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ABSTRACT

Data analysis can be carried out based on a stochastic model that reflects the

analyst’s understanding of how the system in question behaves. The stochastic model

describes where in the system randomness is present and how the randomness plays a

role in generating data. The likelihood of the data defined by the model summarizes

the evidence provided by observations of the system. Drawing inference from the

likelihood of the data, however, can be far from being simple or straightforward,

especially in modern statistical data analyses. Complex probability models and big

data call for new computational methods to translate the likelihood of data into

inference results. In this thesis, I present two innovations in computational inference

for complex stochastic models.

The first innovation lies in the development of a method that enables inference

on coupled dynamic systems that are partially observed. The high dimensionality of

the model that defines the joint distribution of the coupled dynamic processes makes

computational inference a challenge. I focus on the case where the probability model

is not analytically tractable, which makes the computational inference even more

challenging. A mechanistic model of a dynamic process that is defined via a simu-

lation algorithm can lead to analytically intractable models. I show that algorithms

that utilize the Markov structure and the mixing property of stochastic dynamic

systems can enable fully likelihood based inference for these high dimensional ana-

lytically intractable models. I demonstrate theoretically that these algorithms can

substantially reduce the computational cost for inference, and the reduction may be
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orders of magnitude in practice. Spatiotemporal dynamics of measles transmission

are inferred from data collected at linked geographic locations, as an illustration that

this algorithm can offer an advance in scientific inference.

The second innovation involves a generalization of the framework in which sam-

ples from a probability distribution with unnormalized density are drawn using

Markov chain Monte Carlo algorithms. The new framework generalizes the widely

used Metropolis-Hastings acceptance or rejection strategy. The resulting method

is straightforward to implement in a broad range of MCMC algorithms, including

the most frequently used ones such as random walk Metropolis, Metropolis adjusted

Langevin, Hamiltonian Monte Carlo, or the bouncy particle sampler. Numerical

studies show that this new framework enables flexible tuning of parameters and fa-

cilitates faster mixing of the Markov chain, especially when the target probability

density has complex structure.
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CHAPTER I

Introduction

Inference from the observations of the real world can be made using a stochastic

model, which accounts for the randomness in data. The complexity of stochastic

models varies with factors such as the complexity of the system in question, the

amount of prior knowledge about the system to be incorporated, or the level of

flexibility that we require in the model. Given a stochastic model, the information

contained in the data is summarized in the likelihood function of the data.

Drawing inference from the likelihood function of the data may not be straight-

forward. The more complex the model becomes, the harder it becomes to extract

information from this. Unless the likelihood function and the resulting estimators are

analytically tractable, the inference will need to rely on computational techniques,

through which the aspects of the random system that we are interested in are revealed

and understood. Typically the computational tasks involved are the optimization of

an objective function, which may be the likelihood function or an approximate ver-

sion of it, or sampling from a target distribution, such as the posterior distribution

of the parameters. The goal of these tasks is to numerically compute quantities that

are useful in drawing inference.

The numerical computational methods may involve either deterministic or stochas-

1
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tic operations. The deterministic approach aims to compute certain feature of the

target function or distribution using some analytical knowledge about the problem.

The stochastic approach constructs artificial random processes that can be used to

represent some features of interest of the target statistical object, such as likelihood

functions or posterior distributions. The procedure of constructing artificial random

processes in a computer is called Monte Carlo simulation. Despite the randomness

in the representation, stochastic approaches can be more desirable in certain cases

because they can be applied where no deterministic methods are available or can be

more computationally efficient than deterministic alternatives.

1.1 Computational challenges

In this thesis, I focus on Monte Carlo approaches to numerical computation of the

target statistical quantity. Monte Carlo numerical computation is a vast topic that

is studied in diverse fields with different approaches. The methods for Monte Carlo

numerical computation are constantly and rapidly evolving to address new challenges

imposed by modern data analysis problems. This thesis concerns the following issues

that lead to computational challenges.

Analytically intractable likelihood function The likelihood function may not have

an analytically tractable form. The likelihood might be expressed as a high di-

mensional integral over a number of latent variables, which makes it impossible to

evaluate it pointwise with analytical means. Models may also be implicitly defined

by data-generating simulation algorithms. These models may not possess analyti-

cally tractable densities. Implicit models defined by simulation algorithms can arise

frequently when we take a mechanistic approach to set up a stochastic model. Mech-

anistic models are based on principled understanding of the system in question, and
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the resulting model may only be readily represented via simulation algorithms.

High dimensionality of the model It can be very difficult to computationally rep-

resent high dimensional distributions. Monte Carlo approaches to computational

inference generate samples from a target distribution, where the empirical distri-

bution of the random sample is taken as a stochastic approximation to the target

distribution. However, the number of possible states to be represented increases

proportionally with the volume of the space, that is, exponentially with the dimen-

sionality of the space. The computational cost needed for this representation can

also increase exponentially. The steep increase in computational cost is closely tied

to the amount of information to be represented.

Complex structure of the target function The target function may have complex

structure. The level sets of the target function may have complicated geometric

shapes or consist of disjoint connected sets. A target distribution may be constrained

in the sense that the probability mass is concentrated in a narrow neighborhood

around a lower dimensional hyperplane or manifold. Constrained distributions may

arise if the variability in some directions is much smaller than that in other directions,

or if random variables constituting the distribution are strongly correlated with each

other. Understanding the numerical characteristics of these kinds of target function

may require special measures. It can be difficult to find a sampling method that may

resolve all difficulties in sampling for various types of complex distributions. In this

thesis, I seek to develop a methodological framework with some degree of general

applicability that can be useful for a range of sampling problems.
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1.2 Overview

In this thesis, I propose two methodological innovations in computational in-

ference for complex stochastic models. Relevant background information for each

development is provided below, as well as summaries of my contributions.

1.2.1 Inference algorithms for coupled Markov processes with partial observations

Some probability models have certain structure that can be exploited to sub-

stantially enhance the efficiency in numerical computations. One instance is where

the probability distribution has certain conditional independence structure. Condi-

tional independence can be represented by graphical models. A frequently arising

conditional independence structure observed in real world examples is the Markov

property in temporal contexts. In a Markov process, the past and the future are

independent given the present state. Due to this conditional independence structure

that is linear in graphical representation, it is often a good strategy to numerically

represent the distribution in a sequential manner.

In statistical data analysis framework, Markov process models are often used as a

basis on which data are obtained as incomplete or partial observations. The data are

modeled to be draws from measurement processes, conditional on the state of the

underlying Markov process. The Markov process model and the measurement process

model are jointly referred to as a partially observed Markov process (POMP) model.

For POMP models, inference often requires understanding the posterior distribution

of the Markov process given the data. Unless the model has an analytically tractable

form on which the inference procedure can be based, the distribution of the latent

Markov process is numerically represented using an ensemble of random draws. The

numerical representation of the latent state can be sequentially carried out using
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the Markov structure. This approach can reduce the dimension of the space to be

computationally represented, because it allows us to deal with the state of the process

at a single time point rather than the sequence of states over all time points. Thus,

the gain in computational efficiency can be huge compared to approaches that do

not take into account the temporal structure.

Sequentially updating the representation of the latent distribution of the Markov

process given the observations up to a certain time point is often referred to as a

filtering procedure. A filtering procedure can be implemented as sequential impor-

tance sampling. At each importance sampling step, additional piece of information

provided by the newest observation is incorporated into the computational represen-

tation.

Challenges arise when the space is high dimensional, since the number of samples

needed to represent a distribution on the space can increase steeply. High dimensional

observations can also lead to difficulties, because high dimensional measurement den-

sities may designate a small volume in the high dimensional space as the only viable

candidates for the hidden state. These difficulties may be manifested by unbalanced

weights in importance sampling. Consequently, the numerical representation may

become highly variable and lacking in internal diversity.

One approach that aims to solve this issue implements a sequence of bridging

distributions. If the proposal distribution in importance sampling is very different

from the target distribution in the sense that the ratio between the corresponding

densities has high variance, multiple intermediate importance sampling steps that se-

quentially target the bridging distributions can reduce the gap between the proposal

and the target distribution. Numerically efficient choices for bridging distributions

can be obtained with relative ease if both the proposal and the target distribution
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have analytically tractable densities.

Contributions I propose an inference algorithm for coupled stochastic dynamic sys-

tems with partial observations. I focus on situations where the target distribution

is high dimensional and does not have analytically tractable density. As discussed

in the previous section, analytically intractable distributions can arise when a mech-

anistic model is defined using a simulation algorithm. I show that even for high

dimensional analytically intractable distributions, stable importance sampling algo-

rithms can be developed that enable inference on coupled Markov processes with

partial observations. I demonstrate empirically and theoretically that the proposed

algorithm scales more favorably than other methods proposed for high dimensional

stochastic process models.

1.2.2 Flexible, numerically efficient sampling from complex distribution using Markov
chain Monte Carlo

The task of sampling from a target distribution whose density can be evaluated

up to a multiplicative constant arises frequently in Bayesian statistics when the

normalizing constant of the posterior distribution is not computable. Markov chain

Monte Carlo (MCMC) sampling is a very widely used class of methods for this task.

MCMC constructs a Markov chain whose ergodic limit equals the target distribution.

There are numerous MCMC methods, and different algorithms exhibit strengths in

different circumstances. For example, there are methods known to scale better with

increasing dimensions than other methods.

The wide use of MCMC methods is partly due to the fact that there exists a simple

methodological strategy that allows for the construction of a Markov kernel that has

the target distribution as its stationary distribution. For example, the Metropolis-
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Hastings algorithm, which either accepts or rejects a proposal drawn from a kernel

with certain probability, constructs a reversible Markov chain with respect to the

target distribution.

Contributions I propose a generalization of the Metropolis-Hastings strategy that

is conceptually simple and algorithmically easy to implement. This generalization

allows for multiple proposals to be made for Metropolis-Hastings type acceptance.

The multiple proposal framework can be applied not only to algorithms that use

stochastic proposal kernels, but also to algorithms that employ deterministic kernels.

The new framework increases flexibility in the implementation of various MCMC

algorithms. I show that the enhanced flexibility can lead to increased computational

efficiency, especially in tasks of sampling from complex distributions.

1.3 Organization of the thesis

In Chapter 2, I propose a new computational inference algorithm for coupled

dynamic processes, which I call a guided intermediate resampling filter (GIRF). I

describe the algorithm, provide theoretical results showing that the algorithm scales

substantially better than standard methods, and explain how the algorithm can be

implemented in practice. I illustrate the favorable scaling to high dimension with

numerical results on a toy model. I also explain how parameter estimation can be

carried out using this algorithm.

In Chapter 3, I apply the GIRF algorithm for a real scientific inference problem.

The spatiotemporal transmission dynamics of measles at linked geographic locations

in England and Wales in the twentieth century is analyzed using weekly case reports

data. The strength of the spatial coupling of transmission dynamics in various loca-

tions is inferred using a fully likelihood based method. This result marks an advance
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in inference methodology, because inference on joint properties such as coupling using

a fully likelihood based method has been considered difficult and avoided in practice.

In Chapter 4, I propose a generalization of the Metropolis-Hastings acceptance

or rejection strategy in Markov chain Monte Carlo sampling. I introduce the new

framework in a general setting, and explain how this framework can be combined

with various MCMC algorithms that are frequently used in practice. Theoretical

results showing the validity of the new method are provided, and its relationship

with other approaches in the literature is explained. Discussions on how this novel

framework can be practically used to improve computational efficiency, including the

ways of flexibly tuning parameters in Hamiltonian Monte Carlo algorithms, follow.

Numerical results show computational gains of using this framework when sampling

from complex distributions.



CHAPTER II

A guided intermediate resampling particle filter for
inference on high dimensional systems

Sequential Monte Carlo (SMC) methods, also known as particle filter methods,

are a basic tool for inference on nonlinear partially observed Markov process (POMP)

models. However, the performance of standard SMC algorithms quickly deteriorates

as the model dimension increases. We present a novel particle filter which we call

a guided intermediate resampling filter (GIRF). The GIRF is readily applicable to

a broad range of models thanks to its plug-and-play property of requiring only a

simulator of the process but not an evaluator of the transition density for inference.

Theoretical and experimental results indicate that the GIRF scales much better

than the standard particle filter, suggesting that the GIRF opens new possibilities for

inference on highly nonlinear, non-Gaussian dynamic systems of moderate dimension.

2.1 Introduction

Partially observed Markov process (POMP) models offer a framework for likeli-

hood based analysis of dynamic systems. A POMP model, otherwise known as the

state space model, consists of a Markov state process representing the time evolution

of the system and a measurement process that provides partial or noisy information

about the states. Sequential Monte Carlo (SMC) methods are recursive algorithms

9
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that enable estimation of the likelihood and the posterior state distributions given

data from a POMP model [Doucet et al., 2001, Cappé et al., 2007, Doucet and Jo-

hansen, 2011]. These approaches, also known as particle filter methods, approximate

state distributions with a collection of simulated random variables, which are called

particles.

Inference on some dynamic systems require fitting models with high dimensional

state space to high dimensional data. Dynamic processes involving many spatial

locations appear in the study of ecological, epidemiological and geophysical systems,

for example. For these spatiotemporal models, both the state and measurement

dimension tend to scale linearly with the number of spatial locations. Ensemble

Kalman filter methods have been used to predict atmospheric dynamics for weather

forecasts due to their good scalability to high dimensions [Houtekamer and Mitchell,

2001]. However, these methods can be ineffective for highly nonlinear and non-

Gaussian systems, because they rely on locally linear and Gaussian approximations

[Ades and Van Leeuwen, 2015, Lei et al., 2010, Miller et al., 1999]. In systems biology,

models for networks of reactions often build upon deterministic differential equations

or stochastic simulation [Kitano, 2002]. The model dimension typically increases with

the number of system components, but even the state-of-the-art inference methods

are not suitable for application beyond small systems [Owen et al., 2015].

Particle filter methods suffer from rapid deterioration in performance as the model

dimension increases. This phenomenon occurs due to the weight degeneracy among

particles. When highly unbalanced weights are given to the particles, resampling

results in loss of particle diversity and poor approximation to the state distribution.

Theoretical results demonstrating this phenomenon were established by Bengtsson

et al. [2008] and Snyder et al. [2008]. These authors found out that the number
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of particles required for filtering increases exponentially in the variance of the log

density of the observation given the state, which is closely tied to the space dimension.

Heuristically, these results indicate that the curse of dimensionality (COD) is related

to high dimensional measurement density, implying that particle depletion happens

because each observation carries too much information. In this sense, the COD in

particle filtering may be understood as a curse of too much information.

The view that too much information in the observations leads to particle depletion

suggests that the difficulty in filtering might be combatted by controlling the rate

at which the filtering algorithm introduces new information. We propose such an

algorithm, which is shown both in theory and practice to perform well in moderately

high dimensions. A high level summary of the algorithm, which we refer to as a

guided intermediate resampling filter (GIRF), is as follows.

1. Divide each time interval between observations into sub-intervals, whose number

is chosen in accordance with the space dimension of the POMP model.

2. For each sub-interval thus obtained,

(a) Evolve the particles according to the transition kernel of the original state

process.

(b) Assess the fitness of each particle to future observations.

(c) Resample the particles with weights reflecting the changes from the previous

assessment.

A schematic diagram of this algorithm is provided in Figure 2.1. The assessments

at step 2(b) can be made based on the approximations to the predictive likelihoods of

a certain number of future observations. This way, the particles with low predictive

likelihoods are pruned away, while the particles with higher predictive likelihoods
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Figure 2.1: A schematic diagram of a GIRF algorithm

survive and propagate to the subsequent time point. The repeated assessment and

resampling steps gradually guide the particles toward the correct posterior state

distribution conditional on the data. We will usually set the number of sub-intervals

between observations equal to the dimension of the state and measurement space for

favorable scaling. This choice is justified in later sections.

In order to simulate the state process over shorter time intervals, we impose

a constraint on the model that the transition distribution of the state process is

infinitely divisible. Infinite divisibility of the transition distribution is a natural

characteristic of all continuous time Markov processes, a widely used class of models

across the physical and biological sciences.

We emphasize that a key difference that distinguishes our GIRF from other meth-

ods in the literature designed for high dimensional filtering is its practical utility. An

inference method that can be implemented with only the simulator of the data gen-

erating process is said to have the plug-and-play property [Bretó et al., 2009, He
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et al., 2009]. In the context of SMC, the plug-and-play property means that only

a simulator of the state process, but not an evaluator of its transition density, is

required for inference. Our GIRF method, possessing the plug-and-play property,

facilitates the use of a broad range of models, including mechanistic models defined

by simulation algorithms or models defined by stochastic differential equations. Both

kinds of models typically have analytically intractable transition densities, but their

state processes can be simulated. The sample paths of diffusion processes can be ap-

proximately simulated with numerical methods such as the Euler-Maruyama method

[Kloeden and Platen, 1999]. The plug-and-play property is essential for inference on

POMP models whose state processes have intractable transition densities.

Our GIRF algorithm has connections to some well known methods in the particle

filtering literature. First, it can be theoretically formulated either as a generaliza-

tion or as a special case of the bootstrap filter by Gordon et al. [1993]. The latter

interpretation places the algorithm within the general theory of SMC and provides

immediate proofs for the unbiasedness of likelihood estimates and other results of

convergence for the GIRF. Our method can also be seen as a generalization of the

auxiliary particle filter (APF) proposed by Pitt and Shephard [1999]. The APF

evolves and weights particles in a way that depends on the next observed data point.

This approach often results in improved filtering, although it has been noted that

this may not be always the case [Johansen and Doucet, 2008]. Our method is similar

to the APF in that the particles are guided by oncoming observations. In the GIRF,

adapted proposals for the next time step are obtained through a series of propagation

and resampling steps at the intermediate time points.

The remainder of the chapter is organized as follows. Section 2.2 reviews several

ideas in the literature that are related to high dimensional filtering. Section 2.3
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introduces and explains our GIRF method. Section 2.4 reports some of its theoretical

properties, including the main result (Theorem II.2) that establishes a finite sample

error bound for the estimates obtained by the GIRF. This result, developed from first

principles, offers a novel viewpoint on the filtering error and explains why our GIRF

scales better to high dimensions than standard methods. Section 2.5 describes how

one can estimate model parameters by combining the GIRF with the iterated filtering

scheme of Ionides et al. [2015]. Implementation of our algorithm in Section 2.6

empirically show our algorithm’s favorable scaling and its capability of facilitating

spatiotemporal inference that has previously been considered inaccessible due to

computational constraints. Section 2.7 concludes with a discussion.

2.2 Previous approaches to high dimensional filtering

Several theoretically motivated algorithms for high dimensional particle filtering

have been proposed in the past few years. Rebeschini and Van Handel [2015] consid-

ered a filtering method that builds upon the assumption that the interaction between

the spatial locations is local. The algorithm partitions the state variables into blocks

and approximates the one step transitions of the state process as being independent

between the blocks. A theoretical bound for the filtering error was derived, which

only depends on the size of the largest block but not on the entire space dimen-

sion. Despite this very desirable scaling property, this approach has some practical

limitations, because it is not applicable to highly interdependent spatial models and

the filter estimates are not reliable near the boundaries of the blocks, which may

constitute a substantial fraction of the total number of variables.

Beskos et al. [2014a,b] applied the annealed importance sampling proposed in Neal

[2001] to high dimensional filtering and investigated its theoretical properties. The



15

annealed importance sampling method introduces a series of bridging distributions

between observations, whose densities are set proportional to a fractional power of the

desired target density. Between two adjacent importance resampling, the particles

are transformed according to a transition kernel whose stationary distribution equals

the target bridging distribution. These transition kernels provide mixing that helps

maintain the stability of the particle approximations. The authors gave stability

results for the case where the original high dimensional state process is composed

of many copies of independent and identically distributed (IID) one dimensional

processes. In particular, Beskos et al. [2014a] showed that the importance weights

are non-degenerate as the dimension goes to infinity even with fixed particle size.

Beskos et al. [2014b] showed that both the L2 error of the filter estimates and the

variance of the likelihood estimates are bounded uniformly in the space dimension.

However, the main drawback of this approach, which reduces its practical value, is

the absence of the plug-and-play property. Annealed importance sampling requires

evaluable analytic expression of the density of the one-step transition in order to

build artificial transition kernels between bridging distributions.

Beskos et al. [2017] studied the case where the spatial structure of the model can

be hierarchically factorized and investigated the possibility of overcoming the COD.

Specifically, they assumed that the one step transition density equals, or can be

well approximated by, a product of terms which are functions of the state variables

belonging to an increasing sequence of subsets of the dimensions of the space. The

theoretical results they obtained by considering a few simple IID cases are promising,

because they show that filtering can be stable when the number of particles increases

linearly with the space dimension. These results provide useful insights into what

might be achieved in more general cases.



16

Del Moral and Murray [2015] have proposed a particle filtering algorithm for

highly informative observations that is almost identical to our method at its core,

though our motivation and theoretical analysis differ. The authors were motivated

by the study of perfectly observed diffusion processes, which share with high dimen-

sional POMPs the difficulty that highly informative observations make computations

challenging. In this thesis, I demonstrate the utility of a GIRF in high dimensions,

both theoretically and empirically. We show that the GIRF may yield accurate es-

timates of the posterior state distributions given the data in high dimensions. In

order to further avoid weight degeneracy, our method uses more than one future

observations for particle assessment. This potential improvement was less relevant

for the precisely measured processes considered by Del Moral and Murray [2015].

2.3 Method

2.3.1 A POMP model and Sequential Monte Carlo

We consider a Markov state process defined in continuous time and denoted by

{Xt ; t ≥ 0}, with the random variable Xt taking values in a space X. The measure-

ment process yields observations {Yn ;n = 1, 2, . . . , N} that are incomplete, noisy

measurements of Xt at discrete time points tn > 0, n = 1, . . . , N . The measurement

Yn is independent of other observations Ym, m 6= n, and of the state process {Xt},

given the current state Xtn . The observations Yn = yn for n = 1, . . . , N are assumed

to be fixed data. The state process evolves over time according to Markov transition

kernels Kt,t′ , where 0 ≤ t ≤ t′. That is, the probability distribution of the random

state Xt′ conditioned on Xt = xt is given by

Xt′ | (Xt = xt) ∼ Kt,t′(dx ;xt).
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We denote the initial state distribution at time t0 ≥ 0 by µt0 . We will occasionally

express the distributions of random variables in terms of their densities. For example,

the density of Xtn given Xtm = xtm (m < n) will be denoted by pXtn |Xtm (x |xtm)

with respect to a reference measure on X written as dx. The measurement process

for Yn conditioned on Xtn = xtn is assumed to have density gn( · |xtn). We adopt the

notation n :m = {n, n+ 1, . . . ,m} for integers n ≤ m. Some quantities of interest in

an inference on a POMP model include the likelihood of data

`1:N(y1:N) = E

[
N∏
n=1

gn(yn |Xtn)

]
,

where the expectation is taken with respect to the law of {Xt ; t ≥ 0}, and the

filtering distribution of Xtn conditioned on the observations y1:n, whose density is

denoted by pXtn |Y1:n(xtn | y1:n).

Particle filter methods operate by recursively approximating the filtering distribu-

tions. The approximation at time tn is realized by the sample draws {Xj
tn ; j ∈ 1 :J}

and associated importance weights {w̃j ; j ∈ 1 :J}. The weighted sum of point mea-

sures

(2.1)
J∑
j=1

w̃jδXj
tn

(dx)

is taken as an approximation to the filtering distribution. Heading to the next

time point tn+1, the particle filter first draws samples from the discrete weighted

distribution (2.1). This step is called resampling. Next in the propagation step,

the resampled particles are independently transformed according to some transition

kernel. A set of importance weights are given to the transformed particles, such that

the new weighted sum represents the filtering distribution of Xtn+1 conditioned on

y1:n+1. The choice of the propagation kernel affects the performance of the particle

filter as in the general case of importance sampling, where the proposal distribution
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determines the stability of the resulting estimates.

2.3.2 Guided intermediate resampling filter

In what follows, we assume that the transition kernel of the state process can be

simulated but do not require its density to be evaluated. We also assume that the

state transition kernels Kt,t′ for the state process {Xt ; t ≥ 0} are infinitely divisible

and can be expressed as

Kt,t′ = Kt,τ1Kτ1,τ2 · · ·Kτn−1,τnKτn,t′

for any number of intermediate time points t ≤ τ1 ≤ · · · ≤ τn ≤ t′. For implementa-

tion of our GIRF algorithm, we pick S−1 intermediate time points tn,s, s ∈ 1 :S−1,

within the observation time interval [tn, tn+1] such that

tn,0 := tn < tn,1 < · · · < tn,S−1 < tn,S := tn+1

for n ∈ 0 :N−1. As a rule of thumb, we will take S = d, the dimension of the

measurement space.

The algorithm starts with an initial swarm of J particles {XF,j
t0 ; j ∈ 1 :J} of equal

weights that represent the initial distribution of Xt0 . The superscript F stands for

“filtered particles”. The algorithm proceeds recursively. Suppose at some time tn,s−1,

we have a collection of particles, denoted by {XF,j
tn,s−1

; j ∈ 1 :J}. The particles are

transformed according to the transition kernel Ktn,s−1,tn,s and called the proposed

particles, denoted by {XP,j
tn,s ; j ∈ 1 :J}. These proposed particles at time tn,s are

assessed based on how likely they are to generate the future observations yn+1:n+B

for some B ≥ 1. The assessments are made by what we call the guide function,

utn,s : X → R+. At the initial time point we require that ut0(x) ≡ 1 and at the last

time point utN (x) = gN (yN |x) for all x ∈ X. The weight for each particle at time
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Algorithm 1: A guided intermediate resampling filter (GIRF)

Input : Simulator for µt0(dx)
Simulator for Ktn,s−1,tn,s

(dx ;xtn,s
) for n ∈ 0 :N−1 and s ∈ 1 :S

Evaluator for gn(yn |xtn) for n ∈ 1 :N
Evaluator for utn,s(xtn,s) for n ∈ 0 :N−1 and s ∈ 1 :S
Data, y1:N
Number of particles, J

Output: Filtered particle swarm,
{
XF,j
tN ; j ∈ 1 : J

}
Likelihood estimate, ˆ̀

Initialize: ˆ̀← 1, XF,j
t0 ∼ µt0(dx) for j ∈ 1 : J , and ujold ← 1 for j ∈ 1 : J

for n← 0 :N−1 do

If n ≥ 1 then ujold ←
ujold

gn

(
yn

∣∣∣XF,j
tn

) for j ∈ 1 : J

for s← 1 :S do

XP,j
tn,s
∼ Ktn,s−1,tn,s

(
dx ;XF,j

tn,s−1

)
for j ∈ 1 : J

ujnew ← utn,s

(
XP,j
tn,s

)
for j ∈ 1 : J

wj ← ujnew/u
j
old for j ∈ 1 : J

ˆ̀← ˆ̀×
(∑J

j=1 w
j
)/

J

Draw aj with P
(
aj = i

)
= wi

/∑J
i′=1 w

i′ for j ∈ 1 : J

Set XF,j
tn,s

= XP,aj

tn,s
and ujold = ua

j

new for j ∈ 1 : J

end

Set XF,j
tn+1,0

= XF,j
tn,S

for j ∈ 1 : J

end

tn,s, s ∈ 1 : S, is determined by the ratio of the assessments at time tn,s and tn,s−1.

The algorithm sets the weight for the j-th particle to be

(2.2)

wj = wtn,s

(
XP,j
tn,s , X

F,j
tn,s−1

)
:=



utn,s

(
XP,j
tn,s

)
utn,s−1

(
XF,j
tn,s−1

) if tn,s−1 /∈ t1:N

utn,s

(
XP,j
tn,s

)
utn,s−1

(
XF,j
tn,s−1

)/
gn

(
yn

∣∣∣XF,j
tn,s−1

) if tn,s−1 ∈ t1:N .

If tn,s−1 ∈ t1:N , the denominator is divided by gn
(
yn
∣∣xFtn), because at time tn,s =

tn,1 > tn, the past observation yn should no longer be considered in assessing the

fitness. The weights at observation times tn are taken as wtn−1,S
(XP,j

tn−1,S
, XF,j

tn−1,S−1
).

The particles are then resampled with normalized weights wj/
∑J

i=1 w
i and renamed
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as {XF,j
tn,s ; j ∈ 1 :J}. The pseudocode for our method is shown in Algorithm 1. Our

implementation of the GIRF is available at https://github.com/joonhap/GIRF.

git.

The likelihood estimate ˆ̀ of `1:N(y1:N) is obtained from Algorithm 1. This quan-

tity can be much more stable than the likelihood estimate obtained from the stan-

dard bootstrap particle filter in high dimensions. This claim is supported by The-

orem II.2 and by the argument given in the appendix section 2.B. Algorithm 1

is equivalent to the bootstrap particle filter if we take S = 1 and utn(xtn) =

gn(yn |xtn). It is equivalent to the auxiliary particle filter if we take S = 1 and

utn(xtn) = gn(yn |xtn) · gn+1

(
yn+1 |µtn+1(xtn)

)
where µtn+1(xtn) denotes a determin-

istic or stochastic prediction for the state at time tn+1 based on Xtn = xtn .

The particle swarm {XF,j
tn,s ; j ∈ 1 :J} at time tn,s targets a density proportional to

(2.3) utn,s
(
xtn,s

)
· pXtn,s |Y1 : n

(
xtn,s

∣∣ y1 : n

)
.

When utn,s(xtn,s) approximates pYn+1:n+B |Xtn,s (yn+1:n+B |xtn,s), the above expression

(2.3) approximates the conditional density pXtn,s |Y1:n+B(xtn,s | y1:n+B).

The following simple argument shows that (2.2) makes Algorithm 1 a properly

weighted filter [Liu, 2008, Definition 2.5.1]. For each particle XF,j
tn,s , we define a parent

particle at time tn,s−1 as follows: if XP,aj

tn,s for some aj ∈ 1 :J was called XF,j
tn,s after

resampling, then XF,aj

tn,s−1
, which propagated to XP,aj

tn,s , is the parent particle of XF,j
tn,s .

By successively tracing the parent particles, one can construct the ancestral lineage

of a particle. Take a particle XF,j
tN

at time tN and call its ancestor at time tn,s as

X
F,ajtn,s
tn,s , where we write ajtN = j. It turns out that the product of all importance

weights throughout the resampling stages for this lineage gives the measurement

https://github.com/joonhap/GIRF.git
https://github.com/joonhap/GIRF.git
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density of y1:N given the states X
F,ajtn
tn :

(2.4)

N−1∏
n=0

S∏
s=1

wtn,s

(
X
P,ajtn,s−1

tn,s , X
F,ajtn,s−1

tn,s−1

)
=

[
N−1∏
n=1

gn

(
yn

∣∣∣∣XF,ajtn
tn

)]
·
N−1∏
n=0

S∏
s=1

utn,s

(
X
F,ajtn,s
tn,s

)
utn,s−1

(
X
F,ajtn,s−1

tn,s−1

)

=

[
N−1∏
n=1

gn

(
yn

∣∣∣∣XF,ajtn
tn

)]
·
utN

(
X
F,ajtN
tN

)
ut0

(
X
F,ajt0
t0

) =
N∏
n=1

gn

(
yn

∣∣∣∣XF,ajtn
tn

)
.

The computational cost of Algorithm 1 typically scales as O(JSd). If we take

S = d and use a fixed number of particles, it scales as O(d2). However, the number

of particles will generally need to increase with d in order to keep the errors at a

constant order of magnitude. In Section 2.4, we show a novel theoretical result on

the filter accuracy, namely that for any f with ‖f‖∞ ≤ 1,∣∣∣∣∣ 1J
J∑
j=1

f
(
XF,j
tN

)
− E

[
f(XtN ) |Y1:N = y1:N

]∣∣∣∣∣ ≤ v(S)

with high probability, where the bound v(S) depends on the number of sub-intervals

per observation S, the space dimension d, the number of particles J , the choice of the

guide functions utn,s , and other attributes of the POMP model. The rate at which

the number of particles is required to increase with d can be deduced from the bound

v(S).

2.3.3 Choice of the guide functions

Although Algorithm 1 is a properly weighted filter for any guide function utn,s :

X → R+, its numerical efficiency depends on the choice of the guide function. We

take utn,s(x) to be an approximation to the predictive likelihood of yn+1:n+B given

Xtn,s = x,

(2.5) utn,s(x) ≈ pYn+1:n+B |Xtn,s (yn+1:n+B |x) .
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When n+B > N , we take utn,s(x) ≈ pYn+1:N |Xtn,s (yn+1:N |x) instead. At observation

times tn, n ∈ 1 :N , the guide function utn is defined as utn−1,S
. We illustrate how

the algorithm works with this guide function using a simple example consisting of

a twenty dimensional Brownian motion and a measurement process independent in

each dimension. The POMP model is defined on the interval [t0, t1] as

(2.6)

Xt0 ∼ N(0, I), Xt′
∣∣Xt ∼ N

(
Xt,

t′ − t
t1 − t0

I

)
for t ≤ t′, Yt1

∣∣Xt1 ∼ N(Xt1 , I).

Here, I denotes the twenty dimensional identity matrix. The guide function was set to

be the exact predictive likelihood with B = 1, namely ut0,s(x) := pY1 |Xt0,s (y1 |x). The

time interval [t0, t1] was divided into S = 20 sub-intervals of equal length. Figure 2.2

shows the first two coordinates of the filtered particles XF,j
t0,s at three intermediate

time points. The mean of the initial distribution is marked by a green ‘O’, and the

observation y1 by a purple triangle. At time t0,s, the conditional distribution given

Y1 = y1 equals Xt0,s

∣∣ (Y1 = y1) ∼ N
[

1
3

(
1 + s

S

)
y1,

1
3

(
1 + s

S

) (
2− s

S

)
I
]
. The mean of

this conditional distribution for each s is marked by a red ‘X’, and the 95% coverage

region by a blue dashed circle. As time progresses, the red ‘X’ shifts from the origin

toward y1, and the coverage region changes in size. The filtered particles almost

exactly follow the conditional distributions at the intermediate steps, showing that

they are gradually guided toward pXt1 |Y1 as s increases from zero to twenty.

If the guide function is taken as in (2.5) and S is close to the space dimension d, the

GIRF may be rescued from the weight degeneracy. We now give a heuristic argument

for this claim. Theorem II.2 in Section 2.4 will provide a rigorous argument. First, we

consider the resampling weights for s ≥ 2. Suppose the ancestors of a particle XF,j
tn+1

are denoted by
{
X
F,ajtn,s
tn,s ; s ∈ 1 :S

}
, where ajtn,S = j. The product of resampling
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Figure 2.2: The first two coordinates of the filtered particles XF,j
t0,s from a GIRF run at three inter-

mediate time steps (A, s=4 ; B, s=12; C, s=20) for twenty dimensional linear Gaussian
model given by (2.6).

weights wtn,s
(
X
P,ajtn,s−1

tn,s , X
F,ajtn,s−1

tn,s−1

)
for s ∈ 2 :S approximates

S∏
s=2

wtn,s

(
X
P,ajtn,s−1

tn,s , X
F,ajtn,s−1

tn,s−1

)
=

utn+1

(
XF,j
tn+1

)
utn,1

(
X
F,ajtn,1
tn,1

) ≈ pYn+1:n+B |Xtn+1

(
yn+1:n+B

∣∣∣XF,j
tn+1

)
pYn+1:n+B |Xtn,1

(
yn+1:n+B

∣∣∣∣XF,ajtn,1
tn,1

) .
The logarithm of the right hand side of the above expression can be expected to be

of order Op(Bd) if the POMP model consists of d weakly coupled processes, for which

behavior should be similar to the IID case. Thus, if the terms wtn,s
(
X
P,ajtn,s−1

tn,s , X
F,ajtn,s−1

tn,s−1

)
for s ∈ 2 :S are of roughly the same magnitude, the logarithm of each resampling

weight may be on the order of 1
S−1

Op(Bd). If we take S = d and B is not too

large, the resampling weights may be Op(1) in d. This reasoning is closely related to

Assumption 2 in Section 2.4.

The resampling weights at s=1 require additional consideration. The resampling

weight for XP,j
tn,1 is given by

(2.7)

utn,1

(
XP,j
tn,1

)
utn

(
XF,j
tn

)/
gn

(
yn

∣∣∣XF,j
tn

) ≈ pYn+1:n+B |Xtn,1

(
yn+1:n+B

∣∣∣XP,j
tn,1

)
pYn:n+B−1 |Xtn

(
yn:n+B−1

∣∣∣XF,j
tn

)/
gn

(
yn

∣∣∣XF,j
tn

)
=
pYn+1:n+B−1 |Xtn,1

(
yn+1:n+B−1

∣∣∣XP,j
tn,1

)
pYn+1:n+B−1 |Xtn

(
yn+1:n+B−1

∣∣∣XF,j
tn

) · pYn+B |Xtn,1 ,Yn+1:n+B−1

(
yn+B

∣∣∣XP,j
tn,1 , yn+1:n+B−1

)
.
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The term
pYn+1:n+B−1 |Xtn,1

(
yn+1:n+B−1 |XP,j

tn,1

)
pYn+1:n+B−1 |Xtn

(
yn+1:n+B−1 |XF,j

tn

) may be of Op(1) by the same reasoning

as above. The term pYn+B |Xtn,1 ,Yn+1:n+B−1
(yn+B |XP,j

tn,1 , yn+1:n+B−1) is related to the

mixing of the POMP conditional on data. Conditional mixing of a POMP means

that a distant future observation provides substantially less information about the

current state than the nearest future observation does, provided that all the obser-

vations until that distant time point are already known. The additional information

about Xtn,s provided by yn+B when yn+1:n+B−1 are known is represented by the like-

lihood pYn+B |Xtn,s ,Yn+1:n+B−1

(
yn+B

∣∣xtn,s , yn+1:n+B−1

)
. Under conditional mixing, this

likelihood yields balanced values when evaluated at the support of the distribution

pXtn,s |Y1:n+B−1
(xtn,s | y1:n+B−1). Since an approximation to this distribution is targeted

by the particles {XP,j
tn,1 ; j ∈ 1 :J}, the values of pYn+B |Xtn,1 ,Yn+1:n+B−1

(yn+B |XP,j
tn,1 , yn+1:n+B−1)

for j ∈ 1 :J may be balanced. Thus, the resampling weight at s=1 shown in (2.7)

may not suffer from weight degeneracy, if conditional mixing is obtained for B not

too large. Assumption 3 in Section 2.4 formalizes the conditional mixing argument

in a manner that is relevant to our theoretical investigation.

The state distribution conditioned on several future observations is called the fixed

lag smoothing distribution. Its use for stable filtering has been studied in the litera-

ture, for example, in Clapp and Godsill [1999], Chen et al. [2000], and Doucet et al.

[2006]. Our contribution is to connect this approach with intermediate resampling

algorithms and the COD. Fixed lag smoothing distributions tend to be less affected

by outliers in the observed data than filtering distributions [Lin et al., 2013]. Intu-

itively, looking ahead to B observations in the future for particle assessment allows

the information provided by the observation yn+B to be processed over a longer time

interval, [tn, tn+B].
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Practical design of the guide functions

In practical situations, finding a good approximation to the predictive likelihood

of future observations can be a difficult task. It may be particularly demanding when

the transition density of the state process is intractable, which is the situation when

plug-and-play methods are particularly desired. Therefore, designing practically ac-

cessible guide functions is critical in the application of the GIRF. Here we suggest

several ways of making such designs.

1. Semi-analytical approach with moment matching The predictive likelihood of

multiple future observations is typically more difficult to estimate than the predictive

likelihood of a single observation. Thus after approximating pYn+b |Xtn,s
(
yn+b

∣∣xtn,s)
and calling the approximation utn,s↗tn+b for b ∈ 1 :B, we may set

(2.8) utn,s
(
xtn,s

)
=

B∏
b=1

utn,s↗tn+b
(
xtn,s

)
.

For s = S and b = 1, we can evaluate the measurement density at tn,S = tn+1, so we

set

utn,S↗tn+1

(
xtn,S

)
= gn+1

(
yn+1

∣∣xtn,S) .
The approximate predictive likelihood utn,s↗tn+b may be taken sensibly depending

on the model. We suggest one way as follows. First, we make a projection from

the current state Xtn,s = xtn,s to time tn+b with a deterministic process that ap-

proximates the conditional mean of the state process {Xt ; t ≥ tn,s} given xtn,s . The

projected state will be denoted by x̃tn+b . We also assume that the variability of

Xtn+b given Xtn,s = xtn,s according to the law of the state process can be approxi-

mately characterized by Σ1(xtn,s). We assume that the measurement density of Yn+b

given Xtn+b = x̃tn+b , denoted by gn+b( · | x̃tn+b), is characterized by a scale parameter
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Σ2(x̃tn+b). We make the dependence explicit by writing gn+b

[
· | x̃tn+b , Σ2(x̃tn+b)

]
.

The combined variability, denoted by Σ1

(
xtn,s

)
+ Σ2

(
x̃tn+b

)
, is then taken as the

scale parameter for the approximate predictive likelihood of Yn+b given the current

state Xtn,s = xtn,s . In other words, we define

(2.9) utn,s↗tn+b
(
xtn,s

)
:= gn+b

[
yn+b

∣∣ x̃tn+b , Σ1

(
xtn,s

)
+ Σ2

(
x̃tn+b

)]
.

If the state process distribution and the measurement distribution belong to dif-

ferent scale families, utn,s↗tn+b may be obtained by approximating an unnormalized

convolution density (see Section 3.2 for an example).

2. SMC-type likelihood estimation for models with weakly interacting state variables

For certain POMP models, the correlation between the components of the state

process {Xt} may be weak. For example, the state process may be a collection of

coupled dynamic processes corresponding to different geographic locations, where

the dynamics at one location is affected by the dynamics at other locations only by

a small degree. When the correlations between the components of {Xt} are weak,

we may use the following approximation:

(2.10) pYn+1:n+B |Xj
tn,s

(y
[1:d]
n+1:n+B |X

j
tn,s) ≈

d∏
i=1

p
Y

[i]
n+1:n+B |Xtn,s

(y
[i]
n+1:n+B |X

j
tn,s).

Here, the superscripts between brackets indicate the component of the observa-

tion variable: y
[1:d]
n+1:n+B denotes the original d-dimensional observation vectors, and

y
[i]
n+1:n+B denotes the i-th components of the observation vectors. The approximation

(2.10) can be particularly valid and useful in the cases where each observation y
[i]
n de-

pends only on X
[i]
tn , which is not uncommon, and where the measurement distribution

has large variance relative to the variability of the state process. This approximation

may be understood in connection with variational inference.
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Each term in the right hand side of (2.10) can be estimated using a standard SMC

algorithm, where only the observations y
[i]
n+1:n+B are used in filtering. The procedure

is described as follows. For each particle Xj
tn,s at time t in the GIRF algorithm, we

use J ′ number of particles, all of which is initialized at Xj
tn,s . The joint state process

{Xt} is used to simulate the particle forward in time. The standard bootstrap SMC

algorithm is run for the time period from time t to tn+B. The J ′ particles in each

time step (say tn+b) are weighted according to the measurement density of only y
[i]
n+b.

Since the measurement density is one dimensional, the weights will be as balanced

as in one dimensional filtering problems. Thus p
Y

[i]
n+1:n+B |Xtn,s

(y
[i]
n+1:n+B |X

j
tn,s) may

be precisely estimated using only a moderate number of particles J ′, and there will

be no need to go through intermediate time steps as in the GIRF algorithm. Note

that this procedure still takes into account the coupling between the components of

{Xt}, because we use the joint state process {Xt} for particle propagation; only the

observations for other components are ignored for filtering.

The computation of the likelihood estimates p̂(y
[i]
n+1:n+B |X

j
tn,s) may seem costly.

The computation for each particle Xj
tn,s scales as O(J ′d2). The total computational

cost of running the GIRF thus scales as O(JNSJ ′d2). When we take S = d, the cost

scales as the cube of the space dimension. However, this seemingly steep cost is much

more favorable than the typical exponential increase for standard SMC methods. For

weakly coupled POMP models, this method may enable analyses that are otherwise

infeasible.

A potential issue in the approximation (2.10) is that the likelihood estimate

p̂(y
[i]
n+1:n+B |X

j
tn,s) has Monte Carlo variability. The resampling weights in the main

GIRF are given by the ratio of these likelihood estimates between two consec-

utive intermediate time points. The ratio can be unstable if the variability in
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p̂(y
[i]
n+1:n+B |X

j
tn,s) is high. A moderately large number of J ′ will often be able to

make the variance in the likelihood estimates sufficiently small. However, a seed

fixing strategy may additionally help in stabilizing the ratio between the likelihood

estimates. For the estimation of p̂(y
[i]
n+1:n+B |X

j
tn,s), the same seed may be used for

every j ∈ 1 :J at every intermediate time point tn,s. Then, since the computation

of p̂(y
[i]
n+1:n+B |X

j
tn,s) and p̂(y

[i]
n+1:n+B |X

j
tn,s+1

) use the same sequence of random num-

bers, the Monte Carlo variability in both computations will likely cancel each other,

making the ratio less variable. Of course, the fixed random seed should be used only

for the likelihood estimation, and the random numbers used for all other operations

(i.e., those used in the main GIRF algorithm) should not be affected.

3. Artificially increased variances of measurement densities In estimating pYn+1:n+B |Xtn,s ,

artificially increasing the variances of the measurement densities can help make the

likelihood estimates more stable. When pYn+1:n+B |Xtn,s is estimated using the SMC

type approach described above, artificially increased measurement densities can make

the estimates of pYn+1:n+B |Xtn,s have less Monte Carlo variability. Svensson et al. [2018]

have recently shown empirical results illustrating the advantages of using artificially

increased variance of measurement densities. When using analytical methods for

approximating the likelihood, larger measurement variances can yield more balanced

values of approximated likelihood estimates among particles. Even when the ap-

proximation of the likelihood is inaccurate, balanced estimates can reduce numerical

problems in resampling of particles in the GIRF algorithm.

2.4 Theoretical results

We first introduce some notation. For a bounded measurable function f ∈ Bb(X),

we denote its integral with respect to a measure µ by µf , and the integral with
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respect to a Markov kernel K conditional on the starting state x by Kf(x). The

propagation of measure µ by a kernel K is defined as (µK)f := µ(Kf). At the

time step tn,s in Algorithm 1, we denote the empirical distributions corresponding

to the proposed particles and the filtered particles by F P
tn,s,J

= 1
J

∑J
j=1 δXP,j

tn,s
and

F F
tn,s,J

= 1
J

∑J
j=1 δXF,j

tn,s
respectively. The empirical distribution of the J matching

pairs
(
XP,j
tn,s , X

F,j
tn,s−1

)
on the product space X2 will be denoted by Htn,s,J . The σ-

algebra generated by the set of random draws DP
tn,s := {XF,j

tn′,s′
; tn′,s′ ≤ tn,s−1, j ∈

1 :J} ∪ {XP,j
tn′,s′

; tn′,s′ ≤ tn,s, j ∈ 1 :J} is denoted by BPtn,s,J , and the σ-algebra gener-

ated by DP
tn,s ∪ {X

F,j
tn,s ; j ∈ 1 :J} is denoted by BFtn,s,J .

Our GIRF can be cast into the framework of the standard particle filters by

extending the state space to X2 where the new state variable is the pair (Xtn,s−1 , Xtn,s).

This extension is necessary because the resampling weights (2.2) depends on both

XP,j
tn,s and XF,j

tn,s−1
. The likelihood estimates obtained from the standard particle filters

are unbiased [Del Moral and Jacod, 2001]. It follows that the likelihood estimates

from the GIRF are also unbiased. The consistency and the asymptotic normality of

the filter estimates from the GIRF also follow naturally from the standard particle

filter theory [Chopin, 2004, Del Moral, 2004].

Theorem II.1. The likelihood estimate ˆ̀ of Algorithm 1 is unbiased for `1:N(y1:N).

Proof. See Section 2.A.

Next we show that the particle approximation to the filtering distribution by

Algorithm 1 can have significantly smaller error than the standard filters in high

dimensions. The GIRF converts a filtering problem with highly informative observa-

tions into one that deals with a slower rate of incoming information at the expense

of operating on a refined time scale. Thus mixing of processes happens over greater



30

number of time steps in this stretched time scale. For this reason, results in the

literature which imply that the number of particles needs to increase exponentially

in the number of time steps needed for conditional mixing, such as Theorem 3.1

of Del Moral and Guionnet [2001], is not very useful in this case. When we take

S = d, a bound increasing exponentially in S is no better than a bound increasing

exponentially in d. A new type of error bound will be given below that increases

linearly in the number of time steps.

We introduce some more notation. For any t, t′ such that t0 ≤ t ≤ t′ ≤ tN , we

define

(2.11) Qt,t′(f)(Xt) := E

f(Xt′)
∏

t≤tn<t′
gn(yn |Xtn)

∣∣∣∣∣∣Xt

 ,
for any bounded measurable function f . Note that, if no observation was made in

[t, t′), we have

(2.12) Qt,t′(f) = Kt,t′f,

and if a single observation tn was made in this interval,

(2.13) Qt,t′(f) = Kt,tn {(Ktn,t′f) · gn(yn | · )} .

The collection {Qt,t′ ; t ≤ t′} forms a semigroup, in the sense that Qt,τQτ,t′(f) =

Qt,t′(f) for t ≤ τ ≤ t′ [Del Moral, 2004]. We denote the set of all intermediate time

points in Algorithm 1 by T = {tn,s ;n ∈ 0 :N−1, s ∈ 1 :S}. Given that one has

filtered particles {XF,j
t ; j ∈ 1 : J} at time t ∈ T, we define for t′ ∈ T ∩ [t, tN ]

(2.14) bt,t′(f) :=

∫
Qt,t′(ut′ · f)

ut
dF F

t,J

for all bounded measurable functions f on X. Note that this definition implies

bt,t(f) =
∫
f dF F

t,J . If t = tn,s for some s ∈ 1 :S and n ∈ 0 :N−1, we will write
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t− = tn,s−1. If t = tm for some m ∈ 0 :N , we will write n(t) = m. Since resampling

weights at time t are proportional to wt(X
P,j
t , XF,j

t− ), we have

(2.15) E

[∫
f(xt) dF

F
t,J(xt)

∣∣∣∣BPt,J] =

∫
f(xt) · wt(xt, xt−)dHt,J(xt, xt−)∫

wt(xt, xt−)dHt,J(xt, xt−)
.

The conditional expectation of the numerator in the above expression with respect

to BFt−,J equals

E

[∫
f(xt) · wt(xt, xt−)dHt,J(xt, xt−)

∣∣∣∣BFt−,J]

=


∫
Kt−,t(ut · f)

ut−
dF F

t−,J if t− /∈ t1:N∫
Kt−,t(ut · f)

ut−
· gn(t−) dF

F
t−,J if t− ∈ t1:N

=

∫
Qt−,t(ut · f)

ut−
dF F

t−,J = bt−,t(f),

(2.16)

by (2.2), (2.12), (2.13), and (2.14). Note that here we implicitly assumed that gn(t−)

is a function of Xt− , such that gn(t−)(Xt−) := gn(t−)(yn(t−) |Xt−). At time tN , we are

interested in knowing how accurate the quantity btN ,tN (f) = 1
J

∑J
j=1 f(XF,j

tN
) is as an

approximation to E[f(XtN )|Y1:N = y1:N ]. We establish a bound on the error in this

approximation under a set of assumptions.

Our first assumption concerns how close the guide function ut is to the predictive

likelihood of B future observations. In what follows, if t = tm,s for some s ∈ 1 :S,

we will write t→ := t(m+B)∧N , where we write a ∧ b = min(a, b). The expression

Qt,t→(gn(t→))(x) denotes the predictive likelihood of Ym+1:n(t→) = ym+1:n(t→) given

Xt = x, see (2.11).

Assumption 1. There exists a constant C1 ≥ 1 such that for all t ∈ T,

(2.17)
Qt,t→

(
gn(t→)

)
ut

(x) ≤ C1

Qt,t→
(
gn(t→)

)
ut

(x′),
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for all x, x′ ∈ X. In particular, if t ∈ (tN−B, tN ] ∩ T,

Qt,tN (gN)

ut
(x) ≤ C1

Qt,tN (gN)

ut
(x′),

for all x, x′ ∈ X.

Uniform bounds across X as in (2.17) typically follows as a result of the compact-

ness of the space X and the continuity of the functions being bounded. However, we

do not expect that the compactness condition is critical in real applications of the

algorithm.

Our second assumption says that the predictive likelihood of future observations

experiences a bounded change between two consecutive intermediate points t− and

t. Specifically, we assume that conditioned on Xt− , the predictive likelihood given

Xt has bounded variance relative to the square of its mean.

Assumption 2. There exists C2 ≥ 1 such that for all t ∈ T and for all x ∈ X,

Kt−,t

{
Qt,t→

(
gn(t→)

)}2[
Kt−,tQt,t→

(
gn(t→)

)]2 (x) ≤ C2
2 .

Assumption 2 is related to a key reason that a GIRF operates on a refined time

scale. If the time interval was not divided, the constant C2 would typically in-

crease exponentially as the space dimension d increases. To see this, if we consider

a POMP consisting of d IID one-dimensional processes, the predictive likelihood

Qt,t→(gn(t→))(Xt) will be expressed as a product of d independent random variables.

Thus both its mean and variance will be exponential in d. In a GIRF, however,

the constant C2 can be of constant order in d, if we divide the time interval into d

sub-intervals. Examples are given in the online supplementary text 2.D to illustrate

this point.

We lastly assume that the POMP has a reasonable amount of conditional mix-

ing. We note that, when tm < t ≤ tm+1, the likelihood of Ym+B+1:N = ym+B+1:N
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conditioned on Ym+1:m+B = ym+1:m+B and the current state Xt is given by

pYm+B+1:N |Xt,Ym+1:m+B
(ym+B+1:N |x, ym+1:m+B)

=
pYm+1:N |Xt (ym+1:N |x)

pYm+1:m+B |Xt (ym+1:m+B |x)
=

Qt,tN (gN)

Qt,t→
(
gn(t→)

)(x).

Also, for any bounded measurable function f on X we have

E [f(XtN ) |Xt = x, Ym+1:N = ym+1:N ] =
Qt,tN (gN · f)

Qt,tN (gN)
(x).

Assumption 3. There exist constants C3 ≥ 1 such that for all t ∈ T,

(2.18)
Qt,tN (gN)

Qt,t→
(
gn(t→)

)(x) ≤ C3
Qt,tN (gN)

Qt,t→
(
gn(t→)

)(x′)

for all x, x′ ∈ X. Also, there exists n∗ ∈ 1 :N−1 and C4 ∈ (0, 1) such that for any

measurable function f with ‖f‖∞ ≤ 1,

(2.19)

∣∣∣∣Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x)−

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x′)

∣∣∣∣ ≤ C4

for all x, x′ ∈ X.

The first inequality (2.18) states that, conditioned on the observations ym+1:(m+B)∧N ,

the probability of having the later observations y(m+B+1)∧N :N has bounded depen-

dence on the current state Xt. One can make C3 smaller by taking B larger, because

more conditional mixing will happen in the longer interval [t, tm+B+1]. The second

inequality (2.19) says that the state at time tn∗ has bounded influence on the state

at tN , conditional on the observations made after time tn∗ . One can similarly make

C4 smaller by taking n∗ more distant from N .

We also assume that multinomial resampling is used in Algorithm 1. The indices

aj are drawn independently of each other given {wj ; j ∈ 1 :J} under multinomial

resampling.
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Theorem II.2. Suppose Assumption 1, 2, and 3 hold and multinomial resampling

is used. Then for any f with ‖f‖∞ ≤ 1 and for any a > 1,

(2.20)

∣∣∣∣∫ fdF F
tN ,J
− E[f(XtN )|Y1:N = y1:N ]

∣∣∣∣
≤ C4 +

2aC1√
J

(C2 + 1)
[
S {C3(N−B−n∗)+B}+C3−1

]
with probability at least 1− 4S(N−n∗)

a2
.

Proof. See Section 2.C.

Theorem II.2 states that for a given POMP model, the size of the error in the

estimated filtering distribution will be bounded by a number that increases linearly

in S with high probability, provided that a is large. On the other hand, if we are to

keep the probability S(N−n∗)
a2

with which the bound is violated at a fixed level, the

number a needs to increase proportionally to
√
S, and thus the error bound increases

at a rate of O(S
3
2 ). Although this seems to suggest that the error bound increases

if we take larger S, the bound will actually be reduced if we take S = d instead of

S = 1 due to the scaling property of C2, which may be of order O(1) in d when S = d

(two examples with bounded C2 are given in the supplementary text, Section 2.D).

However, C1 will generally scale exponentially in space dimension d. When we

consider d IID one dimensional processes again, the obvious choice of ut(x) we

take as the product of d identical copies one dimensional guide function ũt, that

is ut(x1, . . . , xd) :=
∏d

k=1 ũt(xk), will make the number C1 increase in the form of cd1

for some c1 ≥ 1. In this case, c1 will represent the maximum discrepancy between

the one-dimensional predictive likelihood and the guide function ũt, and the closer

the approximation becomes, the closer c1 will be to one. Thus good guide functions

that are closer to the predictive likelihood can reduce c1 and slow down the rate at

which C1 increases. If ut exactly equals the predictive likelihood, C1 equals unity.
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Section 2.6.1 shows that the GIRF can empirically scale approximately polynomially

in d in this case.

Two competing factors, namely temporal mixing and spatial dimensionality, de-

termine the magnitude of C3 and C4. Reasonably small C3 and C4 are possible in

high dimensions, especially when the model is composed of weakly coupled processes,

each of which has good marginal mixing. In a model consisting of d copies of IID

processes, the speed of conditional mixing is unrelated to d. For many applications,

the speed of mixing may be only loosely dependent on d.

The bound (2.20) has a term C4, which does not vanish as J increases to infinity.

One could have a bound without C4, but that bound grows linearly with N instead

of N − n∗. When there are many observations, this alternative bound will be larger

than the bound given in (2.20), which makes use of the conditional mixing over the

time interval [tn∗ , tN ].

The implications of Theorem II.2 may be summarized as follows. The error bound

decreases as the predictive likelihood can be accurately approximated (small C1),

each observation time interval is divided in number that is at least comparable to

the space dimension (small C2), and the conditional mixing happens relatively fast

(small C3 and C4).

2.5 Parameter estimation with iterated filtering

Our GIRF can be easily combined with existing plug-and-play parameter inference

methods that build upon the particle filter. The iterated filtering algorithm of Ionides

et al. [2015] finds the maximum likelihood estimate (MLE) of multi-dimensional

parameters via an SMC approximation to an iterated, perturbed Bayes map. This

algorithm, when implemented via a plug-and-play SMC filtering approach, provides
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Algorithm 2: An iterated guided intermediate resampling filter for parameter estimation

Input : Simulator for µt0(dx ; θ)
Simulator for Ktn,s−1,tn,s

(
dx ;xtn,s

, θ
)

for n ∈ 0 :N−1 and s ∈ 1 :S
Evaluator for gn(yn |xtn , θ) for n ∈ 1 :N
Evaluator for utn,s

(
xtn,s , θ

)
for n ∈ 0 :N−1 and s ∈ 1 :S

Data, y1:N
Number of particles, J
Number of iterations, M
Initial parameter swarm,

{
Θ0,j ; j ∈ 1 : J

}
Perturbation kernel for initial value parameter, κ0(dθ ;φ, σ)
Perturbation kernel, κn,s(dθ ;φ, σ) for n ∈ 0 :N−1 and s ∈ 1 :S
Sequence of perturbation sizes, σ1 :M

Output: Final parameter swarm
{

ΘM,j ; j ∈ 1 : J
}

for m← 1 :M do

Run Algorithm 1 on the extended state space
(
Xtn,s ,Θ

m
tn,s

)
with initial draws from

(2.21) and subsequent draws from (2.22)

Set Θm,j = ΘF,m,j
tN for j ∈ 1 : J

end

plug-and-play inference on unknown model parameters. Iterated filtering runs a

sequence of particle filter on the augmented space comprising the state variable and

the parameter, where the parameters are subject to random perturbations at each

time point. The size of perturbations decrease over iterations to induce convergence.

In the limit where the perturbation size approaches zero, Ionides et al. [2015] showed

that the distribution of filtered parameters approaches a point mass at the MLE

under regularity conditions.

Iterated filtering starts with an initial set of parameters {Θ0,j ; j ∈ 1 :J}. The

parameter vector may contain initial value parameters (IVPs) which encode the

value of Xt0 but play no role in the dynamics of the system. At the start of the m-th

iteration, the parameter component of each particle is perturbed from its current

position Θm−1,j with kernel κ0. The IVPs are only perturbed at this point. A pre-

set decreasing sequence (σm)m=1:M determines the size of perturbation. The initial

state variables XF,j
t0 are drawn from the parameterized initial state distribution. The
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initialization can be summarized as follows:

(2.21) ΘF,m,j
t0 ∼ κ0

(
dθ ; Θm−1,j, σm

)
, XF,j

t0 ∼ µt0

(
dx; ΘF,m,j

t0

)
.

The usual filtering procedure follows, where the non-IVPs are continuously per-

turbed. In case where a GIRF is run within iterated filtering, the non-IVPs are

perturbed at each intermediate time tn,s with kernel κn,s. The states are then drawn

from the parameterized transition kernel:

(2.22) ΘP,m,j
tn,s ∼ κn,s

(
dθ ; ΘF,m,j

tn,s−1
, σm

)
, XP,j

tn,s ∼ Ktn,s−1,tn,s

(
dx ;XF,j

tn,s−1
,ΘP,m,j

tn,s

)
.

The weighting and resampling steps are as usual. At the end of filtering, the param-

eter swarm ΘF,m,j
tN

are set as Θm,j. After M iterations, the final parameter swarm

ΘM,j, which have converged almost to a single point, are considered as the MLE.

The pseudocode for the iterated GIRF is given in Algorithm 2.

A GIRF may in theory be combined with the particle Markov chain Monte Carlo

(PMCMC) method proposed in Andrieu et al. [2010]. However, when the likelihood

estimates have high Monte Carlo error variance, the mixing of the Markov chain can

be extremely slow. MCMC methods running with unbiased likelihood estimators,

including the PMCMC, are known to achieve best efficiency when the errors in the

likelihood estimates are about one log unit [Doucet et al., 2015]. Unfortunately,

these errors can be well over one hundred log units in high dimensional models.

Iterated filtering can be more useful in these scenarios, because inference can still be

made from the noisy maximum likelihood estimates. For inference on a parameter of

interest, one can estimate the profile likelihood curve by maximizing over all other

parameters and use this profile to obtain approximate MLEs and confidence intervals

[Ionides et al., 2017]. We demonstrate this approach in our analysis of spatiotemporal

data of Section 3.1.
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2.6 Implementation

We implemented our algorithm on high dimensional Gaussian processes. The

guide function ut was taken to be an approximation to the predictive likelihood of

B = 2 future observations. We observed that if we took B = 1, the resampling

weights at s=1 were more unbalanced, and consequently the errors in the filter

estimates were larger.

2.6.1 Correlated Brownian motion

In order to see how the performance of the GIRF depends on the space dimen-

sion and the choice of the guide function, we first applied our algorithm to multi-

dimensional correlated Brownian motions. Each dimension of the Brownian motion

was identically distributed with increments per unit time having mean zero and pro-

cess noise variance σ2
p. The correlation coefficient matrix A for the increments was

chosen such that its all off-diagonal entries equaled α. The initial state distribution

at time t0 = 0 was given by the point mass at the origin of Rd. Measurements were

made at positive integer time points 1 : 50, with independent Gaussian noises of mean

zero and measurement error variance σ2
m. The POMP model can be expressed as

follows, where I denotes the d dimensional identity matrix:

Xt+δ = Xt +N
(
0, σ2

pδA
)
, Yt = Xt +N

(
0, σ2

mI
)
.

The guide function utn,s was defined as in (2.8), where the approximate predictive

likelihood utn,s↗tn+b was chosen as described in (2.9). Since the process had zero

drift, the forward state projection by the deterministic mean process was given by

x̃tn+b = xtn,s . The variance of Xtn+b conditioned on Xtn,s = xtn,s was equal to
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(tn+b − tn,s) · σ2
pA, so the guide function was defined as

(2.23) utn,s
(
xtn,s

)
=

B∏
b=1

φd
[
ytn+b ;xtn,s , (tn+b − tn,s) · σ2

pA+ σ2
mI
]
,

where φd( · ;µ,Σ) denotes the density of the d-dimensional Gaussian distribution

with mean µ and variance Σ. Evaluating (2.23) typically requires procedures such

as the Cholesky decomposition and takes O (d3) computations. Since this could be

demanding for large d, we also used an approximation of (2.23) obtained by ignoring

the off-diagonal elements of A,

(2.24) utn,s
(
xtn,s

)
=

B∏
b=1

φd
[
ytn+b ;xtn,s ,

{
(tn+b − tn,s) · σ2

p + σ2
m

}
I
]
.

We implemented our GIRF on this model with varying dimensions and correlation

coefficients. All data were generated with σp = σm = 1. The number of sub-intervals

within a unit time interval S was taken to equal to the dimension d. The guide

function ut approximated the predictive likelihood of two future observations (i.e.,

B = 2). We parallelized the computation by applying the island particle method of

Vergé et al. [2015] to Algorithm 1 in a straightforward way. Sixty particle islands

with one thousand particles in each island were used in all experiments.

In our first set of experiments, we varied the space dimension from twenty to

fifty, one hundred, and two hundred while fixing the correlation coefficient at zero.

Each filtering on average took 15 seconds, 81 seconds, 5 minutes, and 20 minutes

respectively. Figure 2.3 shows the mean squared error (MSE) of the estimates of the

filtering mean at time 50. Exact values of the filtering means and the likelihoods of

data for this linear Gaussian model were computed by Kalman filtering. The plotted

values represent the average over all d components. The results were obtained from

forty independent filtering repetitions for each case. The estimated squared biases,

shown in triangles, were roughly 1
40

times the MSE, meaning that the estimator was
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Figure 2.3: The MSE of the estimates of the filtering mean: ◦, MSE; 4, bias squared

Space dimension
Likelihood 20 50 100 200

True -1916.30 -4703.83 -9499.10 -18908.62

Estimate
-1916.28
(0.06)

-4703.72
(0.17)

-9501.20
(0.36)

-18932.69
(0.87)

Table 2.1: Log likelihood estimates on a correlated linear Gaussian model with varying dimensions
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Figure 2.4: The MSE of the estimates of the filtering mean under varying degrees of correlation,
(a) d = 20, (b) d = 50: ◦, exact covariance used; ×, diagonal covariance used

Correlation coefficient
Likelihood 0.0 0.1 0.2 0.3 0.4 0.5

True -1904.04 -1897.75 -1884.24 -1866.33 -1844.90 -1820.02
Estimate

[exact covariance]
-1903.92
(0.05)

-1897.71
(0.05)

-1884.25
(0.06)

-1866.31
(0.05)

-1844.90
(0.06)

-1820.05
(0.06)

Estimate
[diagonal covariance]

-1903.92
(0.05)

-1897.79
(0.09)

-1884.91
(0.20)

-1868.35
(0.59)

-1852.62
(0.44)

-1831.77
(0.71)

True -4790.18 -4750.63 -4701.90 -4644.46 -4579.29 -4505.73
Estimate

[exact covariance]
-4790.49
(0.19)

-4750.35
(0.24)

-4702.02
(0.29)

-4644.88
(0.27)

-4579.82
(0.38)

-4505.96
(0.62)

Estimate
[diagonal covariance]

-4790.49
(0.19)

-4754.44
(0.43)

-4722.03
(0.57)

-4685.83
(0.68)

-4649.51
(0.89)

-4609.30
(0.83)

Table 2.2: Log likelihood estimates under varying degrees of correlation, top, d = 20; bottom,
d = 50
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effectively unbiased. The MSE at dimension two hundred of less than 0.01 was very

small compared to the variance of the exact filtering distribution at time 50, which

was 0.62. These results demonstrate that our GIRF scales much better than the

standard particle filter. Snyder et al. [2008] reported that at least 1011 particles were

required for the same problem in two hundred dimension.

The estimated log likelihoods, shown in Table 2.1, were also surprisingly accurate.

The estimated standard errors of the log likelihoods are shown in parentheses. In

dimensions twenty and fifty, the true likelihood was well within one standard error of

the likelihood estimates. In dimensions one hundred and two hundred, the likelihood

estimates are more than one standard error below the true likelihood. Since the

likelihood estimator is guaranteed to be unbiased, this shows that the likelihood

estimate is above the true value with small probability, while the likelihood estimate

is below the true value with high probability. This phenomenon reflects that filtering

becomes less accurate as the dimension increases.

In the second set of experiments, the dimension was fixed at either twenty or fifty,

and the correlation coefficient varied from 0 to 0.5 with intervals of 0.1. Figure 2.4

shows the MSE of the estimates of the filtering mean at time 50. The error bars

indicate the sizes of the standard errors of the MSE. When the guide function used

the exact covariance as in (2.23), the MSEs were almost constant or increasing very

slowly as the correlation α increased. When we used the diagonal approximation

as in (2.24), the errors in the filter estimates increased much more rapidly as α

increased. However, the errors were still reasonably small. The MSEs were about

0.02 both in twenty and fifty dimensions at α = 0.5, where the variance of the

filtering distribution was 0.52 and 0.51 respectively. The log likelihood estimates

reported in Table 2.2 shows a similar pattern in the filtering accuracy. These results
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indicate that the performance of the GIRF depends on how well the guide functions

approximate the predictive likelihoods of future observations. This agrees with our

theoretical investigation.

2.7 Discussion

Analyses of high dimensional dynamic systems have relied on mathematical sim-

plification of the model or information reduction technique. The ensemble Kalman

filters are widely used inference methods that belong to the former category [Evensen,

1994, 2003]. The linear update scheme for the posterior state distribution in these

filters helps avoid the computational challenge such as the degenerate resampling

weights experienced in the particle filter and facilitates very high dimensional ap-

plications in geophysical sciences [Houtekamer and Mitchell, 2001]. However, these

methods tend to produce inaccurate results when the system is highly non-linear and

non-Gaussian [Lei et al., 2010, Miller et al., 1999]. For tracing epidemic peaks or

fadeouts, for instance, non-linearity or the discreteness of infection cases can play a

key role in the stochastic evolution of the system, making approximations by Gaus-

sian distributions unsuitable.

Methods based on information reduction technique are generally constructed with

the aid of domain experts’ knowledge on the key features of the model. Approxi-

mate Bayesian computation, for example, approximates the posterior probability of a

parameter θ given data using the distances between carefully chosen summary statis-

tics of the observed data and those of simulated data under the parameter θ. This

simplified approach in principle enables analyses of data for any model that can be

simulated. However, information reduction methods can fail to capture full complex-

ities in the model or result in inaccurate parameter estimates [Fasiolo et al., 2016].



43

Also, different conclusions might be drawn depending on the summary statistics and

the distance measures being used.

The GIRF supports the likelihood-based inference on high dimensional nonlinear

dynamic models. Likelihood-based inference can add to the reliability of scientific

conclusions, because the likelihood of data is uniquely defined by a model and pro-

vides a common measure of fit. Sharp likelihood-based analyses using fully developed

models can lead to scientific discoveries of fine resolution, which might not be ob-

tained with other analysis methods.

The GIRF proceeds on a time scale finer than the observation time scale. At the

intermediate time points, the particle ensemble approximates the state distribution

conditional on the observations up to a certain future time point. Each of the in-

creased number of resampling steps deals with minced amount of information and

suffers less from the weight degeneracy. Looking to future observations for particle

guidance also helps avoid depletion of particles thanks to the conditional mixing

property.

Theoretical investigation revealed that our GIRF can produce accurate filtering

estimates in high dimensions under certain assumptions. These conditions offer a

perspective on what causes the COD and how the GIRF partially solves the problem.

However, the assumptions may be difficult to check in real applications. We appeal

to J. W. Tukey’s advice, “So long as one does not ask for certainties one can be

carefully imprecise about assumptions” [Jones, 1987]. The reliability of the filtering

results can be partly checked by the effective sample size at each resampling step

[Kong et al., 1994]. Appropriate simulation studies can also add to the credibility of

the inference drawn from the results.

The main practical limitation in employing the GIRF is the construction of the
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guide function. The numerical efficiency of the filter depends on how well this guide

function approximates the predictive likelihoods of future observations. A good guide

function may be challenging to develop for a new application. A model with slow

conditional mixing increases the difficulty, because the guide function will need to

estimate the predictive likelihoods of a larger number of future observations in order

to prevent particle depletion.
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2.8 Appendix for chapter II

2.A Proof of Theorem II.1

We augment the state space in order to make the weight function wtn,s defined

in (2.2) depend only on the current state variable at time tn,s. Let {Ztn,s ;n ∈

0 :N−1, s ∈ 1 :S} be a process defined on discrete time points T such that Ztn,s =

(Xtn,s , Xtn,s−1). Let Zt0 := (Xt0 , x
∗) where x∗ is an arbitrary point in X. Define πi,

i = 1, 2, be the mapping from a pair of elements to its i-th entry (i.e., π1(x1, x2) =

x1, ∀x1, x2). The transition kernel of the discrete process
{
Ztn,s ;n = 0 :N−1, s ∈

1 :S
}

, denoted by Ǩtn,s, : B(X2)× X2 → [0, 1], satisfies that

(2.25) Ǩtn,s

(
A1 × A2 ; ztn,s−1

)
= Ktn,s−1,tn,s

(
A1 ; π1(ztn,s−1)

)
· δπ1(ztn,s−1)

(A2) ,

n ∈ 0 :N−1, s ∈ 1 :S

for A1, A2 ∈ B (X). Then the bootstrap particle filter with the initial particle draws

given by {ZF,j
t0 ; j ∈ 1 :J} = {(XF,j

t0 , x
∗) ; j ∈ 1 :J}, subsequent draws made according

to ZP,j
tn,s ∼ Ǩtn,s( · ;Z

F,j
tn,s−1

), and resampling weights proportional to wtn,s
(
π1(ztn,s), π2(ztn,s)

)
from (2.2) is algorithmically equivalent to the GIRF illustrated in Algorithm 1 when

we equate ZP,j
tn,s with the pair (XP,j

tn,s , X
F,j
tn,s−1

) in Algorithm 1. Moreover, the likeli-

hood estimate from this particle filter
∏N−1

n=0

∏S
s=1

[∑J
j=1 wtn,s

(
π1(ZP,j

tn,s), π2(ZP,j
tn,s)

)]
is exactly the same as ˆ̀ in Algorithm 1. Therefore, the likelihood estimate obtained

from this particle filter is unbiased for

E

[
N−1∏
n=0

S∏
s=1

wtn,s
(
π1(Ztn,s), π2(Ztn,s)

)]
= E

[
N∏
n=1

gn(yn |Xtn)

]
,

due to the unbiasedness property for the standard particle filters [Del Moral and

Jacod, 2001]. The equality in the above equation comes from (2.4). We conclude

that ˆ̀ is an unbiased estimate for `1:N(y1:N).
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2.B A heuristic argument for the stability of the likelihood estimate obtained by a
GIRF

We provide an argument for the claim that the likelihood estimate

(2.26) ˆ̀=
N−1∏
n=0

S∏
s=1

1

J

J∑
j=1

wtn,s

(
XP,j
tn,s , X

F,j
tn,s−1

)
obtained by the GIRF proposed in Algorithm 1 can be in general much more stable

than the likelihood estimate obtained by the standard particle filter

(2.27) ˆ̀std =
N∏
n=1

1

J

J∑
j=1

gn

(
yn

∣∣∣XP,j
tn

)
.

Theorem II.2 shows that the average of the weight terms 1
J

∑J
j=1 wtn,s(X

P,j
tn,s , X

F,j
tn,s−1

)

in (2.26) is close to

EXtn,s−1∼p
u,y
tn,s−1

wtn,s
(
Xtn,s , Xtn,s−1

)
with high probability, where the distribution of Xtn,s−1 has density proportional to

pu,ytn,s−1
(xtn,s−1) ∝ pXtn,s−1 |Y1:n′ (xtn,s−1 | y1:n′) · utn,s−1(xtn,s−1).

Here, n′ = n if s ≥ 2 and n′ = n − 1 if s = 1. Since this Monte Carlo estimate

1
J

∑J
j=1wtn,s(X

P,j
tn,s , X

F,j
tn,s−1

) at each intermediate time point asymptotically converges

to the expected value it approximates, the product of these estimates also asymptoti-

cally converges to the target expected value, namely the likelihood of data. However,

the core reason that the likelihood estimate (2.26) is relatively more stable with finite

sample comes from the fact that (2.26) is the product of averages of the Monte Carlo

weights whereas (2.27) is the average of the products of the Monte Carlo weights.

This comparison is analogous to the relationship between the likelihood estimates

from SMC methods and those from sequential importance sampling methods, which

tend to be numerically unstable due to the lack of resampling steps. We will make

this statement clear as follows.
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We will consider the case where we take utn(x) = gn(yn |xtn) for n ∈ 1 :N in

Algorithm 1. We will compare the n-th terms in the products (2.26) and (2.27).

We denote the ancestor particle of XP,j
tn at time tn−1,s as X

F,ajtn−1,s

tn−1,s
for s ∈ 1 :S−1,

with ajtn,S−1
= j. Note that this definition results in X

F,ajtn,s
tn,s = X

P,ajtn,s−1

tn,s . Then, the

measurement density of yn at tn can be expressed as a product of weights defined in

(2.2),

gn

(
yn

∣∣∣XP,j
tn

)
=


S∏
s=1

utn−1,s

(
X
P,ajtn−1,s−1

tn−1,s

)
utn−1,s−1

(
X
F,ajtn−1,s−1

tn−1,s−1

)
 · gn−1

(
yn−1

∣∣∣∣XF,ajtn−1

tn−1

)

=
S∏
s=1

wtn−1,s

(
X
P,ajtn−1,s−1

tn−1,s
, X

F,ajtn−1,s−1

tn−1,s−1

)
.

We write W j
s = wtn−1,s(X

P,ajtn−1,s−1

tn−1,s
, X

F,ajtn−1,s−1

tn−1,s−1
). The weight terms {W j

s ; j ∈ 1 :J}

at the s-th step are conditionally independent of each other given the particle draws

{X
F,ajtn−1,s−1

tn−1,s−1
; j ∈ 1 :J}. For simplicity of argument, we assume that all weight terms

W j
s for s ∈ 1 :S and j ∈ 1 :J are IID with mean µ and variance σ2. The logarithm of

the n-th term in the expression for ˆ̀given by (2.26) converges to a normal distribution

log
S∏
s=1

1

J

J∑
j=1

W j
s ⇒ N

(
S log µ,

Sσ2

Jµ2

)
as J tends to infinity by the central limit theorem and the delta method. As for the

n-th term of ˆ̀std, we first observe that the variance of
∏S

s=1W
j
s is given by

(2.28) Var

(
S∏
s=1

W j
s

)
= E

S∏
s=1

(
W j
s

)2 −

(
E

S∏
s=1

W j
s

)2

=
(
µ2 + σ2

)S − µ2S.

Thus the logarithm of the n-th term in the expression for ˆ̀std given by (2.27) con-

verges in distribution

(2.29) log
1

J

J∑
j=1

S∏
s=1

W j
s ⇒ N

(
log µS,

(µ2 + σ2)
S − µ2S

Jµ2S

)
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as J tends to infinity. We can see that the asymptotic variance
(µ2+σ2)

S
−µ2S

Jµ2S
in (2.29)

is larger than the asymptotic variance Sσ2

Jµ2
in (2.28) roughly by a factor of 2S

S
when

µ2 ≈ σ2. Thus in high dimensions where we take S ≈ d, the variance of the log

likelihood estimate log ˆ̀ by the GIRF can be much smaller than the variance of the

log likelihood estimate log ˆ̀std from the standard particle filter.

2.C Proof of Theorem II.2

Our main theoretical innovation in this proof is the novel way of bounding the

error terms in the telescoping series (2.32) below.

Let f be a measurable function such that ‖f‖∞ ≤ 1. One can observe that

E [f(XtN )|Y1:N = y1:N ] =

E

[
f(XtN ) ·

N∏
n=1

gn (yn |Xtn)

]

E

[
N∏
n=1

gn (yn |Xtn)

] =
µt0Qt0,tN (gN · f)

µt0Qt0,tN (gN)
.

We first show that at time tn∗ ,

(2.30)

∣∣∣∣btn∗ ,tN (f)

btn∗ ,tN (1)
− µt0Qt0,tN (gN · f)

µt0Qt0,tN (gN)

∣∣∣∣ ≤ C4

for bt,t′ defined in (2.14). Define the probability distribution ηtn∗ such that

ηtn∗f =
µt0Qt0,tn∗

{
Qtn∗ ,tN (gN) · f

}
µt0Qt0,tn∗

{
Qtn∗ ,tN (gN)

} =
E
[∏N

n=1 gn (yn |Xtn) · f
(
Xtn∗

)]
E
[∏N

n=1 gn (yn |Xtn)
]

for bounded measurable functions f . Indeed, ηtn∗ is the smoothing distribution of

Xtn∗ conditioned on the observations Y1:N = y1:N . We have

∫
Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
dηtn∗ =

µt0Qt0,tn∗

{
Qtn∗ ,tN (gN) ·

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)

}
µt0Qt0,tn∗Qtn∗ ,tN (gN)

=
µt0Qt0,tN (gN · f)

µt0Qt0,tN (gN)
.

Thus,

inf
x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x) ≤ µt0Qt0,tN (gN · f)

µt0Qt0,tN (gN)
≤ sup

x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x).
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Also, since
{
XF,j
tn∗

; j ∈ 1 :J
}

takes values in X,

inf
x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x) ≤

Qtn∗ ,tN (gN · f)

utn∗

(
XF,j
tn∗

)
Qtn∗ ,tN (gN)

utn∗

(
XF,j
tn∗

) ≤ sup
x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x).

Thus,

(2.31) inf
x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x) ≤

btn∗ ,tN (f)

btn∗ ,tN (1)
=

1

J

∑
j

Qtn∗ ,tN (gN · f)

utn∗

(
XF,j
tn∗

)
1

J

∑
j

Qtn∗ ,tN (gN)

utn∗

(
XF,j
tn∗

)
≤ sup

x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x).

It follows from Assumption 3 that∣∣∣∣btn∗ ,tN (f)

btn∗ ,tN (1)
− µt0Qt0,tN (gN · f)

µt0Qt0,tN (gN)

∣∣∣∣ ≤ sup
x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x)−inf

x∈X

Qtn∗ ,tN (gN · f)

Qtn∗ ,tN (gN)
(x) ≤ C4,

as claimed in (2.30). Next, we bound the difference∣∣∣∣btN ,tN (f)−
btn∗ ,tN (f)

btn∗ ,tN (1)

∣∣∣∣ .
We write this difference as a telescoping series.

(2.32)∣∣∣∣btN ,tN (f)−
btn∗ ,tN (f)

btn∗ ,tN (1)

∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
t∈T,

tn∗<t≤tN

bt,tN (f)

bt,tN (1)
−
bt−,tN (f)

bt−,tN (1)

∣∣∣∣∣∣∣∣ ≤
∑
t∈T,

tn∗<t≤tN

∣∣∣∣bt,tN (f)

bt,tN (1)
−
bt−,tN (f)

bt−,tN (1)

∣∣∣∣ .
Note that

(2.33)∣∣∣∣bt,tN (f)

bt,tN (1)
−
bt−,tN (f)

bt−,tN (1)

∣∣∣∣ ≤
∣∣∣∣∣bt,tN (f)

bt,tN (1)
−

E
[
bt,tN (f)

∣∣BPt,J]
E
[
bt,tN (1)

∣∣BPt,J]
∣∣∣∣∣+
∣∣∣∣∣E
[
bt,tN (f)

∣∣BPt,J]
E
[
bt,tN (1)

∣∣BPt,J] − bt−,tN (f)

bt−,tN (1)

∣∣∣∣∣ .
We will first consider the difference between bt,tN (f) and E

[
bt,tN (f)

∣∣BPt,J] in the first

term of the right hand side of (2.33) for t ∈ (tn∗ , tN ] ∩ T. This corresponds to the
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error introduced by resampling at time t. We observe that

Var
(
bt,tN (f)

∣∣BPt,J) = Var

(
1

J

J∑
j=1

Qt,tN (gN · f)

ut

(
XF,j
t

)∣∣∣∣∣BPt,J
)

=
1

J
Var

(
Qt,tN (gN · f)

ut

(
XF,1
t

)∣∣∣∣BPt,J)
≤ 1

J
E

[(
Qt,tN (gN · f)

ut

(
XF,1
t

))2
∣∣∣∣∣BPt,J

]

≤ 1

J
max
j

{
Qt,tN (gN)

ut

(
XP,j
t

)}2

,

because ‖f‖∞ ≤ 1 and XF,1
t takes one of J values XP,j

t , j = 1, . . . , J . This implies

that, by Markov’s inequality, for any a > 1,

(2.34)
(
bt,tN (f)− E

[
bt,tN (f)

∣∣BPt,J])2 ≤ a2

J
max
j

{
Qt,tN (gN)

ut

(
XP,j
t

)}2

with probability at least 1− 1
a2

. This also implies that we have

(2.35)
(
bt,tN (1)− E

[
bt,tN (1)

∣∣BPt,J])2 ≤ a2

J
max
j

{
Qt,tN (gN)

ut

(
XP,j
t

)}2

with probability at least 1− 1
a2

. Write the first term on the right hand side of (2.33)

as ∣∣∣∣∣bt,tN (f)

bt,tN (1)
−

E
[
bt,tN (f)

∣∣BPt,J]
E
[
bt,tN (1)

∣∣BPt,J]
∣∣∣∣∣ =

∣∣∣∣A′A − B′

B

∣∣∣∣ ,
where A,B > 0, which is bounded by

(2.36)∣∣∣∣A′A − B′

B

∣∣∣∣ =

∣∣∣∣A′B −B′B +B′B − AB′

AB

∣∣∣∣ ≤ |A′ −B′|A
+
|A−B|

A
· |B

′|
B
≤ |A−B|+ |A

′ −B′|
A

,

because we have |B′| ≤ B from ‖f‖∞ ≤ 1. Note that

A = bt,tN (1) =

∫
Qt,tN (gN)

ut
dF F

t,J ≥ min
j

{
Qt,tN (gN)

ut
(XP,j

t )

}
.

But by Assumption 1

min
j

{
Qt,tN (gN)

ut
(XP,j

t )

}
≥ 1

C1

max
j

{
Qt,tN (gN)

ut
(XP,j

t )

}
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if t > tN−B so that t→ = tN , and by Assumption 1 and 3,

min
j

{
Qt,tN (gN)

ut

(
XP,j
t

)}
≥ min

j

{
Qt,tN (gN)

Qt,t→
(
gn(t→)

) (XP,j
t

)}
·min

j

{
Qt,t→

(
gn(t→)

)
ut

(
XP,j
t

)}

≥ 1

C3

max
j

{
Qt,tN (gN)

Qt,t→
(
gn(t→)

) (XP,j
t

)}
· 1

C1

max
j

{
Qt,t→

(
gn(t→)

)
ut

(
XP,j
t

)}

≥ 1

C1C3

max
j

{
Qt,tN (gN)

ut

(
XP,j
t

)}

(2.37)

if t ≤ tN−B so that t→ < tN . Thus from (2.34), (2.35), and (2.36), we have

(2.38)

∣∣∣∣∣bt,tN (f)

bt,tN (1)
−

E
[
bt,tN (f)

∣∣BPt,J]
E
[
bt,tN (1)

∣∣BPt,J]
∣∣∣∣∣ ≤ 2C1a√

J
· C1[t≤tN−B ]

3

with probability at least 1− 2
a2
. Here, 1[ · ] denotes an indicator function.

Next, we consider the second term in (2.33)

(2.39)∣∣∣∣∣E
[
bt,tN (f)

∣∣BPt,J]
E
[
bt,tN (1)

∣∣BPt,J] − bt−,tN (f)

bt−,tN (1)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∫
Qt,tN (gN · f)

ut
· wtdHt,J∫

Qt,tN (gN)

ut
· wtdHt,J

−

∫
Qt−,tN (gN · f)

ut−
dF F

t−,J∫
Qt−,tN (gN)

ut−
dF F

t−,J

∣∣∣∣∣∣∣∣ .
We have∫

Qt,tN (gN · f)(xt)

ut(xt)
· wt(xt, xt−)dHt,J(xt, xt−) =

∫
Qt,tN (gN · f)(xt)

ut−
/
g

1[t−∈t1:N ]

n(t−) (xt−)
dHt,J(xt, xt−)

from (2.16). One can write from (2.12) and (2.13)

Qt−,tN (gN · f) = g
1[t−∈t1:N ]

n(t−) Kt−,tQt,tN (gN · f),

so we have

E

 Qt,tN (gN · f)
(
XP,j
t

)
{
ut−
/
g

1[t−∈t1:N ]

n(t−)

}(
XF,j
t−

)
∣∣∣∣∣∣BFt−,J

 =
Kt−,tQt,tN (gN · f)

(
XF,j
t−

)
{
ut−
/
g

1[t−∈t1:N ]

n(t−)

}(
XF,j
t−

) =
Qt−,tN (gN · f)

ut−

(
XF
t−

)
.
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Hence,

E

{∫ Qt,tN (gN · f)

ut−
/
g

1[t−∈t1:N ]

n(t−)

dHt,J −
∫
Qt−,tN (gN · f)

ut−
dF F

t−,J

}2
∣∣∣∣∣∣BFt−,J


= Var

 1

J

∑
j

Qt,tN (gN · f)
(
XP,j
t

)
{
ut−
/
g

1[t−∈t1:N ]

n(t−)

}(
XF,j
t−

)
∣∣∣∣∣∣BFt−,J



=
1

J2

∑
j

Var
[
Qt,tN (gN · f)

(
XP,j
t

)∣∣∣BFt−,J]{
Kt−,tQt,tN (gN)

(
XF,j
t−

)}2 ·

{
Kt−,tQt,tN (gN)

(
XF,j
t−

)}2

{
ut−
/
g

1[t−∈t1:N ]

n(t−)

(
XF,j
t−

)}2

≤ 1

J2

∑
j

Kt−,t {Qt,tN (gN · |f |)}2

{Kt−,tQt,tN (gN)}2

(
XF,j
t−

)
·
{
Qt−,tN (gN)

ut−

(
XF,j
t−

)}2

≤ 1

J
C2

2 max
j

{
Qt−,tN (gN)

ut
(XF,j

t− )

}2

where the last inequality is due to Assumption 2. By Markov’s inequality, for any

a > 1,∣∣∣∣∫ Qt,tN (gN · f)

ut
· wtdHt,J − bt−,tN (f)

∣∣∣∣ ≤ aC2√
J

max
j

{
Qt−,tN (gN)

ut−

(
XF,j
t−

)}
with probability at least 1− 1

a2
. Using the inequality (2.36) again, we obtain

(2.40)

∣∣∣∣∣E
[
bt,tN (f)

∣∣BPt,J]
E
[
bt,tN (1)

∣∣BPt,J] − bt−,tN (f)

bt−,tN (1)

∣∣∣∣∣ ≤ 2
aC2√
J

max
j

{
Qt−,tN (gN)

ut−

(
XF,j
t−

)}
bt−,tN (1)

with probability at least 1− 2
a2

. By the same reasoning as in (2.37), we have

max
j

{
Qt−,tN (gN)

ut−

(
XF,j
t−

)}
bt−,tN (1)

≤ C1C
1[t≤tN−B,1]
3 .

Thus, summing (2.38) and (2.40), we obtain∣∣∣∣bt,tN (f)

bt,tN (1)
−
bt−,tN (f)

bt−,tN (1)

∣∣∣∣ ≤ 2aC1√
J

(
C2C

1[t≤tN−B,1]
3 + C

1[t≤tN−B ]
3

)
with probability at least 1− 4

a2
. If we add the above inequality for t ∈ (tn∗ , tN ] ∩ T,

we reach the conclusion that

(2.41)∣∣∣∣btN ,tN (f)−
btn∗ ,tN (f)

btn∗ ,tN (1)

∣∣∣∣ ≤ 2aC1√
J

[
C2

{(
S(N−B−n∗)+1

)
C3+(SB−1)

}
+S(N−B−n∗)C3+SB

]
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with probability at least 1− 4S(N−n∗)
a2

. Using the fact C3 ≥ 1, the RHS in (2.41) can

be replaced by a slightly larger but simpler bound

2aC1√
J

(C2 + 1)
[
{S(N −B − n∗) + 1}C3 + (SB − 1)

]
.

Combining (2.30) and (2.41), we have∣∣∣∣∫ fdF F
tN ,J
− µt0Qt0,tN (gN · f)

µt0Qt0,tN (gN)

∣∣∣∣ ≤ C4+
2aC1√
J

(C2+1)
[
{S(N −B − n∗) + 1}C3+(SB−1)

]
with probability at least 1− 4S(N−n∗)

a2
.

2.D The constant C2 in Assumption 2 can be O(1) in d.

We show in the first example that for a process consisting of d independent Brow-

nian motions with noisy measurements, the number C2 in Assumption 2 can be of

constant magnitude in space dimension d. The second example shows that indepen-

dence between dimensions is not necessary for C2 to be of constant order.

Example 1. Consider d independent and identically distributed one dimensional

Brownian motions. For simplicity of argument, let the number of future observations

used for particle assessment be B = 1. The general case involves more complicated

equations but follows the same logic. Let σ2
p be the variance of the one dimensional

Brownian motion over the unit interval, and let σ2
m be the variance of measurement

error.

Xt+δ = Xt + σp
√
δ ·N(0, Id×d), for δ > 0,

Yn = Xtn + σm ·N(0, Id×d).

Let the density of the one dimensional Gaussian distribution with mean µ and vari-

ance σ2 at point x be denoted by φ(x ;µ, σ2). Since B = 1, we have

Qtn,s,tn+1(gn+1 · f) = Ktn,s,tn+1(gn+1 · f), s ∈ 1 : S.
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By the independence assumption of the d Brownian motions, the transition kernel is

given by a product measure

Ktn,s,tn+1

(
dx1

tn+1
· · · dxdtn+1

;x1
tn,s , · · · , x

d
tn,s

)
= ktn,s,tn+1

(
dx1

tn+1
;x1

tn,s

)
⊗ · · · ⊗ ktn,s,tn+1

(
dxdtn+1

;xdtn,s

)
where k denotes the transition kernel for each one dimensional component of {Xt}.

We assume that tn+1 − tn = 1 and that tn,s − tn,s−1 = 1
S

, s ∈ 1 :S. Then for any

bounded measurable f0 : R→ R,

ktn,s,tn+1f0

(
xtn,s

)
=

∫ ∞
−∞

f0

(
xtn+1

)
φ
[
xtn+1 ;xtn,s ,

(
1− s

S

)
σ2
p

]
dxtn+1

Also, independent measurements implies that

gn+1

(
x1
tn+1

, · · · , xdtn+1

)
= φ

(
y1
n+1 ;x1

tn+1
, σ2

m

)
· · · · · φ

(
ydn+1 ;xdtn+1

, σ2
m

)
.

Since both the state process and the measurement process are Gaussian, we have for

i ∈ 1 :d,∫
φ
(
yin+1 ;xitn+1

, σ2
m

)
ktn,s,tn+1

(
dxitn+1

;xitn,s

)
= φ

[
yin+1 ;xitn,s , σ

2
m +

(
1− s

S

)
σ2
p

]
.

It follows that

Qtn,s,tn+1(gn+1)
(
xtn,s

)
=

d∏
i=1

φ
[
yin+1 ;xitn,s , σ

2
m +

(
1− s

S

)
σ2
p

]
.

We see

Qtn,s,tn+1(gn+1)
(
Xtn,s

)
Ktn,s−1,tn,sQtn,s,tn+1(gn+1)

(
Xtn,s−1

) =
d∏
i=1

φ
[
yin+1 ;X i

tn,s , σ
2
m +

(
1− s

S

)
σ2
p

]
φ

[
yin+1 ;X i

tn,s−1
, σ2

m +

(
1− s− 1

S

)
σ2
p

] .
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We observe that

d∏
i=1

φ
[
yin+1 ;X i

tn,s , σ
2
m +

(
1− s

S

)
σ2
p

]
φ

[
yin+1 ;X i

tn,s−1
, σ2

m +

(
1− s− 1

S

)
σ2
p

]

=

{
σ2
m +

(
1− s−1

S

)
σ2
p

}d/2{
σ2
m +

(
1− s

S

)
σ2
p

}d/2
exp

{
−
‖yn+1 −Xtn,s‖2

2
{
σ2
m +

(
1− s

S

)
σ2
p

}}

exp

{
−
‖yn+1 −Xtn,s−1‖2

2
{
σ2
m +

(
1− s−1

S

)
σ2
p

}} ,

where ‖·‖ denotes the usual Euclidean distance. Let ∆ := Xtn,s − Xtn,s−1 , and the

above expression equals

{
1 +

1
S
σ2
p

σ2
m +

(
1− s

S

)
σ2
p

} d
2

· exp

{
−
[
2∆ · (Xtn,s−1 − yn+1) + ‖∆‖2

]
·
[
σ2
m +

(
1− s−1

S

)
σ2
p

]
+

σ2
p

S
‖yn+1 −Xtn,s−1‖2

2
[
σ2
m +

(
1− s

S

)
σ2
p

]
·
[
σ2
m +

(
1− s−1

S

)
σ2
p

] }
.

(2.42)

Note that conditional on Xtn,s−1 , due to independence between dimensions

∆ ·
(
Xtn,s−1 − yn+1

) d
= N

[
0,
σ2
p

S
‖Xtn,s−1 − yn+1‖2

]
and

‖∆‖2 d
=
σ2
p

S
χ2
d ≈

d

S
σ2
p +

√
d

S
σ2
pN(0, 2),

where the last approximation is due to the central limit theorem. Suppose we set
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S = d. Then as d→∞, we can calculate that

E
[{
Qtn,s,tn+1(gn+1)

(
Xtn,s

)}2
∣∣∣Xtn,s−1

]
{
Ktn,s−1,tn,sQtn,s,tn+1(gn+1)

(
Xtn,s−1

)}2

= E

[
O(1) · exp

{
−

2∆ ·
(
Xtn,s−1 − yn+1

)
σ2
m +

(
1− s

S

)
σ2
p

+

σ2
p

S
‖yn+1 −Xtn,s−1‖2{

σ2
m +

(
1− s

S

)
σ2
p

}{
σ2
m +

(
1− s−1

S

)
σ2
p

}}∣∣∣∣∣Xtn,s−1

]

= O(1) · exp

{
2

σ2
p

S
‖yn+1 −Xtn,s−1‖2{
σ2
m +

(
1− s

S

)
σ2
p

}2 +

σ2
p

S
‖yn+1 −Xtn,s−1‖2{

σ2
m +

(
1− s

S

)
σ2
p

}{
σ2
m +

(
1− s−1

S

)
σ2
p

}}

= O(1),

because 1
S
‖yn+1 −Xtn,s−1‖2 = O(1). Thus we conclude that

Ktn,s−1,tn,s

{
Qtn,s,tn+1(gn+1)

}2{
Ktn,s−1,tn,sQtn,s,tn+1(gn+1)

}2

(
Xtn,s−1

)
= O(1).

Therefore the constant C2 in Assumption 2 is O(1) under the limit S = d→∞.

Example 2. Consider d Brownian motions that are perfectly correlated. That is,

X1 = X2 = · · · = Xd,

where

X1
t+δ = X1

t + σp
√
δ ·N(0, 1), for δ > 0.

The measurement model stays the same as in the previous example.

Yn = Xtn + σm ·N(0, Id×d).

This POMP model is equivalent to a one dimensional Brownian motion where d

independent observations are made, and we consider the process {Xt} this way. The

density of the measurement model is given by

gn+1(x) =
1

√
2π

d
σdm

e−
∑d
i=1(yin+1−x)2/2σ2

m .
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Setting B = 1 again for simplicity of argument, we compute that

Qtn,s,tn+1gn+1

(
xtn,s

)
=

1
√

2π
d+1

σdm

1√(
1− s

S

)
σ2
p

∫
R

exp

{
−
∑

i

(
yin+1 − x

)2

2σ2
m

}
· exp

{
−
(
x− xtn,s

)2

2
(
1− s

S

)
σ2
p

}
dx

=
1
√

2π
d

1

σdmσp

√(
1− s

S

)
√

(σ2
m/d) ·

(
1− s

S

)
σ2
p

σ2
m/d+

(
1− s

S

)
σ2
p

exp

{
−

(
xtn,s − ȳn+1

)2

2
{
σ2
m/d+

(
1− s

S

)
σ2
p

}}

· exp

{
dȳ2

n+1 − ‖yn+1‖2

2σ2
m

}
,

where ȳn+1 =
1

d

d∑
i=1

yin+1. It follows that

Qtn,s,tn+1(gn+1)
(
Xtn,s

)
Ktn,s−1,tn,sQtn,s,tn+1(gn+1)

(
Xtn,s−1

)
=

√
σ2
m/d+

(
1− s−1

S

)
σ2
p

σ2
m/d+

(
1− s

S

)
σ2
p

exp

{
−

(
Xtn,s − ȳn+1

)2

2
{
σ2
m/d+

(
1− s

S

)
σ2
p

} +

(
Xtn,s−1 − ȳn+1

)2

2
{
σ2
m/d+

(
1− s−1

S

)
σ2
p

}} .
Hence, if we write ∆ := Xtn,s −Xtn,s−1 ,

E

{ Qtn,s,tn+1(gn+1)
(
Xtn,s

)
Ktn,s−1,tn,sQtn,s,tn+1(gn+1)

(
Xtn,s−1

)}2
∣∣∣∣∣∣Xtn,s−1


=

(
1 +

1
S
σ2
p

σ2
m/d+

(
1− s

S

)
σ2
p

)
E

[
exp

{
−
(
Xtn,s−1 − ȳn+1 + ∆

)2

σ2
m/d+

(
1− s

S

)
σ2
p

}∣∣∣∣∣Xtn,s−1

]

· exp

{ (
Xtn,s−1 − ȳn+1

)2

σ2
m/d+

(
1− s−1

S

)
σ2
p

}

=

(
1 +

1
S
σ2
p

σ2
m/d+

(
1− s

S

)
σ2
p

)√
1 +

2
S
σ2
p

σ2
m/d+

(
1− s

S

)
σ2
p

−1

· exp

{
−

(
Xtn,s−1 − ȳn+1

)2

σ2
m/d+

(
1− s

S
+ 2

S

)
σ2
p

}
· exp

{ (
Xtn,s−1 − ȳn+1

)2

σ2
m/d+

(
1− s−1

S

)
σ2
p

}

=
σ2
m/d+

(
1− s−1

S

)
σ2
p√{

σ2
m/d+

(
1− s

S

)
σ2
p

}{
σ2
m/d+

(
1− s−2

S

)
σ2
p

}
· exp

{
1
S
σ2
p

(
Xtn,s−1 − ȳn+1

)2{
σ2
m/d+

(
1− s−2

S

)
σ2
p

}{
σ2
m/d+

(
1− s−1

S

)
σ2
p

}} ,

(2.43)
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where we have used the formula for the moment generating function of the non-

central chi-square variable (Xtn,s−1 − ȳn+1 + ∆)2. When S = d,(
Xtn,s − ȳn+1

)2

σ2
m/d+

(
1− s−1

S

)
σ2
p

∼ χ2
1,

and hence (2.43) is O(1). It follows that C2 = O(1).



CHAPTER III

Analysis of spatiotemporal measles transmission dynamics
using a guided intermediate resampling filter

In this chapter, as an illustration of the fact that the guided intermediate resam-

pling filter method presented in the previous chapter enables likelihood based infer-

ence on coupled dynamic systems of scientific interest, I present the data analysis

results of spatiotemporal epidemic data for measles collected at linked geographical

locations. The goal is to make inference on the transmission dynamics of measles,

and in particular, to estimate the mode and strength of spatial coupling between the

transmission dynamics in the geographic locations.

3.1 Coupled spatiotemporal measles transmission model

Population dynamics of infectious diseases exhibit highly nonlinear stochastic be-

havior. Compared to other diseases, the epidemic dynamics of measles is well under-

stood and is characterized by patterns that are closely replicable using a mechanistic

model. We adopted the model developed by He et al. [2009], but added spatial inter-

action between multiple cities. Using the approach described in Section 2.5, we made

inference on the spatial coupling parameter, which could only be correctly estimated

when the filter recovered the full joint distribution.

The model compartmentalize the population of each city into susceptible (S),

59
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exposed (E), infectious (I), and recovered/removed (R) categories. Their sizes for

the k-city are denoted by Sk, Ek, Ik, and Rk. The population dynamics can be

described on average by the following set of differential equations:

EdSk(t) = rk(t)dt− EdNSE,k(t)− µSk(t)dt

EdEk(t) = EdNSE,k(t)− EdNEI,k(t)− µEk(t)dt

EdIk(t) = EdNEI,k(t)− EdNIR,k(t)− µIk(t)dt

k = 1, · · · , d.

Here, NSE,k(t), NEI,k(t), and NIR,k(t) denote the cumulative number of transitions

between the corresponding compartments up to time t in city k, µ denotes per-

capita mortality rate, and rk the recruitment rate of susceptible population. The

term NSE,k(t), representing the cumulative number of infections in the k-th city, has

the expected increment of

E [NSE,k(t+ dt)−NSE,k(t)]

= β(t) · Sk(t) ·

[(
Ik
Pk

)α
+
∑
l 6=k

vkl
Pk

{(
Il
Pl

)α
−
(
Ik
Pk

)α}]
dt+ o(dt),

(3.1)

where the population of city k was denoted by Pk and the number of travelers

from city k to l by vkl. The expected increment of transitions from the exposed

to the infectious NEI and from the infectious to the recovered compartments NIR

are modeled as

(3.2) E [NEI(t+ dt)−NEI(t)] = νEIE(t)dt+ o(dt),

(3.3) E [NIR(t+ dt)−NIR(t)] = νIRI(t)dt+ o(dt).

Here β(t) denotes the seasonal transmission coefficient and α the mixing exponent,

and νEI and νIR are the per capita progression rates between the respective com-

partments [He et al., 2009]. This model assumes that the spatial interaction of the
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measles transmission dynamics between the cities was mediated by infectious trav-

elers moving from one city to another, where they can infect susceptible population

in the destination city. We used a gravity model inspired by Xia et al. [2004] and

described the number of travelers with the equation

(3.4) vkl = G · d̄
P̄ 2
· Pk · Pl

dkl
,

where dkl denotes the distance between city k and city l. The gravitation constant

G in (3.4) is scaled with respect to the average population of all twenty cities P̄

and their average distance d̄. We assume the transmission coefficient β(t) in (3.1)

depends on whether it is school term or holiday, because most measles infections

happen via transmissions between children:

β(t) =


(
1 + 2(1− p)a

)
β̄ during school term(

1− 2p a
)
β̄ during school holiday.

Here, p = 0.739 is the proportion of the year taken up by the school term, a the

amplitude of variation, and β̄ the annual average of the transmission rate. School

holidays in the calendar day include: Christmas, 356–365 and 0–6; Easter, 100–115;

summer, 199–252; autumn half-term, 300–308.

We add randomness to state progression by modeling the cumulative transitions

from one compartment to the next on an infinitesimal time interval as multinomial

random variables with random success probabilities that are distributed according

to Gamma distributions, as described in Bretó et al. [2009]. This choice makes

the processes continuous-time Markovian and allows for over-dispersion compared to

Poisson processes [Bretó and Ionides, 2011]. For all cumulative transition processes

{N··(t)}, we let the noise intensity to equal σ2 [Bretó et al., 2009, Karlin and Taylor,

1981]. Over a short time interval [t, t+δ], the infinitesimal increment N··(t+δ)−N··(t)
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is Poisson distributed with the mean parameter given by the product of a gamma

random variable Gamma(δ/σ2, σ2) and the mean transition rate EdN··
dt

. In the limit

as δ approaches zero, this amounts to

(3.5) N··(t+ δ)−N··(t) ∼ NegBin

(
δ

σ2
,

σ2 · EdN··(t)
dt

σ2 · EdN··(t)
dt

+ 1

)
,

where the negative binomial random variable NegBin(r, p) has the probability mass

function

P[NegBin(r, p) = k] =

(
k + r − 1

k

)
· (1− p)rpk, k = 0, 1, 2, . . .

with mean pr
1−p and variance pr

(1−p)2 . Bretó et al. [2009] explained a construction of

such stochastic compartment models, which we adopt in our implementation.

The data consisted of the weekly reported case numbers in each city. The model

assumed that a certain fraction ρ, called the reporting probability, of the transitions

from the infectious compartment to the recovered compartment were, on average,

counted as reported cases. The measurement model was chosen to allow for over-

dispersion relative to the binomial distribution with success probability ρ. We used a

discrete normal distribution with over-dispersion parameter ψ. Specifically, we define

a cumulative distribution F depending on the number of weekly total transitions

∆NIR,

(3.6) F (y ; ρ, ψ,∆NIR) := Φ
[
y ; ρ∆NIR, ρ(1− ρ)∆NIR + ψ2ρ2∆N2

IR + 1
]
,

where Φ( · ;µ, σ2) is the cdf of the normal distribution with mean µ and variance σ2.

We then let the probability of having yn reported cases in the n-th week, where ∆NIR

transitions from the infectious to the recovered compartment happened in that week,

as

p(yn) = F (yn + 0.5 ; ρ, ψ,∆NIR)− F (yn − 0.5 ; ρ, ψ,∆NIR).
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Table 3.1: Table of model parameters and the values used to generate artificial data.

symbol description units values
R0 basic reproduction number − 20
a amplitude of seasonality − 0.163
α mixing exponent − 0.97

µ mortality rate week−1 3.2× 10−4

ν−1EI latent period week 1.0
ν−1IR infectious period week 1.0
σ2 white-noise intensity week 0.08
ρ reporting probability − 0.5
ψ reporting overdispersion − 0.25
G gravitation constant − 500
c cohort entry fraction − 0.4
τ recruitment delay year 4
Sk(0)
Pk(0)

initial susceptible proportion − 0.4
Ek(0)
Pk(0)

initial exposed proportion − 0.00027
Ik(0)
Pk(0)

initial infectious proportion − 0.00032

The susceptible recruitment rate r(t) was defined as follows. In the calendar

year x, a certain fraction c of the annual births of the calendar year x−4 enters the

susceptible compartment at the school admission date, which is the 251st day of a

year. The remaining 1−c fraction enters the susceptible compartment continuously

with a constant rate throughout the year.

3.2 The implementation of the GIRF

The state processX(t) is composed of the components S(t), E(t), I(t), andNweek
IR (t)

for each city, where Nweek
IR (t) is the weekly cumulative transitions from the infectious

to the recovered compartment, with the relation Nweek
IR (t) = NIR(t)−NIR(tn) where

tn is the start of the week that t is in. In the implementation of the GIRF on this

model, we defined the guide function utn,s using the formula (2.8) in Section 2.3.3

with the approximate predictive likelihood utn,s↗tn+b , which was defined as follows.

We note that the procedure explained below provides a fairly general way of approx-

imating the predictive likelihood.
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First, we approximate the distribution of Xtn+b with a moment matching method.

Suppose that the measurement Yn+b is determined by a random variable Z = z(Xtn+b),

for some function z. In our example, this is the weekly cumulative infections, that

is z(Xtn+b) := NIR(tn+b)−NIR(tn+b−1). We make a projection from time tn,s to tn+b

with the deterministic mean process X̄(t), and take z
(
X̄(tn+b)

)
as an approximation

to the conditional mean of z
(
X(tn+b)

)
given Xtn,s . The deterministic mean process

may be obtained by setting the parameters governing the variability of the state pro-

cess to zero. For implicit models, one can simulate the deterministic mean process

with numerical procedures such as the Euler method.

We then estimate the variance of the projected Z. Let τ0 = tn,s < τ1 < · · · <

τk = tn+b be the time points at which the numerical simulation method computes the

deterministic projection. We denote the σ-algebra containing all information about

the state process up to time t as Ft. We decompose the conditional variance of Z

given Xτ0 in the following way.

Var(Z | Fτ0) = E(Z2 | Fτ0)− E(Z | Fτ0)2

= E [E(Z | Fτk)2 | Fτ0 ]− E [E(Z | Fτ0)2 | Fτ0 ]

=
k∑
i=1

E
[
E(Z | Fτi)2 | Fτ0

]
− E

[
E(Z | Fτi−1

)2 | Fτ0
]

=
k∑
i=1

E
[
Var

{
E(Z | Fτi) | Fτi−1

}
| Fτ0

]
In other words, the variance of projection may be expressed as a sum of the expected

values of the conditional variances over each sub-interval (τi−1, τi). The outermost

conditional expectation with respect to Fτ0 for each term is approximated by the

value of Var
{

E(Z | Fτi) | Fτi−1

}
where Xτi−1

is at the mean projected value from

time τ0 to time τi−1. That is, if we call the mean projected states at time τi−1 as
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X̄τi−1
, we approximate the above expression with

k∑
i=1

Var
{

E(Z | Fτi)
∣∣Xτi−1

= X̄τi−1

}
.

Thus we need an expression for E(Z | Fτi) in terms of Xτi and a way of computing

its conditional variance with respect to Fτi−1
. The conditional mean is computed by

locally linearizing the deterministic mean process. That is, if the dynamics of the

mean process can be approximated as

dX̄(t) = A
{
X̄(t)

}
X̄(t)dt,

for some matrix function A, we may approximate X̄(τi+1) ≈ eA{X̄(τi)}·(τi+1−τi)X̄(τi).

Thus, we make the approximation

E(Z | Fτi) ≈ e
∑k−1
j=i A{X̄(τj)}·(τj+1−τj)X(τi).

Based on the above approximation, we compute the conditional variance of E(Z | Fτi)

with respect to Fτi−1
using the distributional properties of the transition kernel. In

our example, E[Z | Fτi ] may be approximated as a linear combination c0 + c1E(τi) +

c2I(τi), where we have included the dependence on S(τi) in the constant term c0

because the change in S(t) can be assumed to be negligible over the time interval

(τi−1, τi). Now, I(τi) is given by

I(τi) = I(τi−1) +NEI(τi)−NEI(τi−1)−NIR(τi) +NIR(τi−1),

and a similar expression can be obtained for S(τi). Thus the conditional variance

of c1E(τi) + c2I(τi) given X(τi) can be computed from the conditional variance of

NEI(τi) and that of NIR(τi+1) given X(τi−1), with the simplifying assumption that

NEI(τi) and NIR(τi+1) are conditionally independent given X(τi−1). The conditional

variance of NIR(τi+1) can, for example, be approximated as

νIRI(τi) · (τi+1 − τi) ·
{
νIRI(τi)σ

2 + 1
}
,
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since the cumulative transitions NSE, NEI , and NIR are modeled as locally negative

binomial processes given by (3.5).

Once E(Z | Ftn,s) and Var(Z | Ftn,s) have been approximated, we approximate the

distribution of Z given Xtn,s as the distribution that belongs to the same family

of distributions as the local transitions, but with the mean and variance given as

above. In our example, we take the negative binomial process with the computed

mean and variance. If the measurement process also belongs to the same family of

distributions, the variance of the projection and the variance of the measurement

process may be added to give the approximated predictive likelihood model. In the

cases where the projected state process distribution and the measurement process

distribution have considerably different tail behaviors, one might approximate the

predictive likelihood as a discretized convolution

P
(
Yn+b = yn+b |Xtn,s

)
= E

[
P(Yn+b = yn+b |Xtn+b)

∣∣Xtn,s

]
≈

k∑
j=1

P
[
Yn+b = yn+b

∣∣Xtn+b = xj
]
· P
[
Xtn+b = xj

∣∣Xtn,s

]
· (xj+1 − xj)

where xj, j = 1, . . . , k, may be taken to be the points at the sample space where the

probability P
[
Yn+b = yn+b

∣∣Xtn+b = xj
]
·P
[
Xtn+b = xj

∣∣Xtn,s

]
is non-negligible. The

length of the last interval xk+1− xk can be chosen appropriately to approximate the

tail probability.

The above procedure is almost impossible to perform for high dimensional process

X(t). In that case, we divide the components of X(t) into groups of highly correlated

ones, and estimate the predictive likelihood for each group. A guide function may be

computed as the product of these quantities. In our example, we treated each city

as a separate group. This approximation may be considered as a kind of variational

inference technique. However, even if we approximate the predictive likelihood for
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each city separately, we are still taking into account the spatial interaction between

the cities, because the deterministic mean process is simulated under the influence

of spatial coupling.

We note that the approximate predictive likelihood, as well as the guide func-

tion ut, is a means of helping the GIRF guide the particles in the right direction.

Although more accurate approximation to the predictive likelihoods leads to better

performance of the filter, some degree of inaccuracy in the approximation may be

handled by the filter, provided that sufficient number of particles are used.

Instead of applying the lengthy procedure described above, we also have used the

simple approximation where the variance of projection was estimated as

Var [NIR(tn+b)−NIR(tn+b−1)] ≈
∫ tn+b

tn+b−1

{
Ī(t) · νIR · σ2 + 1

}
· Ī(t) · νIR dt,

where Ī(t) denotes the size of the infectious compartment in the deterministic mean

process X̄(t). The variance thus estimated was simply added to the variance of the

discrete normal measurement model for the approximation of P(Yn+b = yn+b |Xtn,s).

The performance of this simpler approximation was comparable to the more scrupu-

lous approximation detailed above.

3.3 Monte Carlo adjusted profile confidence intervals

When the likelihood of data from a one-parameter model can be exactly evaluated,

the 95%-confidence interval for the maximum likelihood estimate of the parameter

can be obtained by a cut-off on the likelihood curve at
z20.975

2
= 1.92, where z0.975 is the

0.975 quantile of the standard normal distribution. In large, complex models where

the likelihoods of data are estimated with Monte Carlo methods with non-negligible

amount of error, the uncertainty in the likelihood estimates has to be taken into

account in computing the cut-off. Ionides et al. [2017] developed a general procedure
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for constructing confidence intervals for a parameter of interest when the profile

likelihoods with respect to that parameter can be estimated with some Monte Carlo

errors. The procedure for constructing the Monte Carlo adjusted profile (MCAP)

confidence intervals are as follows.

We assume that the Monte Carlo profile points ˘̀P
1:K are evaluated at φ1:K . We

fit a smooth curve ˘̀S(φ) through the profile points using a local smoother, such as

the R function loess [Cleveland et al., 1992]. The MLE of the parameter φ can be

taken as the point φ̆ at which the maximum of the smoothed curve ˘̀S is attained. In

order to quantify the Monte Carlo error in the estimated maximum likelihood ˘̀S(φ̆),

we make a local quadratic fit near the maximum, using the weights w1:K that were

used in evaluating the smoothed curve ˘̀S at φ̆. Write the fitted quadratic equation

as −ăφ2 + b̆φ+ c̆. The variance and covariance of the coefficients V̆ar[ă], V̆ar[b̆], and

C̆ov[ă, b̆] can be obtained as usual. Using the delta method, the standard error of

the maximum b̆
2ă

can be estimated as

SE2
mc =

1

4ă2

(
V̆ar[b̆]− 2b̆

ă
C̆ov[ă, b̆] +

b̆2

ă2
V̆ar[ă]

)
.

On the other hand, the statistical error originating from the randomness in data can

be estimated with the usual formula

SEstat =
1√
2ă
.

Assuming that the size of the Monte Carlo error is roughly the same across the

possible realizations of the data, we can reasonably approximate the total standard

error of the Monte Carlo maximum likelihood estimate as

SEtotal =

√
SE2

stat + SE2
mc.

It follows that the cut-off for an approximate (1 − α) confidence interval can be



69

obtained as

δ = χα
(
ă× SE2

total

)
= χα

(
ă× SE2

mc +
1

2

)
,

where χα is the (1−α) quantile of the χ-square distribution on one degree of freedom.

3.4 Analysis of artificially generated data from the model

We first implemented the GIRF algorithm to artificially generated data for 832

weeks from year 1949 to 1964 for twenty cities in England and Wales in the mid 20th

century. We simulated the model using the real birth and population data and the

parameters summarized in Table 3.1. In order to estimate the profile likelihood curve

for G, we estimated other parameters using Algorithm 2, while fixing the gravitation

constant at various levels. Twenty cities was enough to stretch our computational

resources—one might like to study larger collections of cities, but one should bear

in mind that inference for the full nonlinear coupled dynamics of epidemics in only

twenty cities is a scientific advance.

We assumed the initial states were known. The choice of the guide function ut was

as described in Section 3.2. The number of sub-intervals for each observation time

interval was taken to equal the number of cities, that is S = 20. We first estimated

the reporting probability ρ, before making inference on G. After confirming that

the estimated profile likelihood plot for ρ achieved the maximum at the true value

of 0.5, we made inference on G while the reporting probability was fixed at the this

value. This two-stage approach was motivated by the following two reasons. First,

the curvature of the log likelihood in the direction of the reporting probability was

much greater than that in the direction of the gravitation constant. Thus, the Monte

Carlo error in finding the MLE for the reporting probability could overshadow the

effect of the gravitation constant, unless filtering was iterated many times to reduce
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Figure 3.1: Estimated profile likelihood for G from artificially generated data and the approximate
95% confidence interval.

the maximization error. Second, little direct correlation between the reporting prob-

ability and the gravitation constant conditional on data was expected from model

construction. A problem-specific inference procedure like this may not be necessary

with large number of particles and sufficient number of iterations of filtering for pa-

rameter estimation. However, such a procedure can bring a substantial increase in

computational efficiency in practice.

We repeated the parameter estimation procedure independently for five times for

each value of G. Each repetition used four thousand particles and comprised eight

filtering iterations while the parameter perturbation size decreased at a geometric

factor of 0.92. The parameter estimates obtained at the end of the last iteration were

taken as the estimated Monte Carlo MLEs. The likelihoods at the estimated MLEs

were then evaluated with Algorithm 1. For each likelihood evaluation, five particle

islands of four thousand particles each were used. The estimated profile likelihoods

were both affected by the Monte Carlo error in finding the MLEs and the Monte

Carlo error in evaluating the likelihoods. Each filtering took on average 69 hours.

We constructed an approximate 95% confidence interval for the gravitation con-

stant G. Diggle and Gratton [1984] considered methods of parameter inference from
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noisy estimates of likelihoods from models that are implicitly defined by simulation

algorithms. Ionides et al. [2017] further developed the methods and proposed a pro-

cedure to construct Monte Carlo adjusted profile (MCAP) confidence intervals. We

used this procedure for our analysis. A short description of the procedure is pro-

vided in Section 3.3. Figure 3.1 shows the estimates of profile log likelihoods and the

approximate 95% confidence interval for G. We kept the three points with highest

estimated likelihood out of five repetitions for each value of G, to make the analysis

robust to occasional unsuccessful Monte Carlo searches. A smooth fit through the

estimated profile likelihoods was obtained using the non-parametric local regression

procedure loess [Cleveland et al., 1992, implemented in R-3.4.1]. This procedure

was carried out on a transformed scale of
√
G for a better quadratic fit. The ap-

proximate confidence interval was found to be (268, 539), indicated by the vertical

lines, using a Monte Carlo adjusted profile cut-off of 35.1 log units. The confidence

interval contained the truth at G = 500. Although the estimated profile likelihood

points had considerable Monte Carlo error, they contained enough information to

make inference on the spatial coupling parameter.

3.5 Data analysis: Measles cases in England and Wales in year 1949–
1964

We also made inference on G from the real weekly case reports data collated by

Bolker and Grenfell [1995]. The same dataset was also examined by He et al. [2009].

We used the city-specific reporting probabilities estimated by He et al. [2009], which

we found to closely match the ratios of the cumulative number of reported cases to

the total number of births in the corresponding period in all cities. This agreed with

what was expected from the model construction.

Since the initial condition was not known, both the IVPs and the non-IVPs were
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estimated. The IVPs and the non-IVPs were alternatingly estimated for eight itera-

tions of the following procedure. For the estimation of the IVPs given the non-IVPs

obtained from the previous iteration, we ran the GIRF over the first three weeks

starting with perturbed IVPs. We only filtered for the first three weeks because

the information about the initial states was concentrated on the early data points.

We used fifty islands each comprising eighty particles for this task, because using

more islands helped prevent a quick collapse of the parameter swarm into a single

point. The filtering over the first three weeks was iterated sixty times, during which

the swarm of IVPs moved toward the region of higher likelihood conditioned on the

non-IVPs obtained from the previous iteration. Once the IVPs were estimated, the

non-IVPs were estimated conditioned on the IVP values. For this, we conducted one

filtering run over the whole data, where only the non-IVPs were perturbed continu-

ously at every intermediate time point. This process used one island comprising four

thousand particles. Once the eight rounds of the alternating estimation of the IVPs

and the non-IVPs were finished, the final values of the non-IVPs were taken as the

MLE. Finally, the IVPs were estimated conditioned on the estimated MLE for the

non-IVPs before likelihood evaluation. The likelihoods at the MLEs were computed

with Algorithm 1, using five islands of four thousand particles. This entire procedure

was repeated independently seven times for each fixed value of G. Each filtering took

on average 76 hours.

Figure 3.2 shows the estimated profile likelihood for the gravitation constant G.

We kept the four points with highest estimated likelihood out of seven for each value

of G. The construction of the MCAP confidence interval took place on the
√
G scale.

The MLE for G was estimated to be 321, and the 95%-confidence interval (254, 387)

with a cut-off of 33.1. The data contained enough information to enable inference
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Figure 3.2: Estimated profile likelihood for G from real case data and the approximate 95% confi-
dence interval.

on G.

3.6 Post-hoc analysis of inference results

In this section, we provide some post-hoc analysis plots for the spatiotemporal

measles transmission considered in Section 3.1. Figure 3.3 shows the results of fil-

tering on the artificially generated data, which was analyzed in Section 3.4, with the

same parameter set used to generate the data. The true and estimated values for

the susceptible, exposed, and infectious compartment sizes and the weekly total di-

agnoses or recoveries are shown for three cities of varying sizes, London, Cardiff, and

Halesworth. These plots show that the state trajectories were correctly estimated.

The estimated mean, the median, and the tenth and ninetieth percentiles are shown

in black, blue, and green lines, respectively. The mean and median were almost the

same, so they are not visually distinguishable in the plot. The estimated state means

plus minus two standard errors are marked with grey shades. The true state tra-

jectory, marked by red curves, lay mostly within the estimated tenth and ninetieth

percentiles throughout the time period, for the exposed and infectious compartment

sizes and the weekly diagnoses or recoveries (the second, third, and fourth rows).

The susceptible compartment size reflects the cumulative number of infections, so it
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has a long memory, or equivalently, slow mixing. The estimated trajectory for the

susceptible compartment closely follow the changes in the true trajectory, but there

are biases in the estimates that are roughly constant for long periods of time. These

biases mostly result from the inaccurate estimates of the number of infections at

epidemic peaks. Due to the measurement error, the filtering distribution has some

degree of spread in the number of infections at the peaks. However, the long term

effect of the number of infections at the peaks remains in the susceptible compart-

ment size. Therefore, accurately estimating the susceptible compartment size with

a filtering method is a fundamentally difficult task. Still, our filtering results pro-

duced reasonable estimates of the susceptible compartment size to the extent that

the inaccuracy in the estimated number of susceptibles do not seriously impact the

ability to estimate other compartment sizes. These results show that severe particle

depletion did not occur in our analysis, which used a complex twenty dimensional

model.

For the real weekly case reports data analyzed in Section 3.5, we compared the real

observation sequence with the sequences generated by our model at the estimated

MLE. We simulated the model at the estimated MLE point which produced the

highest likelihood estimate in Figure 3.2, except for the spatial coupling parameter

G, which we varied. The purposes of this comparison were to gauge the degree of

model misspecification and to see the differences between the observation sequences

generated with different values of G. Figure 3.4 show the simulated data sequences

for London, Cardiff, and Halesworth when G was set to 0, 100, 321 (the estimated

MLE), 1500. When the data was simulated at G = 0, the measles epidemic died out

within two years, which was certainly different from the observed data. On the other

hand, when we set G to 100, 321, or 1500, the generated data sequences showed
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a similar pattern as the real data, and no clearly distinguishable visual differences

could be found between the three simulated sequences. These results suggest that the

model we used had the capacity to generate data similar to the real observations, but

that it would probably be very hard or impossible to accurately estimate the value of

G with ad-hoc methods. In Section 3.5, however, we estimated the MLE for G and

its 95% confidence interval, which had fairly small width, using a likelihood-based

inference.

3.7 Remarks

Sharp deterioration of standard particle filters with increasing dimensions has

been an obstacle to making inference from spatiotemporal data using coupled non-

linear dynamic models. Our GIRF may not be enough for very high dimensional

models, but it does offer an advance in analyzing coupled highly nonlinear dynamic

systems of moderate dimensions. Potential applications may be found in areas such

as ecology, behavioral sciences, or epidemiology, when the data are collected at linked

spatial locations or structured into many categories. Many scientific and statistical

challenges remain involving analysis of partially observed, highly nonlinear, coupled

stochastic systems, and we have shown that the GIRF approach provides a framework

for progress in this enterprise.
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CHAPTER IV

Multiple proposal Markov chain Monte Carlo

In this chapter, I explore a new framework in Markov chain Monte Carlo (MCMC)

sampling in which multiple proposals are made for the next state of the Markov chain.

The framework, which offers a new insight into the Metropolis-Hastings (M-H) strat-

egy, can be used to generalize various existing MCMC algorithms. I illustrate that

the multiple proposal framework can be applied not only to algorithms that em-

ploy random proposal kernels, but also to piecewise deterministic algorithms such

as Hamiltonian Monte Carlo (HMC) or the bouncy particle sampler (BPS). The

generalization offers practical benefits by facilitating better mixing of the Markov

chain. When the multiple proposal framework is combined with Hamiltonian Monte

Carlo methods, it facilitates flexible tuning of the step size of the numerical approxi-

mation procedure called the leapfrog method and increases computational efficiency.

When combined with the bouncy particle sampler, it allows the Markov chain to pass

through regions of low target density and explore the sample space more efficiently.

4.1 Introduction

Markov chain Monte Carlo (MCMC) methods have been very widely used to

sample from distributions with unnormalized densities. The goal of MCMC methods

78
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is to obtain samples from the target distribution with density

π̄(x) :=
π(x)

Z

defined on the space X, where π(x) denotes an unnormalized density, and Z denotes

the corresponding normalizing constant. MCMC methods construct a Markov chain,

which can start at an arbitrary initial state X(0). Given the current state of the

Markov chain X(i), the next state X(i+1) is drawn from a kernel K(·|X(i)), which

has the target distribution π̄ as its invariant distribution. Many MCMC methods

adopt the Metropolis-Hastings (M-H) strategy, in which a sample from the kernel

K(·|X(i)) is drawn in two stages [Hastings, 1970]. First, a proposal Y is drawn from

a proposal kernel Q, and second, the proposal is either accepted as X(i+1) or rejected

with certain probability. When the proposal is rejected, the next state of the chain

equals the current state X(i). The invariance of the target distribution is achieved

by appropriately choosing the acceptance probability.

There exist various MCMC methods that use different types of proposal kernels.

Metropolis-Hastings algorithms refer to a general class of algorithms that use random

proposal kernels with density q(y|x) with respect to the same reference measure for

the target density π̄(x). Other algorithms exist that make piecewise deterministic

proposals. Hamiltonian Monte Carlo methods [Duane et al., 1987] and the bouncy

particle sampler methods [Peters et al., 2012, Bouchard-Côté et al., 2017] belong to

this category and share the similarity that they originated from simulation methods

of physical systems.

In this chapter, I show that the multiple proposal framework can be applied

to both types of MCMC algorithms that make random or piecewise deterministic

proposals.
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4.2 Multiple proposal Metropolis-Hastings algorithms

4.2.1 Algorithm description

M-H type kernels make proposals for the next state of the Markov chain using

a proposal distribution, whose conditional density is denoted by q(y |x). In the

standard M-H sampling, given the current state X(i), the proposal Y drawn from

Y ∼ q(· |X(i)) is accepted with the probability

α(Y,X(i)) := min

(
1,

π(Y ) q(X(i) |Y )

π(X(i)) q(Y |X(i))

)
.

This is algorithmically implemented by drawing a uniform random variable Λ ∼

unif(0, 1) and accepting the proposal if and only if Λ < π(Y ) q(X(i) |Y )

π(X(i)) q(Y |X(i))
. When ac-

cepted, we take X(i+1) ← Y and when rejected, X(i+1) ← X(i). This acceptance

probability ensures that the detailed balance equations hold for the Markov chain{
X(i)

}
and its stationary distribution is π̄.

In multiple proposal Metropolis-Hastings algorithms, we make subsequent propos-

als from the rejected values. The number of sequential proposals we make, denoted

by N , can be any fixed or random number, provided that it is independent of the

proposal draws and the decision of whether the proposals are acceptable or not.

Each of these N proposals are deemed either acceptable or not, and we take the L-th

acceptable value as the next state of the Markov chain. If there are less than L ac-

ceptable values among the N proposals, the next state of the Markov chain remains

the same as the current state. The number L can be fixed or random, and can be

jointly drawn with N .

Throughout this chapter, for two integers n and m, we will denote by n :m the

sequence (n, n+1, . . . ,m) if n ≤ m and the sequence (n, n−1, . . . ,m) if n > m. Also,

given a sequence (an)n∈Z+ = (a1, a2, . . . ), we will denote by an:m the subsequence
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Algorithm 3: Multiple proposal Metropolis Hasting algorithm

Input : The distribution of the maximum number of proposals and the maximum number
of accepted proposals ν(N,L)
Proposal kernels {qn(yn | yn−1:0)}
Number of iterations, M

Output: Markov chain
(
X(i)

)
i∈1:M

Initialize: Set X(0) arbitrarily
for i← 0 :M−1 do

Draw (N,L) ∼ ν(·, ·)
Draw Λ ∼ unif(0, 1)
Set X(i+1) ← X(i)

Set na ← 0
for n← 1 :N do

Draw Yn ∼ qn(· |Yn−1:0), where we understand Y0 := X(i)

if Λ <
π(Yn){∏n

j=2 qn−j+1(Yj−1 |Yj:n)}qn(X(i) |Y1:n)

π(X)q1(Y1 |X(i)){∏n
j=2 qj(Yj |Yj−1:1,X(i))} then na ← na + 1

if na = L then
Set X(i+1) ← Yn
Break

end

end

end

(aj)n≤j≤m.

The algorithm starts at an arbitrarily chosen initial state X(0). We denote by

X(i) the state of the Markov chain after i updates. Let N,L ∈ Z+ := {1, 2, . . . } with

N ≥ L be drawn from a distribution whose probability mass function is denoted

by ν(N,L). The algorithm draws Λ ∼ unif(0, 1), independently of N and L. The

algorithm draws the first proposal Y1 ∼ q1(· |X(i)), independently of Λ and N . The

proposal Y1 is called acceptable if Λ < π(Y1)q1(X(i) |Y1)

π(X(i))q1(Y1 |X(i))
. The second proposal Y2 ∼

q2(· |Y1, X
(i)) is drawn given the value of Y1 and X(i). The proposal Y2 is acceptable

if Λ < π(Y2)q1(Y1 |Y2)q2(X(i) |Y1,Y2)

π(X(i))q1(Y1 |X(i))q2(Y2 |Y1,X(i))
. The n-th proposal Yn, n ≤ N is drawn from

qn(· |Yn−1:1, X
(i)) and called acceptable if

(4.1) Λ <
π(Yn)

{∏n
j=2 qn−j+1(Yj−1 |Yj:n)

}
qn(X(i) |Y1:n)

π(X)q1(Y1 |X(i))
{∏n

j=2 qj(Yj |Yj−1:1, X(i))
} .

The procedure is repeated until L acceptable proposals are drawn or until N propos-

als are drawn, whichever comes sooner. The next state of the Markov chain X(i+1)
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is set to the L-th accepted value, or to X(i) if there are less than L acceptable values

among Y1, . . . , YN . The pseudocode for this algorithm is shown in Algorithm 3. The

standard Metropolis-Hastings algorithm corresponds to the case where N and L are

both equal to 1.

We note that the proposal kernels qn, n ∈ 1 :N , can be simply taken as

qn(yn | yn−1:0) ≡ q(yn | yn−1)

for some proposal kernel density q(· | ·). In addition, if the kernel q is symmetric,

that is, if q(x | y) ≡ q(y |x), then the acceptability criterion (4.1) simplifies into

Λ <
π(Yn)

π(X(i))
.

We note that the multiple proposal Metropolis-Hastings algorithm with L = 1

constructs Markov chains with the same distribution as those constructed by delayed

rejection (DR) methods [Tierney and Mira, 1999, Mira et al., 2001, Green and Mira,

2001]. The proof of this claim as well as a brief description of the delayed rejection

method is provided in appendix (Section 4.A). However, the framework we present

has several advantages over the delayed rejection:

1. First, our algorithmic framework is conceptually and algorithmically simpler.

The expression for the acceptance rule is more concise than that given in the

original papers on delayed rejection. Our framework provides a new perspective

on why the rather convoluted acceptance probability formula in [Mira et al.,

2001] is necessary.

2. Our framework is more broadly applicable than the delayed rejection method.

For example, some MCMC algorithms, such as Hamiltonian Monte Carlo or the

bouncy particle sampler methods, use piecewise deterministic kernels to draw
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proposals. For these methods, the application of the delayed rejection is not

straightforward. However, our framework can be applied to these methods.

3. Our framework is more general than the delayed rejection method. As men-

tioned earlier, when we use random proposal kernels with well defined densities,

the delayed rejection approach is identical to the case where we take L = 1 in

our framework, in terms of the law of the Markov chain.

4.2.2 Detailed balance of the multiple proposal scheme

We show that the Markov chain constructed by the multiple proposal Metropolis-

Hastings algorithm (Algorithm 3) is reversible with stationary distribution π̄. In

other words, the stationary chain with initial distribution π̄ satisfies detailed balance.

If we denote the Markov kernel constructed by Algorithm 3 as K(dx′;x), then the

detailed balance with respect to π̄ states that, for any x, x′ ∈ X,

π(x)K(dx′;x)dx = π(x′)K(dx;x′)dx′.

In the following proof, we denote the l-th rank of a given finite sequence an:m by

rl(an:m); that is, if we reorder the sequence an:m as a(1) ≥ a(2) ≥ · · · ≥ a(m−n+1),

then rl(an:m) := a(l). If l is greater than the length of the sequence an:m, we define

rl(an:m) := 0. We also define r0(an:m) :=∞.

Proposition IV.1. Algorithm 3 establishes detailed balance of the Markov chain(
X(i)

)
with respect to the target density π̄.

Proof. It suffices to show the claim for fixed N and L. The general case immediately

follows because the Markov kernel K(dx′;x) is constructed as a mixture over N and

L.

We will prove the n-step transition from the current state to the next state of

the Markov chain satisfies detailed balance, for arbitrary n. That is, the probability
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density of taking yn as the next state of the Markov chain starting from the current

state y0 through a sequence of proposals y1:n−1 is the same as the probability density

of taking y0 starting from yn after going through the proposals in reverse order yn−1:1.

The case for n = 1 is well known from the original Metropolis-Hastings algorithm.

We fix n ≥ 2. For each i ∈ 0 :n, we define a function pi : Xn+1 → R+ as

pi(y0, y1, . . . , yn) = pi(y0:n) := π̄(yi) ·
i∏

j=1

qj(yi−j|yi−j+1:i) ·
n−i∏
j=1

qj(yi+j|yi+j−1:i).

We consider y0, . . . , yn fixed, and denote

hi := pi(y0:n), h̄i := pi(yn:0),

and

ci :=
hi
h0

, c̄i :=
h̄i
h̄0

.

By construction, hi = h̄n−i for all i ∈ 0 :n. The probability density of drawing y0

from π̄ and subsequently drawing y1:n from proposal kernels q1, . . . , qn equals h0. For

a drawn uniform random variable Λ ∼ unif(0, 1), the first proposal y1 is acceptable

if and only if Λ < c1 = π(y1)q1(y0|y1)
π(y0)q1(y1|y0)

. Likewise, the i-th proposal is acceptable if and

only if Λ < ci.

The n-th proposal yn is the L-th acceptable value if and only if there are exactly

L− 1 acceptable proposals among y1:n−1, and yn is acceptable, that is,

Λ ≥ rL(c1:n−1) and Λ < rL−1(c1:n−1) and Λ < cn.

Since Λ is always less than one, this condition is equivalent to

{
rL(c1:n−1) ∧ cn ∧ 1

}
≤ Λ <

{
rL−1(c1:n−1) ∧ cn ∧ 1

}
,

where we denote a ∧ b := min(a, b). Therefore, the probability density of drawing
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y0:n and taking yn as the next state of the Markov chain equals

h0 ·
[{
rL−1(c1:n−1) ∧ cn ∧ 1

}
−
{
rL(c1:n−1) ∧ cn ∧ 1

}]
=
{
rL−1(h1:n−1) ∧ hn ∧ h0

}
−
{
rL(h1:n−1) ∧ hn ∧ h0

}
=
{
rL−1(h̄1:n−1) ∧ h̄0 ∧ h̄n

}
−
{
rL(h̄1:n−1) ∧ h̄0 ∧ h̄n

}
= h̄0

[{
rL−1(c̄1:n−1) ∧ c̄n ∧ 1

}
−
{
rL(c̄1:n−1) ∧ c̄n ∧ 1

}]
.

Noting that the expression in the last line equals the probability density of drawing

yn, . . . , y0 in reverse order starting from yn and taking y0 as the next state of the

Markov chain, we see that the n-step detailed balance holds. We reach the claimed

detailed balance by simply combining the detailed balance for n = 1 :N .

Corollary IV.2. The target density π̄ is a stationary distribution of the Markov

chain constructed by Algorithm 3.

4.2.3 Multiple proposal Metropolis adjusted Langevin algorithms

Metropolis adjusted Langevin algorithms (MALAs) have better scaling with di-

mension than random walk Metropolis algorithms [Roberts et al., 1997, Roberts

and Rosenthal, 1998]. Specifically, the asymptotic efficiency of Metropolis adjusted

Langevin algorithm scales asO(d−1/3) whereas the efficiency of random walk Metropo-

lis algorithms scale as O(d−1).

The multiple proposal Metropolis-Hastings framework can be readily applied to

MALAs. Given the current state of the Markov chain X, successive proposals

Y1, Y2, . . . are made according to

Yn ∼ N(Yn−1 +∇ log π(Yn−1)ε,
√

2εI), n ≥ 1

where Y0 := X is understood. In this section, we denote the density of the proposal

Yn at yn given Yn−1 = yn−1 by q(yn | yn−1). For a drawn uniform random variable
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Λ ∼ unif(0, 1), a proposal Yn is called acceptable if

(4.2) U <
π(Yn)

∏n
j=1 q(Yj−1 |Yj)

π(X)
∏n

j=1 q(Yj |Yj−1)
.

The L-th acceptable value is taken as the next state of the Markov chain.

Roberts and Rosenthal [1998] showed that the optimal acceptance probability

for the Metropolis-adjusted Langevin algorithm is 0.574 up to three decimal places.

Taking small jump step size ε increases the acceptance probability, but makes the

Markov chain stay near the same location for a longer period of time and hampers

mixing. On the contrary, when implementing a multiple proposal MALA, the trade-

off between the acceptance probability and the jump step size is relaxed. One can

use a large jump size ε, and the algorithm may still find an acceptable place after

multiple jumps. By taking large N , the Markov chain may land on an acceptable

state far away from the starting point. In Appendix 4.B, we argue that the right

hand side of (4.2) does not become too small even for large n and indeed increases

on average as n increases, using a martingale argument.

4.3 Multiple proposal piecewise deterministic MCMC algorithms

4.3.1 Algorithm description

Some MCMC algorithms use piecewise deterministic proposal kernels to update

the state of the Markov chain. Some of these algorithms extend the target distribu-

tion on space X to a joint distribution on a product space X×V whose marginal on X

equals the original target distribution. Elements in space V determine how the piece-

wise deterministic kernel makes proposals. In this section, we will first describe the

algorithms in an abstract setting. We will then present how specific algorithms, such

as Hamiltonian Monte Carlo or the bouncy particle sampler, fit into this framework.

In the extended space X× V, we assume that the target distribution has density
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π̄(x)ψ(v) for (x, v) ∈ X × V with respect to a product reference measure denoted

by dx dv. The X-component of the reference measure dx is the same as the original

reference measure on X for which the original target distribution has density π̄(x).

The variable v ∈ V is often called the momentum variable in HMC and the velocity

variable in the BPS. We define a collection of deterministic maps Sτ : X×V→ X×V

for possibly various values of τ . The map Sτ may be interpreted as the evolution

of a particle for time duration τ in a system, such that Sτ (x, v) denotes the final

position-velocity pair of a particle that moves in the system with initial position x

and initial velocity v.

In order to make sure that the target density π̄(x)ψ(v) is stationary in the algo-

rithm, we impose some conditions on {Sτ} and ψ(·).

• Measure preserving condition. First, the map Sτ for each τ preserves the

reference measure dx dv: that is, for every measurable set A ∈ X× V,

(4.3)

∫
1[Sτ (x,v)∈A]dxdv =

∫
A

dxdv.

Then for any integrable measurable function f , we have∫
f{S(x, v)}dxdv =

∫
f(x, v)dxdv.

• Reversibility condition. Second, we assume that there exists a velocity re-

flection operator R(x) : V→ V defined for every point x ∈ X, such that

R(x) ◦R(x) = id for all x ∈ X,(4.4)

R(x) preserves the reference measure dv,(4.5)

ψ{R(x)v} = ψ(v) for all (x, v) ∈ X× V,(4.6)

and if we define a map T : X× V→ X× V as T (x, v) := (x,R(x)v),

(4.7) T ◦ Sτ ◦ T ◦ Sτ = id for all τ.
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Algorithm 4: Multiple proposal piecewise deterministic MCMC

Input : The distribution of the maximum number of proposals and the maximum number
of accepted proposals ν(N,L)
Time step length distribution µ(dτ)
Velocity distribution density ψ(v)
Time evolution operators {Sτ}
Velocity reflection operator R(x)
Velocity refreshment probability pref

Number of iterations, M

Output: Markov chain
(
X(i)

)
i∈1:M

Initialize: Set X(0) arbitrarily and draw V (0) ∼ ψ(·).
for i← 0 :M−1 do

Draw N,L ∼ ν(·, ·)
Draw τ ∼ µ(·)
Draw Λ ∼ unif(0, 1)
Set (X(i+1), V (i+1))← (X(i), R(X(i))V (i))
Set na ← 0
for n← 1 :N do

Set (Yn,Wn) = Sτ (Yn−1,Wn−1), where we understand Y0 := X(i) and W0 := V (i)

if Λ <
π(Yn)ψ(Wn)

π(X(i))ψ(V (i))
then na ← na + 1

if na = L then
Set (X(i+1), V (i+1))← (Yn,Wn)
Break

end

end

With probability pref, refresh V (i+1) ∼ ψ( · )
end

In the above, id denotes the identity maps in the corresponding space V or X × V.

The reversibility condition can be understood as an abstraction of an aspect of the

Hamiltonian dynamics that if we reverse the velocity of a particle and advance in

time, the particle traces back its past trajectory. Its meaning will become clearer in

the context of explicit cases of HMC or the BPS. The proof of the following lemma

is provided in appendix.

Lemma IV.3. Suppose (4.4) and (4.7) hold. Define recursively Snτ := Sn−1
τ ◦ Sτ

where S1
τ = Sτ . Then for any n ≥ 1, we have T ◦ Snτ ◦ T ◦ Snτ = id. Moreover, Sτ is

a bijective map.

Multiple proposal piecewise deterministic MCMC algorithms operate in a similar
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fashion as multiple proposal Metropolis-Hastings algorithms do. The pseudocode

is shown in Algorithm 4. The main difference from Algorithm 3 is that proposals

are obtained deterministically by the relation (Yn,Wn) = Sτ (Yn−1,Wn−1) and that

the acceptability criterion takes into account the density ψ as well. If there are

less than L acceptable proposals in the sequence of proposals, the next state of the

Markov chain is set to (X(i+1), V (i+1)) = (X(i), R(X(i))V (i)). In order to facilitate

better mixing, the velocity V (i+1) may be refreshed with a certain probability pref at

the end of each iteration by drawing from ψ(·). The output
(
X(i)

)
i∈1:M

is obtained

by simply discarding the velocity variables
(
V (i)

)
i∈1:M

.

We finally note that the time length τ for the evolution map Sτ can be drawn

either collectively or separately for each n ∈ 1 :N in Algorithm 4. The pseudocode

in Algorithm 4 shows the case where τ is drawn collectively such that the same value

of τ is used for all n ∈ 1 :N . Instead, the line Draw τ ∼ µ(·) can be moved right

below the for n ← 1 :N do line such that for each n ∈ 1 :N , a different value of τn

is drawn independently and Sτn is used to obtain (Yn,Wn).

The invariance of the target distribution π(x)ψ(v) can be shown in a similar way

as in Section 4.2.2.

Proposition IV.4. Algorithm 4 constructs a reversible Markov chain with respect

to the density π̄(x)ψ(v).

Proof. See Appendix 4.D.

4.4 Connection to Hamiltonian Monte Carlo methods

HMC methods are often explained in an analogy with the Hamiltonian dynamic

system in which a particle moves according to the physical law described by the

Hamiltonian equation of motion [Duane et al., 1987]. In this section, we will explain
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the algorithm in the framework of piecewise deterministic MCMC presented in the

previous section.

Standard Hamiltonian Monte Carlo methods on continuous space start at an

arbitrary point with the momentum drawn from ψ(·). For consistency in notation,

we denote a momentum random variable by V and a nonrandom dummy variable by

v. We define a Hamiltonian system for the target distribution with density π̄(x)ψ(v)

as

(4.8) H(x, v) := − log π(x)− logψ(v).

The Hamiltonian is defined up to an additive constant by using π(x) instead of

possibly intractable π̄(x). An analogy with a physical Hamiltonian system can be

drawn by interpreting the first term − log π(x) as the static potential energy and the

second term − logψ(v) as the kinetic energy. The Hamiltonian equation of motion

(HEM) is defined as

dx

dt
=
∂H

∂v
,

dv

dt
= −∂H

∂x
.

(4.9)

A particle in a Hamiltonian system moves according to the HEM (4.9).

Hamiltonian Monte Carlo methods construct a Markov chain that simulates the

time evolution of the Hamiltonian system (4.8). Given the current state of the

Markov chain (X(i), V (i)), a proposal for the next state of the Markov chain (X(i+1), V (i+1))

is taken as a deterministic approximation to the final position and momentum of the

particle with initial position X(i) and initial velocity V (i) after a certain time duration

τ . We will denote the map from the initial position-momentum pair to the final pair

by Sτ . Standard HMC methods can be described as a special case of Algorithm 4

applied to this map Sτ , where N and L are fixed at one and pref is set to unity.
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An approximate numerical solution to the HEM (4.9) can be obtained by the

leapfrog algorithm [Duane et al., 1987]. The leapfrog algorithm incrementally up-

dates the momentum and the position variables in small time steps of length ε = τ/m

for some suitable choice of m. One iteration of the leapfrog algorithm alternately

updates the momentum and position (x, v) to (x̃, ṽ) as follows:

ṽ ← v +
ε

2
∇{− log π(x)}

x̃← x+ εṽ

ṽ ← ṽ +
ε

2
∇{− log π(x̃)}

(4.10)

In cases where evaluation of the gradient of log π is not possible, a different, analyt-

ically tractable density π̂ may be used in (4.10). This change leads to definition of

a new Hamiltonian Ĥ(x, v) = − log π̂(x)− logψ(v). Still, the acceptability criterion

Λ < π(Yn)ψ(Wn)

π(X(i))ψ(V (i))
in Algorithm 4 makes the HMC method target the original target

density π̄(x).

It is worth noting that if an exact solution to the HEM (4.9) can be simulated, then

the map Sexact
τ that maps the initial position-momentum pair to the final position-

momentum pair along the solution path preserves the Hamiltonian: that is, for all

(x, v),

H(x, v) = H{Sexact
τ (x, v)}.

In this case, the acceptance probability is always equal to unity and the algorithm be-

comes rejection-free. When the solution is numerically approximated by the leapfrog

algorithm, smaller leapfrog time step generally leads to more accurate approximation

and higher acceptance probability. When an alternative Hamiltonian Ĥ is used to

run the leapfrog algorithm, the acceptance probability generally becomes lower as

the corresponding π̂ becomes more different from the target density π.
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We can check the measure preserving condition and the reversibility condition in

4.3.1 for both Sexact
τ and the one obtained by the leapfrog algorithm Sleap

τ . First, we

check the reversibility condition. The velocity reversal operator can be simply taken

as R(x) = −id for all x ∈ X. The conditions (4.4) and (4.5) are easily checked. If

we take ψ(v) to be a function of |v|, checking of (4.6) is also trivial. The condition

(4.7) for Sexact
τ follows from the fact that the HEM (4.9) takes the same form under

the transformation t̃ = −t and ṽ = −v. Checking (4.7) for Sleap
τ only requires simple

algebraic computations.

As for the measure preserving condition, it suffices to check that the determinant

of the Jacobian of the map Sτ has absolute value equal to unity:∣∣∣∣∂2Sτ (x, v)

∂x∂v

∣∣∣∣ = 1, for all (x, v) ∈ X× V.

The above equation for Sexact
τ is provided by Liouville’s theorem [Liouville, 1838].

Neal [2011] and Betancourt [2017] provide heuristic presentations of this fact. For

Sleap
τ , we note that each of the transformations in (4.10) is a translation and thus

has unit Jacobian.

4.4.1 Issues of tuning in the original HMC

Tuning of parameters is important to run HMC efficiently. The leapfrog step size

ε and the number of leapfrog steps nleap affects the accuracy of the approximated

trajectory of the solution to the HEM, the acceptance probability of the proposal,

and the autocorrelation of the resulting Markov chain. In this subsection, I briefly

review the issues of tuning parameters in the original HMC setting based on Neal

[2011] and references therein. On the basis of this background, the benefits of the

multiple proposal scheme will be discussed in Section 4.4.2.

Asymptotically, as the leapfrog step size ε tends to zero, the one-step leapfrog
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approximation of the trajectory of the solution to the HEM scales as ε3, and the

leapfrog approximation error for a fixed length (that is, when ε · nleap is held fixed)

scales as ε2 [Leimkuhler and Reich, 2004]. However, if ε is not small enough, the

leapfrog approximation may not be stable and diverge to infinity. Thus taking ε

small enough is crucial to avoid unreasonably small acceptance probability. The

upper limit on the size of ε to avoid unstable trajectories is roughly on the order of

the size of the variability in the most restricted direction; in other words, in the case

where the target distribution is multidimensional Gaussian with covariance matrix

Σ, the leapfrog trajectory tends to be unstable if the step size ε exceeds roughly

the square root of the smallest eigenvalue of Σ. However, the number of leapfrog

jumps needed to traverse a fixed length is proportional to ε−1, so taking ε too small

can be computationally wasteful. The number of leapfrog jumps nleap should be

sufficiently large to ensure that the consecutive states of the Markov chain are not

highly correlated.

The effective size of MCMC samples is conceptually defined as the number of

independent samples that result in the same degree of variability in the resulting

estimates as that obtained by the given MCMC samples. Thus a desirable choice for

nleap makes the leapfrog trajectory long enough such that the end point is almost

independent of the starting point. The fact that the number of leapfrog jumps needed

to obtain an almost independent sample point is proportional to ε−1 gives HMC a

distinctive advantage over the random walk Metropolis algorithm [Neal, 2011]. In

random walk Metropolis, if the proposal is Gaussian with standard deviation ζ, the

standard deviation of combined n random walk proposals equals
√
nζ. Thus, the

typical number of proposals needed to obtain an almost independent point needs

to satisfy
√
nζ ≈ 1, that is, n ≈ ζ−2. However, the size of ζ needed to obtain
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reasonable acceptance probability is again on the order of the standard deviation in

the most constrained direction (e.g., the square root of the smallest eigenvalue of the

covariance matrix if the target distribution is Gaussian), which is of the same order

as the required upper limit on the leapfrog step size ε.

The overall computational cost required to obtain a state almost independent

of the current state is proportional to 1/(ε · a), where a is the average acceptance

probability over all states in the target space X. Neal [2011] gives a simple heuristic

argument that the average difference in Hamiltonian between the start and end point

of the trajectory scales as E∆H ≈ ε4. The same argument shows that the acceptance

probability can be approximated by 2Φ
(
−
√

E∆H/2
)

where Φ(·) denotes the cdf

of the standard normal distribution. An approximate average cost to obtain an

independent sample is thus given by

1

(E∆H)1/4a(E∆H)
.

This expression is minimized when E∆H = 0.41 and a(E∆H) = 0.65, which is

consistent with the empirical findings in the literature [Neal, 1994, Creutz, 1988,

Sexton and Weingarten, 1992].

The above argument also can be applied to see how HMC scales with space di-

mension d. If the target distribution is close to a product of the distribution for

d independent variables, E∆H scales proportionally with d. Since we know E∆H

scales as ε4, in order to have reasonable acceptance probability, ε must scale such that

d · ε4 ≈ 1, i.e., ε ≈ d−1/4. This means that the number of leapfrog jumps needed to

obtain an almost independent state is proportional to d1/4. Since the computational

cost for each leapfrog jump is proportional to d, the overall cost of computation scales

as d5/4.
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4.4.2 Flexible tuning of HMC using multiple proposal scheme

In multiple proposal HMC, we have additional degrees of flexibility in tuning.

In addition to the leapfrog jump size ε and the number of leapfrog jumps nleap,

we can tune the maximum number of proposed trials N , the maximum number of

accepted proposals L, and the probability of velocity refreshment pref. In the original

HMC (i.e., without multiple proposal), the leapfrog step size ε needs to be small

enough to guarantee that the acceptance probability is not too small—if the proposal

obtained after computing nleap leapfrog jumps are rejected, these computations are

wasted in the sense that they do not play a part in obtaining a new independent

sample. However, if multiple proposals can be tried, that is if N > 1, smaller

acceptance probability may still be feasible, because the computations that led to

the current proposal is, instead of being wasted, continued to obtain subsequent

proposals. The computations are wasted only if all N proposals are rejected (when

we consider L = 1). Since the number of leapfrog jumps needed to obtain an almost

independent sample is still proportional to ε−1, the overall computational cost to get

an independent sample is roughly proportional to

1

ε · {1− (1− a)N}
,

where a is the average acceptance probability for a single proposal. When a is not too

small, the overall acceptance probability 1− (1−a)N becomes close to one with only

a moderate number of N . For N = 5, the value of expected difference in Hamiltonian

E∆H that minimizes the overall computational cost

1

(E∆H)1/4

[
1−

{
1− 2Φ

(
−
√

E∆H/2
)}N]
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is E∆H = 1.77(=: µmp,5), at which a(E∆H) ≈ 2Φ(−
√

E∆H/2) = 0.35 and ε ≈

(E∆H)1/4 = 1.15. In comparison with the original HMC where the optimal values

were E∆H = 0.41(=: µorig), at which a(E∆H) ≈ 0.65 and ε ≈ 0.80, the overall

computational efficiency increases by a factor of

µ
1/4
mp,5

[
1−

{
1− 2Φ

(
−
√
µmp,5/2

)N}]
µ

1/4
orig · 2Φ

(
−
√
µorig/2

) =
1.016

0.521
= 1.95.

We argued previously that the advantage of HMC over random walk based meth-

ods comes from the fact that HMC can make long moves more easily. The number of

steps needed is proportional to the distance traversed in HMC, but is proportional

to its square in random walk based methods. If the number of leapfrog jumps is too

small, the Markov chain from HMC essentially behaves like a random walk, because

the velocity is refreshed to a random value before the trajectory makes a long move

in one direction.

However, if nleap is too large, the trajectory may double back on itself, because

the solution to the HEM is confined to a level set of the Hamiltonian. We cannot

simply stop the leapfrog jumps when the trajectory starts doubling back on itself,

because then the stopping condition is correlated with the location of the proposal.

Such a choice in general destroys the detailed balance and makes the algorithm tar-

get a wrong distribution. In order to solve this issue, Hoffman and Gelman [2014]

proposed the No-U-Turn sampler (NUTS) where the simulated trajectory is succes-

sively extended to twice the current length in either forward or backward direction

in the form of a binary tree, until a ‘U-turn’ is observed in any of the sub-binary

tree. The next state of the Markov chain is selected randomly as one of the states

in the trajectory. Due to the symmetric nature of the growth of the binary tree, the

relationships of the stopping condition with the current state and with the next state
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of the Markov chain are the same, and the detailed balance holds.

In multiple proposal HMC, the length of the trajectory can be controlled by

two additional tuning parameters, the maximum number of accepted proposals L

and the velocity refreshing probability pref. If L is greater than one, the algorithm

makes more than one set of leapfrog jumps in each iteration, making the trajectory

longer. Also, if the velocity is not refreshed at the end of the current iteration,

the next iteration extends the trajectory from the current iteration exactly as if the

whole trajectory is one leapfrog simulation path. Here, due to the same issue of

destroying detailed balance, L cannot be chosen based on the trajectory. However,

the refreshment probability pref can be chosen depending on the current state of the

Markov chain. This follows from the fact that the target probability distribution on

the extended space X × V for both the state and velocity variable is given by the

product of two independent distributions for the state and for the velocity. Suppose

that after simulating the leapfrog trajectory and either accepting or rejecting the

proposal, the state of the state and velocity pair is denoted by (x, v). We know from

Proposition IV.4, the joint density of the state and velocity right after acceptance

or rejection equals π̄(x)ψ(v). Suppose that with probability pref(x) that depends on

x, the velocity is re-drawn from the density ψ(·). Denote the final velocity by v′,

whether it was re-drawn or not. Then the probability that the pair (x, v′) is in a

Borel subset A of X× V equals

(4.11) E
∫

1[(x, v′) ∈ A]π̄(x)ψ(v)dxdv

=

∫
1[(x, v′) ∈ A]π̄(x)ψ(v)pref(x)ψ(v′)dxdvdv′

+

∫
1[(x, v) ∈ A]π̄(x)ψ(v){1− pref(x)}dxdv.

Here, the first integral on the right hand side corresponds to the case where the
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velocity is refreshed and the second integral where the velocity is not refreshed. But

the equation can be simplified to∫
1[(x, v′) ∈ A]π̄(x)pref(x)ψ(v′)dxdv

+

∫
1[(x, v) ∈ A]π̄(x){1− pref(x)}ψ(v)dxdv

=

∫
1[(x, v) ∈ A]π̄(x)ψ(v){pref(x) + 1− pref(x)}dxdv

=

∫
1[(x, v) ∈ A]π̄(x)ψ(v)dxdv.

This shows that the state-velocity pair after the probabilistic refreshment of velocity

is distributed according to the target density π̄(x)ψ(v).

A simpler proof that shows not only the stationarity but also the reversibility of

the velocity refreshment follows from the detailed balance equation

π̄(x)ψ(v)pref(x)ψ(v′)dxdvdv′ = π̄(x)ψ(v′)pref(x)ψ(v)dxdvdv′

where the left hand side is interpreted as the probability that v is refreshed to v′ and

the right hand side that v′ is refreshed to v.

Of course, the refreshment probability pref(x) can take a value either zero or one.

At such points, whether the velocity is refreshed or not is decided deterministically.

We also make a cautionary remark here. Although it might be tempting to choose

pref dependent on the past history of the Markov chain as well as the current state,

doing so can destroy the detailed balance and π̄(·)ψ(·) may no longer be a stationary

density. To see this, let (X,X(−1), X(−2), . . . , X(−m)) denote the current and m past

states of the Markov chain, and suppose that pref depends on these random variables.

But (X,X(−1), . . . , X(−m)) and the current velocity V are not necessarily indepen-

dent; knowing the previous states of X can reveal some information about the current

velocity. Thus, if we denote the joint probability density of (X,X(−1), . . . , X(−m), V )
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as p(x, x(−1), . . . , x(−m), v), the detailed balance equation does not hold in general:

p(x, x(−1), . . . , x(−m), v)ψ(v′) 6= p(x, x(−1), . . . , x(−m), v′)ψ(v).

The independence between X and V holds only when they are marginalized over the

past history.

The state-dependent velocity refreshment probability pref(x) can be used to flexi-

bly tune the length of leapfrog trajectories. The average number of leapfrog jumps

at which the trajectory starts doubling back scales roughly proportionally to the size

(diameter) of the level set of the potential energy U(x). Thus, the velocity refresh-

ment probability pref(x) can be chosen inversely proportional to the size of the level

set containing the current point x. The flexibility with which the average length of

the trajectory can be taken depending on the current state may help improve the

numerical efficiency of HMC. The size of the level set may be learned from the trace

plots obtained from preliminary runs by counting the number of leapfrog steps that

makes the trajectory double back at various starting points. Levy et al. [2017] has

recently proposed a method that learns several state-dependent tuning parameters

that are related to leapfrog jumps using neural networks. Although the methods

requires a quite extensive pilot runs to tune these parameters, the numerical results

showed that the performance of HMC can be substantially improved after tuning. If

desired, the velocity refreshment probability pref may be learned in a similar fashion.

An adaptive approach where the refreshment probability is tuned ‘on-the-fly’ may

also be possible.

4.4.3 Numerical example

We used a one hundred dimensional Gaussian model considered in Neal [2011] to

study the efficiency of the multiple proposal scheme. The Gaussian model consists
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of one hundred independent univariate random variables, so the covariance matrix

is diagonal. The standard deviation in the first dimension equals 0.01 and the last

equals 1.00, where the standard deviations in between increase with uniform incre-

ments of 0.01. This ill conditioned model is an example where HMC performs much

better than random walk Metropolis algorithms. Both the leapfrog step size and the

proposal standard deviation for random walk should be on the order of the smallest

standard deviation (0.01 in this example) in order to have reasonable acceptance

probabilities, but the number of jumps needed to find an almost independent sample

in the direction of the largest standard deviation (1.00 in this example) is linear

in the largest-to-smallest ratio of the standard deviations (100 in this example) for

HMC, whereas the number is proportional to its square for random walk Metropolis.

We varied the the maximum number of proposals in an iteration N and the

average leapfrog jump size. The value of N varied among one, five, and ten, and the

average leapfrog jump sizes varied among 0.01, 012, 0.014, and 0.016. In order to

avoid the situations where the leapfrog trajectory is close to a loop or a half loop,

the leapfrog jump sizes at each iteration was randomly drawn uniformly from twenty

percent around the average jump size (±20%). For Gaussian densities, the leapfrog

trajectory diverges if the step size is greater than twice the standard deviation of

the distribution. In this example, the leapfrog jump sizes were chosen such that the

value after twenty percent inflation is still less than twice of the smallest standard

deviation σ1 = 0.01. Following Neal [2011], we fixed the number of leapfrog jumps

to 150. The maximum number of accepted proposals L was fixed at one.

We generated M = 100, 000 sample points for each experiment. We computed the

acceptance probability and the effective sample size for the first component (with

σ1 = 0.01) and for the last component (with σ100 = 1.00). The effective sample
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N
Leapfrog
jump size

Acceptance
probability

Time
(secs)

ESS1
ESS1

sec
ESS100

ESS100

sec
1 0.010 0.935 646 6.87× 104 106 7.64× 104 118
1 0.012 0.900 650 5.57× 104 86 1.17× 105 180
1 0.014 0.845 638 3.96× 104 62 1.39× 105 217
1 0.016 0.756 647 3.13× 104 48 1.35× 105 209
5 0.010 0.992 665 1.10× 105 165 8.92× 104 134
5 0.012 0.985 689 1.13× 105 164 1.51× 105 219
5 0.014 0.974 708 1.19× 105 168 2.13× 105 301
5 0.016 0.947 752 1.10× 105 147 2.33× 105 309
10 0.010 0.997 667 1.15× 105 172 9.03× 104 135
10 0.012 0.994 706 1.21× 105 171 1.55× 105 219
10 0.014 0.990 728 1.38× 105 190 2.26× 105 310
10 0.016 0.979 789 1.40× 105 178 2.59× 105 328

Table 4.1: Acceptance probabilities and effective sample sizes for the the first component (with
σ1 = 0.01) and for the last component (σ100 = 1.00) at various N (the maximum
number of proposals in an iteration) and the average leapfrog jump sizes. The average
computation time in seconds and the effective sample sizes per second is also shown.

size was computed by estimating the spectral density of the time series at frequency

zero using the R library coda [Plummer et al., 2006]. The results are shown in

Table 4.1. The run time was separately measured by running forty independent

runs with M = 10, 000. The average run time of the forty runs were scaled for

M = 100, 000 by multiplying by ten. The effective sample sizes per second for the

first and the last components are also shown.

We see that the acceptance probability increases as N increases. The acceptance

probability for N = 1 (the standard HMC) decreases from 0.94 to 0.76 as the leapfrog

jump size increases from 0.01 to 0.016. However, the acceptance probability for

N = 10 ranges between 0.979 and 0.997. The computation time for N = 10 is

between 3.5% and 22% greater than that for N = 1, depending on the leapfrog jump

size. For N > 1, as we increase the leapfrog jump size, the acceptance probability

decreases, and the algorithm does more computation to try subsequent proposals.

However, for larger N , the probability of finding at least one acceptable proposal

increases, and the overall acceptance probability increases. The effective sample size

per second for N = 10 is also greater than that for N = 1. The highest effective



102

sample size per second among the four leapfrog jump sizes for N = 10 is about

79% higher than that for N = 1 for the first component with σ1 = 0.01. For the

component with σ100 = 1.00, the efficiency increase is 51%.

4.4.4 Extension to discrete spaces

Extensions of HMC methods to discrete spaces have been considered in recent

years [Zhang et al., 2016, Nishimura et al., 2017, Dinh et al., 2017]. I will explain the

HMC methods on discrete spaces in the framework described in Section 4.3.1. The

piecewise deterministic proposal map Sτ can be defined in various ways depending on

the structure of the sample space. In this subsection, we illustrate a simple example

of sampling from discrete sample space having d-dimensional lattice-like structure,

that is, when the space is defined as a product X = X1 × X2 × · · ·Xd where each

component Xi, i ∈ 1 :d, is a set with finite or countable number of elements. We

suppose each space component Xi, i ∈ 1 :d, is isomorphic to one of three types of

sets, Z, Z+, or {1, . . . , k} for some k. That is, we assume that for each i ∈ 1 :d,

there exist a set Ai of one of the three types just mentioned and a bijective map

ιi : Ai → Xi. If xi = ιi(a) ∈ Xi for some a ∈ Ai and if a + 1 exists in Ai, we define

the next element of xi as x+
i := ιi(a+ 1) and say x+

i exists in Xi. Note that x+
i may

not exist if Ai = {1, . . . , k} and xi = ιi(k). Likewise, we define the previous element

of xi as x−i := ιi(a− 1), if a− 1 exists in Ai.

We define the momentum variable to be an element of V = {−1, 0, 1}d. Each

entry of v represents the direction in which the particle moves in each coordinate.

We define the one step evolution map S1 : X×V→ X×V as S1(x, v) := (x̃, ṽ) where
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the i-th coordinates of x̃ and ṽ are defined as

(x̃i, ṽi) =



(x+
i , vi) if vi = 1 and x+

i exists.

(xi,−vi) if vi = 1 and x+
i does not exist.

(x−i , vi) if vi = −1 and x−i exists.

(xi,−vi) if vi = −1 and x−i does not exist.

(xi, vi) if vi = 0

Here, xi and vi denote the i-th components of x and v. The evolution map Sτ for

τ ∈ Z+ is defined as iterative composition of S1, that is, Sτ := Sτ1 . We take the

counting measure on X as the reference measure with respect to which the density

π̄(x) is defined. We also take the counting measure on V as the reference measure

on V. The density of the velocity distribution ψ(v) is taken such that ψ(v) = ψ(−v)

for all vinV. One possible choice is to take ψ to be a function of ‖v‖0 :=
∑d

i=1 1[vi 6=0]

only. In this case, ψ(·) defines a distribution on the number of nonzero components

of v, and all elements of V with the same number of nonzero components are equally

likely.

We check that the above construction satisfies the two conditions presented in

Section 4.3.1. If we take R(x) = −id for all x ∈ X, (4.4) and (4.6) are easily satisfied.

Since R(x) is a bijection, it preserves the counting measure on V. We can also check

that T ◦ S1 is a self-inverse map, so the condition (4.7) follows. By Lemma IV.3, we

see that Sτ is a bijection, so the counting measure on X× V is preserved by Sτ .

So far the algorithm just described does not seem to be related to HMC. We will

now show how this algorithm may be seen as a HMC algorithm. The main idea is

to view the uniform (0, 1) random variable we draw at each iteration of Algorithm 4

as the kinetic energy of the particle. The connection is made by setting the initial

kinetic energy K equal to − log Λ. In this HMC formulation, we let each component
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of the momentum v to take any real value, and the momentum space becomes V = Rd.

The Hamiltonian of a particle at location x and momentum v is defined as

H(x, v) := − log π(x) +
d∑
i=1

|vi|.

We assume that the kinetic energy K :=
∑d

i=1 |vi| = ‖v‖1 is equally shared by all mo-

mentum components with nonzero magnitude. That is, we let v = K
‖v‖0

(
sign(v1), . . . , sign(vd)

)
,

where sign(a) = 1 if a ∈ R is positive, sign(a) = −1 if a is negative, and sign(0) = 0.

The Hamiltonian equation of motion (4.9) at discrete time t ∈ Z is interpreted in

the following way. The first equation dx
dt

= ∂H
∂v

is interpreted as

xi(t+ 1)− xi(t) =
∂‖v‖1

∂vi
= sign(vi).

The second equation dv
dt

= −∂H
∂x

is interpreted as

‖v(t+ 1)‖1 − ‖v(t)‖1 = log π{x(t+ 1)} − log π{x(t)},

such that v(t + 1) = ‖v(t)‖1−log π{x(t)}+log π{x(t+1)}
‖v‖0

(
sign(v1), . . . , sign(vd)

)
. From this

relation, we can easily see that the Hamiltonian of the system is preserved along

the path, that is, H{x(t), v(t)} = H{x(t + 1), v(t + 1)}. A state (x, v) is physically

admissible if the kinetic energy K = ‖v‖1 ≥ 0. Under the relation K(0) = − log Λ,

the condition K(t) ≥ 0 is equivalent to

Λ = exp{−K(0)} = exp [−K(t)− log π{x(0)}+ log π{x(t)}] ≤ π{x(t)}
π{x(0)}

.

This agrees with the acceptability criterion in Algorithm 4. Since Λ is a uniform

(0, 1) random variable, the initial kinetic energy K(0) is distributed according to the

exponential distribution with unit rate parameter. This formulation agrees with the

Laplacian Hamiltonian Monte Carlo formulation considered in Zhang et al. [2016]

and Nishimura et al. [2017].
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4.4.5 Extension to hybrid spaces

HMC methods can also be extended to hybrid spaces that contain both continuous

and discrete variables. To show how this can be done, we will first assume that we

have a valid time evolution map Sc that only changes the continuous state variables

and the corresponding velocity variables and a valid time evolution map Sd that only

changes the discrete state variables and the corresponding velocity variables. The

map Sc for continuous variables can depend on the current state of discrete variables,

and vice versa. We also assume that there are velocity reflection operators Rc and

Rd that are tied to the maps Sc and Sd respectively and satisfy the reversibility

conditions (4.4) to (4.7).

The algorithm for hybrid spaces can be described in the framework given by

Section 4.3.1. We note that this algorithm is not specifically tied to Hamiltonian

Monte Carlo methods. We define a map T that reflects both continuous and discrete

velocity variables:

T (xc, vc, xd, vd) =
(
xc, Rc(x)vc, xd, Rd(x)vd

)
.

The map T is self-inverse. The algorithm updates the joint state of continuous and

discrete variables via the map Sd ◦ Sc ◦ Sd. Since both Sd and Sc are measure

preserving, so is their composition Sd ◦ Sc ◦ Sd. Thus, the only condition that we

need to check to show the validity of the algorithm is that the map

T ◦ Sd ◦ Sc ◦ Sd

is self-inverse. From the condition (4.7), we know that T ◦ Sd ◦ T = (Sd)−1 and the
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same relation holds for Sc. Thus, we see that

T ◦ Sd ◦ Sc ◦ Sd = T ◦ Sd ◦ T ◦ T ◦ Sc ◦ T ◦ T ◦ Sd ◦ T ◦ T

= (Sd)−1 ◦ (Sc)−1 ◦ (Sd)−1 ◦ T

= (T ◦ Sd ◦ Sc ◦ Sd)−1.

Therefore, the algorithm that updates the joint state via Sd ◦ Sc ◦ Sd is reversible

with respect to the stationary density π̄(xd, xc)ψc(xc)ψd(xd). The above argument

also readily shows that the update via Sc ◦ Sd ◦ Sc is also valid.

More generally, if the state variable x can be partitioned as (x(1), x(2), . . . , x(n)),

algorithms that sequentially update only one component at a time can be obtained.

We define time evolution maps S(1), S(2), . . . , S(n) that change only the corresponding

components of x. Tied to these maps are the reflection operators R(1), R(2), . . . , R(n)

that only reflect the corresponding velocity components. Then, for example, updat-

ing the state via the map S(1) ◦S(2) ◦ · · ·◦S(n) ◦ · · ·◦S(2) ◦S(1) gives a valid algorithm.

In general, any “palindrome” that remains the same when the order of composition

is reversed will provide a valid algorithm.

4.5 Connection to the bouncy particle sampler

Recently, non-reversible, piecewise deterministic MCMC sampling methods called

the bouncy particle sampler (BPS) algorithms have been explored [Peters et al., 2012,

Bouchard-Côté et al., 2017]. The original BPS algorithms investigated in Peters et al.

[2012] and Bouchard-Côté et al. [2017] constructs a rejection free continuous time

Markov chain. In this thesis, we focus on presenting a new, alternative version of

the BPS, in which the evolution of the Markov process is determined at discrete

time points with probabilistic rejection operation. This alternative version of the

algorithm is easier to implement for any distribution with evaluable unnormalized
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target density. The connection between the original, continuous time BPS and the

discrete time version we present will be explained later in the section with some

discussion of their merits and drawbacks. We note that a different version of discrete

time BPS has been proposed in Vanetti et al. [2017].

We describe the discrete time BPS in the framework of piecewise deterministic

MCMC established in Section 4.3.1. We assume the target sample space X is Rd. We

also take velocity space V = Rd. The reference measures on X and V are both taken

as the Lebesgue measure on Rd. For each x, we define R(x) : V → V to be a linear

transform such that R(x) ◦ R(x) = id. The density of the velocity distribution ψ(·)

is taken such that ψ(v) = ψ{R(x)v} for all v ∈ V. These conditions are exactly (4.4)

and (4.6) in Section 4.3.1. In the current setting where R(x) is a linear operator on

V, the condition that R(x) preserves the reference measure dv follows immediately

from the fact that R(x) is a self-inverse operator, since it implies that | detR(x)| = 1.

Although the algorithm is well defined for any choice of {R(x) ;x ∈ X} and ψ(·)

satisfying the above conditions, we note that a convenient choice for ψ(·) can be a

multivariate Gaussian distribution

ψ(v) =
1

√
2π

d |det Σ|1/2
exp{−vTΣ−1v},

where Σ is a positive definite matrix. In this case, the conditions (4.4) and (4.6) hold

if and only if

R(x) = Σ1/2(I − 2P )Σ−1/2

for a symmetric projection matrix P , that is PP=P and P T=P . A matrix P is a

symmetric projection matrix in Rd if and only if it is a projection onto a subset of

an orthonormal basis of Rd, that is P =
∑

j∈A e
j(ej)T for some A ⊆ {1, 2, . . . , d} and

some orthonormal basis (e1, . . . , ed).
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In the context of Algorithm 4, the time evolution map Sτ for the discrete time

bouncy particle sampler is defined as

Sτ (x, v) = (x−R(x)vτ, −R(x)v).

The condition (4.7) can be easily checked for this Sτ . The map Sτ can be decomposed

as Sτ = S
(2)
τ ◦S(1)

τ , where S
(1)
τ (x, v) = (x,−R(x)v) and S

(2)
τ (x, v) = (x+ vτ, v). Both

S
(1)
τ and S

(2)
τ have determinants with unit absolute value. It follows that | detSτ | = 1,

and Sτ is preserves the Lebesgue measure on X× V.

The multiple proposal piecewise deterministic algorithm (Algorithm 4) in this

setup can be supplemented with one additional operation. This operation, which is

optional, updates the velocity variable at the end of each iteration with a set of linear

operators R′(x) : V → V defined for each x ∈ X, which satisfies the conditions (4.4)

and (4.6). That is, if the next state of the chain (X(i+1), V (i+1)) is determined at the

i-th iteration, we can optionally reflect the velocity once again such that V (i+1) is

updated to R′(X(i+1))V (i+1). For any point x in X, the density ψ(v) is left invariant

by this operation, because under the change of variable v′ = R′(x)v,

ψ(v′)dv′ = ψ{R′(x)v} |detR′(x)| dv = ψ(v)dv.

The pseudocode for the multiple proposal discrete bouncy particle sampler is pro-

vided in appendix (Section 4.E).

In practical applications, R(x) can be simply taken to be −id in order to minimize

the number of computations R(x)v. In this case, given the current state of the

Markov chain (X(i), V (i)), a point along the line X(i) + V (i)t for some t ≥ 0 will

be taken as the next state of the Markov chain. If proposals were rejected in this

iteration, the next state X(i+1) will remain the same, but the velocity will be reflected
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V (i+1) = R(X(i))V (i) = −V (i). The optional reflection with R′(x) can facilitate

mixing without refreshing the velocity by drawing directly from ψ(·).

Another possible choice of the operator R(x) is the reflection with respect to the

hyperplane perpendicular to the gradient of the log target density. If we denote

U(x) := − log π(x), we define

(4.12) R(x)v := v − 2
〈∇U(x), v〉
‖∇U(x)‖2

∇U(x).

Here, 〈·, ·〉 and ‖·‖ denote the usual inner product and the L2 norm in the Euclidean

space. The original BPS algorithm proposed in Peters et al. [2012] uses this reflection

operator R(x).

The original BPS algorithm can be viewed as a continuous time limit of a discrete

BPS algorithm. In the infinitesimal time interval [t, t+∆t), the probability of velocity

reflection is given by

1−min

(
π{x(t+ ∆t)}
π{x(t)}

, 1

)
= max{〈∇U(x), v〉, 0} ·∆t(1 + o(1)),

where o(1) converges to zero as ∆t tends to zero. The time of velocity reflection can

be simulated as the first arrival time of non-homogeneous Poisson process, whose

rate is given by

(4.13) λ(t) := max (〈∇U(x+ vt), v〉, 0) .

The continuous time BPS can be particularly useful if the target sample space X

is multidimensional and the target density can be factorized into many terms each

of which is function of only a few coordinates [Bouchard-Côté et al., 2017, Vanetti

et al., 2017]. Multi-particle systems such as the Potts model are well known models

possessing this property [Peters et al., 2012]. However, a major drawback of this al-

gorithm is that it can be difficult to sample the arrival time of the non-homogeneous
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Figure 4.1: The first 30,000 sample points from the BPS for the model with four “C”s. The tra-
jectory of every fourth point is shown in red segments up to one hundred points. Left,
N = 1; middle, N = 10; right, N = 20.

Poisson process with rate given by (4.13). Techniques such as thinning or super-

position can be used for sampling, but analytically tractable upper bounds on the

integrated Poisson rate are needed for good numerical efficiency in many applications

[Bouchard-Côté et al., 2017]. The discrete time BPS described earlier in the section

does not face this difficulty and can be easily implemented for any target density

evaluable up to a multiplicative constant.

4.5.1 Numerical example

We defined a density on a two dimensional square. The regions of high likelihood

density look like four open rings, or four rotated letters of “C”, as shown in Figure 4.1.

We applied the multiple proposal discrete time BPS on this model with varying

algorithmic parameters. In every experiment, we generated 30,000 sample points,

where the maximum number of acceptable proposals L was fixed at one and the

jump size varied uniformly between τ = 0.08 and 0.12. We did not use an optional

reflection by another operator R′(x) at the end of iterations.

Figure 4.1 shows the 30,000 sampled points in black dots. Starting from the initial

point, the trajectory of every fourth point is shown in red segments. We varied the

maximum number of proposals N at one, ten, and twenty. The velocity refreshment
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Figure 4.2: The first 30,000 sample points from the BPS for the inverted four “C” model. Left,
N = 1; middle, N = 10; right, N = 20.

probability was fixed at pref = 0.1 for this experiment. We used the reflection operator

R(x) = −id. In the case N = 1, in which no subsequent proposals are made after the

first proposal is rejected, the Markov chain does not jump from one “C” to another.

As we increase N to ten and twenty, we see that the jump between “C”s happen

more frequently, and the mixing is faster. The computation time took 16.0 seconds

for N = 1, 33.0 seconds for N = 10, and 39.3 seconds for N = 20.

Figure 4.2 shows the same experiment, when the target density is inverted from

the original model (i.e., the log target density has the opposite sign). The four “C”s

act as barriers that are difficult for particles to penetrate. For N = 1, the particles

almost never pass through the barriers. For N = 10 or 20, however, particles can

pass through the barriers more freely, and the mixing happens faster.

Figure 4.3 shows the results of sampling from the original model for various choice

of the reflection operator and the velocity refreshment probability. The maximum

number of proposals N was fixed at twenty. The left column shows the result when

the reflection operator R(x) = −id was used. In the middle column, the reflection

operator defined in (4.12), which will be denoted by R∇U(x), was used. This op-

erator R∇U(x) tends to direct the movement of the particle along the gradient of

the log target density, because the velocity components in directions perpendicular
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R(x) = −id R(x) = R∇U (x) mix

Figure 4.3: The first 30,000 sample points from the BPS for the four “C” model for varying pref

and reflection operators. Top row, pref = 0; bottom, pref = 0.1.

to the gradient change signs at each jump so that two consecutive jumps in these

perpendicular directions almost cancel each other. In the right column, the reflec-

tion operator was randomly chosen between −id and R∇U(x) with equal probability

whenever the reflection operator was called in the algorithm. When the velocity was

not refreshed (top row) and the reflection operator was −id, the particle trajectory

was linear, and the algorithm was not ergodic. When we used R(x) = R∇U(x), the

algorithm was ergodic, but the mixing was poor. The mixing could be improved if

the two choices of reflection operator were mixed. When the velocity was refreshed

with probability 0.1 (bottom row), all the choices of reflection operator led to an

ergodic chain. The mixing for R(x) = −id or the mixed choice was better than

the case R(x) = R∇U(x). From these results, we see that occasional refreshment

of velocity is desirable. Randomly choosing the reflection operator among several
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possibilities can also be a good strategy.
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4.6 Appendix for chapter IV

4.A Equivalence between multiple proposal Metropolis-Hastings algorithms and the
delayed rejection method

The delayed rejection method is described in Mira et al. [2001] as follows. Given

the current state of the Markov chain x, the first candidate value y1 is drawn from

q1(· |x) and accepted with probability

α1(x, y1) = 1 ∧ π(y1)q1(x | y1)

π(x)q1(y1 |x)
.

If y1 is rejected, a next candidate value y2 is drawn from q2(· | y1, x). The acceptance

probability for y2 equals

α2(x, y1, y2) = 1 ∧ π(y2)q1(y1 | y2)q2(x | y1, y2){1− α1(y2, y1)}
π(x)q1(y1 |x)q2(y2 | y1, x){1− α1(x, y1)}

.

If y1, . . . , yn−1 are rejected, yn is drawn from qn(· | yn−1:1, x) and accepted with prob-

ability

αn(x, y1:n) = 1 ∧
π(yn)

{∏n
j=2 qn−j+1(yj−1 | yj:n)

}
qn(x | y1:n)

∏n−1
j=1{1− αj(yn:n−j)}

π(x)q1(y1 |x)
{∏n

j=1 qj(yj | yj−1:1, x)
}∏n−1

j=1{1− αj(x, y1:j)}
.

If all proposals are rejected up to a certain number N , the next state of the Markov

chain is set to x.

It is relatively easy to check that the target density π(·) is invariant in the delayed

rejection method. It suffices to check the detailed balance equation for each n ∈ 1 :N .

The probability density that starting from x, the proposals y1, . . . , yn are drawn and
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yn is the first accepted value equals

π(x)q1(y1 |x)
n∏
j=2

qj(yj | yj−1:1, x)
n−1∏
j=1

{1− αj(x, y1:j)} · αn(x, y1:n)

=

[
π(x)q1(y1 |x)

n∏
j=2

qj(yj | yj−1:1, x)
n−1∏
j=1

{1− αj(x, y1:j)}

]

∧

[
π(yn)

n∏
j=2

qn−j+1(yj−1 | yj:n) · qn(x | y1:n)
n−1∏
j=1

{1− αj(yn:n−j)}

]
.

Since the above quantity is symmetric with respect to reversing the order (x, y1:n) to

(yn:1, x), it also equals the probability density that starting from yn, the proposals

yn−1, . . . , y1, x are drawn and x is the first accepted value, which is given by

π(yn)
n∏
j=2

qn−j+1(yj−1 | yj:n) · qn(x | y1:n)
n−1∏
j=1

{1− αj(yn:n−j)} · αn(yn:1, x).

We now show the following proposition.

Proposition IV.5. Multiple proposal Metropolis-Hastings algorithm (Algorithm 3)

for L = 1 and fixed N constructs a Markov chain that has the same law as those

constructed by the delayed rejection method described above.

Proof. Suppose that in Algorithm 3 and the delayed rejection algorithm, the Markov

chain is at state x at a certain iteration. In both algorithms, the probability density

that a sequence of proposals y1:N are drawn from the initial state x equals

q1(y1 |x)
n∏
j=2

qj(yj | yj−1:1, x).

Thus it suffices to show that for every n ∈ 1 :N , the probability that all of the

drawn proposal values y1:n are rejected is the same in both algorithms. We define

for n ∈ 1 :N ,

cn :=
π(yn)

{∏n
j=2 qn−j+1(yj−1 | yj:n)

}
qn(x | y1:n)

π(x)q1(y1 |x)
∏n

j=2 qj(yj | yj−1:1, x)
.
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We also define

c̄nj :=
π(yn−j)

∏j
k=1 qk(yn−j+k | yn−j+k−1:n−j)

π(yn)
∏j

k=1 qk(yn−k | yn−k+1:n)

for j ∈ 1 :n−1 and n ∈ 1 :N . Note that c̄nj equals the probability density of se-

quentially drawing yn−j, yn−j+1, . . . , yn divided by the probability density of drawing

yn, yn−1, . . . , yn−j in sequence. From these definitions we can check that

cnc̄
n
j = cn−j

for j ∈ 1 :n−1 and n ∈ 1 :N . For the delayed rejection method, we denote

βj := αj(x, y1:j), β̄nj := αj(yn:n−j), j ∈ 1 :n−1.

In Algorithm 3, the probability that y1:n are all rejected equals

P[Λ ≥ cj for all j ∈ 1 :n] = 1−max(c1:n) ∧ 1

where Λ ∼ unif(0, 1). Thus our goal is to show that

(4.14)
n∏
j=1

(1− βj) = 1−max(c1:n) ∧ 1.

We prove (4.14) by induction. The case for n = 1 is obvious from the definition of

β1. Suppose we have

n−1∏
j=1

(1− βj) = 1−max(c1:n−1) ∧ 1.

In the above expression, both β1:n−1 and c1:n−1 are functions of x and y1:n−1. By

exchanging the role of the sequence of variables x, y1, . . . , yn in the above equation

with yn, . . . , y1, x, we obtain

n−1∏
j=1

(1− β̄nj ) = 1−max(c̄n1:n−1) ∧ 1.
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We observe that

n∏
j=1

(1− βj) =
n−1∏
j=1

(1− βj) ·

(
1− cn

∏n−1
j=1 (1− β̄nj )∏n−1
j=1 (1− βj)

∧ 1

)

= (1−max(c1:n−1) ∧ 1)− {cn(1−max(c̄n1:n−1) ∧ 1)} ∧ (1−max(c1:n−1) ∧ 1)

= (1−max(c1:n−1) ∧ 1)− (cn −max(cn−1:1) ∧ cn) ∧ (1−max(c1:n−1) ∧ 1).

We now turn to the right hand side of (4.14). Using the relation

(u ∨ v) ∧ w ≡ u ∧ w + v ∧ w − u ∧ v ∧ w,

we see that

1−max(c1:n) ∧ 1 = 1− (max(c1:n−1) ∨ cn) ∧ 1

= 1−max(c1:n−1) ∧ 1− cn ∧ 1 + max(c1:n−1) ∧ cn ∧ 1.

Thus showing (4.14) reduces to checking

(cn −max(cn−1:1) ∧ cn) ∧ (1−max(c1:n−1) ∧ 1) = cn ∧ 1−max(c1:n−1) ∧ cn ∧ 1.

However, this follows from the relation

(u− w ∧ u) ∧ (v − w ∧ v) ≡ u ∧ v − w ∧ u ∧ v.

The proof is now complete.

4.B Acceptance probabilities in multiple proposal MALA

Now we argue that the acceptability criterion (4.2) is met frequently even for large

n. We will demonstrate that the ratio of the products∏n
j=1 q(Yj−1 |Yj)∏n
j=1 q(Yj |Yj−1)

does not often become extremely small, even though it involves many multiplicative

factors. It is easier to analyze the ratio in the continuous time limit, and we do so.
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We fix t > 0 and let n :=
[
t
ε

]
. We can compute that

cεt :=
π(Yn)

∏n
j=1 q(Yj−1 |Yj)

π(X)
∏n

j=1 q(Yj |Yj−1)
=

exp
{
− 1

4ε

∑n
j=1 ‖Yj−1 − Yj − ε∇ log π(Yj)‖2

}
exp

{
− 1

4ε

∑n
j=1 ‖Yj − Yj−1 − ε∇ log π(Yj−1)‖2

}
= exp

[
−1

2

n∑
j=1

(Yj − Yj−1){∇ log π(Yj) + log π(Yj−1)}

+
ε

4

(
‖∇ log π(Y0)‖2 − ‖∇ log π(Yn)‖2)] .

(4.15)

The sequence of random variables Yj, j ∈ 1 :n is a discrete time approximation of

the diffusion {Ỹt ; t ≥ 0} defined by the Langevin stochastic differential equation

(4.16) dỸt = ∇ log π(Ỹt)dt+
√

2Wt,

where Wt is a Brownian motion in Rd. It is well known that the distribution with

an unnormalized density π is the invariant distribution and the ergodic limit in

total variation distance for the Langevin diffusion (4.16), provided that π is suitably

smooth [Roberts and Tweedie, 1996]. If log π is C3, that is, three times continuously

differentiable, then {∇ log π(Ỹt) ; t ≥ 0} is a semimartingale due to Ito’s formula

[Rogers and Williams, 1994]. As ε → 0, the quantity (4.15) converges uniformly in

probability in any compact interval t ∈ [0, K] to [Rogers and Williams, 1994, Lemma

IV.47.3]

ct := exp

{
−
∫ t

0

∇ log π(Ys) · ∂Ys
}
,

where
∫ t

0
Xs · ∂Ys =

∑d
j=1

∫ t
0
Xj
s∂Y

j
s denotes the sum of Stratonovich integrals for

d dimensional semimartingales Xt and Yt. Uniform convergence in probability on

compact intervals means that

lim
ε↓0

P

(
sup

0≤t≤K
|cεt − ct| > δ

)
→ 0
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for any δ > 0 and K > 0. The infinitesimal increment of the (i, j)-th entry of the

quadratic variation-covariation matrix of Ỹ , which is often denoted by dỸ j
t dỸ

k
t , is

given by

d
(

[Ỹ ]t

)
ij

= 2δkj dt,

where δkj = 1 if j = k and 0 otherwise. For a C2 function f on Rd, we write the

matrix of second-order partial derivatives, i.e., Hessian, of f as ∇2f . We see by Ito’s

formula,

d
∂

∂xi
log π(Ỹt) =

∑
j

∂2

∂xi∂xj
log π(Ỹt)dỸ

j
t +

1

2

∑
j,k

∂3

∂xi∂xj∂xk
log π(Ỹt)dỸ

jdỸ k

=
(
∇2 log π(Ỹt)dỸt

)
i
+
∑
j

∂3

∂xi∂xj∂xj
log π(Ỹt)dt

=
(
∇2 log π(Ỹt) ·

√
2dWt

)
i
+ h(Ỹt)dt,

where h(Ỹt) is some function of Ỹt. It follows that

[
Ỹ ,∇ log π(Ỹ )

]
t

=
√

2

[
W,

∫
∇2 log π(Ỹt) ·

√
2dW

]
t

= 2∇2 log π(Ỹt)dt.

The Stratonovich integral − log ct can be written as∫ t

0

∇ log π(Ỹs) · ∂Ỹs =

∫ t

0

∇ log π(Ỹs) · dỸs +
1

2
Tr
([
∇ log π(Ỹ ), Ỹ

]
t

)
=

∫ t

0

∇ log π(Ỹs) ·
√

2dWs +

∫ t

0

∥∥∥∇ log π(Ỹs)
∥∥∥2

ds+

∫ t

0

∆ log π(Ỹs)ds,

where
∫ t

0
Xs · dYs :=

∑d
j=1

∑d
j=1X

j
sdY

j
s denotes the sum of Ito integrals and ∆h :=∑d

j=1
∂2

∂(xj)2
h denotes the Laplacian of function h. By Ito’s formula applied to the

function x 7→ e−x, we have

dct = −ct ·
(
∇ log π(Ỹt) ·

√
2dWt

+
∥∥∥∇ log π(Ỹt)

∥∥∥2

dt+ ∆ log π(Ỹt)dt

)
+

1

2
ct

∥∥∥∇ log π(Ỹt) ·
√

2
∥∥∥2

dt

= −ct∇ log π(Ỹt) ·
√

2dWt − ct∆ log π(Ỹt)dt.
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The Ito integral of the first term

I1(t) :=

∫ t

0

−cs∇ log(Ỹt) ·
√

2dWs

is a local martingale, and in particular if we define the stopping time

TM := inf{t ≥ 0 ;

∫ t

0

c2
s

∥∥∥∇ log Ỹs

∥∥∥2

ds > M}

for some M > 0, then {I1(TM ∧ t) ; t ≥ 0} is a martingale. Thus EI1(TM ∧ t) = 0.

Moreover, when the density π is log-concave, −ct∆π(Ỹt) is always non-negative. It

follows that for large M , ignoring the rare event {TM < t0} where t0 is the length

of time for which we simulate the Langevin diffusion, the expected value of the ct is

increasing. Since c0 is unity, one can expect that the continuous time limit of the

acceptance probability, given by ct, does not frequently become very small.

4.C Proof of Lemma IV.3

From (4.4), we have T ◦T = id. Thus from (4.7), we have T = T ◦T ◦Sτ ◦T ◦Sτ =

Sτ ◦T ◦Sτ . Thus, we can see that Snτ ◦T is a self-inverse for any n ≥ 1 from induction

Snτ ◦ T ◦ Snτ ◦ T = Sn−1
τ ◦ Sτ ◦ T ◦ Sτ ◦ Sn−1

τ ◦ T = Sn−1
τ ◦ T ◦ Sn−1

τ ◦ T.

It also follows that Sτ ◦ T ◦ Sτ ◦ T = T ◦ T = id. Thus, since f ◦ g = id implies that

function f is surjective and g is injective, the relation Sτ ◦ (T ◦ Sτ ◦ T ) = id implies

that Sτ is surjective and (T ◦ Sτ ◦ T ) ◦ Sτ = id implies that Sτ is injective.

4.D Proof of invariance of target distribution for Algorithm 4

In Section 4.2.2, we proved that the detailed balance of the Markov kernel is

established by the multiple proposal Metropolis-Hastings algorithm (Algorithm 3).

In this section, we will show that each iteration of Algorithm 4 consists of two

operations, for each of which detailed balance holds. The first operation applies
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the map T : (x, v) 7→ (x,R(x)v). The second operation samples from a kernel K,

which is defined as follows. First, a uniform random variable Λ ∼ unif(0, 1) is drawn.

Given (y0, w0), a sequence of proposals (yn, wn) := Snτ ◦T (y0, w0) are obtained, where

(yn, wn) is deemed acceptable if Λ < π(yn)ψ(wn)
π(y0)ψ(w0)

. If there are at least L acceptables

among (y1, w1), ..., (yN , wN), the L-th acceptable proposal is taken as a draw from

K(· ; y0, w0).

Otherwise, (y0, w0) is taken as the draw.

Proposals in Algorithm 4 are obtained as (Yn,Wn) = Snτ (X(i), V (i)). Since Snτ =

(Snτ ◦ T ) ◦ T , each iteration of Algorithm 4 can be thought of as as applying the

above two operations. That is, proposals are obtained by applying the maps Snτ ◦ T

to T (X(i), V (i)) = (X(i), R(X(i))V (i)), and each proposal is checked for acceptability.

It is a simple matter to see that the first operation T : (x, v) 7→ (x,R(x)v) satisfies

detailed balance with respect to the augmented target distribution π̄(x)ψ(v). If we

write v′ = R(x)v, since ψ(v) = ψ(v′) and R(x) preserves the measure dv (property

(4.5) and (4.6)), we have

π̄(x)ψ(v)dxdv = π̄(x)ψ(v′)dxdv′.

The second operation also satisfies detailed balance.

Proposition IV.6. Suppose a probability kernel K is defined as above. Then, the

kernel K satisfies detailed balance with respect to the density π̄(y)ψ(w).

Proof. The proof is essentially the same as the proof of Proposition IV.1. We will

prove detailed balance for the n-step transition for arbitrary n. The probability

density of drawing (y0, w0) and taking (yn, wn) = Snτ ◦ T (y0, w0) as a draw from K
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equals

(4.17)
1

Z
π(y0)ψ(w0)

([
rL−1

({
π(yi)ψ(wi)

π(y0)ψ(w0)
; i ∈ 1 :n− 1

})
∧ π(yn)ψ(wn)

π(y0)ψ(w0)
∧ 1

]
−
[
rL

({
π(yi)ψ(wi)

π(y0)ψ(w0)
; i ∈ 1 :n− 1

})
∧ π(yn)ψ(wn)

π(y0)ψ(w0)
∧ 1

])
=

1

Z
([rL−1({π(yi)ψ(wi) ; i ∈ 1 :n− 1}) ∧ π(yn)ψ(wn) ∧ π(y0)ψ(w0)]

− [rL({π(yi)ψ(wi) ; i ∈ 1 :n− 1}) ∧ π(yn)ψ(wn) ∧ π(y0)ψ(w0)]) .

On the other hand, if we started from (yn, wn), the k-th proposal is obtained by

Skτ ◦ T (yn, wn) = Skτ ◦ T ◦ Skτ (yn−k, wn−k) = T (yn−k, wn−k) = (yn−k, R(yn−k)wn−k),

because Skτ ◦ T ◦ Skτ ◦ T = id from Lemma IV.3. Also, ψ{R(yn−k)wn−k} = ψ(wn−k).

Thus, the probability density of drawing (yn, wn) from π̄(·)ψ(·) and taking (y0, w0) =

Snτ ◦ T (yn, wn) as a draw from K is the same as the right hand side of (4.17), which

is symmetric with respect to the order reversal i 7→ n − i. Furthermore, since both

T and Sτ measure preserving, we have dy0dw0 = dyndwn. Therefore, the detailed

balance for the n-step transition holds. The claimed detailed balance follows by

combining the cases for n = 1 :N .

4.E Pseudocode for multiple proposal discrete bouncy particle sampler
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Algorithm 5: Multiple proposal discretized bouncy particle sampler

Input : The distribution of the maximum number of proposals and the number of accepted
proposals ν(N,L)
Reflection operators R(x), R′(x)
Time step length distribution µ(dτ)
Velocity distribution density ψ(v)
Velocity refreshment probability pref

Number of iterations, M

Output: Markov chain
(
X(i)

)
i=1,...,M

Initialize: Set X(0) arbitrarily and draw V (0) ∼ ψ(·).
for i← 0 :M−1 do

Draw N,L ∼ ν(·, ·)
Draw ε ∼ µ(·)
Draw Λ ∼ unif(0, 1)
Set (X(i+1), V (i+1))← (X(i), R(X(i))V (i))
Set na ← 0
for n← 1 :N do

Set (Yn,Wn) = (Yn−1 −R(Yn−1)Wn−1ε,−R(Yn−1)Wn−1), where we understand
Y0 := X(i) and W0 := V (i)

if Λ <
π(Yn)

π(X)
then na ← na + 1

if na = L then
Set (X(i+1), V (i+1))← (Yn,Wn)
Break

end

end

(Optional) Reflect the velocity vector V (i+1) ← R′(X(i+1))V (i+1)

With probability pref, refresh V (i+1) ∼ ψ( · )
end



CHAPTER V

Conclusion

Modern data analyses employ complex models in order to gain detailed informa-

tion about large and complicated systems. Rapidly increasing demands for inference

from complex models call for new computational methods that enable these inferen-

tial tasks. In this thesis, I proposed the following two novel methods in computational

inference procedures. I will briefly summarize these contributions and discuss future

research directions.

Scalable inference methods for coupled partially observed Markov processes Cou-

pled dynamic processes have complex spatial and temporal dependence structures.

The large amount of information contained in spatiotemporal datasets is difficult

to infer about because the nonlinearity of the processes often deny analytical ap-

proaches. Computational algorithms numerically represent the process in order to

draw inference. I proposed a computational inference algorithm for coupled stochas-

tic dynamic processes that are partially observed. This algorithm is a fully likelihood

based method that enables the use of mechanistic models that might not have an-

alytically tractable densities. The method is an extension of the particle filtering

algorithm, which uses a number of Monte Carlo random draws to represent the hid-

den state of the process. The method I developed alters the analysis time scale

124
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of the particle filter and uses a guide function that aids in selecting particles that

are consistent with future observations. Like other particle filtering algorithms, the

method yields unbiased likelihood estimate of data and asymptotically consistent

estimates of the posterior distribution of the process given the data. I also derived a

probabilistic upper bound on the filtering error when finite Monte Carlo samples are

used. This theoretical result explains how this method can scale much better with

increasing space dimension than other particle filtering algorithms.

Practical accessibility of this algorithm hinges on how well the guide function can

be designed for a given model. The method is a properly weighted particle filter for

any choice of positive guide functions, but the numerical efficiency depends on how

closely the guide functions approximate the likelihood of future data points. The

flexibility with which the guide function can be chosen may be a strength of this

method, but the fact that a good guide function is needed can limit its applicability.

In this thesis, I proposed a few ways of designing the guide function. One method

assumes that the likelihood of data points can be approximated semi-analytically

by matching moments. Another method relies on the weak coupling between the

components of the state process. Dependence on assumptions like these implies

the fundamental difficulty in representing arbitrary high dimensional distributions

with purely computational means. From an information theoretical perspective, the

number of possible states that need to be realized to fully represent high dimensional

distributions increase exponentially with the number of dimensions. In order to

avoid infeasibly high computational costs, inference algorithms for coupled stochastic

dynamic processes will have to make use of certain structure of the given process.

Further research on this topic can explore other possibilities for designing the guide

functions. I expect that efforts to solve real scientific inference problems using the
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algorithm will enable development of efficient and practically useful guide functions.

I have found out that running parallel particle filters can often lead to better

numerical results when particle weights tend to be highly unbalanced. Especially,

I found out that weighting the parallel filters with improper weights—that is, the

parallel filters are not weighted by their likelihood estimates but by some more bal-

anced weights—can lead to smaller filtering error. This might be explained as the

bias-variance trade-off, but theoretical analysis seems necessary to fully understand

this phenomenon. I have not systematically investigated the potential benefits of

this approach, but further pursuit of this idea may enable development of a useful

algorithm.

The main theory for the algorithm (Theorem II.2) may be developed further. The

assumptions on which the theory is based are difficult to check in practice. Sufficient

conditions for the assumptions, if can be found, might be able to validate the practical

use of the algorithm. Advances in the theory of guided intermediate resampling

algorithms may deepen the understanding of the computational representation of

high dimensional stochastic processes.

Likelihood based inference for spatiotemporal dynamics of infectious diseases I

have shown that the guided intermediate resampling filter can be used for inference

on spatiotemporal measles transmission dynamics in linked geographic locations. I

have estimated the coupling parameter in a joint SEIR model with spatial inter-

actions. Parameter estimation was carried out by combining the GIRF algorithm

with a recently developed stochastic optimization algorithm [Ionides et al., 2015].

The strength of coupling between dynamics at different locations is difficult to re-

liably estimate, because the joint distribution of the dynamics processes has to be
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accurately represented computationally.

The model assumed that the coupling between dynamics were mediated by infec-

tious travelers, whose numbers were determined by the gravity model. In the future,

it will be interesting to compare the estimated spatial coupling strength with the

values estimated from other spatiotemporal data. The comparison may tell us about

the validity of the inference procedures. It may also provide important clues regard-

ing the consistency between different spatiotemporal models and offer a guidance on

translating the conclusion from one analysis into a different context.

There are several directions along which future research might be pursued. One

direction that might be of scientific interest is to compare the gravity model with an

alternative model such as the radiation model of Simini et al. [2012]. These authors

showed that the radiation model explained data on commuting travels, migration,

phone calls, and cargo volume in the U.S. and Europe better than the gravity model.

Another comparison between the two models based on the analysis of infectious

disease data using a likelihood based method might provide a deeper insight into

spatial mixing patterns.

Application of the GIRF for spatiotemporal inference on other infectious diseases

than measles might also yield interesting results. Infectious diseases with environ-

mental reservoirs or vector-borne diseases are likely to have different spatiotempo-

ral transmission mechanisms, which might be inferred from analyses using complex

models that take into account the geography of the region or the ecology of the

disease-carrying organisms.

The GIRF algorithm may be used for inference on coupled dynamic models other

than spatiotemporal processes. For example, a compartment model that is struc-

tured into many sub-categories divided by age or other demographic variables can
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make a high dimensional POMP model. The algorithm may also be used for in-

ference from heterogeneous data, such as the clinical case data combined with the

pathogen genotype data. Recent developments in phylodynamic inference employ a

joint model for transmission dynamics and pathogen evolution process [Smith et al.,

2017]. Genetic data may contain large amount of information, and its measurement

density can lead to weight degeneracy among particles. The tree-structured state

processes can create an interesting inferential challenge, because the dimension of

the state space increases with time. Since the state process accumulates its own

history without forgetting its past, algorithms that make use of the mixing property

might not perform well. Nevertheless, the guided intermediate resampling algorithm

can be useful for phylodynamic inference, because it is a general strategy for miti-

gating computational difficulties provided by highly informative observations.

I have not yet implemented the guide function design in which the likelihood

of future observations is estimated by a SMC-type method using weak coupling

assumptions. Implementing this idea for real scientific applications is left as a future

task. For weakly coupled processes, this approach can be more practically useful due

to its flexibility compared to the semi-analytical moment matching approach.

Flexible, numerically efficient Markov chain Monte Carlo sampling strategy I devel-

oped a framework that generalizes various MCMC algorithms that adopt Metropolis-

Hastings type acceptance or rejection strategy. The new framework proposes, after a

proposal is rejected, a subsequent proposal that depends on the current, rejected pro-

posal. The proposals continue until a certain number N of proposal is drawn or until

a certain number L of acceptable proposals are drawn. When the number of accept-

able proposals is less than L until N proposals are tried, the next state of the Markov
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chain is set to the current state of the Markov chain. This strategy can be used to

generalize most frequently used MCMC algorithms, such as random walk Metropolis

algorithm, Metropolis adjusted Langevin algorithm (MALA), Hamiltonian Monte

Carlo (HMC), or the bouncy particle sampler (BPS). The multiple proposal frame-

work offers increased flexibility in proposal draws, because proposals can be drawn

from a composition of several kernels, each of which governs how the next proposal

is drawn conditional on the current proposal. This framework is straightforward to

implement—adding only a few lines of code will turn an MCMC algorithm into a

multiple proposal algorithm.

The multiple proposal strategy can bring various advantages, depending on which

algorithm it is applied to. In HMC, trying multiple proposals increases the overall

acceptance probability of proposals, and thus increases the effective sample size per

computational cost. This is possible because the numerically computed proposal

paths stay close to the level set of Hamiltonian, and the acceptance probabilities can

stay reasonably high even in long trajectories.

There may be various other possibilities that can increase the efficiency of HMC

using the multiple proposal strategy, for which further explorations should follow.

Combination of the multiple proposal strategy with existing schemes that are known

to boost numerical efficiency, such as the No-U-Turn sampler by Hoffman and Gelman

[2014], may also be possible. Potential synergy with MALA, which can be understood

as a special case of HMC, may be further investigated.

The multiple proposal strategy can also be useful in combination with the bouncy

particle sampler. The BPS has been being actively studied in recent years. Despite

its many favorable numerical properties, the BPS is not good at making jumps across

regions of low probability densities. This is because the piecewise linear sample paths
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tend to reflect when they encounter the low-density region. However, the multiple

proposal BPS can pass through the low density regions, and facilitate better global

mixing. With a numerical example, I demonstrated that this feature of the multiple

proposal BPS can be particularly useful in sampling from complex distributions.

Investigating the performance in high dimensional distributions is left as a future

task.

Inference from large amount of data that enables in-depth understanding into

complex systems is in high demand in science and engineering. Developing compu-

tational methodology for inference is a core task in an effort to meet this demand.

In this thesis, I developed a few novel computational algorithms for complex models,

focusing on likelihood based inference. With these developmens I showed a way to

make progress in scientific inference procedures, which may open up possibilities for

new scientific discoveries.
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