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ABSTRACT 

 

The purpose of this thesis is to study the nature of electromagnetic scattering by the sea 

surface using numerical methods.  

Sea-surface scattering has long been studied using various analytical methods. These 

analytical methods include the two scale method (TSM), the small-slope approximation (SSA), 

the small-perturbation method (SPM), the Advanced Integral Equation Method (AIEM), and the 

Geometrical/Physical Optics (GO/PO) method. These analytical methods rely on making 

approximations and assumptions in the modelling process. Some of these assumptions undermine 

their applicability in a wide range of situations. The input for analytical methods are usually the 

ocean spectrum. In real implementations, there are 2 sources of uncertainty in such approaches: 

(1) the analytical methods have a limited range of applicability to the surface scattering problem; 

the approximations made in these methods are questionable and (2) the various ocean spectra are 

another source of uncertainty.  

We earlier applied a numerical method in 3-dimensions (NMM3D) to the scattering 

problem of soil surfaces. Through comparison with measured data, we established the accuracy 

and applicability of NMM3D. We see a drastic increase of ocean remote sensing applications in 

recent years. It is thus feasible to extend NMM3D to the sea-surface scattering problem. Compared 

to soil, sea water has a much higher permittivity, e.g., 75+61i at L-band. The large permittivity 

dictates the need for using a much denser mesh for the sea surface. In addition, the root mean 
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square (rms) height of the sea surface is large under moderate to high ocean wind speeds, which 

requires a large simulation area to account for the influence of long scale wave like gravity waves.  

Compared to the two-scale model commonly used for the ocean scattering problem, 

NMM3D does not need an ad-hoc split wavenumber in the ocean spectrum. Combined with a fast 

computational algorithm, it was shown that NMM3D can produce accurate results compared to 

measured data like the Aquarius missions. TSM could also match well with Aquarius provided 

with a pre-selected splitting wavenumber. But it was observed that the result of TSM changes with 

different splitting wavenumbers. It is seen that TSM is fairly heuristic while NMM3D can serve 

as an exact method for the scattering problem.  

On the other hand, through our study of NMM3D, we found that with a fine grid, the final 

impedance matrix converges slowly and also it becomes hard to perform simulations for a large 

surface. This has provoked us to (1) solve low convergence problem for a dense mesh and (2) 

resolve difficulties in simulations of large surfaces.  

Inspired by the existing impedance boundary condition (IBC) method, we proposed a 

neighborhood impedance boundary condition (NIBC) method to solve the slow convergence 

problem caused by the dense grid. Different from IBC where the surface electric field and the 

surface magnetic field are related locally, NIBC relates the surface electric field to the magnetic 

field within a preselected bandwidth BW. Through numerical simulations, we found that the 

condition number can be reduced using NIBC. Errors of NIBC are controllable through changing 

BW. We applied NIBC to various wind speeds and surface types and found NIBC to be quite 

accurate when surface currents only suffer an error norm of less than 1%. 

On the other hand, in contrast to the large permittivity of sea water, the air permittivity is 

small and has a rather smooth green function. Utilizing the Steepest Descent Method (SDM), we 
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successfully combined the Fast-Fourier-Transform (FFT) with the Physics-Based Two Grid 

(PBTG) method. PBTG states that a dense grid is needed for a medium with a high dielectric 

constant while it is not necessary for air. Eventually, our analysis led to a dense grid, e.g., 64 points 

per wavelength for green function in the lower medium and a coarse grid, e.g., 8 points per 

wavelength for green function in air.  

Utilizing NMM3D, the anisotropic property of ocean backscatter for different wind 

direction is studied using two different ocean spectra. It is concluded that at L band, the dominant 

scattering mechanism is Bragg scattering. 
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 Introduction 

 

This thesis is dedicated to the study of microwave scattering by the sea surface using 

numerical methods. 

Usually, sea-surface scattering is modeled by analytical methods like the Advanced 

Integral Equation Method (AIEM), the Small Slope Approximation (SSA), and the Two Scale 

Model (TSM), among others. These analytical models involve the use of approximations in the 

modeling process, and thus have a limited range of implementation. In contrast, the numerical 

method makes no approximations in the modeling process. Surface integral equations are derived 

from Maxwell equations directly and then solved by the moment method. The input to NMM3D 

is the real surface profile generated from the ocean spectrum. Unlike a soil surface, the sea surface 

has a large permittivity and across a large rms height. These two features of sea water and sea 

surface requires a fine grid up to 64 points per wavelength a large simulation area. A dense grid 

results in a slow convergence rate for the final impedance matrix equation and a large surface will 

bring the CPU and memory burdens for the computing clusters. The rest of the thesis will try to 

solve these problems. 

1.1 Surface scattering of sea surfaces 

Derived from Maxwell equations, the surface integral equations (SIE) are the governing 

equations for scattering problems. The unknowns are the surface electric fields and surface 

magnetic fields. In solving the surface integral equations using moment methods, Rao-Wilton-

Glisson (RWG) functions have been used as the basis and testing functions. The ocean surface 
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profile is generated using linear method with an ocean spectrum. The used ocean spectrum is 

truncated with a lower limit and upper limit. The lower limit and upper limit are related to the 

surface length and surface discretization density. Then the surface profile is meshed into triangles 

where RWG functions can be applied.  

In solving the final impedance matrix equation, the most computationally intensive part is 

the product of the matrix by a column vector. To expedite this process, we have implemented 

Sparse Matrix Canonical Grid (SMCG) method. This method is based on the Taylor expansion of 

Green function about the flat surface. We project the green function onto the flat surface, then a 2 

dimensional fast fourier transform can be carried out. We also combine the RWG basis function 

with the SMCG method to achieve both accurate and fast computation. Since we are simulating a 

finite surface, tapered incidence wave have been used to avoid edge diffraction.  

As an approximation to the relation between surface electric field and surface magnetic 

field, impedance boundary condition (IBC) has been used widely to surface scattering problem. 

Out findings are that IBC works fine for surface with a large radius of curvature and large 

permittivity. But for ocean surface, the capillary waves are the main contributor to backscattering. 

IBC is not so applicable.  

We compared our NMM3D results with other analytical methods and also Aquarius 

measurement data. It is showing that both NMM3D and TSM can predict well matched backscatter 

with Aquarius. But TSM needs a pre-selected splitting wavenumber to dive the ocean spectrum 

into SPM part and GO/PO part. When we change the splitting wavenumber, the scattering 

coefficients produced by TSM will also change. The standard of selecting the splitting 

wavenumber is like data fitting to produce the best matching with data. Thus TSM is pretty 

heuristic and cannot be regarded as an exact solution to electromagnetic scattering problem.  
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1.2 Scattering of anisotropic ocean spectrum 

At L band, a new puzzle observed from recent radar missions appeared. As a function of 

azimuthal dependence, upwind radar scattering cross sections at L band are generally observed to 

be larger than cross wind radar cross sections. However, at lower winds near 3-5 m/sec, a reversal 

has been observed where the cross wind radar cross section exceeds upwind. This phenomenon is 

labelled as a Negative Upwind-Crosswind (NUC) asymmetry. In this thesis we also try to find the 

reasons lead to NUC by NMM3D. Two candidate anisotropic spectra are explored in Chapter 3: 

1) the Elfouhaily Spectrum with and without an imposed nonlinear horseshoe pattern; 2) the Apel 

Spectrum with an empirically-modified spreading function. The modified angular spreading 

function is obtained using the advanced integral equation EM scattering method (AIEM) and 

satellite measurements and where millimeter and centimeter waves crosswind are allowed to be 

stronger than that of the upwind/downwind. Simulation results show that horseshoe pattern do not 

cause NUC to happen while the new angular spreading function can reproduce NUC. This leads 

to the conclusion that at L band Bragg scattering dominate the backscattering.  

1.3 Neighborhood impedance boundary condition (NIBC) 

Through doing 3D scattering problem of sea surface using numerical method, some 

numerical problems arose. The sea water permittivity is very large compared to air. The 

wavelength in sea water is 8 times shorter than that in air at L band. This requests a dense mesh 

when preforming moment method to the surface of sea surface. However, a dense grid will create 

some significant numerical problem including slow convergence, large CPU and memory 

consumption. 

Inspired by the usual Impedance Boundary Condition (IBC), we are thinking of relating 

the surface electric field with the surface magnetic field accurately. IBC relates local electric field 
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with local magnetic field. This means the local electric field is only related to the magnetic field 

at the same spot. This approximation is made for flat surface with an infinite permittivity. But the 

truth is surface electric field can be incited by anywhere resided magnetic field. But thanks to the 

highly lossy feature of sea water, local electric field are only influenced by a small range of 

magnetic fields that surround it. Thus we can use a band matrix to represent such a relationship.  

We are testing the NIBC in 2D scattering problem. Results show that 1) the error of NIBC 

is controllable by changing the bandwidth we are using. 2) NIBC is applicable to a wind range of 

ocean winds conditions and various surface types. Compared to IBC, NIBC is more accurate in 

that the surface fields only have an error norm of less than 1%. More importantly, it is found that 

the resulted equation has a much condition number than the usual dual surface integral equation.  

1.4 PBTG in conjunction with SMCG 

For scattering of random rough surfaces, we have kept mentioning sparse matrix canonical 

grid (SMCG) as our fast method in moment method for accelerating matrix vector multiplication. 

And also dense grid should be used due to the large permittivity of sea water. But on the other 

hand, the permittivity of air is relatively small. So there is a need to use dense grid for green 

function in the sea water but not for the green function in the air. The goal of Chapter 5 is to 

achieve that dense grid used in sea water but coarse grid in the air. Similar concept has been 

proposed by Tsang during the 1990s and 2000s and is called Physics-Based Two-Grid Method 

(PBTG).  

With the help of steepest descent method (SDM), a new equation is formulated and through 

which we have been able to combine Fast Fourier Transform (FFT) with PBTG. Finally, combined 

with NIBC, it is seen that green function in the sea water is discretized with dense grid, e.g., 64 
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points per free space wavelength which the air green function is discretized with coarse grid, e.g., 

8 points per free space wavelength.  

1.5 Overview of the thesis 

The thesis focuses on numerical modeling of sea surface interaction with electromagnetic 

waves at L band. We compared the numerical results with other analytical method and studied an 

interesting phenomenon called Negative Upwind-Crosswind (NUC) Asymmetry for 3D problems. 

This is the first time that the numerical problems are used to compare to the measured data and 

used to study the NUC phenomenon [44]. 

 For the fast algorithm, we have proposed Neighborhood Impedance Boundary Condition 

(NIBC) and combine SMCG and PBTG to accelerate computation speed and speed up the iteration 

rate. NIBC is proposed to solve the dense grid problem resulted by the large permittivity of sea 

water. The study of dense grid with more than 30 points per free wavelength is never reported in 

previous numerical models [47] [50].  

The Aquarius data used in this thesis is provided by Dr. Simon Yueh from the Jet 

Propulsion Laboratory.  
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 Sea Surface Radar Scattering at L-Band Based on Numerical Solution of 

Maxwell’s Equations in Three Dimensions (NMM3D) 

2.1 Introduction 

Physical models of electromagnetic scattering from random rough surfaces have broad 

applications in microwave remote sensing of land surfaces and ocean surfaces. Analytical 

approximate methods include the small perturbation method (SPM), Geometrical Optics (GO), 

Physical Optics (PO), Advanced Integral Equation Method (AIEM), the Small Slope 

Approximation (SSA) and the composite surface model [1-6].  

Ocean surfaces have a range of scales, with gravity waves of order of meters and short 

gravity and gravity-capillary waves with scales in the range of centimeters to millimeters. A 

common scattering model is the composite surface model, also known as the two scale model 

(TSM) [7-8]. In this approach, the surface height spectrum is divided in two in order to separate 

large- and small-scale roughness elements. Physical/Geometrical optics and SPM are applied, 

respectively, to the two scales, and the total radar cross section is obtained by summing the two 

contributions. The dividing line is usually chosen to be a half of the free-space wavenumber of the 

incident microwave [9, 10]. The two-scale model is a heuristic model as the decomposition of an 

object into parts followed by coherently or incoherently combining the scattering of each does not 

follow from Maxwell equations, otherwise Maxwell equations can be readily solved for any large 

object. Thus TSM requires tuning of dividing line between large scales and small scales. 

In recent years, numerical simulations of 3D rough surface scattering have become feasible 

by combining fast numerical methods and high performance computing [11-15]. The simulations 
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have been applied to land and ocean surfaces. Both land and sea surfaces have fine-scale (mm to 

m) features that can cause significant microwave radar backscattering. For example, gravity-

capillary and capillary waves have small radii of curvature compared with microwave wavelength 

that can lead to strong backscattering and cross-polarized returns. Because of the fine scale surface 

features, the surface integral equation approach, with discretizations of surfaces, is more accurate 

than using the FDTD (Finite-Difference Time-Domain) or FEM (Finite Element Method) 

approaches. The latter two methods require volumetric discretization. The surface integral 

equation approach combines fine-scale surface discretization with the method of moment (MoM) 

to capture the impact of all relevant surface structure on the scattered electromagnetic radiation. 

Examples of fast dense matrix solvers include the sparse matrix canonical grid method (SMCG) 

[16] and the Multilevel Fast Multiple Algorithm (MLFMA) [12]. In order to reduce the number of 

iterations, a near-field preconditioner has been used [14]. Some past work in numerical simulation 

treated the ocean surface as a perfect electric conductor (PEC) [15]. Some have implemented 

impedance boundary conditions (IBC) [17, 41]. The impedance boundary condition states that the 

tangential electric field is equal to the product of the wave impedance of the ocean permittivity 

and the tangential magnetic field. The approximation is valid if the radius of curvature of the 

surface is large compared with the microwave wavelength. Compared to previous works which 

are making approximations in the modeling process, in this chapter Maxwell equations are solved 

with a finite permittivity. Some earlier works are simulating 1 dimensional surfaces or 2 

dimensional surfaces with pulse basis functions, while in this work 2 dimensional surfaces with 

RWG basis functions are being studied [18-23]. 

In this chapter, we apply NMM3D (Numerical Maxwell Model in 3-D) [11] to simulate L-

band radar scattering from a wind-roughened ocean. The surface integral equations of PMCHWT 
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(Poggio-Miller-Chang-Harrington-Wu-Tsai) [12] are used. The ocean surface profiles are 

stochastically generated using three dimensional ocean spectra. In PMCHWT formulation, two 

separate Green’s functions are used, one for air permittivity and another for ocean permittivity. 

The Sparse Matrix Canonical Grid (SMCG) [16] is used in conjunction with RWG basis functions. 

For modeling of the rough surface scattering, the physical problem is 3D vector wave scattering. 

However, the rough surface boundary has 2 dimensions with 2 degrees of freedom. The SMCG 

method uses a Taylor expansion of the Green’s function about the flat surface so that 2D Fast 

Fourier Transforms (FFT) can be applied to the 3D electromagnetic scattering problem. The 

SMCG method has been implemented in a parallel computation framework [24]. The scattering 

problems in this chapter include cases with up to 6 million surface unknowns in the tangential 

electric and magnetic fields. In NMM3D simulations, a finite surface size is used and the surfaces 

are discretized. This means that the ocean spectrum is truncated between 𝑘𝑙 and 𝑘𝑢, where 𝑘𝑙 is 

inversely proportional to the surface size while 𝑘𝑢  is inversely proportional to the discretizing 

sampling. Note that in NMM3D simulations, there is no need to impose a surface scale separation 

within this domain of 𝑘𝑙 to 𝑘𝑢. By changing 𝑘𝑙 or surface size, one can investigate the influence 

of adding roughness due to longer ocean surfaces. By varying 𝑘𝑢, one can assess the impact of 

small scale capillary waves. This study will focus on L-band ocean backscattering simulations and 

their comparison to results obtained from the Aquarius satellite radar system for wind speeds of 5, 

8 and 10 m/sec. Aquarius measurements provide estimates for VV, HH, VH, and the VV/HH ratio 

and NMM3D backscattering results are produced for each case. Comparisons will also be made 

with TSM backscatter estimates to evaluate the efficacy of this widely used approximation method. 

The chapter is organized as follows. In section 2.2, we describe the ocean spectrum used 

in this study. In section 2.3, we describe the formulations of surface integral equation and the 
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numerical implementations. In section 2.4, the influences of  𝑘𝑙 and 𝑘𝑢, the lower and upper limits 

of truncated ocean spectrum on backscatter are illustrated. In Section 2.5 we illustrate numerical 

results and make comparisons to data and the TSM model. 

Also in this chapter, the Aquarius data is actually the results of geophysical model function 

(GMF). The GMF is the experimental formula that relates the backscatter with wind speeds and 

wind directions. The following is a typical definition of GMF 

           1 2, 1 cos cos 2pq A w A w A w        (1) 

In equation (1), 𝜎 is the backscatter. w is wind speed. ϕ is wind direction. 𝐴, 𝐴1, 𝐴2 are 

coefficients through data fitting with measurement data.  

2.2 Ocean spectrum and surface generation 

Ocean roughness spectra have been extensively used in electromagnetic modeling of ocean 

surface scattering. Common ocean spectra include the Pierson-Moskowitz, Durden-Vesecky [16, 

26] (DV), Donelan-Banner-Jahne and Elfouhaily spectra [25, 27-29]. These wind-dependent ocean 

wave height models are written in the form of the product of an isotropic part and an azimuthal 

anisotropic (wave direction) part 

      
1

, , , , ,W k u S k u k u
k

     (2) 

   (3) 

where 𝑆(𝑘, 𝑢) is the omnidirectional spectrum with 𝑘 being the spectral components and 𝑢 being 

the surface wind speed. 𝜙 is the azimuthal angle with respect to the wind direction. Φ(𝑘, 𝜙, 𝑢) is 

the directional spreading function or angular dependence function which denotes the nonuniform 

distribution of wave roughness in azimuth. In this chapter, we used Durden-Vesecky spectrum for 

     , , 1 , cos 2k u k u   
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the NMM3D simulations. Appendix B gives the expression of the Durden Vesecky spectrum. Two 

versions are used. One version is the isotropic, or omnidirectional, spectrum defined by setting 

Δ(𝑘, 𝑢) = 0, and is referred to as isotropic DV in this chapter. The other version used is the full 

directional DV spectrum, referred to as the anisotropic DV spectrum. Although other spectrum can 

be used such as the Elfouhaily spectrum, the purpose of this chapter is to use NMM3D simulations 

to compare with the results of TSM and small perturbation method. Thus we limit ourselves to the 

isotropic and anisotropic DV spectrum [26]. 

In this study, the microwave frequency is 1.26GHz, which is the frequency of the Aquarius 

L-band scatterometer. The wavenumber of the microwave 𝑘0 is 26 m-1. According to the Bragg 

scattering theory [29, 30], the spectral component of the ocean spectrum that contributes to the 

backward scattering is  

 02 sinBk k    (4) 

where for the incidence angle ( ) of 39, the Bragg scattering wavenumber is 33 .  

In the rough surface simulations computed using DV as input for the surface integral 

equation approach [15], we specify the surface area to be of an extent 𝐿𝑥  and 𝐿𝑦  in x and y 

directions respectively. We also set surface lengths 𝐿𝑥 = 𝐿𝑦 = 𝐿 . In the discretization of the 

surfaces, sampling intervals of Δ𝑥 = Δ𝑦 are used. These limits set surfaces that contain spectral 

components 𝑊(𝑘, 𝜙, 𝑢) in the range of 𝑘𝑙 ≤ 𝑘 ≤ 𝑘𝑢, where 

 uk
x





  (5) 

 
2

lk
L


   (6) 

 1m
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In Figure 1, we show a log-log scale of the isotropic Durden-Vesecky spectrum for wind 

speeds 5 m/s, 8 m/s, and 10 m/s. The wavenumber of the incident microwave, the Bragg 

wavenumber, 𝑘𝑙 , 𝑘𝑢 for several surface lengths and sampling are also shown. In Figure 1, the lower 

limit 𝑘𝑙 corresponds to a surface by 64𝜆 × 64𝜆 and the upper limit 𝑘𝑢 corresponds to ∆𝑥 = ∆𝑦 =

1/32𝜆 . The incident L-band and Bragg wavenumbers lie between the upper limit and lower 

spectral limits.  

In Table I, we tabulate 𝑘𝑙  and 𝑘𝑢  values corresponding to the surface sizes and the 

discretization intervals used in this chapter. With the increase of surface length, large scale ocean 

waves are incrementally increased in the simulations. The peak wavenumber for 5 m/s, 8 m/s and 

10 m/s are around 0.27m−1, 0.1m−1, and 0.07m−1. With a limited surface simulated, not all scales 

of ocean waves are included in the simulation. The rms heights for wind speed 8m/s 10 m/s are 

not the same as real ocean surfaces. 

 

Figure 1 Isotropic Durden-Vesecky surface elevation spectrum (solid lines) for wind speeds 5 

m/s, 8 m/s, and 10 m/s. Magenta and blue lines denote lower and caupper limit. The lower limit 

lk  corresponds to a surface size of 64 64  . Upper limit uk  corresponds to 1/ 32x y     . Red 
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and green lines denote the incident microwave wavenumber and Bragg wavenumber 

respectively. 

 

Table I Upper and lower spectral limits for varying sampling point densities and surface sizes 

Surface 

Length (λ) 

∆𝑥, ∆𝑦 (𝜆) 𝑘𝑙  (𝑚−1) 𝑘𝑢 (𝑚−1) 

16 1/16 1.65 211 

32 1/16 0.82 211 

16 1/32 1.65 422 

64 1/16 0.41 211 

2.3 PMCHWT surface integral equation and numerical implementation using RWG and 

SMCG 

In this section, we summarize the methodology of NMM3D simulations [13-15]. 

For scattering by dielectric surfaces, the PMCHWT formulations of surface integral equations 

(SIE) are given in the following form: 

   (7) 

where 

   (8) 

   (9) 

1
1 1

1 1

1

inc
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T T K K
n EJ

n HM
K K T T









 
       
     
        
 

     2
ˆ , ' ' '

i i i
S

i

T ik n I g r r r dr
k

 
    

 
X X

     ˆ . . , ' ' 'i i
S

K n PV g r r r dr   X X



13 

 

and 

   (10) 

   (11) 

In the equations above, and  are the wavenumber and Green’s function in air, 

respectively, while  and  are the wavenumber and Green’s function for ocean 

permittivity. Next we apply the MoM to the above surface integral equations. RWG basis functions 

are used. Curl-conforming RWG functions are used as testing functions. A property of the 

discretized equations is that the impedance matrix elements are symmetric, e.g. 

   (12) 

We have used this property to reduce CPU memory and computation time.  

A finite surface area of 𝐿 by 𝐿 is used in the surface integral equations. To eliminate the 

edge effects for a surface with finite size, a tapered plane wave [29], in the form of 2D Fourier 

transforms, is used: 

   (13) 

   (14) 

where 

 ˆr zz    (15) 
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 ˆ ˆ
x yk xk yk     (16) 

and 

  
2 2

2 2

, 0

,
z z

k k k k
k k k

i k k k k

 



 

   
  

  

  (17) 

          ˆ ˆ ˆ ˆ
ie k e h k h k v k v k    
   
 

  (18) 

          ˆ ˆˆ ˆ
ih k e v k h k h k v k    
   
 

  (19) 

where 

      ˆ ˆ
i i h i v ie e k E h k E v k       (20) 

The notations 
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    

ˆ ˆcos sin , 0

ˆ ˆ ˆ , 0
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z
x y

x y k
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xk yk z k

kk k








  


 
  



  (22) 

For fast matrix vector multiplication in the iterative solution of the matrix equation, we 

used the SMCG method. In the SMCG a Taylor series expansion of Green’s function is applied 

[16] about a flat surface defined by the x-y plane. Subsequently a 2D FFT is applied. The Taylor 

series expansions are performed for the Green’s functions and the gradient of the Green’s 

functions, 
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   (23) 

   (24) 

where . The coefficients above,  and , are 

translationally invariant in the horizontal directions. We apply 2D FFTs to the coefficients and 

these are performed for the product of the Toeplitz matrix and column vector [16]. The first four 

coefficients of the above expansions,  and , are listed in Appendix A. In Appendix A, we 

also describe improvements to use of SMCG on NMM3D compared with that used in previous 

implementations.  

In this study, the Taylor series are expanded to fifth order. We have checked that 5 terms 

in Taylor series expansion could give accurate results compared to direct green’s function 

multiplication such that the error norm is less than 0.2% for wind speed 5 m/s. The details of 

numerical implementation of SMCG on RWG basis functions are also described in appendix A.  

2.4 Ocean surface profile generations and L-band backscattering variations with 𝒌𝒍 and 

𝒌𝒖 

For L-band NMM3D simulations, we account for roughness due to both short gravity 

waves (5 m and less) [32] and shorter gravity-capillary waves (down to 2 cm or so) [33]. Since the 

wavelength of wind-generated gravity waves will increase with wind forcing, a larger sea surface 

for the NMM3D analysis is necessary for greater wind speeds. To account for the influence of fine 

capillary waves on backscatter, a small discretization of the surface is necessary. By varying 

surface length and discretizations as shown in Table I, we examine the effects of longer gravity 
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waves and shorter gravity-capillary waves on backscattering at L band. At wind speed 5 m/s, 

Aquarius data show the Negative Upwind-Crosswind (NUC) asymmetry [33, 37]. This means 

upwind backscatter is smaller than crosswind backscatter. At other wind speeds (>=8m/s), upwind 

backscatter are stronger than crosswind. This asymmetry cannot be reproduced based on the DV 

anisotropic spectrum or using other existing spectrum. We will investigate the spreading function 

in the future. In the meantime, we use the isotropic DV spectrum for NMM3D for 5 m/s, but 

upwind data for Aquarius. For 8m/s, the Aquarius data is weakly dependent on wind direction, 

especially for beam 1 and beam 2. Then we used isotropic surfaces for 8m/s. For 10m/s, we used 

anisotropic surfaces. We have also calculated surface sample statistics from randomly generated 

surface profiles [34-36]. The rms heights are provided in Table II for various surface lengths and 

wind speeds. We have made comparisons between numerical computation and analytical 

integration and found the ocean statistics within the same spectrum range are the same between 

the two methods. 

Table II Rms for isotropic DV spectrum at different wind speed in terms of longest surface 

wavelength  

Ocean 

wind speed 

(m/s) 

Surface 

Length 𝑳(λ) 

𝒌𝒍 (𝒎−𝟏) rms  

in 

centimeters  

5 16 1.65 4.8 

5 32 0.82 5.5 

5 64 0.41 5.5 

8 16 1.65 5.1 

8 32 0.82 10 
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8 64 0.41 13.8 

For wind speed of 8 m/sec, the increase of surface length from 16 wavelength to 64 wavelength, 

corresponding to the decrease of lk , results in an increase of rms height from 5.1 cm to 13.8 cm. 

This indicates inclusion of longer surface waves with increased surface size.  

In order to study the influence of the upper and lower limit of the spectral range used in the 

simulation, we conducted NMM3D simulations using different surface lengths and discretizations.  

 

 

Table III VV and HH for varying discretizing densities at wind = 5 m/s with 39° incidence angle 

and isotropic DV spectrum compared with upwind Aquarius data 

∆𝒙, ∆𝒚 (𝝀) 𝒌𝒖(𝒎−𝟏) VV(dB) HH(dB) # of 

realizations 

1/16 211 -15.42 -20.45 30 

1/32 211 -15.49 -20.27 30 

Aquarius N/A -15.50 -20.00 N/A 

 

Table III shows the backscatter results for wind speed = 5 m/s at several sampling densities. 

The results show that 16 points per wavelength and 32 points per wavelength yield very similar 

backscattering results. The difference is within 0.3 dB. The Aquarius upwind data are also listed 

in the table. Based on extensive simulations, sampling at 16 points per wavelength yields sufficient 

accuracy to account for the small scale roughness. Including smaller capillary wave roughness 

does not alter the backscattering results for this case. For emissivity calculations, denser sampling 
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are required. And results for cross wind and upwind are compared for the anisotropic DV spectrum 

and are shown in Figure 5. 

Next we conducted numerical simulations for several surfaces sizes at winds of 5 and 8 

m/s. These correspond to changing 𝑘𝑙. The backscatter results are shown in Table III. We also 

include in Table III and IV the number of realizations used in the simulations as shown in the last 

column of the two tables. We have conducted convergence test with the number of realizations. 

Results show that 30 realizations can give stable results for backscatter. For the 16λ case, the 

computation time is about 3~4 minutes for each realization. For the 32 λ case, it is about 20 minutes 

for each realization. For the 64λ case, it is about 1 hour for each realization. The convergence rate 

of iterations is influenced by the roughness of the ocean surface. 

Table IV VV and HH for L band 39° incidence isotropic DV spectrum compared with Upwind 

Aquarius data  

(a) 

VV and HH for varying surface sizes at wind=5 m/s 

Surface 

Size 

𝒌𝒍 (𝒎−𝟏) VV(dB) HH(dB) # of 

realizations 

16 × 16𝜆2 1.65 -15.42 -20.45 30 

32 × 32𝜆2 0.82 -15.54 -20.71 30 

64 × 64𝜆2 0.41 -15.50 -20.50 30 

Aquarius  N/A -15.50 -20.00 N/A 

(b) 

VV and HH for varying surface sizes at wind= 8 m/s 

Surface 

Size 
𝒌𝒍 (𝒎−𝟏) VV(dB) HH(dB) 

# of 

realizations 
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16 × 16𝜆2 1.65 -14.72 -19.75 30 

32 × 32𝜆2 0.82 -14.65 -19.51 30 

64 × 64𝜆2 0.41 -14.06 -19.34 29 

Aquarius N/A -14.80 -18.65 N/A 

The NMM3D backscatters of various simulated surface sizes are shown in Table IV (a) 

and (b) for wind 5 m/s and 8 m/s, respectively. It is noted that there is a less than 1dB difference 

for VV, a 1.4 dB difference for HH at 5 m/s and 8 m/s. One observes that for the two wind speeds, 

the maximum difference for backscatter for varying surface sizes is 0.7 dB. There is also an 

increase of backscatter with increasing wind speed from table (a) to table (b). It is to be noted that 

from table (c), the 3 surface sizes at wind 8 m/s have approximately the same backscatter. But in 

Table II, the 3 surface sizes have very different rms height for the same wind speed of 8m/sec. 

With the increase of simulated surface size, longer waves (waves that are meters long and have a 

large rms height) are included in the simulations. However, these longer waves do not cause 

significant differences on backscatter at 8 m/s. The backscatter arises from the spectral components 

in the ocean spectrum that are comparable to the wavelength of the incoming microwaves. For L 

band, the decimeter and centimeters ocean waves cause backscatter. The above convergence 

analysis may also be influenced by the random errors brought by the Monte Carlo simulations. In 

future studies, the use of larger surface sizes will be studied. 

2.5 NMM3D results and discussions 

In this section, we present NMM3D numerical ocean scattering results at L-band and their 

comparison with Aquarius data. The assumed surface relative permittivity is 75+61i, 

corresponding to a complex index of refraction of 9.26+3.29i. This is the case of seawater with a 

salinity of 35 ppt (parts per thousand) at water temperature of 10oC at 1.26 GHz. For each 
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realization, a single sea surface is generated and Maxwell’s equations are solved numerically. The 

scattering coefficients represent results averaged over 30~300 realizations.  

Isotropic and anisotropic Durden-Vesecky ocean spectrum are used for simulations of 

wind-dependent L-band backscatter. The isotropic DV spectrum is used for 5 m/sec and 8 m/sec. 

The anisotropic DV spectrum is used for 10m/sec [38, 40]. 

  

Figure 2 Comparison of L-band NMM3D scattering amplitude distributions for 300 realizations 

for co-polarized cases VV (left), HH(right) and for wind speed of 5 m/s using the isotropic DV 

spectrum and an incidence angle 29o. The red curve indicates that for a Rayleigh-distributed 

process. 

Figure 2 shows the statistical distributions of the simulated results for HH, VV computed 

using 300 realizations with a wind of 5 m/s and incidence angle of 29o. The histogram of computed 

backscatter values is consistent with that shown for a Rayleigh distribution. 

Figure 3 shows the in-plane bistatic L-band scattering coefficients at 5 m/s wind speed and 

39 degree incidence. In these simulations we decompose the bistatic scattering coefficients into 

coherent and incoherent waves [13, 15]. For the surface sizes used, the coherent waves are only 

significant in the specular direction while scattering in other directions arises from the incoherent 

waves [13-15, 39, 40]. The backscattering direction is highlighted with a dashed line in Figure 3.  
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Figure 4 shows the backscatter dependence at the three incidence angles of the Aquarius 

scatterometer, 29°, 39°, 46° at wind = 5 m/s. Backscattering decreases with incidence angle. The 

upwind Aquarius data are also shown. For co-polarization, the agreement between simulations and 

upwind Aquarius data are within 1 dB at the three incidence angles.  

 

Figure 3 In-plane bistatic VV HH for wind = 5m/s isotropic DV spectrum 

 

 

Figure 4 L-band backscatter at wind speed = 5 m/s for different incidence angles: 29, 39, 46 

degrees and isotropic DV spectrum compared with upwind Aquarius data. 
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In Figure 5, we illustrate the backscatter for wind = 10 m/s using an anisotropic DV 

spectrum. The incidence angle is 46°. There are 4 curves in the figures: NMM3D with error bars 

derived from the Monte Carlo simulations, first order SPM, Aquarius data, and composite surface 

model (two scale model). There are several TSM models because TSM is a heuristic 

approximation, subdividing the objects into parts and them performing incoherent combining with 

tilts. We have referred to several TSM models in our computation. The uncertainty of numerical 

simulation is defined as  

 
1

( ) 10log10(1 )error dB
N

    (25) 

for VV, HH. In (25), N is the number of realizations. The 4 panels in Figure 4 correspond to VV, 

HH, VV/HH (polarization ratio), VH, respectively. We can see that HH of SPM is lower than 

Aquarius data, while NMM3D, TSM, and SPM show VV results that are all comparable with 

Aquarius observations. The polarization ratio, VV/HH, derived using SPM is 1.5dB larger than 

the data. NMM3D and TSM can both give good polarization ratio compared to data while 

polarization ratio given by SPM is larger than data and not changing with data. For current wind 

speeds (wind speed<10m/s) we are studying, TSM and NMM3D both agree well with data for 

cross polarization. The figure also indicates that Aquarius data show a directional dependence in 

the polarization ratio. A wind direction dependence for this ratio is also exhibited in NMM3D, 

while the ratio is direction-invariant for SPM. With a diving wavenumber equals 
𝑘0

2
, we see that 

TSM can predict good scattering coefficient as NMM3D.  

Figure 6 provides the backscattering polarization ratio for winds of 8 and 10m/s and for 

the three incidence Aquarius angles [40]. NMM3D simulation uncertainties are also shown. For 
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wind=8m/s, the surfaces used in the computations are derived from the isotropic DV spectrum. 

The results of TSM and data shown in Figure 6 are averaged over all wind directions. For 

wind=10m/s, the anisotropic DV spectrum is used in NMM3D. The results of NMM3D, TSM and 

Aquarius data are also averaged over all wind directions. Results indicate that the VV/HH ratio 

increases with increasing incidence angle. From the figures, we see that the difference for both 

TSM and NMM3D compared to Aquarius data are both within 0.6dB.  

 

  

  

 

Figure 5 L-band backscatter for wind speed =10 m/s and incidence angle= 46. Upper two panels 

are VV and HH, and bottom is for VV/HH. TSM, NMM3D, SPM results use the anisotropic DV 

spectrum.  
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Figure 6 Comparison of NMM3D and two scale model of VV/HH with Aquarius at 29o, 39o, and 

46o. NMM3D is using isotropic DV spectrum for 8 m/s and anisotropic DV spectrum for 10 m/s. 

TSM is derived using the anisotropic DV spectrum for wind = 8 and 10m/s.  Each data point is 

obtained by averaging over all wind directions. 

 

Figure 7 Polarization ratio for wind speed 10m/s and 26° incidence. The horizontal axis is 

different cutoff wavenumbers. Vertical axis is VV/HH ratio in dB. Each data point is obtained by 

averaging over all wind directions. 
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In Figure 7 we plotted the polarization ratio for wind speed 10m/s and 26° incidence. The 

horizontal axis is different cutoff wavenumbers. Vertical axis is VV/HH ratio in dB. Each data 

point is obtained by averaging over all wind directions. It is apparent that the polarization ratio is 

changing with different cutoff wavenumbers. And for such a case, we see that 𝑘𝑑 = 𝑘0 will result 

in a VV/HH ratio 3dB higher than 𝑘𝑑 =
𝑘0

5
.  

2.6 Conclusions 

With an efficient SMCG method implemented to solve the PMCHWT surface integral 

equations, we have performed NMM3D simulations for ocean radar scattering at L band 

frequencies. Surface areas used are up to 15.2 m by 15.2 m (64 wavelengths). For the largest 

surfaces, there are more than 6 million surface unknowns in the tangential electric and magnetic 

fields. This use of a large surface for simulations allows us to examine the effects of gravity and 

capillary waves. The numerical simulations, unlike the two-scale scattering model, does not 

require a wavenumber dividing line between large and small scale roughness. Simulations are 

shown for 5m/sec, 8m/sec and 10m/sec using isotropic DV spectrum and anisotropic DV spectrum. 

The backscatter results are in good agreement with Aquarius observation data for VV and HH co-

polarization, cross-polarization, and VV/HH ratio. A rigorous approach to the problem based on 

NMM3D is to incrementally increase the surface size until convergence is reached. Recent 

computational electromagnetic efforts about scattering by large objects are on using rigorous 

domain decomposition which should be considered in remote sensing simulations.  Without a large 

domain, it is possible that tilt effects are not included. To obtain tilt effects require a definition of 

decomposition and tilts can both decrease or increase local incident angles, requiring a heuristic 

use of tuning parameters. For inclusion of tilt effects, the readers can refer to reference [7]. For 

NMM3D to move forward, the increase of domain size via domain decomposition and the increase 
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of sampling points per wavelength are essential steps. Also, the authors has used 
𝑘0

2
 as the dividing 

wavenumber in the TSM for separation of applying SPM and Geometrical Optics. The results 

produced by TSM match well with Aquarius. But if using other dividing wavenumbers, the 

scattering coefficients are not good. This indicate TSM is quite an ad hoc method. 
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Appendix A 

In order to integrate SMCG with the PMCHWT equation, it is necessary to write the 

equation in a form where the field and source points are separated. We will use the subscript m to 

denote the field point and subscript n to denote the source point. The superscripts x, y, and z 

represent the three axes. The following discretized impedance matrix expressions are obtained 

after performing moment method operations to the kernel of the electric field integral equation 

(EFIE) 

   (26) 

where  and  are the RWG basis functions for the field and source edges. Also 

   (27) 

   (28) 

The kernel of the magnetic field integral equation (MFIE) is: 

   (29) 

We use 

   (30) 
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   (31) 

Equation (27) (28) and (31) are in a form such that the source point is on the right side of 

Green’s function while the field point resides on the left side of Green’s function. Next the Green’s 

function is expanded in a Taylor series with respect to the flat surface. The first 4 coefficients are 

listed in equations (32) to (39). 
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   (39) 

We have used the centroid as the integration point within each triangular patch [26]. 

 

                                               (a)                                                                                   (b) 

Figure 8 SMCG with centroid as integration points 

 

As is shown in Figure 8 (a), the local coordinates of the two integration points A and B are 

(1/4, 3/4) and (3/4, 1/4) which are not centroids of the two triangles. In Figure 8 (b), the local 

coordinates of C and D are (1/3, 2/3) and (2/3, 1/3), respectively. The points C and D fall onto the 

center of each triangle. After making the modification from (a) to (b), the accuracy of SMCG is 

greatly improved.  

We define the error of SMCG by 

   (40) 

where  are the impedance matrix elements calculated directly using 7th order quadrature 

and  are the matrix elements calculated indirectly by the SMCG method. For a  by  
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surface with  points per wavelength, the error is about 0.2%. In addition to SMCG, we have 

also used Green’s function interpolation in the numerical simulations [9]. 

 

 Figure 9 SMCG in conjunction with RWG basis functions 

 

In Figure 9, we illustrate how SMCG based on RWG functions works. Firstly, the currents 

inside one source triangle patch aggregates to the centroid. Next, the accumulated currents transfer 

to the field triangle through Green’s function. Then the transferred field distributes to each inner 

edge inside the source triangle. 
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Appendix B 

The ocean surface height spectrum for a fully-developed wind sea, as proposed by Durden 

and Vesecky [21], has the following form: 

   (41) 

where . The subscript denotes the Durden-Vesecky spectrum. The constant 

a0 is 0.004 in [21], but was adjusted upwards to 0.008 in Yueh et al. [20]. In order to best fit the 

L-band measurement data in this study, a value of  is applied. Other parameters are

, , , ,  is acceleration due to gravity, and 

 is the ratio of surface tension to water density. The wind friction velocity 

at the ocean surface, , is related to the wind speed at a height (h) of 19.5 meter above sea level, 

, using the following form.  

   (42) 

The wave directional spreading factor  is  

 2( , ) 1 ( )(1 exp( ))cos(2( ))windk k sk          (43) 

In (43), the upwind direction is defined as  In this chapter,  k  is defined as 

  
 

 

1 2

1 1

R
k c

R D


 

 
  (44)  

with 

     10

2

2 4

19.5
0

4 log /2
2

*

*

exp

. ,
2

j

DV DV a k

j

g
k k

k Ua
W k k

k bku
k k

g



 


  
   
 

  
 

 
 

12jk m DV

0 0.008 1.3a  

0.74  1.25b  0.225a  2

*g g k  29.81 / secg m

5 3 27.25 10 / secm  

*u

19.5U

*

2

* *

log
0.4 0.0000684 / 0.00428 0.000443

h

u h
U

u u


 

 ,k 

o0 .wind 



32 

 

 
3

12.5

3

12.5

0.003 1.92 10

3.16 10

U
R

x U





 
   (45) 

 
   

 

2 2

0

2

0

expdkk S k sk
D

dkk S k










  (46) 



33 

 

 

 

 Radar Scattering of Ocean Surfaces with Anisotropic Ocean Spectrum using 

NMM3D simulations 

3.1 Introduction 

Recent years have seen an increase in L-band microwave satellite sensors in earth remote 

sensing applications. This wavelength benefits from near atmospheric transparency, the ability to 

retrieve soil moisture information, sense and penetrate snowpack, and respond to ocean surface 

wind and salinity [45]. Studies have recently been conducted for ocean backscattering at L band 

using PALSAR and Aquarius radar data [38].  

Because ocean wind create anisotropy in ocean surfaces, the radar cross section have 

interesting azimuthal directional dependences. There is a new puzzle for L band in directional 

dependence in all polarizations: the upwind backscatter is larger than the crosswind backscatter 

for high winds (>10 m/s), but the relative amplitude changes at lower wind speeds (<8 m/s). This 

is termed a Negative Upwind-Crosswind (NUC) asymmetry.  

Figure 10 shows the Geophysical Model Function (GMF) of Aquarius scatterometer for 

different wind direction. The incidence angle is 29 degree. The figure shows that for wind speeds 

larger than 8 m/s, backscatter of crosswind is smaller than that of upwind. But for wind speeds of 

5 m/s and 8 m/s, the backscatter at crosswind is larger than that of upwind. This phenomenon is 

also shown in PALSAR [35] which is L band. However it not observed in higher frequency bands.  

Analytical models, AIEM or TSM, using common adopted ocean spectrum, cannot 

reproduce the NUC phenomenon. Yueh et al. (2013) suggested that directional and passive/active 

aspects of the signals might correspond to a non-Bragg scattering phenomena at L-band. 
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Alternatively, it is possible that the surface waves themselves have markedly different directional 

distribution near the L-band, ultragravity 20-50 cm wavelengths, at these low to moderate wind 

speeds. 
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Figure 10 Geophysical Model Function of Aquarius scatterometer data versus wind direction of 

beam 1 at L band. Top figure is VV, middle figure is HH, bottom figure is VH. The four curves 

correspond to wind speeds 5, 8, 10, 15 m/s. 

In addition to analytical modeling of surface scattering problems, numerical simulations of 

3D rough surface scattering have become feasible by combining fast numerical methods and high 

performance computing. The simulations have been applied to land and ocean surfaces[11, 12, 44, 

46]. In [44], it is proved that the NMM3D results could predict the backscatter well compared to 

Aquarius data and analytical method. On the other, the input for the numerical method is the 

computer generated ocean surfaces which can include a large range of different ocean wave scales. 

This is advantageous compared to many analytical methods which only one point on the ocean 

spectrum is used.  

In this chapter, we study the NUC through both analytical method and numerical 

simulations at L band under 5 m/s. Two kinds of surfaces are studied: Elfouhaily spectrum 

with/without horseshoe patterns and the Apel spectrum with modified angular spreading function 

[43]. In the following ocean spectrum is introduced and then results generated from NMM3D are 

shown and analysis are conducted. 
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3.2 Ocean spectrum 

Ocean spectrum is used to characterize the power distribution of ocean waves on different 

scales of waves and on different directions. In the past we studied soil surfaces with exponential 

correlation functions [11, 46].Compared to rough land surface, ocean surface is smoother. This is 

also illustrated in Figure 11. 

Figure 11 shows a comparison of spectrum between ocean (Pierson-Moskowitz), spectrum 

of Gaussian and exponential correlation function. The three curves have the same rms height which 

is 0.06 meter. The correlation length is 10 times rms height. It is clear that exponential function 

has a much higher tail than ocean spectrum. This means soil land surfaces have much finer features 

than sea surface. Gaussian surface is even smoother. 

 

 

Figure 11 Comparison of Ocean (Pierson-Moskowitz), Gaussian and Exponential Spectrum for 

the same RMS height. Correlation length for Gaussian and exponential spectrum density is 10 

times rms height. 
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From ocean spectrum, the sea surface profiles are generated using spectrum for varying 

wind speeds using linear and nonlinear methods. The basic assumption underlying linearity of the 

surface is that the surface is a linear combination of different scales of sinusoidal waves.  

Figure 12 plots the computer generated ocean surface using linear method by Elfouhaily 

spectrum. The dimension is 15.2m by 15.2m. The wind speed is 5m/s.  

In this chapter we simulate L-band backscattering from anisotropic ocean surface with 

NMM3D. Two kinds of ocean surface profiles are used for NMM3D simulations. One is a group 

of time series nonlinear profiles generated by combining the nonlinear gravity waves and shorter 

“horse-shoe” pattern using Elfouhaily spectrum. The other is a group of linear profiles generated 

from a newly developed directional spectrum [43]. The introductions and analyses of these two 

kinds of profiles are given in the following sections. 

 

Figure 12 Computer generated linear ocean surface at 5 m/s using Elfouhaily spectrum. The 

dimension is 15.2m by 15.2m. 
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3.2.1 Nonlinear ocean surface profiles 

In addition to linear ocean surfaces, non-linear ocean surface is more popular due to its 

matching with ocean hydrodynamics. The profiles we are using is the Choppy Wave Model (CWM) 

with/without horsehose patterns. 

 

Figure 13 Extracted ocean spectrum for 5m/s with and without horseshose patterns of Choppy 

Wave Model for upwind and downwind. 

Figure 13 shows the extracted ocean spectrum for 5m/s with and without horseshoe patterns 

of Choppy Wave Model. The ocean spectrum used is anisotropic Elfouhaily spectrum. The profiles 

are of time series with 0.1 second as the time interval of total 2 seconds. It is seen that for k around 

the Bragg wavenumber, upwind is stronger than crosswind. Generally the upwind is stronger than 

crosswind for all the wavenumber ranges. The surface length of the profiles are 8 meters. 

3.2.2 A newly developed directional wave spectrum 

Another surface profiles that have been used is linear ocean surface generated by Apel 

spectrum using the spreading function by Du et al., 2017 [43]. The angular spreading function is 

obtained by data fitting between Aquarius measurement and AIEM using Apel spectrum. 

Figure 14 illustrates the ∆(𝑘) function of Du’s spectrum for the anisotropic surface for 5 8 

and 10 m/s. We could see that different from many other spectrum, the ∆(𝑘) function is negative 

for k ranges from 10 to around 80 rad/m. If using first order SPM to simulate backscatter, we will 
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get the backscatter is larger in crosswind than upwind at L band. This is because the input of first 

order SPM is the Bragg point in the spectrum curve. And we have Bragg wavenumber equal 33 

rad/m for 39 incidence and 1.26GHz. Then 

    1 33 cos(0) 1 33 cos(2 )
2

 
        

 
  (47) 

The new angular spreading function (ASF) is expressed as 
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Figure 14 ∆(𝑘) of Du’s spectrum for wind speed 5 8 and 10 m/s. 

 

In equation (49), 𝑐 is the wave phase speed and 𝑐𝑝 is the phase speed of the dominant long 

wave. The relationship between wave phase speed 𝑐 and wavenumber 𝑘 can be written as  

 

2

/ 1
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c g k

k
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    
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  (53) 

    0 4ln 2 / 4 ln 2 / 2 0.23 /d p ma a a c m s      (54) 
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Figure 15 Comparison of upwind and crosswind spectrum with the new spreading function by 

Du and Apel spectrum for 5m/s. Left figure is the zooming in of the right figure for k 

corresponds to 10 rad/m to 50 rad/m. 
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Figure 15 shows the Comparison of upwind and crosswind spectrum with the new 

spreading function by Du and Apel spectrum for 5m/s. It is observed that upwind spectrum is 

higher than crosswind for whole wavenumber range except for millimeter waves and centimeter 

waves which corresponds to k equal several tens of rad/m.  

Even though two kinds of spectrum are used for comparison: Apel and Elfouhaily. The 

purpose of this chapter is to explore the reason of NUC, and NUC is a comparative relationship 

between upwind/downwind backscatter and crosswind backscatter. So even though different 

spectrum will create different absolute VV HH value, we pay more attention on the comparison 

between upwind and crosswind and also VV/HH ratio.  

3.3 Results and discussions 

We use two kinds of ocean spectra in this section: Elfouhaily spectrum with or without 

horseshoe features and Apel spectrum with modified angular spreading function. Three results are 

compared: experimental data from Aquarius, analytic theoretical results of AIEM and 3D 

numerical simulations of NMM3D. 

Figure 16 shows the in-plane bistatic L-band scattering coefficients at 5 m/s wind speed 

and 46 degree incidence using Apel spectrum and modified angular spreading function. In these 

simulations we decompose the bistatic scattering coefficients into coherent and incoherent waves. 

For the surface sizes used, the coherent waves are only significant in the specular direction while 

scattering in other directions arises from the incoherent waves. The backscattering direction is 

highlighted with a dashed line in Figure 16. 
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Figure 16 Incoherent bistatic scattering coefficients by NMM3D for 5 m/s at L band using Apel 

spectrum and modified angular spreading function. Incidence angle is 38 degree. 

 

3.3.1 Scattering of nonlinear Elfouhaily surfaces 

Table V VV and HH of surface w/o horseshoe using NMM3D 

(a) 

upwind Without horse shoe With horse shoe 

VV -21.10dB -20.32dB 

HH -25.53dB -24.27dB 

(b) 

crosswind Without horse shoe With horse shoe 

VV -25.78dB -27.24dB 

HH -26.51dB -29.36dB 

The surfaces used in this part are 20 surfaces in a time series: 2 seconds with 0.1 second as 

the time interval. So in fact there is a close relation between the different surfaces. From the results 

in Table V we see with or without horseshoe feature, the simulation results do not reproduce NUC. 
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And also the absolute values of the scattering differ significantly from the Aquarius measurements. 

This is mostly due to the fact that the 20 surfaces used are closely related to each other.   

3.3.2 Scattering of Apel spectra surface with modified angular spreading function 

 

 

 
Figure 17 Comparison of backscatters of AIEM, NMM3D, Aquarius at L band for VV, HH and 

VH for different wind directions. First row: 29° incidence; Second row: 39° incidence; Third 

row: 46° incidence. The columns are VV HH and VH returns, respectively. 

 

Figure 17 illustrates the results by NMM3D, AIEM, and Aquarius measurement data. The 

spectrum used in this part is Apel spectrum with the modified ASF described in previous sections. 

From the figures, we see that the AIEM compared well with Aquarius. This is an obvious 

conclusion since the new ASF is obtained by data fitting between AIEM and Aquarius. For beam 

2 and 3, NMM3D also displays the NUC feature. For beam 1, the like pol of upwind and crosswind 

are identical to each other. Overall, VV and HH of NMM3D predictions are within 2dB difference 
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of Aquarius measurement. And the crosspol prediction of NMM3D also has a maximum 2.4dB 

deviation from Aquarius.  

 
Figure 18 Polarization ratio comparison between NMM3D, AIEM, Aquarius for upwind for the 

3 beams: 29°, 39°, 46° at wind speed 5m/s. 

 

Figure 18 plots the polarization ratio of NMM3D, AIEM, Aquarius for the 3 beams of 

Aquarius. As we can see from Figure 18, the maximum difference for the 29°, 39°, and 46° at wind 

speed 5m /s is 1dB between NMM3D and Aquarius. Through Figure 17 and Figure 18, we can see 

that NMM3D predictions are accurate, particularly for cross polarization. 

3.4 Conclusions 

Recent advances in computers have enabled the simulations of sea surface scattering using 

numerical method through parallel computing in NMM3D. By implementing moment method with 

RWG basis functions in surface integral equation, simulation are conducted with the computer 

generated surface profiles as input. Through this, we are able to test the influence of different 

scales of ocean waves and different wave patterns on scattering. 

Also in this chapter an effort is made to explore the reason for NUC appeared at L band. 

Through numerical simulations, it is seen that horseshoe patterns cannot generate the NUC 



46 

 

asymmetry at 5m/s. We are proposing a possible reason leading to this: the centimeter waves and 

millimeter waves are stronger in crosswind than upwind. Through NMM3D simulations, we have 

seen that Apel spectrum with such a new angular spreading function can lead to backscatter in 

crosswind exceeding upwind. Thus it is maybe due to the stronger millimeter and centimeter waves 

at crosswind than upwind that lead to NUC. This is in contrast to one’s intuition since wind is 

blowing in the upwind direction and naturally ocean waves should be stronger in upwind than 

crosswind. But recent spectrum measurement also shed some light on this reversal [36]. The ocean 

dynamics is now still being a hot topic due to its complexity. 

Up to now, there are various studies about ocean spectra. And the actual process of 

interaction between electromagnetic waves and ocean surfaces is also quite complicated. We will 

continue the study of numerical method on wave scattering due to ocean surface. 
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 Scattering of Lossy Dielectric Surfaces in Full Wave Simulation of Maxwell’s 

Equations with Dense Grid and Neighborhood Impedance Boundary Conditions 

4.1 Introduction 

Lossy dielectric surfaces are characterized by moderate relative permittivity of about 5 to 

80. The imaginary part is smaller than the real part of about 20% to 50% of the real part. Scattering 

by rough surfaces of these dielectric surfaces are often approximated by perfect electric conductor 

(PEC) or impedance boundary conditions (IBC). The exact formulation, on the other hand, should 

be based on dual integral equation with two Green’s function 𝑔0 which is the free space Green’s 

function with the wavenumber k of the medium above and 𝑔1 which is the Green’s function with 

the wavenumber 𝑘1 of the lossy dielectric. Compared to IBC or PEC, the dual surface integral 

equations (SIE) usually have more number of unknowns [47] due to that the unknowns are both 

electric field and magnetic field on the surfaces. But in order to achieve an accurate results, it is 

preferable to solve dual surface integral equations rather than solving PEC or IBC which are 

basically approximations. 

For ocean surfaces, as illustrated in Chapter 3, the ocean spectrum is smoother than soil 

surface. However, compared to soil, the sea water has a much larger permittivity. In previous 

chapters, the problem under consideration is sea water of permittivity with 75+61i with 

corresponding complex refractive index 9.26+3.29i. Soil often has a permittivity ranges from 1 to 

30. Such a large permittivity of sea water will require a very dense grid to get correct results. This 

is because the surface electric currents are fluctuating frequently on the surface. The wavelength 

inside the sea water is around 8 times shorter than that in the air. For PEC scattering problem, 10 
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points per free space wavelength are usually used in MoM. For lossy dielectric case, if 10 points 

are used in MoM, this corresponds to we have 1.5 points per wavelength in dielectric medium. 

Apparently this is not correct. Thus to obtain correct results, around 60~100 points per free space 

wavelength in discretization of the surface is a must to get correct currents distribution.  

 

Table VI A comparison between PEC, IBC and dual SIE 

L=100λ PEC IBC Dual SIE 

dielectric No Yes Yes 

𝑔0 Yes Yes Yes 

𝑔1 No No Yes 

Δ𝑥 
𝜆

10
 

𝜆

10
 

𝜆

64
 

N=number 

of points 
1000 1000 6400 

Number of 

unknowns 
1000 1000 12800 

 

In Table VI we are showing a comparison between PEC, IBC and dual SIE for a two 

dimensional problem. The case is 1 dimensional surface with length L=100λ. For PEC, the 

dielectric medium is basically considered to be a perfect electric conductor and as is mentioned 10 

points per free space wavelength is enough. For IBC, the surface electric field and magnetic field 

are correlated through a simple relationship and only green function of the air is used. Thus 10 

points per wavelength is also enough. For dual SIE, if 64 pints per wavelength is used we will have 

12800 number of unknowns. Dual SIE is the only method among the three which has used the 

green function in the lower medium.  

In contrast, in implementation of MoM, in addition to much CPU and memory burden, a 

tricky problem of slow convergence arises when dense grid is used. With limited computational 
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resources, it is much preferable to come up with methods to reduce the iterative steps. In 

computational electromagnetics, 3 methods are mainly used to solve this problem.  

1) change basis function 

2) use preconditioner 

3) use a different equation 

In this chapter, we are proposing a novel method to alleviate the problem of slow 

convergence with dense grid used in scattering of dielectric surfaces. The novel method takes 

advantages of the fast decaying property of Green function in lower medium along with the 

propagating distance. This means that if one excite one point on the surface, only nearby points 

are being influenced due to the fast decaying property of waves in a lossy medium. The band nature 

relating fields to each other is utilized and is further found to lead to a fast convergence. Compared 

to IBC which local electric field and magnetic field are related by a simple relationship of 

approximation, this new method exploits the band nature of green function and formulates the 

correct relationship of surface electric field and magnetic fields. We name this method the 

Neighborhood Impedance Boundary Condition (NIBC). Through our results, it is shown that 

NIBC is both stable and accurate for different wind speeds and can also be applied to 3D problems. 

Combined with fast algorithm, NIBC can be both computational fast and efficient.  

The permittivity used in this chapter are 75+61i except otherwise indicated. Ocean 

spectrum of Pierson-Moskowitz is used. The chapter is organized as follows: in section 4.2, we 

are presenting the integral equations used. A tapered incidence wave is also introduced. In 4.3, 

Pierson-Moskowitz is described. This is followed up with the introduction of NIBC method. Then 

in the final results and discussion part, first we will show that dual SIE is more accurate than IBC. 

Then it is proved that dense grid is needed for lossy medium to achieve correct results. Then a 

slow convergence problem is described when dense grid is implemented compared to coarse grid. 
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Finally, we will show that NIBC can alleviate the slow convergence problem but at the same time 

can be both accurate and stable. 

4.2 Formulations 

In this section, we will introduce the formulations used in IBC and dual SIE. Also tapered 

wave incidence is described in this section. 

4.2.1 Dual surface integral equation 

For the 2D rough surface scattering problem, the governing dual surface integral equation 

(SIE) derived from extinction theorem from both air and medium are [49] 
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where 𝑔(𝑥, 𝑧; 𝑥′, 𝑧′) is Green function in the air which is 
𝑖

4
𝐻0

(1)
(𝑘𝜌). k is the wavenumber in the 

air. 𝑔1(𝑥, 𝑧; 𝑥′, 𝑧′)  is Green function in the lower medium which is 
𝑖

4
𝐻0

(1)
(𝑘1𝜌) . 𝑘1  is the 

wavenumber in the lower medium. 𝛹 is the electric field if it is TE polarization and is magnetic 

field if it is TM polarization.   
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 𝑓(𝑥) is the rough ocean surface profile and 𝑓′(𝑥) is the slope of the surface. 𝑛̂ is the normal vector 

of the surface. 𝜓 and u are surface fields. And 𝜌 is an indicator of TE and TM incidence. 𝜓𝑖𝑛𝑐 is 

the incidence wave. Then after performing point matching to the above two equation, we get 

 incAu B     (59) 

 1 1 0A u B   (60) 

For matrix elements in (59), we have 
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For matrix elements in (60), we have 
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For usual perfect electric conductor (PEC) scattering problem, 10 points per free space 

wavelength is usually enough to get correct results. But for dielectric medium with a large 

permittivity 10 points per wavelength is far from enough. A usual criteria is to discretize the gird 

so that there are around 10 points per medium wavelength. 

4.2.2 Impedance boundary condition  

For the assumption of impedance boundary condition, the surface electric field and surface 

magnetic field is related through the following relationship 

 
tan| sE Z n H    (69) 

where 𝑍𝑠 is the impedance of the lower medium. 

For two dimensional problem, we have 
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Thus for either TM or TE polarization we can substitute (70) or (71) into equation (55) to 

get a simplified equation which only has one kind of unknowns.  

4.2.3 Tapered incidence wave 

Similar to 3D problems, a tapered incident wave is used in the simulation due to the fact 

that the surface has to be truncated to a finite length of L. To avoid artificial edge diffraction, the 

tapered incident wave is defined as  
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where g is the tapering parameter and  
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The incident wave is close to a plane wave for large surface length L. The tapering 

parameter is taken as 𝑔 = 𝐿/4. 

4.3 Pierson-Moskowitz spectrum 

As a function of wavenumber, gravity and wind speed the form of Pierson-Moskowitz 

spectrum is [14] 
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where 𝑎0 = 0.0081, 𝛽 = 0.74, g is the gravitational acceleration equation to 9.81 m/sec2. And 

U19.5 is the wind speed at the altitude of 19.5 m above the mean sea level. In (74), Φ(𝑘, 𝜙) is the 

directional factor. But since we are exploring the two dimensional problem, Φ(𝑘, 𝜙) is set to be 1 

in this chapter. 
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Figure 19 Amplitude of the Pierson-Moskowitz spectrum for along-wind direction and wind 

speeds U19.5=4, 8 and 10 m/s 

Figure 19 plots the amplitude of the Pierson-Moskowitz spectrum for along-wind direction 

and wind speeds U19.5=4, 8 and 10 m/s. It is seen that much of the energy is concentrated on small 

wavenumber. And with an increase of wind speed, the peak of the spectrum is moving towards the 

small wavenumber. This means that longer ocean waves are included in higher wind speeds.  

4.4 Neighborhood impedance boundary condition 

In this section we are describing the proposed novel method for scattering of highly 

dielectric lossy surfaces. Different from usual method which solves (59) and (60) directly, the 

proposed NIBC method is trying to solve (60) first. We then have 

 1 1u A B M   (75) 

𝑀̿ is the matrix relating 𝑢̅ and 𝜓̅ which is in contrast to the relationship defined in (70) and 

(71).Substitute (75) into (59), gives 
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(76) then becomes the final equation we are solving. In the above procedure, we are facing 

the following 3 issues. 

A. Inversion of matrix 𝐴̿1 

As mentioned earlier, since the permittivity of sea water has a large imaginary part, the 

waves will decay fast with the travelling distance. Thus the matrix 𝐴̿1 𝑎𝑛𝑑 𝐵̿1are actually band 

matrix. We can set up a bandwidth BW of the matrices that the matrix entries outside the BW is set 

to be zero.  

Figure 20 shows a comparison of 3D green function of air and sea water in terms of 

absolute value. It is easy to see that the green function in the sea water decays very fast. Even for 

a propagating distance of one λ, the absolute value drops to 10−10 which is much lower than the 

green function in the air. This means that 𝐴̿1 𝑎𝑛𝑑 𝐵̿1 actually behaves like a band matrix. The 

matrix elements quickly decrease when moving away from the diagonal line. 

 

Figure 20 3D Green function comparison of air and sea water as a function of propagating  
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In our numerical implementation, the BW is configured that the furthest elements in the 

matrix are 10-4 lower than the diagonal part. It is observed that when BW equal 
1

4
𝜆 can meet such 

a requirement. In the results section, we will show that the accuracy varies little with the BW used 

in the simulation. Now the problems reduces to solve for the inverse matrix of a diagonal matrix 

with a bandwidth BW. The following is an expression of the definition of inversion. 

 

1

1 1A A I   (77) 

In order to obtain the inverse of 𝐴̿1, we can solve for each column of 𝐴̿1
−1 one at a time. 

That is each time we are solving 

 1 n nA a e   (78) 

where 𝑎̅𝑛 is the nth column of matrix 𝐴̿1 and 𝑒̅𝑛 is a column vector with all zero elements except 

the nth element. 

 

Figure 21 Fast method for band matrix inversion 
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Figure 21 shows an example about how we invert the matrix. In this case, the BW is 3 grids 

and the figure is showing a case to solve for the 4th column of the matrix 𝐴̿1
−1. Then we just need 

to solve an inversion problem of size 5 by 5. The ‘x’ and ‘d’ in the figure represent diagonal and 

off-diagonal elements, respectively. Thus compared to usual method of inversing a matrix which 

is of the computation complexity order 𝑂(𝑁3), our method will only require 𝑂(𝑁 ∙ 𝐵𝑊3). 

B. Computation of 𝐴̿1
−1𝐵̿1𝑏̅ 

𝐴̿1
−1 and 𝐵̿1are both band matrix with bandwidth around BW. We can do first step 

 1B b c   (79) 

The computational complexity is of order O(𝑁 ⋅ BW). Then  

 

1

1A c d   (80) 

The computational complexity is also of order 𝑂(𝑁 ⋅ BW). Thus a nice feather of band 

matrix is that it is not so computation expensive while conducting matrix vector multiplication. 

C. 𝐴̿𝑏̅ and 𝐵̿𝑏̅ 

We have implemented PBTG/SMCG to accelerate this part. The details are described in 

the next chapter. 

When doing matrix times vector, since 𝐵̿1, 𝐴̿1
−1 are set to be band matrix, only entries 

within the bandwidth need to be calculated and stored. This has in fact reduced the memory 

storage.  

4.5 Results and Discussions 

There are 3 methods in this section: IBC, NIBC, and benchmark solutions. Benchmark 

solutions refer to the results by directly solving equations (59) and (60). All the cases in this section 
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are TM incidence cases except otherwise indicated. The dielectric constant is 75+61i and the MoM 

is conducted on a mesh with 64 points per free space wavelength. The ocean spectrum of Pierson 

Moskowitz spectrum is used. The error of using Frobenius norm is used to calculate the difference 

between two arrays. It is defined as 

 
1 2

1

F

F

array array
error

array


   (81) 

where ‖ ‖𝐹 is the Frobenius norm 
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4.5.1 Comparison between IBC and benchmark solution 

 
 

Figure 22 Surface fields comparisons between IBC and benchmark solution for TE incidence at 

5m/s. 
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Figure 23 Surface fields comparisons between IBC and benchmark solution for TM incidence at 

5m/s 

 

In Figure 22 and Figure 23, we are plotting the surface fields comparisons between IBC 

and benchmark solution for TE and TM incidence at 5m/s, respectively. Red curved are benchmark 

while blue curves are IBC. The x axis is the surface in terms of λ. The y axis is the amplitude of 

surface fields. The discretization used is ∆𝑥 =
1

64
𝜆. We can see that IBC for TE case is closer to 

benchmark than TM case. And also IBC has a minimum difference of 5% difference compared to 

benchmark solution. In order to correctly simulate the scattering problem of lossy medium, dual 

SIE must be solved. 

4.5.2 Single dense grid and single coarse grid 

In this chapter, we have used SCG for single coarse grid (around 10 points per free space 

wavelength), SDG for single dense grid (60 points or more per free space wavelength) which are 

the same as in Li’s paper [48].  
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Figure 24 Comparison of surface currents for SDG and SCG. 

 

Figure 24 shows the comparison of surface electric fields for both TE and TM case for 

different discretization density using the same surface profile. The x axis is the surface length in 

wavelength. The y axis is the value of electric field on the surface. Both figures indicate that 60 

points per wavelength match well with 70 points per wavelength and are quite different with the 

coarse grid which is 10 pints per wavelength. This means that for a dielectric surface with a large 

permittivity, it is desired to use dense grid up to 60 points per free space wavelength to get 

converged surface currents distribution.  
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4.5.3 Slow convergence of dense grid 

 

Figure 25 Residual error changing with iterations for two kinds of surfaces: 30λ long surface 

with 60 points/ λ (blue curve) and 90 λ long surface with 20 points/ λ (red curve) for both TE 

(left figure) and TM incidence (right figure). 

 

As mentioned earlier, the dense grid will bring up the slow convergence problem.  

Figure 25 shows the residual error along with iterative steps produced by conjugate 

gradient method for two kinds of surfaces: 30λ long surface with 60 points/ λ and 90 λ long surface 

with 20 points/ λ for both TE and TM incidence. It is seen that the two cases have the same number 

of unknowns. But apparently the dense grid case converges much slowly that the coarse grid case. 

This phenomenon has also been found in 3D problem case: the dense grid always converge much 

slowly than coarse grid case. The proposed new method in this chapter is now implemented onto 

2D problems. But it can also be applied to 3D problems.  

4.5.4 NIBC for alleviating numerical issues brought by dense grid 

In Figure 26, we are plotting the error of matrix 𝑀̿  in terms of Frobenius norm. 𝑀̿  is 

relating surface magnetic field and surface electric field and is defined in equation (75). For IBC, 

the matrix 𝑀̿ is simply a diagonal matrix due to the definition of IBC as defined in equation (70) 

and (71). The top figure is the ocean surfaces and bottom figure is the soil surface characterized 
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by exponential correction function. From Figure 26 we see that the error of IBC is less than 0.1% 

while the error norm for IBC is more than 80%.  

Figure 27 shows the comparison of surface fields errors of IBC and NIBC compared to 

benchmark solutions. The red lines are surface fields calculated by NIBC and black lines are IBC. 

It is also observed that the error norm of IBC is less than 0.1% for both ocean and soil surfaces 

while IBC has an error norm of more than 1% for ocean surfaces and 10% for soil surfaces. 
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Figure 26 Comparison of matrix 𝑀̿ between NIBC and IBC with benchmark method (top) ocean 

surface (bottom) soil surface 

 

 

 

  

Figure 27 Surface fields errors of IBC and NIBC compared to benchmark solution (top) ocean 

surface (bottom) soil surface 
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Figure 28 Condition number comparison for IBC, NIBC, and benchmark method for ocean 

surfaces 

 

We plot the condition number comparison for IBC, NIBC, and benchmark method for 

ocean surfaces in Figure 28. It is seen that the NIBC has a much smaller condition number than 

IBC and benchmark solution. Thus NIBC has actually changed the property of the impedance 

matrix. 

4.6 Conclusions 

In this chapter, I am trying to show that 

1) Dual SIE must to be solved instead of IBC or PEC to get correct scattering results 

2) Dense grid is needed to obtain correct results for medium with a large permittivity 

3) The proposed NIBC is an efficient way to reduce slow convergence rate brought by 

dense grid 

With a high dielectric constant, a dense grid as up to 64 points per wavelength is necessary 

to get correct results by using Method of Moments. Rigorous solution of solving Maxwell Equation 

will result in a high CPU and memory consumption with such a dense grid. What is more, the 
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impedance matrix is usually ill conditioned which needs plenty of iterative steps to get converged. 

The proposed NIBC method exploits the band nature of the impedance matrix formulated by the 

extinction theorem in the lower medium and can produce exact solution of the problem even for 

high winds. Through our numerical results, we found the errors of NIBC is controllable and used 

less CPU and memory. NIBC is also quite stable for different wind speeds and even soil surfaces. 
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 Fast Computational Method of Combing Low Rank Property and SMCG for 

Scattering of Ocean Surfaces 

5.1 Introduction 

As mentioned in chapter 4, a set of dense grid is needed to get the correct current 

distribution of a highly lossy surface. This is due to the fact that Green function of lower medium 

is changing rapidly and wavelength in the lower medium is much smaller than that in the air. But 

on the other hand, the green function in the air is slow varying. If we use single dense grid for both 

green functions in the air and medium, CPU and memory consumption will be quite a lot. This has 

become the incentives of this chapter: to finally achieve that dense grid is used in the lower medium 

while coarse grid is used in the upper medium. 

In chapter 4, we proposed a new method to accelerate the convergence rate in the iterative 

solver. The new method is termed as Neighborhood Impedance Boundary Condition (NIBC). The 

final equation to be solved is  

 
1

1 1 incAA B B  
 
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  (83) 

In this equation 𝐴̿ and 𝐵̿ are only related to Green function in the upper medium. 𝐴̿1 and 𝐵̿1 are 

related to Green function in the lower medium. And in chapter 4, dense grid as large as 64 points 

per wavelength is used to form the matrices of 𝐴̿, 𝐵̿, 𝐴̿1 and 𝐵̿1. But according to our analysis only 

𝐴̿1 and 𝐵̿1 are required to use dense grid.  

On the hand, the far field interaction displays low rank property. We will use the following 

example to show this property. 
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The rough surface is a 32λ long surface, and each λ we define as a block (patch) with 64 

discretization points. Then we have 32✕32 interaction submatrix to form the matrix 𝐴̿. For near 

field interaction, e.g. the interaction of block itself, the submatrix is a full rank matrix. But when 

the field and source block are distant from each other, it is found that the submatrix is low rank. 

In Figure 29 we are showing the rank comparison between the rough surface we mentioned 

and the flat surface. Source patch is 16th patch and field patch is ranging from 1 to 32. It is seen 

that the self-interaction matrix which corresponds to the middle point of the figure is full rank 

which is 64 due to the fact that there are 64 points per wavelength. On the other hand, we see that 

the rank drops quickly with the distance between the source patch and field patch. Also, it is 

observed that the flat surface typically has a lower rank compared to the rough surface.  

 

Figure 29 Rank comparison for rough surface and flat surface. Source patch is 16th patch and 

field patch is from 1 to 32 

 

The low rank property has been utilized in UV method to accelerate the matrix vector 

multiplication by Tsang [48]. Here we propose another fast computation method based on Steepest 

Descent Method (SDM) to combine the low rank property and SMCG. In the following sections, 
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64 points is used for green function in the lower medium which are basically 𝐴̿1 and 𝐵̿1. But 

utilizing our method it is achieved that 8 points per free space wavelength are used in 𝐴̿, 𝐵̿. This 

method can also be applied to 3D problems. 

5.2 Formulation 

In this section, the formulation of combining PBTG and SMCG is illustrated.  

In the up medium, we have Green function defined as: 
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Then we put it in a form of plane summation. 
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Later on ,x x x z z z     .  

The integration contour is on the real zk  axis. Next we make transformation to complex 

angle. 
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  (86) 

Balancing real and imaginary parts 
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Similarly for xk  

 sin cosh cos sinhx xk ik k ik    
        (88) 

we also have sinzdk k d   . 
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The original contour integral is now in the complex   plane and is denoted the 

Sommerfeld integration path (SIP): 

 
| |

SIP
( , ) exp

4

ik x sin ikzcosi
g x z d  



    (89) 

The Sommerfeld integration path extends from 0 i    . to 0   along the imaginary 

axis. It then goes from 0   to    along the real   axis. Finally it goes from    to 

i    . Since | | | |x z , the dominant exponential term is 
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  (90) 

The steepest descent path   is defined by 

 
(sin ) 1

1sin cosh



 

 

  
  (91) 

 

Figure 30 Steepest descent path and Sommerfeld integration path (SIP) 

 

Figure 30 plots the steepest descent path for the integral appeared in (89). The steepest 

descent path means that the integral converge fastest through this path. 
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The saddle point is at / 2  . The steepest descent path   is a contour of constant phase 

for the dominant exponential term, the amplitude of which decreases rapidly away from the saddle 

point. Then solving (89) using the numerical quadrature along the steepest descent path, we have 
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  (92) 

Let _q new     and then let _q new  , we have  
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The above can use FFT to accelerate, e.g. 
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  (94) 

In equation(94), we have separate apart 𝑥, 𝑥′ with 𝑧, 𝑧′. Since 𝑥, 𝑥′ are defined on canonical 

grid, we can accelerate the multiplication of (94) with a column vector through FFT which is 

similar to SMCG. To determine 𝛼𝑞, we have used the method present in [14]. Let BW be the 

bandwidth on either side of α′ =
𝜋

2
. We sample evenly on the α′ axis with interval ∆α′. Let the 

number of angles Q be an odd integer. Then 
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  (95) 

 
"'q q qi      (96) 
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  ' ( ) 1 '
2

q BW q
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        (97) 
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It is required that  
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where 𝑥𝑚𝑖𝑛 is the minimum separation in x. It is also required that  
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where 𝑥𝑚𝑎𝑥 is the maximum separation in x. In our numerical implementation we have  
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Then 
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Further, suppose x x  
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To deal with the gradient green function, we can use the property of Bessel function 

 1

0 1J J    (106) 

In the above equation, J stands for all Bessel functions. For the kernel of Gradient Green 

function, we have 
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Also suppose x x  , then use + sign in the equation. If x x  , then - sign 
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This can also be extended to 3D problems through the following equation 
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Further (109) can be written as: 
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In equation(111), x, z, and x’, z’ are defined on dense grid, e.g. 64 points per wavelength, 

while 𝑥𝑐 and 𝑥𝑐
′  are defined on coarse grid, e.g. 8 points per wavelength. In such a case, 𝑥𝑐 can be 

defined as the local patch center: 𝑥𝑐 is the center of every 8 xs. Similarly for the gradient of Green 

function, we have 
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 (112) 

(111) and (112) are the final equations we are using for combining low rank property and 

fast Fourier transform. The equations are a summation of integration points from 1 to Q. Then we 

can read the equations from right to left. 

For example, suppose we are doing the following multiplication 

  , ; ,
far

m m n n n

n m

g x z x z I


   (113) 
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𝑚𝑓𝑎𝑟 denotes the far field group of field point m and suppose 𝑥𝑚 > 𝑥𝑛. We can solve (114) 

using the following method 
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As can be seen from equation(114), we can follow the below 3 procedures to calculate 

(113). 

1. Dense source (64 points per wavelength) grid aggregates to the coarse grid (8 

points per wavelength) for ,( )sin cosn n c q n qik x x ikz

nqe I
 


  

 
 

  

2. Using FFT to perform the translation between interactions defined on coarse grid 

due to the fact that 𝑥𝑚, 𝑥𝑛 are defined on conanical grid. 

3. Then from coarse grid, disaggregate to dense field grid through 
,( )sin cosm m c q qik x x ikz

e
   

 
. 

In equation (111) and (112), the far field interaction of impedance matrix is decomposed 

into up triangular matrix and lower triangular matrix. Also identical to other fast methods, the near 

field interaction is calculated directly.  

5.3 Results 

As can be seen from equation (111) and (112), one key point is to test the convergence of 

the integral with different quadrature points used in the integral. This include two parts 

1)how to determine BW which is the bandwidth 

2)how to determine Q which is the number of points used in the quadrature 

Also as illustrated in section 5.2, BW and Q are determined by 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥, respectively. 

But for our rough surface scattering problem, 𝑥𝑚𝑖𝑛 is almost fixed, e.g., the range of near field 
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interaction distance like 2λ. But 𝑥𝑚𝑎𝑥 could be very long, e.g., 200 λ long. In the following test, I 

have let Q=73. Then according to equation (104), we can calculate 𝑥𝑚𝑖𝑛 from 𝑥𝑚𝑎𝑥 or calculate 

𝑥𝑚𝑎𝑥 from 𝑥𝑚𝑖𝑛. Then we can know all the α points. 

 

Figure 31 Error of green function calculated by steepest descent method compared to truth value 

 

In Figure 31 we are plotting the error of green function calculated by equation (94) 

compared to truth value. There are two curves in the figure. As illustrated before Q=73, red curve 

denote that 𝑥𝑚𝑎𝑥 = 100𝜆, blue curve denote that 𝑥𝑚𝑖𝑛 = 1λ. It can be seen in the figure that 

𝑥𝑚𝑖𝑛 = 1λ typically can make the error of green function within 0.1% difference compared to truth 

value for an x range from 0 to 140λ. Considering the fact that the largest surface length to simulate 

with available resource is less than 140λ, we will use the 𝛼𝑞  points determined by Q=73 and 

𝑥𝑚𝑖𝑛 = 1λ in the following sections.  
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Figure 32 Surface fields comparison between SMCG, PBTG-SDM-FFT and brute force solution. 

Top figure is for u comparison, bottom figure is for ψ comparison.  
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Figure 32 shows a surface currents comparison between SMCG, PBTG-SDM-FFT method 

with brute force solution. The case is surface length=30λ and wind speed is 5 m/s The dense grid 

used is 64 points per wavelength. The coarse grid is 8 points per wavelength. The Frobenius norm 

error defined in (81) is used. It shows that the error norm of our proposed new method is around 

0.9%. 

5.4 Conclusion 

In this chapter, we are showing a new method of combining SMCG method and PBTG. As 

is shown in chapter 4, dense grid is necessary to get correct results. At the same time dense grid is 

only required by lower lossy medium, but not the air green function. This chapter aims to apply 

dense grid to the lossy medium green function but use coarse grid to the air green function. 

The novel new method exploits the steepest descent method, and finally gets to a point 

where dense grid is aggregated to coarse grid first then FFT can be applied. The final results show 

that our new method is both fast and accurate. 
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 Conclusions 

 

Ocean surface covers approximately 70% of the Earth’s surface, is dynamic on a variety 

of scales, and contains most of the Earth’s water as well as important marine ecosystems. Remote 

sensing of ocean at microwave bands is of vital importance in prediction of disaster, ocean current 

circulation, salinity study.  

This dissertation focuses on the scattering problem of ocean surfaces by numerical method. 

Compared to analytical method, numerical method is proven to be more accurate and involves 

more physical information of the real ocean geometry. Analytical method like two scale model, 

small slope approximation, advanced integral equation method, make approximations in the 

modeling process and thus have a limited range of implementations. On the numerical method 

sides, there are some approximations people usually made to ease the computation. One is the 

perfect electric conductor assumption for sea water surface. Another is the impedance boundary 

condition assumption. But after all, the most accurate method is just to solve the dual surface 

integral equation derived from Maxwell equation directly. In Chapter 2 and 3, we established the 

accuracy of NMM3D through comparing to the measured data.   

Compared to soil surface which is usually characterized by exponential correlation 

function, ocean spectrum is smoother. But even for moderate wind speeds, e.g. 10 m/s, the ocean 

surface has an rms height as large as 1λ. This is because most power of ocean concentrates on 

gravity waves. This requires the simulation of a much larger surface area compared to soil surface. 

On the other hand, due to the large dielectric constant, dense grid is necessary to get correct results. 
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However, air permittivity is small and free space green function is smooth. Thus in fact, dense grid 

is only necessary for discretizing the green function in the medium, coarse grid is fine for free 

space. In Chapter 4 and 5, we proposed a novel method called NIBC to resolve the slow 

convergence rate issue brought by dense grid. Also, we combined SMCG and PBTG so that only 

coarse grid is used in the free space. 

In this thesis, first of all, we have proved the accuracy of NMM3D simulations. The 

NMM3D results are compared to Aquarius data and is shown to have a maximum 2dB difference. 

Then we proposed a novel method called NIBC to alleviate the slow convergence problem brought 

by dense grid. Finally, a new computational method which combine SMCG and PBTG to achieve 

the goal that coarse grid is used in up medium while dense grid is used in lower lossy medium. 

Through NMM3D, we also explored the reason of NUC appeared in L band. It is concluded that 

at L band, Bragg scattering dominate the backscatter. 
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