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Abstract 

Solubility dynamics in materials science drives discovery and novel material 

development. Bi has garnered interest in III-V semiconductors because of its impact in the 

electronic properties including large bandgap reduction per percentage Bi, high spin orbit 

coupling, and preserved electron mobility. The endpoints of III-Bi binary compounds are either 

unstable, like GaBi, or have low melting point, like InBi. Finding good conditions in which there 

is appreciable Bi incorporation is difficult.  Growths often result in droplets on the surface. This 

dissertation explores the phenomena surrounding incorporation of Bi including development of 

computational tools for investigation of Bi impact on electronic structure, a new incorporation 

model taking Bi surface buildup into account, an investigation into the inhomogeneities that 

appear along with Ga droplets, and the inhomogeneities that appears in growths with a clean 

surface.  A new kinetic model is constructed to account for Bi buildup on the surface building on 

previous models. Results of experiments in GaSbBi are utilized to confirm trends predicted in 

the model.  Bi droplets are found to reduce Bi incorporation by becoming a kinetic sink. A series 

of growths in GaAsBi with varying As:Ga ratio shows that Ga droplets contributes to Bi 

inhomogeneity in the bulk characterized by x-ray diffraction, transmission electron microscopy, 

and atom probe tomography.  The mechanism associated with this phenomenon is non-uniform 

Ga availability at the growth surface due to droplet wicking. Growths with clean surfaces are 

also shown to exhibit inhomogeneities including Bi clusters, lateral composition modulation, and 

nanopores at growth temperatures below 325°C.  These phenomena are explained by a 

destabilization in the growth mode due to differences in surface diffusivity of As and Bi. Some 
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preliminary data is presented for future directions including GaAsBi/GaAs superlattices, 

growth interrupts, and mapping the surface morphology in experiments. 
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Chapter 1: Introduction 

1.1 Introduction  

Solubility is a core element of materials science.  Manipulating solubility in metallurgy 

generates routes to novel alloys with a variety of desirable mechanical properties.  A good 

example of this is solubility of carbon in iron.  Access to different weight percent of carbon in 

iron and the phase mixtures associated with it creates the variety of structural properties in steels.  

In semiconductors, the miscibility of two endpoint compounds determines how easily alloy 

composition ranges are accessed.  For example, InGaAs is calculated to have a miscibility gap 

with a mixing temperature of ~700K when not under any effects of strain.  However when the 

InGaAs is strained to InAs it is found to have a negative critical temperature indicating it is 

metastable at all temperatures and compositions1.  The range of possible compositions in a given 

semiconductor alloy determines what electronic properties are available such as the band gap. 

Access to the varied strain states to alter the miscibility is possible with molecular beam epitaxy 

(MBE) or metal organic chemical vapor deposition (MOCVD).   

This dissertation focuses on exploring the mixing behavior of the III-V-Bi alloy systems 

via MBE.  More specifically this work is an investigation of growth conditions for maximal Bi 

incorporation in III-V semiconductor alloy films while maintaining homogeneous distribution 

and clean surfaces. The work in this dissertation takes a multifaceted approach to understand the 

dynamics and impact of Bi incorporation in III-V-Bi alloys. This includes taking steps towards a 

computational platform for investigating the electronic structure in dilute III-V-Bi alloys, 
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developing a kinetic model that includes surface buildup of Bi including its impact in Bi 

incorporation and exploring growth conditions for homogenous Bi distribution in GaAsBi. 

 

1.2 Motivation 

Bi containing III-V alloys are of interest due to their potential impact on devices spanning 

the entire infrared (IR) spectral regime.  This spectral range includes materials used in optical 

communications, night vision, and explosives detection.  Many devices in these operating 

wavelengths experience inefficiencies due to recombination losses and high temperature 

dependence of the bandgap2.   

Bi is the largest of the group V elements and as such is the final frontier for III-V 

semiconductor alloys.  Based on its position in the periodic table the bonding energy is expected 

to be low relative to other group V elements.  This is reflected in the fact that GaBi is not a stable 

binary compound and InBi is metallic with a low melting point of 109.5°C8.  Bi remains an 

interesting alloying component in III-V materials because of the unique characteristics it 

exhibits.  The potential band gap range of GaAsBi with a bandgap v. lattice constant graph found 

in Fig. 1-1.  The endpoint for GaBi is estimated through density functional theory calculations.   

It follows and has been shown with the introduction of Bi that it greatly reduces bandgap2,9–13. Bi 

is expected to interact with the band structure through a valence band anticrossing which 

minimally affects electron mobility 14,15and consequently been shown that Bi incorporation 

maintains the electron mobility 13,16. 
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Figure 1-1: III-V ternary alloy bandgap vs. lattice constant diagram including GaBi and 

estimated GaAsBi bowing curve with lattice matched compositions for InAs and GaSb. 

 

  Bi incorporation in GaAs has also been shown to exhibit a large spin orbit coupling 

increase per percentage Bi17.  The large spin orbit contribution is due to the size of the Bi atom 

and enables pathways to minimize Auger recombination losses in devices used in optical 

communications and IR detection.  It could be possible for GaAsBi-based materials to exhibit 

large enough spin orbit coupling to alleviate conduction-hole spin-hole (CHSH) type Auger 

recombination, which normally increases the turn-on voltage of lasers in the optical 

communications wavelength as seen in Fig. 1-2.  Electronic characterization of the materials has 

also occurred resulting in observation of the properties mentioned above including mobility 

measurements13,16, temperature and intensity dependent photoluminescence (PL)11,18,19, and spin 

orbit lifetime measurements20.   
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Figure 1-2: Threshold current as a function of lasing energy showing the effect of Auger 

recombination on infrared devices, the inset illustrates the suppression of CHSH Auger 

recombination.2 

For Bi materials to make in impact on IR detector materials it must perform on similar or 

higher levels to the current state of the art. HgCdTe is the current choice material used in IR 

detectors.  The material’s bandgap can span the entire infrared regime allowing devices to 

operate in wavelengths from 1µm to 30µm. HgCdTe has some downfalls impacting device 

performance and cost. The substrates are expensive and II-VI material processing is not as 

advanced as its III-V counterpart3–6.  The material itself also experiences inhomogeneity due to 

phase segregation into HgTe and CdTe regions7.  Devices will also suffer from thermal 

expansion and Auger recombination events reducing efficiency 3–5.  HgCdTe is also a fragile 

material reducing device lifetime and has a low operating temperature requiring significant 

cooling6.  The more robust capabilities in III-V semiconductor processing could improve many 

of these points once the required operating band gap is available, and the device performance 

holds up to current HgCdTe technologies.  



5 

 

1.3 Growth of Bismides 

Currently III-V alloys containing Bi have proven difficult to grow often resulting in 

droplets on the surface21,22. The difficulty is expected due to the unstable nature of the endpoints 

of GaBi and InBi.  To date, the most studied of the alloys is GaAsBi with reports showing up to 

22% Bi incorporation with droplets on the surface and up to 11% with clean surfaces23. The 

weak Bi bond contributes to easily reaching the saturation point of Bi at the given set of growth 

conditions.  There are two different saturations of Bi incorporation that can be considered, one is 

the maximum incorporation achievable at a given temperature and one is the maximum 

incorporation at a given V:III flux ratio which controls the availability of III sites for Bi to bond 

to.  These two varieties of Bi saturation are seen in the graphs in Fig. 1-3 where the temperature 

series comes from Lu et al24 and the V:III series comes from Lewis et al23. This provides a few 

possible actions to increase the Bi composition: increase the Bi flux if it is not saturated along 

that axis, reduce the V:III flux ratio if it isn’t saturated along that axis, or reduce the growth 

temperature. 
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Figure 1-3: (left) Temperature series of GaAsBi with different Bi/As flux ratios, the inset is a 

model of the surfactant based growth for Bi incorporation from24; (right) Set of growths at 3 

temperatures of 220-230°C, 265°C, and 330°C showing Bi content v. As:Ga beam equivalent 

pressure ratio(BEPR) with lines showing a model of the Ga coverage.23 

More recently, GaSbBi has been studied with reports indicating Bi incorporation of up to 

9.6%. It is also paired with photoluminescence data showing the expected smaller reduction in 

bandgap per percent Bi when compared to GaAsBi25–29.  The Millunchick group’s investigation 

of GaSbBi 21shows varying amounts of Bi and Ga surface droplets as well as a propensity for 

background As to incorporate into the material through a proposed auto-strain compensation 

mechanism. Examples of both Ga and Bi droplets appearing on the surface can be found in Fig 

1-4 with examples in GaAsBi and GaSbBi.  Up until the work presented in this dissertation the 

impact of the droplets is unclear and it is possible if they are not deleterious in the growth of the 

material they could be handled by post processing the surface by etching the droplets away.  In 

addition to these ternary alloys there has been some work on quaternary III-V alloys containing 

Bi where most work has occurred on InGaAsBi with up to a 7% Bi incorporation30–32.  The 

quaternary alloys are the most promising alloys for future devices as they will be capable of 

having a range of operating wavelengths while remaining strain free on a select substrate.  In 
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order to approach quaternary alloys it will be of great help to initially understand behavior of the 

ternary alloys.  

 

Figure 1-4: SEM images of biphasic Ga/Bi droplets on GaAsBi(left)22 and GaSbBi(right)21 

Along with the difficulty of finding optimal growth conditions for high incorporation and 

the appearance of droplets on the surface, GaAsBi has recently been shown to have an 

inhomogeneous distribution with an initial high concentration at the film substrate interface and 

reducing through the film’s thickness 33,34and has exhibited some various crystalline orderings34–

36.  Additionally, there have been investigations on the kinetics of the growth of GaAsBi with a 

proposed theoretical model.  Ptak et al. 37have shown that at low Bi flux the incorporation 

percentage increases linearly with the Bi flux and occurs at a slower rate for higher growth rates. 

There has been a proposed kinetic model initially reported by Lu et al. 24and improved upon by 

Lewis et al.23 capturing incorporation trends based on growth temperature and differences in the 

Ga:As flux ratio. The current issue with this model is that it does not allow or account for any 

droplets forming on the surface and does not capture the inhomogeneity observed in other 

publications.   

1.4 Organization 

 The remainder of the dissertation is organized as follows: 
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Chapter 2 contains a discussion of the advances made to the Socorro density functional 

theory platform in order to perform ab initio calculations on the electronic structure of these 

alloys.  The advances made include implementation of cell shape relaxation for eventual 

application in epitaxially strained cells, and implementation of Spin-orbit coupling for more 

accurate band structure calculations with cells containing large atoms such as Bi. 

Chapter 3 is an investigation and formulation of the kinetics associated with Bismide 

growth.  This is an extension of previous models guided by experiments in GaSbBi.  The model 

changes how Bi is handled on the surface and accumulates into droplets.  The Bi droplets are 

found to change the incorporation capability of Bi when present generating a need for an 

additional kinetic term.  The model and it’s impacts are corroborated with experiments in 

GaSbBi. The inhomogeneity found in this chapter is controlled simply by the presence of Bi 

droplets in the growth. 

Chapter 4 focuses on the inhomogeneities found in Bismide growth.  It contains two main 

sections. The first concerns inhomogeneities induced by the presence of Ga droplets.  It shows 

that when Ga droplets are present on the surface there are up to three different incorporation rates 

for Bi resulting in stripe like inhomogeneities in the film.  It shows that the inhomogeneity due to 

Ga droplets can potentially be controlled via growth interruptions.  The second section is 

concerned with the inhomogeneities that appear in droplet free growth conditions. This section 

shows that reduction in growth temperature eventually results in roughening of the surface and 

appearance of a lateral composition modulation of Bi, Bi clusters, and nanopores.  These 

inhomogeneities are linked to a decomposition of the surface by the varying diffusion rates of 

adatoms at the surface. These sections along with chapter 3 suggest that growth with droplets on 

the surface generates irreversible inhomogeneities in the Bi composition, and growths that are 



9 

 

droplet free need to maintain smooth surfaces or suffer from a different set of Bi 

inhomogeneities.  

 Chapter 5 touches on future growth directions and some results on GaAsBi/GaAs 

superlattices as a possible solution to the inhomogeneities discussed throughout the dissertation.  
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Chapter 2: Adapting Socorro: A Density Functional Theory Platform for Calculations on 

Bismides 

 

2.1 Introduction  

The bismides are currently unknown territory for III-V material development.   The speed 

at which this material is developed will be determined by how quickly we can understand and 

control the phenomena associated with their growth.  Computational methods provide a useful 

avenue to speed discovery in materials development.  

 Density functional theory (DFT) is a computational quantum mechanical model generally 

used for calculation of ground state electron density of many-body systems. It has proven itself 

as a useful tool for characterizing and understanding a wide variety of material systems.  DFT is 

often used for evaluating ground state configurations, like the bandgap of various semiconductor 

configurations or the preferred cell shape and atomic positions. DFT calculations, however, can 

be computationally expensive depending on the size of the computational cell and the functional 

that is used.  Functionals are approximations used for modelling the exchange and correlation 

interactions of electrons and vary in accuracy and computational expense. Conventional DFT 

functionals give vanishing band gaps for narrow band gap semiconductors such as InAs, GaSb, 

InSb, and III-V-Bi. The metallic character of these materials when treated with conventional 

DFT leads to errors in the occupation of surface states and the screening of Coulomb interactions 

between separated charges.  In recent years, increasingly accurate DFT calculations have been 
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performed using hybrid functionals, which can yield accurate results even for narrow band gap 

materials.   

 Computational investigation of the III-V-Bi alloys is critical for their development 

because of the unstable nature of the Bi endpoints.  GaBi is not stable and cannot be isolated 

experimentally.  This means simple estimations like the alloy lattice constant through Vegard’s 

law is impossible without a lattice constant for GaBi determined through computation.  The 

GaBi and InBi endpoint structures have been calculated to estimate their zincblende lattice 

parameter and is used to estimate compositions of the various III-V-Bi alloys1. Structural and 

electronic characterization of these alloys through computation will expediate experimental 

development. 

 There are a few examples of recent computational investigation of III-V-Bi alloys. One 

group has studied GaAsBi with the local density approximation (LDA)2 and Perdew-Burke-

Ernzerhof (PBE) generalized gradient approximation (GGA)3 using the Vienna ab initio 

simulation package (VASP). They found that Bi does not have a preference to cluster as well as 

investigating some of the thermodynamics of mixing for the alloy 4,5. They also found that Ga 

vacancy concentration might be increased by the incorporation of Bi. Another group used LDA 

with VASP to find that the equilibrium solubility of Bi in GaAs increases when GaAs is put 

under tensile strain but is insufficient to explain experimentally obtained compositions6. The 

downfall of any LDA or GGA method for these materials is that investigating the band structure 

for the alloys is impossible due to the band gap collapsing.  Collapse of the bandgap restricts the 

calculations from determining the effect the favored arrangement of Bi atoms and vacancies has 

on the electronic structure.  While the structural properties have been more expansively 
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investigated the bandgap collapse limits computational investigation into the electronic 

properties. 

Another group has utilized the Heyd-Scuseria-Ernzerhof (HSE) hybrid functional in 

VASP to avoid the band gap collapse and using it to investigate the crystal structure, band gap 

energy, and elastic coefficients7.  The alloying is investigated using coarse alloying steps of 1/16, 

which would miss any possible nuance in the electronic structure for smaller compositions.  This 

is likely as large of cells they could feasibly use before the calculations become too 

computationally expensive.  The ability to perform electronic structure calculations on larger 

cells with accurate band gaps represents a step forward in the field.    

Socorro is a computational platform developed at Sandia National Laboratories that has 

better scaling for the HSE functionals potentially allowing for finer steps in composition.  

Scaling in this context refers to how well a given code performs a calculation with an increase in 

number of cores used. Socorro is however missing some critical features for undertaking these 

calculations, cell shape relaxation and spin-orbit coupling.  This chapter discusses 

implementation of these two critical features and the initial steps towards a computational 

investigation of III-V-Bi alloys. 

 

2.1.1 Socorro 

Socorro is a highly scalable DFT electronic-structure code. The code can be used to 

perform spin-polarized and non-spin-polarized DFT calculations in a plane-wave basis using 

norm-conserving pseudopotentials (NCPs)8 or projector-augmented-wave (PAW)9 potentials to 

model the ions and core electrons, and density-dependent functionals from the LibXC library10 to 

describe exchange and correlation effects among valence electrons. In addition, NCP-based 

calculations can be performed using LibXC hybrid functionals, which combine density- and 
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orbital-dependent exact-exchange with density-dependent correlation. In this case, novel 

algorithms are used to construct and apply the exact-exchange operator, allowing the use of 

significantly more processing cores than are currently allowed with commercial and academic 

electronic structure codes.  This translates to a high scalability of Socorro with hybrid functionals 

and is demonstrated with near optimal time vs. number of cores on a 256 atom cell of gold using 

HSE in Figure 2-1. 

 

Figure 2-1: Scaling of a calculation of a 256 atom cell of gold using HSE with 1 k-point 

sampling, and 2034 Kohn-Sham orbitals showing a near linear scalingup to 73728 cores 

 The efficient scaling in Socorro with hybrid functionals means bismides can be calculated 

in a more complete fashion than demonstrated in previous works while minimizing problems like 

the band gap collapse because of the ability to scale to larger computational cells.  Socorro was 

missing a few critical features to perform meaningful calculations on Bi containing III-V 

materials. The first is cell shape relaxation, which is an important parameter for understanding 

how strain effects the behavior of these materials.  Also, Bi incorporation will greatly increase 

the spin-orbit coupling in these materials.  This implies that for accurate calculations, spin-orbit 
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coupling will have to be included to predict the impact Bi incorporation has on the band 

structure.  The remainder of this chapter outlines adding these two pieces of functionality to the 

Socorro code. 

 

2.2 Cell shape Relaxation 

 Socorro was previously missing an internal cell shape optimization routine requiring any 

lattice optimization to be done in individual steps. This means that cell shape optimization 

requires running individual energy calculations on a variety of cell sizes and determining the 

minimum energy, as opposed to changing the cell shape while performing the energy 

minimization the calculation does.   This effect would make investigating large numbers of 

configurations difficult due to the time and number of individual steps.   

Implementation of cell shape relaxation was relatively straightforward since Socorro 

already calculated the stress tensor, it was merely a problem of using the stress for cell shape 

optimization.  Following the definitions set forth in Bucko et al.11 and basic elastic theory, steps 

for lattice optimization are calculated from the given stress tensor, σ, assuming the relaxation 

step occurs in the same direction as the stress.  These steps are iterated through until the stress 

tensor is minimized.  

 Epitaxial strain is another condition that would be interesting simulate since the bismides 

have a significant lattice mismatch to most substrates they could be grown on given the 

calculated lattice constant of GaBi.  This form of strain is simply a cell that is confined along two 

axes while one axis relaxes fully.  The implementation is a straightforward extension of the 

previously mentioned cell shape relaxation procedure.  Instead of using the entire stress tensor, σ, 
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only a single column of σ is minimized.  A visualization of the three possible cell shape 

relaxation conditions can be found in Fig. 2-2. 

 

2.2.1 Investigation of Epitaxial Strain impacts on ordering in GaAsBi 

Cell shape relaxation in Socorro allowed for probing the impacts of epitaxial strain in the 

ground state configurations in GaAsBi.  GaAsBi has been shown to exhibit CuPtb type ordering 

in some thin film growths12,13. The ordering is either a global energy minimum or a trapped state 

in a local minimum.  DFT calculations on the ordered phases with and without epitaxial strain 

should provide some insight on which energy state the ordering is associated with. 

All symmetry unique supercells of GaAsBi with Bi substituting on group V sites were 

generated up to a supercell size of 5 or 10 atoms.  DFT formation energies of each possible 

configuration was run utilizing the PBE GGA functional with 3 different cell relaxation 

conditions seen in Fig. 2-2.  The conditions for the lattice relaxation were fully constrained to 

GaAs lattice constant, fully relaxed, and relaxed in a single axis to represent epitaxial strain of 

growth on a (001) GaAs substrate illustrated in the right of Fig. 2-2. The formation energies were 

calculated relative to the two reference endpoints of GaAs and GaBi and plotted in Fig. 2-2.  

Each point in the plot represents one of the symmetry unique configurations possible for a given 

composition of GaAsBi. 
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Figure 2-2: DFT Formation energies for GaAsBi under various cell shape relaxation conditions 

referenced to the two endpoint compounds(left). Depiction of relaxation restrictions on the cubic 

lattice where arrowheads indicate an axis that is free to relax.(right) 
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The fully constrained case is a reference for the most stabilized the ordered phases could 

be with ordered phases of 60% and 50% being the lowest in energy at ~.27eV.   A lattice that is 

fully constrained to GaAs lattice constants is not physical in regards to film growth.  The 

calculation with full constraints merely illustrates a situation that is most conducive for stable 

ordered phases.  For the epitaxial constraint, the energies of the ordered phases are closer to the 

reference states but are still unstable relative to the reference energy.  The closest to stabilized is 

a 50% Bi phase at ~3meV from the reference state. The fully relaxed condition shows that none 

of the configurations are favored over the two endpoints.  These results fall in agreement with 

Punkinnen et al. where they found LDA and PBE calculation on special quasi-random structures 

had the totally disordered alloys as the most stable5.  The results of these calculations provide 

good proof of concept that the cell shape relaxation can enable exploration of different strain 

states once band structure calculations can be done in Socorro.  For the band gap calculations to 

be done, spin-orbit coupling must first be implemented into Socorro.  The following section 

outlines the contributions towards spin-orbit coupling in Socorro. 

2.3 Spin-orbit coupling 

 Spin-orbit coupling is the relativistic effect associated with the spin of the electron 

coupling to the motion associated with its orbit.  The magnitude of the spin orbit coupling 

potential, VSO, is proportional to the angular momentum operator dotted into the spin angular 

momentum operator. 

𝑉𝑆𝑂 𝛼  𝐿 ∙ 𝑆 

 Spin-orbit coupling becomes larger while going down the periodic table.  Bi 

incorporation even in small amounts would be expected to drastically increase the spin-orbit 
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coupling term in a given III-V alloy.  Any DFT-based investigation into the electronic structure 

of these materials would need to include spin-orbit coupling for a good approximation of their 

behavior.   

 The goal is to add an implementation of spin-orbit coupling into Socorro to take 

advantage of it’s high scalability with hybrid functionals to calculate the electronic structure 

across a range of experimentally accessible III-V-Bi configurations.  The implementation 

requires a relativistic pseudopotential be available which was previously missing in the Socorro 

code. 

2.3.1 Pseudopotential Addition 

 Socorro needed to handle a norm-conserving pseudopotential that is relativistic and is 

optimized for the PBE GGA functional.  We incorporated the pseudopotentials developed by 

Hartwigsen, Goedecker, and Hutter14,15 which were originally constructed for use with the LDA 

functional but was later optimized for PBE by Krack16.  The pseudopotentials were appealing to 

implement for a few reasons.  One reason is that they are separable into individual contributions 

for the local, nonlocal associated with scalar relativistic effects, and the nonlocal spin orbit 

interaction.  Another appealing reason is the pseudopotentials are analytic meaning that they only 

need a set of input parameters as opposed to a grid of values that would have to be splined to 

determine values for a given wavevector. 

 The total pseudopotential is given by, 

𝑉(𝑟, 𝑟′) = 𝑉𝑙𝑜𝑐(𝑟)𝛿(𝑟 − 𝑟′) + ∑ 𝑉𝑙(𝑟, 𝑟′) + ∆𝑉𝑙
𝑆𝑂(𝑟, 𝑟′)𝐿 ∙ 𝑆

𝑙

 

where 𝑉𝑙𝑜𝑐 is a local piece with a form that can be found in the originating paper14.  𝑉𝑙 and ∆𝑉𝑙
𝑆𝑂 

are very similar.  The form for 𝑉𝑙 is: 
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𝑉𝑙(𝑟, 𝑟′) = ∑ ∑ ∑ 𝑌𝑙,𝑚(�̂�)𝑝𝑖
𝑙(𝑟)ℎ𝑖,𝑗

𝑙 𝑝𝑗
𝑙(𝑟′)𝑌𝑙,𝑚

∗ (�̂�′)

+𝑙

𝑚=−𝑙

3

𝑗=1

3

𝑖=1

 

where 𝑌𝑙,𝑚 are the spherical harmonics, and l the angular momentum quantum number.  𝑝𝑖
𝑙(𝑟) are 

projectors that are Gaussian in form. ∆𝑉𝑙
𝑆𝑂 is the same as 𝑉𝑙(𝑟, 𝑟′) except ℎ𝑖,𝑗

𝑙  is replaced with a 

different set of constants 𝑘𝑖,𝑗
𝑙 .  These constants are input parameters that are read in when 

initializing the pseudopotential in Socorro. 

 The projectors were imported in their reciprocal space form since this is the primary 

space that Socorro operates in.  An example of the reciprocal space projectors is as follows: 

𝑝1
𝑙=0 =  

4√2𝑟0
3𝜋5/4

√Ω exp [
1
2

(𝑔𝑟0)2]
 

𝑝1
𝑙=1 =  

8√𝑟1
5

3 𝜋5/4𝑔

√Ω exp [
1
2

(𝑔𝑟1)2]
 

𝑝1
𝑙=2 =  

8√2𝑟2
5

15
𝜋5/4𝑔2

√Ω exp [
1
2

(𝑔𝑟2)2]
 

where Ω is the cell volume and the r’s are an input parameter associated with the pseudopotential 

input file.  An important note is that these projectors have a factor of 𝑔𝑙 in them which is already 

incorporated in the Socorro spherical harmonics.  Because of this the projectors within Socorro 

differ from the ones found in the source paper by 𝑔𝑙. 

 Another feature that is new in these pseudopotentials is multiple channels for a given 

value of l. Handling this for a norm conserving pseudopotentials was previously not available in 
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Socorro and the feature was added.  The scalar relativistic portions of the pseudopotential was 

tested against other norm conserving pseudopotentials to check that the application of the 

multiple channels and projector functions was done correctly.   

 In order to apply the non-scalar parts of the pseudopotentials Socorro must be made to 

handle two different spin densities to have them interact and mix from 𝐿 ∙ 𝑆.  This addition 

requires changes in the more complicated backend of Socorro and is being incorporated by 

Normand Modine and Alan Wright at Sandia National Laboratory.  

 The final addition made to the Socorro code was the application of 𝐿 ∙ 𝑆 at the 

pseudopotential handling level assuming that the two relevant spin pieces are passed down. The 

application is a straightforward application of the operators for 𝐿 ∙ 𝑆. 

𝐿 ∙ 𝑆 =  
1

2
(

𝐿𝑧 𝐿−

𝐿+ −𝐿𝑧
) 

where  𝐿− and 𝐿+ are the raising and lowering operators with the following eigenvalues: 

𝐿±𝜓𝑙𝑚 = √𝑙(𝑙 + 1) − 𝑚(𝑚 ± 1)𝜓𝑙𝑚±1 

and: 

𝐿𝑧𝜓𝑙𝑚 = 𝑚𝜓𝑙𝑚 

2.4 Future Work and Initial Calibrations 

  The first set of calculations that is sensible to attempt once Socorro is fully operating with 

spin-orbit coupling would be to generate large GaAsBi cells either 128 atoms or 256 atoms and 

calculate the band structure.  The cells could be generated with Monte Carlo trajectories with the 

cluster assisted statistical mechanics package utilized in the groups previous surface 

reconstruction efforts17. This approach will allow calculation of the band structures of cells that 
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are more likely to appear in reality since temperature can play a role in accessing favorable 

arrangements of Bi in GaAs.  The calculations would be done using HSE functionals with 

mixing to match the experimental bandgap of GaAs that has its cell shape relaxed via PBE 

functional calculations.  This would be done in this manner because relaxation with the HSE 

functionals would be very computationally expensive and Socorro is currently missing 

implementation for cell relaxation with the hybrids.  It is reasonable to do this because the lattice 

constant difference between relaxing with PBE vs. HSE is relatively small ~1% and the 

difference in the optimal mixing in HSE for the two possible cell relaxation cases is small 0.3 for 

PBE relaxed versus 0.26 for HSE relaxed. 

 These calculations can be a vaulting point for understanding the band structure impacts of 

incorporating Bi in a multitude of III-V systems in the small percentages that have been accessed 

through experiments.  With Socorro fully equipped to handle these calculations it will be the 

perfect addition to experimental thrusts in developing and understanding the III-V-Bi alloys. 
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Chapter 3: Kinetics of III-V-Bi Growth 

3.1 Introduction 

Controlled growth of difficult materials like the III-V-Bi alloys requires high control over 

all interacting phenomena present during growth.  Well-characterized kinetic models capture these 

interacting phenomena and provide insight on effective growth parameter ranges for desired 

compositional effects.  

This chapter investigates the kinetics and resulting impacts of Bi surface buildup during 

the growth of Bi-containing III-V compound semiconductor alloys. It develops a kinetic model 

that predicts droplet formation trends in these alloys, with experimental validation in the GaSbBi 

system. The model also predicts that droplet formation under certain growth conditions leads to 

compositional nonuniformity, in agreement with experimental observations in GaAsBi1,2 and 

GaSbBi.  

 

3.2 Experimental Methods 

 For the remainder of this dissertation, experimental methods will be described at the 

beginning of each chapter as they are used.  Molecular beam epitaxy (MBE), scanning electron 

microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD) will be 

covered in this chapter.  Atom probe tomography (APT) and transmission electron microscopy 

(TEM) descriptions can be found in chapter 4. 
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3.2.1 Molecular Beam Epitaxy (MBE) 

 All samples were grown via MBE in an EPI 930 chamber.  Ga and Bi were provided by 

Knudsen effusion cells, with Ga having 2 heating zones and Bi having a single heating zone.  As 

and Sb sources were provided by valved cracker sources.  Sb was cracked at 900°C, As was 

either cracked at 600°C for As4 or 1000°C for As2.  Beam equivalent pressures (BEP) were 

measured with a nude Bayard-Alpert ionization gauge that is placed directly in the path of the 

elemental sources to the sample position.  Reflection high energy electron diffraction (RHEED) 

was used for in situ monitoring of surface oxide desorption, surface reconstruction and general 

surface quality during growth.  RHEED oscillations were used to determine effective Ga, As, 

and Sb deposition rates.  Growth temperature was monitored by an optical pyrometer with an 

operational detection range of 250°C-1400°C.  Exact growth conditions of samples will be 

tabulated or enumerated as they are discussed in each chapter.  

 

3.2.2 Characterization 

 Surfaces of samples were observed utilizing Scanning Electron Microscopy (SEM).  This 

technique allows us to identify the broad surface quality of the samples.  Droplet existence and 

coverage was ascertained from SEM.  Characteristic x-rays from Bi and Ga were used to identify 

the composition of the droplets on the surface. This technique is Energy Dispersive Spectroscopy 

(EDS) and was done in tandem while taking the SEM images analyzed in the remainder of this 

dissertation.  

 All x-ray diffraction (XRD) presented was obtained on a Bede D1 high resolution x-ray 

diffractometer using Cu Kα radiation.  When counts permitted, XRD traces were taken with 

triple axis measurement. Most analysis presented within this dissertation was obtained from 

diffraction from the (004) plane for either GaSb or GaAs.   The diffraction traces are a critical 
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tool for identifying the Bi composition percentage and a guide for film homogeneity. Bi 

composition was estimated by assuming the crystal behaved within Vegard’s law with a GaBi 

lattice parameter of 6.33Å that was obtained computationally3.  

 Rutherford Backscattering Spectroscopy (RBS) is a technique that utilizes the ideas set 

forth in the classical Rutherford experiment.  A sample is bombarded with high energy alpha 

particles and the resultant backscattering profile is measured and fitted to a sample profile.  The 

energy loss of the scattering event is dependent on the individual nuclei mass allowing for 

identification of elemental composition of a given sample film.   

 The technique proved to be problematic for characterizing bismide films with multiple 

compositions and/or droplets on the surface.  Figures 3-1 and 3-2 are 2 different fits of the same 

spectrum of a GaSbBi sample that was grown.  Fits are done using the SimNRA software and 

only has a fitting algorithm for a single film so any films with multiple compositions must be fit 

by hand.  This lead to two possible fits with significantly different implications of the Bi 

distribution in the film.  The fit that was decided to be most sensible is Fig. 3-2 due to the better 

fit in the Bi edge of the spectrum.  Due to the problematic fitting RBS was not used on any other 

samples since it was not clear that films with changing composition could be identified 

conclusively.  If bismide material growth improves such that the surface is droplet free and the 

composition is homogeneous throughout the samples thickness, then RBS will be a useful 

characterization technique for corroborating the composition profile.    
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Figure 3-1: RBS spectrum profile and simulated fit for GaSbBi film with composition 

distributed with Bi droplets on the surface and the high Bi concentration film closer to the 

surface. 

 

Figure 3-2: RBS spectrum profile and simulated fit for GaSbBi film with composition 

distributed with Bi droplets on the surface and the high Bi concentration film closer to the 

substrate. 
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3.3 Targeting Growth Parameters Using Surface Reconstructions 

 The initial experimental goals are to maximize the incorporation of Bi while maintaining 

a clean surface.  It is known that the traditional binary systems of GaSb and GaAs grow 

optimally under Group V-rich conditions.  This idea provides an initial target for the clean 

surfaces requirement as it prevents the occurrence of Ga droplets on the surface while being in a 

growth regime that is known for better material quality.  To achieve the maximal Bi 

incorporation condition in these V-rich conditions, surface reconstructions can be used as a 

guiding measure. 

 Previous work in the group by Adam Duzik was focused on calculating the surface phase 

diagrams of GaSbBi4 and GaAsBi5,6.  Figure 3-3 is the calculated 0 K surface phase diagram for 

Bi/GaSb accompanied with some selected surface reconstructions.  Maximizing the Bi in the 

surface reconstruction should lead to the highest possible Bi incorporation in the bulk film.  This 

intuitively occurs at high Bi flux according to Fig. 3-3.  Experimentally a 1x5 reconstruction was 

accessible at our growth temperatures of 305°C which is likely to be the 2x10 reconstruction that 

is discussed in Duzik et al.4.  Bi in the surface reconstruction is maximized by crossing the 

boundary into the 1x5 reconstruction with the addition of the Bi flux.  This methodology is 

effectively moving vertically across a boundary in the surface phase diagram in Fig 3-3. 
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Figure 3-3: Calculated 0 K surface phase diagram for Bi/GaSb (left), Selected reconstructions 

associated with the surface phase diagram (middle and right).4 

  Growths of GaSbBi alloys in Sb-rich conditions did not lead to appreciable Bi 

incorporation.  This can be explained by the surface reconstructions themselves.  The 

reconstructions in the group V rich region have a characteristic double anion layer.  Bi is always 

found to be on the topmost layer in the double anion layer.  It would be difficult for Bi to 

incorporate with its weak bonding energy relative to the As or Sb in the lower layer leading to Bi 

not incorporating and just riding on the surface like a surfactant.  The lack of incorporation in the 

group V-rich regime agrees with the model set forth by Lewis et al7 which shows a drop off in Bi 

incorporation at high group V:Ga ratios.  The advantageous aspect of these growth conditions is 

that the dynamics of surface Bi and its incorporation can be investigated without surface Ga 

buildup. 

3.4 Kinetic Growth Model for III-V-Bi 

Achieving high incorporation of Bi into GaAs or GaSb has been difficult.  A common 

problem in growth of these films is droplets on the surface8–10.  The highest reported Bi 

incorporation in GaAs is 22% with droplets, and up to 11% without droplets7. In GaSb, the highest 

reported Bi incorporation is 9% with clean surfaces11. There are also reports indicating varying 

incorporation over the thickness of GaAsBi films.  For instance, Reyes et al. reports a 6% Bi 
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concentration near the film-substrate interface that decreases to ~2% over the remaining thickness 

of the film1.  

The kinetics of the Bi incorporation process has been studied by Lu et al.12, who show how 

incorporation varies across different temperature growths resulting in a higher possible 

incorporation with lower growth temperatures. They also show lower Bi:As ratios are required to 

saturate the incorporation at lower growth temperatures.  Ptak et al.9 examined the effect of Ga 

rate on incorporation, demonstrating higher Bi flux requirements for similar incorporation 

percentages with higher Ga rates.  Additionally, they show a trend of higher Bi flux requirements 

for droplets to form at higher fluxes9.   Lewis et al.7 expand on the model of Lu et al.12 with 

experiments showing the dependence of Bi incorporation on Ga site availability.  This model 

suggests that maximal Bi incorporation occurs at near or below stoichiometric As:Ga ratios. The 

models capture incorporation dynamics with some success by taking various growth processes into 

account, however, given the assumptions none can account for Bi droplet formation or 

compositional inhomogeneity. Given the ubiquity of these phenomena, these growth processes 

need to be more accurately captured to improve growth parameter selection. 

To grow a GaAsBi or GaSbBi film with a clean surface and the desired composition, the 

kinetics involved need to be understood. The kinetic model presented here has similarities to those 

presented by Lu et al.12 and Lewis et al7, but is written generally for any III-V alloy containing Bi, 

and takes droplet formation into account. The consequence of having different group V alloy 

constituents on the kinetics is that the relative rates of the growth processes are different due to 

differing bond energies.  Figure 3-4 illustrates the processes considered in the growth of bismides.  

Impinging Bi, given by the incoming flux FBi, may physisorb onto the surface forming a weakly 

bound surfactant layer.  The physisorbed Bi may then chemisorb to the crystal termination layer 
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by forming a III-Bi bond. Alternatively, Bi in the surfactant layer may either desorb, or be ejected 

by an incoming group V atom.  While in the crystalline layer, the Bi can undergo anion exchange13  

with an incoming group V atom, returning the Bi to the surfactant layer.  Equations for the 

accumulation of each species can be written in terms of these processes. 

 

Figure 3-4: Illustration of possible operating mechanisms during the deposition of Bi in the 

growth of III-V-Bi. 14 

The surfactant layer will be kept track of in the following manner; the total number of Bi 

atoms in the surfactant layer is denoted as S (in units of fractional monolayers) and the fraction of 

the surface it covers is 𝜃𝑆. It is assumed that the surfactant layer will completely fill the first layer 

before becoming multiple atoms thick, meaning 𝜃𝑆 = 𝑆 when 𝑆 ≤ 1, and 𝜃𝑆 = 1 when 𝑆 > 1.   It 

is also assumed that all processes relating to the surfactant layer only occur on the topmost or 

bottommost layer, all sticking coefficients are unity, and there are no droplets on the initial surface. 

The (001) crystal orientation is considered as that is the preferred experimental substrate 

orientation, providing restrictions for the crystalline layer.  The surfactant layer will have the same 

interactions regardless of crystalline orientation and is not tracked.  From here the time rate of 

change of S, can be written as follows:  
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𝑑𝑆

𝑑𝑡
= 𝐹𝐵𝑖 − 𝜃𝑆𝑅𝑑𝑒𝑠 −

𝜃𝐼𝐼𝐼𝜃𝑆𝑅𝑖𝑛𝑐2

𝐹𝑉
 + 𝜃𝐵𝐹𝑉𝑃𝑑𝑖𝑠 − 𝐹𝑉𝜃𝑆𝑃𝑟𝑒𝑚               (1) 

 

The first term, 𝐹𝐵𝑖, is the flux of arriving Bi.  The second term accounts for the reduction in the 

surfactant coverage due to desorption, which occurs at a rate 𝑅𝑑𝑒𝑠 and is scaled by the surface 

coverage of the surfactant layer, 𝜃𝑆.     The third term accounts for Bi incorporation into the 

crystal termination layer by forming a III-Bi bond, which occurs at a rate  𝑅𝑖𝑛𝑐.   This term is 

scaled by the product of the group III site coverage in the crystal termination layer 𝜃𝐼𝐼𝐼 and the 

surfactant coverage.  It is limited by the competition for the group III sites by the group V and Bi 

atoms.  Assuming that the arrival rate of the group V atoms, FV, is much faster than the 

incorporation of Bi, that scaling term is 
𝑅𝑖𝑛𝑐

𝐹𝑉
.   Both 𝑅𝑑𝑒𝑠 and 𝑅𝑖𝑛𝑐 depend on an activation 

energy for each process and the temperature T in the standard Arrhenius form, exp (
𝐸𝑎

𝑘𝑇
).  The 

fourth term takes anion exchange, the tendency for the other group V element to displace Bi 

from the crystal termination layer to the surfactant layer, into account.  This process is associated 

with the probability  𝑃𝑑𝑖𝑠 , and is scaled by the Bi coverage 𝜃𝐵𝑖  and FV. The final term considers 

a process in which the incoming group V element can eject Bi from the surfactant layer with 

probability 𝑃𝑟𝑒𝑚, and is scaled by the product of FV  and 𝜃𝑆.   These probabilities have a similar 

Arrhenius behavior when compared to  𝑅𝑑𝑒𝑠 and 𝑅𝑖𝑛𝑐. 

  Similarly, the rate equation for 𝜃𝐼𝐼𝐼 is:  

𝑑𝜃𝐼𝐼𝐼

𝑑𝑡
= (𝜃𝑉 +  𝜃𝐵)𝐹𝐺 − 

𝜃𝐼𝐼𝐼𝜃𝑆𝑅𝑖𝑛𝑐2

𝐹𝑉
−  𝜃𝐼𝐼𝐼𝐹𝑉            (2) 
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Here the first term is the creation of a Ga site from Ga impinging on the surface and forming a 

bond with a group V or Bi atom. Ga sites may be removed by Bi incorporation, accounted for by 

the second term, or by group V chemisorption, accounted for by the third term.  Finally, the rate 

equation for Bi sites in the crystal termination layer is:     

𝑑𝜃𝐵

𝑑𝑡
=  

𝜃𝑆𝜃𝐼𝐼𝐼𝑅𝑖𝑛𝑐2

𝐹𝑉
 −  𝜃𝐵𝐹𝑉𝑃𝑑𝑖𝑠 −  𝜃𝐵𝐹𝐼𝐼𝐼              (3) 

  

Where Bi sites are created by Bi incorporation from the surfactant layer (the first term), and 

removed by Bi displacement back into the surfactant layer (the second term), or covered by 

incoming group III atoms (the third term).   

This system of equations has a large number of interacting processes, many of which are 

not well characterized.  Several assumptions need to be made to obtain tractable solutions. 

Recent reports indicate that the incorporation percentage of Bi, x, is small when there are no 

droplets on the surface7. Thus, higher order effects on incorporation such as clustering and/or 

ordering are neglected. Given that x=𝜃𝐵/(𝜃𝐵+𝜃𝑉), 𝜃𝐵  must also be small.  Because in steady state 

𝜃𝐵 is proportional to 
𝜃𝑆𝜃𝐼𝐼𝐼𝑅𝑖𝑛𝑐2

𝐹𝑉
 according to eq. 3, 

𝜃𝑆𝜃𝐼𝐼𝐼𝑅𝑖𝑛𝑐2

𝐹𝑉
 must also be small relative to other 

terms present in eq. 1.  Thus, the third and fourth terms in eq. 1 are neglected such that in steady 

state (
𝑑𝜃𝑆

𝑑𝑡
= 0): 

𝑆 = 𝜃𝑆 =  
𝐹𝐵

𝑅𝑑𝑒𝑠 + 𝐹𝑉𝑃𝑟𝑒𝑚
      𝑓𝑜𝑟   𝑆 ≤ 1 (4) 

From this equation, the minimum Bi flux necessary to support 𝑆 = 𝜃𝑆 =  1 is equal to the sum of 

the desorption and removal terms. 
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This resulting form for S closely resembles a Langmuir isotherm with two differences.  

The first is the addition of the process by which Bi atoms in the surfactant layer are removed by 

impinging group V atoms in our initial formulation.  The second is the absence of a self-limiting 

term in the denominator. The Langmuir isotherm assumes that 𝑆 reaches a single monolayer of 

coverage, and no more.  However, the formation of droplets demonstrates that S can exceed 

unity. To account for this buildup, our model allows all incoming Bi to adsorb on any type of 

site. 

Next, we consider the case where the Bi flux is large enough for 𝑆 > 1.  In this flux 

regime the effective coverage of Bi in the surfactant layer is unity (𝜃𝑆 =  1) even if the total 

number of Bi atoms in the surfactant layer, S, is greater than one monolayer.  Thus, the negative 

terms in equation 1 are constant, and cannot compensate for increasing 𝐹𝐵, resulting in a net 

increase in S with time.  This is the driving force for droplet formation, which can be described 

by an excess flux, 𝐹𝑥𝑠:  

𝐹𝑥𝑠 = 𝐹𝐵𝑖 − 𝑅𝑑𝑒𝑠 − 𝐹𝑉𝑃𝑟𝑒𝑚       (5) 

the difference between 𝐹𝐵 (the numerator in eq. 4) and the sum of the desorption and removal 

terms (the denominator in eq. 4). Nucleation of Bi droplets occurs after some nucleation time 

once a critical S value is reached.  As the nucleation process continues, surface Bi is consumed 

reducing the surfactant coverage, and necessitating the reappearance of the 𝜃𝑆 :  

𝑑𝑆

𝑑𝑡
= 𝐹𝐵𝑖 − 𝜃𝑆𝑅𝑑𝑒𝑠 −

𝜃𝐼𝐼𝐼𝜃𝑆𝑅𝑖𝑛𝑐2

𝐹𝑉
 + 𝜃𝐵𝐹𝑉𝑃𝑑𝑖𝑠 − 𝐹𝑉𝜃𝑆𝑃𝑟𝑒𝑚 − 𝜃𝑑(𝑡)𝑅𝑑𝑟         (6) 

where the term, 𝜃𝑑𝑅𝑑𝑟, is the rate of Bi uptake into the droplets scaled by the areal coverage of 

the droplet 𝜃𝑑. For simplicity, 𝑅𝑑𝑟is assumed to be large and effectively constant as a function of 
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droplet size.  The amount of Bi in the droplets varies monotonically with the amount of 

deposited Bi, such that 𝜃𝑑 scales with time.  Here it is assumed that the Bi atoms in the droplets 

are inactive participants in the crystal growth, and the transition between growth without droplets 

(where there is a steadily growing surfactant layer), and growth with droplets (where there are 

steadily growing droplets) is short. The approximate value of 𝑆 in this latter regime is: 

𝑆(𝑡) =  
𝐹𝐵 − 𝜃𝑑(𝑡)𝑅𝑑𝑟

𝑅𝑑𝑒𝑠 + 𝐹𝑉𝑃𝑟𝑒𝑚
    (7) 

 

3.5 Implications and Experimental Verification of Model 

Trends can now be identified from the model and compared to the current set of known 

results. The first trend to analyze is how the total Bi incorporation varies as a function of growth 

conditions, such as growth rate.   Assuming there are no droplets on the surface, the steady state 

values of 𝜃𝐵 and 𝜃𝐼𝐼𝐼 may be solved using eqn. 2 and 3.  The Bi incorporation x is given by the 

ratio of the 𝜃𝐵 to 1-𝜃𝐼𝐼𝐼: 

𝑥 =  
𝐹𝐼𝐼𝐼𝑅𝑖𝑛𝑐2

𝐹𝐵

(𝐹𝐼𝐼𝐼 + 𝐹𝑉𝑃𝑑𝑖𝑠)(𝐹𝑉
3𝑃𝑟𝑒𝑚 + 𝐹𝑉

2𝑅𝑑𝑒𝑠 + 𝑅𝑖𝑛𝑐2
𝐹𝐵)

         (8) 

Figure 3-5 is a plot of the expected incorporation, x, across a range of 𝐹𝐼𝐼𝐼 and 𝐹𝐵𝑖 with constants 

of 𝑅𝑖𝑛𝑐 = 0.015; 
𝐹𝑉

𝐹𝐼𝐼𝐼
 = 1; 𝑃𝑑𝑖𝑠 = .1; 𝑃𝑟𝑒𝑚 = .1; 𝑅𝑑𝑒𝑠 = .1. The values for each of the rates are not 

known, but experimental data suggests that 𝑅𝑖𝑛𝑐 should be significantly smaller than the others. 

As expected, x increases with increasing 𝐹𝐵. Furthermore, as 𝐹𝐼𝐼𝐼 increases while holding the 

𝐹𝑉/𝐹𝐼𝐼𝐼 ratio constant, x is lower for a given value of 𝐹𝐵.   This is because increasing 𝐹𝐼𝐼𝐼 and thus 

𝐹𝑉, reduces 𝜃𝑆 (eq 4).  As a result, equivalent Bi incorporation at higher Ga flux with constant 

V:III ratio requires higher values of 𝐹𝐵𝑖, in agreement with reports by Ptak et al.  Equation 8 is 
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only valid in the absence of droplets, or when 𝐹𝑥𝑠<=0.  When 𝐹𝑥𝑠>0, droplets may form due to 

excess Bi on the surface.  The conditions for 𝐹𝑥𝑠=0, or the critical flux for droplet formation 

𝐹𝑐𝑟𝑖𝑡,  are also indicated in Fig. 3-5.      

 

Figure 3-5: Bi composition as a function of Bi flux (ML/s), FBi , for various group III fluxes 

using the kinetic model with 𝑅𝑖𝑛𝑐 = 0.015; 
𝐹𝑉

𝐹𝐼𝐼𝐼
 = 1.0; 𝑃𝑑𝑖𝑠 = 0.1; 𝑃𝑟𝑒𝑚 = 0.1; 𝑅𝑑𝑒𝑠 = 0.1.  Filled 

circles represent the maximum FBi before droplet formation. 14 

Experimental findings of Lu et al show that increasing the growth temperature from 

270°C to 360°C reduces the incorporation, thus requiring higher Bi:V flux ratios to achieve 

similar compositions12. Because all rates are assumed to be Arrhenius and thus increase with 

increasing temperature yet not all activation energies are known, the changes in rates with 

respect to temperature are unknown.  Nonetheless, inspection of eq. 8 suggests that 𝑅𝑖𝑛𝑐 must 

change more slowly than the other rates in order to observe the reduction in composition with 
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increasing temperature.  Activation energies for some of these processes, namely desorption15 

has been reported. 

With the incorporation as a function of growth conditions matching reported trends in the 

absence of droplet formation, the predictions of the model in the regime where droplets do form 

can now be examined. 𝐹𝑥𝑠 >0 drives droplet formation, and therefore directly results in an 

increase in areal droplet coverage 𝜃𝐷 . 𝜃𝐷 is proportional to the number of excess Bi on the 

surface, given by the product 𝐹𝑥𝑠 ∗ 𝑡.  Because the experiments had the same amount of 

deposited material and were grown under group III limited conditions, the time t is inversely 

proportional to 𝐹𝐼𝐼𝐼.  Thus 𝜃𝐷 is proportional to 𝐹𝑥𝑠/𝐹𝐼𝐼𝐼 and  

𝜃𝐷 =
𝐹𝑥𝑠

𝐹𝐼𝐼𝐼
=

𝐹𝐵𝑖 − 𝑅𝑑𝑒𝑠 − 𝐹𝑉𝑃𝑟𝑒𝑚

𝐹𝐼𝐼𝐼
        (9) 

Equation 9 can now be used as a metric to analyze the trends expected from the model to the 

droplet coverage observed in growth experiments.  

GaSbBi films were grown on GaSb(001) substrates by molecular beam epitaxy (MBE).  

All substrates then had a ~30nm GaSb buffer layer grown at ~485°C. 500nm GaSbBi films were 

grown at 305°C using conditions listed in Table 3-1.  
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Sample # Ga Rate 

(ML/s) 

Sb:Ga  Bi:Ga  Sb:Bi 𝛉𝐝 

1 0.50 1.66 0.82 2.04 .34 

2 0.50 1.66 0.42 3.99 .24 

3 0.10 1.34 0.79 1.70 .08 

4 0.10 1.86 0.49 3.83 .02(pits) 

5 0.10 3.21 0.92 3.47 .01 

6 0.56 1.00 0.83 1.21 - 

Table 3-1: Table of Ga growth rate (ML/s), and BEP flux ratios for the samples examined in this 

paper, along with resulting droplet coverages (if measured). 

According to eq. 9, increasing 𝐹𝐵𝑖 results in an increase in 𝜃𝑑 holding all other 

parameters constant.   Figure 3-6 shows SEM images of GaSbBi samples grown at T=305°C, 

𝐹𝑉/𝐹𝐼𝐼𝐼≈1.66, using combinations of  𝐹𝐼𝐼𝐼= 0.5 ML/s and 0.1 ML/s and 𝐹𝐵𝑖/𝐹𝐼𝐼𝐼= 0.8 and 0.5.   

As expected, the droplet coverage increases with increasing 𝐹𝐵𝑖. Fig. 3-6 illustrates the 

differences in droplet coverages by changing 𝐹𝐼𝐼𝐼 while keeping all flux ratios equal and 

comparing image pairs top to bottom shows the differences in droplet coverage when increasing 

𝐹𝐵𝑖. Increasing droplet coverage with increasing FBi were also reported in GaAsBi8,9.  In Fig. 3-

6b there are pits observed on the surface instead of droplets. We presume that the pits seen in Fig 

3-6 are remnants of Bi droplets that desorbed away during the final annealing step10,16.    A more 

interesting prediction of the model is 𝜃𝐷 as a function of  𝐹𝐼𝐼𝐼.  As before, 𝜃𝐷 is predicted to 

increase with increasing flux but saturates at high 𝐹𝐼𝐼𝐼 due to the diminishing impact of the 

desorption term (Fig. 3-6e). By increasing 𝐹𝐼𝐼𝐼 but keeping the flux ratios equivalent means that 

the only term changing in eqn. 10 is  𝑅
𝑑𝑒𝑠

𝐹𝐼𝐼𝐼
⁄ . Increasing 𝐹𝐼𝐼𝐼 holding all other parameters 

constant causes a significant change in droplet coverage. 𝜃𝐷 increases from 8% to 34% for 
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samples with high Bi:Ga (3 and 1 in Table 3-1) ratio and 2% of a pitted surface and 24% droplet 

coverage for samples with a low Bi:Ga(4 and 2 in Table 3-1).  This experimental result paired 

with our model suggests that growing at lower 𝐹𝐼𝐼𝐼 suppresses droplet formation. 
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Figure 3-6: SEM images of GaSbBi films (sample 3(a), 4(b), 1(c), and 2(d) ) grown at different 

group III rates and Bi:Ga BEP ratios. Scale bars in each image represents 5µm. (e) Predicted 

droplet coverage as a function of group III growth rate and Bi:Ga flux ratio.14 
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The model suggests that the removal of Bi from the surfactant layer by impinging group 

V strongly impacts both the incorporation of Bi (eq. 8) and the formation of droplets (eq. 10).   

The removal term can be experimentally isolated by changing the Sb flux while keeping the 

other growth conditions constant. Sample 3 has 8% droplet coverage under lower Sb conditions 

and sample 5 has ~1% coverage under higher Sb conditions as can be seen in Fig. 3-7.  This 

result confirms the necessity of the inclusion of the removal term for the kinetic expressions and 

suggests that V-rich conditions reduces the droplet coverage and Bi composition.  The results in 

GaSbBi and the prediction of the model are also consistent with observations by by Ptak et al. for 

GaAsBi.  In that work, higher FBi were required required for droplet formation as FGa and FAs 

increased9. 

 

Figure 3-7: SEM images of GaSbBi films grown at T=305C, 𝐹𝐼𝐼𝐼= 0.1ML/s , with Sb:Bi = 1.7  

Bi:Ga=0.79 (left, sample 3) and Sb:Bi = 3.47 Bi:Ga=0.92(right, sample 5).14 

Temperature plays an important role in all of these equations.  A change in temperature 

would change the incorporation and desorption rates, as well as adjust the probability of removal 

and displacement.  However, the absolute values of each is not well characterized.  Furthermore, 

their impact on experimentally observable properties, composition in particular, is complex as 

seen in eq. 8. A possible route to overcome this challenge is suggested in eq. 9.  Here, we see 

that an increase in temperature, which would increase 𝑅𝑑𝑒𝑠 and 𝑃𝑟𝑒𝑚 , would reduce the droplet 
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coverage.  Thus, the model provides a strategy to isolate the activation energies of some of these 

terms. 

Droplet nucleation reduces the number of Bi atoms in the surfactant layer (eq. 7), and 

thus reduces 𝜃𝐵.  The result is that the Bi incorporation is also reduced according to the 

expression:  

𝑥 =  
𝐹𝐼𝐼𝐼𝑅𝑖𝑛𝑐2

(𝐹𝐵−𝜃𝑑𝑅𝑑𝑟)

(𝐹𝐼𝐼𝐼+𝐹𝑉𝑃𝑑𝑖𝑠)(𝐹𝑉
3𝑃𝑟𝑒𝑚+𝐹𝑉

2𝑅𝑑𝑒𝑠+𝑅𝑖𝑛𝑐2
(𝐹𝐵−𝜃𝑑𝑅𝑑𝑟))

   (10) 

The only difference between this equation and eq. 8 is the subtraction of 𝜃𝑑𝑅𝑑𝑟 from all 𝐹𝐵 

terms.  Thus, the Bi incorporation decreases when droplets nucleate on the surface, despite the 

fact that all other growth conditions remain constant.  As a result, there is a high composition 

near the film-substrate interface that decreases with increasing thickness as droplets form on the 

surface. 

Our samples also show that there is a change in composition over the thickness of the 

film.  Figure 3-8 shows XRD of sample 6 that has been fit with Gaussian lineshapes 

demonstrating a clean fitted with a substrate peak and two film peaks. These three distinct peaks 

correlate to the substrate peak, a low Bi composition film peak, and a broader less intense high 

Bi composition film peak.  Though the sequence of these two layers cannot be deduced from 

XRD alone, similar compositional inhomogeneity was observed in GaAsBi where there was an 

initial high concentration near the substrate that decreased with increasing thickness1. This 

compositional variation was also predicted by kinetic Monte Carlo (KMC) simulations calibrated 

for GaAsBi17. In these simulations a droplet free growth had constant Bi composition throughout 

the thickness of the film, and the case where a Bi droplet nucleates the composition behaves just 
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as predicted in the kinetic model with high initial Bi incorporation and then reduced upon Bi 

droplet formation.  This also agrees with what is found experimentally in the above section. 

 

 

Figure 3-8: XRD data for a GaSbBi film grown at T=305°C, 𝐹𝐼𝐼𝐼=0.56ML/s, Bi:Ga=0.83, 

Sb:Ga=1.0  (sample 6).  The dotted lines represent Gaussian fits to (from right to left) the 

GaSb(001) substrate peak, an x~1% GaSb1-xBix film peak, and an x=~5% GaSb1-xBix film 

peak.14 

It should be noted that there might be an additional explanation for the observed 

compositional inhomogeneity that relies on strain-limited incorporation. For instance, rather than 

the nucleation of strain–relieving 3D islands, it may be possible for the Bi to be ejected from the 

crystalline layer back to the surfactant layer as the strain-energy of the film approaches the 

critical thickness.  This effect would increase the surfactant concentration, driving droplet 

formation and limiting incorporation as well. 
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3.7 Summary 

This chapter covered the initial approach to optimizing Bi incorporation in III-V-Bi 

alloys.  The initial target via surface reconstructions is shown to be flawed due to the double 

anion layer in the reconstructions targeted.  A kinetic model is built as an extension of previously 

postulated models set to include the accumulation of Bi on the surface.  The model is 

corroborated by growth experiments of GaSbBi films by showing the difference of Bi droplet 

coverage under a variety of conditions.  Bi droplets are postulated to become a kinetic sink for 

impingent Bi leading to a reduction of the Bi incorporated in the film once droplets have 

nucleated.  The different film compositions are found in both experiments and KMC simulations.  

The experiments and model in this chapter rules out growths that have Bi droplets due to the 

consequence of inhomogeneous Bi distribution.  The next chapter sets to explore the 

inhomogeneities that exist from Ga droplets and growth temperature dependent inhomogeneities. 
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Chapter 4: Inhomogeneities in III-V-Bi Alloys 

4.1 Introduction 

Maximal Bi incorporation is shown occur at high Bi fluxes and low relative group V 

fluxes. The previous chapter saw that excessive Bi in growths nucleate into droplets and can lead 

to step function-like inhomogeneity through the thickness of the film.  Rodriguez et al. built up a 

surface morphology phase diagram using kinetic Monte Carlo simulations1.  Their work reveals a 

small parameter window in which there is high Bi incorporation with no surface droplets.  The 

highest Bi incorporation leads to the droplet formation regions. It is critical to know if any of the 

droplet formation regions provide homogeneous Bi distribution making it a more useful 

electronic material candidate.  

Compositional inhomogeneities in III-V semiconductor alloys are crucial to understand, 

as such fluctuations can cause carrier localization2  and degradation of device performance. They 

are often driven by thermodynamics, resulting in phase separation or ordering.  Many alloys are 

predicted to have miscibility gaps, including InGaN3, InAsSb4, and InAsBi5.    Other materials 

show a propensity for atomic ordering, such as  InGaP6 and GaAsBi7, but those effects are 

thought to be related to the surface reconstructions present during growth.     Kinetic effects also 

lead to compositional inhomogeneities.  For example, lateral compositional modulations were 

observed arising from the interaction of atomic mismatch with morphological undulations8.   

Compositional variation along the growth direction due to surface segregation was also 

observed9, as has compositional variation near dislocations10.   
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In the previous chapter we saw that nucleation of Bi droplets could lead to reduced Bi 

incorporation creating inhomogeneous incorporation through the thickness of the film.  This 

chapter sets to explore other compositional inhomogeneities that are encountered in III-V-Bi 

films.  Ga droplets are shown to generate a Bi composition inhomogeneity and growths with 

clean surface are also shown to have conditions in which the Bi is not homogenous.   

4.2 Experimental Methods 

 All films in this chapter were still grown with MBE and characterized with XRD and 

SEM as described in the previous chapter.  In addition to these methods, the films Bi distribution 

in the bulk was characterized by atom probe tomography (APT) and scanning transmission 

electron microscopy (STEM).  Both techniques allow for high resolution insight into how Bi is 

distributed in grown films. 

4.2.1 Nanometer Scale Structural and Compositional Characterization 

 Samples that were examined with scanning tunneling electron microscopy (STEM) using 

a JEOL JEM 2100 Scanning transmission electron microscope.  All images were taken in high 

angle annular dark field (HAADF) mode.  In this image scheme the pixel intensity is measured 

by an annular detector representing high angle scattering from the incident electron beam 

direction.  The scattering cross section for high angles is highly dependent on the atoms core 

charge z and is commonly referred to as “z contrast” imaging.  For GaAsBi, this leads to stark 

contrast between As and Bi allowing for identification of how Bi is distributed in the samples 

with the high resolution provided by STEM.  GaSbBi was much harder to get contrast on low 

composition films, so there is no analysis of those films within this dissertation.  The GaAsBi 

samples were prepared via focused ion beam (FIB) lift out.  For any work involving GaSb it is 

necessary to create samples using mechanical polishing since FIB is not viable due to material 

redeposition. 
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 Samples that were examined with STEM were also characterized via atom probe 

tomography (APT) with a Cameca LEAP-4000HR.  APT is a relatively new technique where a 

small tip of the sample is set at a bias voltage and excited with a pulsed high energy electric 

field, ejecting atoms in an individually measurable fashion.  The ejected atoms are measured 

with positional time of flight mass spectrometry for atom position and atomic mass 

determination.  A reconstruction of the tip can then be made and is the subject of the analysis 

done throughout this chapter.  The tips are also prepared via FIB lift out methods.  More details 

of these two characterization techniques and sample preparation can be found in Lifan Yan’s 

thesis37, who prepared the samples and performed the measurements. 

4.3 Ga Droplet Induced Inhomogeneities 

As seen from the previous chapter, the fluxes of each element must be carefully 

optimized to eliminate the formation of Group III and/or Bi droplets while simultaneously 

maximizing the amount of Bi incorporation. The KMC work discussed previously by Rodriguez1 

showed that the highest Bi incorporation rates are predicted in the flux regime where Ga droplets 

form but Bi droplets do not.  This is because Bi incorporation requires a high coverage of 

available Ga sites.  Once Bi droplets form, Bi incorporation into the film is no longer 

thermodynamically favorable, and can result in a compositional inhomogeneity along the growth 

direction7. 

Despite the fact that the highest Bi incorporation is predicted to occur in the presence of 

Ga droplets, it is generally desirable to grow in a regime without them because they tend to 

roughen the surface11. This section investigates the impact Ga droplets at the growth front have 

on the crystal quality of GaAsBi films.  It is found that the appearance of Ga droplets correlates 

with nanometer-sized compositional fluctuations across the entire film thickness, which we 
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propose arises due to local variations in the Bi incorporation at the growth front as a result of 

nonuniform Ga flux in the vicinity of the droplets.  

Samples began with the deposition of a 250nm-thick GaAs buffer layer at 600°C.  Then 

500 nm-thick GaAsBi films were grown at 315°C, a Ga growth rate of 0.97 ML/s, and a Bi beam 

equivalent pressure (BEP) of 1.0x10-7 torr. Two samples were grown as continuous films: one 

with an As:Ga BEP ratio of 3.5 (expected flux ratio of 1.1), and one with a ratio of 1.7 (expected 

flux ratio of ~0.6).  Two additional samples were grown at BEP ratios of 1.7, except that they 

were grown with periodic interruptions of the Ga and Bi fluxes while maintaining the As flux.  

One sample was interrupted every 50nm of deposited thickness, and the other was interrupted 

every 25nm. The interruptions lasted half the time it took to grow the relevant thickness (i.e. 1 

min film growth followed by 30 sec interruption) in order to keep the total As exposure the same 

for both samples.  Thus, the effective As to Ga ratio was 2.55 for both interrupted samples.  

 Maximizing Bi incorporation in a GaAsBi film at a given Bi flux and growth temperature 

is an important feature to understand.  Kinetic models and prior experimental work suggest that 

the optimal incorporation occurs when the growth front is Ga-rich12–14.  If precise stoichiometric 

conditions aren’t met for the ratio of As and Ga fluxes, Ga atoms accumulate on the surface 

forming droplets.  This effect can be seen in Fig. 4-1, which shows a comparison of scanning 

electron microscopy (SEM) images for films grown continuously with a As to Ga BEP ratio of 

1.7 and 3.5. The film grown with a BEP ratio of 1.7 has a distribution of droplets ranging in 

diameters up to 10 µm.  These droplets are comprised of Ga, according to energy dispersive 

spectroscopy (EDS) [not shown], confirming an As deficiency.  The film grown at a BEP ratio of 

3.5 has a surface devoid of droplets, suggesting that the stoichiometric requirement for growth, 

that is a one to one ratio of group III and group V atoms, are met.   
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.  

Figure 4-1: (left) SEM image of sample grown at As:Ga BEP=1.7 revealing large Ga droplets 

distributed across the surface; (right) SEM image of sample grown at As:Ga BEP=3.5 showing a 

relatively clean surface.15 

 The Ga droplets on the surface of the film grown continuously at an As to Ga BEP ratio 

of 1.7 result from the buildup of excess Ga due to an As deficiency.  Growth interrupts were used 

to grow films with cleaner surfaces while maintaining Ga-rich conditions to promote Bi 

incorporation.  The purpose of the growth interrupt is to convert excess Ga on the surface into 

GaAs thus restricting its buildup over the course of the film growth. Figure 4-2 shows SEM 

images of the surface of two samples grown using an As to Ga BEP ratio of 1.7 as previously, 

except with growth interrupts every 50nm or 25nm of deposited GaAsBi. Overall, the Ga 

droplets are much smaller in both samples compared to the film without interrupts. The sample 

with interrupts every 50 nm exhibits a surface covered by a high density of Ga droplets with 

diameters on the order of 200 nm. Doubling the frequency of the interrupts to every 25nm of 

GaAsBi film thickness results in even smaller features, more closely resembling the surface of 

the continuous film grown with a As to Ga ratio of 3.5, suggesting that excess Ga is eliminated.  
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Figure 4-2: (left) SEM image of 50 nm growth interrupt film revealing many Ga droplets; (right) 

SEM image of 25 nm growth interrupt film showing a relatively cleaner surface with roughening 

similar to the other growth interrupt but on a much smaller scale.15 

The crystal quality and average lattice parameter are strongly influenced by both the As 

to Ga BEP ratio and growth interrupts.  Figure 4-3 shows the (004) x-ray diffraction of each of 

the films.  The sample grown continuously with a As to Ga BEP ratio of 3.5 exhibits a film peak 

568 arcsec to the left of the substrate peak corresponding to a Bi composition of ~2% assuming 

Vegard’s law, no strain relaxation, and that the lattice parameter of GaBi is 6.33Å 16. 

Furthermore, the 71 arcsec full width half maximum (FWHM) of the film peak suggests high 

crystal quality.  The x-ray diffraction (XRD) data for the continuous film with an As to Ga BEP 

ratio of 1.7 exhibits no distinct film peak.  Instead it appears as a broad peak indicative of a large 

variation in the lattice parameter of the film, perhaps due to point defects, compositional 

variation, or the precipitation of As clusters17. The two interrupted films appear to be some linear 

combination of the XRD of the two continuous films. The XRD data for the 50nm growth 

interrupt sample has a small film peak at ~2% Bi superimposed over a broad signal. The XRD 

data for the 25 nm interrupted film more closely resembles the continuous film grown at As to 

Ga of 3.5, but with a slightly broader (100 arcsec) film peak superimposed upon a broad 

background signal. This suggests that two different growth modes are operating, one that 
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generates a broad film peak under As-poor conditions, and another that results a narrower film 

peak in As-rich conditions. 

 

Figure 4-3: X-ray diffraction data of samples with vertical dashed lines highlighting the GaAs 

substrate peak at 0 arcsec and the GaAsBi film peak center on As:Ga=3.5; continuous film at 568 

arcsec to highlight the appearance of the film peak in samples containing growth interrupts15 

The differences in XRD scans and the observed SEM images together suggest that the 

presence of Ga droplets on the surface has a strong impact on the subsequent crystal quality of 

the grown film. Clearly, the appearance of droplets on the surface is correlated with a broad 

background signal in the XRD scans.  Furthermore, it appears that the size of the droplets is 

inversely related to the appearance of a sharp film peak. The film grown continuously has the 

largest droplets on the surface and the no sharp film peak, followed by smaller droplets and a low 

intensity film peak for the 50nm interrupted film. The 25nm interrupted film has the smallest 

droplets, and the XRD scan that most resembles the high-quality film grown at high BEP.  

Presumably, Ga droplet nucleation results in a change in the growth conditions that either alters 
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the incorporation of Bi, or induces the injection of defects, either of which could lead to the 

observed variation in the lattice parameter. 

Transmission electron microscopy (TEM) and atom probe tomography (APT) were 

performed to determine the origin of the broadening of the GaAsBi XRD film peaks.  Figure 4-

4a shows a High Angle Annular Dark Field (HAADF) TEM image of the sample grown 

continuously with an As to Ga BEP ratio of 1.7.  The TEM data shows plate-like contrast 

variation across the thickness of the film, indicative of a variation in the Bi composition parallel 

to the growth front.  The contrast variation observed in Fig. 4-4a is markedly different from 

previously reported composition variation in Bi-containing films.  For instance,  Reyes et al. 

report a linear gradient in Bi composition parallel to the growth direction when grown at 380°C 

with As4:Ga:Bi BEP ratios of 40:2:1 7, while Wu et al. 18and Luna et al. 19report that unannealed 

GaAs0.985Bi0.015 grown at T=220C results in lateral composition modulations aligned along the 

[110], perpendicular to the growth direction, having a periodicity of ~20nm. Presumably, those 

films were grown under group V rich conditions, as no Ga-droplets were reported. The plate-like 

variation of the Bi-composition is also observed in APT of the same sample (Fig. 4-4b).  Figure 

4-4c shows the variation in the Bi composition along the line shown in Fig. 4-4b, and reveals that 

the Bi composition varies between 0<x<7% along the growth direction of the film.  The width of 

these features can exceed 100 nm, but the thickness of these features ranges from 5<d<40nm.  

The plate like variation in the Bi composition is also observable in cross-sectional 

scanning tunneling microscopy(xSTM) shown in Fig. 4-5. The contrast in these images arise 

from an increase in the tunneling current from the Bi atoms.  Brighter areas are indicative of 

higher Bi concentrations.  The dark stripes in the image are cracks that likely appear due to a 



55 

 

poor cleave of the sample.  The features sizes of the increased Bi composition regions agree with 

the 5<d<40nm size as observed in the APT. 

 The TEM, APT, and xSTM data taken together suggests that the peak broadening 

observed in the XRD scans (Fig. 4-3) are a result of compositional fluctuations as opposed to 

point defect injection.  The compositions measured in the APT data are consistent with the 

observed variation in the lattice parameter measured by XRD. TEM images observing the 

compositional behavior near the Ga droplets is shown in Fig. 4-6. It shows that near the 

boundary of the droplets there is a region of enhanced Bi incorporation.  There is clear 

distinction in the three images between Bi incorporation underneath the droplets and Bi 

incorporation near the droplets.  
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Figure 4-4: (a) High angle annular dark field image of sample grown continuously at As:Ga 

BEP=1.7 showing inhomogeneous distribution of Bi atoms in the film.  The dotted line shows 

the outline for a Ga droplet on the surface; (b) Atom probe tomography of a cutout from the 

same sample mapping Bi atoms in blue with the vertical line representative of the top 80 nm of 

the sample; (c) Average Bi composition of an x-y cylindrical cross section taken along the line in 

part b; (d) Illustration of the available elemental fluxes  and different incorporation regimes when 

Ga droplets are present on the growth surface15 
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Figure 4-5: xSTM images of the continuous As:Ga BEP=1.7 film showing the variety of Bi 

composition. Courtesy of R.C Plantenga and P. M. Koenraad of Eindhoven University of 

Technology 

 

 

Figure 4-6: Survey of HAADF TEM images of sample grown continuously at As:Ga BEP=1.7 

highlighting Bi distribution near Ga droplets. 

The experimental results show that growth of GaAsBi in the presence of Ga droplets on 

the surface leads to Bi compositional inhomogeneity in the film. Due to the observed enhanced 

Bi incorporation near the droplets, the inhomogeneity is attributed to nonuniform incorporation 

of Bi in the presence of the droplets due to a gradient in the Ga flux. The kinetics of Bi 
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incorporation into MBE-grown GaAs and related materials has been examined by a number of 

groups,12,14,20 and is known to depend on a number of interacting processes. In the absence of 

droplets, the Bi composition at the vapor-solid interface has been shown to be proportional to the 

Ga flux assuming constant Bi and As fluxes.14 Typically, the source of this flux is only the flux 

impinging on the surface from the vapor.  It is well known, however, that the Ga droplets 

themselves can be a source of Ga, which is the primary mechanism that allows for the 

observation of Group V limited RHEED oscillations.21Therefore, the Ga flux increases in the 

vicinity of the droplet, which also leads to an increase in the composition near the droplets, xv
near, 

assuming that all other processes remain constant.  While many of the processes are expected to 

be similar for the incorporation of Bi at the liquid-solid interface below the droplet, it would not 

be surprising if they function at different rates.  Indeed, Wood et al. showed that the Bi 

incorporation beneath the droplets is very low.22 Figure 4-4d shows a schematic of the impinging 

fluxes that result in different composition regimes: beneath the droplet, xl, near the droplet, xv
near,  

and far from the droplet, xv
far.  

 

The proposed model explains the observed compositional inhomogeneities in the 

presence of Ga droplets. Ga droplets generate 3 regions of varying Bi incorporation that follow 

the Ga droplet as it moves along the surface during growth. The droplet motion would result in 

the plate-like variation in Bi composition as droplets move in and out of the plane where the 

image is taken. Other reports of GaAsBi growth under As-deficient conditions are consistent 

with this model.  For instance,  Field et al. 23 report that when the As flux is reduced to induce a 

Ga-terminated surface, they observe broadening of the XRD peaks, consistent with our 

observations and model. Similarly, Wood et al. 22 report on compositionally inhomogeneous 
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GaAsBi due to droplet formation, but they do not report Bi enriched regions similar to those 

found in our experiments. This discrepancy could arise due to the fact that those films were 

grown in a kinetic regime resulting in biphasic Ga-Bi droplets, which are known to be in a 

different kinetic regime.1 Nonetheless, all of these experiments show that the local incorporation 

of Bi is enhanced by the presence of droplets on the surface, in agreement with previous 

predictions. 1  

While these experiments were done using an As2 overpressure, similar results are 

expected under an As4 overpressure given that the inhomogeneities occur under As-deficient 

conditions.  The phenomenon relies on there being an excess of Ga on the surface during growth.  

While the stoichiometric cutoff for As2 and As4 are different if As availability is low enough for 

Ga droplets to form on the surface it is expected in this proposed mechanism for the Bi 

inhomogeneities to manifest. 

Based on the improvement seen in the XRD data, the inhomogeneities may be 

ameliorated by interrupting the growth to eliminate droplets. A comparison of TEM images on 

the continuously grown sample vs. film grown with growth interrupts every 25 nm is shown in 

Fig. 4-7.  The interrupted film shows overall improved Bi homogeneity in agreement with the 

XRD but still exhibits periodic ribbons of enhanced Bi incorporation. The intervals are a little 

shorter than 25nm as observable in Fig. 4-7.  This is likely due to the growth being group V 

limited creating a growth rate slower than the deposition rate of Ga. Following from the 

proposed model, the small regions of enhanced Bi incorporation indicate that there is excess Ga 

at the surface. These regions suggests that either the interrupts were not long enough to consume 

all excess Ga creating enhanced Bi incorporation at the continuation of the growth or that the 

interrupts were not frequent enough and Ga droplets nucleate allowing for enhanced Bi 
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incorporation before the growth is interrupted.  Based on the greatly improved homogeneity, 

growth interrupts are a candidate for improving the parameter space for homogeneous films by 

potentially allowing homogeneous growth to occur in conditions that would typically result in 

the Ga droplet mediated inhomogeneity discussed in this section. 

 

Figure 4-7: HAADF TEM images of GaAsBi grown at 315°C without growth interrupts(left) 

and with a growth interrupt every 25 nm (right) 

 Growth interrupts present an interesting direction forward.  There are a few directions for 

optimization including interruption thickness and duration.  Taking the interrupts to the limit of 

monolayer growth may not be the best option as it is possible Bi would not be able to incorporate 

and be trapped in the bulk crystal. If the enhanced Bi incorporation is occurring at the restart of 

growth then longer interruptions under As, or a higher As flux, would aid in consumption of the 

excess Ga on the surface.   

4.4 Inhomogeneities in droplet free growth 

It has been shown that inhomogeneities exist in every droplet formation regime for 

growth of GaAsBi. The question becomes whether growths of droplet free GaAsBi always result 
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in homogenous Bi distribution across all temperature ranges. In this section, a series of GaAsBi 

bulk layers were grown on GaAs (001) substrates at varying temperatures. It is shown that as the 

temperature decreases the composition of Bi in the film increases as expected.  However many 

other interesting phenomena also arise with decreasing growth temperature, including lateral 

composition modulation, surface roughness, Bi clustering, and nanopores formation.  These 

features appear to be correlated and are proposed to be related to a growth instabilitiy arising due 

to in differences in surface diffusivity between the Bi and As adatoms.  

All growths began with the deposition of a 250nm-thick GaAs buffer layer deposited at 

600°C, a Ga growth rate of 0.97 ML/s, and an As to Ga BEP ratio of ~3.5, which is expected to 

result in a ratio of 1.1 As atoms for every 1 Ga atom at the surface.  Next, a series of 500 nm-

thick GaAsBi films were deposited at a Bi beam equivalent pressure (BEP) of 1.0x10-7   torr, and 

substrate temperatures varying between 315°C and 350°C.  These sets of growth conditions 

result in droplet-free growth over each of the temperatures studied. The surfaces of the films 

were further characterized using Atomic Force Mircroscopy (AFM) in tapping mode. The results 

of multiple 25 x 25 µm2 AFM scans show that the surfaces are generally flat with the Root Mean 

Squared (RMS) roughness ranging from 0.8 to 2.7 nm with decreasing substrate temperature 

(Table 1).  This finding is not surprising because as the growth temperature decreases the 

diffusivity of adatoms also decreases, resulting in rougher films. The average Bi composition 

was inferred from (004) x-ray diffraction scans assuming the lattice parameter obeys of Vegard’s 

law and the lattice constant for GaBi is 6.33 Å 16.  These measurements indicate that the Bi 

composition decreases slightly from ~2% to ~1% with increasing temperature (Table 4-1), 

consistent with increased Bi desorption with increasing temperature 12,13. 
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Tg (°C) xxrd xapt RMSAFM 

315 2.0% 2% 2.7 nm 

325 2.2% 3% 1.3 nm 

340 1.5% 2% 0.8 nm 

350 1% - 1.1nm 

Table 4-1: Tabulated data of the GaAsBi films grown in this study including temperature, Tg, 

composition from XRD,  x
xrd, composition from APT, xapt, and RMS surface roughness from 

AFM. 

 

The Bi distribution of the GaAsBi sample grown at 340°C is homogenous with few defects 

present.  The cross-sectional HAADF TEM image in Fig. 4-8a is essentially featureless, with a 

slight contrast variation in the direction parallel to the growth direction.    It is possible that this 

contrast modulation is due to a “curtaining” artifact arising from the preparation of the 

sample.24The surface appears smooth in Fig. 4-8a, in agreement with the AFM measurements.  

The APT reconstruction shown in Fig. 4-8b and the corresponding line profile in Fig. 4-8c 

corroborate both the composition of film obtained from the XRD data (see Table 4-1), and that 

the Bi distribution is very homogeneous.  The homogeneity of the film may be quantified using 

the Pearson coefficient25, which is the linear correlation between the experimental distribution 

and a binomial distribution centered on the average composition. Possible values range from 0, 

indicating a random alloy, and 1, indicating a clustered distribution of the alloy constituents.  The 
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measured Pearson coefficient for the sample grown at 340 °C is 0.02, indicating a nominally 

random Bi distribution for this sample. 

 

Figure 4-8: (a) HAADF TEM image of GaAsBi film grown at 340C showing some relatively 

even contrast; (b) APT reconstruction of the Bi distribution in the film grown at 340C; (c) Bi 

isoconcentration plots of a slice along a direction of the tip from (b) showing even distribution of 

Bi 

 

Reducing the growth temperature to 325°C results in an increase in Bi composition, as 

expected due to reduced desorption12.  The cross-sectional HAADF TEM image in Fig. 4-9a 

suggests that this surface is significantly rougher than the 340°C sample, in agreement with the 

AFM data from Table 4-1.  There is also some lateral contrast variation, as in Fig. 4-9a.  High 

resolution images show that there are distinct regions that are darker (boxed in Fig. 4-9b) that 

correspond to voids in the material.  Brighter regions are also visible nearby, which suggests that 

they are enriched in Bi.   The APT reconstruction volume (Fig. 4-10a) and the planar 

isoconcentration slices (Figs. 4-10 b and c) also exhibit a variation in the composition, with the 

average composition ~3% Bi, the modulation magnitude ±0.4%, and the modulation period ~25 

nm. While the APT sample volume is too small to definitively determine the modulation period 

for the entire film, the data in Figs. 4-10a-c is consistent with the period of the contrast 
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modulation seen in the TEM micrograph in Fig. 4-10a.  The Pearson coefficient for this sample 

is 0.3, consistent with a less random Bi distribution. The isoconcentration slice shown in Fig. 4-

10b also exhibits a single Bi cluster with a diameter of ~3 nm having a Bi composition of up to 

14% localized within a region denuded of Bi.  The size of this Bi cluster is comparable to the 

feature observed in Fig. 4-9b.  

 

Figure 4-9: (a) HAADF TEM image of GaAsBi film grown at 325°C showing some surface 

roughness and intensity contrast; (b) higher magnification image of the same sample showing a 

Bi rich cluster (circled) and a nearby void (boxed). 

 

 

Figure 4-10: (a) APT reconstruction of the Bi distribution in the film grown at 325°C; (b) and 

(c) Bi isoconcentration plots of a slice along a direction of the tip from (a) showing some clusters 

ofup to 7 at% Bi 
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Reducing the growth temperature further to 315°C results in a significantly rougher surface 

according to the cross-sectional HAADF TEM (Fig. 4-11b), and clearer contrast variations that 

appear to be correlated to the surface roughening.  In contrast to the sample grown at 325°C 

where there was only a single high Bi concentration cluster observed in the APT volume, this 

lower temperature sample exhibits many Bi-rich clusters that are aligned parallel to the low-Bi 

regions.  These features are visible in both in the TEM (Fig. 4-11b) and in the APT 

reconstruction seen in Fig. 4-12a. The isoconcentration plots in Figs. 4-12 b-c show that the Bi 

concentration in the clusters reaches 12.5 atomic %, or a composition of 25%.  The heavy 

amount of clustering is reflected in the fact that the Pearson coefficient reaches a value of 1.0. In 

addition to the more intense clustering, nanopores are also visible having diameters ~3 nm that 

penetrate from the surface down to 100nm, as can be seen in Figs. 4-11 a-c.  Higher resolution 

images of the clusters (Fig. 4-11c) shows that they retain the zincblende structure. The 

composition modulation, clustering, and nanopores appear to have similar axes of alignment, 

with the angle ranging from 77 to 83 degrees relative to the surface, which corresponds to a 

(n11) crystal plane where n can range between 5 to 8. This relative alignment is most clear in 

Fig. 4-11b, which shows how voids, strings of clusters, and the lateral composition modulation 

are all aligned. 
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Figure 4-11: HAADF TEM images of GaAsBi film grown at 315°C. (a) image of the surface 

roughness and the periodic nanopores of varying depth.  (b) larger scan area showing signs of 

lateral composition modulation and some nanopores; (c) region of interest in (b) showing a 

nanopore that is terminated by a Bi rich cluster as well as a cluster embedded in the film; (d) 

another region of interest in (b) shows many Bi rich clusters along with the composition 

modulation along similar axes; (e) zoom in of cluster in (c) revealing the clusters remain 

zincblende in structure; 
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Figure 4-12: (a) APT reconstruction of the Bi distribution in the film grown at 315°C; (b) and 

(c) Bi isoconcentration plots of a slice along a direction of the tip from (a) showing clusters of up 

to 12.5 at% Bi 

Lateral composition modulation and clustering have been reported separately in these alloys, 

but not in a single sample.  A similar lateral composition modulation was observed in 

GaAs0.985Bi0.015 alloys by Wu et al.18, except that those samples were grown at a much lower 

growth temperature (T=220°C).  That modulation closely reflects the samples described here, 

namely the average compostion of ~1.5% and modulation period of ~25 nm.  Wu et al. also 

report significant surface roughness correlated to the lateral composition modulation, according 

to the TEM images.  A different report shows that annealing of GaAs0.985Bi0.015 alloys results in 

the appearance of Bi-rich clusters that are either zincblende for small clusters (~12nm) or 

rhombohedral Bi for larger clusters (~16nm), as well as the appearance of rhombohedral As 

clusters ~5 nm in size.26    This is in contrast to the samples in our paper, which exhibit only 

zincblende Bi-rich clusters in the absence of an annealing step.   Another difference between the 

two observed lateral composition modulations is the one discussed by Luna et al.27 is clearly 

occurring along the [110] and [11̅0] directions, while our modulation has a slight angle to it.  

This could suggest a different mechanism at play than the suface spinodal decomposition as 

suggested by Luna.  It is also uncertain whether these are planar features or columnar like the 

modulations observed in Luna et al.27.  To determine this we would either need a HAADF image 
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along the perpendicular axis to the images presented here or a plan view image to determine the 

footprint of the modulation. 

 

Figure 4-13: Comparison of line traces in 5 x 5 µm2 AFM scans on the 4 samples ranging from 

315-350°C.  All line traces as seen on right are on the same height scale of ±9.5nm along an axis 

of asymmetry in the scan areas as seen on the left. 
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Because the lateral composition modulation, clusters, nanopores, and surface roughness 

appear to be aligned, it is likely that they are correlated.  These experiments show that lower 

growth temperature lead to both rougher surfaces and a more evident composition modulation.  

While it is not clear whether the surface roughness drives the lateral composition modulation, or 

vice versa, it is likely that one provides positive feedback to the other.  Figure 4-13 shows a set 

of linescans for 5 x 5 µm2 showing that there appears to be a preferred direction for the surface 

roughening.  The preferred axis would also be the assumed direction of our observed lateral 

composition modulation. This type of behavior has been observed in other systems.   For 

example, growth of AlGaAs on patterned GaAs resulted in a composition modulation and lateral 

strain modulation with the same period as the pattern 28.  Phase separation in the bulk was 

observed to be correlated to the surface step structure in films of GaInAsSb 29.  The formation of 

the composition modulation was shown to be associated with surface corrugation in ZnSSe 

layers30.  Experimental 28 and theoretical 31investigations show that both composition modulation 

and surface roughness arise due to differences in surface adatom diffusion rates and relative 

atomic size.  In fact, Spencer and Voorhees suggest that for a given atomic size mismatch (e. g. 

the relative size difference between Bi and As atoms), there is a critical ratio of the Bi and As 

diffusivity below which a growing film is unstable to morphological and compositional 

variations.  According to this view, any changes to the relative surface diffusivity via a change in 

the growth temperature could induce such an instability.  Spencer, Voorhess, and Tersoff 31 show 

that destabilization of the film will occur for a compressively strained film when the diffusivity 

of the larger atomic specie (Bi) slows relative to the other (As).   

The TEM images and APT reconstructions show that Bi-rich clusters form in regions of 

reduced Bi composition along preferred directions.  This implies that Bi diffuses through the 
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bulk along these directions. The appearance of nanopores aligned along these directions, and 

often terminating at Bi-rich clusters (see Fig. 4c) suggests a possible diffusion mechanism. It has 

been shown that GaAs films grown at low temperatures (T<320°C) contain an increasing 

concentration of Ga vacancies with decreasing temperature 32,33.  It has also been postulated that 

the addition of Bi to III-V compounds increases the vacancy concentration due Bi 

segregation.34,35  It is also shown through DFT calculations that Bi incorporation may increase 

the Ga vacancy concentration and that the Ga vacancies can act as nucleation centers for phase 

separation36. Therefore, we hypothesize that such an increase in Ga-vacancy concentration due to 

these two effects enables bulk Bi diffusion and the nucleation and growth of clusters observed in 

the samples grown at 315C. As the Bi-diffusion process is mediated by vacancies, those 

vacancies may agglomerate initially into voids (as seen in Fig. 2b) and later into nanopores (as 

seen in Fig. 4) as the Bi atoms sweep through the volume.  The expected result would be Bi-

enriched clusters, vacancy-enriched clusters (the voids and nanopores), in a field of reduced Bi 

composition, as observed in our results. 

4.5 Summary 

This chapter has shown a range of inhomogeneities that exist in particular growth conditions.  

The first part of this chapter showed that growth in V-deficient conditions results in Ga droplet 

nucleation.  The Ga droplets create multiple incorporation regimes for Bi on the growth surface. 

The result in the bulk is a wide variety of Bi composition appearing in a stripe-like pattern. The 

easiest path for avoidance of this type of inhomogeneity is to grow with just enough group V 

flux to avoid Ga droplet formation.  

The latter section of this chapter shows a series of GaAsBi films with clean surfaces at a 

variety of growth temperatures.  As the temperature decreases the surface is increasingly rough 
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while also exhibiting the formation lateral composition modulation, clustering, and nanopores at 

315°C.  The features are likely induced due to differences in the diffusivity of the constituent 

atoms, and by the increase in Ga-vacancies with increasing Bi composition.  This suggests a 

potential minimum temperature required for homogeneous Bi incorporation resulting in a 

maximum Bi composition determined by the Bi saturation at the critical temperature. 

This chapter effectively shows that homogeneous Bi incorporation in III-V-Bi films will only 

occur under droplet free conditions provided that the temperature is also high enough to avoid 

the surface roughening and lateral composition modulation discussed here. The phase space for 

these growth conditions has already been explored some via KMC simulations.  

4.6 References 

1. Rodriguez, G. V. & Millunchick, J. M. Predictive modeling of low solubility 

semiconductor alloys. J. Appl. Phys. 120, (2016). 

2. Cho, Y. H. et al. ‘S-shaped’ temperature-dependent emission shift and carrier dynamics in 

InGaN/GaN multiple quantum wells. Appl. Phys. Lett. 73, 1370–1372 (1998). 

3. Wakahara, A., Tokuda, T., Dang, X.-Z., Noda, S. & Sasaki , A. Compositional 

inhomogeneity and immiscibility of a GaInN ternary alloy. Appl. Phys. Lett. 71, 906 

(1997). 

4. Ishida, K., Nomura, T., Tokunaga, H., Ohtani, H. & Nishizawa, T. Miscibility gaps in the 

GaPInP, GaPGaSb, InPInSn and InAsInSb systems. J. Less-Common Met. 155, 193–206 

(1989). 

5. Berding, M. A., Sher, A., Chen, A. B. & Miller, W. E. Structural properties of bismuth-

bearing semiconductor alloys. J. Appl. Phys. 63, 107–115 (1988). 

6. Ueda, O., Takikawa, M., Komeno, J. & Umebu, I. Atomic structure of ordered InGaP 

crystals grown on (001) GaAs substrates by metalorganic chemical vapor deposition. Jpn. 

J. Appl. Phys 26, L1824 (1987). 

7. Reyes, D. F. et al. Bismuth incorporation and the role of ordering in GaAsBi/GaAs 

structures. Nanoscale Res. Lett. 9, 23 (2014). 

8. Dorin, C., Mirecki Millunchick, J. & Wauchope, C. Intermixing and lateral composition 

modulation in GaAs/GaSb short period superlattices. J. Appl. Phys. 94, 1667–1675 

(2003). 

9. Yashar, P., Pillai, M. R., Mirecki-Millunchick, J. & Barnett, S. A. X-ray diffraction 

measurement of segregation-induced interface broadening in InxGa1-xAs/GaAs 



72 

 

superlattices. J. Appl. Phys. 83, 2010–2013 (1998). 

10. Sakaguchi, R., Akiyama, T., Nakamura, K. & Ito, T. Theoretical investigations of 

compositional inhomogeneity around threading dislocations in III-nitride semiconductor 

alloys. Jpn. J. Appl. Phys. 55, (2016). 

11. Stemmann, A., Heyn, C., Köppen, T., Kipp, T. & Hansen, W. Local droplet etching of 

nanoholes and rings on GaAs and AlGaAs surfaces. Appl. Phys. Lett. 93, 1–4 (2008). 

12. Lu, X., Beaton, D. a., Lewis, R. B., Tiedje, T. & Whitwick, M. B. Effect of molecular 

beam epitaxy growth conditions on the Bi content of GaAs[sub 1−x]Bi[sub x]. Appl. Phys. 

Lett. 92, 192110 (2008). 

13. Lewis, R. B., Masnadi-Shirazi, M. & Tiedje, T. Growth of high Bi concentration 

GaAs1−xBix by molecular beam epitaxy. Appl. Phys. Lett. 101, 82112 (2012). 

14. Tait, C. R. & Millunchick, J. M. Kinetics of droplet formation and Bi incorporation in 

GaSbBi alloys. J. Appl. Phys. 119, (2016). 

15. Tait, C. R., Yan, L. & Millunchick, J. M. Droplet induced compositional inhomogeneities 

in GaAsBi. Appl. Phys. Lett. 111, 1–5 (2017). 

16. Janotti,  a., Wei, S.-H. & Zhang, S. Theoretical study of the effects of isovalent coalloying 

of Bi and N in GaAs. Phys. Rev. B 65, 115203 (2002). 

17. Liu, X. et al. Native point defects in low-temperature-grown GaAs. Appl. Phys. Lett. 67, 

279 (1995). 

18. Wu, M. et al. Detecting lateral composition modulation in dilute Ga(As,Bi) epilayers. 

Nanotechnology 26, 425701 (2015). 

19. Wood, A. W., Collar, K. & Li, J. Spontaneous formation of three- dimensionally ordered 

Bi-rich nanostructures within GaAs 1 − x Bi x / GaAs quantum wells. 

20. Ptak, A. J. et al. Kinetically limited growth of GaAsBi by molecular-beam epitaxy. J. 

Cryst. Growth 338, 107–110 (2012). 

21. Suzuki, T. & Nishinaga, T. First real time observation of reconstruction transition 

associated with Ga droplet formation and annihilation during molecular beam epitaxy of 

GaAs. J. Cryst. Growth 142, 49–60 (1994). 

22. Wood, A. W., Collar, K., Li, J., Brown, A. S. & Babcock, S. E. Droplet-mediated 

formation of embedded GaAs nanowires in MBE GaAs  1− x  Bi  x  films. Nanotechnology 

27, 115704 (2016). 

23. Field, R. L. et al. Influence of surface reconstruction on dopant incorporation and 

transport properties of GaAs(Bi) alloys. Appl. Phys. Lett. 109, 252105 (2016). 

24. Schwarz, S. M., Kempshall, B. W., Giannuzzi, L. A. & McCartney, M. R. Avoiding the 

curtaining effect: Backside milling by FIB INLO. Microsc. Microanal. 9, 116–117 (2003). 

25. Moody, M. P., Stephenson, L. T., Ceguerra, A. V. & Ringer, S. P. Quantitative binomial 

distribution analyses of nanoscale like-solute atom clustering and segregation in atom 



73 

 

probe tomography data. Microsc. Res. Tech. 71, 542–550 (2008). 

26. Wu, M., Luna, E., Puustinen, J., Guina, M. & Trampert, A. Formation and phase 

transformation of Bi-containing QD-like clusters in annealed GaAsBi. Nanotechnology 

25, 205605 (2014). 

27. Luna, E., Wu, M., Puustinen, J., Guina, M. & Trampert, A. Spontaneous formation of 

nanostructures by surface spinodal decomposition in GaAs1-xBix epilayers. J. Appl. Phys. 

117, 185302 (2015). 

28. Darowski, N., Pietsch, U., Zeimer, U., Smirnitzki, V. & Bugge, F. X-ray study of lateral 

strain and composition modulation in an AlGaAs overlayer induced by a GaAs lateral 

surface grating. J. Appl. Phys. 84, 1366–1370 (1998). 

29. Wang, C. A. Correlation between surface step structure and phase separation in epitaxial 

GaInAsSb Correlation between surface step structure and phase separation in epitaxial 

GaInAsSb. 2077, 10–13 (2000). 

30. Tomiya, S., Okuyama, H. & Ishibashi, A. Relation between interface morphology and 

recombination-enhanced defect reaction phenomena in II-VI light emitting devices. Appl. 

Surf. Sci. 159, 243–249 (2000). 

31. Spencer, B. J., Voorhees, P. W. & Tersoff, J. Stabilization of strained alloy film growth by 

a difference in atomic mobilities Stabilization of strained alloy film growth by a difference 

in atomic mobilities. Appl. Phys. Lett. 76, 3022 (2000). 

32. Gebauer, J. et al. Ga vacancies in low-temperature-grown GaAs identified by slow 

positrons. Appl. Phys. Lett. 71, 638–640 (1997). 

33. Liu, X. et al. Native point defects in low-temperature-grown GaAs. Appl. Phys. Lett. 67, 

279 (1995). 

34. Wang, S., Song, Y. & Roy, I. S. Bismuth incorporation and lattice contraction in GaSbBi 

and InSbBi. 2011 13th Int. Conf. Transparent Opt. Networks 3, 1–3 (2011). 

35. Song, Y., Wang, S., Saha Roy, I., Shi, P. & Hallen, A. Growth of GaSb1−xBix by 

molecular beam epitaxy. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 30, 

02B114 (2012). 

36. Punkkinen, M. P. J. et al. Does Bi form clusters in GaAsBi alloys? Semicond. Sci. 

Technol. 29, 115007 (2014). 

37.      Yan, Lifan. Compositional Inhomogeneity and Defects in Nanomaterials for 

Optoelectronics (2017) 

 

 

 

 



74 

 

 

Chapter 5: Optimizing Growth and Future Directions 

5.1 Directing future growths 

 Over the course of this dissertation it was shown that the existence of droplets on the 

surface of these III-V-Bi alloys is indicative of the films being inhomogeneous in Bi 

composition.  It was also learned that even with a clean surface if the growth temperature is not 

high enough the surface can roughen and result in a variety of inhomogeneities, such as lateral 

composition modulation, clustering, and nanopores.  This generates two possible paths forward 

for material development.  One direction is determining what compositions are experimentally 

accessible with clean surfaces and a sufficient growth temperature for smooth surfaces.  The 

other direction is to grow films in the undesirable regimes and find methods to mitigate the 

inhomogeneities that appear.    

5.2 Determining the growth parameters for clean smooth surface films 

 Now that it is understood what impact droplets have on the surface, instead of looking at 

every possible film to determine its composition and behavior we can instead map out the growth 

parameters that have higher potential for quality films.  The temperature series in an earlier 

section suggests that 325°C would be a reasonable threshold temperature for avoiding the surface 

roughening and lateral composition modulation phenomena. SEM and EDS will be sufficient 

characterization for these films since it only needs to be known if droplets exist on the surface. 
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 5.3 Mitigating Inhomogeneities 

 With such a small parameter space available for clean and smooth surface films is 

limiting to accessible Bi compositions and the ability to grow these materials on any given 

system.  To improve the window available ways to diminish or remove the inhomogeneities that 

appear in the problematic regimes such as too low of temperature or droplet formation need to be 

found. 

5.3.1 Growth interrupts 

The proposed mechanic for the inhomogeneity caused by Ga droplets is the variety of 

available Ga flux across the surface.  Interrupting the growths by letting the film periodically 

anneal under an As flux resulted in a significantly more homogeneous Bi distribution than 

without the interrupts.  The enhanced Bi incorporation in the interrupted film still appears over 

somewhat regular intervals corresponding to the interruption frequency.   

The significant improvement to the homogeneity of the film generated by the growth 

makes growth interrupts a promising avenue for homogenous growth in conditions that normally 

results in Ga droplets on the surface.  There are a few directions for optimization including 

interruption frequency and duration.  The upper limit for interruption frequency of monolayer 

growth may not be the best option as it is possible Bi would not be able to incorporate and be 

trapped in the metastable state in the bulk crystal. If most of the enhanced Bi incorporation is 

occurring at the restart of growth then longer interruptions under As would aid in consumption of 

the excess Ga.   

5.3.2 GaAsBi/GaAs superlattice 

Superlattices are another approach that could yield significant improvement for homogeneity.  

This is a similar approach to the growth interrupts except instead of temporary annealing under 

As, an intermediary layer of GaAs is grown.  There is an example of these superlattices 
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illustrating good interfaces and uniform Bi distribution1. Since the GaAs layer in the superlattice 

can be grown under group V rich conditions, doing so would perform similar removal of excess 

Ga buildup.  This could allow growth in Ga droplet formation conditions for maximal Bi 

incorporation while mitigating the inhomogeneity due to Ga droplets.   

 Superlattices will also provide insight into how accurately layers are deposited.  The 

XRD traces will have characteristic satellite peaks where the separation is determined by the 

thickness of the repeating layer.  A few preliminary samples have been grown targeting 10 

repeated layers of GaAsBi/GaAs with thicknesses of 50nm/25nm and 50nm/12.5nm at 325°C.  

The fluxes match the conditions for the 500nm layer of GaAsBi grown at 325°C with conditions 

found in table 4-1.  The composition of the GaAsBi layers in the superlattice are assumed to 

match this sample at 2.2%. 

Figure 5-1 shows a comparison of the 004 rocking curve data for the 2 superlattices to a 

simulated fit using the estimated composition and targeted thickness listed above.  The simulated 

satellite peak separation is smaller than the actual data for both samples.  This means that the 

thicknesses are not what was targeted in the initial growth.  A better fit for the superlattices is 

shown in Fig. 5-2, where the thicknesses are 42nm/25nm and 39nm/15nm.  The significant 

reduction in GaAsBi thickness could be a result of the growth conditions being group V limited 

linking the growth rate to the group V flux instead of the Ga flux.  The well-defined satellites 

suggest that the interfaces are well defined as found in other work1. 
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Figure 5-1: Experimental vs. Simulated XRD using targeted superlattice thicknesses 

 

Figure 5-2: Experimental vs. Simulated XRD using superlattice thicknesses for best fit 

Future directions for the superlattices are plentiful.  Since it is an extension of the growth 

interrupts superlattices, they could be attempted with a variety of thicknesses where the GaAsBi 

layer is grown under increasing group V deficient conditions. The satellite peak definition would 

be an initial guide for the homogeneity similar in fashion to section 4.3.  In addition to potential 

improvement in the Ga droplet regime, superlattices could improve the surface roughening 

induced inhomogeneities.  This hypothesis depends on whether the GaAs layer helps reduce the 

surface roughness at a given temperature.  This follows based on the proposed mechanism of the 

growth destabilization discussed in section 4.4. 
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5.4 Extension to GaSbBi 

 Recently there has been success in the synthesis and characterization of high Bi GaSbBi 

films2–4.  The projects within this dissertation began with mostly experiments in GaSbBi and 

transitioned into GaAsBi.  An interesting extension of this work is to examine if the 

inhomogeneity phenomena observed in GaAsBi discussed in chapter 4 behaves similarly in 

GaSbBi.  If the proposed mechanisms for the inhomogeneities are true there should be 

inhomogeneity found with Ga droplets but less likely with reduced temperature.  This is because 

the temperature boundary is a dynamic between the size and diffusion differences of Bi vs. As or 

Sb.  The size difference is smaller and the diffusion relationship would be different.  Observation 

of these dynamics would be more difficult in HAADF TEM imaging because Sb is closer in 

mass to Bi resulting in much lower contrast.  Determination of homogeneity will be more reliant 

on APT and potentially EDS if the composition range is suitable. 

5.5 Investigation of Strain on Bi Incorporation 

 A final direction for the project is to determine how strain affects incorporation of Bi.  

It’s possible for strain energy to be contributing to the inohomogeneities that are observed and 

discussed in this dissertation.  Since the range of observed inhomogeneities is greater in GaAsBi 

and easier to detect, it is the most sensible starting point.  A range of substrate lattice parameter 

would be accessed through metamorphic buffer layers of either InGaAs or GaAsSb5.  An 

increase in the substrate lattice parameter will increase the solubility of Bi in GaAs and will alter 

the strain energy of the system.   

 An easier system to investigate in this regard would be InAsBi due to GaSb being close 

in lattice parameter size to InAs as a substrate.  The dynamics in this system will be easier to 

manipulate since the substrates would not depend on creating them experimentally before use.  
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