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ABSTRACT

Crowdsourcing—outsourcing tasks to a crowd of workers (e.g. Amazon Mechanical

Turk, peer grading for massive open online courseware (MOOCs), scholarly peer

review, and Yahoo answers)—is a fast, cheap, and effective method for performing

simple tasks even at large scales. Two central problems in this area are:

(1) Information Elicitation how to design reward systems that incentivize high

quality feedback from agents; and

(2) Information Aggregation how to aggregate the collected feedback to obtain

a high quality forecast.

This thesis shows that the combination of game theory, information theory, and

learning theory can bring a unified framework to both of the central problems in

crowdsourcing area. This thesis builds a natural connection between information

elicitation and information aggregation, distills the essence of eliciting and aggregat-

ing information to the design of proper information measurements and applies the

information measurements to both the central problems:

In the setting where information cannot be verified, this thesis proposes a simple

yet powerful information theoretical framework, the Mutual Information Paradigm

(MIP), for information elicitation mechanisms. The framework pays every agent a

measure of mutual information between her signal and a peer’s signal. The mutual

information measurement is required to have the key property that any “data pro-

cessing” on the two random variables will decrease the mutual information between
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them. We identify such information measures that generalize Shannon mutual infor-

mation. MIP overcomes the two main challenges in information elicitation without

verification: (1) how to incentivize effort and avoid agents colluding to report random

or identical responses (2) how to motivate agents who believe they are in the minority

to report truthfully.

To elicit expertise without verification, this thesis also defines a natural model for

this setting based on the assumption that more sophisticated agents know the beliefs

of less sophisticated agents and extends MIP to a mechanism design framework, the

Hierarchical Mutual Information Paradigm (HMIP), for this setting.

Aided by the information measures and the frameworks, this thesis (1) designs sev-

eral novel information elicitation mechanisms (e.g. the disagreement mechanism, the

f -mutual information mechanism, the multi-hierarchical mutual information mecha-

nism, the common ground mechanism) in various of settings such that honesty and

efforts are incentivized and expertise is identified; (2) addresses an important unsu-

pervised learning problem—co-training by reducing it to an information elicitation

problem—forecast elicitation without verification.
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CHAPTER I

Introduction

Crowdsourcing, outsourcing tasks to a crowd of workers (e.g. Amazon Mechanical

Turk, peer grading for massive open online courses, scholarly peer review, and Yahoo

answers), is a fast, cheap, and effective method for performing simple tasks even at

large scales. To attract a large number of workers, crowdsourcing is usually open to

the public rather than just professional experts. Two central problems in this area

are:

(1) Information Elicitation how to design reward systems that incentivize high

quality feedback from agents, even when the information is unverifiable; and

(2) Information Aggregation how to aggregate the collected feedback to obtain

a high quality forecast.

The elicitation and aggregation of information play a central role in many decision-

making contexts (e.g. reputation systems, purchasing, product development, pricing),

and also deal with a key challenge in big data—the lack of labeled data: crowdsourc-

ing can be used to provide a massive amount of noisy labels; and the effective use

of the mass of noisy labels is an information aggregation problem. The two cen-

tral problems are hard especially when the information is unverifiable. However, in

the context of many applications, the information is expensive or even impossible to
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Figure 1.1: Eliciting and aggregating information

verify (e.g. do you like this restaurant? Y/N). In the situation where the lack of

labeled data is a key challenge, it is expensive to obtain the ground truth or to verify

the information, otherwise the lack of labeled data would not be a problem. Pre-

diction markets/stock markets and spot-checking (randomly picking some questions

and checking the answers provided by the participant) are two examples that elicit

information with (possibly future) verification. Supervised learning is an example of

information aggregation with verification. This thesis focuses on the elicitation and

aggregation of information without verification.

Information elicitation is a mechanism design problem which is closely related to

game theory and information aggregation is an algorithmic design problem which is

closely related to learning theory. The subject we are dealing with is information

which is related to information theory. Note that recently, the combination of game

theory and learning theory has made innovative progress (e.g. Generative Adversarial

Networks). Thus, a central contention of this thesis is that the combination of game

theory, information theory, and learning theory can bring a unified framework to

both of the central problems in crowdsourcing. Few previous works have deeply

connected the three fields in crowdsourcing or any other area while this thesis builds

several simple yet powerful connections among game theory, learning theory and

2



information theory to solve several main challenges in the elicitation and aggregation

of information.

Thesis statement This thesis shows that the combination of game theory, informa-

tion theory, and learning theory can bring a unified framework to both of the central

problems in crowdsourcing area. This thesis builds a natural connection between

information elicitation and information aggregation, distills the essence of eliciting

and aggregating information to the design of proper information measurements and

applies the information measurements to both the central problems.

Main contribution In the setting where information cannot be verified, this thesis

proposes a simple yet powerful information theoretical frameworks, the Mutual In-

formation Paradigm (MIP), for information elicitation mechanisms. The framework

pays every agent a measure of mutual information between her signal and a peer’s

signal. The mutual information measurement is required to have the key property

that any “data processing” on the two random variables will decrease the mutual

information between them. We identify such information measures that generalize

Shannon mutual information. MIP overcomes the two main challenges in information

elicitation without verification: (1) how to incentivize effort and avoid agents collud-

ing to report random or identical responses; (2) how to motivate agents who believe

they are in the minority to report truthfully.

To elicit expertise without verification, this thesis also defines a natural model for

this setting based on the assumption that more sophisticated agents know the beliefs

of less sophisticated agents and extends MIP to a mechanism design framework, the

Hierarchical Mutual Information Paradigm (HMIP), for this setting.

Aided by the information measures and the frameworks, this thesis (1) designs sev-

eral novel information elicitation mechanisms (disagreement mechanism (Section 4.3),

f -mutual information mechanism (Section 3.3), multi-HMIM (Section 5.2.2), Learn-

3



ing based multi-HMIM (Section 5.2.3), single-HMIM (Section 5.3.2), common ground

mechanism (Section 6.5.2) and multi-task common ground mechanism (Section 6.5.1))

in various of settings such that honesty and efforts are incentivized and expertise is

identified; (2) addresses an important unsupervised learning problem—co-training by

reducing it to an information elicitation problem—forecast elicitation without verifi-

cation.

1.1 Eliciting information without verification

User feedback requests (e.g Ebay’s reputation system) are increasingly promi-

nent and important. However, the overwhelming number of requests can lead to low

participation rates, which in turn may yield unrepresentative samples. To encourage

participation, a system can reward people for answering requests. But this may cause

perverse incentives: some people may answer a large of number of questions simply for

the reward and without making any attempt to answer accurately. Moreover, people

may be motivated to lie when they face a potential loss of privacy or can benefit in

the future by lying now. It is thus important to develop reward systems that motivate

honesty. If we can verify the information people provide in the future (e.g prediction

markets), we can motivate honesty via this future verification. However, sometimes

we need to elicit information without verification since the objective truth is hard to

access (e.g. a self-report survey for unethical activities) or even does not exist (e.g.

subjective ratings). This thesis focuses on the situation where the objective truth is

not observable—peer prediction [45]. A key problem in peer prediction literature is:

(+) how to motivate honest reporting without verification?

Two main challenges in solving problem (+) are: without verification,

1. (avoiding collusion) how to avoid colluding agents who report random or iden-

tical responses; and
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2. (motivating the minority) how to motivate agents who believe they are in the

minority to report truthfully.

Traditional reward systems (e.g. flat payment, majority vote, spot-checking) fail

to solve problem (+) since they either distort users’ incentives (e.g. flat payment, ma-

jority vote) or require partial verification and expensive gold-standard questions (e.g.

spot checking). In previous peer prediction literature, problem (+) is also not fully

solved in many important settings, even when we assume people are homogeneous

(have the same expertise, ability ...). Avoiding collusion is more difficult compared

with motivating the minority. Few previous works1 deal with collusion and their re-

sults are typically proved by clever algebraic computations, sometimes lack a deeper

intuition, and fail to extend to important settings.

After answering problem (+), an advanced central problem—task (++)—remains

to be solved:

(++) how to incentivize effort and identify expertise without verifica-

tion?

Previous peer prediction literature does not consider settings where

1. Agents have different levels of expertise or

2. A lack of effort can systemically bias agents’ reports.

The following two tasks exemplify settings 1) and 2) respectively:

Example 1. Which state (from a list all 50 states) in the United States of America

is closest to Africa? (Single-task)

Example 2. Peer grading several essays by providing a grade from the set {1, 2, 3, 4, 5}.

(Multi-tasks)

1Prelec [51], Dasgupta and Ghosh [18], and Kamble et al. [31] deal with collusion and an inde-
pendent work with this thesis, Shnayder et al. [63], also propose a mechanism that avoids collusion.
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In the first example, an agent can guess randomly (no effort), look up the correct

answer (full effort), or guess at the correct answer (partial effort). Most people will

guess Florida, even though experts will know the correct answer is Maine. Thus

differing levels of expertise yield different answers. In the second example, a student

can, instead of carefully grading (full effort) or assigning a random grade (zero effort),

quickly check the name of the top of the paper and spot check the grammar (partial

effort). Thus partial effort can systematically bias agents: consider an essay from

a top student in impeccable pose, but which contains large conceptual errors. Here

partial effort can give some information about the correct answer, but also enable

agents to “coordinate” on an incorrect answer.

Gao, Wright, and Leyton-Brown [22] show that the effects of the settings 1) and

2) are devastating to previous peer-prediction mechanisms, which generally fail in

motivating the agents to invest effort for “expensive signals” when “cheap signals”

(that ensure agreement and may even be correlated with the sought signal) exist.

The main (very high-level) idea behind previous peer-prediction mechanisms can be

understood as a “clever majority vote”—every agent is paid according to a specific

similarity between her and her peer. Thus, they point out that in the peer-grading

example, coordinating on just checking the grammar can guarantee good agreement

with other agents, but with substantially reduced effort.

In fact, Gao et al point out that things are likely even worse than this. If the

cheap signals correlate more than the expensive signals, then the peer-prediction

techniques incentivize agents to not report the true answer, but instead focus on

cheap signals! For example, in the essay grading above, it is likely that assessments

of grammatical correctness will agree more than assessments of overall essay quality.

Because of this, peer-prediction mechanisms will pay agents more overall for lower-

quality information. In Example 1, even if agents know the answer is Maine, they

may report Florida, expecting that most others will do likewise.
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Such behavior undermines the goal of applying crowd-sourcing to increasingly

complex tasks, and, in fact, undercuts any application of crowd-sourcing to perform

any task where the answers are not “common knowledge.” The field must overcome

this key challenge of rewarding rather than suppressing expertise in order to begin

the project of expanding crowd-sourcing beyond simple labeling tasks.

This thesis proposes a simple yet powerful idea to solve problem (+) and problem

(++) that can be applied to various settings—rewarding every agent based on the

amount and value of the information she provides. It remains to design proper

information measurements to quantify information and evaluate information without

verification. Thus, this thesis distills the essence of eliciting information to the design

of proper information measurements.

Information theory is not typically used in the information elicitation literature, a

key novelty of this thesis is showing how the insights of information theory illuminate

the work and challenges in the information elicitation field.

1.1.1 Quantifying information

In a line of work [34] on designing mechanisms to elicit truthful, but unverifiable

information, this thesis noticed that many current mechanisms can be understood in

terms of information theory, specifically mutual information. This observation pro-

vides a unified framework—the Mutual Information Paradigm—for the field, simpli-

fies several existing and foundational results, and provides several novel mechanisms

in a variety of settings [38, 35, 34]. These mechanisms overcome a serious flaw of

many previous information elicitation mechanisms: agents can obtain high reward

by reporting meaningless information (e.g. everyone reports the a priori most likely

answer).

In the mutual information paradigm, each agent i is paid the mutual information

between her information and her peers’ information—
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MI(her information; her peers’ information).

If we pick “correct” mutual information measures, no agent can obtain strict

benefit by lying since intuitively the amount of information each agent has will not

increase no matter what kind of strategy she applies to her information. That is,

the mutual information measurement should be “information-monotone”. We found

two families of “(weakly) information-monotone” mutual information measures—f -

mutual information and Bregman mutual information—both of which generalize the

Shannon mutual information2.

By assuming that agents are expected utility maximizers, it is sufficient to con-

struct an unbiased estimator of the information measures. Unlike calculating the

information measure, obtaining an unbiased estimator of the information measure

only requires a small number of samples in many situations.

Section 1.1.3 will give an overview of the applications of the mutual information

paradigm in a variety of important settings and the techniques used to construct an

unbiased estimator of the information measures.

1.1.2 Evaluating information

Previous peer prediction mechanisms treat all information (cheap/expensive) equally,

and thus agents lack an incentive to invest effort to obtain expensive signals. More-

over, even when an expert can easily obtain the expensive signal, previous mechanisms

discourage her from providing it when she believes the non-experts will disagree.

A successful mechanism must break the symmetry between weak and expensive

signals and between expert and non-expert signals. We propose the following natural

assumption which will allow a mechanism to break this symmetry.

2Bregman mutual information is strictly weaker than f -mutual information since it only satisfies
information-monotonicity in one of its two coordinatess and is asymmetric.
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Assumption 3. Agents with high effort or expertise, know the beliefs of agents with

less effort or less expertise.

We can see that this assumption is very natural in Example 1 and Example 2.

Agents who look up or know the answer in Example 1 also know most people will

answer “Florida.” Agents that carefully grade an essay can also approximate the score

of an agent who spends very little effort. We will define a hierarchical information

structure to naturally capture Assumption 3.

Our mechanisms solicit not only agents’ own opinions but also their predictions

for the opinions of the other agents who have less information. This differs with the

previous peer prediction mechanisms which ask agents to provide their predictions for

all other agents’ opinions. For example, in the peer-grading example, we might ask

agents to report their own evaluation, and to optionally report one or more low-effort

/ low expertise evaluations (e.g. scores based on grammar, thesis statement, student

name, naive reading, etc).

The information theoretic techniques and Assumption 3 lead to a mechanism de-

sign framework from which we construct several mechanisms for a variety of settings,

such that expensive signals are incentivized and identified [37].

1.1.3 Overview of results and techniques

We present our results in designing multi-choice peer prediction mechanisms here.

In these mechanisms, the elicited information is a discrete signal from a finite set. We

will introduce our results in the context where the elicited information is a forecast

in the information aggregation section since we will show essentially the forecast

elicitation can be seen as an information aggregation problem. Important solution

desiderata in peer prediction literature are:

(Strictly) truthful : truth-telling is a (strict) Bayesian Nash equilibrium. A strictly

truthful mechanism motivates minority since for each agent, if she believes

9



everyone else tells the truth, she should tell the truth even she is minority.

(Symmetric) focal : the truth-telling equilibrium is paid more than other (Sym-

metric) equilibria in expectation. A symmetric focal mechanism avoids “all

agree collusion”.

Dominantly truthful : truth-telling maximizes the expected payment regardless

of the other agents’ strategies.

Before presenting the results, let’s introduce a series of important settings.

Homogeneous/Heterogeneous In the homogeneous setting, we assume the prior

over the signals agents will receive is symmetric in the sense agents have the

same expertise. We do not have this assumption in heterogeneous setting.

Single/Multi-task In the single-task setting, each agent is assigned a single task

(e.g. have you ever texted while driving before?). Miller, Resnick, and Zeck-

hauser [45] and Prelec [51] are two seminal works in this setting. Another is

the multi-task setting in which each agent is assigned a batch of apriori similar

tasks (e.g., peer grading, or is there a cat in this picture?). Dasgupta and Ghosh

[18] is the foundational work in this setting.

Known prior/Detail free Detail free mechanisms require no knowledge of the prior

over the signals agents will receive (e.g. with probability 0.6, 70% agents will

receive “yes”, with probability 0.4, 70% agents will receive “no”) while known

prior mechanisms are the opposite.

Minimal/Non-minimal Minimal mechanisms only require agents to report their

information rather than forecasts for other agents’ reports (e.g. is there a cat

in this picture?) while non-minimal mechanisms requires the agents to report

both (e.g. have you texted while driving before and what percentage of your

peers have texted while driving before?).
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Small/Medium/Large group Large group mechanisms require the number of par-

ticipants to be large or even infinite. Small group mechanisms can be applied

to the situation where the number of participants is greater than a small con-

stant (e.g 3,6). In the medium group mechanisms, the number of participants

are required to be greater than an integer that depends on the agents’ prior

N(Prior).

In addition to the novel information theoretic mechanism design frameworks, we

also propose disagreement mechanism (Section 4.3) in the single-task, homogeneous

setting, f -mutual information mechanism (Section 3.3) in the multi-task, homoge-

neous setting. The above mechanisms are all detail free. Figure 1.3, 1.4 show the

comparison between these mechanisms and previous literature in homogeneous set-

ting. In the heterogeneous setting, by assuming Assumption 3, we apply HMIP to

create the following mechanisms:

Multi-HMIM: (Section 5.2.2) which works in the multiple task setting even for a

small number of tasks but requires the mechanism to know the hierarchical

information structure.

Learning based Multi-HMIM: (Section 5.2.3) which works in the multiple task setting

even when the mechanism does not know the hierarchical information structure;

however requires a large number of tasks.

Single-HMIM: (Section 5.3.2) which works in the single-task setting.

All of the above mechanisms work for small populations. Prelec, Seung, and

McCoy [52] and Agarwal et al. [2] design mechanisms for settings with heterogeneous

participants. Prelec, Seung, and McCoy [52] only consider the single-task setting and

make a different assumption on the expertise. The mechanism in Prelec, Seung, and

McCoy [52] requires an infinite number of participants. The mechanism in Agarwal
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et al. [2] does not assume the hierarchy of the information and cannot be applied to

identify and elicit expertise.

To apply MIP and HMIP in designing these mechanisms, we need to construct an

unbiased estimator of the information measure using agents’ reports. In the homo-

geneous setting, we pay each agent the unbiased estimator such that in expectation,

each agent is paid based on the amount of the information. In the heterogeneous

setting, we first evaluate the value of the information based on Assumption 3 and

then use the same method as in the homogeneous setting to quantify the information

using agents’ reports. In the end, we pay each agent based on both the value and the

amount of the information.

To construct an unbiased estimator of the information measure using agents’ re-

ports, different settings have different techniques. In the single-task setting, we use a

non-minimal mechanism to ask agents their posterior (e.g. what percentage of your

peers have texted while driving before?) and construct the estimator using both the

first order information (e.g Y/N) and the second order information (e.g. 80% Yes). In

the multi-task setting, either we ask a large number of questions to estimate the prior

and use the prior to calculate the information measure, or we ask a small number

questions but require the knowledge of information structure.

To give a flavor of the techniques used in constructing the estimator, we use a

special case of the f -mutual information mechanism as an example. This special case

is the TV D-mutual information mechanism which is also independently proposed by

Shnayder et al. [63] (Section 3.5).

We assume that there are two agents: Alice and Bob. They are both asked to

grade the same three essays. Their payment is

Average agreements for the same essay− Average agreements for different tasks

12



Figure 1.2: TV D-mutual information mechanism

When both Alice and Bob’s answers are (0, 1, 1), their average agreements for the

same task are 1 and their average agreements for different tasks are 2/6 = 1/3. Thus,

they will be paid 2/3.

By assuming Alice’s answer is positively correlated with Bob’s answer, the above

payment is an unbiased estimator of the TV D-mutual information between Alice’s

answer and Bob’s answer (Section 3.5). The major difference between this mutual

information style payment and the naive “pay for agreements” is that this payment

also punishes the agreements for different tasks. When both Alice and Bob’s answers

are (1, 1, 1), although they have the maximal average agreements for the same essay,

they also have maximal average agreements for the different essays. In this case,

both Alice and Bob are paid nothing. Later we will show an extension of this idea in

forecast elicitation where agents’ reports are forecasts (Figure 1.7).

Figure 1.3: Multi-choice single-task mechanisms comparison in homogeneous setting
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Figure 1.4: Multi-choice multi-task mechanisms comparison in homogeneous setting

1.2 Aggregating information without verification

Co-training/multiview learning is a problem that asks to aggregate two views of

data into a prediction for the latent label, and was first proposed by Blum and Mitchell

[9]. Although co-training is an important learning problem, it lacks a unified and

rigorous approach to the general setting. The current thesis will make an innovative

connection between the co-training problem and a peer prediction style mechanism

design problem: forecast elicitation without verification, and develop a unified theory

for both of them via the same information theoretic approach.

1.2.1 Aggregating information=Eliciting information

We use “forecasting whether a startup company will succeed” as our running

example. We have two possible sources of information for each startup: the features

XA (e.g. products, business idea, target customer) of the startup; and the survey

feedbackXB, collected from the crowd (e.g. a survey of amateur investors). Sometimes

we have access to both the sources, and sometimes we have access to only one of the

sources. We want to learn how to forecast the result Y (succeed/fail) of a startup

company, using both or one of the sources.
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We are given a set of candidates predictors {PA} (e.g. a set of hypotheses) such

that each candidate predictor PA maps the features XA to a forecast for the result

Y of the startup (e.g. succeed with 73% probability, fail with 27% probability).

We are also given a set of candidates predictors {PB} (e.g. a set of aggregation

algorithms like majority vote/weighted average) such that each candidate predictor

PB maps the survey feedback XB to a forecast for the result Y . Our goal is to

evaluate the performance of a specific pair PA, PB. The learning problem, learning

how to forecast, can be reduced to this goal since if we know how to evaluate the

two candidates PA, PB’s performance, we can select the two candidates P ∗A, P
∗
B which

have the highest performance and use them to forecast.

Given a batch of past startup data each with the features XA, the crowdsourced

feedback XB, and the result Y , we can evaluate the performance of the predictors

through many existing measurements (e.g. proper scoring rules, loss functions). This

evaluation method is related to the supervised learning setting. However, there may

be only very few data points about the startups with results Y .3 When we only use a

few labeled data points to train the predictor, the predictor will likely over-fit. Thus,

we can boldly ask:

(*Learning) Can we evaluate the performance of the candidate predictors, as well

as learn how to forecast the ground truth Y , without access to any data labeled with Y ?

(see Figure 1.5) It is impossible to solve this problem without making an additional

assumption on the relationship between XA, XB and Y . However, it turns out we can

solve this problem with a natural assumption; conditioning on Y , XA and XB are

independent. With this assumption, a naive approach is to learn the joint distribution

of XA and XB using the past data, and then solve the relationship between Y and

XA, XB by some calculations, using the lemma that XA and XB are independent

conditioning on Y . However, this naive approach will not work if either XA or XB

3For example, if we focus on cryptographic or self-driving currencies, there are very few startups
labeled with results.
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Figure 1.5: Problem (*): Finding the common ground truth

has very high dimension. We will solve this problem using learning methods. Before

we go further on the learning problem, let’s consider a corresponding mechanism

design problem. In the scenario where the forecasts are provided by human beings,

we want to ask a mechanism design problem:

(**Mechanism design) Can we design proper instant reward schemes to incentivize

high quality forecast for Y without instant access to Y ? (see Figure 1.6)

Figure 1.6: Problem (**): Forecast elicitation

People will obtain instant payments from instant reward schemes. If we do not

require the reward schemes to be instant, proper scoring rules will work by rewarding

people in the future after Y is revealed. It turns out the above learning problem (*)

and mechanism design problem (**) are essentially the same, since there is a natural

correspondence between an evaluation of their performance and their rewards. A

first try would be rewarding the predictors according to their “agreement”, since high

quality predictors should have a lot of agreement with each other. However, if we
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train the predictors based on this criterion, then the output of the training process

will be two meaningless constant predictors which perfectly agree with each other

(e.g. always forecast 100% success). We call this problem the “naive agreement”

issue.

Note that the mechanism design problem (**) is closely related to the peer pre-

diction literature, incentivizing high quality information reports without verification.

It is natural to leverage the techniques and insights from peer prediction to address

problems (*) and (**). In fact, the peer prediction literature provides an information

theoretic idea to address the “naive agreement” issue, that is, replacing “agreement”

by mutual information. In the thesis, we will show that with a natural assumption,

conditioning on Y , XA, and XB are independent, we can address problem (*) and

(**) simultaneously via rewarding the predictors the mutual information between

them and using the predictors’ reward as the evaluation of their performance.

1.2.2 Overview of results and techniques

Our contribution We build a natural connection between mechanism design and

machine learning by simultaneously addressing a learning problem and a mechanism

design problem in the context where ground truth is unknown, via the same informa-

tion theoretic approach.

Learning We focus on the co-training problem [9]: learning how to forecast Y us-

ing two sources of information XA and XB, without access to any data labeled

with ground truth Y (Section 6.3). By making a typical assumption in the

co-training literature, conditioning on Y , XA and XB are independent, we re-

duce the learning problem to an optimization problem maxPA,PB MIGf (PA, PB)

such that solving the learning problem is equivalent to picking the P ∗A, P
∗
B that

maximize MIGf (PA, PB), i.e., the f -mutual information gain between PA and

PB (Section 6.4). Formally, we define the Bayesian posterior predictor as the
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predictor that maps any input information X = x to its Bayesian posterior fore-

cast for Y = y, i.e., Pr(Y = y|X = x). Then when both PA, PB are Bayesian

posterior predictors, MIGf (PA, PB) is maximized and the maximal value is the

f -mutual information between XA and XB. With an additional mild restric-

tion on the prior, MIGf (PA, PB) is maximized if and only if both PA, PB are

permuted versions of the Bayesian posterior predictor.

We also design another family of optimization goals, PS-gain4, based on the

family of proper scoring rules (Section 6.6). We can also reduce the learning

problem to the PS-gain optimization problem. We will show a special case of

the PS-gain, picking PS as the logarithmic scoring rule LSR, corresponds to

the maximum likelihood estimator method. The range of applications of PS-

gain is more limited when compared with the range of applications of f -mutual

information gain, since the application of PS-gain requires either one of the

information sources to be low dimensional or that we have a simple generative

model for the distribution over one of the information sources and ground truth

labels, while f -mutual information gain does not have these restrictions.

As is typical in related literature, we do not investigate the computation com-

plexity or data requirement of the learning problem.

To the best of our knowledge, this is the first optimization goal in the co-training

literature that guarantees that the maximizer corresponds to the Bayesian poste-

rior predictor, without any additional assumption. Thus, our method optimally

aggregates the two sources of information.

Mechanism design Consider the scenario where we elicit forecasts for ground truth

Y from agents and pay agents immediately. Without access to Y , given the prior

on the distribution of Y , i.e., Pr[Y ], 5 by assuming agents’ private information

4PS is a proper scoring rule.
5This is not a very strong assumption since we do not need the knowledge of the joint distribution
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are independent conditioning on Y , in the single-task setting (there is only a

single forecasting task), we design a strictly truthful mechanism, the common

ground mechanism, where truth-telling is a strict equilibrium (Section 6.5.2); in

the multi-task (there are at least two a priori similar forecasting tasks) setting,

we design a family of focal mechanisms, the multi-task common ground mecha-

nism MCG(f)s, where the truth-telling equilibrium pays better than any other

strategy profile and strictly higher than any non-permutation strategy profile

(Section 6.5.1).

Technical contribution Our main technical ingredient is a novel performance

measurement, the f -mutual information gain, which is an unbiased estimator of the

f -mutual information. To give a flavor of this measurement, we give an informal

presentation here: both PA and PB are assigned a batch of forecasting tasks, the

f -mutual information gain between PA and PB is

The agreements between PA’s forecast and PB’s forecast for the same task

− f ?(The agreements between PA’s forecast and PB’s forecast for different tasks)

where f ? is the conjugate of the convex function f . With this measurement, two

agreeing constant predictors have small gain since their outputs have large agreements

for both the same task and different tasks. The formal definition will be introduced

in Section 6.4.1 and the agreement measure is introduced in Definition 115.

The f -mutual information gain is conceptually similar to the correlation payment

scheme (Figure 1.2) proposed by Dasgupta and Ghosh [18] (in the binary choice

setting), and Shnayder et al. [63] (in to multiple choice setting), which pays agents

“the agreements for the same task minus the agreements for the distinct task”. In

Dasgupta and Ghosh [18] and Shnayder et al. [63], the payment scheme is designed

over the event and agents’ private information.
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Figure 1.7: f -mutual information gain

PA and PB are assigned three forecasting tasks. PA’s outputs are (0.7, 0.3), (0.1, 0.9), (0.5, 0.5) and
PB ’s outputs are (0.6, 0.4), (0.2, 0.8), (0.4, 0.6). To calculate the f -mutual information gain between
them, we pick a task (e.g. Task no.2) uniformly at random and calculate the agreements as between
PA and PB ’s forecasts for this task; we also pick a pair of distinct task (i, j) uniformly at random
(e.g. (Task no.1, Task no.2)) and calculate the agreements ad between PA’s forecast for task i and
PB ’s forecast for this task j. The f -mutual information gain is set as as − f?(ad). We can also
calculate a more concentrated version of the f -mutual information gain by replacing as and f?(ad)
by their empirical expectations. The formal definition (Section 6.4.1) uses the concentrated version.

for discrete signals and the measure of agreements is a simple indicator function.

This thesis also show that this correlation payment is related to a special f -mutual

information, TV D-mutual information (Section 3.5). Thus, the f -mutual information

gain can be seen as an extension of the correlation payment scheme and work for

forecasts report.

1.3 Roadmap

This thesis will start by introducing the general information theoretic mechanism

design frameworks in Chapter II that quantify (Mutual information paradigm) and

evaluate information (Hierarchical mutual information paradigm) without verification

and price information such that agents will be incentivized to invest effort and provide

high quality information.

Both Chapter III and Chapter IV assume agents and information are homoge-

neous. Chapter III applies the mutual information paradigm into multi-task setting

and propose two families of novel mechanisms: the f -mutual information mechanism

and the Bregman mutual information mechanism, and map the seminal work [18] in
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multi-task peer prediction literature into the mutual information paradigm. Chap-

ter IV considers the single-task setting and proposes a novel mechanism—the Dis-

agreement mechanism. The Disagreement mechanism is the first detail free, strictly

truthful, focal mechanism in the single-task setting that works for a small number

of participants. Although the design of the Disagreement mechanism does not di-

rectly use the mutual information mechanism, it also employs the information theory

tools and uses the information monotonicity property. Chapter IV also maps the

first detail free and truthful mechanism—Bayesian truth serum [51]—into the mutual

information paradigm such that the results can be constructed easily.

Chapter V considers the setting where agents have different expertise and applies

the hierarchical mutual information paradigm in both single-task and multi-task set-

ting to propose several novel mechanisms that can identify expertise and incentivize

low cost agents to invest high level effort and provide an honest report.

Chapter VI considers an important unsupervised learning problem—co-training [9]

which can be also seen as an information aggregation problem. Chapter VI reduces

this learning problem to a peer-prediction-style mechanism design problem—forecast

elicitation without verification and addresses them simultaneously using the same

information theoretic approach—the mutual information paradigm.

Chapter VII concludes this thesis and proposes several potential future works.
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CHAPTER II

An Information Theoretic Framework

2.1 Preliminaries

2.1.1 Transition probability

We define a m×m′ transition matrix M ∈ Rm×m′ as a matrix such that for any

i, j ∈ [m]× [m′], Mi,j ≥ 0 and
∑

jMi,j = 1. We define a permutation transition matrix

π as a m×m permutation matrix.

Given a random variable X with m possible outcomes, by abusing notation a

little bit, a m ×m′ transition matrix M defines a transition probability M that

transforms X to M(X) such that X ′ := M(X) is a new random variable that has m′

possible outcomes where Pr[X ′ = j|X = i] = Mi,j.

If the distribution of X is represented by an m × 1 column vector p, then the

distribution over M(X) is MTp where MT is the transpose of M .

2.1.2 f-divergence

f -divergence Df : ∆Σ × ∆Σ → R is a non-symmetric measure of the difference

between distribution p ∈ ∆Σ and distribution q ∈ ∆Σ and is defined to be

Df (p,q) =
∑
σ∈Σ

p(σ)f

(
q(σ)

p(σ)

)
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where f(·) is a convex function and f(1) = 0. Now we introduce the properties of

f -divergence:

Fact 4 (Non-negativity [16]). For any p,q, Df (p,q) ≥ 0 and Df (p,q) = 0 if and

only if p = q.

Fact 5 (Joint Convexity [16]). For any 0 ≤ λ ≤ 1, for any p1,p2,q1,q2 ∈ ∆Σ,

Df (λp1 + (1− λ)p2, λq1 + (1− λ)q2) ≤ λDf (p1,q1) + (1− λ)Df (p2,q2).

Fact 6 (Information Monotonicity ([3, 40, 5])). For any strictly convex function f ,

f -divergence Df (p,q) satisfies information monotonicity so that for any transition

matrix θ ∈ R|Σ|×|Σ|, Df (p,q) ≥ Df (θ
Tp, θTq).

Moreover, the inequality is strict if and only if there exists σ, σ′, σ′′ such that

p(σ′′)
p(σ′)

6= q(σ′′)
q(σ′)

and θσ′,σp(σ′) > 0, θσ′′,σp(σ′′) > 0.

If the strictness condition does not satisfied, we can see θTp and θTq are p and

q’s sufficient statistic which means the transition θ does not lose any information,

thus, the equality holds.

Proof. The proof follows from algebraic manipulation and one application of convex-

ity.
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Df (θ
Tp, θTq) =

∑
σ

(θTp)(σ)f

(
(θTq)(σ)

(θTp)(σ)

)
(2.1)

=
∑
σ

θTσ,·pf

(
θTσ,·q

θTσ,·p

)
(2.2)

=
∑
σ

θTσ,·pf

(
1

θTσ,·p

∑
σ′

θTσ,σ′p(σ′)
q(σ′)

p(σ′)

)
(2.3)

≤
∑
σ

θTσ,·p
1

θTσ,·p

∑
σ′

θTσ,σ′p(σ′)f

(
q(σ′)

p(σ′)

)
(2.4)

=
∑
σ

p(σ)f

(
q(σ)

p(σ)

)
= Df (p,q) (2.5)

The second equality holds since (θTp)(σ) is dot product of the σth row of θT and

p.

The third equality holds since
∑

σ′ θ
T
σ,σ′p(σ′)q(σ′)

p(σ′)
= θTσ,·q.

The fourth inequality follows from the convexity of f(·).

The last equality holds since
∑

σ θ
T
σ,σ′ = 1.

We now examine under what conditions the inequality in Equation 2.4 is strict.

Note that for any strictly convex function g, if ∀u, λu > 0, g(
∑

u λuxu) =
∑

u λug(xu)

if and only if there exists x such that ∀u, xu = x. By this property, the inequality is

strict if and only if there exists σ, σ′, σ′′ such that q(σ′)
p(σ′)

6= q(σ′′)
p(σ′′)

and θTσ,σ′p(σ′) > 0,

θTσ,σ′′p(σ′′) > 0.

Definition 7. Given two signals σ′, σ′′ ∈ Σ, we say two probability measures p,q

over Σ can distinguish σ′, σ′′ ∈ Σ if p(σ′) > 0, p(σ′′) > 0 and q(σ′)
p(σ′)

6= q(σ′′)
p(σ′′)

Fact 6 directly implies

Corollary 8. Given a transition matrix θ and two probability measures p,q that can

distinguish σ′, σ′′ ∈ Σ, if there exists σ ∈ Σ such that θ(σ′, σ), θ(σ′′, σ) > 0, we have

Df (p,q) > Df (θ
Tp, θTq) when f is a strictly convex function.
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Now we introduce two f -divergences in common use: KL divergence, and Total

variation Distance.

Example 9 (KL divergence). Choosing − log(x) as the convex function f(x), f -

divergence becomes KL divergence DKL(p,q) =
∑

σ p(σ) log p(σ)
q(σ)

Example 10 (Total Variation Distance). Choosing |x − 1| as the convex function

f(x), f -divergence becomes Total Variation Distance Dtvd(p,q) =
∑

σ |p(σ)− q(σ)|

2.1.3 Proper scoring rules

Informally, a scoring rule measures the accuracy of the forecasts. Formally, a

scoring rule [66, 24] PS : Σ×∆Σ → R takes in a signal x ∈ Σ and a distribution over

signals δΣ ∈ ∆Σ and outputs a real number. A scoring rule is proper if, whenever

the first input is drawn from a distribution δΣ, then δΣ will maximize the expectation

of PS over all possible inputs in ∆Σ to the second coordinate. A scoring rule is

called strictly proper if this maximum is unique. We will assume throughout that the

scoring rules we use are strictly proper. Slightly abusing notation, we can extend a

scoring rule to be PS : ∆Σ ×∆Σ → R by simply taking PS(δΣ, δ
′
Σ) = Ex←δΣ(x, δ′Σ).

We note that this means that any proper scoring rule is linear in the first term.

Example 11 (Log Scoring Rule [66, 24]). Fix an outcome space Σ for a signal x.

Let q ∈ ∆Σ be a reported distribution. The Logarithmic Scoring Rule maps a signal

and reported distribution to a payoff as follows:

L(x,q) = log(q(x)).

Let the signal x be drawn from some random process with distribution p ∈ ∆Σ.

Then the expected payoff of the Logarithmic Scoring Rule

Ex←p[L(x,q)] =
∑
x

p(x) log q(x) = L(p,q)
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This value will be maximized if and only if q = p.

Intuitively, more information should imply a more accurate prediction. This intu-

ition is valid when the accuracy is measured by a proper scoring rule. When predicting

a random variable Y , assuming that all agents have a common prior, the agent who

has more information will have higher prediction score when the prediction score is

measured by a proper scoring rule. We denote the prediction of Y conditioning on X

as Pr[Y |X] := (Pr[Y = 1|X],Pr[Y = 2|X], ...,Pr[Y = |Σ||X]) ∈ ∆Σ.

Fact 12 (Information monotonicity of proper scoring rules). Given any strictly proper

scoring rule PS,

EX,Y,ZPS(Y,Pr[Y |X,Z]) ≥ EX,Y PS(Y,Pr[Y |X]).

The equality holds if and only if Pr[Y |X = x, Z = z] = Pr[Y |X = x] for all (x, z)

where Pr[X = x, Z = z] > 0.

We defer the proof to the appendix.

2.2 (Weakly) Information-monotone information measures

2.2.1 f-mutual information

Given two random variables X, Y , let UX,Y and VX,Y be two probability measures

where UX,Y is the joint distribution of (X, Y ) and V is the product of the marginal

distributions of X and Y . Formally, for every pair of (x, y),

UX,Y (X = x, Y = y) = Pr[X = x, Y = y] VX,Y (X = x, Y = y) = Pr[X = x] Pr[Y = y].

If UX,Y is very different with VX,Y , the mutual information between X and Y

should be high since knowing X changes the belief for Y a lot. If UX,Y equals to
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VX,Y , the mutual information betweenX and Y should be zero sinceX is independent

with Y . Intuitively, the “distance” between UX,Y and VX,Y represents the mutual

information between them.

Definition 13 (f -mutual information). The f -mutual information between X and

Y is defined as

MIf (X;Y ) = Df (UX,Y ,VX,Y )

where Df is f -divergence.

Example 14 (KL divergence and I(·; ·)). Choosing f -divergence as KL divergence,

f -mutual information becomes the Shannon (conditional) mutual information [15]

I(X;Y ) := MIKL(X;Y ) =
∑
x,y

Pr[X = x, Y = y] log
Pr[X = x, Y = y]

Pr[X = x] Pr[Y = y]

I(X;Y |Z) :=MIKL(X;Y |Z)

=
∑
x,y

Pr[X = x, Y = y, Z = z] log
Pr[X = x, Y = y|Z = z]

Pr[X = x|Z = z] Pr[Y = y|Z = z]
.

Example 15 (Total Variation Distance and MI tvd(·; ·)). Choosing f -divergence as

Total Variation Distance, f -mutual information becomes

MI tvd(X;Y ) :=
∑
x,y

|Pr[X = x, Y = y]− Pr[X = x] Pr[Y = y]|.

For the strictness guarantee, we introduce the following definition:

Definition 16 (Fine-grained distribution). P ∈ ∆ΣX×ΣY is a fine-grained joint dis-

tribution over X and Y if for every two distinct pairs (x, y), (x′, y′), UX,Y (X, Y ) :=

P (X, Y ) and VX,Y (X, Y ) := P (X)P (Y ) can distinguish (see Definition 7) (x, y) and

(x′, y′).
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Fact 17 (General data processing inequality). When f is strictly convex, f -mutual

information MIf is information-monotone and strictly information-monotone with

respect to all fine-grained joint distributions over X and Y .

Definition 18 (Fine-grained prior). Given general setting (n,Σ), Q is fine-grained

prior if for every pair i, j, Q(Ψi,Ψj) is a fine-grained joint distribution over Ψi and

Ψj.

Proof of Theorem 17. We will apply the information monotonicity of f -divergence

to show the data processing inequality of f -mutual information. We first introduce

several matrix operations to ease the presentation of the proof.

Definition 19 (vec operator [27]). The vec operator creates a column vector vec(A)

from a matrix A by stacking the column vectors of A.

Definition 20 (Kronecker Product [27]). The Kronecker product of two matrices

A ∈ Rm×n, B ∈ Rp×q is defined as the mp × nq matrix A ⊗ B = {Ai,jB} =
A11B . . . A1nB

...
. . .

...

Am1B . . . AmnB

.

Fact 21 (vec operator and Kronecker Product [61]). For any matrices A ∈ Rn1×n2 ,

X ∈ Rn2×n3 , B ∈ Rn3×n4 , vec(AXB) = BT ⊗ Avec(X).

Let X : Ω 7→ ΣX , Y : Ω 7→ ΣY be two random variables. UX,Y and VX,Y can be

seen as two ΣX × ΣY matrices. Let M be a |ΣX | × |ΣX | transition matrix.

We define ΣX,Y as ΣX × ΣY .

Note that the vectorization of the matrix that represents the probability measure

over X and Y will not change the probability measure. Thus,

Df (UM(X),Y , VM(X),Y ) = Df (vec(UM(X),Y ), vec(VM(X),Y )).
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We define I as a |ΣY | × |ΣY | identity matrix. For any transition matrix M , by

simple calculations, we can see the Kronecker product between M and the identity

matrix I is a transition matrix as well.

When Y is independent with M(X) conditioning on X, for any probability mea-

sure P ∈ ∆ΣX×ΣY on X and Y ,

P (M(X) = x′, Y = y) =
∑
x

P (M(X) = x′|X = x, Y = y)P (X = x, Y = y) (2.6)

=
∑
x

P (M(X) = x′|X = x)P (X = x, Y = y)

(Y is independent with M(X) conditioning on X)

MIf (M(X);Y ) =Df (UM(X),Y , VM(X),Y ) (2.7)

=Df (vec(UM(X),Y ), vec(VM(X),Y ))

=Df (vec(MTUX,Y I), vec(MTV(X),Y I))

(equation (2.6), replacing P by UX,Y and VX,Y )

=Df (I
T ⊗MTvec(UX,Y ), IT ⊗MTvec(UX,Y )) (Fact 21)

≤Df (vec(UX,Y ), vec(VX,Y ))

(information monotonicity of f -divergence)

=Df (UX,Y , VX,Y )

=MIf (X;Y )

Now we show the strictness guarantee. When M is a non-permutation matrix,

Θ := (IT ⊗MT )T = M ⊗ I is a non-permutation matrix as well. Thus there must

exist (x, y), (x′, y′), (x′′, y′′) such that both Θ((x, y), (x′, y′)) and Θ((x, y), (x′′, y′′)) are

strictly positive where (x′, y′) 6= (x′′, y′′). According to the definition of fine-grained

prior (see Definition 18 ), UX,Y and VX,Y can distinguish (x′, y′) and (x′, y′). Then

29



Corollary 8 implies that the inequality in (2.7) is strict.

Fact 22 (Convexity of f -mutual information). For any 0 ≤ λ ≤ 1, for any random

variables X1, X2, Y , let Bλ be an independent Bernoulli variable such that Bλ = 1

with probability λ and 0 with probability 1 − λ. Let X be a random variable such

that if Bλ = 1, X = X1, otherwise, X = X2,

MIf (X;Y ) ≤ λMIf (X1;Y ) + (1− λ)MIf (X2;Y ).

Proof. Based on the definition of X,

UX,Y = λUX1,Y + (1− λ)UX2,Y VX,Y = λVX1,Y + (1− λ)VX2,Y .

Combining the joint convexity of Df (Fact 5) and the fact that MIf (X;Y ) =

Df (UX,Y , VX,Y ),

MIf (X;Y ) ≤ λMIf (X1;Y ) + (1− λ)MIf (X2;Y ).

2.2.2 Bregman mutual information

It is naturally to ask whether in addition to f -divergence, can we use another

commonly used divergence—Bregman divergence DPS—to define an information-

monotone information measure. Since the general Bregman divergence may not

satisfy information monotonicity, the answer is likely to be negative. However, sur-

prisingly, by properly using the Bregman divergence, we can obtain a new family of

information measures BMIPS that satisfies almost all information-monotone proper-

ties of f -mutual information except the symmetry and one half of the data processing
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inequality. Therefore, by plugging BMIPS into the Mutual Information Paradigm,

we may lose the focal property but can preserve the dominantly truthful property.

Bregman Divergence [10, 24] Bregman divergence DPS : ∆Σ×∆Σ → R is a non-

symmetric measure of the difference between distribution p ∈ ∆Σ and distribution

q ∈ ∆Σ and is defined to be

DPS(p,q) = PS(p,p)− PS(p,q)

where PS is a proper scoring rule (see the definition of PS in Section 2.1.3).

Inspired by the f -mutual information, we can first try DPS(UX,Y ,VX,Y ) to de-

fine the Bregman mutual information. However, since the Bregman divergence may

not satisfy the information monotonicity, this idea does not work. Intuitively, more

information implies a more accurate prediction. Inspired by this intuition, we define

Bregman mutual information between X and Y as an accuracy gain—the accuracy of

the posterior Pr[Y|X] minus the accuracy of the prior Pr[Y]. With this definition, if

X changes the belief for Y a lot, then the Bregman mutual information between them

is high; if X is independent with Y , Pr[Y|X] = Pr[Y], then the Bregman mutual

information between them is zero.

We define UY |X=x and UY as two probability distribution over Y such that

UY |X=x(Y = y) = Pr[Y = y|X = x] UY (Y = y) = Pr[Y = y].

Definition 23 (Bregman mutual information). The Bregman mutual information

between X and Y is defined as

BMIPS(X;Y ) = EXDPS(UY |X ,UY ) = EXPS(Pr[Y|X],Pr[Y|X])−PS(Pr[Y|X],Pr[Y]).
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Bridging log scoring rule and Shannon mutual information Inspired by the

definition of Bregman mutual information, we will show a novel connection between

log scoring rule and Shannon information theory concepts—the log scoring rule can be

used to construct an unbiased estimator of (conditional) Shannon mutual information.

A powerful application of this connection is the information theoretic reconstruction

of Prelec [51] (Section 4.4.0.2).

The definition of Bregman mutual information says that the accuracy gain mea-

sured by a proper scoring rule PS equals the information gain measured by the (con-

ditional) Bregman mutual information BMIPS. The following theorem (Theorem 24)

shows that we can bridge the log scoring rule and Shannon mutual information by

showing the accuracy gain measured by log scoring rule equals the information gain

measured by (conditional) Shannon mutual information. Therefore, like f -mutual in-

formation, Bregman mutual information also generalizes Shannon mutual information

(Corollary 25).

Theorem 24 (expected accuracy gain = information gain). For random variables

X, Y, Z, when predicting Y , the logarithm score of prediction Pr[Y |Z,X] minus the

logarithm score of prediction Pr[Y |Z]

EX,Y,ZL(Y,Pr[Y |Z,X])− L(Y,Pr[Y |Z]) = I(X;Y |Z)

where L : Σ×∆Σ 7→ R is the log scoring rule and I(X;Y |Z) is the Shannon mutual

information between X and Y conditioning on Z.
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Proof.

EX,Y,ZL(Y,Pr[Y |Z,X])− L(Y,Pr[Y |Z])

=
∑
x,y,z

Pr[X = x, Y = y, Z = z] log(
Pr[Y = y|Z = z,X = x]

Pr[Y = y|Z = z]
)

=
∑
x,y,z

Pr[X = x, Y = y, Z = z] log(
Pr[Y = y,X = x|Z = z]

Pr[Y = y|Z = z] Pr[X = x|Z = z]
)

= I(X;Y |Z)

Recall that the conditional mutual information (Definition 29) is defined as

∑
z

Pr[Z = z]MI(X;Y |Z = z).

Thus,

BMIPS(X;Y |Z) = EX,ZPS(Pr[Y|X,Z],Pr[Y|X,Z])− PS(Pr[Y|X,Z],Pr[Y|Z])

which is the accuracy of posterior Pr[Y|X,Z] minus the accuracy of prior Pr[Y|Z].

Therefore, Fact 24 directly implies Corollary 25.

Corollary 25. BMIL(·,·)(X;Y |Z) = I(X;Y |Z) where BMIL(·,·) is a Bregman mutual

information that chooses Log scoring rule L(·, ·) as the proper scoring rule.

Definition 26 (Quasi Information-monotone mutual information). We say MI is

quasi information-monotone if and only if it is always non-negative and satisfies the

data processing inequality for the first entry.

A quasi information-monotone mutual information may not be symmetric. Thus,

even if it satisfies the data processing inequality for the first entry, it may not satisfy
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the data processing inequality for the second entry which means data processing

methods operating on Y may increase MI(X;Y ).

Theorem 27. The Bregman mutual information is quasi information-monotone.

Intuitively, more information about X provides a more accurate prediction for

random variable Y . That is, Pr[Y|M(X)] is less accurate than Pr[Y|X]. We will

show the property of the proper scoring rules directly implies the above intuition and

then the quasi information-monotonicity of BMIPS follows.

Proof. The definition of proper scoring rules implies the non-negativity of Bregman

divergence as well as that of Bregman mutual information.

For any transition probability M that operates on X,

BMIPS(M(X);Y ) = EM(X)PS(Pr[Y|M(X)],Pr[Y|M(X)])− PS(Pr[Y|M(X)],Pr[Y])

= EX,M(X)PS(Pr[Y|X,M(X)],Pr[Y|M(X)])− PS(Pr[Y],Pr[Y])

(PS is linear for the first entry)

= EX,M(X)PS(Pr[Y|X],Pr[Y|M(X)])− PS(Pr[Y],Pr[Y])

(conditioning on X, M(X) is independent with Y )

≤ EXPS(Pr[Y|X],Pr[Y|X])− PS(Pr[Y],Pr[Y])

(PS is proper)

= EXPS(Pr[Y|X],Pr[Y|X])− PS(Pr[Y|X],Pr[Y])

= BMIPS(X;Y )
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2.3 Mutual information paradigm (MIP)

General Setting We introduce the general setting (n,Σ) of the mechanism design

framework where n is the number of agents and Σ is the set of possible private

information. Each agent i receives a random private information / signal Ψi : Ω 7→ Σ

where Ω is the underlying sample space. She also has a prior for other agents’ private

information.

Formally, each agent i believes the agents’ private information is chosen from a

joint distribution Qi before she receives her private information. Thus, from agent i’s

perspective, before she receives any private information, the probability that agent

1 receives Ψ1 = σ1, agent 2 receives Ψ2 = σ2, ..., agent n receives Ψn = σn is

Qi(Ψ1 = σ1,Ψ2 = σ2, ...,Ψn = σn). After she receives her private information based

on her prior, agent i will also update her knowledge to a posterior distribution which

is the prior conditioned on her private information. Without assuming a common

prior, agents may have different priors, that is, Qi may not equal Qj. We define ∆Σ

as the set of all possible probability distributions over Σ.

2.3.1 Mechanism design framework: MIP

The original idea of peer prediction [45] is based on a clever insight: every agent’s

information is related to her peers’ information and therefore can be checked using

her peers’ information. Inspired by this, we propose a natural yet powerful informa-

tion theoretic mechanism design idea—paying every agent the “mutual information”

between her reported information and her peer’s reported information where the

“mutual information” should be information-monotone—any “data processing” on

the two random variables will decrease the “mutual information” between them.

Definition 28 (Information-monotone mutual information). We sayMI is information-

monotone if and only if for any random variables X : Ω 7→ ΣX and Y : Ω 7→ ΣY :
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Symmetry MI(X;Y ) = MI(Y ;X);

Non-negativity MI(X;Y ) is always non-negative and is 0 if X is independent with

Y ;

Data processing inequality for any transition probability M ∈ R|ΣX |×|ΣX |, when

Y is independent with M(X) conditioning on X, MI(M(X);Y ) ≤MI(X;Y ).

We say MI is strictly information-monotone with respect to a probability mea-

sure P ∈ ∆ΣX×ΣY if when the joint distribution over X and Y is P , for any non-

permutationM , when Y is independent withM(X) conditioning onX, MI(M(X);Y ) <

MI(X;Y ).

Definition 29 (Conditional mutual information). Given three random variables

X, Y, Z, we define MI(X;Y |Z) as

∑
z

Pr[Z = z]MI(X;Y |Z = z)

where MI(X;Y |Z = z) := MI(X ′;Y ′) where Pr[X ′ = x, Y ′ = y] = Pr[X = x, Y =

y|Z = z].

We now provide a paradigm for designing information elicitation mechanisms—

the Mutual Information Paradigm. We warn the reader that this paradigm represents

some “wishful thinking” in that is it clear the paradigm cannot compute the payments

given the reports.

Mutual Information Paradigm (MIP(MI)) Given a general setting (n,Σ),

Report For each agent i, she is asked to provide her private information Ψi. We

denote the actual information she reports as Ψ̂i.
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Payment/Information Score We uniformly randomly pick a reference agent j 6= i

and denote his report as Ψ̂j. Agent i is paid by her information score

MI(Ψ̂i; Ψ̂j)

where MI is information-monotone.

Given a general setting (n,Σ), we say MI is strictly information-monotone with

respect to prior Q if for every pair i, j, MI is strictly information-monotone with

respect to Q(Ψi,Ψj).

Resolving “wishful thinking” MIP pays agents according to the information

measure. The calculation of the information measure requires the knowledge of the

prior, i.e., the joint distribution which is unrealistic in practical. To removing this

“wishful thinking”, a key observation is that paying agents an unbiased estimator of

the information measure is sufficient when we assume agents are expected payment

maximizers. To construct an unbiased estimator of the information measure using

agents’ reports, different settings have different techniques. In the multi-task setting,

either we ask a large number of questions to estimate the prior and use the prior

to calculate the information measure (f -mutual information mechanism), or we ask

a small number questions but require the knowledge of information structure and

use a special f -mutual information, MI tvd (TV D-mutual information mechanism).

In the single-task setting (disagreement mechanism, BTSPrelec [51]), we ask agents

their posterior (e.g. what percentage of your peers have texted while driving before?)

and construct the estimator using both the first order information (e.g Y/N) and the

second order information (e.g. 80% Yes). Thus, although the proposed mechanisms

are based on the MIP, they are all detail free in the sense that they do not need any

priori knowledge of the distributions (nor wishful thinking).
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2.3.2 Analysis of MIP

Definition 30 (Mechanism). We define a mechanism M for a setting (n,Σ) as a

tuple M := (R,M) where R is a set of all possible reports the mechanism allows,

and M : Rn 7→ Rn is a mapping from all agents’ reports to each agent’s reward.

The mechanism requires agents to submit a report r. For example, r can simply be

an agent’s private information. In this case, R = Σ. We call this kind of mechanism

a minimal mechanism. We define r to be a report profile (r1, r2, ..., rn) where ri is

agent i’s report.

Typically, the strategy of each agent should be a mapping from her received knowl-

edge including her prior and her private signal, to a probability distribution over her

report space R. But since all agents’ priors are fixed during the time when they

play the mechanism, without loss of generality, we omit the prior in the definition of

strategy.

Definition 31 (Strategy). Given a mechanism M, we define the strategy of each

agent in the mechanism M for setting (n,Σ) as a mapping s from σ (private signal)

to a probability distribution over R.

We define a strategy profile s as a profile of all agents’ strategies (s1, s2, ..., sn) and

we say agents play s if for all i, agent i plays strategy si.

Note that actually the definition of a strategy profile only depends on the setting

and the definition of all possible reportsR. We will need the definition of a mechanism

when we define an equilibrium.

A Bayesian Nash equilibrium consists of a strategy profile s = (s1, . . . , sn) such

that no agent wishes to change her strategy since other strategy will decrease her

expected payment, given the strategies of the other agents and the information con-

tained in her prior and her signal.
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Definition 32 (Agent Welfare). Given a mechanism M, for a strategy profile s, we

define the agent welfare of s as the sum of expected payments to agents when they

play s under M.

We can use transition matrices to represent agents’ strategies of reporting their

private information. Given the general setting (n,Σ), for the minimal mechanisms,

fixing the priors of the agents, each agent i’s strategy si can be seen as a transition

matrix that transforms her private information Ψi to her reported information Ψ̂i =

si(Ψi). We define truth-telling T as the strategy where an agent truthfully reports

her private signal. T corresponds to an identity transition matrix.

We say agent i plays a permutation strategy if si corresponds to a permutation

transition matrix. An example is that an agent relabels / permutes the signals and re-

ports the permuted version (e.g. she reports “good” when her private signal is “bad”

and reports “bad” when her private signal is “good”). Note that T 1 is a permutation

strategy as well. We call the strategy profile where all agents play a permutation strat-

egy a permutation strategy profile. Note that in a permutation strategy profile, agents

may play different permutation strategies. When a permutation strategy profile is a

Bayesian Nash equilibrium, we call such equilibrium a permutation equilibrium.

We hope our mechanisms can be strictly truthful, focal, and even dominantly

truthful (see informal definitions in Section 1.1.3 and formal definitions will be in-

troduced later). Here we propose two additional, stronger equilibrium goals. A

mechanism M is strongly focal if the truth-telling strategy profile maximizes every

agent’s expected payment among all strategy profiles, while in the focal mechanism,

truth-telling maximizes the agent welfare—the sum of agents’ expected payment. A

mechanism M is truth-monotone if when any truthful agent changes to play a non-

truthful strategy s, no matter what strategies other agents play, it decreases every

1The above definitions of T and the permutation strategy are sufficient to analyze the frame-
work. When considering more general settings, we will provide generalized definitions of T and the
permutation strategy.
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agent’s expected payment. Note that the truth-monotone property is stronger than

the strongly focal or focal property and it says any non-truthful behavior of any

agent will hurt everyone. In addition to the above equilibrium goals, we also hope

the mechanism can be minimal and detail free (see definitions in Section 1.1.3).

For the strictness guarantee, it turns out no truthful detail free mechanism can

make truth-telling strategy profile be strictly better than any permutation strategy

profile. Therefore, the best we can hope is making the truth-telling strategy profile be

strictly better than any other non-permutation strategy profile. We give the formal

definitions for the equilibrium goals with the strictness guarantee in the following

paragraph.

Mechanism Design Goals

(Strictly) Truthful A mechanism M is (strictly) truthful if for every agent, T

(uniquely) maximizes her expected payment given that everyone else plays T.

(Strictly) Dominantly truthful A mechanismM is dominantly truthful if for ev-

ery agent, T maximizes her expected payment no matter what strategies other

agents play. A mechanismM is strictly dominantly truthful if for every agent,

if she believes at least one other agent will tell the truth, playing T pays her

strictly higher than playing a non-permutation strategy.

(Strictly) Focal A mechanism M is (strictly) focal if the truth-telling equilib-

rium maximizes the agent welfare among all equilibria (and any other non-

permutation equilibrium has strictly less agent welfare).

(Strictly) Strongly focal A mechanismM is (strictly) strongly focal if the truth-

telling strategy profile maximizes every agent’s expected payment among all

strategy profiles (and in any other non-permutation strategy profile, every

agent’s expected payment is strictly less).
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(Strictly) Truth-monotone A mechanismM is (strictly) truth-monotone if when

any truthful agent changes to play a non-truthful strategy s, no matter what

strategies other agents play, it decreases every agent’s expected payment (and

strictly decreases every other truthful agent’s expected payment if s is a non-

permutation strategy).

Section 2.5 will show that it is impossible to ask the truth-telling strategy profile

to be strictly better than other permutation strategy profiles when the mechanism is

detail free. Thus, the strictly truth-monotone is the optimal property for equilibrium

selection when the mechanism is detail free.

Theorem 33. Given a general setting (n,Σ), when MI is (strictly) information-

monotone (with respect to every agent’s prior), the Mutual Information Paradigm

MIP(MI) is (strictly) dominantly truthful, (strictly) truth-monotone.

Theorem 33 almost immediately follows from the data processing inequality of the

mutual information. The key observation in the proof is that applying any strategy

to the information is essentially data processing and thus erodes information.

Note that the Mutual Information Paradigm is not a mechanism since it requires

the mechanism to know the full joint distribution over all agents’ random private infor-

mation while agents only report (or even have access to) a realization / sample of the

random private information. Rather, if we design mechanisms such that the payment

in the mechanism is an unbiased estimator of the payment in Mutual Information Paradigm,

the designed mechanisms will obtain the desirable properties immediately according

to Theorem 33. In the future sections, we will see how to design such mechanisms in

both the multi-question and single-question settings.

Proof. For each agent i, for any strategy si she plays, comparing with the case she
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honestly reports Ψi, her expected information score is

∑
j 6=i

1

n− 1
MI(Ψ̂i; Ψ̂j) =

∑
j 6=i

1

n− 1
MI(si(Ψi); Ψ̂j) ≤

∑
j 6=i

1

n− 1
MI(Ψi; Ψ̂j)

since MI is information-monotone. Thus, MIP(MI) is dominantly truthful when MI

is information-monotone.

For the strictness guarantee, we need to show when agent i believes at least one

agent tells the truth, for agent i, any non-permutation strategy will strictly decrease

her expected payment. Let’s assume that agent i believes agent j0 6= i plays T.

When MI is strictly information-monotone with respect to every agent’s prior, MI is

strictly information-monotone with respect to Qi(Ψi,Ψj0) as well. Then the inequality

of the above formula is strict if agent i plays a non-permutation strategy si since

MI(si(Ψi); Ψ̂j0) = MI(si(Ψi); Ψj0) < MI(Ψi,Ψj0).

Thus, when MI is strictly information-monotone with respect to every agent’s

prior, MIP(MI) is strictly dominantly truthful.

Fixing other agents’ strategies except agent k, for i 6= k, agent i’s expected pay-

ment is

∑
j 6=i

1

n− 1
MI(Ψ̂i; Ψ̂j) =

∑
j 6=i,k

1

n− 1
MI(Ψ̂i; Ψ̂j) +

1

n− 1
MI(Ψ̂i; Ψ̂k)

≤
∑
j 6=i,k

1

n− 1
MI(Ψ̂i; Ψ̂j) +

1

n− 1
MI(Ψ̂i; Ψk).

Thus, agent i’s expected payment decreases when truthful agent k changes to play

a non-truthful strategy. For i = k, the dominantly truthful property already shows

agent i = k’s expected payment will decrease when truthful agent k changes to play

a non-truthful strategy. Therefore when MI is information-monotone, MIP(MI) is

truth-monotone.
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For the strictness guarantee, when MI is strictly information-monotone with re-

spect to every agent’s prior, if truthful agent k changes to play a non-permutation

strategy sk, then a truthful agent i’s expected payment will strictly decrease since

MI(Ψi; sk(Ψk)) < MI(Ψi; Ψk) if sk is a non-permutation strategy and MI is strictly

information-monotone.

Therefore, when MI is (strictly) information-monotone (with respect to every

agent’s prior), MIP(MI) is (strictly) truth-monotone.

Theorem 17 and Theorem 33 imply the following corollary.

Corollary 34. Given a general setting (n,Σ), when f is (strictly) convex (and ev-

ery agent’s prior is fine-grained), the Mutual Information Paradigm MIP(MIf) is

(strictly) dominantly truthful, (strictly) truth-monotone.

If we use Bregman mutual information instead of f -mutual information, the dom-

inantly truthful property will still be preserved.

Theorem 35. Given a general setting (n,Σ), when MI is quasi information-monotone,

the Mutual Information Paradigm MIP(MI) is dominantly truthful.

Proof. For each agent i, for any strategy si she plays, comparing with the case she

honestly reports Ψi, her expected information score is

∑
j 6=i

MI(Ψ̂i; Ψ̂j) =
∑
j 6=i

MI(si(Ψi); Ψ̂j) ≤
∑
j 6=i

MI(Ψi; Ψ̂j)

which is less than if she had reported truthfully since quasi information-monotone

MI has data processing inequality for the first entry.

Corollary 36. Given a general setting (n,Σ), the Mutual Information Paradigm

MIP(BMIPS) is dominantly truthful.
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2.4 Hierarchical mutual information paradigm (HMIP)

In this section, we will define the hierarchical information structure and provide

a mechanism design framework that helps design mechanisms which elicit the hierar-

chical information. Section 6.3 defines the information model; Section 2.4.2 defines

our mechanism framework; and Section 2.4.3 analyzes the framework. We will use the

peer grading process (Figure 2.1) as a running example to throughout this section.

Figure 2.1:
An illustration of the hierarchical information structure in the peer grad-
ing process.

2.4.1 Hierarchical information structure

There are n agents and one task. The agents have a finite set M of methods

to perform on the task based on the task’s attributes a ∈ A where a is a random

(possibly high dimensional) vector drawn from a distribution QA ∈ ∆A. Each method

m : A 7→ Σm maps the attributes a ∈ A to a signal m(a) from a finite set Σm. We

now introduce our peer grading example.
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10 evaluators are asked to judge one essay. The essay has eight possible attributes:

a = (qi, wj, lk), i, j, k ∈ {0, 1}. (q1, w0, l1) means the essay has (good quality, bad

writing, long length); (q0, w1, l0) means the essay has (bad quality, good writing,

short length). The distribution over the attributes space QA is defined as:

QA((q0, w0, ∗)) QA((q0, w1, ∗)) QA((q1, w0, ∗)) QA((q1, w1, ∗))

0.4 0.1 0.1 0.4

With this distribution, an essay of good quality usually has good writing as

well. Moreover, we assume the essay’s length is independent with the essay’s

quality and writing and an essay has long length with probability 0.5. That is:

QA((qi, wj, l1)) = QA((qi, wj, ∗)) ∗ 0.5, QA((qi, wj, l0)) = QA((qi, wj, ∗)) ∗ 0.5.

Each evaluator can perform three methods: ml(a), mw(a), and mq(a) which are,

respectively, (possibly noisy) signals about the essay’s length; writing style and

grammar; and quality. Σl = Σw = Σq = {,,/}.

We define ψmi (a) as agent i’s received output by performing m on attributes a.

Different agents may receive different signals by performing the same method on the

same attributes. But we assume the distribution is symmetric/homogeneous in the

sense that for any permutation π : [n] 7→ [n], the probability that ψm1 (a) = σ1,

ψm2 (a) = σ2, ... ψmn (a) = σn equals the probability that ψmπ(1)(a) = σ1, ψmπ(2)(a) = σ2,

... ψmπ(n)(a) = σn. We also assume that each agent performs methods independently

(see (2.8)). When the attributes a is drawn from a distribution QA, we can define

define Ψm
i as agent i’s received output by performing m on a random attributes a

that is drawn from a distribution QA. Analogously, we define a random variable Ψm
−i

as an arbitrary agent j 6=’s received output by performing m on a random attributes

a that is drawn from a distribution QA. This definition is well-defined since we have

assumed the distribution is symmetric. We define prior Q as a joint distribution over

all {Ψm
i }i∈[n],m∈M .
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Conditioning on the attributes of the essay a = (qi, wj, lk), i, j, k ∈ {0, 1}, for each

method m, each agent will receive ψmi (a) = , with probability pm,a independently

by performing m. That is, agents’ received signals by performing m is a Binomial

distribution B(n = 10, pm,a). a

good quality essayb bad quality essay

Pr[mq(a) = ,] 70% 30%

This means conditioning on the essay having good quality, the distribution over

agents’ received quality signals by performing mq is Qmq ,(q1,∗,∗) = B(10, 0.7);

while conditioning on the essay having good quality, the distribution is

Qmq ,(q0,∗,∗) = B(10, 0.3). Similarly, we have

good writing essay bad writing essay

Pr[mw(a) = ,] 90% 10%

long essay short essay

Pr[ml(a) = ,] 100% 0%

Note that the cheap length signal is noiseless. We also assume that fixing the

attributes, every agent performs the different methods independently. That is,

when a = (q1, w1, l1)

Pr
(
Ψml
i (a) = ,,Ψmw

i (a) = ,,Ψmq
i (a) = ,

)
= 0.7 ∗ 0.9 ∗ 1. (2.8)

With the above set up, the probability that agent i receives a , writing signal

and agent j receives a , quality signal will be

Pr[Ψmw
i = ,,Ψmq

j = ,] = 0.4∗0.1∗0.3+0.1∗0.3∗0.9+0.1∗0.7∗0.1+0.4∗0.7∗0.9 =

0.298.

aTo give a concrete example, we use the Binomial distribution here. In fact, we only need
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the distribution to be symmetric.
bThis means a = (q1, ∗, ∗)

We define a partial order on the methods. We say m1 � m2—the level of m1 is

higher than that of m2—if method m1 cannot be performed without performing m2.

By m1 � m2 we mean m1 � m2 but m2 6� m1. Note that the partial order � is

transitive—m1 � m2,m2 � m3 ⇒ m1 � m3. Each agent i needs effort hi(m) > 0 to

perform method m and when she spends effort hi(m) to perform m, the methods that

have lower levels than m are performed as well without additional effort. We assume,

as is natural, that hi(m) is an increasing function, that is, hi(m1) ≥ hi(m2) when

m1 � m2. The higher the level of the method an agent performs, the more effort

she must invest. However, it may be the case that some agents (low cost agents)

can perform methods more economically than others (high cost agents). The partial

order definition is essentially our key assumption (Assumption 3).

mq � mw � ma. Among the 10 evaluators, there are 2 low cost evaluators

who need 1, 2, 5 effort to perform ml,mw,mq respectively. There are 8 high cost

evaluators who need 1, 4, 10 effort to perform ml,mw,mq respectively (Figure 2.1).

Based on the partial order definition, when an evaluator spends sufficient effort to

perform mq and obtains the quality signal, she also obtains the length and writing

signals without additional effort, which is natural in real life.

We assume agents share a hierarchical information structure and allow agents to

have different priors Q2. We will design mechanisms that incentivize agents to invest

efforts based on their costs and report honestly.

2.4.2 Mechanism design framework: HMIP

We start by introducing the formal definition of a mechanism.

2To ease the presentation of the example, in our peer grading example, we assume agents share
the same prior Q.
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Definition 37 (Mechanism). We define a mechanism M for n agents as a tuple

M := (R, S) where R is a set of all possible reports the mechanism allows, and

S : Rn 7→ Rn is a mapping from all agents’ reports to each agent’s payment.

We will extend the Mutual Information Paradigm to the Hierarchical Mutual

Information Paradigm that handles the hierarchical information structure. We can

naturally extend the Mutual Information Paradigm for Peer Prediction Mechanisms

to the hierarchical model by paying agent i

MIf (her information; {Ψm
−i}m∈M)3.

This idea has a severe drawback: sometimes low level information has very large

correlation with the high level information. In this case, MIf (her information; {Ψm
−i}m∈M)

will pay low level information nearly as much as high level information; and so agents

will lack incentive to perform high level methods.

To solve the above problem, we pay agents method by method. For each m, we

only value the “information gain” in the sense that we pay each agent i the mutual

information between her information and the method m’s information conditioning

on the information output by the methods are lower than m.

Formally, we chose a payment scale αm for each m and pay each agent i

∑
m

αmMIf (her information; Ψm
−i|{Ψm′

−i}m′≺m).

In our actual paradigm, we hope to pay each agent i using the above payment

when the mechanism has access to all levels of honest information provided by other

agents.

3Recall that (Ψm
1 ,Ψ

m
2 , ...,Ψ

m
n ) are the random signals agents receive by performing method m

on the same random attributes.
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In the peer grading example, the information about the writing style / grammar

may already have a very high correlation with the quality of the essay. With the

above concrete set up, we are ready to calculate the (conditional) Shannon mutual

information (Euler number base) between agent i’s received signals and agent j’s

received signals. For example, the 2× 2 entry is the mutual information between

agent i’s received length signal, writing signal by performing method mw and

agent j’s writing signal, conditioning on agent j’s length signal, which is 0.2259.

We calculate the values by first calculating the joint distribution over 6 random

variables—agent i’s length, writing, quality signals and agent j’s length, writing,

quality signals.

We show the values in the following table and defer the calculation to Appendix.

According to the information monotonicity, for each column, the values increase

from bottom to top.

agent i’s

MI(·; ·) agent j’s

length writing|length a quality | writing, length length, writing, qualityb

length, writing, quality 0.6931 0.2259 0.0115 0.9305

length, writing 0.6931 0.2218 0.0041 0.9190

length 0.6931 0 0 0.6931

Even though performing the quality method provides the information that has

the highest mutual information 0.9305 with other agents’ information, performing

writing method already outputs information that has 0.9190 ≈ 0.9305∗0.98 mutual

information with other agents’ information.

In this case, what we really value is the additional quality of information after

conditioning on the information of cheap signals like writing style / grammar. In

other words, we value the information about an essay which has a high quality

but is written carelessly (or low quality but impeccable prose).

Each agent, performing the writing method only has 0.0041 mutual information

with other agents’ quality signal conditioning on other agents’ writing and length
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signals while performing the quality method has 0.0115 ≈ 0.0041∗2.80 conditional

mutual information.

Looking ahead, we seek to pay each evaluator i by:

αlMIf (her information; agent j’s length signal) (2.9)

+αwMIf (her information; agent j’s writing signal|agent j’s length signal)

+αqMIf (her information; agent j’s quality signal|agent j’s length & writing signal).

where αq is set to be rather larger than αl and αw.

ax|y means x conditioning on y.
bSince we use Shannon mutual information which satisfies chain rule, the last column is the

sum of the previous columns.

Hierarchical Mutual Information Paradigm (HMIP(MIf ,{αm}m)) We now

present our hierarchical Mutual Information Paradigm. We emphasize that this is

not a mechanism that can be run. Instead we engage in the wishful thinking that

the reports of the agents are distributions rather than draws from the distribution.

Of course, this will never happen. Nonetheless, we will show that using the HMIP

paradigm we can design actual mechanisms in both the multiple-task setting (Sec-

tion 6.5.1) and the single-task setting (Section 6.5.2).

The paradigm requires as parameters a payment scale αm ∈ R≥0 for each method

m.

Report For each agent i, for each m ∈ M , she is asked to optionally provide the

random signal Ψm
i . We denote the set of methods whose outputs are reported

by agent i as Mi and the actual random signal she reports for each ` ∈ Mi as

Ψ̂`
i .

Payment/Information Score We define M−i as
⋃
j 6=iMj. For each m ∈ M−i, we
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arbitrarily pick an agent j 6= i who provides method m’s output and denote his

report for method m’s output as Ψ̂m
−i.

Agent i is paid by her information score

∑
m∈M−i

αmMIf ({Ψ̂`
i}`∈Mi

; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)

We use the same techniques introduced in Section 2.3.1 to resolve “wishful think-

ing”.

2.4.3 Analysis of HMIP

For each agent i, we define her utility as her payment minus her effort.

Definition 38 (Strategy). We define the effort strategy of each agent i as a mapping

ei from her priors to a probability distribution over the methods she will perform. We

define the report strategy of each agent i as a mapping si from her received information

to a probability distribution over R.

Definition 39 (Amount of information in HMIP). In HMIP, for agent i, the amount

of information acquired with method mi is defined as

AOI(mi,HMIP(MIf , {αm}m)) :=
∑
m∈M

αmMIf ({Ψ`
i}`�mi ; Ψm

−i|{Ψm′

−i}m′≺m).

We have already give the example of the amount of information in (2.9). Later in

the proof of Theorem 43, we will see the amount of information is also the optimal

payment of agent i who performs method mi when HMIP has access to all levels of

honest signals reported by other agents.

An especially desirable strategy in HMIP is a prudent strategy. Informally, agents

play a prudent strategy if they (a) choose the method they perform to maximize their
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utility—trading off the amount of information acquired with the effort it costs; (b)

report all received information honestly.

Definition 40 (Prudent strategy in HMIP). For each agent i, we say she plays a

prudent strategy in HMIP(MIf ,{αm}m) if she chooses to (a) perform method m∗i

such that

m∗i ∈ arg max
mi

(
AOI(mi,HMIP(MIf , {αm}m))− hi(mi)

)
; and

(b) reports all received information honestly.

Definition 41 (Truthful strategy in HMIP). We say an agent plays truthful strategy

if she always reports her received information honestly.

A truthful strategy is a special report strategy. An agent can play any effort

strategy and truthful strategy simultaneously. If an agent invests no effort and reports

nothing or meaningless information, she is still considered as playing truthful strategy.

Mechanism design goals A mechanism M is (strictly) potent if for each agent,

when she believes everyone else plays their prudent strategy, she can (strictly) max-

imize her expected utility by playing a prudent strategy as well. A mechanism M

is dominant truthful if for each agent, regardless of other agents’ strategies, she can

maximize her expected utility by playing a pure effort strategy and truthful strategy.

The dominant truthful property is incomparable with the potent property. A

flat payment scheme is dominant truthful but not potent since investing no effort and

reporting nothing is also considered as a pure effort and truthful strategy. The potent

property is desirable since it encourages low cost agents to invest high level effort and

high cost agents to invest low level effort, and incentivizes them to report honestly

as well.
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In order to design potent mechanism, the coefficients {αm}m should be chosen

appropriately.

We say a method m is maximal if there does not exist m′ 6= m ∈ M such that

m′ � m.

Definition 42 (potent coefficients for HMIP). Given the priors {Qm}m, we say the

coefficients {αm}m are potent for HMIP(MIf ,{αm}m) if given the coefficients {αm}m,

for every maximal m, there exists at least two agents whose prudent strategy in

HMIP(MIf ,{αm}m) is performing method m.

This is a weak requirement since we only need to set sufficiently high coefficients

to incentivize two low cost agents such that for each agent (including one of the low

cost agent), she will believe there exists a low cost agent who will be incentivized

to report all levels of information. Potent coefficients exist since we can always set

the coefficient of the highest level information sufficiently high and the coefficients

of other levels arbitrarily close to zero such that agents will be incentivized to invest

the highest level effort. We use our peer grading example to show how to set potent

coefficients. With our example, we will see we can always set the optimal potent

coefficients that minimize the mechanism’s cost by solving a linear programming.

In our example, the 2 low cost agents need efforts 1,2,5 to perform ml,mw,mq

respectively and 8 high cost agents need efforts 1,4,10. With the above set up, we

need αq ∗ 0.0115 +αw ∗ 0.2259 +αl ∗ 0.6931− 5 > max{αq ∗ 0.0041 +αw ∗ 0.2218 +

αl ∗ 0.6931− 2, αl ∗ 0.6931− 1, 0} to make the coefficients potent and we also want

to minimize the mechanism’s cost which is
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2 ∗ (αq ∗ 0.0115 + αw ∗ 0.2259 + αl ∗ 0.6931)

+ 8 ∗



vq := αq ∗ 0.0115 + αw ∗ 0.2259 + αl ∗ 0.6931 if vq − 10 ≥ vw − 4, vl − 1, 0

vw := αq ∗ 0.0041 + αw ∗ 0.2218 + αl ∗ 0.6931 if vw − 4 ≥ vq − 10, vl − 1, 0

vl := αl ∗ 0.6931 if vl − 1 ≥ vw − 4, vq − 10, 0

0 otherwise

After solving this linear programming, the optimal solution is around αl, αw, αq =

εa, 0.5562, 423.8571 and the amount of information for performing ml,mw,and mq

are O(ε), 1.86+O(ε), and 5+O(ε) respectively. The minimal cost is 2∗(5+O(ε)) =

10 +O(ε).

aε is an arbitrarily small positive real number, we need ε since we want agents will be incen-
tivized to report the length signal as well.

Theorem 43. Given a convex function f , HMIP(MIf ,{αm}m) is dominant truthful;

moreover, when {αm}m are potent for HMIP(MIf ,{αm}m), HMIP(MIf ,{αm}m) is

potent and dominant truthful.

The proof of the theorem uses the information monotonicity of MIf . The key

observation in the proof is that applying any strategy to the information is essentially

data processing and thus erodes information.

Proof for Theorem 43. In order to show the dominant truthful property, we will show

for each agent, fixing any other agents’ strategies, she can maximize her payment as

well as her utility by reporting her received information honestly. The information

monotonicity property of f -mutual information MIf (Fact 17) says any data process-

ing decreases the (conditional) mutual information. For each m ∈ M−i, fixing the

strategies other agents use, the distribution of Ψ̂m
−i, whose randomness comes from

random variable Ψm
−i and the agents’ strategies, is also fixed. Any strategy (data
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processing) agent i applies to her received signals decreases

MIf (her received signals; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i).

Thus, for agent i, honestly reporting her received signals maximizes her payment no

matter what strategies other agents use.

We start to show HMIP is potent when the coefficients are potent . When the

coefficients are potent , for every agent i, when she believes everyone else plays a

prudent strategy, she will believe for each m, there exists an agent j(m) 6= i who

reports {Ψ`
j}`�m

HMIP provides a framework to design information elicitation mechanisms for our

hierarchical information model. To apply the HMIP framework in different settings,

it remains to design the report requirement for agents and to use agents’ reports to

calculate the (conditional) mutual information without underlying distributions. We

apply HMIP in both the multi-task setting (Section 6.5.1) and the single-task setting

(Section 6.5.2).

2.5 Impossibility (Tightness) results

In this section, we will show an impossibility result that implies the optimality

of the information theoretical framework. We will see when the mechanism knows

no information about the prior profile, no non-trivial mechanism has truth-telling as

the unique “best” equilibrium. Thus, it is too much to ask for a mechanism where

truth-telling is paid strictly higher than any other non-truthful equilibrium. The best

we can hope is to construct a mechanism where truth-telling is paid strictly higher

than all non-truthful equilibria / strategy profiles excluding all permutation strategy

profiles (Definition 48) when the prior is symmetric; or all non-truthful equilibria /
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strategy profiles excluding all generalized permutation strategy profiles (Definition 49)

when the prior may be asymmetric. Because permutation strategies seem unnatural,

risky, and require the same amount of effort as truth-telling these are still strong

guarantees.

Actually we will show a much more general result in this section that is suffi-

ciently strong to imply the optimality of the framework. Recall that a mechanism

is strictly focal if truth-telling is strictly better than any other strategy profiles ex-

cluding generalized permutations strategy profiles. The results of this section imply

that no truthful detail free mechanism can pay truth-telling T strictly better than all

generalized permutations strategy profiles (Definition 49) no matter what definition

is the truth-telling strategy T.

We omit the prior in the definition of strategy before since we always fix the prior.

However, when proving the impossibility results, the prior is not fixed. Therefore, we

use the original definition of strategy in this section.

Definition 44 (Strategy). Given a mechanism M, we define the strategy of M for

setting (n,Σ) as a mapping s from (σ,Q) (private signal and prior) to a probability

distribution over R.

(Generalized) Permutation Strategy Profiles A permutation π : Σ 7→ Σ can

be seen as a relabelling of private information. Given two lists of permutations π =

(π1, π2, ..., πn), π′ = (π′1, π
′
2, ..., π

′
n), we define the product of π and π′ as

π · π′ := (π1 · π′1, π2 · π′2, ..., πn · π′n)

where for every i, πi · π′i is the group product of πi and π′i such that πi · π′i is a new

permutation with πi · π′i(σ) = πi(π
′
i(σ)) for any σ.

We also define π−1 as (π−1
1 , π−1

2 , ..., π−1
n ).

By abusing notation a little, we define π : Q 7→ Q as a mapping from a prior Q
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to a generalized permuted prior π(Q) where for any σ1, σ2, ..., σn ∈ Σ,

π(Q)(σ1, σ2, ..., σn) = Q(π−1
1 (σ1), π−1

2 (σ2), ..., π−1
2 (σn))

where σi is the private signal of agent i. Notice that it follows that:

π(Q)(π1(σ1), π2(σ2), ..., π2(σn)) = Q(σ1, σ2, ..., σn).

Intuitively, π(Q) is the same as Q after the signals are relabelled according to π.

Definition 45 (Permutation List Operator on Strategy). For every agent i, given

her strategy is si and a permutation list π, we define π(si) as the strategy such that

π(si)(σ,Q) = si(πi(σ),π(Q)) for every private information σ and prior Q.

Definition 46 (Permutation List Operator on Strategy Profile). Given a permutation

list π, for any strategy profile s, we define π(s) as a strategy profile with π(s) =

(π(s1),π(s2), ...,π(sn)).

Note that π−1πQ = Q which implies π−1π(s) = s.

We say (π, π, ..., π) is a symmetric permutation list for any permutation π. For con-

venience, we write (π, π, ..., π)(Q) as π(Q), (π, π, ..., π)(s) as π(s) and (π, π, ..., π)(s)

as π(s).

We define a permutation strategy (profile) and then give a generalized version of

this definition.

Definition 47 (Permutation Strategy ). We define a strategy s as a permutation

strategy if there exists a permutation π such that s = π(T).

Definition 48 (Permutation Strategy Profile ). We define a strategy profile s as a

permutation strategy profile if there exists a permutation π such that s = π(T).
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Definition 49 (Generalized Permutation Strategy Profile). We define a strategy

profile s as a generalized permutation strategy profile if there exists a permutation

list π = (π1, π2, ..., πn) such that s = π(T) = (π1, π2, ..., πn)(T).

2.5.1 Tightness proof

Definition 50. Given a prior profile Q = (Q1, Q2, ..., Qn) and a strategy profile

s = (s1, s2, ..., sn), and a mechanism M, for every agent i, we define

νMi (n,Σ,Q, s)

as agent i’s ex ante expected payment when agents play s and all agents’ private

information is drawn from Qi that is, from agent i’s viewpoint.

The impossibility result is stated as following:

Proposition 51. LetM be a mechanism that does not know the prior profile, then

for any strategy profile s, and any permutation list π:

(1) s is a strict Bayesian Nash equilibrium of M for any prior profile iff π(s) is a

strict Bayesian Nash equilibrium of M for any prior profile.

(2) For every agent i, there exists a prior profile Q such that νMi (n,Σ,Q, s) ≤

νMi (n,Σ,Q,π(s)).

Additionally, if the mechanism knows the prior is symmetric, the above results

only hold for any symmetric permutation list (π, π, ..., π).

Proposition 51 implies

Corollary 52. Let M be a truthful mechanism, given truth-telling strategy T, when

M knows no information about the prior profile of agents, if there exists a permutation

list π such that π(T) 6= T, T cannot be always paid strictly higher than all generalized

permutation strategy profiles.
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Additionally, if the mechanism knows the prior is symmetric, the above results

only hold for any symmetric permutation list (π, π, ..., π) and all permutation strategy

profiles.

We note that the requirement that there exists π such that π(T) 6= T only fails

for very trivial mechanisms where the truthfully reported strategy does not depend

on the signal an agent receives.

The key idea to prove this theorem is what we refer to as Indistinguishable

Scenarios:

Definition 53 (Scenario). We define a scenario for the setting (n,Σ) as a tuple (Q, s)

where Q is a prior profile, and s is a strategy profile.

Given mechanism M, for any scenario A = (QA, sA), we write νMiA (n,Σ, A) as

agent iA’s ex ante expected payment when agents play sA and all agents’ private

signals are drawn from QiA .

For two scenarios A = (QA, sA), B = (QB, sB) for setting (n,Σ), let σA :=

(σ1A , σ2A , ..., σnA) be agents (1A, 2A, ..., nA)’ private signals respectively in scenario

A, σB := (σ1B , σ2B , ..., σnB) be agents (1B, 2B, ..., nB)’ private signals respectively in

scenario B.

Definition 54 (Indistinguishable Scenarios). We say two scenarios A,B are indistin-

guishable A ≈ B if there is a coupling of the random variables σA and σB such that ∀i,

siA(σiA , QiA) = siB(σiB , QiB) and agent iA has the same belief about the world as agent

iB, in other words, for every j, Pr(r̂jA = r̂|σiA ,QA, sA) = Pr(r̂jB = r̂|σiB ,QB, sB)

∀r̂ ∈ R.

Now we will prove two properties of indistinguishable scenarios which are the main

tools in the proof for our impossibility result.

Observation 55. If (QA, sA) ≈ (QB, sB), then (i) for any mechanism M, sA is a
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(strict) equilibrium for the prior profile QA iff sB is a (strict) equilibrium for the prior

profile QB. (ii) ∀i, νMiA (n,Σ, A) = νMiB (n,Σ, B)

At a high level, (1) is true since any reported profile distribution that agent iA

can deviate to, agent iB can deviate to the same reported profile distribution as well

and obtain the same expected payment as agent iA.

Formally, we will prove the ⇒ direction in (1) by contradiction. The proof of the

other direction will be similar. Consider the coupling for σA, σB mentioned in the

definition of indistinguishable scenarios. For the sake of contradiction, assume there

exists i and σiB such that r̂′ 6= siB(σiB , QiA) is a best response for agent iB. Since agent

iA has the same belief about the world as agent iB and siA(σiA , QiA) = siB(σiB , QiB),

r̂′ 6= siA(σiA , QiA) is a best response to agent iA as well, which is a contradiction to

the fact that sA is a strictly equilibrium for prior QiA .

To gain intuition about (2), consider the coupling again. For any i, agent iA

reports the same thing and has the same belief for the world as agent iB, which

implies the expected payoff of agent iA is the same as agent iB. (2) follows.

Now we are ready to prove our impossibility result:

of Proposition 51. We prove part (1) and part (2) separately.

Proof of Part (1) Let A := (Q, s), B := (π−1(Q),π(s)). We will show that for

any strategy profile s and any prior Q, A ≈ B. Based on our above observations,

part (1) immediately follows from that fact.

To prove (Q, s) ≈ (π−1Q,π(s)), for every i, we can couple (σ1, σ2, ..., σn) with

(π−1
1 (σ1), π−1

2 (σ2), .., π−1
n (σn)) where (σ1, σ2, ..., σn) is drawn from Qi. It is a legal

coupling since

π−1(Qi)(π
−1
1 (σ1), π−1

2 (σ2), .., π−1
n (σn)) = Qi(σ1, σ2, ..., σn)
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according to the definition of π−1(Q).

Now we show this coupling satisfies the condition in Definition 54. First note that

π(si)(π
−1(σi),π

−1(Q)) = si(σi, Q). Now we begin to calculate Pr(r̂jB = r̂|σiB ,QB, sB)

Pr(r̂jB = r̂|σiB ,QB, sB) =Pr(r̂jB = r̂|π−1
i (σiA),π−1(QjA),π(sA)) (2.10)

=
∑
σ′

π−1(QiA)(σ′|π−1
i (σiA))Pr(π(sjA)(σ′,π−1(QjA)) = r̂)

(2.11)

=
∑
σ′

π−1(QiA)(σ′|π−1
i (σiA))Pr(sjA(π(σ′),ππ−1(QjA)) = r̂)

(2.12)

=
∑
σ′

QiA(πj(σ
′)|σiA)Pr(sjA(π(σ′), QjA) = r̂) (2.13)

=
∑
σ′′

QiA(σ′′|σiA)Pr(sjA(σ′′, QiA) = r̂) (2.14)

=Pr(r̂jA = r̂|σiA ,QA, sA) (2.15)

From (2.10) to (2.11): To calculate the probability that agent jB has reported r̂,

we should sum over all possible private signals agent jB has received and calculate the

probability agent jB reported r̂ conditioning on he received private signal σ′, which

is determined by agent jB’s strategy π(sjA).

By abusing notation a little bit, we can write π(sjA)(σ′,π−1QjA) as a random vari-

able (it is actually a distribution) with Pr(π(sjA)(σ′,π−1Q) = r̂) = π(sjA)(σ′,π−1Q)(r̂).

According to above explanation, (2.11) follows.

(2.12) follows from the definition of permuted strategy.

(2.13) follows from the definition of permuted prior.

By replacing πj(σ
′) by σ′′, (2.14) follows.

We finished the proof A ≈ B, as previously argued, result (1) follows.
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Proof for Part (2) We will prove the second part by contradiction:

Fix permutation strategy profile π. First notice that there exists a positive integer

Od such that πOd = I where I is the identity and agents play I means they tell the

truth.

Given any strategy profile s, for the sake of contradiction, we assume that there ex-

ists a mechanismM with unknown prior profile such that νMiA (n,Σ,Q, s) > νMiA (n,Σ,Q,π(s))

for any prior Q. For positive integer k ∈ {0, 1, ..., Od}, we construct three scenarios:

Ak := (πk(Q), s), Ak+1 := (πk+1(Q), s), Bk := (πk(Q), π(s))

and show for any k,

(I)νMiA (n,Σ, Ak) > νMiA (n,Σ, Bk),

(II) νMiA (n,Σ, Ak+1) = νMiA (n,Σ, Bk).

Combining (I), (II) and the fact A0 = AOd , we have

νMiA (n,Σ, A0) > νMiA (n,Σ, A1) > ...νMiA (n,Σ, AOd) = νMiA (n,Σ, A0)

which is a contradiction.

Now it is only left to show (I) and (II). Based on our assumption

νMiA (n,Σ,Q, s) > νMiA (n,Σ,Q,π(s))

for any prior Q, we have (I). By the same proof we have in part (1), we have Ak+1 ≈

Bk, which implies (II) according to our above observations.

When the mechanism knows the prior is symmetric, the above proof is still valid

if we replace the permutation list π by symmetric permutation list (π, π, ..., π).
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CHAPTER III

Multi-task Signal Elicitation

3.1 Related work

Since Miller, Resnick, and Zeckhauser [45] introduced peer prediction, several

works follow the peer prediction framework and design information elicitation mech-

anisms without verification in different settings. In this section, we introduce these

works in multi-task, detail free, minimal setting.

Dasgupta and Ghosh [18] consider a setting where agents are asked to answer

multiple a priori similar binary choice questions. They propose a mechanism Md that

pays each agent the correlation between her answer and her peer’s answer, and show

each agent obtains the highest payment if everyone tells the truth. In retrospect, one

can see that our techniques are a recasting and generalization of those of Dasgupta

and Ghosh [18]. Kamble et al. [31] considers both homogeneous and heterogeneous

populations and design a mechanism such that truth-telling pays higher than non-

informative equilibria in the presence of a large number of a priori similar questions.

However, they leave the analysis of other non-truthful equilibria as a open question.

Agarwal et al. [2] consider a peer prediction mechanism for heterogeneous users.
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3.1.1 Independent work

Like this thesis, Shnayder et al. [63] also extends Dasgupta and Ghosh [18]’s binary

signals mechanism to multiple signals setting. However, the two works differ both in

the specific mechanism and the technical tools employed.

Shnayder et al. [63] analyze how many questions are needed (whereas we simply

assume infinitely many questions). Like this thesis, they also analyze to what extent

truth-telling can pay strictly more than other equilibria. Additionally, they show

their mechanism does not need a large number of questions when “the signal corre-

lation structure” is known (that is the pair-wise correlation between the answers of

two questions). While the this thesis does not state such results, we note that the

techniques employed are sufficiently powerful to immediately extend to this interest-

ing special case (Section 3.5)—when the signal structure is known, it is possible to

construct an unbiased estimator for f -mutual information of the distribution, when

the total variation distance is used to define the f -mutual information. Both Shnay-

der et al. [63] and this thesis also show their results generalize Dasgupta and Ghosh

[18]’s.

Moreover, when the number of questions is large, f -mutual information mechanism

has truth-telling as a dominant strategy while Shnayder et al. [63] do not.

3.2 Background and assumptions

In this section, we introduce the multi-task setting which was previously studied

in Dasgupta and Ghosh [18] and Radanovic and Faltings [55]: n agents are assigned

the same T questions (multi-tasks). For each question k, each agent i receives a

private signal σki ∈ Σ about question k and is asked to report this signal. We call

this setting (n, T,Σ).

We see mechanisms in which agents are not required to report their forecasts for
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other agents’ answer (minimal), and were the mechanism does not know the agents’

priors (detail free). Agent i may lie and report σ̂ki 6= σki . Dasgupta and Ghosh [18]

give the following example for this setting: n workers are asked to check the quality

of m goods, they may receive signal “high quality” or “low quality”.

Agents have priors for questions. Each agent i believes agents’ private signals for

question k are chosen from a joint distribution Qk
i over Σn. Note that different agents

may have different priors for the same question.

In the multi-task setting, people usually make the following assumption:

Assumption 56 (A Priori Similar and Random Order). For any i, any k 6= k′,

Qk
i = Qk′

i . Moreover, all tasks/questions appear in a random order, independently

drawn for each agent.

This means agents cannot distinguish each question without the private signal

they receive.

We define (Ψ1,Ψ2, ...,Ψn) as the joint random variables such that

Pr(Ψ1 = σ1,Ψ2 = σ2, ...,Ψn = σn)

equals the probability that agents 1, 2, .., n receive private signals (σ1, σ2, ..., σn) cor-

respondingly for a question which is picked uniformly at random.

We define (Ψ̂1, Ψ̂2, ..., Ψ̂n) as the joint random variables such that

Pr(Ψ̂1 = σ̂1, Ψ̂2 = σ̂2, ..., Ψ̂n = σ̂n)

equals the probability that agents 1, 2, .., n reports signals (σ̂1, σ̂2, ..., σ̂n) correspond-

ingly a question which is picked uniformly at random. Note that the joint distribution

over (Ψ̂1, Ψ̂2, ..., Ψ̂n) depends on the strategies agents play.

For each question k, each agent i’s effort strategy is λki and conditioning on that she
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invests full effort ei, her strategy is ski . We say agent i plays a consistent strategy

if for any k, k′, λki = λk
′
i and ski = sk

′
i .

Recall that in the minimal mechanism, the strategy corresponds to a transition

matrix. We define truth-telling T as the strategy where an agent truthfully reports

her private signal for every question. T corresponds to the identity matrix. We say

agent i plays a permutation strategy if there exists a permutation transition matrix

π such that ski = π,∀k. Note that a permutation strategy is a consistent strategy. We

define a consistent strategy profile as the strategy profile where all agents play a

consistent strategy.

With the a priori similar and random order assumption, Dasgupta and Ghosh [18]

make the following observation:

Observation 57. [18] When questions are a priori similar and agents receive ques-

tions in random order (Assumption 56), for every agent, using different strategies for

different questions is the same as a mixed consistent strategy.

With the above observation, it is sufficient to only consider the consistent strategy

profiles.

3.3 The f-mutual information mechanism and Bregman mu-

tual information mechanism

In this section, we give direct applications of the Mutual Information Paradigm in

multi-task setting—the f -mutual information mechanism and the Bregman mutual

information mechanism. Both of them are a family of mechanisms that can be applied

to the non-binary setting / multiple-choices questions which generalize the mechanism

in Dasgupta and Ghosh [18] that can only be applied to the binary setting / binary

choices questions. Moreover, both the f -mutual information mechanism and the

Bregman mutual information mechanism are dominantly truthful without considering
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efforts. Later we will map the mechanism in Dasgupta and Ghosh [18] to a special

case of the f -mutual information mechanism1.

f-mutual Information Mechanism MMIf Given a multi-task setting (n, T,Σ),

Report For each agent i, for each question k, she is asked to provide her private

signal σki . We denote the actual answer she reports as σ̂ki .

Payment/Information Score We arbitrarily pick a reference agent j 6= i. We

define a probability measure P over Σ × Σ such that T ∗ P (Ψ̂i = σi; Ψ̂j = σj)

equals the number of questions that agent i answers σi and agent j answers σj.

Agent i is paid by her information score

MIf (Ψ̂i; Ψ̂j)

where (Ψ̂i; Ψ̂j) draws from the probability measure P .

Theorem 58. Given a multi-task setting (n, T,Σ) with the a priori similar and ran-

dom order assumption (56), when the number of questions is infinite, f is (strictly)

convex (and every agent’s prior is fine-grained),MMIf is detail free, minimal, (strictly)

dominantly truthful, (strictly) truth-monotone.

Proof. We would like to show that the f -mutual information mechanism is the same

as MIP(MIf ). Then Corollary 34 directly implies the theorem.

Based on observation 57, it is sufficient to only consider the consistent strategy

profiles. When the number of questions is infinite and ∀i, agent i play the consistent

strategy,

P (Ψ̂i = σi; Ψ̂j = σj) = Pr(Ψ̂i = σi; Ψ̂j = σj).

1Although f -mutual information mechanism requires infinite number of question for clean anal-
ysis, with an extra positively correlated assumption for the information structure, we can construct
an unbiased estimator for f -mutual information of the distribution via only 3 questions (See Sec-
tion 3.1.1, Appendix 3.5).
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Therefore, with Assumption 56, when the number of questions is infinite, the f -

mutual information mechanism is the same as MIP(MIf ) in the multi-task setting.

Theorem 58 follows immediately from Corollary 34.

Bregman mutual Information Mechanism MBMIPS We can define Bregman

mutual information mechanism via the same definition of f -mutual information ex-

cept replacing MIf by BMIPS.

Corollary 36 directly imply the following theorem.

Theorem 59. Given a multi-task setting (n, T,Σ) with the a priori similar and ran-

dom order assumption (56), when the number of questions is infinite, without con-

sidering efforts, the Bregman mutual information mechanism MBMIPS is detail free,

minimal, dominantly truthful.

3.4 Mapping Dasgupta and Ghosh [2013] into our informa-

tion theoretic framework

This section maps Dasgupta and Ghosh [18] to a special case of f -mutual in-

formation mechanism—TV D-mutual information mechanism MMItvd (restricted to

the binary choice setting)—using the specific f -divergence, total variation distance.

With the mapping, we can simplify the proof in Dasgupta and Ghosh [18] to a direct

application of our framework.

3.4.0.1 Prior Work

We first state the mechanism Md and the main theorem in Dasgupta and Ghosh

[18].
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Mechanism Md Agents are asked to report binary signals 0 or 1 for each question.

Uniformly randomly pick a reference agent j for agent i. We denote Ci as the set of

questions agent i answered. We denote Cj as the set of questions agent j answered.

We denote Ci,j as the set of questions both agent i and agent j answered. For

each question k ∈ Ci,j that both agent i and agent j answered, pick subsets A ⊆

Ci\k,B ⊆ Cj\(k ∪A) with |A| = |B| = d. If such A,B do not exist, agent i’s reward

is 0. Otherwise, we define ¯̂σAi =
∑
l∈A σ̂

l
i

|A| to be agent i’s average answer for subset A,

¯̂σBj =
∑
l∈B σ̂

l
j

|B| is agent j’s average answer for subset B.

Agent i’s reward for each question k ∈ Ci,j is

Rk
i,j := [σ̂ki ∗ σ̂kj + (1− σ̂ki ) ∗ (1− σ̂kj )]− [¯̂σAi ∗ ¯̂σBj + (1− ¯̂σAi ) ∗ (1− ¯̂σBj )]

By simple calculations, essentially agent i’s reward for each question k ∈ Ci,j is

the correlation between her answer and agent j’s answer—E[Ψ̂iΨ̂j]− E[Ψ̂i]E[Ψ̂j].

Dasgupta and Ghosh [18] also make an additional assumption:

Assumption 60 (Positively Correlated). Each question k has a unknown ground

truth ak and for every agent i, with probability greater or equal to 1
2
, agent i receives

private signal ak.

We succinctly interpret the main results of Dasgupta and Ghosh [18] as well as

the results implied by the main results into the following theorem.

Theorem 61. [18] Given an multi-question setting (n, T,Σ) with the a priori similar

and random order assumption (56), the positively correlated assumption (89), when

T ≥ d+ 1, Md is truthful, and strongly focal.

The parameter d can be any positive integer. Larger d will make the mecha-

nism more robust. We will see Md equals a special case of the f -mutual information

mechanism only if agent i, j’s reported answers are positively correlated. Thus, with-

out considering efforts, Md is not dominantly truthful while the f -mutual information
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mechanism is. Although Md only requires a small number of questions, it only applies

to binary choice questions, makes an extra assumption, and obtains weaker properties

than the f -mutual information mechanism.

3.4.0.2 Using our information theoretic framework to analyze Dasgupta

and Ghosh [18]

Proof Outline We will first connect the expected payment in Md with a specific f -

mutual information—MI tvd. Then the result follows from the information monotone

property of f -mutual information. Formally, we use the following claim to show the

connection between mechanism Md and f -mutual information mechanism.

Claim 62. [Md ≈ MMItvd ] With a priori similar and random order assumption, in

Md, for every pairs i, j, for every reward question k,

E[Rk
i,j] =

1

2
MI tvd(Ψi; Ψj)

if both of them play T;

E[Rk
i,j] ≤

1

2
MI tvd(Ψ̂i; Ψ̂j)

if one of them does not play T.

Claim 141 shows the connection between Md and MMItvd . The only difference

between Md and MMItvd is that for agents i, j, when one of the agent does not play

T, the correlation between their reports is upper-bounded by rather than equal to the

tvd-mutual information. Therefore, in Md, truth-telling is not a dominant strategy.

But the information-monotone property of MI tvd still guarantees the informative

truthful and strongly focal property of Md.

Proof of Theorem 61. We start to show the truthful property of Md.
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For every agent i, given that everyone else plays T, agent i’s expected payment

for each reward question is

E[Rk
i,j] ≤

1

2
MI tvd(Ψ̂i; Ψj) ≤

1

2
MI tvd(Ψi; Ψj)

since MI tvd is information-monotone. Thus, Md is truthful. Moreover,

E[Rk
i,j] ≤

1

2
MI tvd(Ψ̂i; Ψ̂j) ≤

1

2
MI tvd(Ψi; Ψj)

Thus, the truth-telling strategy profile maximizes every agent’s expected payment

among all strategy profiles which implies Md is strongly focal.

Proof for Claim 141 We first show that

E[Rk
i,j] =

1

2
MI tvd(Ψi; Ψj)

if both of agents i, j play T.

Note that by simple calculations, Assumption 89 implies that for any σ ∈ {0, 1},

Pr[Ψj = σ|Ψi = σ] ≥ Pr[Ψj = σ],

Pr[Ψj = σ|Ψi = σ′] ≤ Pr[Ψj = σ],∀σ′ 6= σ.

When both of agents i, j play T,
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1

2
MI tvd(Ψi; Ψj) =

1

2

∑
σ,σ′

|Pr[Ψi = σ,Ψj = σ′]− Pr[Ψi = σ] Pr[Ψj = σ′]|

(Definition of MI tvd)

=
1

2

∑
σ,σ′

1(σ = σ′) (Pr[Ψi = σ,Ψj = σ′]− Pr[Ψi = σ] Pr[Ψj = σ′])

+ 1(σ 6= σ′) (Pr[Ψi = σ] Pr[Ψj = σ′]− Pr[Ψi = σ,Ψj = σ′])

(Assumption 89)

=
∑
σ

(Pr[Ψi = σ,Ψj = σ]− Pr[Ψi = σ] Pr[Ψj = σ])

(Combining like terms, Pr[E]− Pr[¬E] = 2 Pr[E]− 1)

= E[Rk
i,j] (Definition of Rk

i,j in Md)

The proof of

E[Rk
i,j] ≤

1

2
MI tvd(Ψ̂i; Ψ̂j)

is similar to above proof. We only need to replace Ψi by Ψ̂i and change the second

equation to greater than, that is,

1

2

∑
σ,σ′

|Pr[Ψ̂i = σ, Ψ̂j = σ′]− Pr[Ψ̂i = σ] Pr[Ψ̂j = σ′]|

≥ 1

2

∑
σ,σ′

1(σ = σ′)
(

Pr[Ψ̂i = σ, Ψ̂j = σ′]− Pr[Ψ̂i = σ] Pr[Ψ̂j = σ′]
)

+ 1(σ 6= σ′)
(

Pr[Ψ̂i = σ] Pr[Ψ̂j = σ′]− Pr[Ψ̂i = σ, Ψ̂j = σ′]
)
. (

∑
|x| ≥

∑
x)

We have finished the proof of Claim 141.
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3.5 Independent work analysis

The analysis in Section 3.4 is not restricted to Dasgupta and Ghosh [18]. Replacing

the Rk
i,j defined in Md by the Rk

i,j defined in the non-binary extension of Md in the

independent work of Shnayder et al. [63] will not change the analysis. Thus, Shnayder

et al. [63] is also a special case of f -mutual information mechanism—TVD-mutual

information mechanism MMItvd in the non-binary settings.

CA applies to a more general setting than the positively correlated setting (As-

sumption 89), in the sense that CA assumes the knowledge of signal structure but the

signal structure does not need to be positively correlated. Here we give the analysis

for CA in the special setting where the signal structure is positively correlated. The

analysis for other settings is similar.

The Correlated Agreement (CA) Mechanism [63] In the special setting where

the signal structure is positively correlated, the non-binary extension of Md—the CA

mechanism—can be reinterpreted as Md by defining

Rk
i,j := 1(σ̂ki = σ̂kj )− 1(σ̂`Ai = σ̂`Bj )

where `A is picked from subset A uniformly at random and `B is picked from subset

B uniformly at random.

With this new definition of Rk
i,j, Claim 141 is still valid since the proof of Claim 141

that uses the definition of Rk
i,j—

∑
σ

(Pr[Ψi = σ,Ψj = σ]− Pr[Ψi = σ] Pr[Ψj = σ])

= E[Rk
i,j] (Definition of Rk

i,j in Md)

—is still valid for this new definition of Rk
i,j. Therefore, Theorem 61 is still valid when
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we replace Md by the CA mechanism which means we can also use our information

theoretic framework to analyze Shnayder et al. [63].
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CHAPTER IV

Single-task Signal Elicitation

4.1 Related work

After Miller, Resnick, and Zeckhauser [45] introducing peer prediction, a host of

results (see, e.g., [51, 67, 53, 55, 74, 59, 21, 71, 70, 69, 28, 29, 36]) have followed.

In this section, we will introduce them and classifies them into several categories

according to the properties they (do not) have.

(1) Single-task, detail free, focal (not small group): Bayesian Truth Serum

(BTS) [51] first successfully weakened the known common prior assumption (detail

free) and addresses the equilibrium multiplicity issue (focal). Prelec [51] also provides

an important framework for mechanisms without known common prior. BTS requires

the agents report—in addition to their reported signal—a forecast (prediction) of the

other agents’ reported signals, and uses this predictions in lieu of the common prior.

BTS incentives agents to report accurate forecasts by rewarding forecasts that have

the ability to predict the other agents’ reported signal. However, BTS has two weak-

ness: (1) BTS requires that the number of agents goes to infinity (or is large enough

in a modified version) since the mechanism needs agents to believe it has access to

the true distribution of from which agents’ signals are drawn. (2) The analysis of

non-truthful equilibria provided in [51] requires that the number of agents goes to

infinity and only proves that truth-telling has total expected payment at least as high
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as other equilibrium. Specifically, it does not rule out the existence of many other

equilibrium which are all paid the same as the truth-telling equilibrium. Logarithmic

Peer Truth Serum (PTS) [54] extends BTS to a slightly different setting involving

sensors, but still requires a large number of agents.

(2) Single-task, small group, detail free (not focal): Several mechanisms [67, 53,

55, 59, 71, 70, 69] are based on the BTS framework and address the first weakness

of BTS. Robust Bayesian Truth Serum (RBTS) [67] is a mechanism which can only

be applied to binary signals. Multi-Valued RBTS [53] and Multi-Signal Shadowing

Method (Multi-Signal SM) [68] can be applied to non-binary signals while they require

an additional assumption that an agent will think the probability that other agents

receive signal σ higher if he himself also receives σ. Divergence-based BTS [55] can

be applied to non-binary signals and does not require additional assumptions on the

prior. All of those works do not address the equilibrium multiplicity issue, but do

work for a small number of agents. Minimal Truth Serum (MTS) [59] is a mechanism

where agents have the option to report or not report their predictions, and also

lacks analysis of non-truthful equilibria. MTS uses a typical zero-sum technique such

that all equilibria are paid equally. In contrast, we show that in our Disagreement

Mechanism any equilibrium that is even close to paying more than the truth-telling

equilibrium must be close to a small set of permutation equilibrium. The Divergence

based BTS only requires the common prior assumption to be truthful. Because of its

generality, we use it as a building block in our Disagreement Mechanism. However,

the Divergence based BTS contains effortless equilibrium that pay significantly more

than truth-telling. Moreover, analysing the set of equilibria in Divergence-based BTS

is very complicated and becomes a main technical obstacle in this chapter. Thus,

while the above work addresses the first weakness of BTS, it exacerbates the second.

(3) Single-task, small group, focal (not detail free): Jurca and Faltings [28, 29] use

algorithmic mechanism design to build their own peer prediction style mechanism
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where truth-telling is paid strictly better than non-truthful pure strategies but leaves

the analysis of mixed strategies as a open question. Kong, Schoenebeck, and Ligett

[36] modify the peer prediction mechanism such that truth-telling is paid strictly

better than any other non-truthful equilibrium. Additionally, they optimize the cost

their mechanism needs over a natural space. The assumption that the mechanism

knows the prior, allows these mechanisms to only require that agent’s report a signal

(there is no prediction report). However, unlike the current work, the mechanism still

needs to know the prior and the analysis only works for the case of binary signals.

(4) Different Settings: We have introduced multi-task setting in the previous chap-

ter. In addition to the multi-task setting, there are many other works in the settings

that are different from our results. For example, Cai, Daskalakis, and Papadimitriou

[11] and Liu and Chen [41] consider the machine learning setting. Kamble et al. [31],

and Agarwal et al. [2] consider the heterogeneous participants setting in the multi-

task setting. Mandal et al. [42] consider the heterogeneous tasks setting. Zhang and

Chen [74] consider a sequential game. Faltings et al. [21] consider a setting where

they have an estimation of the public distribution of previous answers on other a

priori similar questions.

4.2 Preliminary and background

We will defer the proofs for most claims to Appendix A.1.4.

4.2.1 Prior definitions and assumptions

We consider a setting with n agents and a set of signals Σ, and define a setting as a

tuple (n,Σ). Each agent i has a private signal σi ∈ Σ chosen from a joint distribution

Q over Σn called the prior. Given a prior Q, for σ ∈ Σ, let qi(σ) = PrQ[σi = σ] be the

a priori probability that agent i receives signal σ. Let qj,i(σ
′|σ) = PrQ[σj = σ′|σi = σ]

be the probability that agent j receives signal σ given that agent i received signal σ′.
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We say that a prior Q over Σ is symmetric if for all σ, σ′ ∈ Σ and for all pairs of

agents i 6= j and i′ 6= j′ we have qi(σ) = qi′(σ) and qi,j(σ|σ′) = qi′,j′(σ|σ′). That is,

the first two moments of the prior do not depend on the agent identities.

Assumption 63 (Symmetric Prior). We assume throughout that the agents’ signals

σ are drawn from some joint symmetric prior Q.

Because we will assume that the prior is symmetric, we denote qi(σ) by q(σ) and

qi,j(σ|σ′) (where i 6= j) by q(σ|σ′). We also define qσ = q(·|σ).

Assumption 64 (Non-zero Prior). We assume that for any σ, σ′ ∈ Σ, q(σ) >

0, q(σ|σ′) > 0.

Assumption 65 (Informative Prior). We assume if agents have different private

signals, they will have different expectations for the fraction of at least one signal.

That is for any σ 6= σ′, there exists σ′′ such that q(σ′′|σ) 6= q(σ′′|σ′).

The following assumption conceptually states that one state is not just a more

likely version of another state, and can be thought of as a weaker version of assuming

q(σ|·) are linearly independent.

Assumption 66 (Fine-grained Prior). We assume that for any σ 6= σ′ ∈ Σ, there

exists σ′′, σ′′′ such that

q(σ|σ′′)
q(σ′|σ′′)

6= q(σ|σ′′′)
q(σ′|σ′′′)

If this assumption does not hold, then in some since σ and σ′ are the same signal.

We can create a new prior by replacing σ and σ′ with a new signal σ0 := σ or σ′, and

not lose any information, in the sense that we can still recover the original prior. To

see this, we first define p = q(σ)
q(σ′)

, and note that for all σ′′, p = q(σ|σ′′)
q(σ′|σ′′) . Whenever σ0

is drawn in the new prior, we simply replace it by σ with probability p and σ′ with

probability 1− p. This produces the same prior for agents that have no information

or other their signal’s information.
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We illustrate this in the following example:

Example 67. Q =


q(s1|s1) q(s1|s2) q(s1|s3)

q(s2|s1) q(s2|s2) q(s2|s3)

q(s3|s1) q(s3|s2) q(s3|s3)

 =


0.1 0.2 0.3

0.2 0.4 0.6

0.7 0.4 0.1

 is not a

fine-grained prior since

q(s1|s1)

q(s2|s1)
=
q(s1|s2)

q(s2|s2)
=
q(s1|s3)

q(s2|s3)

Note that in this example, even we combine s1 and s2 to be a single signal s0

which is defined as s0 := s1 or s2, we do not lose any information: if an agent knows

that the fraction of agents who report s0 is x, we know his belief for the expectation

of the fraction of s1 must be x
3

no matter what private signal he receives.

We only require the fine-grained prior assumption to show that truth-telling is

strictly “better” than any other symmetric equilibrium (excluding permutation equi-

librium). In the above example where the prior is not fine-grained, if agents always

report s1 when they receive s1 or s2, this does not lose information (is not “worse”)

comparing with the case agents always tell the truth. So we cannot say truth-telling is

strictly “better” than any other equilibrium when the prior is not fine-grained. How-

ever, this assumption is not necessary to show that truth-telling is a strict Bayesian

equilibrium of our mechanism, nor to show that the agent welfare of truth-telling is

at least as high as other symmetric equilibrium.

Assumption 68 (Ensemble Prior). Although we talk of a single prior, in fact we

have an ensemble Q = {Qn}n∈N,n≥3 of priors; one for each possible number of agents

greater than 3. We assume that all Qn are over the same signal set Σ have have

identical q(σ) and q(σ′|σ).

When the number of agents n changes, the joint prior actually changes as well,

but the first two moments of the prior are fixed. This allows us to make meaningful
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statements about n going to infinity.

We sometimes will denote the class of priors that satisfy all five of these assump-

tions as SNIFE priors.

4.2.2 Game setting and equilibrium concepts

Given a setting (n,Σ) with prior Q, we consider a game in which each agent i is

asked to report his private signal σi ∈ Σ and his prediction pi ∈ ∆Σ, a distribution

over Σ, where pi = qσi . For any σ ∈ Σ, pi(σ) is agent i’s (reported) expectation for

the fraction of other agents who has received σ given he has received σi. However,

agents may not tell the truth. We denote Σ ×∆Σ by R. We define a report profile

of agent i as ri = (σ̂i, p̂i) ∈ R where σ̂i is agent i’s reported signal and p̂i is agent i’s

reported prediction.

We would like to encourage truth-telling, namely that agent i reports σ̂i = σi, p̂i =

qσi . To this end, agent i will receive some payment νi(σ̂i, p̂i, σ̂−i, p̂−i) from our mech-

anism.

Now we consider the strategy an agent plays in the game.

Definition 69 (Strategy). Given a mechanism M, we define the strategy of M for

setting (n,Σ) as a mapping s from (σ,Q) (the signal and common prior received) to

a probability distribution over R (the reported signal, prediction pair).

That is, for each possible signal σ and prior Q an receives, he will choose a signal,

prediction pair to report from some distribution s(σ,Q). We define a strategy profile

s as a profile of all agents’ strategies {s1, s2, ...sn} and we say agents play s if for any

i, agent i plays strategy si. We say a strategy profile is symmetric if each agent

plays the same strategy.

We define the agent welfare of a strategy profile s and a mechanism M for

setting (n,Σ) with prior Q to be the expectation of the sum of payments to each

agent and we write it as AWM(n,Σ, Q, s). Note that for symmetric strategy profile,
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the agent welfare is proportional to each agent’s expected payment since everyone

plays the same strategy.

A Bayesian Nash equilibrium consists of a strategy profile s = (s1, . . . , sn) such

that no player wihes to change her strategy, given the strategies of the other players

and the information contained in the prior and her signal. Formally,

Definition 70 (Bayesian Nash equilibrium). Given a family of priors Q, a strategy

profile s = (s1, . . . , sn) is a Bayesian Nash equilibrium if and only if for any prior

Q ∈ Q, for any i, and for any s′i

E(σ̂′i,p̂
′
i)←s′i(σi,Q),(σ̂−i,p̂−i)←s−i(σ−i,Q)[νi(σ̂

′
i, p̂
′
i, σ̂−i, p̂−i)]

≤E(σ̂i,p̂i)←si(σi,Q),(σ̂−i,p̂−i)←s−i(σ−i,Q)[νi(σ̂i, p̂i, σ̂−i, p̂−i)]

In the case where, for some i, the equality holds if and only if s′i = si, we say this

strategy profile is a strict Bayesian Nash equilibrium for prior family Q.

Remark 71 (Equilibrium for a Given Prior). Note that we assume agents have a

common prior Q, so often for convenience, we will implicitly assume Q is fixed, at

which point a strategy is a mapping from Σ to a probability distribution over R. We

will call such a strategy profile s an equilibrium for prior Q if it satisfies the condition

of Bayesian Nash equilibrium when Q is fixed.

Assuming a fixed prior Q, for any strategy profile s = (s1, s2, ..., sn), we will

represent the marginal distribution of an agent i’s strategy for her signal report as

a matrix θi where θi(σ̂, σ) is the probability that agent will report signal σ̂ when his

private signal is σ. Note that θi is a transition matrix, that is the sum of every

column is 1. We call θi the signal strategy of agent i. We also call (θ1, θ2, ..., θn) the

signal strategy of s. We define the average signal strategy of s as θ̄n =
∑
i θi
n

. The

following claim relates this average signal strategy to the distribution of all reported

signals:
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Claim 72. Assume that the distribution over all agents’ private signals is ω ∈ ∆Σ,

the distribution over all agents’ reported signals will be θ̄nω.

Note that the mechanism actually collects agents’ reported signals, so in order

to estimate the distribution over their private signals, we hope θ̄n is (close to) the

identity matrix I.

4.2.3 Special strategy profiles

In this section, we will introduce three special types of strategy profiles that we

call truth-telling, best prediction strategy profiles, and permutation strategy profiles.

Definition 73 (Truth-telling). We define a strategy profile as truth-telling if for all

i, and for all Q, s(σi, Q) = (σi,qσi) with probability 1. We write the truth-telling

strategy profile as T.

For every agent i, let σ̂ be a randomly chosen agent’s reported signal, when other

agents tell the truth, the distribution of σ̂ is qσi . However, if agents play strategy s,

for agent i, the distribution of σ̂ depends on not only his prior Q but also the strategy

s. We define the distribution of σ̂ for agent i as qs
σi

.

Claim 74.

qs
σi

= θ−iqσi

where (θ1, θ2, ..., θn) is s’s signal strategy and θ−i =
∑
j 6=i θj

n−1
.

When agents play strategy s, to best predict other agents’ reported signal, agent

i should be report qs
σi

rather than qσi . This motivates our definition for best pre-

diction strategy profile which is a strategy profile where every agent i gives his “best

prediction” qs
σi

.

Definition 75 (Best Prediction Strategy Profile). We say a strategy profile s is a best

prediction strategy profile if for every agent i, he reports qs
σi

. We call a best strategy
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prediction strategy profile s a symmetric best strategy prediction strategy profile if

θi = θ for every i.

Now we begin to introduce the definition of a permutation strategy profile. Intu-

itively, if agents “collude” to relabel the signals and then tell the truth with relabeled

signals, they actually play what we will call permutation strategy profile.

Given a permutation π : Σ 7→ Σ (which is actually a relabeling of signals), by

abusing notation a little bit, we define π : Q 7→ Q as a mapping from a prior Q to a

permuted prior π(Q) where for any σ1, σ2, ..., σn ∈ Σ,

Prπ(Q)(σ1, σ2, ..., σn) = PrQ(π−1(σ1), π−1(σ2), ..., π−1(σn))

where σi is the private signal of agent i. Notice that it follows that:

Prπ(Q)(π(σ1), π(σ2), ..., π(σn)) = PrQ(σ1, σ2, ..., σn).

Intuitively, π(Q) is the same with Q when the signals are relabeled according to π.

For any strategy s, we define π(s) as the strategy such that π(s)(σ,Q) = s(π(σ), π(Q)).

Definition 76 (Permuted Strategy Profile). For any strategy profile s, we define π(s)

as a strategy profile with π(s) = (π(s1), π(s2), ..., π(sn)).

Note that π−1πQ = Q which implies π−1π(s) = s.

Definition 77 (Permutation Strategy Profile). We define a strategy profile s as a

permutation strategy profile if there exists a permutation π : Σ → Σ such that

s = π(T).

Note that if agents play π(T), then the signal strategy of each agent is π, and so

the distribution of report profiles is θ̄nω = πω.
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There exists a natural bijection between permutation strategy profiles and |Σ|×|Σ|

permutation matrices. If the permutation strategy profile is constructed by permu-

tation π, the only non-zero entries of the corresponding permutation matrix θπ are

θπ(π(σ), σ) = 1 for all σ ∈ Σ. For a transition matrix θ, if θ is not a permutation

matrix, we would like to give a definition for when a transition matrix θ is what we

call τ -close to a permutation given any τ > 0. This definition is motivated by the

following claim and will be described after it.

Claim 78. For any transition matrix θm×m where the sum of every column is 1, θ is

a permutation matrix iff for any row of θ, there at most one non-zero entry.

Now we give a definition for τ -close.

Definition 79 (τ -close). We say a signal strategy θ is τ -close to a permutation if for

any row of θ, there is at most one entry that is greater than τ .

Thus a permutation stragety is 0-close to a permutation. For any stategy profile

s, if the average signal strategy of s is τ -close to a permutation matrix, we say s is

τ -close to a permutation profile as well.

Recall that f -divergence([4]) is used to measuring the “difference” between dis-

tributions. One important property of the f -divergence family is information mono-

tonicity: for any two distributions, if we post-process each distribution in the same

way, the two distributions will become “closer” because of the information loses.

The information monotonicity of f -divergence implies that:

Fact 80. Given SNIFE prior Q, for any θ that is not a permutation, there exists two

private signals σ1 6= σ2 such that Df (θqσ1 , θqσ2) < Df (qσ1 ,qσ2)

Proof. First notice that when θ is not a permutation, based on Claim 78, there exists

a row of θ such that the row has at least two positive entries, in other words, there

exists σ, σ′, σ′′ such that θ(σ, σ′), θ(σ, σ′′) > 0. Based on the non-zero and fine-grained
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assumptions of Q, there exists σ1 6= σ2 such that

θ(σ, σ′)p(σ′), θ(σ, σ′′)p(σ′′) > 0 and p(σ′)
p(σ′′)

6= q(σ′)
q(σ′′)

where p = qσ1 ,q = qσ2 . When

θ(σ, σ′)p(σ′), θ(σ, σ′′)p(σ′′) > 0, we have θ(σ, ·)p > 0. By Lemma 6, we have

Df (θqσ1 , θqσ2) < Df (qσ1 ,qσ2)

4.2.4 Mechanism design tools

Hellinger-divergence and strictly proper scoring rules are two of the main tools

we will use in our mechanism design. Starting with [45], proper scoring rules have

become a common ingredient in mechanisms for unverifiable information elicitation

(e.g. [51, 67]). Hellinger-divergence is a type of f -divergence ([4]). F -divergence

is always used in measuring the “difference” between distributions. One important

property of f -divergence is information monotonicity: For any two distributions,

if we use the same way to post-process each distribution, the two distributions will

become “closer” because of potential information loses. The reason we pick Hellinger-

divergence rather than other f -divergence is that we need square root triangle

inequality of Hellinger-divergence (which we will describe later).

Hellinger-divergence Hellinger-divergence is a special case of f -divergence.

D∗ : ∆Σ×∆Σ → R is a non-symmetric measure of difference between distribution

p ∈ ∆Σ and distribution q ∈ ∆Σ and is defined to be

D∗(p,q) =
∑
σ

(
√

p(σ)−
√

q(σ))2.

We highlight two important properties of Hellinger-divergence: one is Information

Monotonicity which other f -divergences also have; another is square root triangle

inequality.

(1) Information Monotonicity: For any p,q, and transition matrix θ ∈ R|Σ|×|Σ|

where θ(σ, σ′) is the probability that we map σ′ to σ, we have D∗(p,q) ≥ D∗(θp, θq).
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When θ is a permutation, D∗(p,q) = D∗(θp, θq).

(2) Square root triangle inequality: |
√
D∗(p,q)−

√
D∗(p,q′)| <

√
D∗(q′,q)

for any p,q,q′

Proper scoring rules are a key tool in the design of mechanisms [51] in the BTS

framework. In such mechanism, agents are asked to report their private information

and forecast for other agents and paid based on a “prediction score” and an “infor-

mation score”. The prediction score is usually calculated by a proper scoring rule

and the information score is customized.

Prediction Score via Proper Scoring Rules Agents will receive a prediction

score based on how well their prediction predicts a randomly chosen agent’s reported

signal. Say an agent i reports prediction p̂i then a random agent, call him agent j, is

chosen, agent i will receive a prediction score PS(σ̂j, p̂i) where PS is a proper scoring

rule. Note that any proper scoring rule works. PS(σ̂j, p̂i) is maximized if and only

if agent i’s reported prediction p̂i is his expected likelihood for σ̂j. Agent i cannot

pretend to have a different expected likelihood without reducing his expectation for

his prediction score.

4.3 The Disagreement mechanism

4.3.1 Buiding block—Divergence-Based BTS

In this section, we introduce a building block of our Disagreement Mechanism—

Divergence-Based BTS [55]. It follows the BTS framework and still pays agents an

“information score” and a “prediction score”. The main idea of Divergence-Based

BTS is that the mechanism punishes the Inconsistency of agents—the “difference”

between two random agents’ predictions when they report the same signal. The

common prior assumption tells us agents cannot agree to disagree. That is, if two

agents receive the same private information, they must have the same “belief” about
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the world. In our setting, if agents tell the truth, whenever two agents report the

same signal, they will report the same prediction as well. Thus, everyone telling the

truth is a consistent strategy. Since Divergence-Based BTS punishes inconsistency,

the truth-telling strategy will be encouraged in Divergence-Based BTS.

Divergence-Based BTS [55] M: Let α, β > 0 be parameters and let PS be a

strictly proper scoring rule, then we define M(α, β, PS)1 as follows:

1. Each agent i reports a signal and a prediction ri = (σ̂i, p̂i)

2. For each agent i and agent j, we define a prediction score that depends on agent

i’s prediction and agent j’s report signal

scoreP (ri, rj) = PS(σ̂j, p̂i),

and an information score

scoreI(ri, rj) =


0 σ̂i 6= σ̂j

−(PS(p̂j, p̂j)− PS(p̂j, p̂i)) σ̂i = σ̂j

3. Each agent i is matched with a random agent j. The payment for agent i is

paymentM(α,β,PS)(i, r) = αscoreP (ri, rj) + βscoreI(ri, rj).

Theorem 81. [55]

For any α, β > 0 and any strictly proper scoring rule PS, M(α, β, PS) has truth-

telling as a strict Bayesian-Nash equilibrium whenever the prior Q is informative and

symmetric.

1This mechanism is a little bit different with Divergence-Based BTS mechanism [55]. Divergence-
Based BTS uses specific proper scoring rule (log scoring rule). But it is easy to see using general
proper scoring rules still keeps the strictly truthful property of Divergence-Based BTS.
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We introduce the proof in appendix (Section A.1.5).

Main Drawback of Divergence-Based BTS The main drawback is that there

may be many other equilibria with inconsistency score 0. Agents can simply report the

a priori most popular signal and predict that everyone does the same. This strategy

is a consistent equilibrium and gives agents the maximum possible payoff since their

predictions are perfect. In particular, for any non-trivial prior, this strategy pays

strictly more than the truth-telling equilibrium—so that it Pareto dominates truth-

telling.

The above extreme example provides a effortless and meaningless equilibrium but

is preferred by agents in Divergence-Based BTS. To deal with this problem, one

key observation is that in the meaningless equilibrium mentioned above, the unitary

predictions implies their report profiles have little information. At a high level, the

“disagreement” between agents represents the amount of information their report

profiles have. Motivated by this extreme example, we design a new mechanism—the

Disagreement Mechanism—that encourages “disagreement”.

4.3.2 The Disagreement mechanism and main theorem

In this section, we will describe our Disagreement Mechanism and state our main

theorem. To design our mechanism, we start with the Divergence-Based BTS and

(a) first use a typical trick to create a zero-sum game which has the same equilibria

as the Divergence-Based BTS; (b) pay each agent an extra score that only depends

on other agents which will not change the structure of the equilibria. We want this

extra score to represent “classification score” (See Figure 4.1).

Disagreement Mechanism M+(α, β, PS(·, ·)) r = {r1, r2, ..., rn} is all agents’

report profiles where for any r, ri = (σ̂i, p̂i).
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Figure 4.1: An illustration of Classification Score

Each point represents an agent’s report profile—the color represents the signal the agent reports;
the position represents the prediction the agent reports. We informally define Inconsistency as
the average disagreement between every two agents’ predictions when they report the same signal
and Diversity as the average disagreement between every two agents’ predictions when they report
different signals. We informally define Classification Score as Diversity minus Inconsistency. Note
that the report profiles in the right figure will have a much higher classification score than those in
the left figure since the right figure has high Diversity and low Inconsistency.
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1. Zero-sum Trick : Divide the agents into two non-empty groups—group A and

group B. Each group of agents plays the game (mechanism)M that is restricted

in their own group. For group A, each agent iA receives a

scoreM(iA, r) =paymentM(α,β,PS(·,·))(iA, rA)

− 1

|A|
∑
jB∈B

paymentM(α,β,PS(·,·))(jB, rB)

Where paymentM(α,β,PS(·,·))(iA, rA) is agent iA’s payment when he is paid by

mechanismM(α, β, PS(·, ·)) given group A’s report profiles rA and that he can

only be paired with a random peer from group A (we have similar explanation

for paymentM(α,β,PS(·,·))(jB, rB)). For agents in group B, we use the analogous

way to score them.

2. Additional Classification Reward : Each agent i is matched with two random

agents j, k chosen from all agents (including group A and group B), the payment

for agent i is

paymentM+(α,β,PS(·,·)(i, r) = scoreM(i, r) + scoreC(rj, rk)

where

scoreC(rj, rk) =


D∗(p̂j, p̂k) σ̂j 6= σ̂k

−
√
D∗(p̂j, p̂k) σ̂j = σ̂k

recall that D∗ denotes the Hellinger Divergence.

Theorem 82. For any number of signals m, given any SNIFE prior, if the number

of agents n ≥ 3, then in M+(α, β, PS(·, ·)) with α
β
< 1

4m
,

1. (Truthful) truth-telling is a strict Bayesian Nash equilibrium;

90



2. (Focal) in any permutation equilibrium, every agent has equal expected payment

with truth-telling; and in any symmetric equilibrium that is not a permutation

equilibrium, every agent’s expected payment is strictly less than that of truth-

telling.

3. (Robust Focal) any symmetric equilibrium that pays within γ1 of truth-telling

must be τ1(γ1) close to a permutation strategy profile; and moreover

4. (Tight) no detail free mechanism can have truth-telling as an equilibrium that

has strictly higher agent-welfare than all other permutation equilibria.

where τ1(γ1) = O( 3
√
γ1), (the constants we omit only depend on the first two

moments of prior Q)2.

We extend our results to asymmetric equilibria when the number of agents is

sufficiently large in Section A.1.2.

4.3.3 Proof highlights

In this section we give a few proof highlights.

First note that to show each agent’s expected payment in a symmetric equilibrium

is less than that of truth-telling, we only need to show the sum of all agents’ expected

payments—agent welfare—is less than that of truth-telling since everyone plays the

same strategy in a symmetric equilibrium.

We first show that the agent welfare of our Disagreement Mechanism is Diversity

minus Inconsistency, which follows by a straightforward computation. It remains to

show that Diversity minus Inconsistency has the aforementioned properties.

Best Prediction Strategy Profiles: We call a strategy profile a best prediction

strategy profile if for any i, agent i reports a prediction that maximizes his prediction

2Actually τ1(γ1) = 1
c1

3

√
γ1

c2,c3,c4
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score. By some calculations, we know agent i’s best prediction is θ−iqσi given σi is his

private signal and recall that θ−i =
∑
j 6=i θi

n−1
where (θ1, θ2, ...., θn) is the signal strategy.

We call this strategy profile a symmetric best prediction strategy profile if there exists

a signal strategy θ such that θi = θ for any i. Based on the definition of permutation

strategy profile, it is clear that any permutation strategy profile is a symmetric best

prediction strategy profile.

Consider two agents who report different signals. If they use a permutation strat-

egy profile π then their predictions will be πqσ, πqσ′ given their private signals are

σ 6= σ′. If they use a symmetric best prediction strategy, then their reported pre-

dictions will be θqσ, θqσ′ . In the first case, the Hellinger divergence between the

two agents’ reported predictions is D∗(πqσ, πqσ′) = D∗(qσ,qσ′) while in the sec-

ond case, the Hellinger divergence between the two agents’ reported predictions is

D∗(θqσ, θqσ′) ≤ D∗(qσ,qσ′) = D∗(πqσ, πqσ′). The inequality follows from the infor-

mation monotonicity of Hellinger divergence. Thus, the two agents’ predictions in the

second case is “closer” than those in the first case. So a permutation strategy profile

is more diverse than any other symmetric best prediction strategy, and additionally

has no inconsistency. To make permutation strategy profiles beat symmetric best

prediction strategy profiles, it is enough to just pay agents the additional diversity

reward.

General Equilibria: However, the biggest challenge is that there exists equi-

libria that are not best prediction strategy profiles. Thus, it is not enough to just

pay agents an additional diversity reward. To deal with this challenge, we replace

diversity by classification score. To show that classification score works, we map each

equilibrium s∗ to a strategy profile s∗BP that belongs to best prediction strategy pro-

files. The technical heart of the proof bounds the classification score of an equilibrium

strategy profile s∗ by the diversity of its corresponding best prediction strategy profile

s∗BP . Once we finish this, we can bound the classification score of any equilibrium
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strategy profile by the classification score of permutation strategy profiles (note that

for permutation strategy profiles, the classification score is equal to the diversity since

they are consistent strategy profiles) and complete the proof.

Asymmetric Equilibria: In the more complicated asymmetric case, the diffi-

culty is that even if agents play best prediction strategy profiles, we cannot use infor-

mation monotonicity to prove permutation strategy profiles gain the strictly highest

classification score. However, if the number of agents is large enough, we will see any

strategy profile that belongs to best prediction strategy profiles family is “almost sym-

metric”. Using “almost symmetric” result, we can generalize the above framework to

approximate work for asymmetric case.

Finally, we show that equilibrium that having the classification score close to that

of truth-telling, must be close to a permutation equilibrium.

Tightness Result: The intuitive explanation for this tightness result is that the

agents can collude to relabel the signals and the mechanism has no way to defend

against this relabelling without knowing some information about agents’ common

prior. The key idea to prove that result is what we refer to as Indistinguishable

Scenarios, that is, for the scenario A where agents collude to relabel the signals,

there always exists another scenario B where agents tell the truth such that no detail

free and truthful mechanism can distinguish A and B.

4.4 Mapping Bayesian truth serum into our information the-

oretic framework

Bayesian Truth Serum (BTS) [51] rewards the agents whose answer is “surpris-

ingly popular”. In this section, we will show that in BTS, essentially each agent is

paid the mutual information between her information and the aggregated informa-

tion conditioning a random peer’s information which matches our Mutual Information
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Paradigm. We show this via the connection we found between the log scoring rule and

Shannon mutual information—the accuracy gain equals the information gain. Map-

ping Bayesian Truth Serum into our information theoretic framework substantially

simplifies the proof in Prelec [51] via directly applying the information-monotone

property of Shannon mutual information.

4.4.0.1 Prior work

Prelec [51] proposes the Bayesian Truth Serum mechanism in the single-task set-

ting. In addition to the common prior and the symmetric prior assumptions, two

additional assumptions are required:

Assumption 83 (Conditional Independence). We define the state of the world as a

random variable W : Ω 7→ ∆Σ such that given that W = ω, agents’ private signals are

independently and identically distributed. That is, for every i, agent i receives signal

σ with probability ω(σ).

Assumption 84 (Large Group). The number of agents is infinite.

We define a random variable Ŵ : Ω 7→ ∆Σ such that its outcome is the distribu-

tion over agents’ reported signals. The distribution over Ŵ dependes on all agents’

strategies. With the large group assumption, when agents tell the truth, Ŵ = W .

BTS uses Ŵ as the posterior distribution and uses agents’ forecasts as the prior

distribution, and then rewards agents for giving signal reports that are “unexpectedly

common” with respect to this distribution. Intuitively, an agent will believe her

private signal is underestimated by other agents which means she will believe the

actual fraction of her own private signal is higher than the average of agents’ forecasts.

Prelec also proposes the signal-prediction framework for the design of detail free

mechanism in the single-task setting.
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Signal-prediction framework [51] Given a setting (n,Σ) with a symmetric com-

mon prior Q, the signal-prediction framework defines a game in which each agent i is

asked to report his private signal σi ∈ Σ and his prediction pi ∈ ∆Σ, a distribution

over Σ, where pi = qσi . For any σ ∈ Σ, pi(σ) is agent i’s (reported) expectation for

the fraction of other agents who has received σ given he has received σi. However,

agents may not tell the truth. In this framework, the report space R = Σ×∆Σ. We

define a report profile of agent i as ri = (σ̂i, p̂i) ∈ R where σ̂i is agent i’s reported

signal and p̂i is agent i’s reported prediction.

We would like to encourage truth-telling T, namely that agent i reports σ̂i =

σi, p̂i = qσi . To this end, agent i will receive some payment νi(σ̂i, p̂i, σ̂−i, p̂−i) from

the mechanism.

Mechanism Bayesian Truth Serum (BTS(α)) [51] The Bayesian Truth Serum

(BTS) follows the signal-prediction framework. Here, we introduce the payment of

BTS. Each agent i has two scores: a prediction score and an information score.

BTS pays each agent

prediction score + α· information score

where α > 1 To calculate the scores, for every agent i, the mechanism chooses a

reference agent j 6= i uniformly at random. Agent i’s prediction score is

scorePre(ri, rj) := L(σ̂j, p̂i)− log fr(σ̂j|σ̂−j) = log p̂i(σ̂j)− log fr(σ̂j|σ̂−j)

Note that only the log scoring rule part L(σ̂j, p̂i) is related to agent i’s report. Based

on the property of the log scoring rule, for agent i, in order to maximize her prediction

score, the best p̂i(σ) should be her posterior expectation of the fraction of the agents

who report σ rather than receive.
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Agent i’s information score is

scoreIm(ri, rj) := log
fr(σ̂i|σ̂−i)

p̂j(σ̂i)
= log fr(σ̂i|σ̂−i)− log p̂j(σ̂i)

where fr(σ̂i|σ̂−i) is the fraction of all reported signals σ̂−i (excluding agent i) that

agree with agent i’s reported signal σ̂i, which can be seen as the posterior expectation

of the fraction of agents who report σ̂i conditioning on all agents’ reports, while p̂j(σ̂i)

is agent j’s posterior expectation of that fraction conditioning on agent j’s private

signal. Intuitively, the signals that actually occur more than other agents believe they

will receive a higher information score.

Now we restate the main theorem concerning Bayesian Truth Serum:

Theorem 85. [51] With the common prior, the symmetric prior, the conditional

independence, and the large group assumptions, BTS(α) is detail free, (i) truthful

and (ii) the expected average information score when everyone tells the truth is higher

than that in any other equilibrium. Moreover, (iii) for α > 1, BTS is focal.

Prelec [51] uses some clever algebraic calculations to prove the main results. In

the next section, we will apply our “accuracy gain=information gain” observation to

map Bayesian Truth Serum [51] into our information theoretical framework and show

results (ii) and (iii) via applying the data processing inequality of Shannon mutual

information. We put Prelec [51]’s proof for results (i) in appendix since it is already

sufficiently simple and not very related to our framework.

4.4.0.2 Using our information theoretic framework to analyze BTS

A key observation of BTS is that when agents report the optimal predictions,

the average information score is exactly the “accuracy gain”—the accuracy of the

posterior prediction for a random agent’s report conditioning on all agents’ reports,

minus the accuracy of a random reference agent j’s posterior prediction for the ran-
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dom agent’s report conditioning on agent j’s private signal. Based on Lemma 24, this

accuracy gain equals the Shannon mutual information between a random agent’s

reported signal and all agents’ reports conditioning on the random reference agent

j’s private signal Ψj = σj. Therefore, the expected information score can be repre-

sented as the form of Shannon mutual information. We have similar analysis for the

prediction score. We formally state the above observation in Lemma 86. Aided by

this lemma, we will show results (ii) and (iii) via applying the information-monotone

property of Shannon mutual information.

Lemma 86. In BTS, when agents tell the truth, each agent i’s expected information

score and prediction score are

I(W ; Ψi|Ψj), −I(W ; Ψj|Ψi)

respectively, ∀j 6= i. When the agents play a non-truthful equilibrium, we denote

random variable Ψ̂ as the reported signal of an agent who is picked uniformly at

random, the expected average information score and prediction score are

I(Ŵ ; Ψ̂|Ψj), −I(Ŵ ; Ψ̂|Ψi)

respectively, ∀i, j.

Proof. When agents tell the truth, each agent i’s expected information score is

EΨi,Ψj ,WL(Ψi, P r[Ψi|W ])− L(Ψi, P r[Ψi|Ψj])

= EΨi,Ψj ,WL(Ψi, P r[Ψi|W,Ψj])− L(Ψi, P r[Ψi|Ψj]) (Conditional independence)

= I(W ; Ψi|Ψj) (Theorem 24 / Expected accuracy gain equals information gain)

when she is paired with reference agent j. Since the prior is symmetric, I(W ; Ψi|Ψj)

is independent of the identity of j if j 6= i.
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In any equilibrium s, based on the properties of proper scoring rules, each agent

j will always maximize his expected prediction score by truthfully reporting his pre-

dictions. Moreover, for agent j, his reference agent is picked uniformly at random.

Therefore,

p̂j(σ̂) = Pr[Ψ̂ = σ̂|Ψj = σj]

where Ψ̂ is the reported signal of an agent who is picked uniformly at random.

Then we can replace W,Ψi by Ŵ , Ψ̂ in the above equations and prove that the

expected average information score is

I(Ŵ ; Ψ̂|Ψj).

The analysis for the expected prediction score is the same as the above analysis

except that we need to exchange i and j.

Proof of Theorem 85 (ii), (iii). Based on Lemma 86, when agents play an equilib-

rium, the expected average information score equals

I(Ŵ ; Ψ̂|Ψj) =
∑
σj

Pr[Ψj = σj]I(Ŵ ; Ψ̂|Ψj = σj)

≤
∑
σj

Pr[Ψj = σj]I(Ŵ ,W ; Ψ̂|Ψj = σj) (Data processing inequality)

Note that, when the number of agents is infinite, since every agent’s strategy is

independent with each other, we can see W determines Ŵ 3. Therefore,

3When W = ω, Ŵ = 1
n

∑
iM

T
i ω where MT

i is the transpose matrix of the transition matrix
corresponded to agent i’s strategy for signal reporting, and the distribution ω is represented by a
column vector.
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∑
σj

Pr[Ψj = σj]I(Ŵ ,W ; Ψ̂|Ψj = σj)

=
∑
σj

Pr[Ψj = σj]I(W ; Ψ̂|Ψj = σj)

≤
∑
σj

Pr[Ψj = σj]I(W ; Ψi|Ψj = σj),∀i 6= j

(Data processing inequality and the symmetric prior assumption)

= I(W ; Ψi|Ψj),∀i 6= j

Thus, the expected average information score is maximized when everyone tells the

truth.

It is left to show for α > 1, in BTS(α), the agent-welfare is maximized by truth-

telling over all equilibria. Lemma 86 shows that when the prior is symmetric, the

sum of the expected prediction scores equals the sum of the expected information

scores in any equilibrium. Thus, when α > 1, the agent welfare is proportional to the

sum of the expected information scores which is maximized by truth-telling over all

equilibria.

It is natural to ask if we replace the −log in BTS’s information score by other

convex functions, what property of BTS we can still preserve. The following theorem

shows that even though we may not ganrantee the truthful property of BTS, the

average expected information score is still monotone with the amount of information

for any convex function we use.

Theorem 87. If we replace the information score in BTS by f(
p̂j(σ̂i)

fr(σ̂i|σ̂−i)) where f is

a convex function, result (ii)—the expected average information score when everyone

tells the truth is higher than that in any other equilibrium—is preserved.
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Proof. When agents tell the truth, each agent i’s expected information score is

EΨi,Ψj ,Wf(
Pr[Ψi|Ψj]

Pr[Ψi|W ]
)

= EΨi,Ψj ,Wf(
Pr[Ψi|Ψj]

Pr[Ψi|W,Ψj]
) (Conditional independence)

= EΨi,Ψj ,Wf(
Pr[Ψi|Ψj]Pr[W |Ψj]

Pr[Ψi,W |Ψj]
)

= MIf (W ; Ψi|Ψj)

In any equilibrium s, based on the properties of proper scoring rules, each agent

j will always maximize their prediction by truthfully report their predictions, thus,

p̂j(σ̂) = Pr[Ψ̂ = σ̂|Ψj = σj].

Then we can replace W,Ψi by Ŵ , Ψ̂ in the above equations and prove that the

expected average information score is

MIf (Ŵ ; Ψ̂|Ψj).

With the similar proof of Theorem 85, the theorem follow immediately from the

data processing inequality of f -mutual information.
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CHAPTER V

Expertise Elicitation

5.1 Related work

Model perspective Prior work has modeled heterogeneous expertise where dif-

ferent agents receive a different number of signals [25] or expertise is embedding in

several dimensions [20, 76, 65, 44]; however in these works lower expertise/effort along

with a certain dimension only leads to a more noisy signal. In contrast, our model

allows such signals to be systematically biased.

Mechanism design perspective The most related work with the current chapter

is Prelec, Seung, and McCoy [52] which uses Bayesian Truth Serum [51] to incentivize

agents to report their signal and selects the most surprising signal (measured by

occurring more than its average prediction) as the final answer. McCoy and Prelec

[44] follow Prelec, Seung, and McCoy [52] to propose a probabilistic model to learn

the expertise of agents. Riley [58] compares the peer prediction decision rule (similar

to Prelec, Seung, and McCoy [52]) and the majority vote rule and exhibits cases

where each outperforms the other. The current chapter differs with Prelec, Seung,

and McCoy [52] in the model and assumptions as well as the possible applications.

Prelec, Seung, and McCoy [52] only focus on the single-task setting and assume that

agents receive the signals endogenously (without effort). In contrast, this chapter
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considers both single and multiple task settings and the model used in this chapter

handles both exogenous and indigenous signals.

The mechanism design framework in the current chapter extends the information

theoretic framework MIP. Agarwal et al. [2] propose a mechanism that works for the

heterogeneous participants in the multi-task setting. Mandal et al. [42] consider the

heterogeneous tasks setting. They both do not assume the hierarchy of the informa-

tion and cannot be applied to identify and elicit expertise.

Algorithmic perspective Several works [76, 20, 65, 23] provide clever methods

to learn the expertise as well as the ground truth of the crowdsourcing tasks. The

algorithm in the current chapter differs in two main aspects: (1) The current chapter

uses a different expertise model which can successfully capture the possibly hierarchi-

cal relationship between different information/expertise as well as the most valuable

information; (2) the current chapter combines the algorithm with an incentive mech-

anism that endogenously controls the quality and structure of the input, rather than

making exogenous assumptions about the quality of the input.

5.2 Multi-task setting

In this section, we will apply the HMIP framework in the multi-task setting where

each agent receives a random batch of a priori similar tasks

5.2.1 Backgrounds and assumptions

In multi-task setting, the major challenge solved in previous peer prediction liter-

ature is that agents may “get something for nothing” by always answering the same

answer (e.g. always saying good in peer grading).

In the setting where agents are assigned ≥ 2 tasks, Dasgupta and Ghosh [18],

Kong and Schoenebeck [34], and Shnayder et al. [63] solve this challenge by assuming
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agents are homogeneous and rewarding agents not only for their agreements but also

for the diversity of their answers. If an agent answers the same answer all the time (no

diversity), she will be paid nothing. Kong and Schoenebeck [34] show that this idea es-

sentially means rewarding each agent MI tvd(her information; her peer’s information).

When agents are heterogeneous, Mandal et al. [42] ask agents to answer a sufficient

number of tasks and then classify their answers into different clusters to learn their

levels and pay them.

Assumption 88 (a priori similar). All tasks are a priori similar for all agents. That

is, tasks are i.i.d samples for all agents. For every agent, before she invests any effort,

for each m, for all tasks, she has the same prior belief for the signals she and other

agents will receive by performing m.

Prior work [63, 18, 34] also makes this assumption; however in their setting it is

much stronger than in ours. For example, it insists that the only “signal” included in

a prompt is for the correct answer. In reality, some false answers are more appealing

than others (see Example 1 where Kansas is an unlikely answer). In our model,

these appealing false answers can be modeled as “cheap” information instead of being

assumed away.

Note that in the multi-task setting, we allow agents to have different priors and

only require that for every agent, her prior satisfies our assumptions.

5.2.2 Known information structure and a small number of tasks

In order to avoid agents “getting something for nothing” by reporting the cheap

signals instead of the expensive signals (e.g. giving a high quality grade when there

are no typos in Example 2), we reward agents the information score of expensive

signals according to not only their agreements but also the diversity of their answers

conditioning on the tasks which have the same cheap signals. (e.g. the essays which

103



all have no typos). We will show this idea is essentially the application of HMIP

framework when MIf is chosen to be MI tvd.

Assumption 89 (Positively correlated signals). We assume that for every method

m, each agent i, every σ 6= σ′, every possible {σm′}m′≺m, every subset M ′ ⊂ {m′|m′ ≺

m}, Ψm
−i is positively correlated with Ψm

i = σ:

Pr[Ψm
−i = σ|Ψm

i = σ] > Pr[Ψm
−i = σ],

Pr[Ψm
−i = σ|Ψm

i = σ′] < Pr[Ψm
−i = σ],

conditioning on {Ψm′
−i}m′∈M ′ = {σm′}m′∈M .

Dasgupta and Ghosh [18] and Shnayder et al. [63] both make this assumption

as well. It means that receiving σ by performing m will increase each agent’s belief

for how many other agents receive σ by performing m. It is a substantially weaker

assumption than that agents always believe they are in the majority.

In the peer grading example, this assumption means that for every agent, receiving

, for quality signal will increase her belief for the probability other agents receive

, for quality signal.

Assumption 90 (Conditional independence). For each agent i who performs method

mi, we assume that for every possible {σm′}m′≺m, every subset M ′ ⊂ {m′|m′ ≺ m},

for each m � mi, Ψm
i contains all information agent i has that is related to Ψm

−i, in

other words, conditioning on Ψm
i , {Ψm′

i }m′�mi,m′ 6=m are independent with Ψm
−i, condi-

tioning on {Ψm′
−i}m′∈M ′ = {σm′}m′∈M ′1.

In the peer grading example, this assumption means that for every agent, if she has

already thought the writing is good, her quality signal will not affect her opinion

for the writing.

1Note that if agents receive the same signal by performing the same method, both Assumption 89
and Assumption 90 will hold.
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With this assumption, when an agent needs to report her information that is

related to Ψm
−i, assuming she has already performed method m, it’s sufficient for her

to only report Ψm
i .

Multi-task Hierarchical Mutual Information Mechanism (Multi-HMIM({αm}m))

Report Each agent i is assigned a random batch of tasks (at least two). For each

task t which is assigned to agent i, she is asked to report both the method

mi(t) she performed on task t and method mi(t)’s output ψ
mi(t)
i (t); for each

m 6= mi(t), agent i is asked to optionally report her signal ψmi (t). We denote

her actual report for her performed method and signal for every method m by

m̂i(t) and ψ̂mi (t) respectively.

Information Score For each method m, the mechanism collects agent i’s method

m signals and records them via a T dimensional vector ψ̂m
i .

The tth coordinate of ψ̂m
i is



ψ̂mi (t), if agent i provides the

method m’s output ψ̂mi (t)

for task t;

∅, otherwise
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We define ψ̂m
−i as a vector where the tth coordinate of ψ̂m

−i is



ψ̂m−i(t), we arbitrarily pick an agent (who is not agent i)

whose performed method is � m for task t

and provides method’s m’s output for task t;

we denote his report by ψ̂m−i(t);

∅, such agent does not exist

Agent i is paid by her information score

∑
m

2αmCorr(ψ̂
m
i ; ψ̂m

−i|{ψ̂m′

−i}m′≺m)

and Corr(·)2 is a random algorithm defined in Algorithm 1.

We design Corr(ψ̂m
i ; ψ̂m

−i|{ψ̂m′
−i}m′≺m) to be an unbiased estimator of

MI tvd(Ψ̂m
i ; Ψ̂m

−i|{Ψ̂
m′

−i}m′≺m)3 if Ψ̂m
i and Ψ̂m

−i are positively correlated. Thus, in Multi-

HMIM, agents are essentially paid based on the (conditional) mutual information by

picking a special f -mutual information—MI tvd, if agents are honest since we have

assumed that agents’ honest signals are positively correlated. This makes our Multi-

HMIM a special case of HMIP framework.

Definition 91 (Amount of information in Multi-HMIM). In Multi-HMIM, when

agent i performs method mi, the amount of information acquired with the effort is

defined as

2Corr(·; ·) is essentially the same concept as the payment schemes in Dasgupta and Ghosh [18],
Kong and Schoenebeck [34], and Shnayder et al. [63]. Corr(·; ·|·) is a new concept in this chapter.

3In the current chapter, ψ̂mi means vector, Ψ̂m
i means random variable.
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AOI(mi,Multi-HMIM({αm}m))

:=
∑
t∈[T ]

max
fm:Π`�miΣ` 7→Σm

αmMI tvd(fm({Ψ`
i}`�mi); Ψm

−i|{Ψm′

−i}m′≺m).

maxfm:Π`�miΣ` 7→Σm means agent i optimize her expected information score over all

report strategies that maps her received signals ({Ψ`
i}`�mi) to her reported signal for

method m.

Like we did in the analysis of HMIP, we need to guarantee that for agent i whose

performed method is mi, the amount of her received information defined by the above

definition should be her optimal payment in Multi-HMIM, given that Multi-HMIM

has access to all levels of honest signals reported by other agents. Note that the

building block Corr in our mechanism is an unbiased estimator of MI tvd only if the

signals are positively correlated. Thus, in order to make the above guarantee, we

make an additional assumption—positively correlated guess: agents’ optimal guesses

for each method m’s output are positively correlated with m’s real output.

Assumption 92 (Positively correlated guess). For agent i whose performed method

is mi, for all m, for all subset M ′ ⊂ {m′|m′ ≺ m}, there exists f ∗m,M ′ such that

f ∗m,M ′ ∈ arg max
fm:Π`�miΣ` 7→Σm

MI tvd(fm({Ψ`
i}`�mi); Ψm

−i|{Ψm′

−i}m′∈M ′)

and f ∗m,M ′({Ψ`
i}`�mi) is positively correlated with Ψm

−i.

Definition 93 (Prudent strategy in Multi-HMIM). For each agent i, we say she plays

prudent strategy in Multi-HMIM({αm}m) if she (a) performs method m∗i for all her

tasks such that

m∗i = arg max
mi

(AOI(mi,Multi-HMIM({αm}m))− hi(mi)) ;
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(b) reports her method m∗i honestly and reports her all received signals honestly for

all her tasks.

Definition 94 (Potent coefficients for Multi-HMIM). Given the priors {Qm}m, we

say the coefficients {αm}m are potent for Multi-HMIM({αm}m) if given the coefficients

{αm}m, for every maximal m, for every task t, among the agents who are assigned task

t, there exists at least two agents whose prudent strategy in Multi-HMIM({αm}m)

are performing method m.

Definition 95 (Truthful strategy in Multi-HMIM). For each agent i, we say she plays

truthful strategy if for each task t, she honestly report her method mi(t) for task t

and for each m ≺ mi(t), either she chooses to not report or she reports honestly.

We allow agents to guess the signals they did not receive. Thus, in the definition

of prudent strategy and truthful strategy, we only require agents to honestly report

the signals they receive and do not put any restriction on their guesses.

Here we propose a new mechanism design goal: we say a mechanism is (strictly)

truthful if for each agent, when she believes other agents play a truthful strategy, she

can (strictly) maximize her expected utility by playing a truthful strategy.

The truthful property is incomparable with the potent property. A potent mech-

anism incentivizes the efforts of agents but it requires agents to believe other agents

play prudent strategy. A truthful mechanism may not be able to incentivize efforts

of agents but it incentivizes truthful report by only requiring agents to believe other

agents either report honestly or choose to not report.

Theorem 96. With Assumption 88, 89, 90, Multi-HMIM({αm}m) is truthful; more-

over, when {αm}m are potent for Multi-HMIM({αm}m), Multi-HMIM({αm}m) is po-

tent and truthful.

In order to show the truth property of Multi-HMIM, we will show for each agent,

given that other agents play truthful strategy, (1) conditioning on using pure effort
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strategy, she can maximize her payment as well as her utility by reporting all her

received information honestly; (2) pure effort strategy gives her better utility than

mixed effort strategy. We can apply Theorem 43 directly and use the information

monotonicity of MI tvd to prove part (1) directly. In order to show part (2), we

need to solve the mixed effort strategy problem in the multi-task setting—agents put

high level effort only for partial number of tasks but claim that they spend high

level effort all the time. Note that even though agents can expend lower effort in

randomizing between performing a low level method and a high level method than

purely performing high level method, they also obtain lower payment since they have

less “agreement” with high level information provided by other people. It turns

out that the convexity of the f -mutual information—including MI tvd—implies that

agents cannot obtain higher utility—which is the payment minus the cost—by playing

a mixed effort strategy. The potent property immediately follows from the truthful

property and the condition that the coefficients are potent . We defer the formal

proof to appendix.
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Algorithm 1: Building Block Corr

1: procedure Corr(v1;v2) . e.g. v1 = (,, ∅,,,,,,), v2 = (,,,,,,,, ∅)

2: if either v1 or v2 has fewer than two non-empty entries then return 0

3: else

4: B ⊂ [M ]← the set of entries where both v1 and v2 are not empty .

B ← {1, 3, 4}

5: if B = ∅ then return 0

6: else

7: for tB ∈ B do . We call tB a reward task

8: v1(t1)← a random non-empty entry in v1

9: . v1(t1)← ,

10: v2(t2)← a random non-empty entry in v2, t2 6= t1 . v2(t2)← ,

11: CorrtB ← 1(v1(tB) = v2(tB))− 1(v1(t1) = v2(t2)) . CorrtB ← 0

12: return
∑

tB∈B CorrtB and “success” . Return 0

13: procedure Corr(v1;v2|V ) . e.g. v1 = (,,,,/,,,,), v2 = (,,,,/,,,/),

V = {v}, v = (,,,,/,,,/)

14: C ← the set of entries where every v ∈ V is not empty . C ← {1, 2, 3, 4, 5}

15: if C = ∅ then return Corr(v1;v2)

16: else

17: t∗C ← a random element in C . t∗C ← 2

18: D ← ∅

19: for t ∈ [T ] do

20: if for every v ∈ V , v(t) = v(t∗C) then

21: put t in D
. D = {1, 2, 4}, v1(D) = v2(D) = (,,,,,)

22: return Corr(v1(D);v2(D))

23: . Return Corr(v1(D);v2(D)) = 0 and “success”
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5.2.3 Learning information structure with a large number tasks

Assumption 97 (δ0-gap). For each m, we assume that for every i 6= j, each m′ 6= m

MIf (Ψm
i ; Ψm

j ) >
1

δ0

MIf (Ψm
i ; Ψm′

j ) <
1

δ0

The above assumption guarantees that when we can accurately learn the f -mutual

information between two agents’ answer vectors, we can accurately classify the answer

vectors and then learn the maximal method’s outputs correctly.

Learning based Multi-HMIM(RULE)

Report Each agent i is assigned T tasks and asked to perform the same method for

all tasks. For agent i who performs method mi, she is asked to report her own

answer vector

ψmi
i = (ψmii (1), ψmii (2), ..., ψmii (T ))

and, for each method m 6= mi, is asked to optionally report her answer vector

ψm
i . We denote the set of methods whose outputs are reported by agent i as Mi

and the actual answer vector she reports for each method ` ∈Mi as ψ̂`
i . Agent

i can name the methods freely4.

Learning Information Structure We define the distance between ψ̂m
i and ψ̂m′

j as

1

MIf (Ψ̂mi ;Ψ̂m
′

j )
. The mechanism starts to cluster answer vectors. A set of answer

vectors are clustered into one cluster if and only if their pairwise distance is less

than δ0. A cluster may have ≥ 1 answer vector(s).

For two clusters m1,m2, m1 � m2 if and only if there exists an agent who’s

own answer vector is in cluster m1 and also provides an answer vector which is

4The mechanism will ignore the name of the methods and only record the relationship that the
other answer vectors reported by agent i have lower level than agent i’s own answer vector.
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classified in cluster m2. The mechanism picks positive real values for the type

payment scale αm according to a rule RULE .

Information Score The mechanism learns the information structure using all agents’

reports excluding agent i. We denote the set of clusters by M−i. For each clus-

ter m ∈ M−i, the mechanism randomly picks an answer vector, denoted ψ̂m
−i,

from it.

Agent i is paid her information score:

∑
m∈M−i

αmMIf ({Ψ̂`
i}`∈Mi

; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)

which can be calculated accurately when the number of tasks is large.

We define α(RULE) := {αm(RULE)}m as the coefficients determined by RULE ,

given that the mechanism has access to all levels of honest answer vectors. Here the

amount of information and prudent strategy are defined by the same way in HMIP,

except that the coefficients are α(RULE).

Definition 98 (Prudent strategy in learning based Multi-HMIM). For each agent

i, we say she plays a prudent strategy in learning based Multi-HMIM(RULE) if she

chooses to (a) perform method m∗i such that

m∗i ∈ arg max
mi

(
AOI(mi,HMIP(MIf , {αm(RULE)}m))− hi(mi)

)
;

(b) report all received information honestly.

We also define potent RULE such that α(RULE) is potent in the definition in

HMIP.

Definition 99 (Potent rule for learning based Multi-HMIM). Given the priors {Qm}m,

we say the rule RULE that determines the coefficients is potent for learning based
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Multi-HMIM(RULE) if given RULE , for every maximal m, there exists at least two

agents whose prudent strategy in learning based Multi-HMIM(RULE) are performing

method m.

Theorem 100. With Assumption 88, Learning based multi-HMIM is dominant truth-

ful.

Moreover, with Assumption 97, when the rule RULE is potent , Learning based

multi-HMIM is potent , dominant truthful and will output the hierarchical information

structure as well as the maximal level(s) answer vector given that agents play prudent

strategy.

Learning based multi-HMIM can be mapped to HMIP since when we have a large

number of tasks, we can calculate the mutual information directly by first calculating

the joint distribution over agents’ answers. We can also learn the information struc-

ture based on the gap assumption (Assumption 97) and cluster the agents correctly.

Note that even if the mechanism clusters incorrectly, the mechanism is still dominant

truthful since even each agent is paid by the mutual information between her infor-

mation and “wrong” information, the information monotonicity still incentivize the

agent to report all information she has. Thus we do not need the gap assumption

for the dominant truthfulness. With the gap assumption, we can cluster agents cor-

rectly and use Theorem 43 to show the potent property. We defer the formal proof to

appendix. Moreover, we want to emphasize that our mechanisms work even if every

agent only has a piece of correct information for the information structure.

5.3 Single-task setting

In this section, we apply the HMIM framework to the single task setting.
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5.3.1 Backgrounds and assumption

In the single task setting without known prior, previous peer prediction works all

assume the common prior assumption and follow the framework proposed in Prelec

[51]—asking agents not only her signal but also her prediction. In order to achieve

truthfulness for ≥ 3 agents, Radanovic and Faltings [55] and Kong and Schoenebeck

[35] punish each agent if her predictions differs from the predictions of other agents

who report the same signals with her, and reward each agent for the accuracy of

her prediction. Therefore, for each agent, in order to maximize her accuracy reward,

she will honestly report her predictions. In order to avoid the punishment for the

“inconsistency”, she will honestly report her received signals as well because of the

following commonly assumed assumption.

Assumption 101 (common prior and stochastic relevance). We assume that for

every two agents agent i and agent j, they will have the same belief for the distribution

of the signals received by other agents if and only if they receive the same signals.

5.3.2 Applying HMIP in the single-task setting

We naturally follow the previous “signal-prediction” framework and “punishing

inconsistency” idea in the hierarchical information case. We ask agents their received

signals and predictions for different levels. We pay each agent the accuracy of her

forecasts. The high expertise agents have accurate predictions for even high cost

information reports while the low expertise agents only has accurate prediction for

low cost information. Therefore, high expertise agents will be paid more.

Single-HMIM(PS, {αm}m)

Report (signals, predictions) Each agent i who performs method mi is asked to

report her received signals {σmi }m�mi and her forecast pmii for Ψmi
−i . For each

m 6= mi, she is asked to optionally report her forecast pmi for Ψm
−i. We denote
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her report for her received signals as {σ̂mi }m�m̂i and her prediction report as

{p̂mi }m∈Mi
where Mi is the set of methods whose outputs are predicted by agent

i.

Prediction Score We define M−i as the set of methods whose outputs are reported

by an agent who is not agent i. For each m ∈ M−i, we pick an arbitrary

reference agent j 6= i whose performed method is higher than m and de-

note his report for method m’s output by σ̂m. Agent i’s prediction score is∑
m∈M−i∩Mi

αmPS(σm, p̂mi ).

Information Score If there is no other agent who reports the same signals as agent

i, then agent i’s information score is 0. Otherwise, arbitrarily pick a reference

agent j 6= i from the agents who report the same signals as agent i. Agent i’s

information score is minus the inconsistency between her prediction report and

agent j’s prediction report, that is,

−

 ∑
m∈Mi∩Mj

αm(PS(p̂mj , p̂
m
j )− PS(p̂mj , p̂

m
i ))

 .

In Single-HMIM, the payment of each agent is

α ∗ Information Score + β ∗ Prediction Score.

Definition 102 (Truthful strategy in Single-HMIM). For each agent i whose per-

formed method is mi, we say she plays truthful strategy if she honestly report her

received signals {σmi }m�mi and her forecast for Ψmi
−i and for each m 6= mi, either she

chooses to not report or she reports her forecast for Ψm
−i honestly.

We denote pmmi as agent i’s honest forecast for Ψm
−i given that she performs method

mi.
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Definition 103 (Amount of information in Single-HMIM). For each agent i who

performs method mi, her acquired amount of information is defined as

AOI(mi, Single-HMIM(PS, {αm}m)) :=
∑
m

αmEQm [PS(σm, pmmi)].

Later in the proof of Theorem 106, we will see the amount of information is also

the optimal payment of agent i who performs method mi in Single-HMIM, given that

Single-HMIM has access to all levels of honest signals reported by other agents.

Definition 104 (Prudent strategy in Single-HMIM). For each agent i, we say she

plays a prudent strategy in Single-HMIM(PS, {αm}m) if she chooses to (a) perform

method m∗i such that

m∗i ∈ arg max
mi

(AOI(mi, Single-HMIM(PS, {αm}m))− hi(mi)) ;

(b) play a truthful strategy.

Definition 105 (Potent coefficients for Single-HMIM). Given the priors {Qm}m,

we say the coefficients {αm}m are potent for Single-HMIM(PS,{αm}m) if given the

coefficients {αm}m, for every maximal m, there exists at least two agents whose

prudent strategy in Single-HMIM(PS,{αm}m) is performing method m.

Recall that a mechanism is (strictly) truthful if for each agent, when she believes

other agents play a truthful strategy, she can (strictly) maximize her expected utility

by playing a truthful strategy.

Theorem 106. With Assumption 101, single-HMIM is strictly truthful; moreover,

when the coefficients is potent for single-HMIM, single-HMIM is potent and strictly

truthful.

The strictly truthful property follows from the common prior and stochastic rel-

evance assumption using a proof similar to that in Radanovic and Faltings [55] and
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[35]. The potent property follows from the definition of prudent strategy and potent

coefficients. We defer the formal proof to appendix.
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CHAPTER VI

Forecast Elicitation and An Information

Aggregation Problem: Co-training

6.1 Related work

Learning Co-training/multiview learning is a problem that asks to aggregate two

views of data into a prediction for the latent label and was first proposed by Blum and

Mitchell [9] and explored by many works (e.g. Dasgupta, Littman, and McAllester

[19] and Collins and Singer [14]). Xu, Tao, and Xu [73] and Li, Yang, and Zhang

[39] give surveys on this literature. Although co-training is an important learning

problem, it lacks a unified theory and a solid theoretic guarantee for the general

model. Most traditional co-training methods usually require additional restrictions on

the hypothesis space (e.g. weakly good hypotheses) to address the “naive agreement”

issue and fail to deal with soft hypotheses whose output is not a discrete signal and

thus cannot fully aggregate the two sources of information. Becker [7] deals with a

feature learning problem which is very similar to the co-training problem. Becker

[7] designs the optimization goal as maximizing the Shannon mutual information

between the outputs of two functions. However, Becker [7] only considers hard (not

soft) hypotheses and lacks a solid theoretic analysis for the maximizer. Kakade and

Foster [30] consider the multi-view regression and maximize the correlation between
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the two hypotheses. Their method captures the “mutual information” idea (in fact,

correlation is a special f -mutual information [34]) but their model has a very specific

set up and the analysis cannot be extended to other co-training problems.

In contrast, we propose a simple, powerful and general information theoretic

framework, f -mutual information gain, that has a solid theoretic guarantee, works

for soft hypothesis and addresses the “naive agreement” issue without any additional

assumption.

Natarajan et al. [46], Sukhbaatar and Fergus [64] and many other work (e.g.

[6, 33, 62]) consider the learning with noisy labels problem. Natarajan et al. [46]

consider binary labels and calibrate the original loss function such that the Bayesian

posterior predictor that forecasts ground truth Y is a maximizer of the calibrated

loss. Sukhbaatar and Fergus [64] extend this work to the multiclass setting. These

works require additional estimation steps to learn the transition probability that

transits the ground truth labels to the noisy labels and fix this transition probability

in their calibration step. In contrast, by mapping this problem into our framework

(Section 6.6.4), we do not need the additional estimation steps to make the calibrated

forecaster part of a maximizer of our optimization problem, and can incorporate

any kind of side information to learn the calibrated forecaster and true transition

probability simultaneously.

Moreover, our results can handle more complicated setting where each instance

is labeled by multiple labels. Rather than preprocessing the labels by a particular

algorithm (e.g. majority vote, weighted average, spectral method) and assuming

some information structure model among the crowds [56], our framework is model-

free and can learn the best calibrated forecaster (predictor PA) and the best processing

algorithm (predictor PB) simultaneously.

Raykar et al. [57] also jointly learn the calibrated forecaster and the distribution

over the crowd-sourced feedback and ground truth labels. Raykar et al. [57] uses
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the maximum likelihood estimator and assumes a simple generative model for the

distribution over the crowdsourced feedback and the ground truth labels, which is

conditioning the ground truth label, the crowdsourced feedback is drawn from a bi-

nomial distribution, while our framework is model-free. We also extend the maximum

likelihood estimator method in Raykar et al. [57] to a general family of estimators,

PS-gain estimators, based on the family of proper scoring rules, which also jointly

learn the calibrated forecaster and the distribution. We will show the range of applica-

tions of PS-gain is more limited compared with the range of applications of f -mutual

information gain (see Section 6.6.3 for more details). Cid-Sueiro [13] also uses proper

scoring rules to design the loss functions that address the learning with noisy labels

problem. However, Cid-Sueiro [13] designs a different family of loss functions from

the PS-gain and cannot jointly learn the calibrated forecaster and the distribution.

Generative Adversarial Networks (GAN) [26] combine game theory and learning

theory to make innovative progress. We also combine game theory and learning theory

by proposing a peer prediction game between two predictors. The game in GAN is a

zero-sum competitive game while the game in the current chapter is collaborative.

Several learning problems (e.g. finding the pose of an object in an image [8], blind

source separation [12], feature selection [50]) use mutual information maximization

(infomax) as their optimization goal. Some of these problems require data labeled

with ground truth and some of them have a very different problem set up than our

work.

We borrow the techniques about the duality of f -divergence from Nguyen, Wain-

wright, and Jordan [49, 48]. Nguyen, Wainwright, and Jordan [49] show a corre-

spondence between the f -divergence and the surrogate loss in the binary supervised

learning setting and Nguyen, Wainwright, and Jordan [48] propose a way to estimate

the f -divergence between two high dimensional random variables. We apply the du-

ality of f -divergence to an unsupervised learning problem and not restricted to the
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binary setting.

We also differ from the crowdsourcing literature that infers ground truth answers

from agents’ reports (e.g. [76, 32, 75, 17]) in the sense that their agents’ reports are a

simple choice (e.g. A, B, C, D) while in our setting, the report can come from a space

larger than the space of ground truth answers, perhaps even a very high dimensional

vector.

Mechanism design Our mechanism design setting differ from the traditional peer

prediction literature (e.g.[45, 51, 18, 34, 63, 42]) since we are eliciting forecast rather

than a simple signal. We can discretize the forecast report and apply the traditional

peer prediction literature results. However, this will only provide approximated truth-

fulness and fail to design focal mechanisms which pay truth-telling strictly better

than any other non-permutation equilibrium since the forecast is discretized, while

our mechanisms are focal for ≥2 tasks setting.

Witkowski et al. [72] consider the forecast elicitation situation and assume that

they have an unbiased estimator of the optimal forecast while we assume an additional

conditional independence assumption but do not need the unbiased estimator.

Liu and Chen [41] connect mechanism design with learning by using the learning

methods to design peer prediction mechanisms. In the setting where several agents

are asked to label a batch of instances, Liu and Chen [41] design a peer prediction

mechanism where each agent is paid according to her answer and a reference answer

generated by a classification algorithm using other agents’ reports. Instead of us-

ing learning methods to design the peer prediction mechanisms, our work uses peer

prediction mechanism design techniques to address a learning problem. Moreover,

our mechanism design problem has a very different set up from theirs. Agarwal and

Agarwal [1] connect learning theory with information elicitation by showing the equiv-

alence between the calibrated surrogate losses in supervised learning and the eliciting
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of some certain properties of the underlying conditional label distribution. Both our

learning problem and mechanism design problem have a very different set up from

theirs.

Independent work Like the current chapter, McAllester [43] also use Shannon

mutual information to propose an information theoretic training objective that can

deal with soft hypotheses/classifiers. We use a more general information measure,

f -mutual information, which has Shannon mutual information as a special case, and

we also propose an innovative connection between co-training and peer prediction.

6.2 Preliminaries

Given a finite set [N ] := {1, 2, ..., N}, for any function φ : [N ] 7→ R, we use

(φ(y))y∈[N ] to represent the vector (φ(1), φ(2), ..., φ(N)) ∈ RN .

6.2.1 f-divergence, f-mutual information and Fenchel’s duality

f-divergence [3, 16] Recall that f -divergence Df : ∆Σ × ∆Σ 7→ R is a non-

symmetric measure of the difference between distribution p ∈ ∆Σ and distribution

q ∈ ∆Σ and is defined to be

Df (p,q) =
∑
σ∈Σ

p(σ)f

(
q(σ)

p(σ)

)

where f : R 7→ R is a convex function and f(1) = 0.

Definition 107 (Fenchel Duality [60]). Given any function f : R 7→ R, we define its

convex conjugate f ? as a function that also maps R to R such that

f ?(x) = sup
t
tx− f(t).
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Fact 108 (Dual version of f -divergence [49, 48]).

Df (p,q) ≥ sup
u∈Σ

Epu− Eqf
?(u) = sup

u∈G

∑
σ

u(σ)p(σ)−
∑
σ

f ?(u(σ))q(σ)

where G is a set of functions that maps σ ∈ Σ to R.

The equality holds if and only if u(σ) = u∗(σ) ∈ ∂f(p(σ)
q(σ)

).

We call (u∗, f ?(u∗)) a pair of best distinguishers.

We define K(X = x, Y = y) as the ratio between UX,Y (x, y) and VX,Y (x, y)—

K(X = x, Y = y) :=
Pr[X = x, Y = y]

Pr[X = x] Pr[Y = y]
=

Pr[Y = y|X = x]

Pr[Y = y]
=

Pr[X = x|Y = y]

Pr[X = x]
.

K(X = x, Y = y) represents the “pointwise mutual information(PMI)” between

X = x and Y = y.

Fact 108 directly implies:

Fact 109 (Dual version of f -mutual information).

MIf (X;Y ) ≥ sup
u∈G

EUX,Y u− EVX,Y f
?(u)

where G is a set of functions that maps (x, y) to R.

The equality holds if and only if u(x, y) = u∗(x, y) ∈ ∂f(K(X = x, Y = y)).

6.2.2 Property of the pointwise mutual information

We will introduce a simple property of the pointwise mutual information that

we will use multiple times in the future. In addition to several different formats of

the pointwise mutual information (e.g. joint distribution/product of the marginal

distributions, posterior/prior), if there exists a latent random variable Y such that

random variable XA and random variable XB are independent conditioning on Y ,
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f -divergence f(t) u∗(x, y) = ∂f(K(x, y)) f ?(u∗(x, y))

Total Variation Distance |t− 1| sign(logK(x, y)) sign(logK(x, y))

KL divergence t log t 1 + logK(x, y) K(x, y)

Reverse KL − log t − 1
K(x,y)

−1 + logK(x, y))

Pearson χ2 (t− 1)2 2(K(x, y)− 1) (K(x, y))2 − 1

Squared Hellinger (
√
t− 1)2 1−

√
1

K(x,y)

√
K(x, y)− 1

Table 6.1:
Reference for common f -divergences and corresponding pairs of best dis-
tinguishers (u∗(x, y), f ?(u∗(x, y)) of f -mutual information.

K(x, y) = K(X = x, Y = y) := Pr[X=x,Y=y]
Pr[X=x] Pr[Y=y] = Pr[Y=y|X=x]

Pr[Y=y] = Pr[X=x|Y=y]
Pr[X=x] .

we can also represent the pointwise mutual information between XA and XB by the

“agreement” between the “relationship” between XA and Y , and the “relationship”

between XB and Y .

Claim 110. When random variables XA, XB are independent conditioning on Y ,

K(XA = xA, XB = xB) =
∑
y

Pr[Y = y]K(XA = xA, Y = y)K(XB = xB, Y = y)

=
∑
y

Pr[Y = y|XA = xA]K(XB = xB, Y = y)

=
∑
y

Pr[Y = y|XA = xA] Pr[Y = y|XB = xB]

Pr[Y = y]
.

We defer the proof to appendix.

6.3 General Model and Assumptions

Let XA, XB, Y be three random variables and we define prior Q as the joint dis-

tribution over XA, XB, Y . We want to forecast the ground truth Y whose realization

is a signal in a finite set Σ. XA, XB are two sources of information that are related to

Y . XA’s realization is a signal in a finite set ΣA. XB’s realization is a signal in a finite
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set ΣB. We may have access to both of the realizations of XA and XB or only one of

them. Thus, we need to learn the relationship between XA, XB and Y to forecast Y .

It’s impossible to learn by only accessing the samples of XA, XB without additional

assumption. We make the following conditional independence assumption:

Assumption 111 (Conditional independence). We assume that conditioning on Y ,

XA, and XB are independent.

Intuitively, Y can be seen as the “intersection” between XA and XB. We call Z a

solution if conditioning on Z, XA, and XB are independent. Y is a solution. However,

there are a lot of solutions. For example, conditioning on XA or XB, XA and XB are

independent, which means XA and XB are both solutions. Thus, we have additional

restriction on the prior—well-defined prior and stable prior.

6.3.1 Well-defined and stable prior

We will need restrictions on the prior when we analyze the strictness of our learning

algorithm/mechanism. Readers can skip this section without losing the core idea of

our results.

To infer the relationship between Y and XA, XB with only samples of XA, XB,

we cannot do better than to just solve the system of equations (6.1), given the joint

distribution over XA, XB—Q. Our goal is to obtain the Bayesian posterior predictor.

Thus, we list a system that the Bayesian posterior predictor satisfies. The following

system equations involve variables {axA ,bxB ∈ ∆Σ}xA∈ΣA,xB∈ΣB , and r ∈ ∆Σ. We

insist axAy = Pr[Y = y|XA = xA], bxBy = Pr[Y = y|XB = xB] and ry = Pr[Y = y] is a

solution and we call it the desired solution.
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S({axA ,bxB}xA∈ΣA,xB∈ΣB , r) (6.1)

:=

{∑
y∈Σ

axAy bxBy
ry

−K(XA = xA, XB = xB)

}
xA∈ΣA,xB∈ΣB

= 0

Claim 110 shows the above system has the desired solution.

Note that any permutation of a solution is still a valid solution1. Since we cannot

do better than to solve the above system, if the above system only has one “unique”

solution, in the sense that any two solutions are permuted version of each other, we

call the prior Q a well-defined prior. Formally,

Definition 112 (Well-defined). A prior Q is well-defined if for any two solutions

{axA ,bxB}xA∈ΣA,xB∈ΣB , r and {cxA ,dxB}xA∈ΣA,xB∈ΣB , r′ of the system of equations

(6.1), there exists a permutation π : Σ 7→ Σ such that r = πr′ for any xA, xB,

axA = πcxA , bxB = πdxB .

The well-defined prior exist since intuitively, if |ΣA| and |ΣB| are high and |Σ| is

low, it is likely Y is the “unique intersection” since the number of constraints of the

system will be much greater than the number of variables.

We say a prior is stable if fixing part of the desired solution of the system (6.1),

in order to make it still a solution of the system, other parts of the desired solution

should also be fixed.

Definition 113 (Stable). A prior Q is stable if fixing axAy = Pr[Y = y|XA = xA] and

ry = Pr[Y = y], the system (6.1) S({axA ,bxB}xA∈ΣA,xB∈ΣB , r) = 0 has unique solution

bxA such that bxBy = Pr[Y = y|XB = xB]; and fixing bxBy = Pr[Y = y|XB = xB] and

ry = Pr[Y = y], the system (6.1) S({axA ,bxB}xA∈ΣA,xB∈ΣB , r) = 0 has unique solution

axA such that axAy = Pr[Y = y|XA = xA].

1We may be able to distinguish a solution with its permuted version if we have some side infor-
mation (e.g. the prior of Y /a few (xA, xB , y) samples).
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We require stable priors when we design strictly truthful mechanisms.

6.3.2 Predictors

This section gives the definition of predictors. We have two sets of samples SA :=

{x`A}`∈LA and SB := {x`B}`∈LB which are i.i.d samples of XA and XB respectively.

For ` ∈ LA ∩ LB, (x`A, x
`
B)s are i.i.d samples of the joint random variable (XA, XB).

A predictor PA : ΣA 7→ ∆Σ for XA maps xA ∈ Σ to a forecast PA(xA) for ground

truth Y . We similarly define the predictors for XB. We define the Bayesian posterior

predictor as the predictor that maps any input information X = x to its Bayesian

posterior forecast for Y = y—Pr(Y = y|X = x).

With the conditional independence assumption, we have

Pr[Y |XA, XB] =
Pr[Y,XA, XB]

Pr[XA, XB]

=
Pr[Y ] Pr[XA|Y ] Pr[XB|Y ]

Pr[XA, XB]
(conditional independence)

=
Pr[Y |XA] Pr[Y |XB]

K(XA, XB) Pr[Y ]

(K(XA, XB) is the pointwise mutual information.)

When we have access to both the sources where XA = xA and XB = xB, given

the prior of the ground truth Y , we can construct an aggregated forecast for Y = y

using PA, PB:

PA(xA)PB(xB)

Pr[Y = y]
∗ normalization

In this case, if both PA and PB are the Bayesian posterior predictor, the aggregated

forecast is the Bayesian posterior predictor as well. Thus, it’s sufficient to only train

PA and PB. In the rest sections, we will show how to train PA and PB (Section 6.4),
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given the two sets of samples SA and SB, as well as how to incentivize high quality

predictors from the crowds (Section 6.5).

6.4 Co-training: find the common ground truth

We have a set of candidatesHA for the predictor for XA and a set of candidatesHB

for the predictor for XB. We sometimes call each predictor candidate a hypothesis.

Given the two sets of samples SA = {x`A}`∈LA and SB = {x`B}`∈LB , our goal is to figure

out the best hypothesis in HA and the best hypothesis in HB simultaneously. Thus,

we need to design proper “loss function” such that the best hypotheses minimize the

loss. In fact, we will show how to design a proper “reward function” such that the

best hypotheses maximize the reward.

6.4.1 f-mutual information gain

f-mutual information gain MIGf (R) (Figure 1.7)

Hypothesis We are given HA = {hA : ΣA 7→ ∆Σ}, HB = {hB : ΣB 7→ ∆Σ}: the set

of hypotheses/predictor candidates for XA and XB, respectively.

Gain Given reward function R : ∆Σ ×∆Σ 7→ R,

for each ` ∈ LA ∩ LB, reward “the amount of agreement” between the two

predictor candidates’ predictions for task `—

R(hA(x`A), hB(x`B));

for each distinct pair (`A, `B), `A ∈ LA, `B ∈ LB, `A 6= `B, punish both predictor

candidates “the amount of agreement” between their predictions for a pair of

distinct tasks (`A, `B)—

f ?(R(hA(x`AA ), hB(x`BB )).
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The f -mutual information gain MIGf (R) that is corresponding to the reward

function R is

MIGf (R(hA, hB))|SA,SB =
1

|LA ∩ LB|
∑

`∈LA∩LB

R(hA(x`A), hB(x`B))

− 1

|LA||LB| − |LA ∩ LB|2
∑

`A∈LA,`B∈LB ,`A 6=`B

f ?(R(hA(x`AA ), hB(x`BB )))

Lemma 114. The expected total f -mutual information gain is maximized over all

possible R, hA, and hB if and only if for any (xA, xB) ∈ ΣA × ΣB,

R(hA(xA), hB(xB)) ∈ ∂f(K(xA, xB)).

The maximum is

MIf (XA;XB).

Proof. (x`A, x
`
B)` are i.i.d. realizations of (XA, XB). Therefore, the expected f -mutual

information gain is

EUXA,XBR− EVXA,XB f
?(R)

The results follow from Fact 109.

Although any reward function corresponds to an f -mutual information gain func-

tion, we need to properly design the reward function R such that, fixing R, there exist

hypotheses to maximize the corresponding f -mutual information gain MIGf (R) to

the f -mutual information between the two sources. We will use the intuition from

Lemma 114 to design such reward functions R in the next section.
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6.4.2 Finding the common ground truth: maximizing the f-mutual in-

formation gain

In this section, we will construct a special reward function Rf and then show that

the maximizers of the corresponding f -mutual information gain MIGf (Rf ) are the

Bayesian posterior predictors.

Definition 115 (Rf ). We define reward function Rf as a function that maps the two

hypotheses’ outputs p1,p2 ∈ ∆Σ and the vector p ∈ ∆Σ to

Rf (p1,p2,p) := g

(∑
y

p1(y)p2(y)

p(y)

)

where g(t) ∈ ∂f(t),∀t. When f is differentiable,

Rf (p1,p2,p) := f ′
(∑

y

p1(y)p2(y)

p(y)

)
.

With this definition of the reward function, fixing p ∈ ∆Σ which can be seen as

the prior over Y , the “amount of agreement” between two predictions p1,p2 are an

increasing function g of

∑
y

p1(y)p2(y)

p(y)
,

which is intuitive and reasonable. The increasing function g is the derivative of the

convex function f . By carefully choosing convex function f , we can use any increasing

function g here.

Example 116. Here we present some examples of the f -mutual information gain

MIGf (Rf ) with reward function Rf , associated with different f -divergences. We use

Table 1 as reference for ∂f(·) and f ?(∂f(·)).
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Total variation distance:

1

|LA ∩ LB|
∑

`∈LA∩LB

sign

(
log[
∑
y

hA(x`A)(y)hB(x`B)(y)

p(y)
]

)

− 1

|LA||LB| − |LA ∩ LB|2
∑

`A∈LA,`B∈LB ,`A 6=`B

sign

(
log[
∑
y

hA(x`AA )(y)hB(x`BB )(y)

p(y)
]

)

KL divergence:

1

|LA ∩ LB|
∑

`∈LA∩LB

(
1 + log[

∑
y

hA(x`A)(y)hB(x`B)(y)

p(y)
]

)

− 1

|LA||LB| − |LA ∩ LB|2
∑

`A∈LA,`B∈LB ,`A 6=`B

(∑
y

hA(x`AA )(y)hB(x`BB )(y)

p(y)

)

Pearson:

1

|LA ∩ LB|
∑

`∈LA∩LB

2 ∗
(∑

y

hA(x`A)(y)hB(x`B)(y)

p(y)
− 1

)

− 1

|LA||LB| − |LA ∩ LB|2
∑

`A∈LA,`B∈LB ,`A 6=`B

(
(
∑
y

hA(x`AA )(y)hB(x`BB )(y)

p(y)
)2 − 1

)

Theorem 117. With the conditional independent assumption on XA, XB, Y , given

the samples SA, SB, given a convex function f , we define the optimization goal as the

expected f -mutual information gain with reward function Rf—

MIGf (hA, hB,p) := EXA,XBMIGf (Rf (hA, hB,p))|SA,SB

and optimize over all possible hypotheses hA : ΣA 7→ ∆Σ, hB : ΣB 7→ ∆Σ and

distribution vectors p ∈ ∆Σ. We have

131



Solution→Maximizer: any solution Z corresponds to a maximizer of MIGf (hA, hB,p)2:

for any solution Z,

h∗A(xA) := (Pr[Z = y|XA = xA])y h∗B(xB) := (Pr[Z = y|XB = xB])y
3

and the prior over Z, Pr[Z = y]y, is the maximizer of MIGf (hA, hB,p) and

the maximum is MIf (XA;XB);

Maximizer→(Permuted) Ground truth when the prior is well-defined, f is dif-

ferentiable, and f ′ is invertible, any maximizer of MIGf (hA, hB,p) corresponds

to the (possibly permuted) ground truth Y : for any maximizer (h∗A(·), h∗B(·),p∗)

of MIGf (hA, hB,p), there exists a permutation π such that

h∗A(xA) := (Pr[π(Y ) = y|XA = xA])y h∗B(xB) := (Pr[π(Y ) = y|XB = xB])y

and p∗ = Pr[π(Y ) = y]y.

The above theorem does not investigate computation complexity (this may be

affected by the choice of f), data requirement and the choice of the hypothesis class

in practical implementation. To implement our f -mutual information gain framework

in practice, we implicitly assume that for high dimensional XA, XB, there exists a

trainable set of hypotheses (e.g. neural networks) that is sufficiently rich to contain

the Bayesian posterior predictor but not everything to cause over-fitting. The most

apparent empirical direction will be running experiments on real data by training two

neural networks to test our algorithms.

Proof for Theorem 117. Lemma 114 shows that the expected f -mutual information

2Given the prior over Y , we can fix p as the prior over Y . Without knowing the prior over Y , p
becomes a variable of the optimization goal and helps us learn the prior over Y .

3Recall that we use (φ(y))y∈[N ] to represent the vector (φ(1), φ(2), ..., φ(N)) ∈ RN .

132



gain is maximized if and only if for any (xA, xB),

Rf (h∗A(xA), h∗B(xB),p∗) ∈ ∂f(K(xA, xB)).

(1) Solution→Maximizer: For any solution Z, we can construct

h∗A(xA) := (Pr[Z = y|XA = xA])y h∗B(xB) := (Pr[Z = y|XB = xB])y

and p∗ = Pr[Z = y]y. Then

Rf (h∗A(xA), h∗B(xB),p∗) ∈ ∂f
(∑

y

Pr[Z = y|XA = xA] Pr[Z = y|XB = xB]

Pr[Z = y]

)
= ∂f(K(xA, xB) (Claim 110)

Thus, based on Lemma 114, any solution Z corresponds to a maximizer of the

optimization goal.

(2)Maximizer→(Permuted) Ground truth: For any maximizer (h∗A(·), h∗B(·),p∗) of

the optimization goal, when f is differentiable, Lemma 114 shows that

Rf (h∗A(xA), h∗B(xB),p∗) = f ′(K(xA, xB)).

When f ′ is invertible, we have

∑
y

h∗A(xA)(y)h∗B(xB)(y)

p∗(y)
= K(xA, xB)

for all xA, xB.

Thus, {(h∗A(xA), h∗B(xB),p∗)}xA,xB is actually the solution of the system (6.1).
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When the prior is well-defined, there exists a permutation π such that

h∗A(xA) := (Pr[π(Y ) = y|XA = xA])y h∗B(xB) := (Pr[π(Y ) = y|XB = xB])y

and p∗ = Pr[π(Y ) = y]y where Y is the ground truth.

6.5 Forecast elicitation without verification

In this section, we consider the setting where the predictions are provided by

human beings and we want to incentivize high quality forecast by providing an instant

reward without instant access to the ground truth.

There is a forecasting task. Alice and Bob have private information XA, XB =

xA ∈ ΣA, xB ∈ ΣB correspondingly and are asked to forecast the ground truth Y = y.

We denote (Pr[Y = y|XA = xA])y, (Pr[Y = y|XB = xB])y by pxA , pxB correspond-

ingly. Alice and Bob are asked to report their Bayesian forecast pxA , pxB . We denote

their actual reports by p̂xA and p̂xB . Without access to the realization of Y , we want

to incentivize both Alice and Bob play truth-telling strategies—honestly reporting

their forecast pxA , pxB for Y .

We define the strategy of Alice as a mapping sA from xA (private signal) to a

probability distribution over the space of all possible forecast for random variable

Y . Analogously, we define Bob’s strategy sB. Note that essentially each (possibly

mixed) strategy sA can be seen as a (possibly random) predictor PA where PA(xA) is a

random forecast drawn from distribution sA(xA). In particular, the truthful strategy

corresponds to the Bayesian posterior predictor.

We say agents play a permutation strategy profile if there exists permutation π :

Σ 7→ Σ such that each agent always reports πp given her truthful report is p.

Note that without any side information about Y , we cannot distinguish the sce-
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nario where agents are honest and the scenario where agents play a permutation

strategy profile. Thus, it is too much to ask truth-telling to be strictly better than

any other strategy profile. The focal property defined in the following paragraph is

the optimal property we can obtain.

Mechanism Design Goals

(Strictly) Truthful Mechanism M is (strictly) truthful if truth-telling is a (strict)

equilibrium.

Focal MechanismM is focal if it is strictly truthful and each agent’s expected pay-

ment is maximized if agents tell the truth; moreover, when agents play a non-

permutation strategy profile, each agent’s expected payment is strictly less.

We consider two settings:

Multi-task Each agent is assigned several independent a priori similar forecasting

tasks in a random order and is asked to report her forecast for each task.

Single-task All agents are asked to report their forecast for the same single task.

In the single-task setting, it’s impossible to design focal mechanisms since agents

can collaborate to pick an arbitrary y∗ ∈ Σ and pretend that they know Y = y∗.

However, we will show we can design strictly truthful mechanism in the single-task

setting. In the multi-task setting, since agents may be assigned different tasks and

the tasks show in random order, they cannot collaborate to pick an arbitrary y∗ ∈ Σ

for each task. In fact, we will show if the number of tasks is greater or equal to 2, we

can design a family of focal mechanisms.

Achieving the focal goal in the multi-task setting is very similar to what we did

in finding the common ground truth. Note that in the forecast elicitation problem,

incentivizing a truthful strategy is equivalent to incentivizing the Bayesian posterior
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predictor. Thus, we can directly use the f -mutual information gain as the reward in

multi-task setting. Achieving the strictly truthful goal in the single-task setting is

more tricky and we will return to it later.

6.5.1 Multi-task: focal forecast elicitation without verification

We assume Alice is assigned tasks set LA and Bob is assigned tasks set LB. For

each task `, Alice’s private information is x`A and Bob’s private information is x`B.

The ground truth of this task is y`.

Multi-task common ground mechanism MCG(f) Given the prior distribution

over Y , a convex and differentiable function f whose convex conjugate is f ?,

Report for each task ` ∈ LA, Alice is asked to report pxA` := (Pr[Y = y|x`A])y; for

each task ` ∈ LB, Bob is asked to report pxB` := (Pr[Y = y|x`B])y. We denote

their actual reports by p̂`
xA`

and p̂`
xB`

.

Payment For each ` ∈ LA ∩ LB, reward both Alice and Bob “the amount of agree-

ment” between their forecast in task `—

R(p̂`xA` , p̂
`
xB`

);

for each pair of distinct tasks (`A, `B), `A ∈ LA, `B ∈ LB, `A 6= `B, punish both

Alice and Bob “the amount of agreement” between their forecast in distinct

tasks (`A, `B)—

f ?(R(p̂`A
xA

`A
, p̂`B

xB
`B

).
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In total, both Alice and Bob are paid

1

|LA ∩ LB|
∑

`∈LA∩LB

R(p̂`xA` , p̂
`
xB`

)

− 1

|LA||LB| − |LA ∩ LB|2
∑

`A∈LA,`B∈LB ,`A 6=`B

f ?(R(p̂`A
xA

`A
, p̂`B

xB
`B

)

where

R(p1,p2) := f ′(
∑
y

p1(y)p2(y)

Pr[Y = y]
).

We do not want agents to collaborate with each other based on the index of the

task or other information in addition to the private information. Thus, we make the

following assumption to guarantee the index of the task is meaningless for all agents.

Assumption 118 (A priori similar and random order). For each task `, fresh i.i.d.

realizations of (XA, XB, Y ) = (x`A, x
`
B, y

`) are generated. All tasks appear in a random

order, independently drawn for each agent.

Theorem 119. With the conditional independence assumption, and a priori similar

and random order assumption, when the prior Q is stable and well-defined, given the

prior distribution over the Y , given a differential convex function f whose derivative

f ′ is invertible, if max{|LA|, |LB|} ≥ 2, then MCG(f) is focal.

When both Alice and Bob are honest, each of them’s expected payment in MCG(f)

is

MIf (XA;XB).

Like Theorem 117, in order to show Theorem 119, we need to first introduce a

lemma which is very similar with Lemma 114.

Lemma 120. With the conditional independence assumption, the expected total pay-

ment is maximized over Alice and Bob’s strategies if and only if ∀`1 ∈ LA, `2 ∈ LB,
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for any (x`1A , x
`2
B ) ∈ ΣA × ΣB,

R(p̂`1
xA

`1
, p̂`2

xB
`2

) = f ′(K(x`1A , x
`2
B )).

The maximum is

MIf (XA;XB).

The proofs of Lemma 120 and Theorem 119 are very similar with Lemma 114 and

Theorem 117. We defer the formal proofs to the appendix.

6.5.2 Single-task: strictly truthful forecast elicitation without verification

This section introduces the strictly truthful mechanism in the single-task setting.

If we know the realization y of Y , we can simply apply a proper scoring rule and

pay Alice and Bob PS(y, p̂xA) and PS(y, p̂xB) respectively. Then according to the

property of the proper scoring rule, Alice and Bob will honestly report their truthful

forecast to maximize their expected payment. However, we do not know the realiza-

tion of Y . In the information elicitation without verification setting where Alice and

Bob are required to report their information, Miller, Resnick, and Zeckhauser [45]

propose the “peer prediction” idea, that is, pays Alice the accuracy of the forecast

that predicts Bob’s information conditioning Alice’s information—

PS

(
x̂B, (Pr[XB = xB|x̂A])y

)

where x̂A and x̂B are Alice and Bob’s reported information. It’s easy to see the peer

prediction mechanism in Miller, Resnick, and Zeckhauser [45] is truthful. With a

similar “peer prediction” idea, we propose a strictly truthful mechanism in forecast

elicitation.

Common ground mechanism Given the prior distribution over Y ,
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Report Alice and Bob are required to report pxA , pxB . We denote their actual

reports by p̂xA and p̂xB .

Payment Both Alice and Bob are paid

log
∑
y

p̂xA(y)p̂xB(y)

Pr[Y = y]
.

Theorem 121. With the conditional independence assumption (and when the prior

is stable), given the prior distribution over the Y , the common ground mechanism is

(strictly) truthful; moreover, when both Alice and Bob are honest, each of them’s ex-

pected payment in the common ground mechanism is the Shannon mutual information

between their private information

I(XA;XB) = MIKL(XA;XB).

Proof. When both Alice and Bob are honest, their payment is logK(xA, xB) according

to Claim 110. Their expected payment will be

∑
xA,xB

Pr[xA, xB] logK(xA, xB) =
∑
xA,xB

Pr[xA, xB] log
Pr[xA, xB]

Pr[xA] Pr[xB]
= MIKL(XA;XB)

Given that Bob honestly reports p̂xB = pxB , we would like to show that the

expected payment of Alice is less than MIKL(XA;XB) regardless of the strategy
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Alice plays. The expected payment of Alice is

∑
xA,xB

Pr[XA = xA, XB = xB] log
∑
y

p̂xA(y)pxB(y)

Pr[Y = y]

=
∑
xA,xB

Pr[XA = xA, XB = xB] log
∑
y

p̂xA(y)pxB(y)

Pr[Y = y]
Pr[XB = xB]

−
∑
xA,xB

Pr[XA = xA, XB = xB] log Pr[XB = xB]

=
∑
xA,xB

Pr[XA = xA, XB = xB] log
∑
y

p̂xA(y)pxB(y)

Pr[Y = y]
Pr[XB = xB]− C

(C is a constant that does not depend on Alice’s strategy)

=
∑
xA,xB

Pr[XA = xA] Pr[XB = xB|XA = xA] log
∑
y

p̂xA(y)pxB(y)

Pr[Y = y]
Pr[XB = xB]− C

Moreover, fixing XA = xA

∑
xB

∑
y

p̂xA(y)pxB(y)

Pr[Y = y]
Pr[XB = xB]

=
∑
xB

∑
y

p̂xA(y) Pr[XB = xB, Y = y]

Pr[Y = y]

=
∑
xB

∑
y

p̂xA(y) Pr[XB = xB|Y = y]

=
∑
y

p̂xA(y) = 1

Thus,
∑

y

p̂xA (y)pxB (y)

Pr[Y=y]
Pr[XB = xB] can be seen as a forecast for XB = xB. Since

LSR(p,q) =
∑

σ p(σ) log q(σ) ≤
∑

σ p(σ) log p(σ) = LSR(p,p) for any p,q ∈ ∆Σ,

we have
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∑
xA,xB

Pr[XA = xA] Pr[XB = xB|XA = xA] log
∑
y

p̂xA(y)pxB(y)

Pr[Y = y]
Pr[XB = xB]− C

(6.2)

≤
∑
xA,xB

Pr[XA = xA] Pr[XB = xB|XA = xA] log Pr[XB = xB|XA = xA]− C

=
∑
xA,xB

Pr[XA = xA] Pr[XB = xB|XA = xA] log Pr[XB = xB|XA = xA]

−
∑
xA,xB

Pr[XA = xA, XB = xB] log Pr[XB = xB]

=
∑
xA,xB

Pr[XA = xA, XB = xB] log
Pr[XB = xB|XA = xA]

Pr[XB = xB]

=I(XA;XB)

It remains to analyze the strictness of the truthfulness. We need to show for

any xA, given that Alice receives XA = xA, she will obtain strictly less payment via

reporting p̂xA 6= pxA .

Given that Alice receives XA = xA, her expected payment is

∑
xB

Pr[XB = xB|XA = xA] log
∑
y

p̂xA(y)pxB(y)

Pr[Y = y]
Pr[XB = xB]− C

(see equation (6.2))

≤
∑
xB

Pr[XB = xB|XA = xA] log Pr[XB = xB|XA = xA]− C (6.3)

Note that
∑

σ p(σ) log q(σ) <
∑

σ p(σ) log p(σ) when q 6= p. When the prior is

stable, since p̂xA 6= pxA , then pxB , p̂xA , (Pr[Y = y])y is not the solution of system

(6.1). This implies that there exists xB such that

Pr[XB = xB|XA = xA] 6=
∑
y

p̂xA(y)pxB(y)

Pr[Y = y]
Pr[XB = xB].
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Thus, the inequality (6.3) must be strict. Therefore, when the prior is stable, the

common ground mechanism is strictly truthful.

6.6 PS-gain

In this section, we will extend the maximum likelihood estimator method in

Raykar et al. [57] to a general family of optimization goals—PS-gain and compare

the general family with our f -mutual information gain. We will see the application of

PS-gain requires either one of the information sources to be low dimensional or that

we have a simple generative model for the distribution over one of the information

sources and ground truth label. Thus, the range of applications of PS-gain is more

limited compared with the range of applications of f -mutual information gain.

In Raykar et al. [57], XA is a feature vector which has multiple crowdsourced labels

XB. We have access to (x`A, x
`
B)`∈L which are i.i.d samples of (XA, XB). Raykar et al.

[57] also have the conditional independence assumption.

6.6.1 Maximum likelihood estimator (MLE)

Let ΘA,ΘB be two parameters that control the distribution over XA and Y and

the distribution over XB and Y respectively.

With the conditional independence assumption, we have

log Pr[(x`A, x
`
B)`∈L|ΘA,ΘB] = log Π`∈L Pr[XB = x`B|XA = x`A,ΘA,ΘB]

= log Π`∈L
∑
y

Pr[XB = x`B|Y = y,ΘB] Pr[Y = y|XA = x`A,ΘA]

=
∑
`∈L

log

(∑
y

Pr[XB = x`B|Y = y,ΘB] Pr[Y = y|XA = x`A,ΘA]

)
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The MLE is a pair of parameters Θ∗A,Θ
∗
B that maximizes the expected

log Pr[(x`A, x
`
B)`∈L|ΘA,ΘB] =

∑
`∈L

log

(∑
y

Pr[XB = x`B|Y = y,ΘB] Pr[Y = y|XA = x`A,ΘA]

)
.

Raykar et al. [57] use the MLE to estimate the parameters. In order to compare

this MLE method with our f -mutual information gain framework, we map this MLE

method into our language and provide a theoretical analysis for the condition when

MLE is meaningful.

LSR-gain/MLE

Hypothesis We are given HA = {hA : ΣA 7→ ∆Σ}, VB = {vB : ΣB 7→ [0, 1]|Σ|}: the

set of hypotheses candidates for XA and XB, respectively. Note that vB maps

xB ∈ ΣB into a vector in [0, 1]|Σ| rather than a distribution vector.

Gain We see

(vB(xB) · hA(x`A))xB

as a forecast for random variable XB conditioning on XA = x`A and we reward

the hypotheses LSR-gain—the accuracy of this forecast via log scoring rule

(LSR):

∑
`∈L

LSR

(
x`B, (vB(xB) · hA(x`A))xB

)
=
∑
`∈L

log

(
vB(x`B) · hA(x`A)

)

We use v · v′ to represent the dot product between two vectors.

Note that by picking HA as the set of mappings—associated with a set of param-

eters {ΘA}—that map XA = xA to (Pr[Y = y|XA = x`A,ΘA])y and picking VB as the

set of mappings—associated with a set of parameters {ΘB}—that map XB = xB to

(Pr[XB = xB|Y = y,ΘB])y, maximizing LSR-gain is equivalent to obtaining MLE.
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The idea of LSR-gain is very similar with the original peer prediction idea intro-

duced in Section 6.5.2 as well as our common ground mechanism.

Theorem 122. When
∑

xB∈ΣB
vB(xB) = (1, 1, .., 1) for all vB ∈ VB, the ground truth

Y corresponds to a maximizer of LSR-gain:

v∗B(xB) = (Pr[XB = xB|Y = y])y h∗A(xA) = (Pr[Y = y|XA = xA])y.

The maximum is the conditional Shannon entropy H(XB|XA).

Remark 123. Note that without the restriction:
∑

xB∈ΣB
vB(xB) = (1, 1, .., 1) for all

vB ∈ VB,

v∗B(xB) = (Pr[XB = xB|Y = y])y h∗A(xA) = (Pr[Y = y|XA = xA])y

is not a maximizer and we will have a meaningless maximizer vB(xB) = (1, 1, .., 1),∀xB

and hA(xA) = (1, 0, ..., 0),∀xA.

By picking VB as the set of mappings—associated with a set of parameters {ΘB}—

that map XB = xB to (Pr[XB = xB|Y = y,ΘB])y, the restriction
∑

xB∈ΣB
vB(xB) =

(1, 1, .., 1) for all vB ∈ VB satisfies naturally. However, it requires the knowledge of

the generative distribution model over XB and Y with parameter ΘB. Raykar et al.

[57] assume a simple distribution model between XB and Y with parameter ΘB—

conditioning the ground truth label, the crowdsourced feedback XB is drawn from a

binomial distribution, such that Pr[XB = xB|Y = y,ΘB] has a simple explicit form.
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Proof of Theorem 122.

E
∑
`∈L

log

(
vB(x`B) · hA(x`A)

)
=

∑
xA∈ΣA,xB∈ΣB

Pr[XA = xA, XB = xB] log

(
vB(xB) · hA(xA)

)
=

∑
xA∈ΣA,xB∈ΣB

Pr[XA = xA] Pr[XB = xB|XA = xA] log

(
vB(xB) · hA(xA)

)
=

∑
xA∈ΣA,xB∈ΣB

Pr[XA = xA]LSR

(
(Pr[XB = xB|XA = xA])xB , (vB(xB) · hA(xA))xB

)

Fixing XA = xA, since
∑

xB∈ΣB
vB(xB) = (1, 1, ..., 1) for all vB ∈ VB, we have

∑
xB

(
vB(xB) · hA(xA)

)
=
∑
y

hA(xA)(y) = 1

Since LSR(p,q) ≤ LSR(p,p) for any p,q ∈ ∆Σ, we have

E
∑
`∈L

log

(
vB(xB) · hA(xA)

)
=

∑
xA∈ΣA,xB∈ΣB

Pr[XA = xA]LSR

(
(Pr[XB = xB|XA = xA])xB , (vB(xB) · hA(xA))xB

)
≤

∑
xA∈ΣA,xB∈ΣB

Pr[XA = xA]LSR

(
(Pr[XB = xB|XA = xA])xB , (Pr[XB = xB|XA = xA])xB

)
=

∑
xA∈ΣA,xB∈ΣB

Pr[XA = xA] Pr[XB = xB|XA = xA] log Pr[XB = xB|XA = xA]

=H(XB|XA)

=
∑

xA∈ΣA,xB∈ΣB

Pr[XA = xA] Pr[XB = xB|XA = xA] (conditional independence)

log

(∑
y

Pr[XB = xB|Y = y] Pr[Y = y|XA = xA]

)
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Thus,

v∗B(xB) = (Pr[XB = xB|Y = y])y h∗A(xA) = (Pr[Y = y|XA = xA])y

is a maximizer and the maximum is the conditional Shannon entropy H(XB|XA).

6.6.2 Extending LSR-gain to PS-gain

The property LSR(p,q) =
∑

σ p(σ) log q(σ) ≤
∑

σ p(σ) log p(σ) = LSR(p,p)

for any p,q ∈ ∆Σ is also valid for all proper scoring rules. Thus, we can naturally

extend the MLE to PS-gain by replacing the LSR by any given proper scoring rule

PS.

PS-gain

Hypothesis We are given HA = {hA : ΣA 7→ ∆Σ}, VB = {vB : ΣB 7→ [0, 1]|Σ|}: the

set of hypotheses candidates for XA and XB, respectively.

Gain We see

(vB(xB) · hA(x`A))xB

as a forecast for random variable XB conditioning on XA = x`A and we reward

the hypotheses PS-gain—the accuracy of this forecast via a given proper scoring

rule PS:

∑
`∈L

PS

(
x`B, (vB(xB) · hA(x`A))xB

)

Note that the general PS-gain may involve the calculations of (vB(xB) ·hA(x`A))xB

while LSR-gain only requires the value of vB(x`B) · hA(x`A). Thus, unlike LSR-gain,
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the general PS-gain may be only applicable for low dimensional XB, even if we assume

a simple generative distribution model over XB and Y .

Theorem 124. Given a proper scoring rule PS, when
∑

xB∈ΣB
vB(xB) = (1, 1, ..., 1)

for all vB ∈ VB, the ground truth Y corresponds to a PS-gain maximizer:

v∗B(xB) = (Pr[XB = xB|Y = y])y h∗A(xA) = (Pr[Y = y|XA = xA])y.

The proof is the same with Theorem 122 except that we replace LSR(p,q) ≤

LSR(p,p) by PS(p,q) ≤ PS(p,p) for any p,q ∈ ∆Σ.

6.6.3 Comparing PS-gain with f-mutual information gain

Generally, f -mutual information gain can be applied to a more general setting.

PS-gain requires the restriction
∑

xB∈ΣB
vB(xB) = (1, 1, ..., 1) for all vB ∈ VB.

Thus, PS-gain requires the full knowledge of vB for all vB ∈ VB to check whether it

satisfies the restriction, while for the f -mutual information gain, it is sufficient to just

have the access to the outputs of the hypothesis: {hB(x`B)}`∈LB . Therefore, in the

mechanism design part, we can only use f -mutual information gain to design focal

mechanisms since we only have the outputs from agents.

Moreover,
∑

xB∈ΣB
vB(xB) = (1, 1, ..., 1) is also hard to check when |ΣB| is very

large. For example, when xB is a 100× 100 black-and-white image, |ΣB| = 2100 and

checking
∑

xB∈ΣB
vB(xB) = (1, 1, ..., 1) requires 2100 time. Normalizing vB such that

it satisfies the condition also requires 2100 time. Thus, when |ΣB| is very large, we

need a simple generative distribution model between XB and Y with parameter ΘB

such that we can pick VB as the set of mappings—associated with a set of parameters

{ΘB}—that map XB = xB to (Pr[XB = xB|Y = y,ΘB])y, to make the restriction∑
xB∈ΣB

vB(xB) = (1, 1, .., 1) for all vB ∈ VB satisfy naturally. When we have the

simple generative distribution model, we can use LSR-gain. The general PS-gain
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may involve the calculations of the |ΣB| dimensional vector—(vB(xB) · hA(x`A))xB—

for each x`A. Thus, the general PS-gain may be only applicable to low dimensional

XB.

In the learning with noisy labels problem, the distribution between XB and Y can

be represented by a simple transition matrix and XB is low dimensional. Therefore,

both PS-gain and f -mutual information gain can be applied to the learning with

noisy labels problem.

Therefore, the application of PS-gain requires either one of the information sources

to be low dimensional or that we have a simple generative model for the distribution

over one of the information sources and ground truth label, while f -mutual informa-

tion gain does not have the restrictions.

6.6.4 Applications

In our startup running example, we consider the situation where one source of

information is the features and another source of information is the crowdsourced

feedback. In fact, our results apply to all kinds of information sources. For example,

we can make both sources features or crowdsourced feedback. Different setups for the

information sources and predictor candidates can bring different applications of our

results.

Let’s consider the “learning with noisy labels” problem where the labels in the

training data are a noisy version of the ground truth labels Y and the noise is inde-

pendent. We can map this problem into our framework by letting XB be the noisy

label of features XA. That is , XB is a noisy version of Y . Our framework guarantees

that the Bayesian posterior predictor that forecasts Y using XA must be part of a

maximizer of the optimization problem. However, there are many other maximiz-

ers. For example, since XA and XB are independent conditioning XB. The Bayesian

posterior predictor that forecasts XB using XA is also part of a maximizer, since the
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scenario Y = XB also satisfies the conditional independence assumption. If XB has

much higher dimension than Y , we do not have this issue. But XB has the same

signal space with Y in the learning with noisy label problem. Thus, it’s impossible

to eliminate other maximizers without any side information here. With some side

information (e.g. a candidate set F—like linear regressions—that only contains our

desired maximizer.), it’s possible to obtain the Bayesian posterior predictor that fore-

casts Y using XA. Note that our framework does not require a pre-estimation on the

transition probability that transits the ground truth label Y to the noisy ground truth

label XB, since our framework has this transition probability, which corresponds to

the predictor PB, as parameters as well and learn the correct forecaster PA and the

transition probability PB simultaneously.

Ratner et al. [56] propose a method to collect massive labels by asking the crowds

to write heuristics to label the instances. Each instance is associated with many

noisy labels outputted by the heuristics. In their setting, the crowds use a different

source of information from the learning algorithm (e.g. the learning algorithm uses

the biology description of the genes and the crowds use the scientific papers about

the gene). Thus, the conditional independence assumption is natural here and we can

map this setting’s training problem into our framework. Ratner et al. [56] preprocess

the collected labels to approximate ground truth by assuming a particular information

structure model on the crowds. Our framework is model-free and does not need to

preprocess the collected labels since we can learn the best forecaster (predictor PA)

and the best processing/aggregation algorithm (predictor PB) simultaneously.

Moreover, since the highest evaluation value of the predictors PA, PB is the f -

mutual information between XA and XB, our results provide a method to calculate

the f -mutual information between any two sources of information XA, XB of any

format. Kong and Schoenebeck [34] propose a framework for designing information

elicitation mechanisms that reward truth-telling by paying each agent the f -mutual
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information between her report and her peers’ report. Thus, the f -mutual information

gain method can be combined with this framework to design information elicitation

mechanisms when the information has a complicated format.
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CHAPTER VII

Conclusion and Future work

This thesis addresses two central problems in crowdsourcing, information elicita-

tion and information aggregation, in the context where the ground truth is unknown,

by distilling the essence of the central problems to the design of proper informa-

tion measurements. Aided by the finding of two (weakly) information-monotone

measurements—f -mutual information, Bregman-mutual information, a variety of novel

information elicitation mechanisms, information aggregation algorithms are designed

and a natural connection between information elicitation and information aggregation

is built.

When people and information are homogeneous, this thesis proposes a simple yet

powerful information theoretic paradigm—the Mutual Information Paradigm (MIP)—

for designing information elicitation mechanisms that are truthful, focal, and, detail-

free. Moreover, some of the mechanisms based on this paradigm are additionally

minimal and dominantly truthful. Aided by the mutual information paradigm, this

thesis exhibits two families of novel mechanisms that are dominantly truthful, detail

free, and minimal in the multi-task setting when the number of questions is large—the

f -mutual information mechanism and the Bregman mutual information mechanism.

This thesis also employs the information theory tools in a more subtle way to exhibit

the first strictly truthful, focal, detail free mechanism which applies to a small num-
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ber of people in the single-question setting—Disagreement mechanism. Moreover,

this thesis also unifies several important previous works by mapping them into the

MIP framework.

This thesis also addresses a main problem, how to elicit expertise without verifica-

tion, in crowd-sourcing situations, where agents have different levels of expertise and

the lack of effort can systemically bias agents reports. This thesis creates a model of

expertise based on a natural assumption that more sophisticated agents know the be-

liefs of less sophisticated agents. Within the model, this thesis provides a mechanism

design framework the Hierarchical Mutual Information paradigm (HMIP) and apply

HMIP in three different settings creating three mechanisms: Multi-HMIM, Learning

Based Multi-HMIM, and Single-HMIM.

Finally, this thesis builds a natural connection between information elicitation

and information aggregation by addressing two related problems: (1) co-training:

how to learn to forecast ground truth using two conditionally independent sources,

without access to any data labeled with ground truth; (2) forecast elicitation without

verification: how to elicit high quality forecasts from the crowds without verification,

by the same information theoretic approach, the MIP framework.

7.1 Future directions

A big goal in the future is to build an unsupervised/decentralized information

trading and information aggregation system in real-world by combining this thesis’s

information theoretic approach, blockchain technique and unsupervised learning the-

ory. To achieve this goal, many interesting future directions can be explored.

Experiments For the information elicitation mechanisms, the most apparent fu-

ture direction is to test the mechanisms by performing real-world experiments. For

example, for the expertise elicitation mechanisms, we can design the experiments by
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simplifying the information structure by roughly dividing it into two levels where the

higher level requires more time. Then we can test our Multi-HMIM or Single-HMIM

in the peer grading scenario or any other situations where certain agents are only

given 15 seconds to grade a work and others are expected to do a good job. We value

the information conditioning on the reports provided by the “15 seconds” agents.

We could also use machine learning to obtain the lower level information. For the

forecast elicitation problem, to test the mechanisms proposed in this thesis, we do

not need that every two agents’ information is conditionally independent. In fact,

for each agent, we only need to find a single reference agent for her such that the

reference agent’s information is conditionally independent with hers. Then we can

run our mechanisms on the agent and her reference agent. In practice, we can pair

the agents with some side information and make sure each pair of agents’ information

is conditionally independent.

For the co-training problem, as usual in the related literature, this thesis reduces

the problem to an optimization problem and do not investigate the computation

complexity and data requirement. The most apparent direction will be running ex-

periments on real data by training two neural networks.

Robust to adversary In order to run the system in real-world, the existence of

adversary who has other incentives must be considered. Adversarial mechanism design

and adversarial algorithm design are two important future directions. Hopefully, those

two problems can also be connected and addressed by the same theoretic approach.

Information cost elicitation Another future direction is the information cost

elicitation: tuning the coefficients of the mechanisms such that the payment matches

the actual effort required by agents pay and the cost needed to elicit high quality

information is minimized.
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Sample complexity, empirical risk The theoretic analysis of the sample com-

plexity needed in calculating the information measures and the empirical risk in

addressing the co-training problem are other interesting theoretic future directions.

Another direction would be the analysis of the influence of the choice of the convex

function f on the convergence rate.

Hopefully, after exploring the above theoretic and experimental future directions,

the real-world unsupervised/decentralized information trading and information ag-

gregation system can be built and applied to many contexts like online education

(e.g. MOOC, peer grading), sharing economy, products pricing.
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APPENDIX A

Additional proofs

A.1 Disagreement mechanism

A.1.1 Proof for main theorem

In this section, we are going to show the first three parts of Theorem 82. Part 4

(tight property) is implied by the impossibility results in Section 2.5.

Lemma 125. The Disagreement Mechanism has the same equilibria as the Divergence-

based BTS.

Theorem 82 Part 1: M+(α, β, PS(·, ·)) is truthful.

Proof for Theorem 82 Part 1. Radanovic and Faltings [55] have already show

M(α, β, PS(·, ·)) has truth-telling as a strict equilibrium for any SNIFE prior in

Theorem 81. Since M+(α, β, PS(·, ·)) does not change the equilibrium structure

of M(α, β, PS(·, ·)) according to Claim 125, we have M+(α, β, PS(·, ·)) has truth-

telling as a strict equilibrium for any SNIFE prior as well.

We finish our proof for the first part of the main theorem. For other parts, We

first give technical definitions for Diversity and Inconsistency and then prove that the

average agent-welfare in the Disagreement Mechanism is Diversity− Inconsistency.
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We first introduce a short hand which will simplify the formula for Diversity and

Inconsistency.

∫
ĵ,k̂

Pr(ĵ, k̂) ,
∫
σ̂j ,p̂j ,σ̂k,p̂k

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)Pr(σ̂k,p̂k)←sk(σk)(σ̂k, p̂k)

where sj is the strategy of agent j and sj(σj) is a distribution over agent j’s report

profile (σ̂j, p̂j) given agent j receives private signal σj and uses strategy sj, and

similarly for agent k. This defines the natural measure on the reports of agents j and

k given that they play strategies sj and sk and a fixed prior Q (which is implicit),

and allows us to succinctly describe probabilities of events in this space.

We define Diversity as the expected Hellinger divergence D∗ between two random

agents when they report different signals, so

Diversity =
∑
j

k 6=j

∑
σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)δ(σ̂j 6= σ̂k)D
∗(p̂j, p̂k)

where Pr(j, k) is the probability agents j, k are picked, and Pr(σj, σk) is the

probability that agent j receives private signal σj and agent k receives private signal

σk.

Similarly, we can write down the technical definition for Inconsistency. But here

we do not use Hellinger divergence as the “difference” function in
∑

u,v∈U,Cr(u)=Cr(v) D(u, v),

we use square root of the Hellinger divergence which is the Hellinger distance as the

“difference” function. The reason is we want to use the convexity of the Hellinger

divergence and the triangle inequality of the Hellinger distance. We will describe the
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details in the future. For now we give a technical definition for Inconsistency :

Inconsistency = −
∑
j

k 6=j

∑
σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)δ(σ̂j = σ̂k)
√
D∗(p̂j, p̂k)

Now we define the ClassificationScore as the expected average extra score scoreC :

ClassificationScore =
∑
i
j 6=i

∑
k 6=i,j
σi,σj ,σk

Pr(i)Pr(σi)Pr(j, k)Pr(σj, σk|σi)
∫
ĵ,k̂

Pr(ĵ, k̂)scoreC(rj, rk)

Claim 126. ClassificationScore = Diversity− Inconsistency.

Claim 127. Every permutation strategy profile has the same ClassificationScore,

Diversity, and Inconsistency as truth-telling.

Claim 128. The average agent-welfare in our Disagreement Mechanism is the

ClassificationScore.

A.1.1.1 Proof outline for main theorem

First note that the average agent-welfare is the ClassificationScore. We want to

show that: if the number of agents is greater than 3, then any symmetric equilibrium

that is not permutation equilibrium must have ClassificationScore strictly less than

truth-telling; and any symmetric equilibrium that has ClassificationScore close to

truth-telling must be close to a permutation equilibrium.

To prove our main theorem, we first introduce the concept of TotalDivergence and

then we use this value as a bridge. Recall that we defined

Diversity =
∑

j,k 6=j,σj ,σk Pr(j, k)Pr(σj, σk)
∫
ĵ,k̂
Pr(ĵ, k̂)δ(σ̂j 6= σ̂k)D

∗(p̂j, p̂k), now we
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define a similar concept

TotalDivergence =
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)D∗(p̂j, p̂k)

First note that total divergence is robust to summing over j, k or j 6= k since when

j = k, D∗(p̂j, p̂k) = 0.

We can see TotalDivergence ≥ Diversity since TotalDivergence also includes the

divergence between the agents who report the same signals. We show that the equality

holds if and only if Inconsistency = 0:

Claim 129. For any strategy profile s, Diversity(s) = TotalDivergence(s)

⇔ Inconsistency(s) = 0

Corollary 130.

ClassificationScore(truth-telling)

=Diversity(truth-telling)

=TotalDivergence(truth-telling)

Proof. At the truth-telling equilibrium, σ̂i = σi, p̂i = qσi for any i, so the inconsis-

tency score of truth-telling is 0 since σ̂j = σ̂k ⇒ σj = σk ⇒ p̂j = p̂k ⇒ D∗(p̂j, p̂k) = 0

which implies this corollary.

Now we begin to state our proof outline: For any equilibrium s, we define a

modified strategy for s:

We define sBP what we call a best prediction strategy of s as a strategy where each

agent uses the same signal strategy which he uses in s but plays his best prediction

which maximizes the prediction score. In this case, based on Claim 74, for any i,

agent i plays θ−iqσi . In the symmetric case, agents i play θqσi .

The results or our main theorem follows from two technical lemmas:
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(1) ClassificationScore(s) ≤ TotalDivergence(sBP ).[ Lemma 131 ]. This is

our main lemma and we defer the proof of main lemma to Section A.1.1.2.

Once we show it, we can directly prove that the focal property of Disagreement

Mechanism. Note that this result is valid for any equilibrium s—symmetric or

asymmetric—and still a main ingredient when we extend the focal property to

asymmetric case.

(2) TotalDivergence(truthtelling) ≈ TotalDivergence(sBP ) ⇒ θ ≈ π when s

is a symmetric equilibrium with signal strategy θ. [Lemma 136] This, informally,

means that if a symmetric equilibrium pays close to truth-telling, it must be

close to a permutation equilibrium, and thus pays about the same as truth-

telling.

We will show TotalDivergence(truthtelling) is

∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(qσj ,qσk)

=
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(θπqσj , θπqσk)

where Pr(j, k)Pr(σj, σk) is the probability that agent j, k are picked and agent

j receives private signal σj; agent k receives private signal σk.

We will also show TotalDivergence(sBP ) is∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(θqσj , θqσk).

A.1.1.2 Proof for main lemma

In this section, we will prove the main lemma the classification score of non-

permutation equilibrium s is less than the total divergence of the report profiles

when agents report their best predictions given they still use the signal strategy of

s. We first show the inequality and then show that if the equality holds, then s is
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consistent and s = sBP .

Lemma 131 (Main Lemma). For any equilibrium s, if sBP is a best prediction strat-

egy of s, we have

ClassificationScore(s) ≤ TotalDivergence(sBP )

If the equality holds, then we have Inconsistency(s) = 0 and s = sBP .

In order to show the inequality, we first show

TotalDivergence(s)− TotalDivergence(sBP ) ≤ Inconsistency(s)

once we show this, since we have ClassificationScore = Diversity− Inconsistency and

Diversity ≤ TotalDivergence, our main lemma ClassificationScore(s) ≤ TotalDivergence(sBP )

will follow since

ClassificationScore(s) =Diversity(s)− Inconsistency(s)

≤TotalDivergence(s)− Inconsistency(s) ≤ TotalDivergence(sBP )

(A.1)

To prove TotalDivergence(s) − TotalDivergence(sBP ) ≤ Inconsistency(s), we will

write it in a explicit form:

TotalDivergence(s)− TotalDivergence(sBP ) (A.2)

=
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)(D∗(p̂j, p̂k)−D∗(θ−jqσj , θ−kqσk)) (A.3)

It is difficult to compare D∗(p̂j, p̂k) and D∗(θ−jqσj , θ−kqσk) directly. To deal with
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this problem, we introduce a new value D∗(p̂j, θ−kqσk) and write (A.2) as

∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)∗∫
ĵ,k̂

Pr(ĵ, k̂)
(
D∗(p̂j, p̂k)−D∗(p̂j, θ−kqσk) +D∗(p̂j, θ−kqσk)−D∗(θ−jqσj , θ−kqσk)

)
(A.4)

We will first give the analysis for D∗(p̂j, p̂k) − D∗(p̂j, θ−kqσk), then we will see

D∗(p̂j, θ−kqσk)−D∗(θ−jqσj , θ−kqσk) is similar.

Remember that both D∗(a, ·) and D∗(·, b) are convex functions. So D∗(p̂j, p̂k)−

D∗(p̂j, θ−kqσk) can be seen as g(p̂k)−g(θ−kqσk) where g(·) is convex functionD∗(p̂j, ·).

Recall that

Inconsistency =
∑
j

k 6=j

∑
σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)δ(σ̂j = σ̂k)
√
D∗(p̂j, p̂k)

We hope we can obtain a upper bound for g(p̂k)− g(θ−kqσk) that relates to agent

k’s neighbors’ best response predictions. Here agent k’s neighbors mean the agents

who report the same signal with agent k and best response prediction means the

reported prediction at equilibrium.

Now we begin to analyze the relationship between p̂k and θ−kqσk . Recall that

each agent’s payment depends on his prediction score and information score. θ−kqσk

maximizes the prediction score while p̂k maximizes the payment. The information

score depends on agent k’s neighbors’ reported predictions {p̂l|l 6= k}. So we can see

p̂k is related to both his best prediction θ−kqσk and his neighbors’ reported predictions

{p̂l|l 6= k}. Actually we will show that p̂k can be computed as a linear combination

of θ−kqσk and {p̂l|l 6= k}, which is based on the fact that every proper scoring rule is

linear for the first entry (we will discuss the detail in the following proof). Once we
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have this result, we can construct a linear system about agents’ reported predictions

{p̂i|i} and their best predictions. This linear system helps us obtain a upper bound for

g(p̂k)− g(θ−kqσk) which upper-bounds the distance between agent k’s best response

prediction and his neighbors’ best response predictions.

Equilibrium Analysis We will analyze the equilibrium in our Truthful Mechanism

which is also the equilibrium in our Disagreement Mechanism. We first show, in

Claim 132, that at equilibrium, an agent’s reported prediction only depends on his

private signal and reported signal. Then we use this property to construct a linear

system and via this linear system, we obtain a upper bound for g(p̂k)− g(θ−kqσk) in

Claim 133.

Claim 132. At any equilibrium s = (s1, ..., sn), for each agent i, fix s−i, agent i’s

private signal σi ∈ Σ and reported signal σ̂i ∈ Σ, then there exists a unique prediction

which is agent i’s best response.

We define this unique prediction as p̂(i, σi, σ̂i)

In other words, si(σi) is a distribution over at mostm vectors: {(σ̂i, p̂(i, σi, σ̂i))|σ̂i ∈

Σ} and

Pr(σ̂i,p̂i)←si(σ)(σ̂i, p̂i) =


θi(σ̂i, σi) p̂i = p̂(i, σi, σ̂i)

0 p̂i 6= p̂(i, σi, σ̂i)

Proof. For any agent i, assume his private signal is σi and he reports σ̂i at equilibrium

(s1, s2, ..., sn). Now we will prove there is a unique prediction that maximize agent

i’s payment.
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arg max
p̂

E[payment(i,M+)|σi] (A.5)

= arg max
p̂
αPS(θ−iqσi , p̂) (A.6)

+ β
∑
j 6=i

Pr(j)
∑
σj

Pr(σj|σi)
∫
σ̂j ,p̂j

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)δ(σ̂i = σ̂j)PS(p̂j, p̂) (A.7)

= arg max
p̂

α + β
∑
j 6=i

Pr(j)
∑
σj

Pr(σj|σi)
∫
σ̂j ,p̂j

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)δ(σ̂i = σ̂j)


PS(

αθ−iqσi + β
∑

j 6=i Pr(j)
∑

σj
Pr(σj|σi)

∫
σ̂j ,p̂j

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)δ(σ̂i = σ̂j)p̂j

α + β
∑

j 6=i Pr(j)
∑

σj
Pr(σj|σi)

∫
σ̂j ,p̂j

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)δ(σ̂i = σ̂j)
, p̂)

(A.8)

=
αθ−iqσi + β

∑
j 6=i Pr(j)

∑
σj
Pr(σj|σi)

∫
σ̂j ,p̂j

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)δ(σ̂i = σ̂j)p̂j

α + β
∑

j 6=i Pr(j)
∑

σj
Pr(σj|σi)

∫
σ̂j ,p̂j

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)δ(σ̂i = σ̂j)

(A.9)

In equation (A.6), the first part is the prediction score of agent i, the second

part is part of the information score of agent i. Note that for the information score

PS(p̂j, p̂) − PS(p̂j, p̂j) of agent i, only PS(p̂j, p̂) is related to agent i’s reported

prediction p̂ so we only consider this part to analyze the equilibrium. Pr(j) is the

probability that agent j is matched with agent i, Pr(σj|σi) is the probability that

agent j receives σj given agent i receives σi. Then given agent j’s strategy sj and

private signal, we integrate over agent j possible report profiles and only consider the

case σ̂i = σ̂j.

The second equality follows since proper scoring rule is linear for the first entry.

The last equality follows since we obtain the highest value only if p̂ equals the

first entry based on the property of strict proper scoring rule.

The following claim tells us we can bound the distance between each agent’s
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best response prediction (the prediction which maximizes his total reward) and his

best prediction (the prediction which maximizes his prediciton score) by the distance

between his best response prediction and his neighbors’ best response predictions.

Claim 133. For any convex function g(·), for any σi and σ̂i, we have

αPr(σi)(g(p̂(i, σi, σ̂i))− g(θ−iqσi))

≤β
∑
j 6=i

Pr(j)
∑
σj

Pr(σj, σi)θj(σ̂i, σj)(g(p̂(j, σj, σ̂i))− g(p̂(i, σi, σ̂i)))

Proof. Based on Claim 132, we can rewrite (A.5)=(A.8) as a n×m×m linear system

about

{p̂(k, σk, σ̂k)|k ∈ [1, n], σk ∈ Σ, σ̂k ∈ Σ}:

p̂(i, σi, σ̂i) = arg max
p̂

E[payment(i,M+)|σi] (A.10)

=
αθ−iqσi + β

∑
j 6=i Pr(j)

∑
σj
Pr(σj|σi)θj(σ̂i, σj)p̂(j, σj, σ̂i)

α + β
∑

j 6=i Pr(j)
∑

σj
Pr(σj|σi)θj(σ̂i, σj)

(A.11)

Fix i, let λi = α
α+β

∑
j 6=i Pr(j)

∑
σj
Pr(σj |σi)θj(σ̂i,σj) , λj,σj =

β
∑
j 6=i Pr(j)

∑
σj
Pr(σj |σi)θj(σ̂i,σj)

α+β
∑
j 6=i Pr(j)

∑
σj
Pr(σj |σi)θj(σ̂i,σj)

for j 6= i and σj ∈ Σ, we have λi +
∑

j 6=i,σj λj,σj = 1

Based on the convexity of g(·), we have

g(p̂(i, σi, σ̂i)) = g(λiθ−iqσi +
∑
j 6=i,σj

λj,σj p̂(j, σj, σ̂i))

≤ λig(θ−iqσi) +
∑
j 6=i,σj

λj,σjg(p̂(j, σj, σ̂i))

After substitutions, we multiply
(
α + βPr(j)

∑
j 6=i
∑

σj
Pr(σj|σi)θj(σ̂i, σj)

)
Pr(σi)

in both sides. Note that Pr(σi)Pr(σj|σi) = Pr(σj, σi), then by manipulation, the

claim follows.
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Claim 133 gives an upper bound to g(p̂k)−g(θ−kqσk) that is the distance between

agent k’s best response prediction and his neighbors’ best response predictions. Now

we continue the proof for our main lemma.

To bound

∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)∗∫
ĵ,k̂

Pr(ĵ, k̂)(D∗(p̂j, p̂k)−D∗(p̂j, θ−kqσk) +D∗(p̂j, θ−kqσk)−D∗(θ−jqσj , θ−kqσk))

(A.12)

We rewrite
∫
ĵ,k̂
Pr(ĵ, k̂) as θj(σ̂j, σj)θk(σ̂k, σk) and p̂j as p̂(j, σj, σ̂j), p̂k as p̂(k, σk, σ̂k)

which we can do because of Claim 132.

We first give an upper bound to

∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)Pr(σj, σk)θj(σ̂j, σj)θk(σ̂k, σk)

(D∗(p̂(j, σj, σ̂j), p̂(k, σk, σ̂k))−D∗(p̂(j, σj, σ̂j), θ−kqσk))

The analysis for the second part is similar.

Based on Claim 133, we have
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∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)Pr(σj, σk)θj(σ̂j, σj)θk(σ̂k, σk) (A.13)

∗ (D∗(p̂(j, σj, σ̂j), p̂(k, σk, σ̂k))−D∗(p̂(j, σj, σ̂j), θ−kqσk)) (A.14)

≤
∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)Pr(σj, σk)θj(σ̂j, σj)θk(σ̂k, σk) (A.15)

∗ β

αPr(σk)

∑
l 6=k

∑
σl

Pr(l)Pr(σl, σk)θl(σ̂k, σl) (A.16)

∗ (D∗(p̂(j, σj, σ̂j), p̂(l, σl, σ̂k))−D∗(p̂(j, σj, σ̂j), p̂(k, σk, σ̂k))) (A.17)

Since
Pr(σj ,σk)

Pr(σk)
≤ 1, we obtain (A.19) from (A.17).

(A.17) ≤
∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)θj(σ̂j, σj)θk(σ̂k, σk)

β

α

∑
l 6=k

∑
σl

Pr(l)Pr(σl, σk)θl(σ̂k, σl) (A.18)

∗ (D∗(p̂(j, σj, σ̂j), p̂(l, σl, σ̂k))−D∗(p̂(j, σj, σ̂j), p̂(k, σk, σ̂k))) (A.19)

≤
∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)θj(σ̂j, σj)θk(σ̂k, σk)

β

α

∑
l 6=k

∑
σl

Pr(l)Pr(σl, σk)θl(σ̂k, σl) (A.20)

∗ |(D∗(p̂(j, σj, σ̂j), p̂(l, σl, σ̂k))−D∗(p̂(j, σj, σ̂j), p̂(k, σk, σ̂k)))| (A.21)

Note that (A.21) and (A.19) are identical except for the value sign.

Then we obtain (A.22) from (A.21) since

|D∗(x, y)−D∗(x, z)| ≤ (
√
D∗(x, y) +

√
D∗(x, z))|

√
D∗(x, y)−

√
D∗(x, z))|

≤ 2|
√
D∗(x, y)−

√
D∗(x, z))|
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The second inequality follows since 0 ≤ D∗ ≤ 1

(A.21) ≤2
∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)θj(σ̂j, σj)θk(σ̂k, σk)

β

α

∑
l 6=k

∑
σl

Pr(l)Pr(σl, σk)θl(σ̂k, σl)

|(
√
D∗(p̂(j, σj, σ̂j), p̂(l, σl, σ̂k))−

√
D∗(p̂(j, σj, σ̂j), p̂(k, σk, σ̂k)))| (A.22)

Once we get (A.22), we can use the fact that
√
D∗ is metric which implies the

triangle inequality; (A.23) follows.

(A.22) ≤2
∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)θj(σ̂j, σj)θk(σ̂k, σk)

β

α

∑
l 6=k

∑
σl

Pr(l)Pr(σl, σk)θl(σ̂k, σl)(
√
D∗(p̂(k, σk, σ̂k), p̂(l, σl, σ̂k))) (A.23)

Note that
∑

σj

∑
σ̂j
θj(σ̂j, σj) =

∑
σj

1 = m, also we have
∑

j Pr(l) =
∑

j Pr(j) =

1, Pr(k, l) = Pr(j, k) then (A.25) follows.

(A.23) =2m
β

α

∑
l

∑
k 6=l

∑
σk,σ̂k

Pr(k, l)θk(σ̂k, σk)
∑
σl

Pr(σl, σk)θl(σ̂k, σl) (A.24)

∗ (
√
D∗(p̂(k, σk, σ̂k), p̂(l, σl, σ̂k))) (A.25)

=2m
β

α

∑
k,l 6=k

∑
σk,σ̂k,σl

Pr(k, l)θk(σ̂k, σk)Pr(σl, σk)θl(σ̂k, σl) (A.26)

∗ (
√
D∗(p̂(k, σk, σ̂k), p̂(l, σl, σ̂k))) (A.27)

=2m
β

α
× Inconsistency (A.28)

The analysis for the second part
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∑
j,k

∑
σj ,σk,σ̂j ,σ̂k

Pr(j, k)Pr(σj, σk)θj(σ̂j, σj)θk(σ̂k, σk)(D
∗(p̂(j, σj, σ̂j), θ−kqσk)−D∗(θ−jqσj , θ−kqσk))

is similar, note that j and k are symmetric and D∗(·, θ−kqσk) is a convex function.

We can use Claim 133 and triangle inequality to bound the second part by 2mβ
α
×

Inconsistency.

So if we set 2mβ
α
< 1

2
, then TotalDivergence(s)−TotalDivergence(sBP ) < Inconsistency,

proving the inequality in our main lemma.

To prove that if the equality in our main lemma holds then s = sBP , we first show

that

Claim 134. The equality in ClassificationScore(s) ≤ TotalDivergence(sBP ) holds iff

Inconsistency(s) = 0.

Proof. Note that (A.1) tells us when ClassificationScore(s) = TotalDivergence(sBP ),

we have Diversity(s) = TotalDivergence(s) which implies Inconsistency(s) = 0 based

on Claim 129.

Then we will prove

Claim 135. If Inconsistency(s) = 0 then s = sBP

Proof. Recall in (A.10), we have for any i,

p̂(i, σi, σ̂i) = arg max
p̂

E[payment(i,M+)|σi]

=
αθ−iqσi + βPr(j)

∑
j 6=i
∑

σj
Pr(σj|σi)θj(σ̂i, σj)p̂(j, σj, σ̂i)

α + βPr(j)
∑

j 6=i
∑

σj
Pr(σj|σi)θj(σ̂i, σj)

(A.29)

If Inconsistency(s) = 0, we can see if θj(σ̂i, σj) > 0 we must have p̂(j, σj, σ̂i) =

p̂i(i, σi, σ̂i). So we have θ−iqσi = p̂i(i, σi, σ̂i) for any i since we have αθ−iqσi =

αp̂i(i, σi, σ̂i) if we multiply
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α+βPr(j)
∑

j 6=i
∑

σj
Pr(σj|σi)θj(σ̂i, σj) in both sides of equation (A.29) and combine

the fact that p̂(j, σj, σ̂i) = p̂i(i, σi, σ̂i). Thus we have s = sBP .

A.1.1.3 Proof for main theorem part 2 and 3

Theorem 82 Part 2: M+(α, β, PS(·, ·)) has truth-telling as a focal equilib-

rium. We use our main lemma ClassificationScore(s) < TotalDivergence(sBP )

directly to prove: any symmetric non-permutation equilibrium’s agent wel-

fare (ClassificationScore) must be strictly less than truth-telling

Notice that if all agents play a symmetric signal strategy θ, then for any j, k,

θ−j = θ−k = θ. For any symmetric non-permutation equilibrium s, it is possible that

the signal strategy of s is not a permutation or it is a permutation θπ but agents do

not report πqσ given σ is their private signal. So we consider two cases:

(a) We first consider the case that the signal strategy θ of s is a permutation

matrix θπ, but agents do not report πqσ.

ClassificationScore(s) <TotalDivergence(sBP )

=
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(θ−jqσj , θ−kqσk)

=
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(θπqσj , θπqσk)

=
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(qσj ,qσk)

=TotalDivergence(truthtelling)

=ClassificationScore(truthtelling)

The first inequality follows from our main lemma. The inequality is strict for the

following reason: when the signal strategy θ of s is a permutation matrix, sBP is a
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permutation strategy profile since for any i, agent i’s best prediction is θ−iqσ = θqσ.

Based on our main lemma if ClassificationScore(s) = TotalDivergence(sBP ), we have

s = sBP which implies that s is a permutation strategy profile which is a contradiction

to the fact s is a non-permutation strategy profile.

The second line follows since at sBP , each agent’s reported prediction only depends

on his private signal.

The last equality follows from Corollary 130.

(b) We consider the case that the signal strategy θ of s is not a permutation

matrix. The above proof still holds except in two places: one is the inequality in the

first line may not be strict; another is the equality in the fourth line should be a strict

inequality:

∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(θπqσj , θπqσk)

<
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(qσj ,qσk)

The inequality must be strict since based on Corollary 80, we know that if θ is

not a permutation, and Q is fine-grained, then there exists σ1 6= σ2 such that

D∗(θqσ1 , θqσ2) < D∗(qσ1 ,qσ2). Also based on non-zero assumption of Q, we have

Pr(σj = σ1, σk = σ2) > 0.

So in both of the above two cases, we have

ClassificationScore(s) < ClassificationScore(truthtelling)

if s is not a permutation equilibrium
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Theorem 82 Part 3: M+(α, β, PS(·, ·)) has truth-telling as a robust focal

equilibrium:

TotalDivergence(truthtelling) ≈ TotalDivergence(sBP )⇒ θ ≈ π Now we start

to prove that when a symmetric equilibrium has classification score that is close to

that of truth-telling, its signal strategy θ is close to a permutation. We prove it

by contradiction. We will assume θ is far from a permutation equilibrium, that is,

recalling the definition of τ -close, we assume there exists a row of θ that has at least

two large numbers. Under this assumption, we will show the total divergence of sBP is

far from classification score of truth-telling when n is sufficiently large. Formally, we

assume that given any τ , there exists u′, v′, w′ ∈ Σ such that θ(u′, v′) > τ, θ(u′, w′) >

τ . Under this assumption, we will prove that, when n > N(τ,Q), the total divergence

of sBP is O(τ 3) far from classification score of truth-telling.

Lemma 136. Given any fixed τ , for any symmetric equilibrium s with signal strategy

θ, if there exists u′, v′, w′ ∈ Σ such that θ(u′, v′) > τ, θ(u′, w′) > τ , then

TotalDivergence(truthtelling)− TotalDivergence(sBP ) ≥ c2(τc1)3c4c3

Proof of Lemma 136. We first write TotalDivergence in an explicit form:

∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(qσj ,qσk)−

∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(θqσj , θqσk)

(A.30)

Actually, We will show for any j, k,

∑
σj ,σk

Pr(σj, σk)D
∗(qσj ,qσk)−

∑
σj ,σk

Pr(σj, σk)D
∗(θqσj , θqσk) (A.31)

172



is greater than c2(τc1)3c4c3, which implies the result.

We want give a lower bound for (A.31). In order to obtain this lower bound,

we are going to transform this value to
∑

u λug(xu) − g(
∑

u λuxu) where g(·) is a

convex function. To obtain a lower bound of
∑

u λug(xu)− g(
∑

u λuxu), we have an

observation:

For any convex function g(·), g(
∑

u λuxu) and
∑

u λug(xu) are “very different” if

there are two large coefficients λ1 and λ2 with the corresponding x1 and x2 that are

“very different”. Now we introduce a claim to show this observation.

Claim 137.

∑
u

λug(xu)− g(
∑
u

λuxu) ≥
d2(g)

2

λ1λ2

λ1 + λ2

||x1 − x2||2

where d2(g) is a lower bound of g′′(·)

Proof.

g

(∑
u

λuxu

)
≤ (λ1 + λ2)g

(
λ1x1 + λ2x2

λ1 + λ2

)
+
∑
u>2

λug(xu) ≤
∑
u

λug(xu)
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So

∑
u

λug(xu)− g(
∑
u

λuxu)

≥
∑
u

λug(xu)− (λ1 + λ2)g

(
λ1x1 + λ2x2

λ1 + λ2

)
−
∑
u>2

λug(xu)

= λ1g(x1) + λ2g(x2)− (λ1 + λ2)g(
λ1x1 + λ2x2

λ1 + λ2

)

= (λ1 + λ2)(
λ1g(x1) + λ2g(x2)

λ1 + λ2

− g(
λ1x1 + λ2x2

λ1 + λ2

))

≥ (λ1 + λ2)
d2(g)

2

λ1λ2

(λ1 + λ2)2
||x1 − x2||2

=
d2(g)

2

λ1λ2

λ1 + λ2

||x1 − x2||2

where d2(g) is the lower bound of g′′(·)

The first inequality follows if we rewrite
∑

u λuxu as (λ1+λ2)λ1x1+λ2x2

λ1+λ2
+
∑

u>2 λuxu

and apply convexity.

Then we do several manipulations including taking λ1+λ2 outside. For continuous

convex function g(·), we have tg(x) + (1 − t)g(y) − g(tx + (1 − t)y) ≥ 1
2
d2(g)t(1 −

t)||x − y||2 according to [47], then we replace t by λ1

λ1+λ2
and set x = x1, y = x2 and

obtain the final result.

We can think of θ(u′, v′) and θ(u′, w′) as the two large coefficients (actually they

are part of the coefficients). Then we need to find two “very different” entries that

corresponding to those large coefficients. We pick two specific signals s′, t′ ∈ Σ such

that qs′ and qt′ are “very different” in position v′ and w′. The reason we do this

is that when we compute θq, θ(u′, v′) and θ(u′, w′) are the two large entries which
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correspond to the positions v′ and w′ in q. Formally, we pick s′, t′ ∈ Σ such that

∥∥∥∥q(v′|s′)q(v′|t′)
− q(w′|s′)
q(w′|t′)

∥∥∥∥ = max
s,t

∥∥∥∥q(v′|s)q(v′|t)
− q(w′|s)
q(w′|t)

∥∥∥∥
Once we have chosen the two specific signals, since Pr(s′, t′)(D∗(qs′ ,qt′)−D∗(θqs′ , θqt′))

is less than (A.31) based on the fact D∗(qs,qt)−D∗(θqs, θqt) ≥ 0 for s, t 6= s′, t′, we

will give a lower bound of Pr(s′, t′)(D∗(qs′ ,qt′)−D∗(θqs′ , θqt′)) which is also a lower

bound of (A.31).

Let f(x) = (
√
x − 1)2. For convenience, we will write the dot product of two

vectors
∑

v a(v)b(v) as a(·)b(·). Now we give a explicit form of D∗:

Pr(s′, t′)(D∗(qs′ ,qt′)−D∗(θqs′ , θqt′)) (A.32)

= Pr(s′, t′)

(∑
v

q(v|s′)f
(
q(v|t′)
q(v|s′)

)
−
∑
u

θ(u, ·)q(·|s′)f
(

1

θ(u, ·)q(·|s′)
θ(u, ·)q(·|t′)

))
(A.33)

We take
∑

u θ(u, ·)q(·|s′) out and note that
∑

u θ(u, v) = 1,

so
∑

u θ(u, ·)q(·|s′)
1

θ(u,·)q(·|s′)θ(u, v) = 1, then we obtain (A.35) from (A.33).

(A.33) =Pr(s′, t′)
∑
u

θ(u, ·)q(·|s′)∗(
1

θ(u, ·)q(·|s′)
∑
v

θ(u, v)q(v|s′)f
(
q(v|t′)
q(v|s′)

)
(A.34)

− f

(
1

θ(u, ·)q(·|s′)
∑
v

θ(u, v)q(v|s′) q(v|t
′)

q(v|s′)

))
(A.35)

Then we pick the special u′ to obtain (A.37). For the part
∑

u6=u′ , since f(·) is a
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convex function, we have

1

θ(u, ·)q(·|s′)
∑
v

θ(u, v)q(v|s′)f(
q(v|t′)
q(v|s′)

) ≥ f

(
1

θ(u, ·)q(·|s′)
∑
v

θ(u, v)q(v|s′) q(v|t
′)

q(v|s′)

)

so (A.35) is greater than (A.37).

(A.35) ≥Pr(s′, t′)θ(u′, ·)q(·|s′)∗(
1

θ(u′, ·)q(·|s′)
∑
v

θ(u′, v)q(v|s′)f
(
q(v|t′)
q(v|s′)

)
(A.36)

− f

(
1

θ(u′, ·)q(·|s′)
∑
v

θ(u′, v)q(v|s′) q(v|t
′)

q(v|s′)

))
(A.37)

Note that θ(u′, v′) and θ(u′, w′) are large, so in the convex function f(·), there

are two large coefficients 1
θ(u′,·)q(·|s′)θ(u

′, v′)q(v′|s′) and 1
θ(u′,·)q(·|s′)θ(u

′, w′)q(w′|s′) which

correspond to q(v′|t′)
q(v′|s′) and q(w′|t′)

q(w′|s′) . Then based on our choice for s′, t′ and Claim 137,

we have

(A.37) ≥Pr(s′, t′)θ(u′, ·)q(·|s′)c4

2

(
(θ(u′, v′)q(v′|s′)) ∗ (θ(v′, w′)q(w′|s′))
θ(u′, v′)q(v′|s′) + θ(v′, w′)q(w′|s′)

∥∥∥∥ q(v′|t′)q(v′|s′)
− q(w′|t′)
q(w′|s′)

∥∥∥∥2
)

(A.38)

≥c2(τc1)3c4c3 (A.39)

The last inequality follows since Pr(s′, t′) ≥ c2, both θ(u′, v′)q(v′|s′) and θ(v′, w′)q(w′|s′)

are greater than τc1. Also note that:

θ(u′, ·)q(·|s′) ≥ θ(u′, v′)q(v′|s′) + θ(v′, w′)q(w′|s′) ≥ 2τc1

and
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θ(u′, v′)q(v′|s′) + θ(v′, w′)q(w′|s′) ≤ 1.

Any symmetric equilibrium that has agent-welfare close to truth-telling

must be close to a permutation equilibrium: We have already proved that no

symmetric equilibrium pays more than truth-telling. For the symmetric equilibrium

s∗ such that

ClassificationScore(s∗) > ClassificationScore(truthtelling)− γ1

we have

TotalDivergence(truthtelling) = ClassificationScore(truthtelling)

≤ClassificationScore(s∗) + γ1

≤TotalDivergence(s∗BP ) + γ1 ≤ ClassificationScore(truthtelling) + γ1

Let γ1 = (τ1c1)3c2c3c4, then s∗ is τ1 close to a permutation equilibrium or there

will be a contradiction based on Lemma 136. By manipulations, we will obtain our

result.

A.1.2 Asymmetric equilibria

Theorem 138. For any number of signals m, given any SNIFE prior, inM+(α, β, PS(·, ·))

with α
β
< 1

4m
,

1. no equilibrium has agent welfare greater than γ2(n) more than that of truth-

telling where n is the number of agents; and
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2. any profile that pays within γ2(n) of truth-telling must be τ2(n) close to a per-

mutation strategy profile.

where γ2(n) = O( m√
n
) and τ2(n) = O( 6

√
m2

n
) (the constants we omit only depend

on the first two moments of prior Q)1.

Proof Outline for Theorem 138 We want to show that if the number of agents

is sufficiently large, then no equilibrium can have a ClassificationScore that is much

greater than truth-telling; any equilibrium that has ClassificationScore close to truth-

telling must be close to a permutation equilibrium.

The proof is similar with the proof of our main theorem. At a high level, we will

show when the number of agents is sufficiently large, any asymmetric equilibrium

can be symmetrized. Then we follow the proof of our main theorem by using the

symmetrized version of the asymmetric equilibrium.

We define symmetrized sBP as a strategy where each agent plays θ̄nqσ given σ is

his private signal where θ̄n is the average signal strategy of sBP (also of s). We show

the report profiles of symmetrized sBP in the third picture of Figure A.1

Recall that in the proof of our main theorem, we show that

(1) ClassificationScore(s) ≤ TotalDivergence(sBP ).[ Lemma 131 ].

(2) TotalDivergence(truthtelling) ≈ TotalDivergence(sBP )⇒ θ ≈ π. [Lemma 136]

Note that in part (2) is valid only if s is symmetric. However, if we replace θ by

θ̄n where θ̄n is the average signal strategy of s∗. We can rewrite part (2) as

(2) TotalDivergence(truthtelling) ≈ TotalDivergence(symmetrized s∗BP ) ⇒

θ̄n ≈ π where θ̄n is the average signal strategy of s∗. [Lemma 136]

1Actually γ2(n) = 4
√

2m√
n

and τ6
2 (n) = 128∗m2

nc61(c2c3c4)2
, c1 = mins,t∈Σ q(s|t), c2 = mins,t∈Σ Pr(s, t),

c3 = minu,v maxs,t || q(u|s)q(u|t) −
q(v|s)
q(v|t) ||

2, c4 = mins,t,u f
′′( q(u|s)q(u|t) ) where f(x) = (

√
x− 1)2.
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It is valid for any equilibrium s.

In addition to the two key parts proved in the proof of our main theorem, we

have to prove two more parts to prove the asymmetric case. The whole proof of

Theorem 138 is illustrated in Figure A.1:

At a high level, the following two parts show that when the number of agents is

sufficiently large, we can replace any asymmetric equilibrium by its symmetrized

version since they are “close” to each other.

(3) TotalDivergence(sBP ) ≈ TotalDivergence(symmetrized sBP ) when the

number of agents is sufficiently large. [Lemma 139] Intuitively, when n is

large enough, θ−j will be close to θ̄n. We will use this observation to prove this

part.

(4) ClassificationScore(s∗) ≥ ClassificationScore(truthtelling)

⇒ TotalDivergence(truthtelling) ≈ TotalDivergence(symmetrized s∗BP )

when the number of agents is sufficiently large.[Corollary 140] Here s∗BP

is the best prediction strategy of s∗. This part will also imply no equilibrium

can have ClassificationScore that is much greater than truth-telling.

Figure A.1: Proof Outline for Theorem 138
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A.1.3 Proof for Theorem 138

(3) TotalDivergence(sBP ) ≈ TotalDivergence(symmetrized sBP ) when the

number of agents is sufficiently large. We symmetrize sBP which means we let

each agent i report θ̄nqσi given σi is agent i’s private signal and θ̄n is the average signal

strategy of sBP and show that the total divergence will not change much. Intuitively,

this is because θ−i are similar among agents when there are many agents. l

Lemma 139. Given any SNIFE prior Q, for any ε > 0, there exists Nε = 32∗m2

ε2
such

that if n > Nε, for any strategy (θ1, θ2, ..., θn), any two agents j, k,

|D∗(θ−jqσj , θ−kqσk)−D∗(θ̄nqσj , θ̄nqσk)| < ε

Proof of Lemma 139. For convenience, let s = σj, t = σk

|D∗(θ−jqs, θ−kqt)−D∗(θ̄nqs, θ̄nqt)| (A.40)

=|
∑
u

(√
θ−j(u, ·)qs −

√
θ−k(u, ·)qt

)2

−
(√

θ̄n(u, ·)qs −
√
θ̄n(u, ·)qt

)2

| (A.41)

=|
∑
u

(√
θ−j(u, ·)qs −

√
θ−k(u, ·)qt −

√
θ̄n(u, ·)qs +

√
θ̄n(u, ·)qt

)
∗(√

θ−j(u, ·)qs −
√
θ−k(u, ·)qt +

√
θ̄n(u, ·)qs −

√
θ̄n(u, ·)qt

)
| (A.42)

≤2 ∗m ∗max
u

(
|
√
θ−j(u, ·)qs −

√
θ̄n(u, ·)qs|+ |

√
θ−k(u, ·)qt −

√
θ̄n(u, ·)qt|

)
(A.43)

≤4 ∗m ∗max
u,s,j
|
√
θ−j(u, ·)qs −

√
θ̄n(u, ·)qs| (A.44)

The first equality follows from the definition of Helinger-divergence.

The second equality is just formula for the difference of square.

To arrive at (A.43),
∑

u |
(√

θ−j(u, ·)qs −
√
θ−k(u, ·)qt +

√
θ̄n(u, ·)qs −

√
θ̄n(u, ·)qt

)
| ≤∑

u 2 = 2m where the inequality follows from the fact 0 < D∗ < 1.
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The last equality follows since both |
√
θ−j(u, ·)qs−

√
θ̄n(u, ·)qs| and |

√
θ−k(u, ·)qt−√

θ̄n(u, ·)qt| are less than maxu,s,j |
√
θ−j(u, ·)qs −

√
θ̄n(u, ·)qs|.

Now we consider two cases for any u, s, j:

(1) |
√
θ−j(u, ·)qs−

√
θ̄n(u, ·)qs| ≤ ε

4∗m : It is clear the result in this Lemma follows.

(2) |
√
θ−j(u, ·)qs −

√
θ̄n(u, ·)qs| > ε

4∗m : Notice that (n − 1)θ−j = nθ̄n − θj, then

we can see

θ−j = θ̄n +
1

n
(θ−j − θj)

4 ∗m ∗ |
√
θ−j(u, ·)qs −

√
θ̄n(u, ·)qs| (A.45)

= 4 ∗m ∗ | θ−j(u, ·)qs − θ̄n(u, ·)qs√
θ−j(u, ·)qs +

√
θ̄n(u, ·)qs

| (A.46)

= 4 ∗m ∗
1
n
|(θ−j(u, ·)− θj(u, ·))qs|√
θ−j(u, ·)qs +

√
θ̄n(u, ·)qs

(A.47)

< 4 ∗m ∗ 2 ∗ 4 ∗m
ε

1

n
< ε (A.48)

when n > Nε = 32∗m2

ε2

The first equality follows from the formula of the difference of squares.

The second equality follows from θ−j = θ̄n + 1
n
(θ−j − θj).

If |
√
θ−j(u, ·)qs−

√
θ̄n(u, ·)qs| > ε

4∗m , we have |
√
θ−j(u, ·)qs +

√
θ̄n(u, ·)qs| > ε

4∗m

as well, the third line follows.

(4) ClassificationScore(s∗) ≥ ClassificationScore(truthtelling)

⇒ TotalDivergence(truthtelling) ≈ TotalDivergence(symmetrized s∗BP ) when

the number of agents is sufficiently large. The following corollary is derived

from Lemma 139. It will imply not only

TotalDivergence(truthtelling) ≈ TotalDivergence(symmetrized s∗BP ) but also any
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equilibrium cannot have agent-welfare (ClassificationScore) that is much greater than

truth-telling when the number of agents is sufficiently large.

Corollary 140. Given any SNIFE prior Q, for any ε > 0, if n > Nε = 128∗m2

ε2
, for

any equilibrium s∗ that has greater ClassificationScore than the truth-telling Classifi-

cationScore minus ε/2:

Classification(truthtelling)

< Classification(s∗) +
ε

2

< TotalDivergence(symmetrized s∗BP ) + ε

≤ Classification(truthtelling) + ε

Proof for Corollary 140.

TotalDivergence(truthtelling) = ClassificationScore(truthtelling)

≤ ClassificationScore(s∗) +
ε

2

≤ TotalDivergence(s∗BP ) +
ε

2

< TotalDivergence(symmetrized s∗BP ) + ε

≤ ClassificationScore(truthtelling) + ε

The first equality follows from Corollary 130.

The second inequality follows from the condition.

The third inequality follows from the main lemma.

The fourth inequality follows from Lemma 139.
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The last inequality follows from information monotonicity since

ClassificationScore(truthtelling)− TotalDivergence(symmetrized s∗BP )

=
∑
j

k 6=j

∑
σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(qσj ,qσk)−

∑
j,k,σj ,σk

Pr(j, k)Pr(σj, σk)D
∗(θ̄nqσj , θ̄nqσk)

=
∑

j,k,σj ,σk

Pr(j, k)Pr(σj, σk)(D
∗(qσj ,qσk)−D∗(θ̄nqσj , θ̄nqσk)) ≥ 0

The second equality follows since if j = k, D∗(qσj ,qσk) = 0

This corollary induces the following result:

No equilibrium can have agent-welfare that is much greater than truth-

telling Let ε
2

= γ2, we need n ≥ 128∗m2

ε2
to obtain γ2 tolerance based on Corol-

lary 140. By manipulations, we obtain our result.

If the number of agents is sufficiently large, any equilibrium that has agent-

welfare close to truth-telling must be close to permutation equilibrium:

Let ε = (τ2c1)3c2c3c4, if n > 32∗m2

(ε/2)2 , we have already proved that

TotalDivergence(truthtelling)− TotalDivergence(symmetrized s∗BP ) < ε

based on Corollary 140. If s∗ is not τ2 close to a permutation equilibrium, we will

have

TotalDivergence(truthtelling)−TotalDivergence(symmetrized s∗BP ) > (τ2c1)3c2c3c4 = ε

which is a contradiction based on Lemma 136. By manipulations, we obtain our

result.
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A.1.4 Proof for claims

Claim 72. Assume that the distribution over all agents’ private signals is ω ∈ ∆Σ,

the distribution over all agents’ reported signals will be θ̄nω.

Proof for Claim 72. The probability of signal σ will be

∑
i

Pr(i)
∑
σ′

θi(σ, σ
′)ω(σ′) =

1

n

∑
i

∑
σ′

θi(σ, σ
′)ω(σ′) =

∑
σ′

θ̄n(σ, σ′)ω(σ′)

where Pr(i) is the probability agent i is picked. For each agent i, we sum the prob-

ability agent i receives private signal σ′ which is ω(σ′) times the probability that he

reports σ given he receives σ′ which is θi(σ, σ
′) over all possible private signal σ′.

So the distribution of reported signals is θ̄nω.

Claim 74. For each agent i, if he receives private signal σi, agent i will believe that

the expected likelihood of other agents’ reported signals is θ−iqσi where θ−i =
∑
j 6=i θj

n−1
.

Proof for Claim 74. For each agent i, given he receives private signal σi, he will

believe the expected likelihood for other agents’ private signals is qσi . Based on

Claim 72, he will believe the expected likelihood for other agents’ reported signals is

the average signal strategy of other agents’ signal strategies times qσi which is θ−iqσi

where θ−i =
∑
j 6=i θj

n−1
.

Claim 78. For any transition matrix θm×m where the sum of every column is 1, θ is

a permutation matrix iff for any row of θ, there at most one non-zero entry.

Proof for Claim 78. It is clear that any permutation matrix has exactly one non-zero

entry, which is 1, in each row and each column. Thus we only need to prove the

direction that if for any row of θ, there is at most one non-zero entry, θ must be a

permutation matrix.

We first prove that there are exactly m non-zero entries in θ: if for any row of θ,

there is at most one non-zero entry, we can see θ has at most m non-zero entries. θ
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is a transition matrix where the sum of every column is 1,which implies that θ has at

least m non-zero entries. Thus we proved there are exactly m non-zero entries in θ.

We have just shown that θ has exactly m non-zero entries. Since θ has at most

one non-zero entry in each row, θ must have exactly one non-zero entry in each row.

θ also has at least one non-zero entry in each column since it is a transition matrix,

so θ must have exactly one non-zero entry 1 in each column. Thus θ has exactly one

non-zero entry 1 in each row and each column which implies that θ is a permutation

matrix.

Claim 125. The Disagreement Mechanism has the same equilibria as the Divergence-

based BTS.

Proof for Claim 125. The value of scoreC(rj, rk) does not depend on agent i’s strat-

egy. The term related to agent i’s strategy contained in scoreM is paymentM(α,β,PS(·,·))(i, r).

This implies that agent i’s marginal benefit from deviation in M+(α, β, PS(·, ·)) is

the same with its marginal benefit from the same deviation in M(α, β, PS(·, ·)).

Claim 126.

ClassificationScore = Diversity− Inconsistency

Proof for Claim 126. Based on the definition of ClassificationScore, we have

∑
i
j 6=i

∑
k 6=i,j
σi,σj ,σk

Pr(i)Pr(σi)Pr(j, k)Pr(σj, σk|σi)∗ (A.49)

∫
σ̂j ,p̂j ,σ̂k,p̂k

Pr(σ̂j ,p̂j)←sj(σj)(σ̂j, p̂j)Pr(σ̂k,p̂k)←sk(σk)(σ̂k, p̂k)scoreC(rj, rk)

(A.50)

Now we begin our proof:
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∑
i
j 6=i

∑
k 6=i,j
σi,σj ,σk

Pr(i)Pr(σi)Pr(j, k)Pr(σj, σk|σi)
∫
ĵ,k̂

Pr(ĵ, k̂)scoreC(rj, rk)

=
∑
i
j 6=i

∑
k 6=i,j
σj ,σk

1

n(n− 1)(n− 2)
Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)scoreC(rj, rk)

=
1

n(n− 1)

∑
j

k 6=j

∑
σj ,σk

Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)scoreC(rj, rk)

=
∑
j

k 6=j

∑
σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)scoreC(rj, rk)

The first equality follows since fix j, k, scoreC(rj, rk) does not depend on i and

we also have
∑

σi
Pr(σi)Pr(σj, σk|σi) = Pr(σj, σk).

The second equality follows since for any (j, k), j 6= k pair, there are n−2 numbers

that are neither j nor k which means (j, k) will repeat n − 2 times since there are

n− 2 possible i.

By definition we can see ClassificationScore = Diversity− Inconsistency.

Claim 127. Every permutation strategy profile has the same ClassificationScore,

Diversity, and Inconsistency with truth-telling.

Proof for Claim 127. Any permutation strategy profile’s report profiles can be seen

as a relabeling to truth-telling’s report profiles, which implies the claim.

Claim 128. The average agent-welfare in our Disagreement Mechanism is ClassificationScore
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Proof for Claim 128. We only need to prove
∑

i scoreM(i, r) = 0.

∑
i

scoreM(i, r) =
∑
i∈A

scoreM(i, r) +
∑
i∈B

scoreM(i, r)

=
∑
i∈A

(
paymentM(α,β,PS(·,·))(i, r)− 1

|A|
∑
i∈B

paymentM(α,β,PS(·,·))(i, r)

)

+
∑
i∈B

(
paymentM(α,β,PS(·,·))(i, r)− 1

|B|
∑
i∈A

paymentM(α,β,PS(·,·))(i, r)

)
= 0

Claim 129. For any strategy profile s,

Diversity(s) = TotalDivergence(s) ⇔ Inconsistency(s) = 0

Proof for Claim 129. Note that

TotalDivergence(s)− Diversity(s)

=
∑
j

k 6=j

∑
σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)δ(σ̂j = σ̂k)D
∗(p̂j, p̂k)

while

Inconsistency(s) =
∑
j

k 6=j

∑
σj ,σk

Pr(j, k)Pr(σj, σk)

∫
ĵ,k̂

Pr(ĵ, k̂)δ(σ̂j = σ̂k)
√
D∗(p̂j, p̂k)

Because each part in TotalDivergence(s)− Diversity(s) is non-negative,

TotalDivergence(s)− Diversity(s) = 0 will imply

Pr(σj, σk)
∫
ĵ,k̂
Pr(ĵ, k̂)δ(σ̂j = σ̂k)D

∗(p̂j, p̂k) = 0.

So we have Pr(ĵ, k̂)δ(σ̂j = σ̂k) = 0 or D∗(p̂j, p̂k) = 0 which implies

Pr(σj, σk)
∫
ĵ,k̂
Pr(ĵ, k̂)δ(σ̂j = σ̂k)

√
D∗(p̂j, p̂k) = 0. The proof for another direction

is similar.
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A.1.5 Proof of Theorem 81

Theorem 81. [55]

For any α, β > 0 and any strictly proper scoring rule PS, M(α, β, PS) has truth-

telling as a strict Bayesian-Nash equilibrium whenever the prior Q is informative and

symmetric.

Proof. We must show that for every agent, if other agents tell the truth, then this

agent can (strictly) maximize his expected payoff if and only if he chooses to tell the

truth.

Assume that all agents other than i are telling the truth. The probability that

agent i is matched with agent j is Pr(j) = 1
n−1

. The expected payoff for agent i is:

E[paymentM(α,β,PS(·,·))(i, r)|σi] (A.51)

=
∑
j 6=i

(Pr(j)E[αscoreP (ri, rj) + βscoreI(ri, rj)|σi]) (A.52)

=
∑
j 6=i

1

n− 1
[αPS(E(σ̂j|σi), p̂i) + β(−Pr(σ̂j = σ̂i|σi)E[(PS(p̂j, p̂j)− PS(p̂j, p̂i))|σi, σ̂j = σ̂i]]

(A.53)

=
∑
j 6=i

1

n− 1
[αPS(E(σj|σi), p̂i) + β(Pr(σj = σ̂i|σi)(PS(qσ̂i , p̂i)− PS(qσ̂i ,qσ̂i)))]

(A.54)

= αPS(E(
∑
j 6=i

1

n− 1
σj|σi), p̂i) +

∑
j 6=i

β

n− 1
[(Pr(σj = σ̂i|σi)(PS(qσ̂i , p̂i)− PS(qσ̂i ,qσ̂i)))]

(A.55)

= αPS(θ−iqσi , p̂i) +
∑
j 6=i

β

n− 1
[(Pr(σj = σ̂i|σi)(PS(qσ̂i , p̂i)− PS(qσ̂i ,qσ̂i)))]

(A.56)

= αPS(qσi , p̂i) +
∑
j 6=i

β

n− 1
[(Pr(σj = σ̂i|σi)(PS(qσ̂i , p̂i)− PS(qσ̂i ,qσ̂i)))] (A.57)

From (A.52) to (A.53): When σ̂i 6= σ̂j, the information score is 0, so we only need
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to consider the case σ̂i = σ̂j.

From (A.53) to (A.54): All agents other than i tell the truth, so σ̂j = σj and

p̂j = qσj = qσ̂j = qσ̂i .

From (A.54) to (A.55): The proper scoring rule is linear for the first entry.

From (A.55) to (A.56): Based on Claim 74, E(
∑

j 6=i
1

n−1
σj|σi) = θ−iqσi .

From (A.56) to (A.57): Note that for any j 6= i, agent j tells the truth so θ−i = I.

First, if agent i plays truthfully, then σ̂i = σi, p̂i = qσi , and we will have

E(payment(i,M)|σi) = αPS(qσi ,qσi) because PS(qσ̂i , p̂i)− PS(qσ̂i ,qσ̂i) = 0.

Now show that to receive a payment this high, agent i must play truthfully.

Assume that

E(payment(i,M)|σi) ≥ αPS(qσi ,qσi). First, the second term of Equation (A.57) is

non-positive based on the property of proper scoring rule. Then we must have that

PS(qσi , p̂i) ≥ PS(qσi ,qσi), but because PS is a strictly proper scoring rule, this

happens only if p̂i = qσi . But this implies that the second term of Equations (A.57)

equals 0, and this requires that PS(qσ̂i , p̂i) = PS(qσ̂i ,qσ̂i).

However, by the properties of strictly proper scoring rules, this means qσ̂i = p̂i.

However, we already showed that p̂i = pi = qσi . Putting this together we see that

qσ̂i = qσi . Based on the informative prior assumption, this implies that σ̂i = σi.

So we proved that for any agent i, when other agents tell the truth, agent i can

obtain the best expected payoff if and only if he tells the truth which means truth-

telling is a strict Bayesian-Nash equilibrium in the truthful mechanism.

A.2 Proof of the truthfulness of BTS

Proof of Theorem 85 (i) [51]. When everyone else tells the truth, for every i, agent

i will report truthful pi to maximize her expected prediction score based on the
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properties of log scoring rule. Thus, p̂i = pi for every i.

For the expected information score, we want to calculate the optimal σ agent i

should report to maximize her expected information score when everyone else tells

the truth, given that she receives Ψi = σi).

arg max
σ

EΨj ,W |Ψi=σi log(
Pr[Ψi = σ|W ]

Pr[Ψi = σ|Ψj]
)

= arg max
σ

EΨj ,W |Ψi=σi log(
Pr[Ψi = σ|W,Ψj]

Pr[Ψi = σ|Ψj]
) (Conditional independence)

= arg max
σ

EΨj ,W |Ψi=σi log(
Pr[Ψi = σ,W |Ψj]

Pr[Ψi = σ|Ψj]Pr[W |Ψj]
)

= arg max
σ

EΨj ,W |Ψi=σi log(
Pr[W |Ψi = σ,Ψj]

Pr[W |Ψj]
)

= arg max
σ

EΨjL(Pr[W |Ψi = σi,Ψj],Pr[W |Ψi = σ,Ψj])

(we can add log Pr[W |Ψj] which is independent of σ)

= σi (arg maxq L(p,q) = p)

Therefore, in BTS, for every i, agent i’s best response is (σi,pi) when everyone

else tells the truth. BTS is truthful.

A.3 Expertise elicitation

Fact 12 (Information monotonicity of proper scoring rules). Given any strictly proper

scoring rule PS,

EX,Y,ZPS(Y,Pr[Y |X,Z]) ≥ EX,Y PS(Y,Pr[Y |X]).

The equality holds if and only if Pr[Y |X = x, Z = z] = Pr[Y |X = x] for all (x, z)

where Pr[X = x, Z = z] > 0.
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Proof.

EX,Y PS(Y,Pr[Y |X]) =
∑
x,y

Pr[X = x, Y = y]PS(Y = y,Pr[Y |X = x])

=
∑
x,y,z

Pr[X = x, Y = y, Z = z]PS(Y = y,Pr[Y |X = x])

=
∑
x,z

Pr[X = x, Z = z]

∗
∑
y

Pr[Y = y|X = x, Z = z]PS(Y = y,Pr[Y |X = x])

=
∑
x,z

Pr[X = x, Z = z]PS(Pr[Y |X = x, Z = z],Pr[Y |X = x])

≤
∑
x,z

Pr[X = x, Z = z]PS(Pr[Y |X = x, Z = z],Pr[Y |X = x, Z = z])

(PS is strictly proper)

= EX,Y,ZPS(Y,Pr[Y |X,Z])

The equality holds if and only if Pr[Y |X = x, Z = z] = Pr[Y |X = x] for all (x, z)

where Pr[X = x, Z = z] > 0 since PS is striclty proper.

Theorem 96. With Assumption 88, 89, 90, Multi-HMIM({αm}m) is truthful; more-

over, when {αm}m are potent for Multi-HMIM({αm}m), Multi-HMIM({αm}m) is po-

tent and truthful.

Proof. Since we assume all tasks are a priori similar, without loss of generality, we

can assume every agent uses the same (possibly mixed) report and (possibly mixed)

effort strategy for all tasks.

Truthful We divide the proof into two parts. For each agent i, given that she

believes other agents report honestly (may not report all signals they have), we will

show (1) conditioning on agent i playing pure effort strategy, she should maximize her
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payment as well as the utility by playing truthful strategy; (2) it’s better for agent i

to play pure effort strategy—performing the same method all the time—than mixed

effort strategy.

Part (1). We want to show that for each agent i who always perform method mi,

given other agents honestly report their methods and signals, for each m � mi, she

should honestly report her real signal ψmi to maximize her expected information score

in m’s level, that is,

E[2αmCorr(ψ̂
m
i ; ψ̂m

−i|{ψ̂m′

−i}m′≺m].

Since we assume other agents report honestly and we have assumed that the signals

agents receive for every method are homogeneous, we replace ψ̂m
−i, ψ̂

m′
−i by ψm

−i,ψ
m′

−i .

When we run algorithm 1 to calculate Corr(ψ̂m
i ; ψ̂m

−i|{ψ̂m′
−i}m′≺m), in the situation

the algorithm does not return “success”—situation 0—her information score in m’s

level is 0 regardless of agent i reports for method m’s output. In the situation the

algorithm returns “success”, either it runs Corr(ψ̂m
i ; ψ̂m

−i) and returns “success”—

situation 1—or it runs Corr(ψ̂m
i (D); ψ̂m

−i(D)) and returns “success”—situation 2.

For each task, each m, fixing agents’ choices for whether to provide a signal or ∅,

the situation which the algorithm runs in is fixed as well. We only need to consider

each situation separately.

Claim 141. Given that other agents report honestly, for each agent i who always

perform mi, for all m � mi, when agent i honestly reports method m’s output, her

expected information score in m’s level per each reward task is

αmMI tvd(Ψm
i ; Ψm

−i)

in situation 1;

αmMI tvd(Ψm
i ; Ψm

−i|{Ψm′

−i}m′≺m)

192



in situation 2.

Claim 142. Given that other agents report honestly, for each agent i, when agent

i reports method m’s output as ψ̂mi , her expected information score in m’s level per

each reward task is ≤

αmMI tvd(Ψ̂m
i ; Ψm

−i)

in situation 1;

αmMI tvd(Ψ̂m
i ; Ψm

−i|{Ψm′

−i}m′≺m)

in situation 2. The equality holds if Ψ̂m
i is positively correlated with Ψm

−i (conditioning

on {Ψm′
−i}m′≺m).

Once we show the above two claims. Since

MI tvd(Ψ̂m
i ; Ψm

−i|{Ψm′

−i}m′≺m)

= MI tvd(fm({Ψm′

i }m′�mi); Ψm
−i|{Ψm′

−i}m′≺m)

(Agent i uses the report strategy fm to report m’s output)

≤MI tvd({Ψm′

i }m′�mi ; Ψm
−i|{Ψm′

−i}m′≺m) (Information Monotonicity of MIf )

= MI tvd(Ψm
i ; Ψm

−i|{Ψm′

−i}m′≺m) (Assumption 90)

and similarly MI tvd(Ψ̂m
i ; Ψm

−i) ≤MI tvd(Ψm
i ; Ψm

−i). Part (1) follows immediately.

Part (2). This part is implied by the complexity of MI tvd. We give a formal proof

here. We consider situation 1 here. For any 0 ≤ λ ≤ 1, any two methods m1,m2, if

agent i perform method m1 with probability λ, method m2 with probability 1 − λ,

for every m, agent i’s utility in m’s level is less than
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MI tvd(Ψ̂m
i ; Ψm

−i)− (λhi(m1) + (1− λ)hi(m2))

≤ max
fm

MI tvd(fm(her received signals); Ψm
−i)− (λhi(m1) + (1− λ)hi(m2))

= MI tvd(f ∗m(her received signals); Ψm
−i)− (λhi(m1) + (1− λ)hi(m2))

(f ∗m is the optimal report strategy.)

≤ λ(MI tvd(f ∗m({Ψm′

i }m′�m1); Ψm
−i)− hi(m1)) + (1− λ)(MI tvd(f ∗m({Ψm′

i }m′�m2); Ψm
−i)− hi(m2))

(Convexity of MIf )

≤ max{MI tvd(f ∗m({Ψm′

i }m′�m1); Ψm
−i)− hi(m1),MI tvd(f ∗m({Ψm′

i }m′�m2); Ψm
−i)− hi(m2)}

in situation 1. Without loss of generality, we assume

MI tvd(f ∗m({Ψm′

i }m′�m1); Ψm
−i)− hi(m1) ≥MI tvd(f ∗m({Ψm′

i }m′�m2); Ψm
−i)− hi(m2).

Then

MI tvd(Ψ̂m
i ; Ψm

−i)− (λhi(m1) + (1− λ)hi(m2))

≤MI tvd(f ∗m({Ψm′

i }m′�m1); Ψm
−i)− hi(m1)

≤ max
fm

MI tvd(fm({Ψm′

i }m′�m1); Ψm
−i)− hi(m1)

The analysis for situation 2 is similar. With the positively correlated guess assumption

(Assumption 92) and Claim 142, we know maxfmMI tvd(fm({Ψm′
i }m′�m1); Ψm

−i) can

be obtained by agent i in Multi-HMIM by always performing m1 and playing a proper

report strategy. Thus, agent i cannot obtain better utility by playing mixed effort

strategy.
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Potent We can follow the proof of truthful property and additionally show that

when the coefficients are potent , for each agent i, when she believes others agents

play prudent strategy, agent i should pick the effort strategy defined by the prudent

strategy as her optimal effort strategy. When the coefficients are potent , based on

the definition of potent coefficients, for each agent i, when she believe other agents

play prudent strategy, for each task she finished, there must exists another agent who

finished the same task with her, using the method that is higher or equal to her.

Thus, agent i’s all tasks are reward tasks for her, and algorithm 1 will always run into

situation 2 since the mechanism always has access to all levels of information. With

the positively correlated guess assumption (Assumption 92) and Claim 142, agent i’s

optimal utility is proportional to

∑
m∈M

max
fm:Π`�miΣ` 7→Σm

αmMI tvd(fm({Ψ`
i}`�mi); Ψm

−i|{Ψm′

−i}m′≺m)− hi(mi)

by always performing method mi. Thus, agent i’s optimal effort strategy should

be the effort strategy defined by the prudent strategy, given that she believes other

agents play prudent strategy.

Theorem 100. With Assumption 88, Learning based multi-HMIM is dominant truth-

ful.

Moreover, with Assumption 97, when the rule RULE is potent , Learning based

multi-HMIM is potent , dominant truthful and will output the hierarchical information

structure as well as the maximal level(s) answer vector given that agents play prudent

strategy.

Proof for Theorem 100. Since we assume all tasks are a priori similar, without loss

of generality, we can assume every agent use the same report and effort strategy for

all tasks.
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In order to show the dominant truthful property, we will show for each agent,

fixing any other agents’ strategies, (1) conditioning on using pure effort strategy, she

can maximize her payment as well as the utility by reporting her received information

honestly; (2) pure effort strategy has higher utility than mixed effort strategy.

Part (1). Even if the mechanism clusters incorrectly, part (1) still follows directly

from the information monotonicity property of f -mutual information MIf .

Part (2). The proof here is the same with the part (2) proof in Theorem 96. We

give a formal proof here.

For any 0 ≤ λ ≤ 1, any two methods m1,m2, if agent i perform method m1 with

probability λ, method m2 with probability 1− λ, agent i’s utility in m’s level is

MIf (her reported signals; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)− (λhi(m1) + (1− λ)hi(m2))

≤MIf (her received signals; ; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)− (λhi(m1) + (1− λ)hi(m2))

≤λ(MIf ({Ψm′

i }m′�m1 ; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)− hi(m1)) (convexity of MIf )

+ (1− λ)(MIf ({Ψm′

i }m′�m2 ; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)− hi(m2))

≤max{MIf ({Ψm′

i }m′�m1 ; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)− hi(m1),

MIf ({Ψm′

i }m′�m2 ; Ψ̂m
−i|{Ψ̂m′

−i}m′≺m,m′∈M−i)− hi(m2)}

Thus, each agent i cannot obtain higher utility by playing a mixed effort strategy.

It remains to show the potent property. When the rule is potent , for each agent

i, when she believes other agents play prudent strategy, the mechanism must have

access to all levels of honest answer vectors due to the definition of prudent strat-

egy and potent rule. With Assumption 97, the mechanism can correctly learn the

whole hierarchical information structure without agent i’s report and use coefficients
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α(RULE). Thus, her optimal payment for performing method mi will be

∑
m∈M

αmMIf ({Ψ`
i}`�mi ; Ψm

−i|{Ψm′

−i}m′≺m)

due to the information monotonicity of MIf . In this case, her optimal strategy is her

prudent strategy. Therefore, learning based Multi-HMIM is potent and will output

the correct hierarchical information structure as well as the maximal level(s) answer

vector(s) when agents play prudent strategy.

Theorem 106. With Assumption 101, single-HMIM is strictly truthful; moreover,

when the coefficients is potent for single-HMIM, single-HMIM is potent and strictly

truthful.

for Theorem 106. For each agent i, her highest information score is 0. When she

believes all other agents honestly report their signals and predictions, she can obtain

her highest prediction score via providing her truthful prediction based on the prop-

erty of the strictly proper scoring rule. While during the same time, she can obtain 0

(the highest) information score according to the common prior assumption. If agent

i tell lies about her predictions, in expectation she will receive strictly lower predic-

tion score since PS is strictly proper. If she honestly provides her predictions but

lie for the signals, then she will be punished for her information score with positive

probability. Therefore, when agent i believes everyone else tells the truth, honestly

reporting her truthful signals and predictions strictly maximize her payment.

It remains to show the potent property. In Single-HMIM, when the coefficients

are potent , for each agent i, when she believes other agents play prudent strategy,

for each m, there must exist a reference agent for agent i who reports method m’s
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output. Thus agent i’s optimal expected payment by performing method mi is

∑
m∈M

αmEQm [PS(σm, pmmi)]

since her optimal information score is always 0. In this case, agent i’s optimal strategy

is prudent for her. Therefore, Single-HMIM is potent .

Claim 141. Given that other agents report honestly, for each agent i who always

perform mi, for all m � mi, when agent i honestly reports method m’s output, her

expected information score in m’s level per each reward task is

αmMI tvd(Ψm
i ; Ψm

−i)

in situation 1;

αmMI tvd(Ψm
i ; Ψm

−i|{Ψm′

−i}m′≺m)

in situation 2.

Proof for Claim 141. We first show

E[Corr(ψm
i ; Ψm

−i)] =
1

2
MI tvd(Ψm

i ; Ψm
−i).
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1

2
MI tvd(Ψm

i ; Ψm
−i) =

1

2

∑
σ,σ′

|Pr[Ψm
i = σ,Ψm

−i = σ′]− Pr[Ψm
i = σ] Pr[Ψm

−i = σ′]|

(Definition of MI tvd)

=
1

2

∑
σ,σ′

1(σ = σ′)
(
Pr[Ψm

i = σ,Ψm
−i = σ′]− Pr[Ψm

i = σ] Pr[Ψm
−i = σ′]

)
+ 1(σ 6= σ′)

(
Pr[Ψm

i = σ] Pr[Ψm
−i = σ′]− Pr[Ψm

i = σ,Ψm
−i = σ′]

)
(Assumption 89)

=
∑
σ

(
Pr[Ψm

i = σ,Ψm
−i = σ]− Pr[Ψm

i = σ] Pr[Ψm
−i = σ]

)
(Combining like terms, Pr[E]− Pr[¬E] = 2 Pr[E]− 1)

= E[Corr(ψm
i ;ψm

−i)] (see Algorithm 1)

To show

E[Corr(ψm
i ;ψm

−i|{ψm′

−i}m′≺m)] =
1

2
MI tvd(Ψm

i ; Ψm
−i|{Ψm′

−i}m′≺m),

we only need to replace every Pr[·] in the above equations by Pr[·|{Ψm′
−i}m′≺m =

{σm′}m′≺m] with putting
∑
{σm′}m′≺m

Pr[{Ψm′
−i}m′≺m = {σm′}m′≺m] ahead. Note that

assumption 89 can be applied to this case as well.

Claim 142. Given that other agents report honestly, for each agent i, when agent

i reports method m’s output as ψ̂mi , her expected information score in m’s level per

each reward task is ≤

αmMI tvd(Ψ̂m
i ; Ψm

−i)

in situation 1;

αmMI tvd(Ψ̂m
i ; Ψm

−i|{Ψm′

−i}m′≺m)
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in situation 2. The equality holds if Ψ̂m
i is positively correlated with Ψm

−i.

Proof for Claim 142. The proof is similar with the proof of Claim 141. We only need

to replace Ψm
i by Ψ̂m

i and change the second equation to greater than, that is,

1

2

∑
σ,σ′

|Pr[Ψm
i = σ,Ψm

−i = σ′]− Pr[Ψm
i = σ] Pr[Ψm

−i = σ′]|

≥ 1

2

∑
σ,σ′

1(σ = σ′)
(
Pr[Ψm

i = σ,Ψm
−i = σ′]− Pr[Ψm

i = σ] Pr[Ψm
−i = σ′]

)
+ 1(σ 6= σ′)

(
Pr[Ψm

i = σ] Pr[Ψm
−i = σ′]− Pr[Ψm

i = σ,Ψm
−i = σ′]

)
. (

∑
|x| ≥

∑
x)

Note that the equality holds if Ψ̂m
i is positively correlated with Ψm

−i. Follow the

same proof of Claim 141, we finish the proof.

A.4 Forecast elicitation and an information aggregation prob-

lem: co-training

Claim 110. When random variables XA, XB are independent conditioning on Y ,

K(XA = xA, XB = xB) =
∑
y

Pr[Y = y]K(XA = xA, Y = y)K(XB = xB, Y = y)

=
∑
y

Pr[Y = y|XA = xA]K(XB = xB, Y = y)

=
∑
y

Pr[Y = y|XA = xA] Pr[Y = y|XB = xB]

Pr[Y = y]
.
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Proof.

K(XA = xA, XB = xB) =
Pr[XA = xA, XB = xB]

Pr[XA = xA] Pr[XB = xB]

=

∑
y Pr[Y = y] Pr[XA = xA, XB = xB|Y = y]

Pr[XA = xA] Pr[XB = xB]

=

∑
y Pr[Y = y] Pr[XA = xA|Y = y] Pr[XB = xB|Y = y]

Pr[XA = xA] Pr[XB = xB]

(Conditional independence)

=
∑
y

Pr[Y = y]K(XA = xA, Y = y)K(XB = xB, Y = y)

(PMI=posterior/prior)

=
∑
y

Pr[Y = y|XA = xA]K(XB = xB, Y = y)

=
∑
y

Pr[Y = y|XA = xA] Pr[Y = y|XB = xB]

Pr[Y = y]
.

Theorem 119. Given the prior distribution over the Y , with the conditional in-

dependence assumption, with a priori similar and random order assumption, when

max{|LA|, |LB|} ≥ 2 and the prior is stable and well-defined, when the convex func-

tion f is differentiable and f ′ is invertible, MCG(f) is focal.

When both Alice and Bob are honest, each of them’s expected payment in MCG(f)

is

MIf (XA;XB).

Proof. Given that Alice’s strategy is sA and Bob’s strategy is sB, with the a priori

similar and random order assumption, we represent agents’ report as the output

(possibly being random) of their strategy operating on the private information.

We start to show MCG(f) is strictly truthful. Given that Alice is honest, based

on Lemma 120, Bob will maximize his expected payment if and only if ∀`1, `2,
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R(pxA`1 , sB(x`2B )) = f ′(K(x`1A , x
`2
B )).

Note that in MCG(f),

R(pxA`1 , sB(x`2B )) = f ′(
∑
y

pxA`1 (y)sB(x`2B )(y)

Pr[Y = y]
)

Since the prior is stable, the above equation is satisfied for all possible xA
`1 if and

only if Bob tells the truth—reporting pxB`2 . Therefore, MCG(f) is strictly truthful.

It remains to show MCG(f) pays truth-telling the most and strictly better than

any other non-permutation strategy profile. When agents maximize the expected

payment,

R(sA(xA
`1), sB(x`2B )) = f ′(K(x`1A , x

`2
B )).

Recall that we defined

R(sA(xA
`1), sB(x`2B )) = f ′(

∑
y

sA(xA
`1)(y)sB(x`2B )(y)

Pr[Y = y]
).

Thus, when f ′ is invertible, we have

∑
y

sA(xA
`1)(y)sB(x`2B )(y)

Pr[Y = y]
= K(x`1A , x

`2
B )

for any x`1A , x
`2
B . This is exactly system (6.1).

With the conditional independence assumption, when agents tell the truth, the
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above system will be satisfied. Therefore, agents can maximize their expected pay-

ment via truth-telling. Moreover, when the prior is well-defined, if the prior Pr[Y ]

is a uniform distribution, then any permutation strategy profile can solve the above

system and as well as maximize agents’ expected payment. Even if the prior Pr[Y ] is

not a uniform distribution, although not all permutation strategy profiles solve the

above system, still any solution of the above system must correspond to a permuta-

tion strategy profile, given the prior is well-defined. Therefore, when agents maximize

their expected payment, their strategy profile must be a permutation strategy profile

or truth-telling, which implies MCG(f) is focal.

Lemma 120. With the conditional independence assumption, the expected total pay-

ment is maximized over Alice and Bob’s strategies if and only if ∀`1 ∈ LA, `2 ∈ LB,

for any (x`1A , x
`2
B ) ∈ ΣA × ΣB,

R(p̂`1
xA

`1
, p̂`2

xB
`2

) = f ′(K(x`1A , x
`2
B )).

The maximum is

MIf (XA;XB).

Proof. Without loss of generality, it is sufficient to analyze Alice’s strategy and report.

With the a priori similar and random order assumption, p̂`1
xA

`1
can be represented as

sA(xA
`1) since the index of the task `1 is meaningless to Alice when all tasks appear

in a random order, independently drawn for each agent. The strategy can be seen

as a random predictor. Thus, we can use the same proof of Lemma 114 to prove

Lemma 120.
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APPENDIX B

Mutual information calculations

We show the calculations for the mutual information table.

For the length signal, since agents has no uncertainty for this signal, the mutual

information between agent i’s length signal and agent j 6= i’s length signal will be

the entropy of length signal. Recall that we have assumed an essay has long length

with probability 0.5. Thus,

MI(length; length) = 0.5 ∗ log(0.5) + 0.5 ∗ log(0.5) = 0.6931

Since an essay’s length is independent with its writing and quality, we have the

mutual information between the length signal and writing signal, quality, writing

conditioning length, quality conditioning writing and length are all zero.

Pr[Ψmw
i = ,,Ψmw

j = ,] = 0.5 ∗ 0.9 ∗ 0.9 + 0.5 ∗ 0.1 ∗ 0.1 = 0.41

Pr[Ψmw
i = ,,Ψmw

j = /] = Pr[Ψmw
i = /; Ψmw

j = ,] = 0.5∗0.9∗0.1+0.5∗0.1∗0.9 =

0.09

Pr[Ψmw
i = /,Ψmw

j = /] = 0.5 ∗ 0.1 ∗ 0.1 + 0.5 ∗ 0.9 ∗ 0.9 = 0.41

We can put the above joint distribution over (Ψmw
i ; Ψmw

j ) to the formulaMI(X;Y ) =∑
x,y Pr[X = x, Y = y] log Pr[X=x,Y=y]

Pr[X=x] Pr[Y=y]
and obtain
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MI(length, writing;writing)

=MI(writing;writing)

=MI(Ψmw
i ; Ψmw

j ) = 0.2218

Note that MI(writing;writing) is not the entropy of the writing signal since it is

the mutual information between different agents’ writing signals.

Similarly, we can calculate the joint distribution over (Ψ
mq
i ,Ψmw

i ,Ψ
mq
j ,Ψmw

j ) and

set / = 0 and , = 1:

Pr[Ψ
mq
i = a,Ψmw

i = b,Ψ
mq
j = c,Ψmw

j = d]

=0.4 ∗ 0.3a ∗ 0.71−a ∗ 0.1b ∗ 0.91−b ∗ 0.3c ∗ 0.71−c ∗ 0.1d ∗ 0.91−d

(when the essay has bad quality, bad writing:)

+ 0.1 ∗ 0.3a ∗ 0.71−a ∗ 0.9b ∗ 0.11−b ∗ 0.3c ∗ 0.71−c ∗ 0.9d ∗ 0.11−d

(when the essay has bad quality, good writing:)

+ 0.1 ∗ 0.7a ∗ 0.31−a ∗ 0.1b ∗ 0.91−b ∗ 0.7c ∗ 0.31−c ∗ 0.1d ∗ 0.91−d

(when the essay has good quality, bad writing:)

+ 0.4 ∗ 0.7a ∗ 0.31−a ∗ 0.9b ∗ 0.11−b ∗ 0.7c ∗ 0.31−c ∗ 0.9d ∗ 0.11−d

(when the essay has good quality, good writing:)

The fact that the length signal is independent with writing and quality will ease

the calculation a lot since we can ignore the length signal if it only shows in one side

when we calculate the mutual information. Moreover, since the length signal has no

uncertainty, length—length will be a value without uncertainty and can be ignored

in the calculation of mutual information.
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Aided by the calculator, we can obtain

MI(length, writing; quality)

=MI(writing; quality)

=MI(Ψmw
i ; Ψ

mq
j ) = 0.0185

MI(length, writing;writing|length)

=MI(writing;writing) = 0.2218;

MI(length, writing, quality;writing)

=MI(quality, writing;writing)

=MI(Ψmw
i ,Ψ

mq
i ; Ψmw

j ) = 0.2259

MI(length, writing; quality|writing, length)

=MI(writing; quality|writing)

=MI(writing, quality;writing)−MI(writing;writing) = 0.2259− 0.2218 = 0.0041
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MI(length, writing, quality; quality)

=MI(quality, writing; quality)

=MI(Ψmw
i ,Ψ

mq
i ; Ψ

mq
j ) = 0.0267

MI(length, writing, quality;writing|length)

=MI(quality, writing;writing) = 0.2259

MI(length, writing, quality; quality|writing, length)

=MI(writing, quality; quality|writing)

=MI(writing, quality; quality, writing)−MI(writing, quality;writing)

=0.2374− 0.2259 = 0.0115

MI(length, writing, quality; length, writing)

=MI(length, writing, quality; length) +MI(length, writing, quality;writing|length)

=MI(length; length) +MI(length, writing, quality;writing|length)

=0.6931 + 0.2259 = 0.9190
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MI(length, writing, quality; length, writing, quality)

=MI(length, writing, quality; length) +MI(length, writing, quality;writing|length)

+MI(length, writing, quality; quality|writing, length)

=0.6931 + 0.2259 + 0.0115 = 0.9305
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