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I. INTRODUCTION

The prihary object of this eighteen-month progress report on the Head
Injury Model Program is to present a complete and concise statement of the
methodology, both experimental and analytical, applied by the Biomechanics
Group, H.S.R.I. to the program and to present the results obtained to date.
In addition, comparison of the experimental results is made, when possible,
with the results of the other two contractors.

The experimental determination of the mechanical properties of the
tissues of the head (Phase I of the project) is viewed as a basic study in
materials science as opposed to a materials testing program. The routine
measurement of the mechanical properties of various tissues and gross
averaging of the values obtained can be quite misleading in many cases.

In view of the goals of this project it is quite necessary to have a basic
understanding of the reasons why the tissues behave as they do under Toad

as well as how they behave. A knowledge of the reasons for a particular
tissue's behavior will permit a more rational choice of the degree of detail
that the model of the tissue should have in the later phases of the project.

The analytical phases of the program are primarily concerned with the
development of constitutive equations for the behavior of tissues of the
head and with the development of mathematical models of the head. The
formulation of constitutive equations is ciosely related to the experimental
program. However, it is necessary that an adequate body of data be
available before the present techniques for gererating the equations can
be meaningfully applied. The analysis of mathematical models of the head

is a study in the continuing sophistication of techniques and models.



II. THE EXPERIMENTAL PROGRAM

A. SPECIMEN ACQUISITION

The following are summaries of the procedures used to obtain specimens
for testing. Detailed discussions of some of the procedures have appeared
in the previous reports.

1. Skull

Fresh human bone specimens are removed at autopsy with a Stryker |
autopsy saw using either a 3/4-inch or g11/2-inch diameter circular bone
plug cutter. The specimens are labeled and then frozen at -10°C until
needed.

Whole embalmed calvaria are obtained from the University of Michigan
Medical School.

2. Brain

Fresh human brain material is taken at autopsy and placed in plastic
bags. Notation is made on the data sheet as to the exact location from
which the section is taken. The plastic bags are placed in a mixture of
crushed ice and water (3°C) in an insulated container and transported to
the Biomechanics laboratory or to Dow-Cdrning (a 1 3/4-hour drive).

3. Meninges

Dura mater is taken fresh at autopsy and then placed in saline solution.
The sealed jars are placed in a refrigerator until the time of testing. This
material is normally tested as soon after death as possible.

4. CSF

Samples of CSF are removed prior to autopsy. A Tong needle is inserted
ibetween the intervertebral disks and the CSF is drawn off into a sterile
syringe and placed in sterile bottles until it is tested. The tests are

performed immediately after the CSF is received.



5. Scalp -

A strip of scalp 1.0 to 1.5 cm wide will be taken at autopsy. It will
be kept moist with saline solution until it is tested.

6. Blood Vessels

The blood vessels from the base of the brain will be removed at autopsy
and placed in saline solution. In the event that an immediate test s not
possible, the vessels will be refrigerated in saline solution.

Table I Tlists fhe supply of human autopsy materials acquired during
the last six months. |
B. HARD TISSUE TESTS

1. Tension Tests

The goal of the tension testing of skull bone fs to determine the tensile
stress-strain behavior of the compact bone of the inner and outer tables of
the skull. The initial step in most types of skull fracture is the tensile
failure of the table material. In a study of skull penetrationcurrent]y in
progress in the Biomechanics Group for the Ford Motor Company, this,
initial tensile failure step is most evident. Circular cylindrical flat-
ended steel penetrators approximately 0.4 inches in diameter are driven
through embalmed calvaria at various velocities using Instron and Plastech
testing machines. Load-time traces are recorded as the penetration occurs.
As the tip of the penetrator begins to deform the skull, the load increases
monotomically. If the test is stopped before failure and un1daded, the
skull regains its initial shape. Testing to failure or peak load produces
a sharp fall-off in load as the penetrator fractures the outer table in
local tension. If the test is stopped immediately after this initial
penetration and the penetrator removed, the failed region exhibits a
circular hole in the outer table just s]ight]y'1arger than the panetrator, with

the disk of the outer table at the bottom of the cylindrical puncture. Further



penetration of the skull produces a significantly Tower load until the
entire plug of bone is pushed out through the inner table. Thus, the
peak Toad in what might be considered a localized compression test of an
entire skull structure is governed by the tensile properties of the oUter
table of the skull.
Tensile testing poses two major problems - grips to hold the specimen
and a transducer to measure strain. The original gripping scheme (using a
pin through the enlarged tabs at the ends of the specimen) has proved to
be a good choice. The actual grips have undergone several changes but
the technique of pinning the tabs has been very satisfactory through
the entire range of strain rates tested to date. In the six-month report,
a grip was described that was appropriate for tension, compression and
tension-compression testing. By using these grips, it was verified that
the initial modulus of elasticity is the same in tension and compression.
This grip was followed by another type that made grip alignment less
critical. These were used during the second six months. As testing
rates increased, a stiffer, lower mass grip was used and it now seems
that a still Tower mass grip will be required at the very high strain tests.
Two strain gages applied directly to the bone are used to measure
strain. Any other extensometer attached to the specimen, or to the grips,
is subject to serious errors in measuring the deformation over a given
gage length. Applying strain gages to bone was at first difficult but has
become a very routine procedure. It is felt that the stress-strain data
at failure stress levels now being obtained is better and more reliable than
most previous data in the Titerature.
Tensile testing at high strain rates introduces two new problems -
recording techniques and the dynamicé of the test set-up. Recording tech-
niques have changed considerably during the test program. In the six-month

report, the use of an X-Y plotter to obtain data at testing machine speeds



of 0.02 in/min to 0.2 in/min was described. In the twelve-month report,

the technique of X-Y plotting with Z-axis modulation on a memory oscillo-
scope was presented. This method is useful for crosshead rates of 0.2
in/min to 200 in/min. Present testing uses open shutter oscillophotography
on a dual beam Tektronix 547 ¢scilloscope. Simultaneous traces of load and
strain versus time are obtained on the Polaroid film. The amplifiers have
very fast rise times and are well suited for the short duration, high strain
rate tests. Typical data obtained by this method is shown in Figure 1, and
the cross-plotted stress-strain data in Figure 2.

The material acquisition, storage, and specimen manufacture procedures
have not changed since the twelve-month report.

A total of 115 tensile tests from which good, reliable data was obtained,
have been performed. The specimens were taken from 24 skulls, with all but
seven obtained from parietal bone. The testing speeds used in these tests
are summarized in Table II. It can be seen that the largest body of data is
at 20 in/min corresponding to a strain rate of 0.3 in/in/sec. There is a
lack of sufficient data at higher strain rates to either report an average
stress-strain curve for these strain rates or to conclude anything about
strain rate effects in tension in bone. This information should be available
in time for the next report. Emphasis in the immediate future will be on
testing at speeds of 200 in/min and 30,000 in/min.

From the data obtained so far, there has been no detectable directional
variation in the tensile properties of parietal bone. It is much more diffi-
cult to establish that there is no regional variation since whole unembalmed
skulls are not available. However, if there is a regional variation in a
given bone it does not seem to be significant. Through careful testing, it
has been observed that all of the stress-strain data from any one bone plug

at a single strain rate is consistent with regard to initial modulus. There
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are differences in breaking loads which must partly reflect differences in
the local microstructure of one bone compared with another. Thé histological
examination of the specimens allows the microstructure to be studied as
described in the twelve-month report. The conclusions of the histology
studies should be available in the next report.

2. Compression Tests

The principal objective of the compression testing of skull bone is the
determination of the compressive stress—strain.behavior of the dip]oé Tayer
in the radial direction. It is the radial direction that the d1p1oé layer
serves its most 1mportant Toad carrying function in compression. The Tlayer
acts as a Tow density foundation for the compact bone of the outer table.
The compact bone and .the low density of the dip]oé layer is due to the web-
like arrangement of this material. However, for the purpose of understanding
the basic mechanical behavior of the skull, the dip]oé lTayer must be treated
as a material separate from the compact inner and outer table bone. Thus,
the majority of the compression testing to date has been with specimens consisting
entirely of dip]oé layer material Toaded in the radial direction. The validity
of this approach has been born out in the following two examples:

In the skull penetration study for the Ford Motor Company, as

described in the previous section on tension testing, a compression

of the diploé layer has been noted following the initial benetration

of the pénetrator through the outer table of the skull. If the

test is stopped immediately after the initial penetration, the

depressed region remains, but there is no visible damage to the

inner table. Resumption of the penetration results in a final

breakthrough of the penetrator by means of a shearing failure of

the dip]oé layer in the form of an expanding cone with a large |

diameter base of inner table bone many times the diameter of the

penetrator. As noted in the tension testing section, the peak



Toad occurs at initial penetration of the outer table and the
subsequent proceses of progressive penetration occur at signifi-
cantly reduced loads. Thus, in this particular simulation of a
head impact, the dip1oé layer performs its most important function
in radial compression.

The use of the materials science approach of understanding the
reasons for the mechanical behavior of a material as well as
measuring the pertinent properties is illustrated in Appendix A.
Appendix A‘ is a copy of a paper, presently in review, based on
some of tﬁe results of the compression testing program. Bone
plugs from five different skulls were used producing fifty-two
individual specimens. The material tested was unembalmed dip]oé
layer from regions 9, 10 and 14. Included in the data analysis
were only those plugs whose specimens exhibited the collapse
mode of abrupt failure, characteristic of Tow density dip]oé _
layers. The test results, at first glance, appeared to have the
wide variation attributed to biological materials as "biological

variation.” The values of compressive strength e ranged froim

a low of 1820 lb/inz to a high of 11,350 1b/1'n2 and the values of
the compressive modulus of elasticity EC ranged from a low of 0.57

x 10° 1b/in% to a high of 3.99 x 10° 1b/in%. However, the diploe
layer is a porous material and both o, and EC should depend, in

the same manner, on the actual amount of load carrying material
existing across the cross-section of the specimen. This concept

was evaluated by plotting 9. against EC as shown in Figure 5 of
Appendix A. The result is a linear relationship between compressive

strength and compressive modulus of elasticity. The average

amount of material present in the specimen cross-section is



directly related to the specific weight of the specimen. Thus,

the structural features relating 5. to EC can be embodied in the

specific weight of the dip]oé layer Tpe A plot of the averagés

of the compressive strengths of the specimens from each bone

plug versus their average specific weights is shown in Figure

6 of Appendix A. It is evident from Figure 6 that the

compressiVe strength o and therefore the compressive modulus

of elasticity EC are strongly influenced by the specific weight

of the d1p1oé layer Ybf

It is these types of relationships between mechanical properties and
material structure that will provide an understanding of the material that
would not exist if only averaging of experimental values were performed.
This know]édge will be indispensable when construction and evaluation of
the head model commences.

The present test apparatus and procedure for the compression tests are
the same as described in the twelve-month report and in Appendix A except
that the high strain rates now being used demand the use of open shutter
oscillophotography with a Tektronix 547 oscilloscope. Tests are currently
being run at strain rates of approximtely 200 in/in/sec and testing at 2000
in/in/sec will begin shortly. Table IIT s a listing of the raw data
obtained to date on the compressive behavior of the dip]oé layer.

A limited amount of compressive testing of compact outer table bone
has been performed in the tangential direction. The purpose of this testing
has been to develop a modulus of elasticity test for compact bone in regions
of the skull where the tensile test is not possible. The compact bone was
found to exhibit a ductile stress-strain behavior in compression with a
yield stress approximately twice the tensile fracture stress. It is not
unusual for a material to have different modes of failure in different

states of stress; another common example of exactly such behavior is found



in plexiglass (PMMA). Thus, the tangential compression test’on compact
bone can only be used to determine the modulus of elasticity of the
material.

3. Shear Tests

The shear test measures the average shear strength of the dip1oé layer
by subjecting a cylindrical bone plug taken radially from a skull to a
transverse shear parallel to the tables. It is the one test where embalmed
material as well as fresh material has been used. The present test procedure
is the same as described in the twelve-month report. Embalmed calvaria
have been used to provide a large number of specimens from one skull so
that position effects could be studied statistically. The results of an
initial study using a three-way analysis of variances technique were
- discussed in the twelve-month report. The raw data used in that analysis
is shown in Table IV of this report. About 500 additional tests on
emba1med‘ca1varia have been run at high strain rates using a modified
analysis technique, but the data analysis is not yet complete. The results
and the data will be presented in the next report along with additional
findings on fresh material tests.
C. SOFT TISSUE TESTS

1. Brain Tests

The most important tissue in the entire experiﬁenta] program is brain
tissue. It's complex structure requires mechanical property determination
to begin on a rather gross scale, with subsequent refinements as knowledge
is obtained. The initial approach to this problem is summarized in Appendix
B which is a paper, presently in review, based on the results of the brain
testing program to date.

It would appear that the Dynamic Probe Apparatus (DPA) will definitely
allow the correlation of in vitro and in vivo brain testing. This should

be confirmed as soon as the analysis of the DPA data is finished. This
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is presently in progress using a computer technique developed at Dow-Corning.
In addition, as noted in Appendix B , there is a good possibility that the
DPA will allow calculation of the basic complex shear propertieé G' and G".

2. Dura Mater Tests |

Tension tests on dura mater have been used for general soft tissue test
development as well as for obtaining mechanical properties of dura mater. |
The testing has been performed at static strain rates thus far, but higher
strain rates will be incorporated in the neér future. The test specimens
were cut from the dura using a ASTM Tensile Die C. All specimens have been
oriented along the fibrous diréction of the tissue. The strain in the
specimen was measured by a phototransistorized Tight extensometer. Two
]ightweight vanes, attached to the specimen in the test section, block a
1ight beam passing from a source to the phototransistor. As the specimen
is elongated, the increasing separation of the vanes allows more of the beam
to pass through to the phototransistor. The resulting output of the photo-
transistor is calibrated against vane separation and permits measurement of
the strain in the specimen independent of any gripping distortions or
slippages. The results of four such tests are shown in Figures 3, 4, 5
and 6. An aggregate of the four tests is shown in Figure 7. It is
evident that the initial moduli of elasticity of the specimens are fairly
reproducible but that the ultimate strength is much more variable. The mode
of failure is a pronounced necking down of a Tocal region of the specimen
with an apparent large scale relative siiding of the fibers of the tissue.
Table V. shows the ultimate strengths of sixteen specimens. It was found
that crosshead motion could not be used in place of the extensometer for
determining strain in the specimen. Thus, in twelve of the sixteen tests

reported, only the ultimate stress was determined.
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D. CCMPARISON OF CONTRACTORS' RESULTS

The following comparisons can be made from the results reported in the
twelve-month reports:

1. Technology Inéorporated Results

The only mechanical tests that can be compared with those of The Univer-
sity of Michigan are the fresh autopsy human skull compression tests. The
average values presented by T. I. for compressive strength correspond to
the lower end of the range of U. of M. data. This would tend to indicate
Tow density dip]oé layer material; however, the T. I. method of measuring
density includes the table material so that no density comparison can be
made. | |

2. West Virginia University Results

The data reported by W. V. U. was for embalmed skull material and, thus,
is strictly comparable to only the U. of M. direct shear tests where it would
appear the results are basically the same in range and variability. If a
comparison of the compression tests is made for regions 9, 10, 13, 14 and
18 for-w. V. U. skulls 227 and 286, the values of modulus of elasticity and
strength for the most part lie toward the upper end of the range of U. of
M. dip]oé Tayer data. This indicates high density dip]oé layer material,
but again no density comparisons are possible due to inclusion of the table
material in W. V. U. specimens. The tensile test values of W. V. U. skull
245 indicate ultimate tensile strengths much Tower than U. of M. data for

the same regions 9, 10, 13, and 14, but with similar moduli of elasticity.
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T11. ANALYTICAL PROGRAM

 The analytical program has been divided into two related parts. One
is concerned with the development of constitutive equations and is closely
related to the experimental determination of the physical properties of the
tissues of the head. The other part is concerned with the analysis of
progressively more sophisticated mathematical models of the skull and its
contents.

The formulation of constitutive equations is given a high priority in
the development of a model of the human head in that they form a necessary
part of the mathematical equipment.

The point in time at which realistic constitutive equations can be
proposed is necessarily later than the experimental determination of tissue
properties because an adequate collection of data must be available before
the analytical work can be begun in a meaningful manner.

In order to provide a solid foundation for the equations which will be
developed, the literature concerned with experimental determination of tissue
properties, formulations of equations describing materia1 properties, and
related theoretical considerations in nonlinear continuum mechanics has
been searched. In addition, a technique for formulating empirical constitutive
equations has been developed.

The experimental work carried out on various soft tissues to determine
their mechanical properties are numerous. Among the papers which may be
useful in developing meaningful equations for various body tissues are
those written by Lawton (1952), Roach and Burton (1957), Sonnenblick (1962,
1964), Apter (1964), Ridge and Wright (1966) and Benedict, Walker, and
Harris (1968). Ommaya (1968) presented a review of the literature pertaining
to the mechahica] properties of the tissues of the nervous system. These

papers, as well as many others, are listed in Appendix D of this report.
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Most of the soft tissues which have been studied exhibit nonhomogeneous,
anisotropic, and nonlinear viscoelastic characteristics making the problem
of mechanical property determination exceedingly complex. In the mathematical
analysis of these materials, the properties have been expressed either by a
series of discrete mechanical elements or by a continuous spectral representa-
tion. The work by Jamison, Marangoni, and Glaser (]968) can be mentioned as
an example of the former. They discuss an experimental technique for obtaining
Tinear viscoelastic models of individual soft tissues. The application of
this experimental technique, using a guinea pig skin as an example, is presented
along with numerical values for the various viscoelastic parameters. Wiederhelm,
- Kobayashi, Stromberg, and Woo (1968) obtained the response of relaxed and
constricted arterioles to static pressure loads by'app]ying the numerical
method of direct stiffhess. This constitutes a finite element analysis and
can effectively model nonhomogeneous and anisotropic nonlinear viscoelastic
characteristics of the blood vessels. For mesentery, Fung (1967) has proposed
a stress-strain relation which can be used in simple elongation. In papers
which have not yet appeared in the literature, Frisen, Mégi, Sonnerup, and
Viidik propose a mathematical expression for the viscoelastic behavior of
soft collagenous tissue along with experimental verification. Also Hildebrandt,
Fukayag and Martin have studied the negative strain, which develops in cases
“of compression and biaxial stress in tissue shéets, using nonlinear elasticity
theory for an incompressible isotropic material undergoing uniform deformation.
A technique for the generation of constitutive equations based on experi-
mental data has been developed during the course of the current research project.
A computer program generates a linear equation of the form:

Y + Bo + B] X] +B, X, + " "+ B

2 % k 'k
using regression ana]ysis from a set of N observations of a set of K inde-

pendent variables and a single dependent variable. At present, the dependent
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variable Y represents stress while the independent variables (X], X2

y Xk) are various functions of strain and strain rate. This relation
has been tested on materials for which considerable data exists and found
to model nonlinear material behavior within a few percent.

The preceeding discussion serves to outline the approach to constitutive
equations which has been taken up tb this time in the course of the research
project. It 1s‘fe1t that this approach is necessary in order to develop
equations which adequately modé] material behavior on one hand and are
useful for analysis on the other.

A few preliminary conclusions concerning material properties can be
drawn at this timé. The 1iterature indicates that compact skull bone
Toaded in tension might be approximated by a nearly linear elastic, brittle
material. This may}not be true at high strain rates, however. Because of
the alignment of collagen fibers, skin exhibits Tittle resistance to force
until a certain amount of deformation exists. A bilinear curve is a possible
stress-strain law for tension. The brain, when viewed as a homogeneous
medium (a logical first step), appears to react in shear as a Tinear viscoelastic
medium at small deformation, with nonlinear behavior developing as deformation
is increased beyond a certain limit. These early conclusions are being subjected
to continuing tests in order to reach clearly formed conclusions in the form
.of constitutive equations.

A similar approach has been used in the early development of mathematical
models of the head. Literature has been searched and analytical work has been
done on increasingly complex and diverse models of human head dynamics. An
ihitia1 study was carried out on the free vibration of a spherical shell to
determine the response of the skull bone. This skull was then subjected to
impact loadings. Increasing in complexity, the second model was of the impact
of a fluid-filled shell. This analysis was submitted as a doctoral thesis to

the Engineering Mechanics Department of The University of Michigan, and is
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included as Appendix € to this report. Since that time, analysis of a
spherical region of linear viscoelastic material subjected to steady state
regional force input has been carried out. The transient problem of impact
is now’being carried out. Nonlinear properties of the viscoelastic region
(brain) will be added based on the results of current experimentations.
Other models of the skull and contents which involve more complex geometry
and considerable computer analysis are being evaluated for feasibility. It
is felt that progression from a relatively simple model of the head to
increasingly complex material models and geometry is the logical way to
progress and the one most likely to result in successful fulfillment of

the initial contract objectives.
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MECHANICAL PROPERTIES DATA SHEET

SPECIMEN NO. yA 63 TL 2

DATE TESTED_ January 15, 1969

CROSSHEAD RATE__5,000_in/min
I.M. FREQUENCY

TEST SECTION
DIMENSIONS_0.037 in. x 0.056 in

ADDITIONAL DATA

10 1bs/cm.
1,500 pe/cm

CALCULATED DATA

STRAIN RATE 75 sec | (Aver.)

MODULUS OF ELASTICITY 2.65 x 10° Tb/in?

 ULTIMATE STRESS 14,500 1b/in’

ULTIMATE STRAIN 0.56%

apgp  0-00204 in?

10y - sec/cm

HISTOLOGICAL COMMENTS

FIGURE 1. Mechanical

TEST COMMENTS

Upper trace (at t = 0) represents
]oad)(zero Tevel is dashed horizontal
Tine).

Lower trace (at t = 0) represents
strain (zero level is lowermost
solid horizontal Tine).

NOTE: Both signals start above their

zero levels because of the

trigger level used on the
oscilloscope.

Properties Data Sheet.
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FIGURE 6.

Dura Mater Test
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"FIGURE 7. Aggregate of Dura Mater Tests
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TABLE I. SUMMARY OF HUMAN MATERIAL
June 1968-January 1969

BONE_SPECIMEN AGE RACE SEX ~ CAUSE OF DEATH
UM—36—P (2) 56 C M Burns

UM-37-p (2) 13 c F Auto Accident
UM-38-P (2) 62 C F Aortic Aneurysim
UM-39-P (2) | 76 C M Pneumonia

UM-40-P (2) 47 C F Lung Cancer
UM-41-P (2) 13 N M Cardiac arrest
UM-42-P (2) 57 " C F Cancer

VA-63-TL 73 N M Heart attack
VA-64-TL 53 C M | Cancer of esophagus
VA-65-FL 45 S M Heart attack
VA-66-PL 74 C M Cancer

VA-67-FR 12 C M Cancer

VA-68-TL 60 C M Cirrhossis of Tiver
VA-69-PR 61 C M Septirema

VA-70-TL 46 C M Cerebral Hemorrhage
VA-71-FL 69 c M Cancer & Emphysema
VA-72-FR 73 N M Pulmonary embolus
VA-73-FR 53 - c . M Cancer of lung
VA-74-FL 40 - C M Cancer

DURA MATER SPECIMEN ,

260 65 C M Myocardial infarct
262 53 C F Cancer of breast
270 20 C M Lacerated aorta

281 71 C F Myocardial infarct

282 51 C M Myocardial infarct
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TABLE II.

Tension Test Summary.

Test Speed

in/min 2.0 20 200 2,000 5,000
Number of
Specimens 21 51 14 26 3




25

TABLE IIT. COMPRESSION TEST-RAK DATA

Stress lodulus of Elasticity  Specific lit. . Behavior
Region p.s.i. 10° p.s.i. 1b/in3 C=collapse Y=yield
Strain rate=.0022 in/in/sec.
10,670 4.05 0.0605 Y
UM-35-PL 11,620 4.17 0.0609 Y
10,950 4.32 0.0621 Y
11,770 3.04 0.0610 Y
10,950 4.06 0.0607 Y
11,610 4.48 0.0614 Y
12,200 4.10 0.0622 Y
UM-35-PR 12,200 4.00 0.0592 Y
14,800 4.63 0.0623 Y
13,020 3.93 0.0602 Y
8,750 4.25 0.0565 Y
10,270 3.57 0.0602 Y
14 1,860 0.835 0.0367 C
VA-52-PR 1,415 0.624 0.0328 C
1,555 0.845 0.0342 C
1,590 0.803 0.0343 C
10 7,820 2.70 0.0495 C
VA-59-PR 4,500 1.7 0.0445 C
6,270 2.34 0.0460 C
5,010 1.69 0.0413 C
6,030 2.06 0.0454 C
4,920 1.53 0.0446 C
Strain rate=0.56 in/in/sec.
10 6,950 3.05 0.0626 Y
VA-8-PR 10,200 3.93 0.0660 Y
12,250 3.67 0.0654 Y
10,100 3.90 0.0648 Y
9,050 3.52 0.0640 Y
--- 3.39 0.0657 Y
10 7,200 -- 0.0471 C
VA-20-PL 6,690 2.23 0.0469 C
6,010 2.63 0.0440 C
6,690 2.82 0.0467 C
5,910 2.64 0.0486 C
5,743 2.73 0.0467 C
14 2,980 1.105 0.0390 C
VA-55-PR 3,510 1.345 0.0420 C
6,170 2.185 0.0453 C
4,440 0.875 0.0440 C
3,090 1.063 0.0412 C
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TABLE III. COMPRESSIO:l TEST-RAW DATA

Strain rate=1.2 in/in/sec.

Stress Modulus of Elasticity Specific Wt. Behavior
Region p.s.i. 10° p.s.i. 1b/in3 C=collapse Y=yield
9 8,930 2.84 0.0466 C
VA-29-PL 7,360 2.42 0.0457 C
7,060 2.12 0.0463 C
8,190 2.64 0.0436 C
13 3,940 2.82 C
UM-23-PL 6,630 1.455 0.0488 Y
6,780 2.04 0.0199 C
8,460 2.00 0.0515 Y
8,220 2.22 0.0477 Y

Strain rate=.022 in/in/sec.

14 1,451 0.675 0.0344 C
VA-52-PR 1,083 0.493- 0.0309 C
1,848 0.868 0.0367 C
2,562 1.52 0.0338 C
1,470 0.447 0.0333 C
1,780 0.802 0.0376 C
Strain rate=.054 in/in/sec.
14
VA-55-PR 3,420 1.22 0.0428 C
3,380 1.420 0.0416 C
3,260 1.275 0.0411 C
4,270 1.575 0.0458 C
4,030 1.63 0.0439 C
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TABLE IIT. COMPRESSION TEST-RAW DATA

Strain rate=0.22 in/in/sec.

-~ Stress Modulus of Elasticity  Specific Wt. Behavior

Region p.s.i. 10 p.s.i. 1b/in3 C=collapse Y=yield
9 3,100 1.27 0.0378 C
VA-5-PL 3,230 1.25 0.0394 C
3,380 1.21 0.0390 C
5,910 2.12 0.0412 Y
3,260 1.02 0.0389 C
5,420 2.27 0.0390 C
9 1,940 0.76 0.0368 C
VA-6-PL 755 0.24 0.0353 C
1,990 0.635 C
1,860 0.59 0.0364 C
2,260 0.655 0.0384 C
1,820 0.57 0.0360 C
10 9,700 3.39 0.0653 Y
VA-8-PR 5,640 2.28 0.0614 Y
9,240 3.63 0.0650 Y
11,600 3.72 0.0640 Y
11,000 3.81 0.0635 Y
11,800 3.94 0.0668 Y
5,590 2.49 0.0573 C
C
10 8,550 2.92 0.0473 C
VA-9-PR 8,990 3.48 0.0462 C
10,000 3.91 0.0504 C
10,700 3.99 0.0473 C
10,300 3.72 0.0492 C
10 7,080 2.35 0.0486 C
VA-20-PL 7,260 3.30 0.0492 C
6,580 0.0487 C
6,730 2.48 0.0480 C
6,770 2.45 0.0875 C
5,650 2.46 0.0461 C
14 3,860 1.1215 0.0428 C
VA-55-PR 2,880 1.202 0.0414 C
3,640 1.402 0.0403 - C
3,050 1.275 0.0419 C
3,020 1.195 0.0400 C
2,420 0.668 0.0392 C
4,430 1.738 0.0423 C
10 7,380 2.65 0.0463 C
VA-59-PR 8,520 2.54 0.0506 C
6,910 2.22 0.0473 C
6,430 2.24 0.0442 C
5,800 2.21 0.0476 C
5,120 1.63 0.0407 C



UM-22-PR

13
UM-25-PL

.10
U-31-PR

10
UM-35-PR

Stress
p.s.i.

10,000
8,420
7,030

5,540
8,280
8,600
12,730

5,540
1,972
3,730
1,415
1,425

11,330

9,940
13,180
12,380
14,320
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TABLE III. COMPRESSION TEST-RAW DATA

Modulus of Elasticity
10° b.s.i.

e

.83
A4
.92

wW W w

1
.65
.49
.27

WM NN

1
N
.87
.780
.7182

OO — =IO

.5

.76
57
.06
4.76

W w

Specific_Wt.

1h/in3

Behavior
C=collapse Y=yield

0.
0.
0.

OO OO O DO OO

OO OO Oo

0578
0547
0541

.0570
.0595
.0597
.0626

.0522
.0492
.0570
.0515
.055

.0576
.0592
.0619
.0593
.0615

C
C
C

OO0 OO0

—_— <<
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TABLE III. COMPRESSION TEST-RAK DATA

Stress Modulus of Elasticity  Specific_Mt. Behavior
Region D.S.1. 10° p.s.i. 1b/in3 C=collapse Y=yield

Strain rate=2.2 in/in/sec.

9 5,230 1.80 0.0432 C
VA-5-PL 4,760 1.85 0.0409 C
4,850 1.60 0.0397 C

3,520 1.68 0.0382 C

5,360 2.24 0.0410 C

9 2,060 0.74 0.0374 C
VA-6-PL 2,520 0.825 0.0367 C
2,460 0.84 0.0376 C

3,190 0.95 0.0397 C

2,590 0.875 0.0379 C

10 11,800 3.98 0.0636 C
VA-8-PR 8,130 3.76 0.0644 C
40,300 12.4 0.0623 Y

13,080 4.23 0.0652 C

10,170 3.81 0.0613 Y

13,050 4.08 0.0647 Y

6,480 2.98 0.0606 C

10 9,070 3.52 0.0465 C
VA-9-PR 8,200 3.26 0.0474 C
11,350 3.54 0.0498 C

10,400 3.95 0.0478 C

9,200 3.94 0.0471 C

10 7,250 2.99 0.0476 C
VA-20-PL 7,080 2.80 0.0451 C
7,050 2.59 0.0506 C

7,150 2.86 0.0463 C

7,880 3.32 0.051 C

6,980 2.92 0.0470 C

9 1,300 -- 0.0505 Y
VA-29-PL 10,300 2.48 0.0484 C
8,500 2.82 0.0467 C

9,950 2.62 0.0454 C

9,550 1.98 0.0496 Y.

8,600 2.84 0.0451 C

9,600 2.79 0.0449 C

14 2,030 0.925 0.0355 C
VA-52-PR 1,925 0.866 0.0359 C
1,965 0.767 0.0340 C

1,725 0.732 0.0356 C

1,525 0.769 0.0370 C

2,400 0.878 0.0381 C



QU

TABLE III. COMPRESSION TEST-RAW DATA

Stress MOdU]USSOf Elasticity  gpecific lit. Behavior
Region p.s.1. 10 p.s.i. 1b/in3 C=collapse Y=yield
14 3,260 1.225 '0.0416 C
VA-55-PR 3,800 1.365 0.0433 C
4,010 1.380 0.0432 C
3,800 1.085 0.0447 C
1.72 0.0411 C
4,890 1.790 0.0424 C
4,280 1.348 0.0417 C
0 7,040 2.62. 0.0492 C
VA-59-PR 9,120 2.92 0.0482 C
7,640 2.66 0.0481 C
6,580 2.31 0.0427 C
7,460 2.8 0.0471 C
6,450 2.15 0.425 C
18 13,400 3.86 0.0568 C
UM-22-PR 11,450 4.2 0.0741 C
1.19 0.057
13 3,330 1.672 0.0475 C
UM-23-PR - 5,580 2.91 0.0557 Y
5,240 2.25 0.0504 Y
6,590 3.08 0.0565 y
6,370 2.75 0.0542 y
13 7,730 2.1 0.0584 Y
UM-25-PL 7,380 2.1 0.0592 y
10 2,720 1.378 0.0506 C
UM-31-PR 2,540 1.275 0.0530 C
2,290 1.131 0.0525 C
10 14,950 4,72 0.0606 y
UM-35-PL 15,150 5.08 0.0620 y
14,300 4.55 0.0598 Y
15,640 4.57 0.0609 Y
15,330 4.75 0.0614 y
14,700 4.40 0.0599 Y
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TABLE IV. SHEAR TEST RAW DATA

4 Embalmed Calvaria - tested at 4 strain rates
1.66, 6.66, 16.6, 66.6 in/in/sec.
Shear Strength p.s.i. (strain rate in/in/sec)

SKULL NO. EM95 EM99 EM106 EM108
Region 1 3391 (66.6) 2658 (6.66) 2431 (1.66)
2697 (1.66) 4858 (1.66)
3326 (16.6)
3226 (66.6)
Region 2 5110 (66.6) 2357 (6.66) 4033 (16.6)
2044 (1.66) 2522 (16.6) 3871 (66.6)
Region 3 2417 (6.66) 3758 (1.66) 4831 (16.6) 3899 (66.6)
2010 (16.6) 3009 (6.66) 3133 (66.6) 3349 (1.66)
2765 (1.66) 3440 (66.6) 2417 (6.66) 3841 (16.6)
1904 (1.66) 2841 (66.6) 2917 (6.66) 3149 (16.6)
‘ 2841 (6.66) 1915 (66.6) 3199 (1.66)
2741 (16.6) 2841 (1.66) 4357 (6.66)
4583 (66.6)
2376 (6.66) 1925 (1.66) 2291 (16.6) 3483 (66.6)
2291 (16.6) 2291 (1.66) 3899 (6.66)
4499 (16.6)
1610 (16.6) 1541 (1.66) 2310 (6.66)
Region 4 3758 (1.66) 4123 (16.6) 3998 (66.6)
3082 (16.6) 3941 (6.66) 2613 (66.6) 3420 (1.65)
3536 (1.66) 3091 (66.6) 2146 (6.66) 4766 (16.6)
2191 (66.6) 2951 (6.66) 2933 (16.6)
3646 (16.6) 2621 (6.66) 2340 (66.6) 3483 (1.66)
, 3758 (16.6) 2592 (1.66) 4371 (6.66)
1823 (1.66) 4583 (66.6)
2285 (6.66) | 2643 (16.6) 2552 (66.6)
3195 (16.6) 2567 (1.66) 3369 (6.66)
2567 (66.6) 4499 (16.6)
2371 (16.6) 2586 (1.66) 3208 (6.66)
Region 5 5135 (16.6)
4583 (16.6)
Region 6 3510 (66.6) 4033 (16.6) 3531 (1.66) 3483 (6.66)
3941 (66.6) 2741 (6.66) 1833 (16.6)
3581 (66.6) 4332 (1.66)
3091 (6.66)
3810 (66.6) 3440 (16.6) 2815 (1.66) 1995 (6.66)
4358 (66.6) 2542  (6.66) 2765 (16.6)
3646 (66.6) 3810 (1.66)
5658 (6.66)
2537 (1.66) 3091 (16.6) 4267 (66.6)
3091 (1.66) 4972 (6.66)
4126 (1.66) 2826 (16.6) 4310 (66.6)
3291 (1.66) 3717 (6.66)
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TABLE IV Continued
EM99

EM95

SKULL NO.
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TABLE 1V. Continued
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TABLE IV. Continued

SKULL NO. EMI5 EMI9 | EM106 EMI08

Region 15 4110 (6.66) 2621 (1.66) 3899 (16.6) 5354 (66.6)
2741 (16.6) 4326 (6.66)
Region 16 5486 (6.66) 2188 (1.66) 2878 (16.6) 6194 (66.6)

5014 (1.66)
Region 17 3899 (16.6) 2735 (6.66) 2643 (66.6) 4126 (1.66)
4856 (1.66) 2189  (66.6) 2962 (6.56) 4972 (16.6)
4177 (6.66) 2481 (1.66) 3173 (16.6) 3911 (66.6)
3117 (66.6) 3810 (16.6) 2291 (1.66) 2962 (6.66)
3091 (6.66) 3025 (1.66) 2371 (16.6) 4151 (66.6)
5335 (16.6) 2481 (6.66) 3445 (66.6) 5640 (1.66)
2918 (6.66) 3581 (1.66) 2481 (16.6) 2951 (66.6)
3552 (66.6) 2279 (16.6) 2592 (1.66) 4331 (6.66)
2941 (16.6) 2188 (6.66) 2371 (66.6) 3420 (1.66)
3810 (1.66) 1732 (66.6) 3483 (6.66) 6417 (16.6)

2552 (1.66)

4011 (1.66) 2068 (66.6) 2962 (6.66) 4242 (16.6)

3464 (16.6) 2279 (16.6) 3445 (66.6)

4933 (1.66) - 2191 (66.6) 4123 (6.66)
Region 18 5774 (16.6) 3758 (6.66) 3589 (66.6) 2951 (1.66)
4563 (1.66) 3091 (6.66) 3779 (16.6)
4371 (6.66) 2613 (1.66) 3311 (16.6) 4766 (66.6)
4060 (66.6) 3670 (16.6) 2085 (1.66) 4151 (6.66)
3842 (6.66) 3009 (1.66) 2371 (16.6) 4675 (66.6)
5264 (16.6) ., 2383 (6.66) 3220 (66.6) 6558 (1.66)
3270 (6.66) 3391 (1.66) 2510 (16.6) 3687 (66.6)
3379 (66.6) 1833 (16.6) 2552 (1.66) 5774 (6.66)
4358 (1.66) 2383 (66.6) 3173 (6.66) 5731 (16.6)
2912 (16.6) 1732 (6.66) 2643 (66.6) 2826 (1.66)
3420 (1.66) 2279 (66.6) 3116 (6.66) 5774 (16.6)

2857 (1.66)

3829 (1.66) 1745 (66.6) 3354 (6.66) 5317 (16.6)
4653 (16.6) 3490 (66.6) 4954 (1.66)



TABLE ¥V DURA MATER TENSION TESTS

SPECIMEN NO. MAX. STRESS RATE
(P.S.1.) IN/MIN
2621 1250 2
262-2 1120 2
260-1 910 2
270-1 1600 2
260-2 1310 2
260-3 1810 2
282-1 1200 2
282-2 1200 2
282-3 1800 2
281-1 1040 2
281-2 1950 2
288-1 1600 2
238-2 1200 2
288-3 1580 20
325-2 880 2
325-1 1040 2
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ABSTRACT
This paper presents an experimental study of the mechanical behavior of
the diploéilayer of the human skull in compression. Specimens.of fresh human

1

skull, obtained at autopsy, were tested at strain rates of 0.22 sec” and 2.2

sec"] on an Instron testing machine. The modulus of elasticity, the compres-
sive strength and tﬁe specific weight of each specimen were determined.

A linear relationship between compressive strength and compressive modulus
of elasticity was found empirica]]y for specimens that exhibited a sudden
~ collapse mode of failure. Thé specific weight of the material was postulated
to be the parameter relating the strength to the modulus and an empivical rela-
tion between average compressive strength and average specific weight vas
found. No significant strain rate effect was evident between the two test

rates.
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INTRODUCTION

The rational design of protective devices for the human body when it is
subjected to high loads and accelerations requires a sound knowledge of
the mechanical response of the system under such conditions. The human
body is a highly complex system both from the viewpoint of the physician
and fhe engineer. This complexity dictates the necessity of careful and
thorough investigation when studying topics like the relation of mechanical
behavior to.injury. Since it is the response of the'iiving human that is
of interest, experimental conditions must approach the in vivo state as
closely as possible. One of the most important regions of the human body
with respect to serious injury is the head. Head injuries account for a
large share of traffic fatalities. In the head, two major parts of interest
in terms of injury are the brain and the skull. The work presented in this
paper is part of a multiphase project directed at the determination of the me-
chanical properties of the constituent materials of the head. This paper
deals with the behavior of unembalmed human skull bone subjected to compressive
loading.

The structure of the skull is strikingly analogous to that of the modern
day foam core sandwich shell. Like. the sandwich shell it has an inner and outer
layer of compact bone known as the inner and outer tables of the skull. These
layers of dense bone are separated by a porous layer of bone known és the
dip]oé layer of the skull. The porosity and thickness of the dip?oé Tayer vary
considerab]y-within}a single skull ranging from a quite thick, open-structured
Tayer to a layer with 1ittle porosity. In some regions it does not exist at all.

In gereral, the diploa layer is quite pronounced in the frontal, parietal and



occipital areas of the skull and is quite thin or non-existent in the tem-
poral regions. Wide variations in the Tayer thicknesses also occur from
skull to skull. The basic bone material in both the tables and d1p1oé

layer is co]]ageh reinforced by parfic1es of mineral (hydroxyapatite). The
dip]oé layer achieves its porosity by weblike structures of the bone material
known as trabeculae. Fig. 1 shows the features‘of both the tables and the
dip]oé layer (the dark mark near the top of the specimen is an ink mark for
identification of the orientation of the specimen in the skull and should not
be confused with the structural features of the specimen).

In foam core sandvich shell structures the stiff layers of material on
the inner and outer surfaces of the shell play the predominant role in deter-
mining the response of the shell to load. However, in many types of loading
the overall performance of the shell depends on the core material's ability to
perforin its functions. Inadequate compressive or shear strength in the core
material can significantly effect the total load carrying ability of the shell.
Such is the case in the skull. The primary load carrying functions are per-
formed by the tables and indeed, under general compressive impact to the skull
the clinical evidence is usually tensile fractures of the outer table or of
the entire skull thickness away from the point of impact. If the impacting
Toad is localized, however, conditions can exist such that penetration of the
outer table and crushing of the dipfoé layer occur without total failure to
-the skull. Thus, it would seem that in the case of compressive failureof-
skull bone it is most meaningful to talk of the dip]oé layer.

The purpose of the work repoftéd here is to define the basic mechanical

characteristics of the diploe layer in compression and to investigate factors



A“ :1

which may influence the characteristics. An initial attempt was made to

evaluate strain rate effects.

SPECIMEN ACQUISITION AND PREPARATION

The effectiveness of biomaterials testing programs depend greatly on an
adequate supply of material. The fresh bone specimens used in this study were
obtained at autopsy from the University of Michigan Medical Center and Veterans
Administration Hospital in Ann Arbor. The specimens vere removed using a
Stryker bone plug cutter and Stryker Autopsy Saw. Special care was taken not to
_heat the bone during the cutting. The plugs taken at the UM Medical Center
were 3/4 inches in diameter and those from the VA Hospital were 1 1/2 inches
in diameter. Each bone p}ug removed has a complete record as to sex, age, .
céuse and time of death, and autopsy number. By recording the autopsy number
it is possible to go back into the patient's medical history if necessary.
Each plug was given a coding number to indicate}the source hospital, the
chronological order and region of the skull the plug was located in. The
distances and orientation of the plug relative to the sagittal, coronal and/or
the lamboidal suture lines vere also noted.

The fresh bone plugs were placed in a freezer at -10°C within thirty
minutes from the time of removal from the skull. From our experience and data
in the literature (1) it was determined that this was the best method to store
" the specimens. The test specimen developed for this program had a nominally
cubical shape 1/8 inches on a side. In the work reported here the specimens
consisted entirely of dip]oé layér material. The reasons for eliminating the

upper and lower table material from the specimen were to obtain a constant
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gage length of the material of interest and to allow determination of the
stiffness of the dip]oé Tayer without having to consider the stiffness'of
the tables in series with it. Depending on the curvature of the bone plug
and the thickness of the dip]oé layer the small size of the test sbecimen
allowed as many as twenty-four specimens to be obtained from a 1 1/2 inches
diameter bone plug. The test specimens which were machined on a Unimat-SL
set up as a milling machine were handled in such a manner that no heating of
the material occurred. After fabrication the test specimens were either

tested immediately or refrozen until needed.

EXPERIMENTAL PROCEDURE

The first step of the test procedure was to determine the dimensions. of
the test specimen using a micrometer. Next, the weight of the specimen was
obtained using a VYoland 640-D balance and the specific weight of the specimen
calculated. The specimen was then tested using an Instron floor model testing
machine as shown schematically in Fig. 2. A Kistler 937A Force Link was used
to measure the load on the specimen. Thfs piezoelectric load cell has a maxi-
mum load capacity of 45,000 1bs. in compression with a resolution of 0.1 1bs.
and a resonant frequency of 22.5 KHz. Crosshead velocities of 2 inches/minute
or 20 inches/minute were used. Initially, a deflectometer consisting of a
- strain gaged, thin cantilever strip was used to transduce the deformation of
the specimen. It was found, due to the very stiff load cell being used and
the relatively Tow stiffness of the specimens, that cresshead travel could be
used as an accurate indication éf'the specimen deformation. The tests were

recorded on a Tektronix Type 564 Storage Osiclloscope and then photographed
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with a Polaroid camera. When the deflectometer was used the load was displayed
against the deflection. In the tests without the deflectometer the load vas
displayed against time. Fig. 1 shows a-specimen with the tables present before
and after testing. The amount of compressive deflection was controlled in
order to allow microscopic examination of the tested specimens.

After the tests, some of the specimens were decalcified, embedded in
paraffin and thin sections cut on a microtome for microscopic examination
to determine.modes of failure.

A total of fifty-two individual tests on specimens from five different
- skulls are reported in this paper. Half of the tests were conducted at the
2 inches/minute crosshead speed and the other half conducted at 20 inches/minute.
The average strain rates corresponding to the two crosshead speeds aré 0.22 sec“]
and 2.2 sec-1 respactively. Approximately half the specimens from each bone

plug were run at each strain rate.

RESULTS AMD DISCUSSION

In Fig. 3 afe shown the two characteristic types of load-deflection curves
vhich were found in this series of experiments. The majority of the specimens
showed an abrupt failure at approximately the 4-5% strain level with a corres-
ponding drop in load follewed by subsequent build-up of load upon further de-
formation. The numerical data given in this paper is based on these tests.
With this type of behavior the peak load before the unstable collapse was
taken as the failure load and the failure stress was calculated using that

lToad and the initial cross-sectional area of the specimen. The initial portion

of the load-deformation curve is nonlinear. This is probably the result of the
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specimen becoming firmly in contact with the loading anvi1s.- This small
nonlinear region is followed by a considerable linear region. The linecar
region was followed by a second nonlinear region with a slope decreasing
to zero at Tailure. Considering the relative magnitude of the Tinecar
region, a modulus of elasticity can be defjned for the specimen material.
The modulus was calculated from the slope using the initial height of the |
specimen as the gage length and the initial cross-sectional area.

The other type of behavior shoun in Fig. 3 is exhibited by specimens
with specifi; weight approaching that of compact bone. The ductile, mono-
tonica]1y 1ncrea;1ng Toad-deformation curve of this type specfmen cannot
be compared to the rapid collapse behavior of the more porous dipToé
layer because the basic modes of failure are completely different. The
rapid collapse failure exhibited by the specimen shown in Fig. 1 is brought
about by tensile tearing and spliting of the trabeculae of the diploé
layer. The micrograph shown in Fig. 4 demonstrates this phencmanon clearly.
The ductile behavior of the dense dip]oé layer specimens is associated with
yielding of the bone ﬁateria] probably due to shear stresses.

The test results, at first glance, appeared to have the wide variation
attributed to biological materia&s as "biological variation". The values
of compressive strength o ranged from a low of 1820 1b/1n2 to a high of
11,350 1b/1‘n2 and the values of the compressive modulus of elasticity EC
‘vanged from a low of 0.57 x 10° 1b/in to a high of 3.99 x 10° 1b/in. This
range of values for compressive strengths is closely comparable to that of
Evans (2). However, the dip]oé layer is a porous material and both 9 and
EC should depend, in the same manner, on the actual amount of load carrying

material existing across the cross-section of the specimen. This concept



can be evaluated by plotting 9. against EC as shown in Fig. 5. The result
is @ Tinecar empirical relationship between compressive strength and compressive

modulus of elasticity of the form

o, = 2.9 x 1072 ¢ (1)

c
The average amounit of material present in the specimen cross=section is directly
related to the specific weight of the specimen. Thus, the structural features
relating o, to EC can be embodied in the specific weight of the diploé layer,
Y- A plot of the averages of the compressive strengths of the specimens from
each bone plug versus their average specific weights is shown in Fig. 6. It is
evident from Fig. 6 that the compressive strength,oc and therefore the compressive
modulus of elasticity EC are strongly influenced by the specific weight of the
dip]oé layer Yp- The relationship of o, tO”yD has the form
o, = 8.06 x 101y (2)

No significant strain rate effects were noted in the data. However,
both strain rates must be considered quasi-static even though they are an
order of magnitude apart. This may also be due to the fact that the collapse
failure is a brittle behavior and therefore not subject to marked strain rate
effects. In Fig. 5 an indicated extrapolation toward the region of compact
bone properties is indicated. Because a transition from the collapse mode of
‘failure to the ductile mode of behavior is occurring, the Tinear relation of
compressive strength to compressive modulus may not hold. Indeed, it depends
somewnat on the criteria for determining when failure has occurred. It is
expected that strain rate effects such as those found by McEThaney (3) will

begin to appear due to ductile behavior as indicated by the bifurcation
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of the dashed 1ines. Work is now in progress at higher strain rates up to

1

2,000 sec ' in order to investigate the findings of this paper in the impact

range of strain rates.

CONCLUSIONS

Some conclusions may be drawn from the results which have been reported
in this paper:

1. The dip]oé Tayer of the skg1] bone is subject to biological variability
leading to a rather wide range of ultimate strengths and elastic moduli.

2. Biological variation in failure stress and elastic modulus are shown
to be functfons of density and porosity of the maferia].

3. Compressive strengthsfor dip]oé material were found vanging frem a
Tow of 1820 1b/1’n2 to a high of 11,350 ]b/in2 whereas va]ués fér compressive
modulus ranged from a Tow of 0.57 x 105 1b/in2 to a high of 3.99 x 105 Wb/inz.

4, Due to the weblike structure of dip]oé a buckling of the trabeculae
defines the mode of failure. This mechanism is not observed in specimens of
compact bone.

5. A linear-elastic compression modulus may be defined for the dip]oé

layer of the skull bone.

1 1

6. No strain rate effects were observed at 0.22 sec ' and 2.2 sec .
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ABSTRACT

Investigators have been studying the mechanical phenomené associated

with impact to the head for many years. Several theories on the behévior of
the brain during head impact have come from these studies but there has been
a notable lack of ipformation on the bulk mechanical properties of the brain
~which are necessary for the eva]uatfon of theﬁe theories. This paper represents
an initia] attempt at providing such information.

The dynamic complex shear modulus of in vitro samples of human brain
have been measured. Specimens from eight brains have been subjected to a
sinusoida] shear stress input under resonant conditioﬁs in an electro-mechanical
test device. Tests were conducted to determine the effects of time after
"death, refrigeration of material and sheqr strain dependence. A device to
" measure the dynamic properties of brain in vivo is described and preliminary
data on in viyo tests on Rhesus monkeys is presented.

The results of the dynamic sheér testing on in vitro human brain

indicate that the storage modulus G' Ties between 6-11 x 103 dynes/cm2

loss modulus G' 1ies between 3.5-6.0 x 103 dynes/cm2 and the loss tangent tan §

the

is in the range 0.40-0.55.



INTRODUCTION

Tﬁe mechanical phenomena associated with accé]erations and impacts to the
head have been studied by a number of investigators over thevyears.‘ The prime
interest in these studies has been the motions of the brain and its subsequent
damaée or malfunction. Holbourn (1943) proposed on theoretical groUnds that
injury to the brain is caused by shear strains. These shear strains can be
produced in the train at the point of impact due to severe deformation or
fracture of the skull resulting in contact of the brain, or they can be
produced remotely from the impact point due to the rotations of the brain
within the skull. Holbourn also proposed that concussion 15 uniquely the
result of rotation. Pudenz and Sheldon (1946) and‘Ommaya (1966) reported
on experiments in which Rhesus monkéys were fitted with transparent pliastic
calvaria and subjected to head impact. The motions of the brain during
impact were easi]y_visib]e and tended to confirm Holbourn's pred;ctions of
brain rotational movement. Martinez (1963) has shown that brain injury in
rabbits can be produced by the rotational motions of severe whiplash alone
without impact to the head. |

Other theories of brain injury being proposed at the present time are
based on the idea of a hydrostatic tension being produced in regions of
the brain during impact. Goldsmith (1966) discussed the concept of a com-
pressive wave in the brain caused by an impact being‘reflected from tﬁe
“inner surface of the skull back into the brain as a ténéi]e wavé’Whjch
~could result in damaging cavitation phenomena. Untefharhscheidt (1966) also
proposed a caviation phenomena but attributes its formation to an inertia
process wherein the brain tries to separate from the skull as the skull

accelerates upon impact.
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The final correlation of head injury theories with head injury experiments
has not been forthcoming because of the almost complete lack of knowledge of
the mechanical properties of brain tissue. Goldsmith (1966) has pointed out
this problem and has suggested some of the pertinent properties to be deter-
mined. Ommaya (1968) has reviewed the scientific literature pertaining to
the mechanical propertfes of the tissues of the nervous system. In the case
of brain tissue, only three papers on the mechanical properties of brain were
found. Franke (1954) determined the coefficient of shear viscosity from
calculations made on data from driving boint impedance measurements of a
glass sphere vibrating within whole, fresh pig brain and pig brain homogenates
at frequencies of 150 to 500 Hz. The viscosity was reported to be similar to
that of room.temperature g]yceriﬁ. Creep experiments'were performed by
 Dodgson (1962) on fresh house brain in an attempt to determine tﬁé Mises-
‘Hehcky flbw condition under static compression. Koeneman (1966) studied creep
~and dynamic cyclic properties f%om rabbits, rats and pigs. Again, the loading
condftion was compression. A1l of the above methods have been in vitro tests
on species other than primates. Ommaya emphasizéd the importancé of future
studies including in vivo experiments to check the validity of the in vitro
work and the use of animals suitable for scaling the data for extrapo1dtion to
_ human brain.

The purpose of this paper is to report the results of the initial phase |
of a program to provide information on the mechanical properties of human
brain pertinent to the problem of head injury. Both in vitro and in vivo

techniques were used. In accordance with the concepts of shear strain

mechanisms of brain injury, the dynamic shear properties of in vitro human
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MATERIALS AND METHODS

A.  In Vitro Testing |

The complex dynamic shear modu]us.(G*) of a viscoelastic material is
defined as the vector sum of G' and iG", with G" normal to G'. G' is the
dynamic elastic modulus and is a measure of the spring stiffness of the
test material under shear stresg! G", the dynamic loss modulus, is a
measure of the damping ability of the material and represents viscous
losses in the material. The relative damping ability of the material,
tan §, is defined as G"/G'.

G* is determined by applying a dynamic sﬁear ;tréss to the visco-
elastic test material and measuring the resu]ting‘strafn. The Dynamic
~ Mechanical Apparatus (DMA) consists of a sinusoidally actuated mechanism
for shééring %He sample and electronic equipmenf to monitor input force,
strain Tevel (output) and the phase angle between them. See Figure 1.
The sample shear mechanism is centrally located on a magnesium-aluminum
alloy rod which connects twin electro-mechanical transducers. The driving
signal, from a function generator operating in the sine mode, is connected
to one transducer. The other transducer provides an output signal,
operating as a velocity transducer. The input force is determined by the
current to the driving transducer; strain and strain rate are measured by
- the output voltage and amplitude. ‘The drjving amperage and ou?put voltage
are measured on a vacuum tube.vo]tﬁeter. (fhe émperééé is measﬁred as a |
voltage across a shunt resis{or on the driving transducéf.)A The 1npﬁt and
output signa1s are displayed as an x-y (Lissajous) plot on an oscilloscope
to aid the operator'in placing the systém in resonance. The input frequency
is read directly from the function generator control. Input force is
adjustabie by means of the function generator signal level control. An

auxiliary amplifier is provided for increased signal strength, if needed.



~ The sample sheariné-mechanism consists of a horizbnta1 aluminum base
plate rigidly attached to the magnesium-aluminum rod and a clear plastic
plate which is positioned above, and parallel to, the aluminum base plate. |
This plastic plate is rigidly attached to the main structure of the DMA
and is vertically adjustable. The test sample is sandwiched between these
two plates. The sample section, between the twin transduceré, is enclosed
in a chamber heated by a small electrical heater—fan'system. The temperature
is controlled by means of a temperature potentiometer which utilizes an iron-
constantan thermocouple placed adjacent to the sample.

The DMA operates as a subtractive impedahce device; i.e., the impedance
of the unloaded system must be subtracted_from that of the system with the
sample in place. This is accomplished by obtaining a master curve of input
amperage (IO) and resonarit frequency (fo) as functions ofltest amplitude and
then subtracting these values from the raw test data for corresponding
amplitudes. A1l measurements are obtained with the system in resonance.

Briefly stated, the data reduction consists of the following equations:

6" = qlu2M-uy2M) | (1)
I-1,

6" = ugC (g—) (@

[6¥|= [(G)% + (6")2]1/2 (3)

tan s = G"/G'

where: q = Sample shape factor, height/area,

w = 2nf,
M = Vibrating mass of DMA, 243 grams,
C2= Force constant of DMA, 1.53 x 106

.gm-ohm~sec'],

I

!

Driving amperage,

it

E = Output voltage,

Subscript zero indicates values for the DMA
without sample and at corresponding amplitude.

-
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The apparatus and data reduction are based on the work of Fitzgerald and

Ferry (1953). The dynamic viscosity (ng) and spring (k) constants are

obtainéd from the relations

G"/w (4)
6'/q o ' (5)

The test procedure includes the fo]]owing operations:

no

k

(1) The sinusoidal input ahperage and’frequency are adjusted to
yield resonance at the desired strain level.
(2) The resonant frequency (f), input amperage (I), and output
| voltage (E) are recorded.
(3) Steps (1) and (2) are repeatéd for each desired strain level.
(4) A photogreph of the sample is taken verticé]]y from the overhead
position. The Samp]e area (A) is determined by using afp]animeter.
(5) The sample height (h) is determined by a vernier micrometer.
(6) Stens (1) and (2) are repeated without a sample (i.e., unloaded),
in order to obtain master curves of (f;) and (fo)'veﬁsus strain Tevel,
Human brain sections, taken at autopsy, were obtained from the Veterans
Administration and University of Michigan Hospitals in Ann Arbor. The sections
were packed in polyethylene bags anq placed on ice and water within 10 minutes
after removal from the skull. They were then transferred to Dow Corning
.within'2.5 heurs. Initial tests were run immediately upon receipt. Subsequent
storage was at 3?C.,.since early tests on Rhesus brain confirmed that gross
change occurs in the modulus upon freezing the tissue. Freezing lowered the
storage modulus approximately an order of magnitude and the Toss modulus by -a

factor of three.
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Rectangular solid test Spécimens with the approximate dimensions of
2 cm xl3 cm and 0.4 to 0.7 cm in height were used. _Bbfh of the samp?e—hofder
plateé contacting fhe specimen were scored with a cross-hatch pattern to
reduce slippage. An aerosol adhesive was sprayed on both plates to further
reduce slippage. The test specimen was placed on the base plate and thé cover
plate was then allowed to rest in 1ight contact with the upper specimen
surface before being rigidly secured to the DMA frame. A plastic cover was
placed over the sample séction to form the test chamber and the‘temperature_-'
was adjusted to test specifications. Testing was begun aftér a 15-minute
~ equilibration perfod.

A total of 13 samples of humaﬁ4bra1n tissue from eight‘individua1s has
been tested in vitro utilizing the DMA. A1l of the samples were cerebral
white matter and were tested at 37°C. The tests were conducted ;t 9 to 10 Hz.

In order to describe the specific test proceduré for each sample, two
terms are employed. A scan consists of approximately six individual
measurements conducted in rapid sequence, generally moving from low to high
strain levels. Strains approaching 0.37 were achieved during the testing,
though not for all samples. A series consists of a number of scans conducted
in rapid sequence. Each test was numbered to identify it as to type of brain,

specific brain, and specific scan.

(B) In Vivo Testing
The‘Dynamic Mechanical Apparatus, though suitable for in vitro testing,
can not be used in in vivo testing. To meet the need of an in vivo test, a small

driving point impedance device was constructed. Termed the Dynamic Probe
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"Apparatus (DPA), it consists of a sinusoidally-driven probe attached to an
impedance head, and associated electronic equipment fbr signal conditioning
and display.

fhe output shaft of a small electrodynamic vibrator (shaker) is
connected to the impedance head. A fTat~ended, cylindrical probe of 0.1 cm2
cross—séctiona] area, mounted on the impedance head, transmits the sinusoidal
motion of the shaker output to the test material and measures the traésmitted
force. An accelerometer mounted on the impedance head measurés the
acceleration of the probe. See Figure 2.

The apparatus functions as a driving point impedance device. The output
consists of the force trénsferred from the probe to the test material and the
dynamic displacement of the proﬁe. The force transducer.measures a composite
signal consiéting of the force transferred to the test material and the force
caused by the acce1erétion of the probe mass. This latter force Zomponentlis
subtracted from the composite signal in'ordér to obtain the desired transfer
force function. This is accomplished with the acceleration transducer, by
electronically subtracting an acceleration signal, equal in magnitude to the
mass acceleration of the probe, from the composite signal. The accelerometer
output is also utilized to measure dynamic displacement by electronically
shifting it 180? out of phase (i.e., inverting it). Thé resultant signal is

Aproportiona1 to displacement, at a given frequency.

The transferred force and dynamic displacement signals are displayed on
a dual-beam oscilloscope. Both Tinear and x-y (Lissajous) plots are possible.
"The Lissajous figures are recorded with a Polaroid camera mounted on the

oscilloscope. A complete test record is recorded on magnetic tape.
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Subjécts tested in initial experiments using the DPA were young adult |
Rhesus monkeys (Macaca mu]atﬁa) ranging from 4.5.t0 5.5 Kg and anesthetized
with phencyclidine hydrochloride and sodium pentobarbital. The right internal
carotid artery was cannulated for blood pressure monitoring and the right
internal jugular vein was cannulated for saline infusion and drqg administration.
Subjects were mounted in a primate chair and the head secured with a surgical
head holder through an 1ntra¥orb1ta] to dental clamp. The cranial test sites
were prepared after a midsagittal incision in the scalp and separation of the
~overlying skin and the galea aponeurotica. At a point located according to
coarse stereotaxic position over the medial area of the precentral gyrus, a
burr hole was made in the @lavarium and enlarged with a 3/8 1ncﬁ trephine.

Upon attaining hemostasis the dura mater under the test site was removed.
Either one test site or two contraTatera1 sites were prepared. .

The DPA was then positioned over the monkey's head so that the probe tip
would be able to contact the exposed cerebral cortex. After positioning, the
probe could be pressed into the brain surface through a screw drive mechanism
on its crosslide mount and the static brain deformation measured with an
attached dial indicator. The pia-arachnoid was not punctured during the tests.

While at a specified static deformation the probe was driven with é small
sinusoidal amplitude and the force and acceleration signals from the probe re-
"corded. These sfgna]s were displayed on an oscilloscope and also recorded on
magnetic tape. The oscilloscope display permits a simple analysis of tan & and
the recorded data will be digitized and used to solve a model of the brain-probe
system. |

In tests where the dynamic mechanicé] properties were meésured as a function
of blood pressure, the arterial pressure was controlled by intravenous infusion
of a 0.1% solution ¢f trimethaphan camphorsulfonate in Ringer-Locke solution. The
infusion rate was adjusted to get the desired blood pressure depression, which

could be restored to normal values by stopping the administration.



| RESULTS .
‘A. In Vitro Tests
Initial testé yielded modu1ﬁs values which 1ncreésed with tfme as the

test éeries progressed. This increase has been attributed to sample drying.
Subsequent tests were conducted in a high-humidity environment and generally
with a very thin coating of a silicone adhesive on the sample surface. Values
of G' and G" for a typical test (HBM-6-20) are shown in Figures 2 and 3. The
first scan of a series yields a strain;dependent modulus whereas the second
and third scans do not give a determinable indicatjon of strain independence.
Repeated series fo]Towing‘a period with the specimen at rest yield similar
results, with the modulus returning to the same levei as in the previous
series during the first scan and remaining so through—subsequent scans. This
repeatabi]it} indicates that thefe is no rapid irreveésib]e changg occurring
as a result of the test environment. It is concluded that the change in modu1us
during the first scan shows not a strain dependence, but a conditioning caused
by shear. Stiffening of the specimen edge while at rest is Tikely, relieved
by shear or redistribution of moisture under shear. Thixotropy has not been
ruled out, however. |

Table I summarizes the modulus values obtained from all tests conducted
on the éght brains, 1isting the seady-state values from shear-conditioned
‘ samples. Based on the above interpretation, these tests indicate that G'

3

lies between 6-11 x 10 dynes/cmz, G" Ties between 3.5-6.0 x 103 dynes/cmz,

and tan ¢ is in the range 0.40 to 0.55.
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‘B.‘}'In Vi?o Tests

Using the DPA and the experimental procedure discussed above, Lissajous
figures of force versus deformation have been obtained on eight Rhesus monkeys.
~ The experiments were designed to examine the effects of static probe deformation,
dynamic amplitude, frequency and systemic blood pressure on the in viVo dynamic
behavior of the brain. The animals were sacrificed during the experiﬁents and
postmortem effects were studied. In vitro tests on Rhesus monkey brain were
also performed.

Figure 5a shows a typical high amplitude (‘3Ox]0'3 cm) test result
demonstrating a highly asymmetric Lissajous figure. This type of figure
can not be analyzed by pkesenf.techniques. The symmetric Lissajous plot
in Figure 5bis typical of the lower amplitude tests (‘2.5)(10"3 cm).” The °
symmetry of this type of sinusoidal force Lissajous pattern allows certain
dynamic constants to be calculated (Gehmah, 1957) after suitable analysis
but allows the Toss tangent tan 6 to be calculated directly as indicated in
Figure 5b.

A complete analysis of the test results in terms of the basic dynamic
shear moduli depends on a mathematical analysis of the DPA-brain system now
in progress. This analysﬁs will allow direct comparison with the in vitro
results of the previous section. It is possible, however, to present values
of tan § for in vivo Rhesus monkey cerebral cortex as a function of blood
pressure as shown in Figure 6. These results for a single amplitude test

(2.5x]0'3 cm) show a decreasing tan ¢ with decreasing blood pressure.
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DISCUSSION

In view of the very soft nature of brain tissue, the values of the
in vitro dynamic shear moduli are not surprising. The lowness of these
values is emphasized when they are compared to soft ehgineering materials
as shown in Figure 7.

Approximate values of the shear elasticity and shear viscosity of soft
human body tissue have been calcu]ated‘by von Gierke et al. (1952) from
impedance measurements. The value of the shear elasticity was found to be

4 2

2.5 x 107 dynes/cm™ and the shear viscosity was 150P for in vivo muscular

tissues. Comparison of G' values from the in vitko brain test (6-]1x]03
dynes/cmz) with this approximate shear elasticity coefficient places the

in vitro human brain stiffness just below that of in vivo human muscular
tissue. Equation (4) can be used to calculate the dynamic shear viscosity

ng for the in vitro human brain giving a range of 56 to 96P, which again
places it just below that of in vivo human muscular tissue. Koeneman (1966)
found the dynamic elastic compression modulus of in vitro brain white matter
of rabbits, rats and pigs to lie in the range from 0.8 to 1.5 x 105 dynes/cmz.
The compression modulus 1is approximatéTy three times the shear modulus for a
Tinear viscoelastic material of this type, thus his values are equivalent

4 dynes/cmz, somewhat higher than von Gierke's

to a G' range of 2.7 to 5 x 10
values for muscular tissue. Koeneman reported a dynamic viscosity of 43.5p
while Franke (1954) reported a shear viscosity of 14.9P calculated from
impedance measurements on in vitro pig brain. Dividing Koeneman's value by
three gives a dynamic shear viscosity of 14.5P, in close agreement with Franke.
Both of these values were calculated from data obtained in the frequency range

of 100 to 500 Hz. Since the in vitro tests reported in this paper were

performed at 9 to 10 Hz, the differences between the shear viscosity
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coefficients could very Qe]] be due to variation of the dynamic propefties
with frequency, a situatioh found in most viscoe]a;tic materials. The
possibility of differences between the mechanical ﬁroperties of the brain
in lower animals and those of primate brain cannot be ruled out, however.
Ommaya (1966) discussed the high impact tolerance of small animals with
their compact brains which are not as deformable as larger brains.

The high values of tan & (Table I)obtained in the in vitro testing
characterize the brain tissue as a material with high internal damping.
These high values correlate with the in vivo test as shown in Figure 6
where the tan & for zero blood pressure approaches the range found for
in vitro human brain. The indications from this fnitia] in vivo to in
vitro correlation are that the test wf]l provide the means for resolving
the questions of postmortem changes, blood pressure effects and frequency
effects on the dynamic properties of brain tissue. Von Gierke (1966)
showed that for this type of material being tested and for the frequency
range being employed, that the probe test is basically a shear test. Thus,
the possibility of calculating G' and G" from the data using the proper

mathematical techniques is quite good.
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TABLE 1

SUMMARY OF IN VITRO DYNAMIC MECHANICAL
PROPERTIES OF HUMAN BRAINS

G' G'
BRAIN  AGE  Hours Post-Mortem jdynes/cmz) (dynes/cmz) tan §
148 10 11.1x10° 5.1x10° 0.4.6
| 33 9.8 5.2 .53
2 77 10 6-9 5.5-6.5 .65-1.00
3 a4 33 7.7 3.9 5l
51 9.0 5.0 .55
4 92 20 14.1 6.0 A2
5 80 28 9.7 4.8 .50
6 50 20 10.0 4.5 A5
7 49 47 7.5 3.0 .35
: Y 10.5 4.5 .43
8 71 25 7.7 4.0 .52
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ABSTRACT

THE AXTSYMMETRIC RESPONSE OF A FLUID-FILLED SPHERICAL SHELL

by
Alil Erkan Engin

Co-Chairmen: Roger D. Low, Y. King Liu

This investigation is concerned with the free vibration analysis of a
fluid-filled spherical shell and the determination of the dynamic response
of such a fluid-shell system when subjected to a local radial impulsive load.
From the application point of view, a fluid-filled spherical shell is con-
sidered to be a simple, but to date, the most improved theoretical model
representing the human head when subjected to impulsive external loads.

Utilizing linear shell theory, which includes both membrane and bending
effects, the differential equations for the axisymmetric, nontorsional motion
of a fluid-filled thin spherical shell are obtained by means of Hamilton's
principle. The motion of the fluid is assumed to be governed by the linear
wave equation. It is shown that appropriate limiting cases of the frequency
equation for the above system agree with those of the simpler models previously
investigated., We use the Laplace transform technique in determining the
transient response of the system to a local radial impulsive load. The solu-
tion thus obtained for the velocity potential of the fluid and the displacement
components of the shell mid-surface is the Green's function of the problem
with respect to time.

Some rnumerical results for the theoretical model are obtained for a set
of appropriate dats. We compare the stress distributions at various times in
the shell for both the empty and the fluid-filled cases. In the fluid-filled
case the excess pressure propagation in the fluid 1s also discussed. The
possible locations of brain damage and skull injury are indicated on the basis
of the numerical computations,
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CHAPTER 1

INTRODUCTION

The subJject matter of this investigation received its stimulus from the
following two considerations. First of all, the complete determination of the
dynamié response of & fluid-filled shell subjected to a local radial impulsive
load is a point of interest in theoretical méchanics due to the fluid-gsolid
interaction nature of the problem. Secondly, it is hoped that a fluid-filled
spherical shell will serve as a simple but improved theoretical model repre-
~ senting the human head when subjected to impulsive‘external loads, The
previous studies can be put into three categories:

(1) Studies on the response of an inviscid and irrotational fluid con-
tained in a rigid,closed spherical shell or container.

(2) Studies on the dynemic analysis of various elastic shells,

(3) Studies involving shells in contact externally and/or internally
with fluids.

In the first category the major contributions were made by Anzelius
aend Gﬁttinger.7 Their formulation, motivated by investigations of the response
of the brain to a sudden blow on the skull, are essentially identical and
involve an axisymmetric solution of the wave equation in spherical coordinates.
In the papers of both authors the eigenvalues of the problem are determined
by requiring the radial component of the fluid velocity to vanish at the in-
terior surface of the rigid spherical shell surrounding the fluid. 1In the
analysis of Anzelius the spherical vessel containing the fluid has constant

translational velocity for t < 0. At t = O the vessel is brought to a sudden

1



stop. From this physical situation he gets one initial condition for the
velocity potential, 0, of the fluid and assumes the initial pressure distri-
bution which supplies the second initial condition on the time derivative of
®., In Guttinger's analysis the fluid-filled spherical vessel is initially at
rest. At t = 0 a "momentary impact" force instantaneously accelerates the
vessel to a constant velocity which the véssel retains for all t > 0. Again
from the physical situation the first initial condition on ® can be written
down immediately and the second initial condition on the time derivative of
® is equal to zero since the initial dynamic pressure distribution in this
case 1s zero. Both authors concluded that an initial compression wave arises
from the pole of impact, and due to the rigidity of the shell, instantaneously
a tension (rarefaction) wave is emitted from the counterpole, both traveling
towards the geometric center of the system. The super-position of the two
waves at the center produces large changes in the fluid pressure and this
phenomena was considered to be the cause of brain trauma. It should be re-
marked that the assumption of rigidity of the shell causes an infinite speed
of wave propagation in the container and, as a direct consequence of this,
every point of the interior surface of the container instantaneocusly becomes
é source of varying strength which transmits energy into the fluid. The
obvious shortcomings of the fluid-filled rigid shell model led Goldsmithu

to suggest the construction of a fluid-filled elastic shell model and its
analytical or numericel solution. Goldsmith's paper was primarily addressed
to those who are outside of the discipline of mechanics; however, a thorough

review of previously employed theoretical and experimentsl methods describing



the formation of brain trauma and head injury has been gilven.
The investigations belonging to the second category are numerous. Only
a few representative ones will be mentioned here. Dynamic analysis of shells
13 . . .
dates back as early as 1882 when Lamb™~ used an extensional formulation in the
study of closed spherical shells. A few years later a famous dispute took
. .25 15 .
place between Rayleigh ~ and Love = in an endeavor to construct a theory for
the vibration of bells., Rayleigh's treatment was inextensional, i.e., he
assumed that no stretching of the mid-surface of the shell takes place during
. 16, .
deformation, whereas Love  included both flexural and extensional effects.
Love's formulation of the problem has become the classical bending theory of
shells now known as Love's first approximation. Based on the extensional
s 26 : : : .
theory of Love, Silbiger  studied free and forced vibrations of spherical
2 ) . . .2
shells and Baker obtained some experimental results, Naghdi and Kalnins,
using classical bending theory, investigated axisymmetric as well as asymmetric
vibrations of thin spherical shells and obtained some numerical results for
the natural frequencies (of L lowest circumferential wave numbers) and mode
.11 . . . .
shapes. Kalnins, = wusing linear bending theory, made vibration analyses of
spherical shells closed at one pole and open at other and determined natural
frequencies and mode shapes for opening engles ranging from shallow to closed
shells. He also explained certain paradoxial situations which occurred at
the lower branch of Love's frequency spectrum in terms of the effects of
. . 12 . . . .
bending. Klein  applied the finite element approach to the dynamic analysis
of multilayer shells with special emphasis on the computational aspects and
obtained a solution for a shallow spherical cap under a time dependent axisym-

18
metric pressure load. Medick, within the framework of modified shallow shell



theory, obtained the initial response of a restricted class of thin shells which
are essentially spherical and shallow in the neighborhodd of loading. Based
: 14, : :
on the linear classical shell theory Long  investigated the effect of radial
preload on the natural frequencies of thin closed spherical shells and found
that pure radiel and torsional modes are virtually independent of the radial
preload. Using linearized small deformation theory Humphreys and Winter9
obtained solutions in the form of infinite series for an infinitely long
cylindrical shell under a transverse pressure pulse. Recently, McIvor and
17 . . . .

Sonstegard = studied the axisymmetric response of a closed spherical shell to
a nearly uniform radial impulse and the associated stability problem of the
breathing mode.

The problems in the third category received some attention especially by

. . : 10, .
those in the field of acoustics. Junger =~ investigated the effect of the
fluid on the natural frequencies of cylindrical and spherical shells freely
suspended in a compressible fluid medium. Free and forced oscillations of
infinitely long, (thick as well as thin) cylindrical shells surrounded by
€
water were studied by Greenspon who treated unpressurized shells by exact
elasticity theory and cylindrical shells with internal fluid by spproximate
shell theory. Goodman and Stern,5 using elasticity theory and numericsl in-
tegration of a system of ordinary differential equations, investigated the
steady state response of a fluid-filled spherical shell submerged in another
. 2> . . :

fluid. Shklyarchuk made approximate calculations to obtain lower fre-
quencies end mode shapes of the axisymmetric oscillations of liquid-filled
shells of revolution. Assuming "flat surface motion" for the free surface

of the liquid and applying Ritz method he carried out the calculations for a



liquid-filled cylinder and a half-sphere. Recently, Rand and Dimaggi022 ob-
tained frequency equations and mode shapes for the axisymmetric, extensional,
nontorsional oscillations of fluid-filled elastic spherical shells and rigid
prolate spheroidal shells,

As it was pointed out in Goldsmith's paper, the various mechanisms of
gkull and brain damage proposed by previous investigators are of little prac-

tical value in quaentitative determinations of the location and magnitude of

brain trauma and head injury. In the literature there are no rigorous mathe-
matical treatments of the theoretical head injury models except for the fluid-
filled rigid shell model analyzed by Anzelius and Guttinger. It should be
emphasized that a continuum model is much superior to a lumped-parameter
model due to the nature of the skull and brain matter. In the lumped-
parameter model the criterion of damage is based on maximum acceleration where-
as in the continuum model on maximum stress, which is clearly established from
the experimental data to be the cause of injury. Therefore any theoretical
model representing the human head when subjected to a time-dependent force
must be constructed on the basis of continuum mechanics, which allows defor-
mations depending both on location within the body and on time.

The theoretical model for the present investigation consists of a thin
elsstic spherical shell filled with inviscid compressible fluid. In Chapter
2 the governing differential equations of a fluid-filled spherical shell are
obtained by means of Hamilton's principle. Since one of the major problems of
the dynamic analysis of continuous elastic systems is the proper description
of the natural frequencies, the frequency equation for the model under con-

sideration is determined for axisymmetric and nontcrsional motion from the



combined theory which includes membrane and bending effects of the shell. It
is also shown that various limiting cases of the frequency equation agree
with the frequency equations of the simpler models previously investigated.
Chapter 2 is concluded with delineation of some of the salient features of

the frequency spectrum in view of the frequency spectra of the limiting cases.
In Chapter 3%, the response of a fluid-filled elastic spherical shell sub-~
jected to a local, radial impulsive load is determined by means of the Laplace
transformation. The solutions obtained for the nondimensional velocity po-
tential of the fluid and nondimensional radial and tangential displacements
of the shell mid-surface essentially is the Green's function of the problem
with respect to nondimensional time. Thus the response of the system to any
arbitrary time-dependent external load of finite duration is obtained by
meking use of the convolution integral. The last chapter of the thesis is

devoted to some numerical results and their discussion.



CHAPTER 2

A LINEAR FORMULATION

In this chapter the frequency equation of a closed, fluid-filled elastic
spherical shell for axisymmetric, nontorsional motion is obtained from the com-
bined linear theory which includes membrane (extensional) and bending (inexten-

sional) effects of the shell.

2.1 REPRESENTATION OF SHELL DEFORMATION

Deformation of a given shell can be analyzed in terms of the deformation
of its mid-surface. The mid-surface of a shell is defined to be a surface which
lies midway between the two bounding surfaces of the shell. In the following
analysis any surface which is equidistance from the mid-surface will be called a
z-surface. A set of Cartesian axes i1s chosen with origin at the center of the

shell. A spherical coordinate system can then be set up, as shown in Figure 1.

Figure 1. Coordinate system for the shell and its interior.

2.2 STRAIN-DISPLACEMENT-STRESS RELATIONS

Deformation of the mid-surface 1s completely determined by the strain

1



quantities €1, €5, 7, K1, ko, T. The first three characterize the variations
of the dimensions of a small element of the surface and the other three char-
acterize the distortion of the element. These strain quantities are given, in
general, in terms of the components u, v, w, of the displacement vector, the
Leme” parameters A;, A, and the principal radii of curvature R;, Ro. If one
takes the curvilinear coordinates qi, s of the mid-surface to be the principal

(21)

coordinates, then thege strain quantities are

c _]_.~a\l+l 6A1v+_w__
YA dor Arhs o Ry ’

A ov o, 1 aAg L

27 h, dom  AAs 3o Rp

_hp 3 1) Ay
7T aa1<A2 e aocg

_:L—i _l__@lf_ _ s 1 aAl L oW ._Y..>} (2.2.1)

il
1

K - -
* Ay d\ A1 Qo Ry AjAs S0 \A2 dus  Ro

K_'Lalaw_v_ 1 oA/ 1 ow u
z Ap d2\ A2 o2 Ro AjAs doa\ A1 don Ry/’

.o 1 0A; ow 1 Ay oW
AlAz 6&1 Ay dop dn Ap dm &12

_1.__ all 1 l Bv 1 aA 2
Az doz ArAs aﬂz Ay don | Ajhs aal

For & spherical surface of radius a, A; =Ry =Ry = a, and A, = a sin 9. In-

|
|
|
l

troduction of axisymmetry and precluding torsional displacements mean

o0

o]
é&_ =% " 0, (2.2.2)

I

v=0, (2.2.3)



where v is the displacement component in the 6 (o) direction. The remaining
displacement components of the mid-surface are along o(oq) and along the out-

ward normal to the surface, These are

u = u(CP)t) )
and : ' (2.2.4)

w=w(p,t) .

Imposing the conditions (2.2.2) and (2.2.3) on (2.2.1) yields the follow-

ing mid-surface strain-displacement expressions:

Ll A v ou
o a\p ’ o @2 \0 0 )’

1 cot® ow

= -  ——— - — 4+ u 2.5
cg = 5 (u cob +) o (-5ry), e
y =0, T =0

In (2.2.5) € and €g 7€ the tangential strains, whereas m@ and. kg Can be

¢

viewed as the variations of the curvature of the mid-surface of the shell dur-

(21)

ing deformation. It can be shown that the z-surface strains are related

to those of the mid-surface in the following manner:

(z)  _1_ . ,
€p 7 1+z/a (e tzr))
(2.2.6)
(z) 1
= ) -+
¢ 1+z/a (egt21g)

By Hooke's law and the second hypothesis of Kirchoff,* one has for a homogeneous

*¥The hypotheses of Kirchoff can be stated as:
(1) The normals to the undeformed mid-surface remain normal after deforma-
tion and do not stretch.

(2) The normal stresses acting on planes parallel to the mid-surface are
neglected.
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and isotropic shell the following stress-strain relations.

(z) E

(z) . (2)
(6@ tveg ),

% T 1.7
(2.2.7)
(z2) . B, (2) , (2)
Oy = T2 (e ve, )

where E is Young's modulug and v 1s Polsson's ratio.

2.3 FQUATIONS OF MOTTION

The equations of motion of a closed, fluld-filled spherical shell can be
derived by use of Hamilton's Principle. 1In order to apply this principle to
the problem under consideration, it is necessary to calculate the potential
and kinetic energies of the thin spherical shell surrounding the fluid.

The potential energy of the shell is

V= fs Uds-fS pawdS—fS FewdS , (2.3.1)

where the first integral represents the strain energy of the shell during de-
formation; U is the strain energy density per unit mid-surface of the shell

and is given as

3

U = _En —-[(e +e )2-2(1-v) (e € -~ fo]+ ”“EEL"“[(K +x_ )2-2(1-v) (k_x -Tzﬂ
2(1-v) L' 7o 9o L 2L(1-vZ)L o e e

(2.3.2)
In (2.%.2) the first term gives the strain energy density of stretching and
shearing of the mid-surface, the second that of bending and torsion. The
second and the third integrals in (2.3.1) represent the potential energy due

to the effects of internal fluid pressure p and any external surface force
a
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Fe on the shell. 8 is the area of the mid-surface of the shell.

The kinetic energy of the shell is

=]
|

S

where pS and VS are mass density and volume of the shell material respectively.
In (2.3.3) the effect of rotary inertia of the shell is neglected.

According to Hamilton's Principle the actual path followed by a dynamical
process is that particular one for which the time integral of the function (T-v)

assumes a stationary value. The analytical statement of this principle is
t2
® ft (T-v)at =0, (2.3.k)
1

where t1 and t. are two distinct, arbitrary but fixed times, and & denotes the
usual variational operation.

Substitution of (2.2.5) into (2.3.2) gives the strain energy density in
terms of displacements u and w of the mid-surface. Using (2.3.1) and (2.3.3)
in (2.3.L) along with some concepts* of calculus of variations yields the follow-
ing variational expression
8 ftf(T—V)dt = fzf 2ﬂdt<zg{13agpsh gzg'-x<§ cotZo- %25‘-cot@ %ﬁ - %%

aﬁ) D/ oilt 3% 5w u  Fu
+ - e N S ‘ E_M —_— 2,- - e _— - L ee—
V<P 6®:> a2<\cot D 3 u cot ot e +cot o a@g ~cotd % P

(equation continues on next page)

8) (3)

(
*See, for example, Hildebrand,' pp. 119-181; H. Bateman, p. 152.
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+ u_ a@] 611‘*“{"’& ph ’g‘ - ( +u L,OtCP +2W+\C%§ +u cotq }—2)
D ow 5 aU. 84 83

- ;Qotcpr ( —B_C; } (2+cot2 1+cot2 ( v -—; @ S,E

+ 2cot® @@ > @ = -éE - u cototcotp a@) ’CP’ t)

- F | dwpsin® do- I”K @E +wty(u cot® +w)l sin® -+ 2 - a%q au
e 1 A0 ' 22| 3 8cp

T * [ : ch 2
+ veot® G %WCB +9] sin® }Bu -{-a—Dg !;otgga(— %—Z +9 + —25" +tcotd g 5
0 .
2 2
- —g—(’% -cot® < — @} s:m(P_rSw _{;[ oW gzlp
+ yeoty ( % +9J sin@}{gﬁ%

In (2.3.5) XK= Eh/1-v%, D = En®/12(1-v%); also let o = D/afK = h®/12a% be &
/ /

(2.3.5)

thickness parameter.
From (2.%.5) one gets the differential equations of motion of the shell

and natural boundary conditions on u and w at ©® = 0 and n. These are:

%y du % OFw
2098 o R arioot@olul 402 S tPeotn ¥
(1+o )[ 3 cotp . +(v+cot @)% Ho 302 +oFeotn v

- 2 2
- [P (cotBotv)+(1+v)] % + I—EV p 2° %—S =0, (2.3.6)

2

>° - du
P = +o0Pcotp —a——}i- S (1) (1402 +0Pcot®p] =+ pPeot Po+30Peoty
P o oP

4. 3% 0 2
-(1+v) (1+P)eotp Ju -of 2 O +2cot® T3 -{(1ltvtcoto) Lol
3 i

dp* o)

(equation continues on next pag

(D
~—
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+(2cotcp+cot3cp—vcotcp) %] - 2(l+y)w " T p_a —a’t'ﬁ

l"v2 2 B®( JqJJ > -
- = a [po - Fe(cp,t} =0 (2.3.7)

where ¢ and po are velocity potential and density of the ideal fluid filling

the interior space of the shell;

[ [ou du S .
K[}— +w+v(ucot®-+wﬂ sing +-——[-- <= +ycot® <£-; fgﬂ sin@{}&u =0,
'1- Xp Xf  dp o 0
‘ | (2.3.8)
3, 2
{%&:otz <8w +u) + 2 35 tcotp 222’ - g‘; -cot® — +v< = +9] sm@}&w =0,
(2.3.9)
{;%E %._:g ; S% Fycot® (—% @} sin@} (2.3.10)

(2.3.6) and (2.%.7) are the partial differential equations of motion and they
have been obtained from (2.3.5) as a result of equating the coefficients of

u and ow under the time and spacial integral to zero. The previous operation
is valid if one alsc sets the remaining terms in (2.3.5) equal to zero and this
yields the natural boundary conditions (2.3.3), (2.%.9) and (2.3.10). The mo-
tion of the inviscid and irrctational fluid for small oscillations is governed

by the wave equation

102, 1 3/, 0 10
2 af(}‘ ai)+ rgsin@ > sino BZ>~ 2 N2 0 (2.3.11)

where ¢ 1s the compressional wave speed in the fluid. Inspection of (2.%.6)
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and (2.3%.7) shows rather strong coupling among the shell displacement components
u and w. The effect of the fluid is only seen in (2.3.7) which contains the

radial inertia term.

2.4 FREE VIBRATION, THE FREQUENCY EQUATION

In this section the solutions of the partial differential equations (2.3.6),
(2.3.7) and (2.%.8) will be given and the frequency equation of a closed, fluid-
filled spherical shell for axisymmetric and nontorsional motion will be deter-
minedT For the free vibration the external forces must be absent, i.e. Fe(@,t)
= 0.

Equations (2.3.6) and (2.3.7) are put in nondimensional form by the in-
troduction of a nondimensional time T, a nondimensional radial displacement €,

and tangential displacement . These are defined as
c
, T =2 (2.4.1)

where c, = [E/ps(l-vg)]l/2 is the apparent wave speed* in the shell. The non-

dimensionalized form of equations (2.3.6) and (2.3.7) are:

2 3 2
O‘Elié-g *eoty % - (vtcot®o)u- %cp% -coto ‘25% +(vteot®o) %c%]

azﬂf oV , ot 52
+ 7 fcotp = - (vtcotPo)y+(1+y) = - V-

" 5 0, (2.4h.2)

*The wave speed, ¢ , corresponds to the speed of compressional waves in an in-
finite plate for +the limiting case of symmetrical waves of long wavelength.
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3 2
2[?~¥ +2cotQ oy -(L+vtcot®p) o +(00t2$'V+2)¢09t@

< ° 3° 3
4 ag 52 ) a
- %@% -2cot® 85% +(1+v+cotZo) ——% -(2—v%cot2@)cot@ Eﬁl
2 ap '
—(l+v)<§% +ycoto +2§>- ng - hpo a®l(§;®’T) =0, (2.4.3)
s

where @, is the nondimensional velocity potential for the fluid, defined as
o, = @/acs. For the nondimensional radial and tangential displacements of
the shell mid-surface the following expansions in series of Legendre poly-

nomials of the first kind is considered;

(>3]
-

t(p,7) = ()P (cosp) (2.4.4)

a
n=0 n

[ee]

w(@,7) = 2 b (1) (cosp) (2.4.5)

where Pn(cos$ ) are Legendre polynomials of the first kind and Pé(cos@ ) are
associated Legendre polynomials of the first order, first kind. Since the
second solutions of the Legendre equations are singular at the poles they

are not included in the expansions (2.4.4) and (2.4.5).

From (2.3.11) the form of the velocity potential ¢; can be determined as

01 (r1,9,7) = Loe (7)] (kar1)P (cosp) (2.14.6)

where jn(karl) is spherical Bessel function, k = w/c is the wave number, w is

the circular frequency, ¢ is the compressional wave speed in the fluid and r;
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is the nondimensional radial coordinate defined to be r/a.
The boundary condition between the fluid and shell can be stated as the

continuity of normal velocities for &11 @ and T i.e.

BC(CP;T) _ aq)l(l:q); T) . (2&.7)

BT Brl

Substitution of (2.4.h) and (2.4.6) into (2.4.7) yields the following relation-
ship between an(T) and cn(T) for each n,

da (1)

1 n
Cn<T) - kajr’l<ka) ar b) (2.&.8)

where j;(ka) is the first derivative of jn(karl) with respect to its argument
evaluated at r; = 1.

It can be shown that substitution of (2.4.4), (2.4.5) and (2.4.6) along
with (2.4.8) into the coupled partial differential equations (2...2) and
(2.4.3) yields the following system of equations for the determination of

a (1) and bn(T):

n
forn =0
1,(0) 8% ()
'|+f +2 1+ ) Y = .)—L-
L ij(Q)J dTZ (L V)BO(T/ 0, (2 : 9)
o)
forn >1
dgbn(T)
s [ 1+y-~(Ll-v-) ~(1l-v- 2 = (2.1,
Tz -[1ty P (1-v \n)]an(T) (1-v kn)(lﬁa )bn(T) 0, {(2.4.10)
forn>1

j_(2)a%,_(v)
1+ Qj;<0) ar? _[<l+v>xn+a2[ki-kn(lmv)]}bn(T)

+{2(1+v)+o?[x§-xn(l-v)]}an(T) =0, (2.h.11)
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where f = poa/psh = nondimensional fluid-shell parameter, Q = ka = wa/c, and
= n(n+l). In obtaining equations (2.4.9), (2.4.10) and (2.4.11) the dif-
ferential equations satisfied by Pn and PA were used repeatedly.

Equations (2.4.9), (2.4.10) and (2.4.11) are linear differential equa-

tions with constant coefficients, the solutions of which are of the form

o
—
2
|
=4

(2.4.12)

o’
—

4
~—

1l

e}

0]
-

where An, Bn are congtants and s = c/cs is the ratio of the compressional
wave speed in the fluid to the wave speed cS defined previously.
. . i0sT |, . Lo
Substitution of ao(T) = Aoe into (2.L4.9) with the condition AO #0

gives the following frequency equation for n = 0

3,07
[Hf Qjé(ﬂ)]s 0=-2(1+v) = 0 . (2.4.13)

Substituting (2.4.12) in (2.4.10) and (2.4.11) and factoring out elQST; one gets

forn>1
[(l+v)—oce(l—v->\n)]An+[(l+oc2)(l~v—>\n)+3292]Bn =0,
(2.h.1k)
2(1+v)+a®[A2-n (1-v)]-| 1+f Jn(m s&JA (1) +PINEN (1-v)1)B =0
n n QjA(Q) Y_f n Vit n TV T Y

which are homogeneous linear algebraic equations in A and B . This set of
n n

equations has a solution other than the trivial one, A =B = 0, only if the
n n
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determinant A(Q) of the coefficients of An and Bn vanishes. Expansion of this

determinant yields the frequency equation for n > 1

3, (@) T 3,0
[}+f 1 ]S4Q4+{J%+f ~—“——;](l—v—kn)(l+og)~2(l+v)—o?[%i-hn(l-v){}3292

03l (@) 05.(9)
(2.1.15)

-(l+v)[2(l~v—kn)(l+a2)+xn[l+v-ag(l—v—xn)]}—Q?(E-kn)[ki-xn(l-v)] =0 .

It is.interesting to note that appropriate limiting cases of the above
frequency equations agree with results obtéined by other authors.
Case 1

f = 0 corresponds to the absence of fluid. Introduction of values of s

and 0 into (2.4.1%) gives the dimensional angular frequency of pure radial

‘motion as
_1f_ee |M? |
o = a[PS(l'VJ (2.4.16)
(13)

which was first obtained by Lamb. Setting f = 0 and defining a new
nondimensional frequency Q=0s = wa/cs in (2.4.15) yields the following
frequency equation of the empty shell which was recently obtained by

(a7)

McIvor and Sonstegard.
54-[1+5v—a?(l—v)+xn(1+va2)+o?xi]52

+[a2xi—ho?xi+o?xn(5-v2)+xn(1-v2)-2(1+a2)(1-v2)] =0. (2.h.17)

Case 2

f >0 and s » O corresponds to a rigid shell containing a fluid. For
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this case the frequency equations (2.4.13) and (2.4.15) for an ideal

fluid degenerate to

jr@) =0 (2.4.18)

Which is eagily shown to be the same as

29J£+1/2(Q) = Jn+%/2(9) (2.4.19)

where J () is the Bessel function of the indicated order. The fre-
nti/2
quency equation (2.4.19) was obtained by Guttinger.(7)
Case 3

of = 0 yields the frequency equation corresponding to the membrane (ex-
tensional) theory for both the empty shell (f = 0) and fluid-filled shell
(f > 0) cases. The frequency equations for vibrations of a fluid-filled
spherical membrane possessing infinite bulk modulus (v = 1/2) were given

(19)

by Morse and Feshbach, and their results agree with (2.4.13) and

(2.4.15) when of, f and v are given the above values.

Figure 2 is a plot of the frequency spectrum for a spherical shell in
vacuo obtained from (2.L4.17), using v = .3 and a/h = 20. It is to be paren-
thetically stated that throughout this thesis all the plots which have abscissas
involving the mode number n are discrete, i.e., only those points correspond-
ing to the integer values of n are physically meaningful. In figure 2 both the

composite* (lower branch) and the membrane mode (higher branch) frequencies are

*¥This type of classification was first used in Ref. 17.
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plotted using the nondimensional frequency'ﬁ = &a/cs, and also O = ﬁ/s

= wa/c. The reason for plotting the same frequency specfrum in terms of two
nondimensional frequency parameters, namely, Q0 and 0 will be readily seen
after the explaination of Figures 3 and L.

Equation (2.4.18), which gives the frequency spectrum for any ideal
fluid in a rigid spherical shell, is plotted in Figure 3. In Figure L, the
spectrum of equations (2.4.13) and (2.4.15) is plotted for v = .3, a/h = 20
and £ = 2.56 which corresponds to steel shell filled with water.

A close study of Figures 2, % and I reveals the following results:

(a) In Figures 2 and % the frequency spectra represent the natural fre-
quencies of an empty shell and a fluid filled rigid shell, respectively. For
Figure L one can no longer say that a particular frequency of the spectrum
belongs to the shell or to the fluid since each frequency in that figure rep-
resents a natural frequency of the system composed of an elastic spherical
shell and the fluid occupying the interior space of the shell.

(b) When the shell containing the fluid becomes elastic, certain por-
tions of the spectrum become distorted. This author will name the above-men-
tioned phenomenon as "The higher bfanch distortion" since the membrane behav-
ior of the shell, serving as an elastic boundary for the fluid, is responsible
for this phenomenon. bt is to be noted that if Figures 2 and L are compared
the higher branch of the frequency spectrum for spherical shell in vacuo, passes
through the distorted portion of the spectrum in Figufe 4. Due to predominately
membrane behavior of the modes corresponding to the frequencies located on the
"higher branch" of the spectrum shown in Figure 2, it is reasonable to seek the

cause of "the higher branch distortion" appearing in Figure L in the membrane
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behavior of the shell.

(¢) Comparison of Figures 3 and U exhibits a branch of frequencies which
does not exist in the spectrum of Figure 3, but shows itself in the spectrum
of Figure L. This is-the lowest branch of frequencies displayed in Figure L.
The existence of this branch in the frequency spectrum for an elastic fluild-
filled shell is due to the existence of the "lower branch" of frequencies cor-
responding to a composite mode behavior of the empty shell. The composite
mode behavior in the empty shell case is explained in Ref. 17 to have the ef-
fects of both membrane and bending; membrane behavior for small n and bending

behavior for large.




CHAPTER 3

RESPONSE TO A LOCAL RADIAL IMPULSE

In this chapter, the response of a fluid-filled spherical shell subjected
to a local, radial impulsive load will be determined. The equations of mo-

tion derived in Section 2.3 are solved by means of Laplace transformation.

3.1, PRELIMINARY REMARKS

The external load, designated by Fe(Q,t) in equation (2.3.7), is assumed
to be axisymmetric and its impulsive nature is expressed by means of the Dirac
delta function, &(t), the properties of which are accepted here in the usual
sense seen in applied mathematics. When the external load, Fe = F(o) 8(t),
is applied to the fluid-filled shell which is initially at rest relative to
the inertial reference XYZ, as shown in Figure 5, the mass center of the sphere
will experience a rigid body velocity, Vc’ with a step function H(t) behavior

due to the impulsive nature of the external load. Since the resultant force

Ay Ay

: X
Figure 5. Axisymmetric, external load application.

of the external load passes through the mass center of the sphere, Vc can

be calculated from
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av .
[ F(o) 8(t)as =M ==, (3.1.1)
5 ;
where M= m + mO is the total mass of the system

F(9) = external load intensity per unit mid-surface area of the shell

dS = 278 sing do

Integration of (3.1,1) with respect to time yields the velocity, Vc’ imparted

to the mass center of the system in the -7 direction

v, =%—t—l é F(o)ds . (3.1.2)

where H(t) is Heaviside unit step function.

If desired, the equations of motion which were obtained in Section 2.3
with respect to a coordinate system moving with the sphere can be written
with respect to the inertial reference XYZ by defining a nondimensional dis-
placement vector D for the mid-surface of the shell and a nondimensional
velocity potential &, for the fluid. In Figure 6, at t = 0, XYZ and xyz
are assumed to coincide and this figure is helpful for the definitions of D

and ®. Let the radial and tangential components of D be W and U respectively,

then
Vo A
W(CP}T) = C(CP:T) - —f— cos® y
s
VT B
U, ™) = Wo,7) + == sinp (3.1.3)
s
Vr
0a(ry,0,7) = 0 (ry,0,7) - o cose )
s

In (3%.1.3), t(2,7), ¥(o,7), and & (ry,o,T) are as defined in Chapter 2.
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Figure 6. Displacement vectors referred to inertial reference XYZ.

3.2, TRANSFORMS OF EQUATIONS OF MOTION
The nondimensional forms of equations (2.3.6), (2.3.7), and (2.3.11) are

rewritten here for convenience, they are respectively:

oﬁ[ﬁg—g’ +coty - (veeot?O)y - T4 cotr T + (vreot®) —%%] -
+ coto % - (vreot®p)y + (14v) -%% - -C;-g =0 , (3.2.1)

3
0[2[-@%5 + 2 coto —i%’ - (1+v+cot®o) % + cot® (2-vteotZo)y - %; - 2 cot® o

+ (1+vicot?o) Eild - cot0 (2-v+cotZo) EQ]_ (l+v)(_8_~_ir + cot® y + 2¢)

&~ & 0
& ) -2
- %éé - f J 1%i;C;T) - _ (lE; )aF(@) S(T) , (3.2'2)

r{ sin @ &

1 9 o0 1 Q0 1 Xo
;‘f <r§ < 1) + -3 i(sincp —%ﬁ-) - 6;21 =0 , (3.2.3)

where

i
T
!
f
"'3
1
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Since the fluid-filled shell is assumed to be at rest prior to the appli-
cation of the radial impulsive load, all the initial conditions relevant to
the differential equations (3%.2.1), (%.2.2), and (%.2.3) are homogeneous,

i.e.,

(1) te,0) =0 , (2) H2Q o,
(3 w0 =0, () M2, (3.2.4)

(5) &(r,00) =0 , (6 Lalza®0

Let the following be the notation for the Laplace transform of a function F(T)

with respect to T
- ©  =pT
LF(7)) =F(p) =[] e* F(r)ar ,
0

where P is a complex variable. Since £, ¥, and ®; are functions of more than

one independent varisble, let their Laplace transforms be denoted by

I
V|
e

t(o,p)

1

LT{g((P) ) )

W(CP)P) = (3-2~5)

-1
-

1}

L_{¥(,7)}

LT(®1(T1y@yT)} = él(fl;@;P) = 0

Using the notation defined in (3.2.5) and the initial conditions (3.2.4) the
Laplace transforms of equations (3%.2.1), (3.2.2), and (3%.2.3) with respect to

the nondimensional time, 7T, are:

I dir PN 2t
—— B —_— + oV - - .
O?[dwg coto o (v+eot®a)y o cot®

(equation continued on next page)
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Q& 2.\ §§ 25 _ 6
+eote (vm0t®w+(lW)d@ p%y =0 , (3.2.6)
a3y &2y ay - 4%t
ag[égg + 2 coto agg - (L+v+cot®o) @ + cotp (2-v+cotZo)y - 561
a°t 2y &L | 2y &€
- 2 coto, e + (1+v+cot©o) el cot® (2-v+cot=o) P
- (l+v)(gii+ coto y + 28) - p3t - pf 0, (1,9,p) = - 1-v%)e F(9)
d(p )Y Eh 2
(3.2.7)
1Y, . 0 1 d, . M, pZ-
) =~ T - 75 @ = . 02¢
I‘% arl(rl 51‘1) + ri sino &P( s1ng &D) &£ 1 0 (% 8)
The transform of the boundary condition between fluid and shell is:
. 30, (1,0,
p t(o,p) = ”———“—-1(6 22 (3.2.9)
T1

Thus, the problem has been reduced from the solution of three partial dif-
ferential equations to that of one partial differential equation and two
ordinary differential equations in the transform space. From another point
of view, one can picture the two ordinary differential equations, (3.2.6) and
(3.2.7), along with condition (3.2.9) as rather complex boundary conditions
to the partial differential equation (3.2.8).

Before proceeding with the solution of the above equations, we first
expand the function

Flo) , 0<o<q,

glo) =
0,9, << x (%.2.10)

in a series of Legendre polynomiasls of the form



Tn particular, if F(9) = F = constant, then, the coefficients Fare found,

by the ususl methods, to be

1
:.—F
¥ 5 [P

n

n_l(poswo) - Pn+l(coswo>] , n=0,1,2,...

it being realized of course, that P_l(cos@o) =1,

Next, the method of separation of variables is applied to the partial
differential equation (3.2.8) to obtain two ordinary differential equations
that R(r;) and (o) must satisfy. When the assumed solution, & (ry,0) =
R(ry) G(o) is substituted into equation (%.2.8) the following equations are

obtained:

G"(0) + cote G'(9) + n(ntl) ¢lo) =0 (3.2.11)

R'(y) ¢ m(n) ¢ 0 - 2B Ry 20, (3.2.22)
1 1

where (') denotes differentiation with respect to the argument, k is complex
and its value is pi/s. The bounded solutions of (3.2.11) and (3.2.12) in the
spherical region under consideration are G(o) = cq Ph(COS$) and R(r,) =

52 jn(%f r1) respectively; where c; and c, are two arbitrary constants.
Since the equation (%.2.8) is linear, by superposition one can arrive at a
formal solution

& (r1,9,0) = 2 Cn(P) jn(%f ry) PD(COSQ) , (3.2.13)
n=0

where the coefficients cn(p) will be determined later. Now, let us consider

the two ordinary differential equations (%.2.6) and (3.2.7). In order to
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reduce these equations to a pair of equivalent algebraic equations in the

-

"transform space" assume the following expansions for  and v:

il
>~ 8

Hop) = L & (0) P (cos0)

n=0 o

[¢4]

Wo,p) = % Bn(p) én(cosw) .
n=1

(3.2.14)

Substitution of (3.2.13) and the first expression of (%.2.14) into the trans-
formed boundary condition (3%.2.9) yields the coefficients cn(p). These coef-

ficlents, for each integer value of n, are

¢ (p) = —— n=0,1,2... (3.2.15)

Thus, the unknown coefficients, cn(p), of the transformed velocity potential,
9, (r1,9,p), are expressed in terms of the coefficients, én(p), of the radial

displacement of the shell mid-surface in the transform space. Hence, (3.2.1%)

can now be written as

) o a(p) o
2(r1,0,0) = 2 3 . 3,57 1) P (cosg) . (3.2.16)
n=0 = Jj'(7)

The reduction of the two ordinary differential equations (3.2.6) and
(3.2.7) to algebraic equations in the transform space is accomplished by sub-
stituting (3.2.10), (3.2.1L), and (3.2.16) into (3.2.6) and (3.2.7). The
equations resulting from the substitutions, contain higher order derivatives
of both Legendre and Associated Legendre polynomials. All these derivatives
are eliminated by making repeated use of the differential equations satisfied

by Pn and Pé. Hence, after some manipulations one obtains the following
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equations that én(p) and Bn(p) mist satisfy:

1 jo(i?) - 1-v%)a
For n = 0 ol + f 15 -E"£; + 2(1+v) ao(p) = F
s Y0 s
(3.2.17)
p, & (p) + (t%+q, ) b (p) =0 , (3.2.18)
ipy=
i (=) 2
2 1l "n's - - _1d-vT)a
For n >1 pl+f1p ( > +p2nan(p)+q2nn(p)— =
Jn. s
(3.2.19)
where
ﬂ
pp == (1) + olg(l-v-kn) ,
q, = - (l+o?)(l-v-xn) s
- n(n+l)? (3.2.20)
Dy, = 2(1) +FDC - A (1)),
- - 2 _ _
9, = (l+v)kn o?[%n Xn(l v)] . )

From (3.2.17)

R
- (0]
a (p) == T , (3.2.21)
- 1 3,
ol +f |+ 2(w)
253
S o 8
where
(1-v®)eF 5
1-
R = o _(Lv >aE(l - cosp )



33

Applying Cramer's rule to (3%.2.18) and (%.2.19) we obtain the following

expressions for én(p) and En(p), for > 1,

) .

R (p® +q. )
- n' 1n ~
2,22
an(P) A (P) ] () )
n
-R P
= n - 1n
= e 2.2
b (p) s (3.2.23)
where
2
R = e )aFn = (l—va)aF[P (cosp ) =P (cosp )
n Eh 2Eh n-1' %% n+l ?o J ?
. Ip ip
i (=7 i ()
C I R I R} E e A R Y e R T A
n ip .,(ig) ip ,,(ig) In on 1n 2n In~2n
s In's s “n s
(3.2.24)

Substitution of (%.2.21), (%.2.22), and (3%.2.23) into (3.2.14) gives the final

form of the transformed displacement components of the mid-surface. These are

R o R (P2 +q )
7 _ 0 n 1n
p2 1+ f———+ 2(l+v)
ip -r(EE)
s Yo' s
(3.2.25)
- * -R p, |
Wop) = & 38 F (cosp) (3.2.26)
. A(p) "n
n=l n

3.3. INVERSION OF £(,p), W(0,p), and & (r1,9,p)
Due to the physical nature of the problem £, V¥, and ®1 should satisfy

the following conditions:
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(1)

CoT ,
each 0(e ©'), where c  isa constant.

(2) tlp,7), Wo,T1), & (r1,9,7) and their time derivatives are sectionally

‘\

continuous. Then
R 2+
_ .cHR o = R (ptq
R+» ¢-iR 1 jo(—;) n= n
Flr + £ — - + 2(1+v)
s “0 s
c+iR —Rn T
v(o,T) = rw lim [ X 5 () P (cosop) &P dp ,
R»w ¢-1iR n=1 n
. ip
Ly
. c+iR Ro Jo( s 1)
q)l(rl)q)"r) = 'é’_" lim f s
i . 1ip
R+w ¢-iR : 1 9 i;)
- J"("‘E)<'p2 14—+ 2(l+v>
°° L 51
s “0 s
[o4] 2 3 —-'I-lE
R (0% +q )3 (= ry) -
+ % ; ; P (cosp) Ye dp.
n=l = 3'(=) s (p) 8
s “n' s n

where the path of integration is the line Re D =

t(p,7), Wo,7), and & (ry,0,7) are defined for 7 > 0 and they are

——

3.3.3)

¢ in the complex p-plane and

¢ is any constant greater than co. As a consequence of a theorem in the

theory of complex variables, the functions inside of the braces in (3%.3.1),

(3.%.2), and (3.3.%) are analytic functions in the half-plane Re(p) > ¢, i.e.,

they have no singularities to the right of the line Rep=c. This fact enables

us to evaluate the integrals in (3.3.

1), (3.3.2), and (%.%.3) by enclosing

211l the singularities to the left of the line Rep=cby a sultable contour

shown in Figure 7 and making use of Cauchy's residue theorem.

PT

dp ,



femmiimn ¢ +1R

I3

Figure 7. The path of integration for evaluations of
inversion integrals.
Let any one of the terms inside of the braces in (3.3.1), (3.3.2), and (3.3.3)
be denoted by fn(p), then
. c+iR pT T T T
11m{£ 'z (p)ap + [ ¥’ (p)ap + [ *¢ (p)ap+ [ fn(p)d§
00

R -iR I T Ts

[}

=2ri ¥ Res [eh £ (p)] . (%.3.4)

m=1 pnm n

Since [fn(p)] < M[p]_K when |p| > R_, where M, x are constants and & > 0,
then, it can be shown that (i.e., see Reference 2L)
. T T T )
Linf [ &'f (p)ap + [ e (p)ap+ [ e (plapy =0 . (3.3.5)
R0 \ Iy I's Iy

Thus, in view of (3.%.4) and (%.%.5)

£ (p)eXTdp = T Res [epr‘(p)] . (3.3.6)
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Next, let us apply (3.3.6) to each term of (3.3.1). The first term is n = 0O

term and for this term

R
£ (p) = = (E) =a(0) . (337

J
+ 2(1+v)

p?|1 g 2 2
ip ,,,1Dp
= i'(=)

1
s “0's

Since fo(p) is a single-valued function the only singularities of fo(p) are

the poles. The poles of fo(p) are the zeros of the denominator. If we sub-

stitute p = + is0 to the denominator of fo(p), also noting that jO(Q) =3 (-0)

o]

1t

and jé(ﬂ) —jé(-Q), we get the frequency equation (2.4.13). Denoting the
zeros of (2.4.13) by Qom7 we can conclude that the poles of fo(p) are purs
imaginary and hence of the form p = T isQom. At this time a question arises
concerning the possibility that fo(p) may have poles other than those on the
imaginary axis. To investigate this possibility let us define z = x + iy =

ip/s, and substitute 1t into denominator of fo(p). Setting the denominator

equal to zero we obtain the following expression

z_cosz[-s°2° + 2(1+v)] + sinz[¢72°(1-F) - 2(1+v)]

; 0 . (3.3.8
z cosz - sinz (3.3.9)
Sinz and cosz are entire functions which can be written as:
sinz = sin(x+iy) = sinx coshy + i cosx sinhy
(3.3.9)
cosz = cos(x+ly) = cosx coshy - i sinx sinhy

By substituting (3.%.9) into the numerator of (3%.%.8) and equeting the real
and the imaginary parts of the resulting expression to zeroc we get the fol-

lowing two simultanecus equations which x and y must satisfy
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cosx cosh y([2(1+v) - s2(x®-y%) Ix + 2xy®s®} + sinx sinh y([2(1+v) - $2(xF-¥7) Iy

- 2yx®5®) + sinx  cosh y[sF(1-£)(x®-y7) - 2(1+v)]

- cosx sinh y(1-f)2xys® = 0 (3.%.10)

1

cosx cosh y{[2(1+v) sé(xg—y?)]y - 2yx°s®) - sinx  sinh y([2(1+v) - §°(F-y7) I

+ 2xy®s®) + sink  cosh y(1-f) 2xys®

+ cosx. sinn y(1-F)(x%-y%)s® = 0 (3.3.11)

(3.%.10) and (3.%.11) have been programmed on the digital computer and no
pair of (x,y) was found to satisfy both equations simultaneously. For y = O

%,%,11) is satisfied identically, and (3.3.10) reduces to
b
[-8%x + §5(1-F) tanx ]x® + 2(1+v)[x - tanx] =0 (3.3.12)

which is a different form of the frequency equation (2.4.13) corresponding to
the n = 0 case. One can also argue from the physical point of view that

fo(p) cannot have any complex poles, for if it had, this would mean that the
system possesses complex frequencies, However, only systems with damping have
complex frequencies and since the system under consideratiocn does not have
damping it cannot have complex frequencies, Therefore + isQom are the only
‘poles of fo(p). We also notice that all the poles arevsimple since all the
corresponding frequencies are distinct.

In general, eprn(p) has the fractional form, i.e.,

' () = 5 (3.3.13)
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When eprn(p) has simple pole at p = D h(p) and g(p) satisfy the conditions

glp ) =0, g'(pnm) # 0, and h(pnm) # 0 then the residue of eprn(p) has the

nm
value
prT h<pnm) )
Res  [e" £ (p)]l=—7"7 . (3.%.1h
P n g(me

om

pom © ] iﬁbm ipom ipom ipom ipom ipom
12 . ot _ o 11
—(2se) JE) £ 5 (D P - )
(3.3.15)

The poles occur at p = 0 and p = + iSQomf In (3.3.15) the second derivative
of the spherical Bessel function can be eliminated by utilizing the differen-

tial equation satisfied by jn(z), namely

42 jg(z) + 2z jé(z) + [22 - ] jn(z) =0 . (3.3.16)

Substitution of the definitions of jo(z) and jé(z) into (%.%.15) and applica-
tion of L'Hospital's rule shows that the residue at p = 0 is zero. Evalua-
tion of the remaining residues at the poles p = + isQom gives the following

relation

isQ opT DT ' pT -isQ T
R - - om
e e 4 g [e fo(p)] ResisQ [e fo(p)]e
om om

(%.3.17)

In view of (3.%.17) we obtain from (3.3.6), (3.3.7), and (3.3.15)
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m i "iSQomT ) isQomT 12
a(m) = L 5 (2+f) 3'2(20[j+ £ (0 )T5j'(9 ])Ji ;QO?)(Q )]
n=1 "o ow el omomon on
or
o < sin(sa_7) R_317(0_ )
O = T OO I R O IEES COR IR N CAR
(3.3.18)
For n > 1
(3.%.19)

The poles of fn(p) are the zeros of An(p). Substitution of p = + isQ into
An(p), which was defined by (3.2.24), yields the frequency equation (2.4.15)
for n > 1. Denoting the zeros of (2.4.15) by Qnm’ and also following the same
reasoning previously used to prove the nonexistence of poles with nonzero
real parts we can conclude that all of the poles of fn(p) are located on the
imaginary axis in the p-plane and that they are p = + isQnm. Application of

(3.3.14) to (3.3.19) after some simplifications gives the residue at the pole

p = an ‘
i DT lpnm
pT E Rn © nm.(pim+qln) jgz( S )
Res  [e" £ (p)] = T ) , (3.3.20)
pnm nm pnm
where
[?pnm lpnm lpnm, lpnm, 1pnm. 1pﬂm 1pn
d = f(p° + 12 - _ Yoy s 1
rmgpnm) (pnm.an) s “n ( s ) Jn( S ) Jn< s ) s Jﬁ s ) Jn( s
ip ip ip ip
N nm
v2f(ep? +q )3 (—)j () + 2 —= (22 4p_ +q. ) 3F(—)
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In this expression the second derivative of the spherical Bessel function

im 3,16 d b forp =
cag be eliminated by utilizing (3.3.16), then nm(pnm) ecomes for o

+ isQ
+ 1 = f(-s%0°_+ TO O [3B(ra )+ E(+0 +5(+0 ) 3(+ 0
dnm(-- ISQnm) £(-s Qim qln){ nm[Jn ( nm) Jn( nm)] Jn( nm) Jn< nm)
Kn \
+— 3B(% + 2f(-2550% + i (+ (0
- 0 n< Qnm>] f( s Qnm qln> Jn( Qnm) Jn( nm
nm
¥ -2820P D+ $12( 1 ) .3.21
anm( s Qnm pEn qln) Jn ( Qnm) (5 5 )

Next let us refer to the definition of spherical Bessel function

1 2\k
oo 1)
) 2
k=0 k! I(ntk+ g)

from this definition it is easy to verify that for any z

Jn(Z) = jn(-Z) for n even

J (Z) = -] (—z) for n odd

o > (5.5.22)
jé(Z) = -j'(-2) for n even

jA(Z) = Jg(-Z) for n odd /J

dnm(+ iSQnm) = - dnm(-issznm) . (%.3.23)

Hence,

-is
e "% nn” Res, [eprn(p)]

nm nm

[¢]
d
[¢]
(0]
rm™
D
Le]
3
Hh
=
N
3
N~
| —)
!
H

(3.3.24)
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Substituting (%.3.20) into (3.%.19) end keeping in mind the relation (3.3.2k)

we obtain for n > 1

. s . 5
o g [t LTy g20” g ) 513 )
o (T) - S n nm “1n n nm )
S =1 dnng—lsgnm)
or
© ‘_'2 2 . . Q 120
(T) -y QRn( s Qnm qln) SIH(S an) Jn ( nm) (5 3 25)
A s d (-isQ ) ’ o
m=1 nm nm

where dnm(—isQ m) was defined in (3.3%.21). Following the same steps ocutlined
n
above we get from (3.2.23) for n > 1

-— 3 3 t2
ERn pln,sm( sQan) 3 (Qnm)

(3.3.26)

n sd (-is0 )
nm nm

Here, we make a note that in obtaining (3%.3.25) and (3.3.26) for the case
n =1, 2;(p), and by(p) each have a simple pole at p = 0. Substitution of
the definitions of j;(z) and j{(z) into the residue expressions (i.e., in the
case of a1(p), equation (3.3.20)) end repeated application of I 'Hospital's
rule yields the vealue of residue to be zero at p = 0.

Next, let us consider (3.3.3) for the evaluation of &, (r,,o,7). Using

(%.3.7) the first term can be written

P
1 c+iR Jo( s r1) fo(p) T -1 ip
5o lim [ ] e dp =L (e (p) J (= 1))
s t D e} O S
Roo e-iR 5 00T

(3.3.27)
The integral of (3.3.27) has poles at the poles of fo(p) and the zeros of

11D -

—). h 1 ff 1y found = + . > e

JO(S ). The poles o O(p) were already found to be Pom s0 Let th
i

zeros of jé(if) be denoted by L According to Lommel's theorem on the

. 2
reality of the zeros of Jv(z) (i.e., see Watson 7), P, must be pure imaginary.
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Now, let us apply (%.3.14) to the integrand of (%.%.27)

. /ip pT ., ,ip
J (= 1) R e J(=nmn)
Res Lpr (p) —= = 2 o5 , (3.3.28)
Pl o L dn ol D) |
L_ s Jo's '

where
i . dpy L. 0D p ip
o) 32(T) £ 3 (D3R +F 3 (D)
k (p) = T
° 31(=D)
o s
., ip
2 J ("‘)
2 NN+ e -_~l— ° B}y 2(1+v)
g7 "0 8 1p .,<1£)
S O S

We note that since 1lim ko(p) = o, the residue at p = P is zero, and for

- P+po£
P=P, = + isQom the residues satisfy the following conditiong
ip ip
: J (=5 ) . J (= 1)
-1s0
elsgom Res |, LTe (p)'-"9 . HStom Res, Ple (p) S
-1sQom 0 1 -t(EE) ISQom 0 1 j‘(iE)
S Jo s s "0 s
(3.3.29)
In view of (3.%.29), using (3.3.6) and (3.3.28), (3.3.27) becomes
. o R [;'1SQomT N elsQonﬁ] 5 (0 1)
A AORIC SN R o
) ) _s ]
o o' s el Ko( 1sQom)
(3.3.30)

or

e (0) 52 )

2R 3! Jj(Q
= Ry 3N(0 )3 (9 1) cos(so_ )

12 : T -
m=1 Qom(2+f> Jo (Qom) *r Jo(Qom)[sJo(Qom) ! Qom Jo(Qom)]
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From (3.%.%), excluding Pn(cosw) , a typical term of &;(ry,9,T) corresponding

ton>1, is
1p
o 3 (=) f (p) .
) ct+iR "n' s n T -1 ip
—= 1in | E e’lap = 17 (e (p) § (T )
2l c-iR i .,,ip n n s
R = (=)

s “n' s

(3.3.31)
The poles of the integrand of (3.%.31) are those of fn(p), which are P =
ip
s)'

= . .1 O ] ip
+ 180 , and the zeros of j'( Let us denote the zeros of j'(—=) by
nm n n s

P Then, the application of (3.3.1L) gives

n
. ,ip 2 . ,ip
——— + ————
Res [Tt ( )RM = B *oy) 0o m) (3.3.32)
SERET ) SRERS
S n S
where
.2 . d (P)
1 . 1 nm
k () == 5"(2) & (p) +—-—
n s n s n .,(32)
. 35

In this expression, A (p) and dnm(p) are as previously defined. We again note
n

that Kn(p) > ® as p > pnl’ hence the residue at p = pn is zero, and for

1

p = pnm,: + isQnm the residues satisfy the following condition

. ., ip . ip
. J (= 1) . J (= r1)
Q -is§)
e S peg | T (p) =S| = 7T Tm Reg s (p) S
-is0 n i ,,,1p +1s n i ., ip
nm = 3'(=) nm = 3(=)
s 'n s s 'n' s

(3.%.33)

Using (3.3.6), (3.3.%2), and (3.3.33), (%.3.31) becomes
- s 2 -isQ T isQ,. T, .
R (-s°Q +q_ )[e om. o4 e”tnmo Jn(Qnm?l)

-1 . ,ip _ n nm _1ln
L {cn(p) Jn( . re)} = %

’

m=1 ' Kn(-ISQnm)
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or

o0 _e202 4 s 1 .
2Rn( s Qnm%qln) Jn(Qnm) Jn(Qnmrl) cos(sQan)

(3.3.34)

To get the complete solution for the nondimensional veloclity potential we sub-

stitute (3.3.30) and (3.3.%4) into (3.%.3) which results in the following ex-

pression:
© 2 ! &Y Q
o (r 0,7) = 5 Ro Jo(Qom) Jo( om?l) Cos(s omT)
N1 Y I + 12 +f 5 (0 10 + 0 C (0
m=1 Qom(2 f) Jo (Qom) Jo( om)[BJo( om) om Jo( om)]
0 _22 \-g .
; : 2R (-s Q. tag) J.(Qnm) Jn(Qnmrl) cos(sQnmj) Pn(cos ?)
n=1 m=1 dnm(—ISQnm)

(3.3.35)
We get the solution for the nondimensional radial displacement of the shell
mid-surface by substituting (3.%.18) and (3.3.25) into (3.3.1),
2R 3'®(0 in(sQ
o %o ( om) sin(s omT)

R
Hom) = b SR (e 3 ) < £ BI ) T 630 )]

co 0 2 -s20° + 12 i
R (-s & qln) J (Qnm) 51n(sQan) Pn(cos D)

f I RN
n=1 m=1 S nm"ls nm

(3.3.36)

Finally, substitution of (3.3.,26) into (3.3.2) yields the nondimensional
tangential displacement of the shell mid-surface:
_ 12 . hd
® 2Rn P, 30 (Qnm) sin(sQ ) Pn(cos D)

W(CP,T) = Z Z -
n=1 m=1

s dnm<-isﬂnm)
(3.3.37)
From (3.3.35) and (3.3.%7), the response of a closed empty shell sub-

Jected to a local radisl impulsive load can be easily obtained by setting
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f = 0. In the absence of fluid, the corresponding forms of the equations

(3.3.%6) and (3.3.37) are

- -
R L 2 Rn(qln—Qnm) s1n(Qnmj)Pn(cos ®)
o, ) = 7 sin QOT + Y X z (. + o2 ) ’

[e n=1 m=1 nm' *1n ¥2n nm

. ) (3.3.38)

o 2 -R_p _ sin(Q T)P (cos o)
Wor) = L % Tt , (3.3.39)
n=l m=l Qnm(qln+£én—aﬂnm) '

o a
where éo = 7?— is the nondimensional breathing mode frequency and the value
s
of w_ Was given by (2.4.16); énm are the two distinet roots of the frequency
equation, (2.4,17), for the empty shell,

Since the external load was assumed to be of the form F(o) &(T) the so-

lutions obtained thus far represent the impulse response of the system. In

general, a small, but finite length of time elapses during the application of
the external load. This means the external pressure should be denoted by
F(o) T(1), where F(9) has again the same meaning, namely, external load in-
tensity per unit mid-surface area of the shell, and T(T) represents any ar-
bitrary pressure time function one desires to choose. According to Borel's
theorem the response of a linear system to an excitation function T(T) is the
convolution of‘its impulse response and the excitation function. Hence, the
response of a fluid-filled spherical shell to an external load F(op) T(T) is
obtained by applying this theorem to (3.3.35), (3.3.36), and (3.3.37); de-
noting the resulting expressions by 51, E, and E we get

zl(rlfq):'r) = fT (D]_(I‘I,CP,E) T(T'é)dé 2 (B'BJLO)
e}
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Toym) = [ t(o,8) T(r-t)de (3.3.41)
(o]
To,7) = [T wWo,e) T(r-t)de . (3.3.12)

Since the external load has a finite duration the expression, (%.1.2), which

gives the velocity imparted to the mass center of the system should be modi-

fied to

Vv =
c

=+

[ 15 #(0) 1(t) asat (3.3.43)
S o0

where t; is the time duration of the external load.



CHAPTER L

NUMERICAL RESULTS

In this chapter the solutions obtained in the previous chapter will be
utilized in getting some numerical results for the ideallized model repre-
senting the human head when subjected to the impulsive "external load. The
possible locations of brain damage and skull injury will be indicated on the

basis of the numerical computations.

4.1, PRELIMINARY REMARKS

In order to use the solutions obtained so far, some ideal conditions
must be assumed. In the first place, we assume a spherical form of the brain
substance enclosed by the inner layer of thé skull cap which is approximately
spherical. Furthermore, the brain substance i1s taken to be homogeneous and
as 1t was pointed out by Goldsmith,h since the physical properties of the
brain resemble those of a fluid and, in particular, the intercranial-fluid
shows some resemblence to water, water is chosen to be the fluid occupying
the interior space of the spherical shell. The skull cap which is idealized
by the thin shell is also taken to be homogeneous and isotropic. Under these
assumptions wevarrive at the following data:

0.0772 1bm/in.® N

o =
E = 2 x 10° 1bf/in.?

v = .25 Y For the shell
a = 3% 1in.

h = .15 in. J

bt
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0.0362 1bm/in.®

©
O
il

} For the fluild

57,100 in./sec
From the shell data we note that a/h is within the justifiable thin shell theory

limits; also the calculated value fof c is 103,280 in./sec which is in close
agreement with the wave speed of 106,000 in./sec through the skull mentioned
in Goldsmith's paper.LL The axisymmetric external impulsive load is considered
to be applied on the shell ﬁith a constant magnitude of 546.5 1bf/in.2 on a polar
cap of 15° angle. Thus, the addition of Fo= 546.5 10f/in.? and @o =15 to the
above completes the necessary data.

The nondimensional velocity potential for the fluid and the components of
the displacement vector of the shell mid-surface are given by (3.3.35),
(3.3,36), and (%3.%.37). In these expressions Qom and Qnm'represent the roots
of the frequency equations (2.4.15) and (2.4.17), respectively. L20 of these
roots were first determined on the computer by an interval-helving technique;
later on their accuracy was increased considerably by means of Mueller's iter-
ation scheme of successive bisections and inverse parabolic interpolation,
Mueller's iteration method was chosen since it does not require the deriva-
tive of the function. All the calculations were done with double precision
accuracy and the meximum value of the function at any one of the L20 roots-
is less than 10_6. In the determination of poles (; isQnm) and corresponding
residues the spherical Bessel functions play an important role. Unavailability
of the spherical Bessel function subroutine compelled us to write a subroutine
by using a recursion formula and the series representation given on page LO.
Since for the small arguments the recursion formula gives unstable results for
the values of the spherical Bessel function, the series representation which

exhibits strong convergence for the small arguments is substituted. For each
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order, n, of the spherical Bessel function and its first derivative an arqu
ment was determined for which both recursion and the series representation
gave the same result to within the desired accuracy. Thus, the subroutine

was designed to call for tﬁe series representation when the arguments are less
than & particular number and the recursion formula otherwise,

The nondimensional excess pressure, p;, is equal to - O3, /0T and it is
obtainable directly from (3.3.%5). If we consider one to one correspondence
between the natural frequencies and the modes of the system, for n = 0,...,20
and m = 1,,..,20 there are 420 modes which were partly computed as residues
to get the shell mid-surface displacement components €, |, and the excess
préssure pi. For ¢ and Vv less than half of these modes give sufficient con-
vergence; but for the fluid pressure it was necessary to use all of the modes.
For comparison purposes the response of the empty shell subjected to the same
impulsive load was also determined from (%.3.38) and (3.3.39) which are the

special cases of (3.3.36) and (3.3.37).

4,2, DISCUSSION OF THE RESULTS

Cn Figures 8 through 15 the numbers enclosed by small circles designate
the multiples of the time increment. The time increment chosen represents
1/10 of the calculated time which the stress wave on the shell takes to arrive
at the opposite pole. Thus, (E} refers to actual time of t = 9.125 x lO_6 sec
or nondimensional time T = 0.3141 and (:) refers to actual time of t = 9.125
X ILO_5 or nondimensional time T = 3.141. We can make the following remarks
based on a close study of the numerical results and the graphs shown on Figures

8 through 15:
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(1) The magnitudes of stress components G@ and 0@ acting on the mid-
surface of the shell (z = 0) in the fluid-filled case are considerably less
than those of the in vacuo case. The obvious reason for this is the presence
| of the high density fluid which absorbs a large portion of the initial energy
input from the shell material whose modulus of elasticity is quite low.

(2) In the fluid-filled case the maximum compressional stress on the
mid-surface of the shell at the opposite pole occurs at a later time, namely,
at time @ whereas in the invacuo case thisg time is .

(3) Time (:)‘<:orresponds approximately to the arrival of the compres-
sional fluid pulse at the opposite pole. The magnitude of the tensile stress
on the mid-surface of the,shell at this time is higher than the magnitude of
the compressive stress at time CE) . This increase 1s caused by the reflec-
tion of the compressional fluid pulse at the opposite pole.

(4) Figure 12 shows for both the fluid-filled and in vacuo cases, the
occurrence of the maximum inward and outward radial shell displacements at the
pole where the impulsive load is applied. Figure 1% is a plot of the stress
distribution throughout the shell thickness at those times when the radial
displacements are maximal for each of the two cases.

(5) 1In Figure 1k, the nondimensional excess pressure is plotted as a
function of the nondimensional radial distance. From this plot we can see the
propagation of the compressional pulse toward the cénter’of the fluid., There
is a decrease in magnitude of the pulse as it progresses toward the center of
the sphere. We keep in mind that this pulse represents a rather complex su-
perposition of pulses generated on, and reflected, with varying strengths

from the shell surface as the compressional disturbance on the shell propagates
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from the pole of loading toward the opposite pole,

(6) Figure 15 shows a similar plot, but the radial distance is taken
from one pole to the other. The purpose of this plot is to show the occurrence,
 location, and magnitude of the maximum negative excess pressure. The magni-
tude of this negative excess pressure 1s indeed higher than the magnitude of

the maximum positive excess pressure.

L.3. CONCLUSION

In view of Figures 10, 11, and 1% we can state that the possible loca-
tions on the skull éusceptible to severe damage are; Ehe pole where the impul-
sive load is applied, a neighborhood of ¢ = 35° where tensile stresses develop
repeatedly, and at the opposite pole where high values of tensile stress are
generated after the reflection of both types of waves one after the other,
If we feel that brain damage occurs at the points of rarefaction of the fluid,
then Figure 15 indicates that this situation arises at time (::> and location
r1 = .55 and much more severely at time (::) and location r; = -..43. This
fact clearly establishes the difference between the present and rigid shell
analysis where it was inferred that maximal brain damege occurs at the center.

In conclusion, the immediate extension of this numerical work can be the
consideration of different pulse shapes and durations by utilization of the
formulas derived at the end of Chapter 3. In my opinion, both the pulse
shapes and their durations can be important factors on the location of damage
in the brain as well as on the skull. The further extension of this thesis
for different head injury models may possibly be the application of the cor-
respondence principle in order to obtain solutions for a linear viscoelastic

material.
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