole, penetration, or other stratigraphic data, joint inversion of Rayleigh wave 

dispersion with P-wave refraction (Piatti et al., 2012; Boiero and Socco, 2014), Rayleigh wave 
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attenuation (Lai et al., 2002), and Love wave dispersion (Joh et al., 2006). For the case of joint 

inversion methods, the intent is to introduce constraints to the Vs model. For some of the examples 

mentioned above, a priori information is pulled from the raw data and introduced to the inversion 

procedure. The information required (e.g. P-wave first arrivals, surface wave attenuation) may be 

contained within the same seismic recording. However, these methods have not gained much 

traction because they are highly dependent on the quality of the data used for joint inversion. 

Generally, a priori information, when available, is used to set up the initial model and/or 

constrain the inversion. The setup of the initial model typically has a strong influence on the final 

model (Socco et al., 2010). Recent research efforts have focused on quantifying uncertainty and 

constraining the Vs model in cases where no a priori information is available. Recently, significant 

effort has been placed into assessing uncertainty and managing surface wave inversion without a 

priori knowledge. Cox and Teague (2016) implemented a layer parametrization method for surface 

wave inversion when a priori stratigraphy information is unavailable. The inversion is performed 

with different layer thickness multipliers until the most reasonable Vs profile is determined. 

Griffiths et al. (2016a) introduced a dispersion approach to assess a site’s dispersion uncertainty 

based on many inversion results. With respect to uncertainty, particular interest has been taken on 

the impact of inversion uncertainty on seismic site response analyses (Foti et al., 2009; Comina et 

al., 2012; Griffiths et al., 2016b). In general, confidence in surface wave inversion results is 

improved when a priori information is utilized, but it is not always available.  

 

5.1.3 Generalized Field Procedure in this Study 

In this study, in situ Vs measurements were performed using the MASW technique (Park 

et al., 1999). A linear array of 16 surface 4.5 Hz geophones are used to measure Rayleigh waves 
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generated by a sledgehammer. The hammer strike is offset from the array about 15-20% of the 

total array length to avoid the influence of near field effects (Yoon and Rix, 2009). Hammer strikes 

are stacked 5-10 times to improve the signal to noise ratio. Geophone spacing is adjusted 

depending on the desired depth of investigation and near-surface resolution. Longer arrays are 

capable of measuring longer wavelengths, and therefore have greater maximum investigation 

depths. Arrays with closely spaced geophones are able to measure higher frequency waves and 

therefore can resolve thinner layers near the surface. The same array is used to measure lower 

frequency (<10 Hz) Rayleigh waves in the background noise. It is notable that the frequencies 

recorded will vary somewhat depending on the Vs of the materials at the site. For example, higher 

frequencies will be recorded at a rock site with low weathering compared to a typical soil site when 

using the same array geometry. A typical testing program for a given location at a site may include 

a combination of 3 m spacing passive, 3 m spacing active, and 1 m spacing active tests, depending 

on the goal of the investigation.  

2D Vs profiling was performed using the same field setup as the 1D profiling. However, 

after a sufficient number of hammer strikes have been stacked, the geophone array is shifted by 

one sensor spacing in the same direction the array is oriented. This is repeated until a sufficient 

length has been covered to produce the desired 2D Vs profile. A 2D Vs profile is produced from 

this data using the common midpoint cross-correlation (CMPCC) method (Hayahsi and Suzuki, 

2004). CMPCC considers sensor groups in the 2D profile data collection with common midpoints 

and extracts dispersion characteristics from them. The CMPCC method was developed to provide 

improved spatial resolution, particularly at the extents of the array, relative to traditional 2D 

profiling methods (e.g. Xia et al., 2000). 
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5.2 Open-Source Computer Dispersion Code: 

An open-source code (Matlab) was developed for the purposes of analyzing surface wave 

data collected using traditional methods as well as the UAV tests discussed later in this chapter. 

The primary function of the code is to extract Rayleigh wave dispersion curves from data collected 

in the field and outline the framework for UAV-based MASW computations. 

 

5.2.1 Dispersion of Multichannel Data: 

The code reads raw data from active MASW tests and uses the Park et al. (1998) algorithm 

(phase-shift transform) to develop a phase velocity-frequency spectrum. The spectral peaks are 

then automatically selected as initial guesses for points in the dispersion curve. The selected 

spectral peaks can then be manually adjusted by the user. An example output from the code is 

shown in Figure 5-2. The selected dispersion points in Figure 5-2e are selected automatically from 

Figure 5-2d but require additional processing to be finalized for modeling (e.g. points at 10 Hz and 

30 Hz).  The required inputs for the dispersion analysis are: number of sensors, sensor time 

histories, sensor locations, sampling frequency, source location, number of files for signal 

stacking, dispersion frequency range, and phase velocity range. Theoretical dispersion curves can 

then be computed for a given earth model (Vs, Vp, ρ) for comparison with the experimental 

dispersion curve if desired. The earth model can then be updated using an inversion algorithm but 

is not presently implemented in the code. Ideally, the user could integrate their inversion approach 

of choice. UAV-based MASW operations are expected to be performed of surface wave 

dispersion. Analysis of data quality in phase velocity-frequency spectrum is expected to be basis 

for on-board operational decision-making. Other functionality has been incorporated to 

complement the initial dispersion analysis which is documented in the following subsections. 
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5.2.2 Estimation of Spatial Variability: 

It is critical to understand the inherent variability of soil properties. The coefficient of 

variation (COV) is the ratio of the standard deviation ( SD[X] ) to the expected value ( E[X] ) of a 

sample set. COV is mathematically defined in Equation 5-2. 

𝐶𝑂𝑉 =  
𝑆𝐷[𝑋]

𝐸[𝑋]⁄         (5-2) 

COV has been used to quantify variability in several different soil properties (Phoon and 

Kulhawy, 1999; Vipulanandan et al., 2007; Alshibli et al., 2009; Chen and Kulhawy, 2014). COV 

has also been applied to Vs profiles, generated using the same methods, at soil and rock sites 

(Stokoe et al., 2004a; Stokoe et al., 2004b; Lin et al., 2008; Cox et al., 2011; Wong et al., 2011; 

Cox et al., 2012). A similar approach to these examples was applied by our research team to five 

different waste materials in a total of 26 locations (Greenwood et al., 2015). One-dimensional Vs 

profiling was performed at multiple locations in each type of waste material and COV profiles 

were estimated. In this implementation, the Vs profiles developed are fit to a log-normal 

distribution (i.e. Vs~Lognormal(µ,σ2)) then ±SD and median profiles are calculated. Based on 

these statistical Vs profiles, a COV profile is then calculated. The COV is calculated for a 

lognormal distribution in Equation 3-5:  

𝐶𝑂𝑉 = √𝑒𝜎2
− 1                (5-3) 

The COV profile provides a quantification of material variability as a function of depth. An 

example of the statistical analysis performed at a soil site is shown in Figure 5-3. Similarly, a log-

normal distribution can model dispersion curves for the multiple site tests. Assessing the dispersion 

curve variability quantifies site variation but does not relate directly to specific depths in the 

subsurface unless the dispersion curves are inverted into Vs profiles. 
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5.2.3 Modeling of Profiles: 

The median profiles derived from the statistical analysis can then be approximated using a 

hyperbolic model through curve fitting. The curve can then be used as an estimated shear wave 

velocity versus depth estimate for subsequent analyses such as seismic site response. If multiple 

tests are performed at a site, the variability estimate generated through statistical analyses can be 

propagated through seismic site response analyses. The empirical model is defined by Equation 5-

4. 

𝑉𝑠 = 𝑉𝑠𝑖 +
𝑧

𝛼𝑉𝑠+𝛽𝑉𝑠∙𝑧
                       (5-4) 

Where Vs is the shear wave velocity (m/s) and z is the depth (m). Parameters Vsi, αVs, and βVs 

describe the shape of the curve. Parameter Vsi is the initial shear wave velocity value for the model 

(i.e. Vs near the surface of a given material). Parameter αVs controls the initial slope of the curve. 

Larger values manifest as sharper increases in Vs near the surface. Parameter βVs controls the 

maximum model value the curve will asymptotically approach. The inverse of βVs is the difference 

between the surface Vs (Vsi) and the maximum Vs. This means that for βVs = 0 there is no maximum 

value and the model will simply increase linearly with depth, this is apparent by observing that 

Equation 4-5 becomes a linear model for βVs = 0. Figure 5-4 shows an example of applying the 

empirical model. The median profile shown in Figure 5-3 is fit to the model using nonlinear lest 

squares regression. Weighted regression can also be performed if there is greater confidence at 

some depths in the profile (e.g. lower uncertainty, secondary data is available, etc.) or a specific 

depth range is the fit target. This empirical model was used by Greenwood et al. (2015) for a range 

of waste materials in containment facilities including regional municipal solid waste (MSW), 

bioreactor degraded MSW, a hazardous waste landfill, construction and demolition waste, 
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municipal water treatment sludge, and MSW incineration ash. The parameters for models fit to 

mean profiles in those materials is shown in Table 5-3. 

 

5.2.4 Rayleigh Wave Attenuation: 

Attenuation analyses of the input geophone time histories can be performed by converting 

to displacement time histories. Rayleigh surface waves propagating in geomaterials exhibit both 

geometric and material damping. The Bornitz Equation (Equation 5-5) synthesizes both of these 

factors to model the attenuation of vibrations at the ground surface (Bornitz, 1931). 

𝐴2 = 𝐴1√𝑟1
𝑟2

⁄ 𝑒−𝛼(𝑟2−𝑟1)          (5-5) 

Where A1 and A2 are the vibration amplitudes at two distances away from the vibration source, r1 

and r2 are the respective distances of the amplitudes from the source, and α is the coefficient of 

attenuation. The Bornitz Equation has been used for many years to estimate the attenuation of 

construction vibrations (Dowding, 2000). However, the attenuation of Rayleigh surface waves in 

geomaterials is frequency-dependent. This means that for different frequency vibrations analyzed 

by Equation 5-5, the attenuation coefficient will be different. Additionally, because Rayleigh 

waves induce particle motion as a function of wavelength, as soil properties vary with depth the 

attenuation of different frequency waves will change because a different set of material is sampled. 

To consider this effect, attenuation analyses that incorporate frequency effects are integrated with 

the code. 

 The first approach was proposed by Athanasopoulos et al. (2000) and originally used with 

SASW test results. The Athanasopoulos et al. (2000) method considers the attenuation of the 

frequency domain between two sensors where the coherence function is greater than 0.99. For this 
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frequency range, the function provided in Equation 5-6 is then fit to the ratio of the Fourier 

amplitudes of the two sensors. 

𝑊2

𝑊1
= √𝑟1

𝑟2
⁄ 𝑒−𝛼0𝑓(𝑟2−𝑟1)          (5-6) 

Where W1 and W2 are the Fourier amplitudes of the sensors, r1 and r2 are the distances of the 

sensors from the source, f is the frequency of vibration, and α0 is the frequency-independent 

attenuation coefficient which is extracted from the curve fitting. Figure 5-5 shows an example of 

this approach applied to a soil site. The frequency-independent attenuation coefficient can be used 

to estimate the coefficient of attenuation for a specific frequency simply by multiplying by that 

frequency (Hz).  

The second implemented approach is similar to that proposed by Athanasopoulos et al. 

(2000) and takes advantage of all data generated by a multichannel array. The attenuation of each 

frequency generated by the source is considered across the entire array by transforming the 

recorded geophone signals into the frequency domain. The decay of Fourier amplitudes at each 

frequency is observed as a function of distance from the source. Equation 5-6 is then fit to the data 

to derive the coefficient of attenuation as a function of frequency. An example of curve fitting for 

two frequencies is shown in Figure 5-6.  An example of an attenuation-frequency curve produced 

from MASW testing at the site discussed in the following section is shown in Figure 5-7. Figure 

5-7 clearly shows the frequency dependence of Rayleigh wave attenuation. It is expected that α 

will decrease as frequency decreases due to higher-frequency waves attenuating more quickly in 

dissipative material such as soil. The overall trend of the curve in Figure 5-7 demonstrates this, 

however, there is an apparent increase in α below 19 Hz. The coefficient of attenuation 

approximately doubles from 19 Hz (α19=5.23E-3 1/m) to 18 Hz (α18=1.01E-2 1/m) which is not 

expected. Assuming measurement locations at r1=10 m and r2=50 m, the vibrations amplitudes of 
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the 18 Hz and 19 Hz waves would attenuate to approximately 30% and 36% of their respective 

initial amplitudes. This unexpected trend below 19 Hz is likely caused by amplitude peaks in 

passive recordings which often occur in the range of 13-18 Hz (the affected frequencies) at this 

site. There is also a phase velocity increase trend occurring in the dispersion curve for this site in 

the affected frequency range as will be observed in the later dispersion analysis. The sharp velocity 

increase is indicative of a material change (e.g., bedrock interface) that can also affect the 

attenuation estimate. When Rayleigh wave velocity has been found as a function of frequency (i.e. 

dispersion curve) and inverted into a Vs profile, the Rayleigh attenuation curve can also be inverted 

into a shear damping (Ds) profile (used in seismic site response) or jointly inverted with the Vs 

profile (Rix et al., 2000; Lai et al., 2002). The primary functions used to perform the operations 

and analyses described in this section are summarized in Table 5-4. 

 

5.3 Surface Wave Methods Using UAV-Delivered Impulse Sources: 

In this section, the use of a UAV for dropping a payload to generate Rayleigh surface waves 

is investigated. The study was performed to investigate the feasibility and limitations of using 

UAV-delivered payloads as well explore the differences between signals generated by a 

sledgehammer and different shape (or mass) payloads. 

 

5.3.1 Limitations of Surface Wave Methods 

The depth of investigation for a Vs profile produced using SWM is governed by the lowest 

frequency of the dispersion curve. In many cases, it is desirable to increase the depth of 

investigation. It is important to note that layer resolution will decay as depth increases in the Vs 

profile. In MASW, two factors control the lowest frequency measured in the dispersion curve: the 
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source must have sufficient energy to propagate the lowest frequency wave to the end of the array, 

and the sensor array must be long enough to detect the dispersion of the lowest frequency wave. 

The latter can be achieved by increasing sensor spacing and/or adding new sensors to the end of 

the array. The most common way of measuring dispersion for lower frequency waves is to use a 

passive-source SWM, but passive methods can be negatively impacted by other noise sources and 

sites where the background vibrations are insufficient. 

The most commonly used active source is a sledgehammer. The sledgehammer is generally 

capable of generating frequency content as low as 10-15 Hz depending on site conditions. Similar 

types of active sources have been developed, such as automatic trip hammers. Electromagnetic 

oscillators have been used to control the input wave frequency. Vibroseis trucks can similarly 

deliver a frequency-controlled input such as a frequency sweep. They have been used to great 

success for generating low frequency waves and conduct Vs profiling to significant depths (e.g. 

Stokoe et al., 2004b). Depending on the unit, a minimum frequency as low as 0.1 – 1 Hz can be 

achieved but with low input force. The vibroseis shown in Figure 5-8 has a minimum frequency 

of 17 Hz at maximum input force. However, they have difficulty accessing sites and are costly to 

mobilize. For large-scale testing programs, explosives have been used for wave generation but are 

also costly. The studies conducted in this chapter use a UAV-dropped weight to improve on the 

energy input and frequency content of the hammer while introducing while also providing 

mobility. Figure 5-8 compares the fundamental characteristics of surface wave generators. 

 

5.3.2 UAV Platforms: 

Two UAV platforms were used to lift and drop a weight for generating surface waves. In 

an initial testing program, a DJI Phantom 3 Professional (P3P) quadrotor was used. Some P3P 
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specifications are shown in Table 5-5. The P3P contains an integrated camera and triaxial gimbal. 

To incorporate a payload-release system and maximize payload capacity, the camera-gimbal 

system was removed. The custom payload release system consisted of a mechanical servo that was 

mounted to a carbon fiber composite platform attached to the UAV landing gear. The payload-

release mechanism used a 48 kg-cm mechanical servo to hold the payload. The servo was powered 

by a 7.4V battery and communicated through a Futaba S.Bus2 wireless receiver. When the payload 

was ready to be a released, an independent wireless transmitter delivered a signal to the receiver 

on the UAV. The mass connected to arm of the servo was then released upon clockwise rotation 

of the arm. 

Following the initial testing program with the P3P, the payload-release system was installed 

on a DJI Matrice 600 Pro (M600P) hexarotor UAV. Some specifications of both P3P and M600P 

are shown in Table 5-5. The M600P UAV is capable of carrying a much larger mass to greater 

altitudes. The M600P uses a robust flight control system leveraging data from a set of three inertial 

measurement units (IMU) and three GPS receivers. The M600P was originally developed to carry 

1-2 heavy cameras for industrial imaging applications. The UAV platforms and payload-release 

components are shown in Figure 5-9. For the purposes of this study several different weights were 

tested. The weights used in this study are shown in Figure 5-10 and their associated properties are 

shown in Table 5-6. 

 

5.3.3 Site Layout and Equipment 

UAV-enabled MASW tests were performed at the Scio Flyers Model Aircraft Club in Scio 

Township, MI. The site and the designated UAV test area is shown in Figure 5-11. For comparing 

the signals generated by UAV-dropped weights and a sledgehammer, a linear array of sixteen 
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Geospace GS-11D 4.5 Hz geophones spaced at 3 m was placed. Geophone locations were marked 

for repeated testing. The source target was placed at an offset of 7.6 m from the first geophone in 

the array. This layout at the test site is shown in Figure 5-12. A 5.4 kg Dytran modal hammer 

instrumented with a load cell was used to compare with UAV-dropped weights. Geophone signals 

were converted using a Geometrics ES-3000 seismograph and recorded on a Panasonic field 

laptop. A closer view of the drop weight impact area is shown in Figure 5-13. Previously 

established 2D MASW subsurface imaging was used to perform an initial evaluation of the site to 

assess if the site was a good candidate for baseline testing and prototype operations. The 2D Vs 

profile is shown in Figure 5-14. The Vs at the site increases from approximately 240 m/sec (800 

ft/sec) near the ground surface to over 600 m/sec (2000 ft/sec) at over 15 m (50 ft) depth. The 

investigated cross-section at the site does not contain significant lateral variations or velocity 

inversions. The lack of lateral variations and velocity inversions is beneficial for developing the 

test method before extending to more complex sites. 

 

5.3.4 Initial Testing Program – Low Energy Input 

The initial testing program was executed to demonstrate that a UAV-delivered payload 

could be used as the impulsive source for surface wave testing. The initial program was also used 

to refine testing procedures and explore some of the limitations associated with using a UAV for 

surface wave generation. The field testing procedure is generally conducted using 3 personnel: the 

pilot and 2 visual observers: 

 After the sensor array is placed and data recording is prepared, pre-

flight UAV checks are performed. 
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 The drop weight is attached to the UAV and the UAV is flown to 

the desired altitude above the impact target. 

 The weight is released and data recording (fs = 2 kHz) is 

simultaneously initiated. The payload release is operated by either 

the pilot or one of the visual observers. 

 When data recording has been completed, the UAV is landed and 

the impact location of the weight is marked. 

 The test is then repeated as required. 

Trials were repeated until a set of 8 stackable signals were acquired for the C1 and C2 

(identified in Figure 5-10) weights when dropped from 6 m and 12 m. Stacked signals were then 

used in the Park et al. (1998) dispersion method to generate dispersion curves. Figure 5-15 

compares the stacked time domain signals at the first geophone in the sensor array for the UAV to 

the hammer. The hammer clearly generates the largest amplitude signal. As expected, the 0.5 kg 

weight dropped from 6 m produced the lowest amplitude signal. To investigate the effect of mass 

and altitude, Figure 5-16 shows the mean drop frequency content for the UAV-generated signals 

at the first geophone. An example of recorded ambient vibrations at the site is also displayed. As 

drop altitude and mass are increased, the amplitudes of frequencies beyond 20 Hz increase 

systematically. When considering the 0.5 kg mass dropped from 6 m, doubling the drop altitude 

or increasing the mass by 50% produced similar results. Therefore as energy of the input source is 

increased, the signal is scaled across all generated signal frequencies. The UAV-deployed sources 

performed well at generating high-frequency signals. The predominant frequency of the signal 

remained the same (55 Hz) as mass and drop altitude increased. To assess the influence of mass 

and altitude on generating lower frequency (<10 Hz) signals, the frequency content of the stacked 
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signals is considered. Figure 5-16 demonstrates that for masses less than 1 kg as the drop altitude 

and mass are increased, the broadband performance of the UAV-deployed source improves, but 

remains at lower amplitudes than that of the sledgehammer. Figure 5-17 shows the frequency 

content of the stacked P3P UAV-generated signals compared to the stacked sledgehammer-

generated signal over the 5-20 Hz frequency range. Increasing the mass by 50% to 0.75 kg and 

doubling the altitude to 12 m, the Fourier amplitudes between 5-20 Hz increased by a factor of 

approximately 2. However, as indicated by the Fourier spectrum of the background noise, the 

signal-to-noise-ratio (SNR) of the UAV-generated signals is very low and requires significant 

signal stacking to perform a reliable dispersion analysis at low frequencies. 

 

5.3.5 MASW with M600P – High Energy Input 

Following the initial testing program, the payload-release system was installed on the larger 

M600P UAV to assess: 

 At what mass/altitude is the drop weight equivalent to the hammer-

generated signal? 

 Can enough energy be transmitted at low enough frequencies to 

outperform the hammer? 

 Is the low-frequency signal adequate to perform deeper 

investigations (i.e. longer arrays, lower frequencies)? 

 Can a signal with high enough SNR at low frequencies be generated 

to remove the need for signal stacking? 
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The drop weight tests performed using the M600P are summarized in Table 5-7. The 

P_IMU weight listed in the first row of Table 5-7 was instrumented with an IMU containing a 

triaxial geophone and a triaxial gyroscope. The sensors were recorded with a single-board 

computer and transmitted wirelessly to a nearby laptop computer. The purpose of instrumenting 

this weight was to better understand the motion of the weight during impact and transmission of 

energy into the ground. Based on initial proof-of-concept tests using the instrumented plate, the 

weight exhibits a significant amount of motion following impact at 10-20 m drop heights and 

decreases at greater drop heights as more shearing of the surface soil occurs. The impact of mass, 

shape, size, and altitude are observed by comparing the signal generated at the first geophone and 

discussed in the following sections. The size of the mass carried is limited by the payload capacity 

of the UAV. For the purposes of this study, the practical payload limit was found to be about 7 kg. 

It is also important to note that carrying a maximum payload on a multirotor UAV has a detrimental 

impact on flight performance including flight time, velocity, flight stability, and response to wind. 

Without carrying the drop mass payload, the UAVs used in this study can have a flight duration 

exceeding 30 minutes. The duration carrying the mass has a significant impact on the expected 

battery life of the UAV. For the tests covered in this study, flight durations at maximum payload 

were kept to less than 2 minutes. The total flight duration for a single drop were approximately 3 

minutes. Eight or more drops could then be performed on a single battery charge. While carrying 

the 7 kg payload, the maximum flight duration is approximately 16 minutes. However, this is 

dramatically affected by upward motion. While ascending with the 7 kg payload, the expected 

flight duration decreases to approximately 11 minutes. 
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5.3.6 Accuracy of Dropped Weights 

Figure 5-18 shows drop weight landing locations for both the P3P and M600P platforms 

(91 total points). The square located at the origin of the Figure 5-18, represents the size of the 

striking plate used with the sledgehammer source. All hammer strikes occur within this footprint. 

During flight, the UAV uses adaptive control to maintain position above the drop target. The UAV 

reacts to wind by tilting in the direction of the wind source (equivalent to motion in the opposite 

direction of the wind) and returning to its original position if forced in translation. It becomes more 

difficult for the UAV to respond to external forces as the payload capacity increases toward 

maximum lift, as is the case when carrying a 7 kg payload. This can result in temporary movement 

away from the held position. Additional movement away from the drop target can occur as the 

observed GPS location of the UAV changes (i.e. drifts). In the case of drifting GPS observations, 

the UAV is not forced out of position, but moves as it attempts to keep its interpreted position 

constant. Lateral translation of the UAV with respect to the drop target is the primary cause of 

weight landing inaccuracy. The accuracy of weight drops from the UAV are measured from the 

center of the striking plate. Approximately 75% of the drops from M600P occurred within 1.2 m 

radially of the plate origin. Approximately 75% of the drops from P3P occurred within 1 m radially 

of the plate origin. There are a number of factors which impact the accuracy of the drop which are 

difficult to completely isolate, but were observable during testing and in the results: 

 Wind (sustained or gusts) 

 User experience 

 Platform/Flight Control System 

 Positioning Accuracy 

 Smoothness of Payload Release 
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 Altitude 

The effects of drop inaccuracy on surface wave dispersion must be considered. A drop was 

not considered for dispersion analysis if the weight landing location was more than 1.5 m 

East/West or North/South from the target (3% of the array spread length). In general, inaccuracy 

of the weight landing location can result in three scenarios: 

 Source offset laterally from the array 

 Source axial offset is shorter 

 Source axial offset is longer 

Each of the above scenarios have a different potential impact on the measured surface wave 

dispersion and therefore the interpretation of soil properties. If a source is offset laterally from the 

array, the distance from the source to the sensors increases as a function of the angle of incidence. 

For small lateral offsets, this change is very small, but can be accounted for if necessary. If the 

lateral offset is very large, the wavefront will not be perpendicular to the sensor array axis. If the 

axial offset is shorter than the target, several issues may arise. If the source becomes too close, the 

near-source sensor(s) will be influenced by near-field effects. It is also possible that the induced 

vertical particle velocities could exceed the capabilities of the sensor, depending on the geophones 

selected for testing. If the source axial offset is greater than the target, surface waves may attenuate 

prior to reaching the end of the sensor array. Dispersion of the waves over significantly different 

distances could also render signal stacking inappropriate. However, it was observed that the small 

changes on wave travel distance did not have a noticeable impact on the ability to stack signals 

and interpret surface wave dispersion. This was judged by comparing the dispersion curves 

generated by the UAV to those generated by the hammer and by comparing single drop dispersion 

curves as discussed subsequently. While the fundamental assumptions of the SWM remain 
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unviolated, such as a planar wavefront and sufficient offset distance, the drop-weight signals may 

be stacked and compared for dispersion analysis. However, these variations in weight impact 

location will introduce additional uncertainty into the dispersion analysis. Figure 5-19 shows five 

interpreted multimodal dispersion curves from individual drops from 60 m using the S1 weight. 

Drop location was not accounted for in the analysis. This was repeated for the individual drops 

from 60 m using the P2 weight. The COV for the dispersion points at each frequency was less than 

4% for both cases. These results do not separately account for the uncertainty associated with the 

MASW technique. Dispersion curves developed from drop weight data is discussed further in a 

subsequent subsection, 

 

5.3.7 Source Characterization 

Source characterization for the purposes of SWM is done by considering the signal 

recorded by the closest geophone to the source and comparing it to a baseline signal generated by 

a hammer. To account for effects of weather and seasonal changes, the hammer signals are 

recorded for new testing periods as necessary. Figure 5-20 shows examples of seasonal changes to 

the multimodal dispersion signature at the test site. Seasonal changes affect the Vs and therefore 

dispersion of surface waves in shallow strata. Most notably, there was a dominance of higher mode 

surface waves from about 27-40 Hz in the fall and winter months. The majority of seasonal changes 

occurred approximately in the top 5 m as indicated by the dispersion curves. Below 18 Hz, the 

dispersion remains virtually unchanged. 

When a hammer and striking plate are used as the energy source for surface wave methods, 

the source input location does not change between stacks or trials. When a trigger is used to initiate 

recording for wired sensors, the time syncing of signals is not an issue. Signals can therefore be 
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directly stacked in the time domain. For the UAV, the weight does not land in the same location 

for each stack or trial and the time between release and impact will vary as a function of UAV 

altitude. Individual signals must be corrected to account for this before they can be stacked. Signals 

can be time-synced manually by time-shifting to align common points in the waveform (e .g. first 

break or first peak). In many cases, the waveforms can be aligned automatically by identifying the 

time of peak amplitude or through cross-correlation of the signals. Assuming all sensor channels 

are synced with each other, this is done by just considering one channel (typically the first). Figure 

5-21a shows the signals generated by five individual hammer strikes; the mean signal is shown as 

a thicker red line.  The figures that follow show mean (red line) Fourier amplitudes for five hammer 

and five UAV drop signals. As shown in Figure 5-21a, the hammer signal is highly repeatable at 

high frequencies. This can also be observed at lower frequencies as shown in Figure 5-21b, but the 

repeatability decreases below 15 Hz as the SNR increases. An example of background noise 

recorded during these tests is also shown for comparison. The amplitude of the individual hammer 

signals is approximately the same as the recorded background noise at 5-7 Hz. Figure 5-21c and 

Figure 5-21d show the signals for the 4.7 kg weight dropped from 15 m over the same frequency 

ranges. It can be observed that while the low frequency signal is approximately the same, the UAV 

signal is less repeatable than the hammer above 15 Hz. This was not judged to be problematic, as 

explained subsequently, as long as the SNR is high enough. 

 Figure 5-22 illustrates that the higher-energy combination of a greater mass and drop 

altitude used with the M600P UAV can generate a signal comparable to the sledgehammer. The 

phase-velocity frequency spectra for the stacked sledgehammer and UAV-deployed 4.7 kg mass 

at 15 m are shown in Figure 5-23a and Figure 5-23b respectively. Figure 5-23c shows the 

frequency content of stacked signals at the first and last geophones in the array. Figure 5-23d 
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shows the interpreted multimodal dispersion curves. The dispersion curves for the UAV-deployed 

4.7 kg mass released from 15 m was within 10% of the sledgehammer source dispersion curve, 

indicating that the same type of surface wave data is generated. These results demonstrate the 

feasibility of performing active MASW testing using a mass dropped by a UAV in the field. While 

the signals generated in the above results approximately reproduce the hammer signal, it is 

desirable to maximize energy input, particularly at low frequencies. In the example shown, the 

frequency content at 5-7 Hz is about the same as the content of the background noise.  

 Figure 5-24 shows the 5-20 Hz frequency content of individual and mean signals for weight 

drops from 30 and 60 m using different weights. The data shows that as altitude/mass increase, the 

repeatability of the signal improves at low frequencies. Based on the data in Figure 5-24, the 7 kg 

plate and sphere dropped from 60 m produce the most repeatable and highest energy results. It was 

observed experimentally that, from a rigid body dynamics perspective, the spherical weight 

contacts the ground the same way consistently. The plate often impacts the ground at an angle and, 

occasionally, strikes the ground along an edge. The data presented in Figure 5-24c does not contain 

signals generated by the plate striking the ground along its edge, thus not capturing this effect. 

While edge-first contact is uncommon, it reduces the expected reliability of the signal generated 

by the plate. 

 Figure 5-25 shows the stacked (5x) time domain signals of the 4.7 kg and 7 kg plates with 

their respective stacked hammer-generated signals. To better understand how the signal is affected 

by increasing energy via drop height and mass, the signals are compared directly in the frequency 

domain. Figure 5-26 compares the frequency content of mean signals generated by the 4.7 kg plate-

shaped weight (P1) to the mean hammer-generated signals. The 7 kg plate (P2) is similarly 

compared in Figure 5-27. In Figure 5-26a and Figure 5-26b, it can again be seen that the 4.7 kg 
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plate dropped from 15 m closely resembles the signal generated by the hammer. Increasing the 

drop height to 30 m approximately doubles the signal amplitudes in the 5-10 Hz range. The greatest 

improvements to the signal occur in 5-40 Hz, the frequencies used in dispersion analysis with this 

data. As expected, in Figure 5-27, the 7 kg plate dropped from 60 m generated the highest 

amplitude signal. The mean signals for the 7 kg plate show significant improvement over the 

hammer for frequencies below 60 Hz. In the 60-100 Hz band, the signal is similar for all three 

sources. Figure 5-28 compares the frequency content of stacked signals generated by the plate-

shaped weights for 5-20 Hz. Figure 5-28 demonstrates the effect of stacking for improving the 

SNR at low frequencies.  

 A comparison is made for the spherical weights (S1 and S2), both are 7 kg. Figure 5-29 

shows the mean or individual signals for the spherical weights compared to the hammer-generated 

signal. Extensive conclusions about the signal generated by the small sphere cannot be drawn from 

Figure 5-26 because only two trials were performed.  The small sphere dropped from 15 m does 

perform comparatively well versus the large sphere trial dropped from 20 m at less than 10 Hz. 

Only two trials were performed using the small sphere because it was found to be impractical for 

repeated testing. Figure 5-30 shows photos taken of the impact location of the small sphere trials. 

When dropped from 15 m the sphere penetrated the ground about 9 cm. When dropped from 30 m 

the sphere entered the ground about 15 cm. The diameter of the sphere is 12.7 cm, this meant that 

when dropped from 30 m the sphere was completely below the ground surface after impact. In 

both cases it was extremely difficult to remove the sphere from the ground, which significantly 

reduced the efficiency of field testing. If a UAV were to perform multiple drops by retrieving the 

weight following impact, it would not be practical with a sphere of similar size and mass at this 

site. It is still of interest to consider the effect of surface area of the weight. A, roughly, equivalent 
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force is applied over a smaller footprint when using a smaller surface area weight. However, this 

also causes additional shearing of the ground which requires energy that is not transferred into 

wave propagation. This effect will also likely influence high and low frequencies differently. The 

available results for the smaller sphere suggest that a smaller surface area may be more desirable, 

especially at lower heights when it is more likely to be practical. However, when released from 

large heights, the smaller sphere will be less affected by drag. It is also worth considering that a 

longer contact time of the impulse would theoretically promote concentration of the frequency 

response to lower frequencies which would be beneficial in this application. The mean signals 

generated by 7 kg plate and spheres are compared in Figure 5-31. The stacked signals for 7 kg 

plate and spheres are compared in Figure 5-32. As shown in Figures 5-28 and Figure 5-29, the 7 

kg large sphere outperforms the 7 kg plate when dropped from 60 m in terms of frequency content. 

When discussing the effects of ground-shearing caused by the spherical weights at this site, 

it is important to consider the effects of the ground surface type on the impact. At the test site, the 

weight directly impacted grass-covered topsoil. When applying this technique in practice, many 

other conditions will be encountered such as compacted soil, frozen ground, and outcropping rock 

among many others. For example, if the surface soil is frozen the weight will cause less shearing 

and potentially recoil more. This may negatively impact the generation of low frequency waves. 

Similarly, when impacting an outcropping rock surface the weight will cause less shearing (likely 

in the form of fracturing) and recoil more. In this case the generation of low frequencies may also 

be diminished. However, this may be less of a concern at rock sites where the same depth of 

investigation can be achieved at higher frequencies (due to the high velocity material). The effect 

of different surface soils and their response to drop weight impact should be explored empirically 

to develop recommendations for the application of this method to different site types. While the 
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testing for this study was partially performed during winter months, very little was conducted while 

the ground was frozen. Testing was extended into winter months largely due to warmer-than-usual 

temperatures and UAV battery performance is poor in temperatures below freezing. When testing 

was performed during cold periods when the ground may have been partially frozen, no significant 

changes in weight impact were observed. The recoil of the weight is not a concern. It was 

experimentally observed that the second impact does not affect the interpreted surface wave 

dispersion. This is because the second hit is very low amplitude so the signal attenuates after a 

short propagation distance and the surface waves generated by the primary impact have propagated 

a significant distance prior to the second impact occurring. Similar double hits occur often in 

conventional surface wave testing when using hammers. It should be noted that for drops using 

spherical weights from 15 m and higher, no recoil was observed. 

  

5.3.8 Dispersion Analysis 

 In earlier subsections it was demonstrated that the UAV-dropped weight could be used as 

a hammer replacement for MASW dispersion analysis using the same processing workflow by 

stacking signals to improve SNR. Subsequently, it was also demonstrated that the generated signal 

could be improved by increasing the mass and/or release height of the weight beyond a 

combination of 4.7 kg released from 15 m. One objective of attempting surface wave generation 

with a larger, 7 kg, weight was to attempt a surface wave dispersion analysis without using signal 

stacking. The motivation behind eliminating signal stacking in UAV-enabled MASW of active-

source SWM is derived from the fundamentals of UAVs discussed in Chapter 2. Resource 

conservation is paramount in UAV planning and operational optimization. As previously 

mentioned, carrying a near-maximum payload on a multirotor UAV has a detrimental impact on 
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flight performance. Minimizing the time committed to carrying the payload will assist in 

optimizing resource expenditure. With this in mind, eliminating or significantly reducing the need 

for signal stacking could be the difference between testing one versus multiple sites on a single 

resource unit (i.e. batteries). Alternatively, this would promote multiple array tests at a single site 

allowing for site dispersion uncertainty assessments (e.g. Griffiths et al., 2016).  

 Dispersion analyses were performed on individual drops from weights committing the most 

energy. This has already been briefly demonstrated in the earlier section on drop weight accuracy. 

Figure 5-33 shows examples of phase velocity-frequency spectra generated using the Park et al. 

(1998) method using a single drop versus 5 stacked signals. Figure 5-34 shows the dispersion 

curves produced from individual weight drops using 7 kg and 4.7 kg weights with multiple trials. 

The mean, standard deviation, and COV were calculated as a function of frequency for each set of 

dispersion curves. The dispersion curves developed from 7 kg sources had a minimum frequency 

of 10-11 Hz. The minimum frequency, as described earlier is not necessarily limited by the energy 

source, but by the array geometry. Here, the 7 kg weights generate surface waves at frequencies 

below 10-11 Hz (content down to 5 Hz and potentially lower), but the array length limits the 

minimum dispersion curve frequency. The COV for intra-modal dispersion points for the 7 kg 

plate and sphere dropped from 60 m did not exceed 4% at any frequency. The 7 kg plate dropped 

from 30 m produced similar results with generally higher COVs and significantly greater 

uncertainty with respect to the fundamental to first higher mode transition. The dispersion curves 

produced from 4.7 kg plates dropped from 15 m and 30 m were less reliable and had a minimum 

frequency of 12-13 Hz. In Figure 5-35, the mean dispersion curves derived from individual 

dispersion curves generated by 7 kg weights dropped from 60 m are compared to the baseline 

stacked hammer-generated dispersion curve. Interestingly, the dispersion for the hammer source 
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had greater energy concentration in the first higher mode between 25-30 Hz relative to the 7 kg 

weights. However, the first higher mode is still visible for 25-30 Hz in the 7 kg weight phase-

velocity, as observed in Figure 5-33 for the large sphere, and therefore will not have a significant 

impact on multimodal Rayleigh wave inversion. 

 

5.3.9 Depth of Investigation 

The preceding analysis of dispersion curves developed with UAV-dropped payloads 

showed that for that array configuration, the 7 kg weights dropped from 60 m produced a 

dispersion curve with a minimum frequency of 10 Hz versus 11 Hz for the hammer. While this 

does demonstrate the UAV source resulting in a greater depth of investigation, it is a difference of 

only 1 Hz and further testing is warranted. It can be observed in Figure 5-33 that further increasing 

energy will not improve depth of investigation because the array configuration prevents measuring 

dispersion at lower frequencies than 10 Hz (for the velocities observed at this site). To address 

this, a new configuration was set by doubling the spacing to 6 m (90 m spread length). Due to 

spatial constraints at the site, the array was rotated and aligned perpendicular to the 3 m spacing 

array. The source target was offset from the array by about 13.7 m. 

The stacked time domain signals recorded at the first and last geophones are shown in 

Figure 5-36. In Figure 5-36a, the UAV-deployed weight has the highest amplitude, as expected 

based on previous testing. In Figure 5-36b it can be seen that the SNR for the UAV is greater than 

that of the hammer. The mean frequency domain signals recorded at the first geophone are shown 

in Figure 5-37. The energy contained in the UAV signal begins to increase rapidly at around 10 

Hz. The hammer signal does not increase more rapidly until around 20 Hz. This is a slightly 

different result than previous testing and an indicator that the minimum frequency for hammer-
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generated signals will be higher. Figure 5-38 similarly shows the stacked frequency domain signals 

at the first geophone. For 5-10 Hz, the stacked UAV signal is about 1.5 - 2x the stacked hammer 

signal. The phase velocity-frequency spectra produced from the dispersion analysis are shown in 

Figure 5-39. The UAV spectrum clearly shows the fundamental mode dispersion curve dominating 

from about 8 – 20 Hz with some content in the first higher mode. The hammer spectrum appears 

to show more content in the first higher mode. In fact the fundamental mode dispersion curve is 

difficult to identify. The hammer, again, appears to have a minimum frequency of around 11 Hz. 

The dispersion curves interpreted from the spectra are shown in Figure 5-40. By assuming that the 

depth of investigation for an MASW test is approximately one half of the longest wavelength, 

which is associated with the lowest frequency in the dispersion curve, the theoretical depth of 

investigation for the hammer is approximately 20 m. The depth of investigation for the UAV is 

approximately 70 m, more than triple the hammer. This is demonstrated empirically in Figure 5-

41 where the dispersion curves have been inverted into Vs profiles. It can be seen that the depth of 

the UAV-produced profile is approximately 3x the depth of the hammer-produced profile, as 

predicted. The UAV-dropped weight also appears to generate usable content at frequencies lower 

than 8 Hz; the amplitude of the signal in 5 - 8 Hz is consistent. Figure 5-42 shows the SNR for 

both stacked and unstacked signals generated by the UAV with 7 kg large sphere and the hammer. 

The SNR for the UAV remains consistent between 5-10 Hz. The SNR for the unstacked UAV 

signals performs better than the stacked hammer for 13-20 Hz. The dispersion of lower frequencies 

can, again, not be measured with this array configuration because the increasing velocity causes 

the wavelength to outsize the array below 8 Hz. If the Vs at this site was lower at depth, frequencies 

below 8 Hz would be usable with the 90 m array. 
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When a longer array is used, signal stacking was used to achieve an appropriate SNR 

(Figure 5-42). Figure 5-43 shows the theoretical range of depth of investigation values for the 

dispersion curve derived from the 90 m geophone array. Extending the array allows for longer 

wavelengths to be interpreted and therefore increases depth of investigation. Because of this, it is 

of interest to predict the maximum propagation distance of the low frequency waves generated by 

the UAV-dropped weight. Doing this provides a recommendation of the maximum usable array 

for the UAV-dropped weight at this site and potentially similar sites. The maximum allowable 

array length increases as SNR is improved by signal stacking. Signal stacking improves the SNR 

by the square root of the number of stacks and is subject to diminishing returns. Figure 5-44 

illustrates this concept by showing the improvement to SNR provided by signal stacking and the 

incremental benefit provided as the number of stacks increases. In conventional MASW testing, 

typically no more than 8-10 stacks are acquired due to the low incremental benefit of additional 

stacks. For the M600P UAV, 8-10 stacks is approximately what could be performed using a 7 kg 

weight dropped from 60 m. In general, 8 stacks can be assumed the maximum if additional battery 

resources are needed for returning to base following weight drops. Considering these factors, the 

results for the 90 m array can be extrapolated to estimate the maximum array length that could be 

used with 8 stacks of the 7 kg large sphere dropped from 60 m. Based on test results at this site, 

the coefficient of attenuation for 5 Hz Rayleigh waves is 3.72∙10-3 1/m. By assuming a mean input 

for a 7 kg drop for 60 m stacked 8 times and the mean background vibration amplitude at 5 Hz 

observed at this site, the 5 Hz wave could be propagated approximately 120 m while maintaining 

an appropriate vibration amplitude over the background noise (SNR = 20). As a conceptual 

exercise, if the dispersion curve in Figure 5-40 is extrapolated to 5 Hz, the phase velocity would 

be approximately 2000 m/sec. In order to measure this imagined dispersion, the array would need 
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to be about 200 m long at this site, or that sensors must be spaced that far apart. To measure the 

dispersion of 5 Hz waves with a 120 m long array, the phase velocity at 5 Hz would need to be 

less than 1200 m/sec. Clearly, this is an unlikely scenario at this site because this velocity is 

exceeded at 8 Hz. However, the 120 m array could extend the dispersion curve to as low as 5.5 - 

6 Hz at this site assuming the phase velocity continues to increase on its current trajectory at 8 Hz. 

In general, a 120 m array capable of measuring 5 Hz vertical vibrations could be used to generate 

a Vs profile to a maximum depth of about 80 - 120 m depending on site conditions. 

 

5.3.10 Attenuation of Peak Vibrations 

 The impact of a given mass released from a specific height onto the ground has similarities 

to the deep dynamic compaction ground improvement technique. It is of interest to compare the 

induced peak vibrations to other instances of large weights dropped onto the ground surface. 

Typically, the peak particle velocity (PPV) of a ground vibration is measured as a vector sum of 

vibrations measured on three axes. In the absence of triaxial sensors, it is often appropriate to 

estimate the PPV generated by vertical vibratory sources as the maximum of the vertical 

component (Dowding, 2000). Drop weight tests can be performed to assess the attenuation 

properties of a site to estimate the expected peak vibrations during construction activity. Figure 5-

43 shows the estimated (average of trial weight drops) PPV of the hammer and UAV-introduced 

vertical impact sources. The results displayed in Figure 5-43 indicate the same conclusions already 

drawn in signal comparisons between the different sources, for example, it is clear that the 4.7 kg 

plate released from 15 m is a good approximation of the hammer-induced vibrations. These results 

also demonstrate that a UAV-deployed drop weight may be useful for assessing the attenuation of 

construction vibrations prior to construction initiating.  
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 Some examples of drop weight-induced peak vibrations are taken from the literature and 

compared with the UAV vibrations data in Figure 5-44. The lines shown in Figure 5-44 are pseudo-

attenuation curves developed by Woods and Jedele (1985) for construction vibrations at a set of 

sites. The identifiers for the lines match the site designations in the original reference (i.e. M1, M2, 

M5, O1, NC1) and have details provided in Table 5-8. The curves are essentially straight-line 

approximations of PPV attenuation (in a log-log scale). These approximations are most appropriate 

over short distances where PPV attenuation is approximately linear within log-cycles. The impact 

source used to generate the lower M5 line (two drop heights were used at site M5) has 

approximately the same potential energy as a 7 kg weight released from 60 m. To better understand 

how the induced peak vibrations relate to input energy, they can be shown as a function of scaled 

distance. This is often done with vibrations recorded from deep dynamic compaction and blasting 

applications (Dowding, 2000). The distance of the vibration sensor from the source is normalized 

by the square root (or occasionally, cube root) of the source energy. In Figure 5-45, the UAV-

induced vibrations have been normalized by the square root of their potential energy at the point 

of release. The hammer-induced vibrations were normalized using input energy from instrumented 

hammer’s load sensor. It should be noted that the potential energy at the point of release is not the 

true amount of energy imparted to the ground. Other factors during falling of the weight to ground 

and the impact characteristics affect how much energy is imparted to the ground. Additionally, not 

all energy at impact is transferred into small-strain vibrations. A certain amount of energy is 

dissipated by permanent displacement of soil at the impact location and recoil of the weight 

following impact. If energy from different sources was uniformly transmitted into ground 

vibrations upon impact, the points in Figure 5-45 would more closely appear on the same curve. 

The separation of different sources in the figure indicates that they have different apparent energy 
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transmission efficiencies. With respect to this concept, Figure 5-45 indicates that the 4.7 kg plate 

dropped from 15 m (lowest potential energy) and the 5.4 kg hammer are the most efficient. The 

least efficient sources are the 7 kg plate and sphere dropped from 60 m. This is likely because the 

7 kg sources (highest potential energy) caused the most permanent ground displacement and 

exhibited the most drag during free fall. 

 

5.3.11 Drop Weight Recommendations  

Recommendations for practical implementation as a result of this study on UAV-dropped 

weights as impulse sources for MASW are made in this subsection. From the initial testing 

program using small drop weights (< 1 kg), it was concluded that a small mass object is appropriate 

for testing where only high frequency surface waves transmitted across short distances are of 

interest. While the amount of energy in the seismic source is much lower than a hammer, it is still 

sufficient for high frequency dispersion analysis (>20 Hz). However, most surface wave 

applications desire lower frequency surface waves because increasing the depth of investigation 

(which is proportional to the largest measured wavelength) is beneficial or required. In the second 

phase of this study, where larger mass (4 -7 kg) weights were dropped from the M600P UAV, the 

UAV-delivered source was found to be approximately comparable and significantly more 

powerful than the hammer source depending on the parameters adopted. For the mass/height 

combinations tested in this study, the approximate threshold parameters for improving the signal 

beyond what the 5.4 kg hammer could generate was 4.7 kg mass released from 15 m, potential 

energy of about 700 J. 

The 7 kg circular plate weight (P1) was compared to 7 kg large (S2) and small (S1) 

spherical weights to observe the effects to changing shape and size of the weight. It was found that 
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the large spherical weight had lower impact uncertainty than the plate and outperformed the plate 

for the frequencies of interest for surface wave dispersion. The large sphere was found to be a 

better choice from a practical perspective than the small sphere. The small sphere, at this site, was 

extremely difficult to remove from the ground after impact even when dropped from heights of 30 

m or less. The distance the sphere penetrates the ground and the overall amount of ground 

displacement at the location of impact will vary depending on the site for a given energy input. 

The small sphere may be useful at sites with stiff surfaces. 

While limited, the data collected for the small sphere indicated improved performance over 

the plate and large sphere, practical considerations aside. This perceived performance increase is 

potentially caused by a combination of the smaller surface area and other potential factors, 

however, this requires further investigation. From the perspective of this application, retrieving a 

weight buried in the subsurface is impractical. However, if repeated weight drops are not 

necessary, and recovery of the weight is not required, the small sphere could be advantageous. In 

fact, applications attempting to embed an object in the subsurface will find this to be a useful trait. 

The small sphere was also found to have an advantage over the large sphere in windy conditions. 

As previously discussed, when carrying a maximum payload, the UAV is highly susceptible to 

being displaced by wind. This is because the UAV does not have the ability to drive additional 

power to the motors to react to the wind. When carrying the large sphere the cross-sectional area 

of the UAV subjected to wind is significantly increased. This resulted in aborted tests when 

carrying the large sphere in the same conditions the 7 kg plate and small sphere could be dropped 

without issue. 
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5.3.12 Conclusions and Future Work 

The UAV experiments performed in this research were motivated by a desire to develop a 

high mobility energy source for performing MASW tests. From a broader perspective, the 

development of a UAV-deployed impact source can be considered the first step in developing a 

semi-autonomous, or fully-autonomous, UAS for subsurface imaging in remote or dangerous 

environments. The results of the investigation demonstrated that UAV-dropped weights could 

outperform a hammer for energy input below 10 Hz. The signal generated by the UAV-deployed 

weight could be used to perform a dispersion analysis without the need for signal stacking for an 

array length of 45 m. Signal stacking was used with a 90 m array which generated a dispersion 

curve with a minimum frequency of 8 Hz that more than tripled the maximum depth of the Vs 

profile relative to the hammer. Based on observations of the background noise at the test site and 

estimated frequency-dependent attenuation, the maximum array length that could be used with 8 

stacks of a 7 kg sphere dropped from 60 m was approximately 120 m. The maximum usable array 

length will vary as a function of ground surface conditions (weight impact), subsurface conditions 

(shear wave velocity), background noise, vibration sensors, and data acquisition characteristics. 

As a result of the experimentation, specific conclusions and observations were made which 

contribute to developing recommendations for best practice. It was found that for an array spread 

length of 45 m, source location deviations of less than 3% of the total array length had no 

significant impact on surface wave dispersion measurements. The hammer source, at this site, had 

similar energy content to dropping a 4.7 kg circular plate from 15 m (approximate potential energy 

of 700 J). However, to achieve a surface wave dispersion test without signal stacking, a 7 kg 

circular plate or sphere needed to be released from 30-60 m. Following experimentation with 

different weight shapes and sizes, the large sphere was found to be more efficient and practical 
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than the circular plate and small sphere. The impact of the spheres is more reliable and eliminates 

the risk of an undesirable impact angle. When acceptable impacts were achieved with the plate, 

the generated signal was as consistent as the sphere. However, the plate had a poor impact rate of 

around 20%, meaning that about every 1 out 5 drops did not generate the desired data. Future tests 

performed at sites with hard surfaces (e.g. rock sites) or inclined ground may find that sphere 

travels undesirably post-impact due to less shearing of the material and increased recoil. For drops 

above 15 m, the small sphere penetrated completely below the ground surface rendering the sphere 

difficult to retrieve. This slowed the process of repeated testing and would be incompatible with 

UAV-based weight retrieval. While the large sphere was found to be the best option for weight 

drops, its size (8.5 in diameter) increased the UAV’s susceptibility to wind. For cases of testing in 

windy conditions, it is recommended that weight with small cross-sectional areas perpendicular to 

the wind direction be used. Alternatively, using a lower mass drop weight will free resources 

allowing the UAV to react to the wind more easily and remain stable. Another consideration as 

greater drop heights are explored is the effect of drag on the drop weight. A sphere will outperform 

a plate with respect to drag, but other shapes, such as an airfoil, could also be considered. In 

addition to continuing to explore the effects of drop weight shape, size, and contact area on surface 

wave generation at different sites, research directions have been identified in the following areas 

to improve the UAV-based surface wave tests. 

Wireless/mobile geophones: The mobility of the UAV has been established, however the 

sensor array needs to provide equivalent mobility for practical application. Additionally, the 

sensors must be capable of communicating with the UAV and repositioning if directed. 

Payload retrieval: Some observations were made in this study about how the shape and 

size of the drop weight would affect its recoverability. For signal stacking or repeated testing at a 
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site, such as for dispersion uncertainty assessments, the ability of the UAV to efficiently recover 

the drop weight. 

Autonomy and Decision Making: To promote the development of a semi- or fully-

autonomous UAV-based surface wave test, a decision-making framework in the context of SWM 

must be developed for the UAV. This includes deciding what size weight to use, how high to 

release it from, checking the landing location of the weight, verifying data is collected, and that 

the collected data is sufficient among many other components. 
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Table 5-1: Various available surface wave dispersion techniques 

 

Reference Source 

Type 

Method 

Forbriger (2003) Active Fourier-Bessel Expansion Coefficients 

Park et al. (1998) Active Phase-Shift Transform 

McMechan and Yedlin (1981) Active Frequency-Slowness Transform 

Nolet and Panza (1976) Active Frequency-Wavenumber Transform 

Zywicki (1999) Passive Frequency Beamformer 

Aki (1957) Passive Spatial Autocorrelation 

Bettig et al. (2001) Passive Modified Spatial Autocorrelation 

Maranò et al. (2012) Passive Wavefield Decomposition 

Asten (2006) Passive 
Smoothed Coherency-Frequency 

Spectra Spatial Autocorrelation 
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Table 5-2: Examples of surface wave inversion algorithms 

 

Reference Type Basis 

Xia et al. (2003) Deterministic Levenberg-Marquardt Method 

Wathelet et al. 

(2004) 

Global Neighborhood Algorithm 

Luke and Calderon-

Macias (2007) 

Deterministic Simulated Annealing 

Supranata et al. 

(2007) 

Deterministic Levenberg-Marquardt Method 

Maraschini and Foti 

(2010) 

Global Monte Carlo 

Maraschini et al. 

(2010) 

Deterministic Steepest-Descent Method 

Leong and Aung 

(2013) 

Global Generalized Reduced Gradient Method 

 

 

Table 5-3: Empirical model for various waste materials in containment facilities 

 

Material Vsi  (m/s) αVs (s) βVs (s/m) Max. Depth (m) 

MSW (Zekkos et al., 2014) 89 0.08 0.0062 30 

Michigan MSW 90 0.19 0.0025 30 

Northern California MSW 75 0.07 0.0040 35 

Southern California MSW 110 0.09 0.0047 60 

Bioreactor MSW  65 0.21 0.0093 10 

Hazardous Waste 140 0.15 0.0010 40 

C&D 123 0.11 0.0049 25 

Water Treatment Sludge 43 0.11 0.0267 5 

MSW Incineration Ash 475 0.05 0.0013 40 
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Table 5-4: Primary Matlab functions to perform operations described in this section 

 

Function Description 

GeoRead( ) 
Detects number of channels and imports raw sensor data 

from files. 

Dispersion( ) 
Performs Park et al. (1998) dispersion analysis to compute 

phase velocity-frequency spectrum. 

Limitation( ) Imposes spatial restrictions on the dispersion analysis. 

Dispersion_Curve( ) 
Automatically selects spectral peaks for initial guess at 

experimental dispersion curve. 

Disp_Fig( ) Generates output display of dispersion analysis. 

LogNormal_Fit( ) Fits a set of profiles to a lognormal distribution. 

Empirical_Fit( ) Fits the empirical shear wave velocity model to a profile. 

Alpha_0( ) 
Performs Athanasopoulos et al. (2000) attenuation analysis 

to estimate frequency-independent attenuation. 

Attenuation_Curve( ) Estimates frequency-dependent attenuation curve. 

 

 

 

Table 5-5: Characteristics of UAVs used for releasing weights 

 

 

Aircraft 

Weight 
Diameter 

Maximum 

Velocity 

Maximum 

Flight Time 

Phantom 3 Professional 1.3 kg 59 cm 16 m/sec 23 min. 

Matrice 600 Professional 9.5 kg 113 cm 18 m/sec 32 min. 

 

 

 

Table 5-6: Physical characteristics of drop weights used for Rayleigh wave generation 

 

Weight ID UAV Shape Diameter Height Material Mass 

C1 P3P Cylinder 4.5 cm 3.8 cm Steel 0.5 kg 

C2 P3P Cylinder 7.6 cm 6.3 cm Aluminum 0.75 kg 

P1 M600P Plate 20 cm 2 cm Steel 4.7 kg 

P2 M600P Plate 20 cm 3 cm Steel 7 kg 

S1 M600P Sphere 22 cm Polyurethane 7 kg 

S2 M600P Sphere 13 cm Steel 7 kg 
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Table 5-7: Summary of Drop-Weight Trials used for MASW using M600P UAV 

 

ID Shape Altitude : Trials 

P_IMU Plate 

30 m : 1 

24 m : 3 

15 m ft : 7 

P1 Plate 

30 m : 8 

24 m : 1 

15 m : 8 

P2 Plate 
30 m : 10 

60 m : 4 

S1 Sphere - Large 
60 m : 11 

20 m : 1 

S2 Sphere - Small 
30 m : 1 

15 m : 1 

 

Table 5-8: Details of drop weight vibration sites (modified from Woods and Jedele, 1985) 

 

Site 
Soil 

Type 

Potential 

Energy 

Frequency 

Range (Hz) 

Coefficient of 

Attenuation (1/m) 

M1 Sand 3300 kJ 5 - 10.5 0.0066 - 0.0082 

M2 Clay 500 kJ 8.5 - 17 0.0135 

M5 Clay 
8 kJ (2 ft drop) 

4 kJ (1 ft drop) 

12 - 33 

30 - 48 
0.0335 

O1 Clay 700 kJ 9 - 12 0.0161 

NC1 Sand 2 kJ 20 - 40 0.0338 

 

 
 

Figure 5-1: Generalized workflow for surface wave inversion algorithms 
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Figure 5-2: Sample output from dispersion code including sensor recordings for (a) 

the first, (b) eighth, and (c) sixteenth geophones in the array; (d) velocity-frequency 

spectrum; and (e) automatically selected spectral peaks 

 

 
Figure 5-3: Variability assessment of four Vs profiles at a soil site 
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Figure 5-4: Median profile from Figure 5-3 with model fit 

 

 

 
 

Figure 5-5: (a) Coherence function; (b) frequency domain comparison; and (c) fitting of 

curve described by Equation 5-6 
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Figure 5-6: Examples of attenuating active-source signals at (a) 14 Hz and (b) 60 Hz as a 

function of distance from the source 

 
 

Figure 5-7: Rayleigh wave coefficient of attenuation as a function of frequency derived 

from MASW data collected at the UAV test site 
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Figure 5-8: Fundamental comparison of seismic surface wave sources 
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Figure 5-9: (a) Phantom 3 Professional with payload release attached; (b) payload-release 

system components; and (c) Matrice 600 Pro UAV 

 

 
 

Figure 5-10: Drop Weights used in this study; labels correspond to Table 5-6 

 

 

(a) (b) 

(c) 
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Figure 5-11: UAV-MASW test site location 

 

 
 

Figure 5-12: Aerial photo showing layout of sensors at the test site 
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Figure 5-13: Aerial photo of equipment and target weight drop area 
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Figure 5-14: 2D Shear wave velocity cross-section produced using CMPCC MASW method 

 

 
 

Figure 5-15: Time histories at first geophone of stacked signals for P3P UAV (8 stacks) and 

hammer sources (5 stacks) 
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Figure 5-16: Frequency content of mean signals generated by P3P UAV (a) compared to 

the mean hammer signal and (b) compared to background noise 

 

 
 

Figure 5-17: (a) Frequency content of stacked signals generated by P3P UAV (8 stacks) and 

hammer (5 stacks) and (b) at low frequencies 
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Figure 5-18: Weight landing locations for P3P and M600 UAVs; northing and easting 

measured from the center of the drop target 
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Figure 5-19: Interpreted dispersion curves from single drops using the S1 (large sphere) 

from 60 m 

 

 
 

Figure 5-20: Hammer-generated dispersion curves indicating seasonal effects on 

subsurface properties at the test site 
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Figure 5-21: Individual and mean signals for (a) 5.4 kg hammer; (b) low frequency 5.4 kg 

Hammer; (c) 4.7 kg weight dropped from 15 m; (d) and low frequency 4.7 kg weight 

dropped from 15 m 

 

PASSIVE 

PASSIVE 
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Figure 5-22: Frequency content (5 - 20 Hz) of sledgehammer signals (5 stacks) at the first 

geophone compared to the M600P UAV (5 stacks) 

 

 
 

Figure 5-23: Phase velocity-frequency spectra for (a) 4.7 kg mass dropped from 15 m 

(stacked 5 times); and (b) 5.4 kg sledgehammer (stacked 5 times); (c) frequency domain of 

stacked sledgehammer and UAV-generated signals; and (d) dispersion curves 
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Figure 5-24: Individual and mean signals for (a) 4.7 kg plate from 30 m; (b) 7 kg plate from 

30 m; (c) 7 kg plate from 60 m; and (d) 7 kg large sphere from 60 m 

 

PASSIVE 
PASSIVE 

PASSIVE PASSIVE 
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Figure 5-25: Comparison of stacked time domain signals for (a) 4.7 kg plates and (b) 7 kg 

plates versus hammer 

 

 
Figure 5-26: Comparison of mean frequency domain signals for (a) 4.7 kg plates and 

hammer; and (b) at low frequencies 
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Figure 5-27: Comparison of mean frequency domain signals for (a) 7 kg plates and 

hammer; and (b) at low frequencies 

 

 
 

Figure 5-28: Comparison of stacked signals in the frequency domain for (a) 4.7 kg plates 

with hammer; and (b) 7 kg plates with hammer 
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Figure 5-29: Frequency content of signals generated by (a) 7 kg spherical weights; (b) and 

at low frequencies 

 

  
 

Figure 5-30: Impact craters of small spherical 7 kg weight (S1) dropped from (a) 15 m and 

(b) 30 m 

 

 

 

  

(a) (b) 
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Figure 5-31: Individual and mean signals generated by (a) 7 kg weights and hammer; and 

(b) at low frequencies 

 

 
 

Figure 5-32: Stacked signals generated by 7 kg weights and hammer 
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Figure 5-33: Phase Velocity-Frequency Spectra for 5 Stacked 7 kg Sphere at 60 m Signals 

(a) and Single 7 kg Sphere at 60 m Signal 
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Figure 5-34: Dispersion curves for single weight drops using (a) 7 kg plate 60 m (4 trials); 

(b) 7 kg sphere 60 m (5 trials); (c) 7 kg plate 30 m (8 trials); (d) 4.7 kg plate 30 m (5 trials); 

and (e) 4.7 kg plate 15 m (8 trials) 

 

(a) (b) 

(c) (d) 

(e) 
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Figure 5-35: Mean dispersion curves for independent 7 kg weights dropped from 60 m and 

stacked 5.4 kg hammer dispersion curves 

 
Figure 5-36: Stacked (5x) time domain signals for large sphere dropped from 60 m and 

hammer (a) at the first geophone; and (b) at the last geophone (90 m from first geophone) 
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Figure 5-37: (a) Mean frequency domain signal for large sphere dropped from 60 m and 

hammer; and (b) at low frequencies 

 

 
Figure 5-38: (a) Stacked (5x) frequency domain signal for large sphere dropped from 60 m 

and hammer; and (b) at low frequencies 
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Figure 5-39: Phase velocity-frequency spectra for stacked signals (5x) for (a) 7 kg large 

sphere dropped from 60 m and (b) hammer 

 

 
Figure 5-40: Dispersion curves interpreted from spectra in Figure 5-39; estimated depth of 

investigation is approximated as one half of the longest wavelength 

(a) (b) 
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Figure 5-41: Vs profiles for dispersion curves in Figure 5-40 

 

 
 

Figure 5-42: Comparison of SNR for stacked and unstacked hammer and UAV signals 
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Figure 5-43: Estimated PPV induced by hammer and UAV-dropped weight impact sources 
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Figure 5-44: Estimated PPV induced by hammer and UAV-dropped weight impact sources 

compared to pseudo-attenuation curves produced from drop weight results reported by 

Woods and Jedele (1985) 
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Figure 5-45: Estimated PPV induced by hammer and UAV-dropped weight impact sources 

as a function of scaled distance 
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Figure 5-46: (a) Experimental dispersion curve for UAV-deployed source and 90 m 

geophone array and (b) range of theoretical depth of investigation based on wavelength 

approximations 
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CHAPTER 6 

Conclusions and Recommendations for Future Research 

 

6.1 Summary of Conclusions 

This research explored the applications of UAVs for surface and subsurface 

characterization of geosystems and developed frameworks for expanding UAV-based efforts in 

post-earthquake reconnaissance, and site characterization. The three main thrusts of the research 

were to use SfM photogrammetry to derive surface geometries at geotechnical sites, develop image 

processing techniques to characterize rock features exposed at the surface, and employ UAV-

enabled seismic surface wave methods to assess subsurface material properties. This section 

summarizes the main conclusions that have been drawn in the three main research thrusts. 

 

6.1.1 UAV-Based 3D Imaging of Geotechnical Sites 

Camera-equipped UAVs were used to document complex 3D geometries at geotechnical 

sites using SfM photogrammetry. The technological capabilities of these surveying techniques 

have improved significantly during the duration of this research and will continue to improve.  The 

point clouds generated by SfM were subsequently used to manually analyze the structure of rock 

masses in 3D to assign strength parameters (GSI) and delineate failure planes (strike, dip). The 

UAVs collected images for generating cm-resolution models of 75-150 m high landslides in less 

than 30 minutes of total site time. SfM models were found to be useful for analyzing rock masses 
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to assign GSI values and identify failure planes in landslides that are used in stability analyses. It 

was found that making visual observations in 2D images (used as input for SfM) was useful while 

conducting measurements in the 3D model. This lends credence to the idea that source imagery 

should be coupled with 3D modeling results when developing automated rock mass 

characterization methods.  Mapping needs to account for the smallest feature required to be visible 

in the imagery and therefore flight parameters should be set based on the target resolution. In this 

research, UAV-based SfM was used to measure the spacing and orientation of discontinuities for 

geomechanical characterization of rock masses, delineate landslide geometries, and document 

other geotechnical sites. The UAV was also useful for decision making in the field. The UAV was 

used to track the path taken by a debris flow and identify landslides that contributed to the debris, 

supporting field interpretations of observed performance. 

A network of GCPs is required at each site when performing SfM surveys. GCPs and 

checkpoints should be placed to cover the target areas. GCPs and check points should also be 

placed to capture 3D geometry. Using additional points is necessary when recording laser points 

on natural upslope features because some may be less well-defined in the model. In addition to 

planning the distribution of GCPs at a site, the required flight time must be estimated. For manual 

flights, pilot experience, environmental conditions, and UAV technology will affect flight time. 

Currently, automated flights are not optimized for surveying areas with relatively significant 

elevation change, complex 3D geometry, or close-range visual inspection. Advances in flight 

planning and obstacle avoidance are needed to support the collection of images of detailed features 

such as rock discontinuities. 

A variety of conditions affect the flight performance of UAVs. Weather is a principal 

component including precipitation, temperature, and wind. In cases of precipitation and 
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temperature, UAV operations are unlikely to be conducted unless a platform specifically designed 

to be resilient to freezing temperatures, extremely high temperatures, or precipitation is being used. 

Wind is the weather condition most likely to need significant consideration as wind speed and 

direction vary during flight. Stability is most affected by wind gusts and can present significant 

risk if the UAV is flying close to a target for visual (or other sensing types) inspection (e.g. rock 

structure, bridge components). Weather conditions may affect the collected data in addition to 

UAV performance. For example, the position of the sun can render image collection from some 

orientations useless. Sunlight can also cause uneven lighting on the target surface. Geometric 

results of SfM may not be affected due to the illumination-invariant feature detection, unless 

shadows are dark enough that features cannot be detected. The lighting variation will affect the 

colors observed on the surface and influence results from interpretations of the SfM outputs and 

processing of the input images. 

 

6.1.2 Processing of UAV-Derived 2D and 3D Imagery Outputs for Rock Mass Characterization 

An explicit image processing method for fracture detection in rock masses was developed. 

The algorithm was designed to address some of complexities that make vision-based discontinuity 

assessments difficult including surface texture and color variation. The fracture detection 

algorithm was tested on three image sets from different sources: images of a weathered, vesicular 

basalt roadside outcrop, a marble quarry, and a mixed set of images of different rock types and 

resolutions. When parameters are applied globally to a large image, changing brightness across the 

image reduces detection rates. To address this, the fracture detection algorithm was then integrated 

with SLIC to cluster pixels prior to performing fracture detection to help isolate the influence of 

lighting, texture, and color variation. 
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 The developed fracture detection method has the ability to be fully automated, but has 

limitations such as detecting fractures in rocks with highly-textured surfaces or surface staining 

caused by weathering. A semi-automated approach which introduces additional control parameters 

for the user to adjust can perform well on a wider range of rock masses. For use with highly 

textured rocks (e.g. vesicles), or rocks with color variation, but with high fracture contrast, the 

modified Otsu’s threshold greatly improves performance by reducing the number of false 

positives. For textured (noisy) rocks, a Gaussian filter is recommended when blurring of fracture 

edges is not a concern. In general, the algorithm should not be expected to detect fractures with 

widths < 3 pixels, which is an important consideration in the data acquisition stage. However, 

fractures as thin as 2 pixels could potentially be detected, but their persistence may not be fully 

captured. The semi-automatic fracture detection was tested on example profiles. The results 

showed agreement when compared to manual measurements, but the technique often 

underestimated fracturing, by about 10-20% when the modified Otsu’s threshold was applied, due 

to the inability to identify very thin fractures. In other cases, the algorithm fracture count was 

within about 15% of manual fracture counting. Fracture detection results were used to inform 

geomechanical analyses, such as the calculation of RQD. A heat map of detected fractures on a 

profile performed well at identifying regions of broken-up and intact rock automatically. However, 

soil and overlying debris were identified as intact and broken-up rock respectively. These issues 

could potentially be resolved through pre-processing identification of material types to separate 

soil with techniques that consider color or texture and use 3D geometry to find potential overlying 

debris. 

An updated version of SLIC was also developed which incorporates depth (3D) 

information into the clustering algorithm for use with RGBD images generated from SfM results. 
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RGBD images contain information from other camera perspectives. The relative weighting of 

image depth for clustering (Nd) is difficult to define automatically. For the purposes of this 

application, the clustering weight was equivalent to the GSD of the image scaled by a factor, K = 

5-20. The updated SLIC algorithm and the selection of K will require additional validation before 

being extended to other applications. When clustering was performed on RGBD images, the intra-

cluster variance decreased and resulted in clusters more closely following the 3D structure of the 

rock. A framework to integrate fracture detection on segmented images was also implemented. 

The detected fractures coinciding with RGBD pixels were transformed to 3D and synthesized with 

the point cloud. With discontinuities labeled in the 3D point cloud, their orientation (strike/dip) 

could be measured. Other information (RQD, GSI, Vs, material classification, etc.) tied to an image 

can also be mapped to 3D and tied to the point cloud. The individual components of the framework 

are designed to be open-ended for integration with other 2D/3D image processing techniques 

which could be underlying components of UAV-based analysis. 

 

6.1.3 UAV-Enabled Subsurface Characterization using Multichannel Channel Analysis of Surface  

Waves 

A third thrust of this research was subsurface characterization using UAVs. A UAV was 

used to lift and drop a 7 kg payload to generate seismic surface waves as a replacement for a 

hammer or more costly seismic source. Both spherical and plate-shaped weights were dropped 

from heights of 15 - 60 m. The UAV-dropped weights were found to outperform a hammer for 

energy input below 10 Hz, which is critical for surface wave testing at greater depths. A 7 kg plate 

was found to perform similarly, in general, to 7 kg spheres, but the spheres were found to more 

reliable, and practical, due to the improved consistency of impact to the ground (i.e. spheres cannot 
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land along an edge). The plate also appeared to rock more during flight and when in free fall. The 

spheres additionally outperformed the plate for the frequencies of interest for surface wave 

dispersion. Two 7 kg spheres of different sizes were compared. The two 7 kg spherical weights 

caused significant shearing of the ground surface and did not bounce (i.e. recoil) following impact. 

As the forcing area is smaller for the small sphere, the weight penetrated the ground further than 

the large sphere. 

A practical limitation to physically-large weights was also observed. The large sphere had 

a greater lateral surface area and made the UAV flight with the large payload more sensitive to 

windy conditions. The inaccuracy of drop weight impact locations was found to be insignificant 

for variations of less than 3% of the total array length. The signal generated by the UAV-deployed 

weight was used to perform a dispersion analysis without the need for signal stacking. At the test 

site, the dispersion analysis went to 8 Hz due to limitations in array geometry at the test site. The 

UAV-generated signal contained sufficient content at 5 Hz, which was the minimum sensing 

frequency of the geophones used, to propagate waves up to an estimated 120 m. It is possible that 

energy input from the drop weight can extend to even lower frequencies and higher amplitudes. 

However, additional testing at other site types with different subsurface and background noise 

conditions is warranted to further explore UAV-based impulse deployment. By using a 90 m array 

length, it was demonstrated that the UAV-dropped weight could be used to investigate to greater 

depths in the subsurface (due to the low frequencies). At the test site used in this study, the UAV 

increased the depth of investigation for a 90 m geophone array from 18 m to 64 m. This increase 

in investigation depth demonstrates that the UAV-based surface wave testing has great value 

outside of post-disaster reconnaissance but could also be used for seismic profiling at a wide range 

of sites. 
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6.2 Recommendations for Future Research 

Chapter 1 showed an envisioned paradigm shift where UAVs revolutionized post-disaster 

reconnaissance by not only altering conventional reconnaissance methods in all three phases, but 

introduced an automation concept where previous stages could be returned to, and updated with 

new information. This would allow for both the breadth and depth of reconnaissance studies to 

improve and capture more, higher-quality perishable data. In order to achieve the paradigm shift 

documented in Chapter 1, more novel research is needed in a wide variety of areas. In the context 

of UAV-enabled seismic surface wave testing, the development of a UAV-deployed impact source 

is an important component for developing an autonomous framework for subsurface imaging and 

estimating shear wave velocity. But some components require additional research effort include 

wireless and mobile sensors, payload instrumentation and retrieval, and automated interpretation 

of results to inform operational decision making on-board the UAV. One example of on-board 

decision making would be to predict the maximum allowable array length with minimal 

information at a site. This can be predicted by combining any a priori information about site 

conditions (i.e. attenuation), results of previous drop weight testing at other sites, and a measure 

of background noise at the site. In addition to expanding on the conclusions in the previous section, 

the following are research areas where impactful contributions can be made: 

Subsurface sensing: The primary focus of UAV-based sensing has been on surface model 

development via remote sensing. UAVs are establishing themselves as a critical remote sensing 

tool that are highly adaptable to a range of sensors used at different spatial and temporal 

resolutions. The work that has been done on UAV-based sensing of below-surface features is 

limited. In this case, the surface could be a structural component, the ground, or ice. Examples of 

geophysical methods which have already been established on other aerial platforms being 
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implemented with or considered for use with small UAVs such as magnetic surveys, GPR, and 

SWM were noted. For geo-infrastructure applications, subsurface sensing is necessary and one of 

the major limitations is cost of mobilizing equipment and accessing remote or dispersed sites. 

Swarms and UAV cooperation: As UAVs become integrated in spaces occupied by other 

aircraft, and inevitably other UAVs, methodologies for managing the interaction, intended or 

otherwise, between UAVs is critical. Research into groups of cooperating UAVs, or swarms, has 

expanded greatly in recent years. While this topic is not covered in this review, it is gaining 

significant traction outside of civil engineering. UAV swarms may perform the same basic 

operation simultaneously, such as aerial surveying, or perform complementary operations, such as 

sensor placement and interrogation. 

Interfacing with humans: Some cases of human-UAV interaction in the fields of 

construction management and post-disaster reconnaissance have been identified. These studies 

have generally concluded that human-UAV interaction is an important direction for research. The 

interactions of interest can, similar to multi-UAV interactions, be intentional or unintentional. The 

interactions also do not have to occur in physical space, they can be virtual.  

Decision-Making Frameworks: One component of developing fully-autonomous UAS is 

understanding how to integrate human cognition for decision making. An early step in that 

direction would be to have humans decide the next UAV operations in real time, such as in a post-

disaster scenario to select sites of interest and in situ testing locations. This pseudo-training data 

could help construct the foundational autonomous frameworks. 

Next Generation Imaging: 3D modeling using SfM has been shown to be a robust approach 

for geometric documentation of geotechnical sites. The 3D imaging captures highly-detailed 

geometry with many potential uses. As the generation of 3D models becomes established, methods 
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for integrating them with other workflows, such as 3D stability analyses, are necessary. 

Additionally, geospatial data collected by multi-sensor UAVs could benefit greatly from fusion 

with image-derived geometry and material properties. 
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function [V,t] = GeoRead(files,fileno,Fs) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         GeoRead.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 

% Purpose:    Read sensor time history from file 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% files:            Cell array containing file name strings 
% fileno:           File number to be read (index of files) 
% Fs:               Sampling frequency of data in files{fileno} 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% V:                Matrix of sensor data. One column per channel. 
% t:                Time vector for sensor data 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Sample File Format: 
%  x1        x2       x3       x4        x5        x6  ... 
% 0.0134   0.0015   0.0002   0.0001   -0.0001   -0.0002  ... 
%  ...      ...       ...      ...       ...       ... 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
data=tdfread(files{fileno}); 
N=size(data,2); % number of channels 
V=zeros(length(data.x1),N); 

  
% Reverse channel numbers to ascending (i.e. Geo 1 = Ch 1). 
for k=1:N 
    str='x'; 
    temp=num2str(N+1-k); 
    for j=1:length(temp) 
        str(end+1)=temp(j); 
    end 
    V(:,k)=data(1).(str); 
end 
T=1/Fs; % Period 
t=T*(0:length(V)-1); % Time vector 
end 
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function [handle,spec] = DispFig(A,PhV,f,V,t,c,Fmax) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         DispFig.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Plot output of dispersion analysis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% A                 Phase velocity-frequency spectrum 
% PhV:              Automatic dispersion curve points 
% f:                Vector of Frequencies 
% V:                Matrix of sensor time histories 
% t:                Time vector for sensor data 
% c:                Vector of trial phase velocities (min c : 1 : max c) 
% Fmax:             Maximum frequency for dispersion analysis 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% handle:           Figure handle of output figure 
% spec:             Figure handle of separate spectral plot 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
handle=figure; 
hold on 
subplot(3,2,[2 4]) 
contourf(c,f(1:length(PhV)),A) 
colormap(jet) 
set(gca,'ydir','reverse') 
xlabel('Phase Velocity (m/sec)') 
ylabel('Frequency (Hz)') 
title('Dispersion') 
axesHandles = findobj(get(handle,'Children'), 'flat','Type','axes'); 
axis(axesHandles,'square') 

  
subplot(3,2,6) 
hold on 
plot(f(11:Fmax),PhV(11:Fmax),'bo','MarkerSize',2) 
xlabel('Frequency (Hz)') 
ylabel('Phase Velocity (m/sec)') 
title('Selected Dispersion Points') 
axis([0 size(A,1) 0 1.1*max(PhV)]) 
box on 

  
for k=[1 round(size(V,2)/2) size(V,2)] 
    if k == 1 
        p=1; 
    elseif k == round(size(V,2)/2) 
        p=3; 
    else 
        p=5; 
    end 
    subplot(3,2,p) 
    plot(t,V(:,k)) 
    xlabel('Time (sec)') 
    ylabel('Signal (mV)') 
    str=sprintf('Geophone %i',k); 
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    title(str) 
end 

  
spec=figure; 
contourf(c,f(1:length(PhV)),A) 
colormap(jet) 
set(gca,'ydir','reverse') 
xlabel('Phase Velocity (m/sec)') 
ylabel('Frequency (Hz)') 
axesHandles = findobj(get(handle,'Children'), 'flat','Type','axes'); 

  
end 
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function [A,f] = Dispersion(V,x,Fmax,Fs,c) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         Dispersion.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Perform Park et al. (1998) dispersion technique 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% V:                Matrix of sensor time histories 
% x:                Vector of sensor distances from source 
% Fmax:             Maximum frequency for dispersion analysis 
% Fs:               Sampling frequency of data in V 
% c:                Vector of trial phase velocities (min c : 1 : max c) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% A:                Phase velcoity-frequency spectral amplitude 
% f:                Vector of Frequencies 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
n=Fs; % n-point fft 

  
% Frequency vector f or w: 
    f_delta = (Fs/n); % Frequency increment 
    f=0:f_delta:f_delta*(n-1); % Frequency vector 
     w=f*2*pi; % Frequency vector in radians 
S=fft(V,n)/Fs; % Fast Fourier Transform to frequency domain. 

  
P=angle(S); % Frequency-dependence of phase velocity is stored in phase. 

  
% Transform to c-f domain. 
A=zeros(Fmax+1,length(c)); 
for k=1:size(A,1) 
    for h=1:length(c) 
        for i=1:size(V,2) 
                A(k,h)=A(k,h)+P(k,i)*exp(-1i*w(k)*(x(i))/c(h)); 
        end 
    end 
    A(k,:)=abs(A(k,:)); 
    A(k,:)=A(k,:)/max(A(k,:)); % Normalize 
end 

  
end 
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function [A] = Limitation(A,x,c,f) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         Limitation.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Apply spatial constraints to c-f spectrum 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% A:                Phase velocity-frequency spectrum 
% x:                Vector of sensor distances from source 
% c:                Vector of trial phase velocities (min c : 1 : max c) 
% f:                Vector of Frequencies 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% A:                Phase velocity-frequency spectral amplitude with limits 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
SL=x(end)-x(1); % Array spread length 
% Determine geophone spacings 
Spacing=zeros(length(x)-1,1); 
for k=1:length(Spacing) 
    Spacing(k)=x(k+1)-x(k); 
end 

  
for k=1:size(A,1) 
    for j=1:size(A,2) 
        if c(j)/f(k)> 2*SL || c(j)/f(k) < 2*max(Spacing) 
            A(k,j)=0; 
        end 
    end 
end 
end 
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function [depth,cv,mu_vec,sig_vec] = lognorm_vs(depths,vs) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         lognorm_vs.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Fit lognormal distribution to set of Vs profiles 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% depths:           Vs profile depth vectors 
% vs:               Vs vectors 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% depth:            Discretized depth vector 
% cv:               Coefficient of Variation profile (E[Vs]/SD[Vs]) 
% mu_vec:           Median Vs profile 
% sig_vec:          Stdev Vs profile 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
p=size(vs,2); % num profiles 
vsp=cell(p,1); 
dp=cell(p,1); 
breaks=cell(p,1); 

  
% Discretize Vs profiles 
for k=1:p % for each profile... 
    max_depth = max(depths(:,p)); 
    dvec = (0:0.1:max_depth); 
    temp=depths(:,k); 
    layers=[]; 
    vels=[]; 
    for d=unique(temp)' 
        ind=find(temp==d); 
        if length(ind)>1 
            layers(end+1)=d; 
            vels(end+1)=vs(ind(1),k); 
        end 
    end 
    ind=find(temp==layers(end)); 
    vels(end+1)=vs(ind(2),k); % need final Vs change 
    dvec=round(dvec,1); 
    layers=round(layers,1); 
    breaks{k}=layers; 
    for d=1:length(layers) 
        ind=find(dvec==layers(d)); 
        dvec=[dvec(1:ind) dvec(ind:end)]; 
    end 

     
    dvec=dvec'; 

     

     
    vvec=zeros(length(dvec),1); 
    for d=1:length(layers) 
        ind1=find(dvec<layers(d)); 
        ind2=find(vvec==0); 
        ind=intersect(ind1,ind2); 



277 
 

        vvec(ind)=vels(d); 
        ind=find(dvec==layers(d)); 
        vvec(ind(1))=vels(d); 
    end 
    % Fill after final layer break 
    ind=find(vvec==0); 
    vvec(ind)=vels(end); 
    vsp{k}=vvec; 
    dp{k}=dvec; 

  
end 

  
dpstat=dp; 
vsstat=vsp; 

  
for k=1:p 
    layers=breaks{k}; 
    for d=1:length(layers) 
        ind=find(dpstat{k}==layers(d)); 
        dpstat{k}(ind(1))=[]; 
        vsstat{k}(ind(1))=[]; 
    end 
end 

  
temp=zeros(length(dpstat{1}),p); 
for k=1:p 
    temp(:,k)=vsstat{k}; 
end 

  
% Lognormal distribution 
mu_vec=zeros(length(dpstat{1}),1); 
sig_vec=mu_vec; 

  
for d=1:length(dpstat{1}) 
    pd=fitdist(temp(d,:)','LogNormal'); 
    mu_vec(d)=pd.mu; 
    sig_vec(d)=pd.sigma; 
end 

  
temp=zeros(length(dpstat{1}),p); 
for k=1:p 
    temp(:,k)=vsstat{k}; 
end 

  
temp=log(temp); 

  
depth=dpstat{1}; 

  
expect=exp(mu_vec+((sig_vec.^2)/2)); % m/sec 
std=expect.*sqrt(exp(sig_vec.^2)-1); % m/sec 
expect_plus=expect+std; 
expect_minus=expect-std; 
cv=std./expect; 

  
end 
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function [vsi,avs,bvs] = Empirical_Fit(depth,vs) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         Empirical_Fit.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Fit empirical model (hyperbolic) to Vs profile 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% depth:            Vs profile depth vector 
% vs:               Vs vector 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% vsi:              Initial Vs parameter 
% avs:              Initial slope parameter 
% bvs:              Maximum velocity parameter 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  
fo=fitoptions('Method','NonlinearLeastSquares'); 
myfittype=fittype('vsi+depth/(avs+bvs*depth)','independent',{'depth'},... 
    'dependent',{'vs'},'coefficients',{'vsi','avs','bvs'},'options',fo); 

  
myfit=fit(depth,vs,myfittype,'Lower',[0 0 0],'Upper',[inf inf inf],... 
    'StartPoint',[500 .1 .005]); 

  
vsi=myfit.vsi; 
avs=myfit.avs; 
bvs=myfit.bvs; 

  
end 

  



279 
 

function [PhV] = Dispersion_Curve(A,c) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         Dispersion_Curve.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Automatically select initial dispersion curve 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% A                 Phase velocity-frequency spectrum 
% c:                Vector of trial phase velocities (min c : 1 : max c) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% PhV:              Automatic dispersion curve points 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

  

  
% Find maximum value in dispersion 
index=zeros(size(A,1),1); 
PhV=index; % Phase Velocities 
for k=1:length(index) 
     index(k)=max(A(k,:)); 
     for i=1:length(c) 
         if A(k,i)==index(k) 
             PhV(k)=c(i); 
         end 
     end 
end 
end 
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function [a0] = Alpha_0(V,x,sensor_a,sensor_b,Fs,fmin,fmax) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         Alpha_0.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Estimate frequency-independent attenuation coefficient 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% V:                Sensor time histories 
% x:                Distance from source for each sensor 
% sensor_a:         First sensor for attenuation estimation (column of V) 
% sensor_b:         Second sensor for attenuation estimation (column of V) 
% Fs:               Sampling Frequency of time histories in V 
% fmin:             Minimum frequency for curve fitting 
% fmax:             Maximum Frequency for curve fitting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% a0:               Frequency-independent coeff of attenuation (sec/m) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
A=V(:,sensor_a); 
B=V(:,sensor_b); 
f_att=f(fmin+1:fmax+1); 
d=zeros(size(V));% Displacement time history 
for k=1:size(d,2) 
    d(:,k)=(1/Fs)*cumtrapz(V(:,k)/810); % t(2) is the time increment 
end 

  
fft_d=fft(d,Fs)/Fs; 
fft_d=abs(fft_d(fmin+1:fmax+1,:)); 

  
noverlap=0; 
win=size(V,1)/2; 
[Pxx,~]=pwelch(A,rectwin(win),noverlap,Fs,Fs); 
[Pyy,~]=pwelch(B,rectwin(win),noverlap,Fs,Fs); 
[Pyx,~]=cpsd(B,A,rectwin(win),noverlap,Fs,Fs); 
Coh=Pyx./((Pxx.^(1/2)).*(Pyy.^(1/2))); 
Cxy=abs(Coh).^2; 
tag=[]; 
    for k=fmin:fmax 
        if Cxy(k+1) < 0.99 
            tag(end+1)=k; 
        end 
    end 
f_temp=f_att; 
f_temp(tag-fmin+1)=[]; 
ratio=fft_d(:,sensor_a)./fft_d(:,sensor_b); 
ratio(tag-fmin+1)=[]; 
coeff1=1/((x(norm_sensor)/x(trial_sensor))^0.5); 
fo=fitoptions('exp1','Lower',[coeff1 -inf],'Upper',[coeff1 +inf]); 
e=fit(f_temp',ratio,'exp1',fo); 

  
co=coeffvalues(e); 
a0=(co(2)/(x(sensor_b)-x(sensor_a)))/(0.3084); % convert to m 

  
end 
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function [a,f_att] = Attenuation_Curve(V,x,Fs,fmin,fmax) 
% Project:          Multichannel Analysis of Surface Waves 
% Function:         Attenuation_Curve.m 
% Author:           William W. Greenwood 
% Affiliation:      University of Michigan 
% Last Revised:     10 April 2018 
% Purpose:          Estimate frequency-independent attenuation coefficient 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INPUT: 
% V:                Sensor time histories 
% x:                Distance from source for each sensor 
% Fs:               Sampling Frequency of time histories in V 
% fmin:             Minimum frequency for curve fitting 
% fmax:             Maximum Frequency for curve fitting 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% OUTPUT: 
% a:               Frequency-dependent coefficient of attenuation (1/m) 
% f_att:           Vector of corresponding frequencies 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
f_att=f(fmin+1:fmax+1); 
d=zeros(size(V));% Displacement time history 

for k=1:size(d,2) 
    d(:,k)=(1/Fs)*cumtrapz(V(:,k)/810); 
end 

  
fft_d=fft(d,Fs)/Fs; 
fft_d=abs(fft_d(fmin+1:fmax+1,:)); 
cod=cell(size(f_att)); 
alpha_0=zeros(size(f_att)); 
alpha_lower=zeros(size(f_att)); 
alpha_upper=zeros(size(f_att)); 

  
for k=1:length(f_att) 
    y=fft_d(k,:); 
    myfittype=fittype('A1*sqrt(r1/x)*exp(-a0*freq*(x-r1))','independent'... 
        ,{'x'},'dependent',{'y'},'coefficients',{'a0'},'problem',{'A1',... 
        'r1','freq'}); 
    Amp1=fft_d(k,1); 
    rad1=x(1); 
    trial_freq=f_att(k); 
    myfit=fit(x',y',myfittype,'Lower',-inf,'Upper',inf,... 
        'StartPoint',.0005,'problem',{Amp1,rad1,trial_freq},'TolFun',... 
        1e-20,'TolX',1e-20); 
    cod{k}=myfit; 
    alpha_0(k)=cod{k}.a0; 
    temp=confint(cod{k}); 
    alpha_lower(k)=temp(1); 
    alpha_upper(k)=temp(2); 
    myfit_lower=myfit; 
    myfit_upper=myfit; 
    myfit_lower.a0=alpha_lower(k); 
    myfit_upper.a0=alpha_upper(k); 
end 

 
a=f_att.*alpha_0/.3048; 
end 
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B   Test Images for Fracture Detection  
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B.1 Marble Image Set 

 

 
Figure B-1: Image M1 (Vertical scale 35 cm) 

 

 
Figure B-2: Image M1 kb=0.4 
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Figure B-3: Image M2 (Vertical scale: 35 cm) 

 

 
Figure B-4: Image M2 kb=0.4 
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Figure B-5: Image M3 (Vertical Scale: 30 cm) 

 

 
Figure B-6: Image M3 kb=0.4 
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Figure B-7: Image M4 (Vertical scale: 30 cm) 

 

 
Figure B-8: Image M4 kb=0.4 
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Figure B-9: Image M5 (Vertical scale: 35 cm) 

 

 
Figure B-10: Image M5 kb=0.4 
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Figure B-11: Image M6 (Vertical scale: 30 cm) 

 

 
Figure B-12: Image M6 kb=0.4 
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Figure B-13: Image M7 (Vertical scale: 30 cm) 

 

 
Figure B-14: Image M7 kb=0.4 
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Figure B-15: Image M8 (Vertical scale: 35 cm) 

 

 
Figure B-16: Image M8 kb=0.4 
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Figure B-17: Image M9 (Vertical scale: 30 cm) 

 

 
Figure B-18: Image M9 kb=0.4 
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Figure B-19: Image M10 (Vertical scale: 30 cm) 

 

 
Figure B-20: Image M10 kb=0.4 
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Figure B-21: Image M11 (Vertical scale: 35 cm) 

 

 
Figure B-22: Image M11 kb=0.4 
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Figure B-23: Image M12 (Vertical scale: 30 cm) 

 

 
Figure B-24: Image M12 kb=0.4 
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Figure B-25: Image M13 (Vertical scale: 30 cm) 

 

 
Figure B-26: Image M13 kb=0.4 
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Figure B-27: Image M14 (Vertical scale: 30 cm) 

 

 
Figure B-28: Image M14 kb=0.4 
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Figure B-29: Image M15 (Vertical scale: 35 cm) 

 

 
Figure B-30: Image M15 kb=0.4 
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Figure B-31: Image M16 (Vertical scale: 35 cm) 

 

 
Figure B-32: Image M16 kb=0.4 
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Figure B-33: Image M17 (Vertical scale: 25 cm) 

 

 
Figure B-34: Image M17 kb=0.4 
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Figure B-35: Image M18 (Vertical scale: 25 cm) 

 

 
Figure B-36: Image M18 kb=0.4 
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B.2 Basalt Image Set 

 
Figure B-37: Image BA1 (Vertical scale: 27 cm) 

 
Figure B-38: Image BA1 kb=0.3 Os=0.5 

 

 
Figure B-39: Image BA2 (Vertical scale: 20 cm) 

 
Figure B-40: Image BA2 kb=0.3 Os=0.5 
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Figure B-41: Image BA3 (Vertical scale: 15 cm) 

 
Figure B-42: Image BA3 kb=0.3 Os=0.5 

 

 
Figure B-43: Image BA4 (Vertical scale: 20 cm) 

 
Figure B-44: Image BA4 kb=0.3 Os=0.5 
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Figure B-45: Image BA5 (Vertical scale: 20 cm) 

 
Figure B-46: Image BA5 kb=0.3 Os=0.5 

 

 
Figure B-47: Image BA6 (Vertical scale: 16 cm) 

 
Figure B-48: Image BA6 kb=0.3 Os=0.5 
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Figure B-49: Image BA7 (Vertical scale: 25 cm) 

 
Figure B-50: Image BA7 kb=0.3 Os=0.5 

 

 
Figure B-51: Image BA8 (Vertical scale: 25 cm) 

 
Figure B-52: Image BA8 kb=0.3 Os=0.5 
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Figure B-53: Image BA9 (Vertical scale: 42 cm) 

 
Figure B-54: Image BA9 kb=0.3 Os=0.5 

 

 
Figure B-55: Image BA10 (Vertical scale: 20 cm) 
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Figure B-56: Image BA10 kb=0.3 Os=0.5 

 

 
Figure B-57: Image BA11 (Vertical scale: 20 cm) 

 
Figure B-58: Image BA11 kb=0.3 Os=0.5 
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Figure B-59: Image BA12 (Vertical scale: 30 cm) 

 
Figure B-60: Image BA12 kb=0.3 Os=0.5 

 

 
Figure B-61: Image BA13 (Vertical scale: 27 cm) 

 
Figure B-62: Image BA13 kb=0.3 Os=0.5 
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Figure B-63: Image BA14 (Vertical scale: 34 cm) 

 
Figure B-64: Image BA14 kb=0.3 Os=0.5 

 

 
Figure B-65: Image BA15 (Vertical scale: 24 cm) 

 
Figure B-66: Image BA15 kb=0.3 Os=0.5 
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Figure B-67: Image BA16 (Vertical scale: 35 cm) 

 
Figure B-68: Image BA16 kb=0.3 Os=0.5 

 

 
Figure B-69: Image BA17 (Vertical scale: 30 cm) 

 
Figure B-70: Image BA17 kb=0.3 Os=0.5 
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Figure B-71: Image BA18 (Vertical scale: 30 cm) 

 
Figure B-72: Image BA18 kb=0.3 Os=0.5 

 

 
Figure B-73: Image BA19 (Vertical scale: 37 cm) 

 
Figure B-74: Image BA19 kb=0.3 Os=0.5 
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Figure B-75: Image BA20 (Vertical scale: 17 cm) 

 
Figure B-76: Image BA20 kb=0.3 Os=0.5 

 

 
Figure B-77: Image BA21 (Vertical scale: 25 cm) 

 
Figure B-78: Image BA21 kb=0.3 Os=0.5 
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Figure B-79: Image BA22 (Vertical scale: 45 cm) 

 
Figure B-80: Image BA22 kb=0.3 Os=0.5 
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Figure B-81: Image BA23 (Vertical scale: 25 cm) 

 
Figure B-82: Image BA23 kb=0.3 Os=0.5 

 

 

 

 

 

 



314 
 

 
Figure B-83: Image BA24 (Vertical scale: 25 cm) 

 
Figure B-84: Image BA24 kb=0.3 Os=0.5 

 

 
Figure B-85: Image BA25 (Vertical scale: 20 cm) 

 
Figure B-86: Image BA25 kb=0.3 Os=0.5 
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Figure B-87: Image BA26 (Vertical scale: 27 cm) 

 
Figure B-88: Image BA26 kb=0.3 Os=0.5 

 

 
Figure B-89: Image BA27 (Vertical scale: 30 cm) 

 
Figure B-90: Image BA27 kb=0.3 Os=0.5 
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Figure B-91: Image BA28 (Vertical scale: 30 cm) 

 
Figure B-92: Image BA28 kb=0.3 Os=0.5 
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B.3 Third Image Set 

 
Figure B-93: Image H2 (Vertical scale: 10 cm) 

 

 
Figure B-94: Image H2 kb=0.4 
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Figure B-95: Image H3 (Vertical scale: 20 cm) 

 

 
Figure B-96: Image H3 kb=0.4 
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Figure B-97: Image H4 (Vertical scale: 15 cm) 

 

 
Figure B-98: Image H4 kb=0.4 
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Figure B-99: Image IDL (Vertical scale: 5 cm) 

 

 
Figure B-100: Image IDL kb=0.4 

 

 
Figure B-101: Image K1 (Vertical scale: 50 cm) 

 

 
Figure B-102: Image K1 kb=0.4 
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Figure B-103: Image K2 (Vertical scale: 30 cm) 

 

 
Figure B-104: Image K2 kb=0.4 

 

 
Figure B-105: Image L1 (Vertical scale: 20 cm) 

 

 
Figure B-106: Image L1 kb=0.4 
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Figure B-107: Image L2 (Vertical scale: 20 cm) 

 

 
Figure B-108: Image L2 kb=0.4 

 

 
Figure B-109: Image NP1 (Vertical scale: 30 cm) 

 

 
Figure B-110: Image NP1 kb=0.4 
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Figure B-111: Image NP4 (Vertical scale: 20 cm) 

 

 
Figure B-112: Image NP4 kb=0.4 

 

 
Figure B-113: Image NP5 (Vertical scale: 50 cm) 

 

 
Figure B-114: Image NP5 kb=0.4 
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Figure B-115: Image NZ1 (Vertical scale: 20 cm) 

 

 
Figure B-116: Image NZ1 kb=0.4 
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Figure B-117: Image NZ2 (Vertical scale: 18 cm) 

 

 
Figure B-118: Image NZ2 kb=0.4 
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Figure B-119: Image NZ3 (Vertical scale: 12 cm) 

 

 
Figure B-120: Image NZ3 kb=0.4 
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Figure B-121: Image NZ4 (Vertical scale: 8 cm) 

 

 
Figure B-122: Image NZ4 kb=0.4 
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Figure B-123: Image NZ5 (Vertical scale: 15 cm) 

 

 
Figure B-124: Image NZ5 kb=0.4 

 

 
Figure B-125: Image NZ10 (Vertical scale: 18 cm) 

 

 
Figure B-126: Image NZ10 kb=0.4 
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Figure B-127: Image NZ11 (Vertical scale: 25 cm) 

 

 
Figure B-128: Image NZ11 kb=0.4 

 

 
Figure B-129: Image NZ12 (Vertical scale: 25 cm) 

 

 
Figure B-130: Image NZ12 kb=0.4 
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Figure B-131: Image NZ13 (Vertical scale: 15 cm) 

 

 
Figure B-132: Image NZ13 kb=0.4 

 

 
Figure B-133: Image NZ17 (Vertical scale: 30 cm) 
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Figure B-134: Image NZ17 kb=0.4 

 

 
Figure B-135: Image NZ18 (Vertical scale: 25 cm) 
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Figure B-136: Image NZ18 kb=0.4 

 

 
Figure B-137: Image NZ21 (Vertical scale: 35 cm) 

 

 
Figure B-138: Image NZ21 kb=0.4 
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Figure B-139: Image S1 (Vertical scale: 80 cm) 

 

 
Figure B-140: Image S1 kb=0.4 
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Figure B-141: Image S2 (Vertical scale: 40 cm) 

 

 
Figure B-142: Image S2 kb=0.4 
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Figure B-143: Image S3 (Vertical scale: 25 cm) 

 

 
Figure B-144: Image S3 kb=0.4 
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Figure B-145: Image S4 (Vertical scale: 30 cm) 

 

 
Figure B-146: Image S4 kb=0.4 

 

 
Figure B-147: Image S5 (Vertical scale: 25 cm) 

 

 
Figure B-148: Image S5 kb=0.4 


