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ABSTRACT

This dissertation first presents a deterministic treatment of discrete-time input

reconstruction and state estimation without assuming the existence of a full-rank

Markov parameter. Algorithms based on the generalized inverse of a block-Toeplitz

matrix are given for 1) input reconstruction in the case where the initial state is

known; 2) state estimation in the case where the initial state is unknown, the system

has no invariant zeros, and the input is unknown; and 3) input reconstruction and

state estimation in the case where the initial state is unknown and the system has

no invariant zeros. In all cases, the unknown input is an arbitrary deterministic or

stochastic signal. In addition, the reconstruction/estimation algorithm is deadbeat,

which means that, in the absence of sensor noise, exact input reconstruction and state

estimation are achieved in a finite number of steps.

Next, asymptotic input and state estimation for systems with invariant zeros

is considered. Although this problem has been widely studied, existing techniques

are confined to the case where the system is minimum phase. This dissertation

presents retrospective cost input estimation (RCIE), which is based on retrospective

cost optimization. It is shown that RCIE automatically develops an internal model

of the unknown input. This internal model provides an asymptotic estimate of the

unknown input regardless of the location of the zeros of the plant, including the case

of nonminimum-phase dynamics.

The input and state estimation method developed in this dissertation provides a

novel approach to a longstanding problem in target tracking, namely, estimation of

the inertial acceleration of a body using only position measurements. It turns out

xvi



that, for this problem, the discretized kinematics have invariant zeros on the unit

circle, and thus the dynamics is nonminimum-phase. Using optical position data for

a UAV, RCIE estimates the inertial acceleration, which is modeled as an unknown

input. The acceleration estimates are compared to IMU data from onboard sensors.

Finally, based on exact kinematic models for input and state estimation, this

dissertation presents a method for detecting sensor faults. A numerical investigation

using the NASA Generic Transport Model shows that the method can detect stuck,

bias, drift, and deadzone sensor faults. Furthermore, a laboratory experiment shows

that RCIE can estimate the inertial acceleration (3-axis accelerometer measurements)

and angular velocity (3-axis rate-gyro measurements) of a quadrotor using vision data;

comparing these estimates to the actual accelerometer and rate-gyro measurements

provide the means for assessing the health of the accelerometer and rate gyro.
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CHAPTER 1

Introduction

1.1 What is Input Reconstruction?

State estimation uses measurements of the output of a system to produce statisti-

cally optimal estimates of the states of the system [1–3]. These estimates assume that

the exogenous input consists of a known deterministic component, which is replicated

in the estimator, and an unknown stochastic disturbance, which is assumed to be

white and zero mean. If the deterministic input is unknown, then it cannot be repli-

cated in the observer, and thus the state estimates may be biased. To remedy this

problem, state estimators have been developed to provide unbiased state estimates in

the presence of unknown, deterministic inputs [4–8].

An alternative approach is to extend state estimation to include input estimation,

where the goal is to estimate the deterministic component of the exogenous input

[9–31]. In many applications, knowledge of the input signal is of independent interest

and, in some cases, may be of greater interest than the estimates of the states [32].

The terminology input reconstruction is used in the case of deterministic analysis,

just as an observer is the deterministic analogue of an estimator.

In light of state estimation, which assumes a known deterministic input and an

unknown zero-mean stochastic input, it may be somewhat surprising that it is in-

deed possible to estimate not only the states but also, in many cases, the unknown
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deterministic input. The benefit of state and input estimation is the fact that the

deterministic component can often vastly improve the accuracy of the state estimates.

To illustrate this point, consider the mass-spring-damper system shown in Figure 1.1,

where m1 = m2 = 1 kg, k1 = k2 = 10 N/m, and c1 = c2 = 5 kg/sec, and the sample

time is Ts = 0.1 sec. The position and velocity of m1 are measured, and the posi-

tion and velocity of m2 are estimated using the Kalman filter in the case where d is

unknown. The signal-to-noise-ratio for both measurements is 25 dB. Alternatively,

Theorem 4 in Section 3.6 is applied to this problem, and the estimated input is repli-

cated in the Kalman filter. Figure 1.2 shows that the estimates of the position and

velocity of m2 are significantly more accurate in the case where the estimated input

is used.

Figure 1.1: Mass-spring-damper system, where d is the unknown input force.

1.2 Deadbeat Input Reconstruction and State Estimation

Input reconstruction without assuming the existence of a full-column-rank Markov

parameter is considered in this dissertation. In [17, 29] it is assumed that the first

Markov parameter H1 has full column rank, which implies that the plant has relative

degree 1. Likewise, the approach of [24] is limited to the case where at least one

Markov parameter has full column rank. A more general case where no Markov
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Figure 1.2: (a) and (b) show that the accuracy of the state estimates is enhanced by
replicating the estimated input in the estimator. After 15 steps, (c) shows
that the estimated input is close to the actual input.

parameter is required to have full column rank is considered in this work.

In addition to considering a more general case, this dissertation presents a sim-

plified input reconstruction algorithm as compared to the inversion algorithms given

in earlier works. Assuming that the initial condition is known, techniques for con-

structing system inverses were considered in [9, 33]. These techniques are based on

sequential constructive algorithms that entail the decomposition of various matrices

until a full-rank condition is attained. For the case of known initial conditions, The-

orem 2 provides a simplified input-reconstruction algorithm with a delay of η steps,

where η is defined in [9] and further studied in [11]. The input observer given by The-

orem 2 is deadbeat in the sense that exact input reconstruction is achieved in η steps,
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and the number of required measurements is η+1. Deadbeat estimation is considered

in [34]. Since the initial condition is known, the input reconstruction algorithm given

by Theorem 2 is applicable whether or not the system has any invariant zeros.

Next, this dissertation considers deadbeat input reconstruction and state estima-

tion algorithms without assuming that the initial condition is known. In this case,

the presence of an invariant zero makes it impossible to distinguish the zero input

with zero initial condition from a nonzero input with a specific initial condition that

yields zero response. This case is considered in [13], where an algorithm is given for

constructing an input-reconstruction filter. Although zeros are not explicitly men-

tioned in [13], the assumption that u is observable rules out the presence of invariant

zeros. For the case where x(0) is unknown and (A,B,C,D) has no invariant zeros,

Theorem 3 provides a deadbeat state-estimation algorithm despite the presence of

an unknown, arbitrary input. Although this performance is better than the Kalman

filter in the absence of sensor noise, it has to be kept in mind that the estimates

are obtained with a delay, which means that the estimator is effectively a smoother.

The estimation delay is given by the integer µ, which is guaranteed to be finite, and

the number of required measurements is µ + 1. Furthermore, for the case where η is

finite, x(0) is unknown, and (A,B,C,D) has no invariant zeros, Theorem 4 provides a

deadbeat input-reconstruction and state-estimation algorithm. In this case, the input

reconstruction delay is η, and the number of required measurements is max{µ, η}+1.

Theorems 2, 3, and 4 are each given in terms of the generalized inverse of a block-

Toeplitz matrix. This unified formulation provides a direct and simplified presentation

of all three results. However, these input-reconstruction and state-estimation algo-

rithms are not given in the form of linear time-invariant (LTI) systems. Consequently,

Theorem 3 and Theorem 4 are recast in terms of LTI deadbeat systems for input re-

construction and state estimation. Theorem 2 can be recast in a similar manner, but

is awkward due to the need to propagate the free response, and thus an LTI version
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is not given.

The assumption invoked in Theorems 3 and 4 that the system has no invariant

zeros is clearly restrictive in the SISO case, since it is unusual for an nth-order SISO

system to have relative degree n. Furthermore, since the transmission zeros of a square

MIMO transfer function with full normal rank are the roots of the numerator of the

determinant, it would be unusual for the system to have no transmission zeros. The

situation is different, however, for rectangular systems. For example, a MIMO system

with two inputs and four outputs and full normal rank possesses a transmission zero

if and only if all six 2×2 embedded transfer functions possess a common transmission

zero. Consequently, input reconstruction based on Theorem 4 may be useful for a

large class of rectangular systems.

1.3 Input Estimation for Nonminimum-Phase Systems

Deadbeat input reconstruction for a system with any zeros is impossible. This can

easily be seen by noting that the presence of an invariant zero implies the existence

of an initial condition and input for which the output is identically zero. These

details are related to the unobservable input subspace [24] Hence, in the case where

the system has one or more invariant zeros, asymptotic input reconstruction of the

component of the input that resides in the orthogonal complement of the unobservable

input subspace must be considered, with careful attention paid to the presence of

nonmimimum-phase zeros.

Most of the techniques for state and input estimation [12, 14–31, 35–39] are con-

fined to minimum-phase systems, that is, systems with invariant zeros contained in

the open unit disk. In particular, the approach of [29], which extends the method of

[17], explicitly invokes a minimum-phase assumption.

The case of nonminimum-phase (NMP) zeros, that is, zeros that are either on

the unit circle or outside the closed unit disk, is much more challenging. As shown
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in [24], a naive attempt to estimate the input for a NMP system with zeros outside

the closed unit disk yields a reconstruction error that is unbounded; in the case

of zeros on the unit circle, the input-reconstruction error is bounded but nonzero.

In contrast, in the case of minimum-phase systems, the input-reconstruction error

vanishes asymptotically. Unlike most of the references cited above, [39] considers the

case of NMP zeros, but the method is not applicable to the case of zeros on the unit

circle.

This dissertation aims at the case where the system is NMP. In particular, this

dissertation considers state and input estimation based on retrospective cost opti-

mization [38, 40–46]. Based on this technique, the dissertation develops retrospective

cost input estimation (RCIE), which is a technique for state and input estimation that

is effective for NMP systems. This approach uses an estimator whose coefficients are

recursively updated at each time step so as to minimize a retrospective cost function.

Motivation for this approach is discussed within the context of adaptive control in

[47–54].

1.4 Target Tracking

The input estimation method developed in this dissertation provides a novel ap-

proach to a longstanding problem in target tracking, namely, estimation of the inertial

acceleration of a body using only position measurements. This problem is motivated

by the need to estimate acceleration in order to predict future motion and distinguish

ballistic vehicles from maneuvering vehicles. The extensive literature and diverse

methods developed for this problem attests to its importance [20, 41, 55–60]. It turns

out that, for this problem, the discretized kinematics have invariant zeros on the unit

circle, and thus the approach of [39] is not applicable. A more restricted version of

RCIE confined to LTI systems is applied to this problem for planar target tracking

in [43]. The approach of [43], however, is not applicable to LTV systems, such as the
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kinematics of a 3D maneuvering vehicle resolved in the body frame. In addition, [43]

does not recognize or address the NMP features of the problem.

1.5 Sensor Fault Detection

Sensor health is crucial to the operation of every feedback control system. Conse-

quently, extensive research has been devoted to developing techniques for detecting

and diagnosing sensor faults [61–70]. One approach is to search for anomalies in the

sensor signal [67], while another approach is to compute sensor residuals based on

the assumed model and measured input signals [61]. Yet another approach is to em-

pirically identify transmissibilities between pairs of sensors under healthy conditions

and then use these relations during subsequent operation to compute sensor residuals

[71].

This dissertation formulates the problem of diagnosing sensor faults for a flight

vehicle as a problem of input and state estimation. In particular, an exact model of the

kinematics of the vehicle is considered, which circumvents the need to measure forces

and moments on the vehicle as well as the need to know the vehicle inertia and stability

derivatives. Instead, the kinematics model views suspect sensor-measurement as the

input or state. A related formulation is considered in [44, 45, 70]. It turns out, that

the kinematics based models can be nonlinear, and thus, this dissertation extends

the approach in [72] to nonlinear systems by combining the unscented Kalman filter

[73, 74] and retrospective cost input estimation [38, 44, 72].

To detect sensor faults using state and input estimation techniques, this disserta-

tion uses combinations of inertial and aerodynamic sensors. This work is motivated

by [68, 70], which uses rate-gyro, accelerometer, GPS, angle-of-attack, and sideslip

measurements to estimate forward velocity relative to the air in order to assess the

health of the pitot tube. This dissertation extends the approach of [68, 70] in several

ways. First, for pitot-tube fault detection, this work apply the unscented Kalman
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filter with augmented bias states in order to deal with biased accelerometer mea-

surements. Unlike [68, 70], this work does not use GPS to assess the health of the

pitot tube. Next, four scenarios that are not considered in [68, 70] are addressed

by this work, two of which depends on state estimation and the other two on input

estimation.

In the first scenario, the pitot tube, rate gyros, accelerometers, α-sensor, and β-

sensor are used to assess the health of the vertical gyros. In the second scenario, the

pitot tube, vertical gyro, rate gyros, accelerometers, and β-sensor are used to assess

the health of the α-sensor. In the third scenario, the pitot tube, rate gyros, vertical

gyro, α-sensor, and β-sensor are used to assess the health of the accelerometers. In

the fourth scenario, vertical gyro and magnetometer are used to assess the health of

the rate gyros. For input estimation in the third and fourth scenarios, a variation of

retrospective cost input estimation is used as described in [45, 72].

1.6 Contributions

Tables 1.1 and 1.2 summarize the various cases that can occur in the context of

input and state estimation, the relevant literature in each case, and the contribution

(highlighted in blue) of this dissertation.

Table 1.3 summarizes the sensor fault detection cases considered in this disserta-

tion. The table lists the suspect sensors as well as the sensors used for diagnosing

faults. The last column of the table gives the method used for diagnosing sensor

faults, distinguishing between cases of state estimation alone or combined input and

state estimation.
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x(0)
u

Known Unknown

Known N/A

[9–11]
• defines the inherent delay η for system inversion
• gives necessary and sufficient conditions for existence of η
• gives bounds on η
• allows rank-deficient Markov parameters
Theorem 2
• deadbeat FIR filter for input reconstruction
• the inherent delay is η
• requires η + 1 measurements
• allows invariant zeros and rank-deficient Markov parameters

Unknown Equation (3.8) See Table 1.2

Table 1.1: State estimation and input reconstruction with known or unknown x(0).

1.7 Publications

The following is the list of publications relevant to the research presented in this

dissertation.

1.7.1 Journal Articles

• Ahmad Ansari and Dennis Bernstein, “Input Estimation for Nonminimum-

Phase Systems with Application to Acceleration Estimation for a Maneuvering

Vehicle”, IEEE Transactions on Control System Technology, 2018 March 6.

• Ahmad Ansari and Dennis Bernstein, “Deadbeat State Estimation and Input

Reconstruction for Discrete-Time Linear Systems”, Automatica, under review.

• Ahmad Ansari and Dennis Bernstein, “Aircraft Sensor Fault Diagnosis Using

Combined Input and State Estimation”, Journal of Guidance, Control, and

Dynamics, under review.
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Asymptotic Estimation Deadbeat Estimation

State
Estimation

[5]
• unbiased minimum variance filter
• assumes that H1 has full column rank
• allows minimum-phase zeros

Theorem 3
• deadbeat FIR filter for state estimation
• the inherent delay is µ
• requires µ+ 1 measurements
• allows rank-deficient Markov parameters
• assumes no invariant zeros

State
and Input
Estimation

[17, 29]
• unbiased minimum variance filter
• assumes that H1 has full column rank
• allows minimum-phase zeros
[75, 76]
• unbiased minimum variance filter

with a delay
• H1 need not have full column rank
• allows minimum-phase zeros
[77]
• reduced-order state observers
• allows rank-deficient Markov parameters
• allows minimum-phase zeros
Retrospective Cost Input Estimation
• modified Kalman filter with adaptive

input estimation
• allows rank-deficient Markov parameters
• allows zeros at any location

Theorem 4
• deadbeat FIR filter for input

reconstruction
• the inherent delay is η
• requires max(η, µ) + 1 measurements
• allows rank-deficient Markov parameters
• assumes no invariant zeros

Table 1.2: State estimation and input reconstruction with unknown x(0).

1.7.2 Peer–reviewed Conference Papers

• Ahmad Ansari and Dennis Bernstein, “Satellite Drag Estimation Using Ret-

rospective Cost Input Estimation”, 57th IEEE Conference on Decision and

Control, Miami, FL, 2018, under review.

• Ahmad Ansari and Dennis Bernstein, “Estimation of Angular Velocity and

Rate-Gyro Noise for Sensor Health Monitoring”, Proceedings of American Con-

trol Conference, pp. 1159-1164, Seattle, 2017.

• Ahmad Ansari and Dennis Bernstein, “Adaptive Input Estimation for Nonminimum-

Phase Discrete-Time Systems”, 55th IEEE Conference on Decision and Control,

pp. 1159-1164, Las Vegas, 2016.
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Faulty
Sensors

Sensors
Used Pitot

Tube
Vertical

Gyro
α

Sensor

3-axis
Acceler–
ometer

3-axis
Rate-Gyro

β
Sensor

Method

Pitot
Tube

UKF

Vertical
Gyro

UKF

α
Sensor

UKF

3-axis
Accelerometer

ERCIE
with
UKF

3-axis
Rate-Gyro

with
Ψ sensor

ERCIE
with
UKF

Table 1.3: Sensor fault detection cases considered in this dissertation.

• Ahmad Ansari and Dennis Bernstein, “Aircraft Sensor Fault Detection Using

State and Input Estimation”, Proceedings of American Control Conference, pp.

5951-5956, Boston, 2016.

1.8 Dissertation Outline

This dissertation is organized as follows.

Chapter 2 Summary

Chapter 2 first presents the problem of input reconstruction for a discrete-time

linear system. Next, it defines input and initial state observable (IISO) systems,

and then gives Proposition 2 which links IISO with the left invertibility of a matrix

consisting of system matrices. Next, it provides Proposition 3 which shows that if the

system has at least one invariant zero then the system is not IISO. Finally, it gives

necessary and sufficient conditions (Theorem 1) for a system to be IISO.
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Chapter 3 Summary

Chapter 3 first gives preliminaries on the invertibility of a linear system with

an input reconstruction delay η. Next, it provides Theorem 2 for η-delay input

reconstruction with known x(0). Next, it gives Theorems 3 and 4 for µ-delay state

estimation and η-delay input reconstruction, respectively. Next, it investigates the

effect of disturbance and sensor noise on the reconstructed input. Then, it shows

that Theorem 4 yields an unbiased input estimator. Finally, it gives Theorem 5 for

deadbeat input and state estimation for linear time-varying systems.

Chapter 4 Summary

Chapter 4 first numerically investigates the effect of invariant zeros either inside

or outside the unit circle on the projected input sequence onto the orthogonal comple-

ment of unobservable input subspace. Then, using the projection, it gives Property

4.1 for asymptotic input estimation, and demonstrates it numerically in Example

4.4.1. Proof of this property is outside the scope of this dissertation.

Chapter 5 Summary

Chapter 5 introduces state and input estimation problem along with the retro-

spective cost input estimation (RCIE) algorithm. Next, it gives the details of the

input-estimation subsystem. Then, it shows how RCIE can asymptotically recon-

struct an unknown input to NMP systems by embedding an internal model of the

unknown input in the input-estimation subsystem. Then, it numerically illustrates

the effect of the unobservable input subspace on RCIE estimates. Finally, it compares

RCIE with the filter presented in [29].
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Chapter 6 Summary

Chapter 6, based on kinematics, formulates state-space models for acceleration

estimation. Then, it describes an experimental setup, and then presents the appli-

cation of RCIE to estimation of inertial acceleration. Using optical position data for

a UAV, RCIE estimates the inertial acceleration, which is modeled as an unknown

input. The acceleration estimates are compared to IMU data from onboard sensors.

Chapter 7 Summary

Chapter 7 focuses on the problem of drag estimation of a satellite without as-

suming knowledge of the nominal orbit of the satellite. The contribution of this

chapter is the novel application of input estimation to the problem of estimating drag

acceleration. The approach used in this chapter is based on the retrospective cost

optimization.

Chapter 8 Summary

Chapter 8 formulates the problem of diagnosing sensor faults for a flight vehicle

as a problem of input and state estimation. In particular, it considers an exact model

of the kinematics of the vehicle, which circumvents the need to measure forces and

moments on the vehicle as well as the need to know the vehicle inertia and stability

derivatives. Instead, the kinematics model views suspect sensor-measurement as the

input or state. To detect sensor faults using state and input estimation techniques,

Chapter 8 uses combinations of inertial and aerodynamic sensors. Various sensor

faults are considered, including stuck, bias, drift, and deadzone sensor faults.

Finally, conclusions and future work are presented in Chapter 9.
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CHAPTER 2

Input and Initial-State Observability

2.1 Introduction

State estimation uses measurements of the output of a system to produce sta-

tistically optimal estimates of the states of the system [1–3]. It is well known that

an asymptotic estimator design is possible, if and only if, the underlying system is

observable or stabilizable [3, 78]. A notion similar to observabiliy, called as input and

initial-state observability, is developed in this chapter for systems with unknown input

and initial state.

The contents of this chapter are as follows. First, we present the problem of input

reconstruction for a discrete-time linear system. Next, we define input and initial

state observable (IISO) systems, and then give Proposition 2 which links IISO with

the left invertibility of a matrix consisting of system matrices. Next, we provide

Proposition 3 which shows that if the system has at least one invariant zero then the

system is not IISO. Finally, we give necessary and sufficient conditions (Theorem 1)

for a system to be IISO.
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2.2 Problem Statement

Let A ∈ Rlx×lx , G ∈ Rlx×ld , and C ∈ Rly×lx , assume that (A,G,C) is minimal,

and consider

x(k) = Ax(k − 1) +Gd(k − 1), (2.1)

y(k) = Cx(k), (2.2)

where, for all k ≥ 0, x(k) ∈ Rlx , d(k) ∈ Rld , and y(k) ∈ Rly , The goal is to develop

necessary and sufficient conditions on the system [(2.1), (2.2)] such that the knowledge

of y(k) uniquely determines the unknown input d(k).

2.3 Analysis of the Output Measurement Equation

Let r denote a positive integer, and define

Yr
4
=



y(0)

y(1)

...

y(r)


∈ R(r+1)ly , Dr

4
=



d(0)

d(1)

...

d(r)


∈ R(r+1)ld , Γr

4
=



C

CA

...

CAr


∈ R(r+1)ly×lx , (2.3)

Mr
4
=



0 0 · · · 0

CG 0 · · · 0

CAG CG · · · 0

...
...

. . .
...

CAr−1G CAr−2G · · · CG


∈ R(r+1)ly×rld . (2.4)
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It follows from (2.1), (2.2) that

Yr = Γrx(0) +MrDr−1 = Ψr

x(0)

Dr−1

 , (2.5)

where

Ψr
4
=

[
Γr Mr

]
∈ R(r+1)ly×(lx+rld). (2.6)

The existence of an initial state x(0) and input sequence Dr−1 satisfying (2.5) is

guaranteed by [(2.1),(2.2)]. For exact input reconstruction, uniqueness is required.

Note that x(0) and Dr−1 satisfying (2.5) are unique if and only if Ψr has full column

rank. Suppose that ly ≤ ld. Then, for all r ≥ 1, if Ψr has full column rank, then

lx ≤ ly. In practice, ly < lx, and thus ly ≤ ld precludes exact input reconstruction. In

particular, exact input reconstruction is not possible in the SISO case ly = ld = 1. For

the remainder of this chapter, we assume that ld < ly < lx. Consequently, (A,G,C)

represents a tall system.

In the special case where x(0) is known, the situation is greatly simplified. For

example, if CG has full column rank and x(0) = 0, then, since, for all r ≥ 1, Mr is

left invertible, Dr−1 can be exactly reconstructed.

Note that there exists r ≥ 1 such that Γr has full column rank if and only if (A,C)

is observable. Furthermore, for all r ≥ 1, Mr has full column rank if and only if CG

has full column rank.
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2.4 Input and Initial-State Observable (IISO) Systems

Now define the positive integer

r0
4
=

⌈
lx − ly
ly − ld

⌉
, (2.7)

where dae denotes the smallest integer greater than or equal to a. Note that 1 ≤ r0 ≤

lx − 1.

Proposition 1. The following statements are equivalent:

i) There exists r ≥ 1 such that Ψr has full column rank.

ii) For all r ≥ r0, Ψr has full column rank.

Proof. This is a restatement of the equivalence of statements 3) and 4) of Theorem

2.1 of [22]. �

Definition 1. [(2.1),(2.2)] is input and initial state observable (IISO) if i) and ii) of

Proposition 1 hold.

Proposition 2. [(2.1),(2.2)] is IISO if and only if, for all r ≥ r0, Ψr is left invertible.

If (A,G,C) is IISO, then Proposition 2 implies that, for all r ≥ r0, Ψr is left

invertible. It thus follows that, for all r ≥ r0,x(0)

Dr−1

 = Ψ+
r Yr, (2.8)

where the generalized inverse Ψ+
r of Ψr is a left inverse of Ψr.
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2.5 Effect of an Invariant Zero on Input and Initial-State

Observability

Definition 2. For all z ∈ C, define Z ∈ R(lx+ly)×(lx+ld)[z] by

Z(z)
4
=

zI − A −G

C 0

 . (2.9)

Then ξ ∈ C is an invariant zero of [(2.1),(2.2)] if

rankZ(ξ) < normal rankZ. (2.10)

Since ld < ly, Z(z) is a tall matrix. Proposition 12.10.3 in [79, p. 817] states that

normal rankZ = lx + normal rankG, (2.11)

where G(z)
4
= C(zI−A)−1G ∈ Rly×ld(z) is also a tall matrix. To avoid the degenerate

case of redundant inputs, we assume henceforth that normal rankG = ld. Therefore,

ξ ∈ C is an invariant zero of [(2.1),(2.2)] if and only if rankZ(ξ) < lx + ld.

Definition 3. Let r ≥ 1. Then the input sequence Dr−1 ∈ Rrld is unobservable if it

is nonzero and there exists an initial state x(0) ∈ Rn such that

x(0)

Dr−1

 ∈ N(Ψr).

The following result shows that, if [(2.1),(2.2)] has an invariant zero, then [(2.1),(2.2)]

is not IISO. This result is the contrapositive of (ii) ⇒ (i) of Theorem 6.1 of [22]

along with an explicit expression for the unobservable input sequence and the cor-
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responding initial state. Note that the assumption that the possibly complex vectorx̄
d̄

 ∈ N(Z(ξ)) has nonzero real part entails no loss of generality since otherwise x̄

and d̄ could be replaced by x̄ and d̄, respectively. In the case where ξ = 0 and

k = 0, ξk is interpreted as 1.

Proposition 3. Assume that (A,G,C) has an invariant zero ξ ∈ C, let

x̄
d̄

 ∈
N(Z(ξ)) be nonzero with nonzero real part, define the initial state

x(0)
4
= Re(x̄), (2.12)

and, for all k ≥ 0, define the input sequence

d(k)
4
= Re(ξkd̄). (2.13)

Then, for all r ≥ 1,

[
x(0)T DT

r−1

]T

∈ N(Ψr), and thus [(2.1),(2.2)] is not IISO.

Proof. By assumption,

ξI − A −G

C 0


x̄
d̄

 = 0, (2.14)

and thus

(ξI − A)x̄ = Gd̄. (2.15)

Hence

Re((ξI − A)x̄) = GRe(d̄). (2.16)
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Using (2.12), (2.13), and (2.16), it follows from (2.1) that

x(1) = ARe(x̄) + Re(ξx̄)− ARe(x̄) = Re(ξx̄). (2.17)

Proceeding similarly, it follows that, for all k ≥ 0,

x(k) = Re(ξkx̄). (2.18)

Substituting (2.18) into (2.2) yields, for all k ≥ 0,

y(k) = C Re(ξkx̄) = Re(ξkCx̄). (2.19)

Since, by (2.14), Cx̄ = 0, (2.19) implies that, for all k ≥ 0, y(k) = 0. Hence,

for all r ≥ 0, Yr = 0. Note that, since for all r ≥ 0, Yr = 0, it follows that

Ψr

[
x(0)T DT

r−1

]T

= 0, and thus [(2.1),(2.2)] is not IISO. �

The following result shows that, if [(2.1),(2.2)] has no invariant zeros and CG has

full column rank, then [(2.1),(2.2)] is IISO. This result corrects (i)⇒ (ii) of Theorem

6.1 of [22], which omits the assumption on rankCG.

Let “R” denote range.

Proposition 4. If CG has full column rank and (A,G,C) has no invariant ze-

ros, then [(2.1),(2.2)] is IISO.

Proof. Since (A,G,C) has no invariant zeros, it follows that, for all ξ ∈ C,

rankZ(ξ) = lx + ld. (2.20)
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Using (2.20), Theorem A.1 of [24] implies that, there exists r ≥ lx such that

R(Γr) ∩ R(Mr) = {0}. (2.21)

Since (A,C) is observable, it follows that

rankΓr = lx. (2.22)

Furthermore, since CG has full column rank, it follows that

rankMr = rld. (2.23)

Using (2.21)–(2.23), Fact 2.11.9 in [79, p. 131] implies that

rankΨr = rank

[
Γr Mr

]
= rankΓr + rankMr − dim[R(Γr) ∩ R(Mr)]

= rankΓr + rankMr = lx + rld.

Therefore, Ψr has full column rank. Hence, Proposition 1 implies, that, for all l ≥ r0,

Ψl has full column rank. Proposition 2 thus implies [(2.1),(2.2)] is IISO. �

2.6 Necessary and Sufficient Conditions

The following theorem combines Proposition 3 and Proposition 4 to give necessary

and sufficient conditions for [(2.1),(2.2)] to be IISO.

Theorem 1. The following statements are equivalent:

i) CG has full column rank, and (A,G,C) has no invariant zeros.
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ii) For all r ≥ r0, rankΨr = lx + rld.

Example 2.6.1. Consider [(2.1),(2.2)] with

A =


0.1 0.2 0.3

0.4 0 0

0 0.5 0

 , G =


1

0

0

 , C =

1 3 5

1 7 9

 , (2.24)

where ld = 1 < ly = 2 < lx = 3. Note that rankCG = ld = 1 and (A,G,C) has no

invariant zeros. Thus, i) of Theorem 1 is satisfied. It then follows from ii) of Theorem

1 that, for all r ≥ 3, rankΨr = 3 + r, which can be confirmed numerically. �

2.7 Conclusions

This chapter defined and developed theory for input and initial-state observability

for systems with no direct feedthrough matrix in (2.2). It is shown that if the system

has at least one invariant zero then the system is not IISO. Theorem 1 gives the

necessary and sufficient conditions for a system to be IISO.

In the next chapter, we reconsider system [(2.1), (2.2)] but with direct feedthrough

matrix. We then provide an algorithm for reconstructing the unknown input and state

based on the generalized inverse of a block-Toeplitz matrix.
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CHAPTER 3

Deadbeat Input Reconstruction and State

Estimation

3.1 Introduction

State estimation uses measurements of the output of a system to produce statisti-

cally optimal estimates of the states of the system [1–3]. These estimates assume that

the exogenous input consists of a known deterministic component, which is replicated

in the estimator, and an unknown stochastic disturbance, which is assumed to be

white and zero mean. If the deterministic input is unknown, then it cannot be repli-

cated in the observer, and thus the state estimates may be biased. To remedy this

problem, state estimators have been developed to provide unbiased state estimates in

the presence of unknown, deterministic inputs [4–8].

An alternative approach is to extend state estimation to include input estimation,

where the goal is to estimate the deterministic component of the exogenous input

[9–31]. In many applications, knowledge of the input signal is of independent interest

and, in some cases, may be of greater interest than the estimates of the states [32].

The terminology input reconstruction is used in the case of deterministic analysis,

just as an observer is the deterministic analogue of an estimator.

In light of state estimation, which assumes a known deterministic input and an
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unknown zero-mean stochastic input, it may be somewhat surprising that it is in-

deed possible to estimate not only the states but also, in many cases, the unknown

deterministic input. The benefit of state and input estimation is the fact that the

deterministic component can often vastly improve the accuracy of the state estimates.

The present chapter considers input reconstruction within a deterministic discrete-

time setting. The first contribution of the present chapter is to consider input recon-

struction without assuming the existence of a full-column-rank Markov parameter.

In [17, 29] it is assumed that the first Markov parameter H1 has full column rank,

which implies that the plant has relative degree 1. Likewise, the approach of [24] is

limited to the case where at least one Markov parameter has full column rank. The

present chapter considers a more general case where no Markov parameter is required

to have full column rank.

The second contribution of the present chapter is a simplified input reconstruction

algorithm as compared to the inversion algorithms given in earlier works. Assuming

that the initial condition is known, techniques for constructing system inverses were

considered in [9, 33]. These techniques are based on sequential constructive algo-

rithms that entail the decomposition of various matrices until a full-rank condition

is attained. For the case of known initial conditions, Theorem 2 provides a simpli-

fied input-reconstruction algorithm with a delay of η steps, where η is defined in [9]

and further studied in [11]. The input observer given by Theorem 2 is deadbeat in

the sense that exact input reconstruction is achieved in η steps, and the number of

required measurements is η + 1. Deadbeat estimation is considered in [34]. Since the

initial condition is known, the input reconstruction algorithm given by Theorem 2 is

applicable whether or not the system has any invariant zeros.

The third contribution of the present chapter is the construction of deadbeat input

reconstruction and state estimation algorithms without assuming that the initial con-

dition is known. In this case, the presence of an invariant zero makes it impossible to
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distinguish the zero input with zero initial condition from a nonzero input with a spe-

cific initial condition that yields zero response. This case is considered in [13], where

an algorithm is given for constructing an input-reconstruction filter. Although zeros

are not explicitly mentioned in [13], the assumption that u is observable rules out the

presence of invariant zeros. For the case where x(0) is unknown and (A,B,C,D) has

no invariant zeros, Theorem 3 provides a deadbeat state-estimation algorithm despite

the presence of an unknown, arbitrary input. Although this performance is better

than the Kalman filter in the absence of sensor noise, it has to be kept in mind that

the estimates are obtained with a delay, which means that the estimator is effectively

a smoother. The estimation delay is given by the integer µ, which is guaranteed to

be finite, and the number of required measurements is µ + 1. Furthermore, for the

case where η is finite, x(0) is unknown, and (A,B,C,D) has no invariant zeros, The-

orem 4 provides a deadbeat input-reconstruction and state-estimation algorithm. In

this case, the reconstruction delay is η, and the number of required measurements is

max{µ, η}+ 1.

Theorems 2, 3, and 4 are each given in terms of the generalized inverse of a block-

Toeplitz matrix. This unified formulation provides a direct and simplified presentation

of all three results. However, these input-reconstruction and state-estimation algo-

rithms are not given in the form of linear time-invariant (LTI) systems. Consequently,

Theorem 7 and Theorem 8 are recast in terms of LTI deadbeat systems for input re-

construction and state estimation. Theorem 5 can be recast in a similar manner, but

is awkward due to the need to propagate the free response, and thus an LTI version

is not given.

If the initial condition is unknown and the system has at least one invariant

zero, then deadbeat input reconstruction is not possible. In this case, asymptotic

input reconstruction must be considered, with careful attention paid to the presence

of nonmimimum-phase zeros. The assumption invoked in Theorems 3 and 4 that
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the system has no invariant zeros is clearly restrictive in the SISO case, since it is

unusual for an nth-order SISO system to have relative degree n. Furthermore, since

the transmission zeros of a square MIMO transfer function with full normal rank are

the roots of the numerator of the determinant, it would be unusual for the system

to have no transmission zeros. The situation is different, however, for rectangular

systems. For example, a MIMO system with two inputs and four outputs and full

normal rank possesses a transmission zero if and only if all six 2×2 embedded transfer

functions possess a common transmission zero. Consequently, input reconstruction

based on Theorem 4 may be useful for a large class of rectangular systems.

The contents of the chapter are as follows. The next section presents the input-

reconstruction problem for discrete-time linear systems. Section 3.3 gives preliminar-

ies on the invertibility of a linear system with an input reconstruction delay η. Section

3.4 provides Theorem 2 for η-delay input reconstruction with known x(0). Sections

3.5 and 3.6 provide Theorems 3 and 4 for µ-delay state estimation and η-delay input

reconstruction, respectively. In Section 3.7, we investigate the effect of disturbance

and sensor noise on the reconstructed input. Finally, in Section 3.8, we show that

Theorem 4 yields an unbiased input estimator.

3.2 Problem Statement

Let A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, and D ∈ Rp×m, assume that (A,B,C,D) is

minimal, and consider

x(k+1) = Ax(k) +Bu(k), (3.1)

y(k) = Cx(k) +Du(k), (3.2)

where, for all k ≥ 0, x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rp. The goal is to use

knowledge of y(k) to estimate the unknown input u(k). The initial condition x(0)
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may be known or unknown.

For all l ≥ 0, define the lth Markov parameter

Hl
4
=

 D, l = 0,

CAl−1B, l ≥ 1.
(3.3)

Let r denote a nonnegative integer, and define

Yr
4
=



y(0)

y(1)

...

y(r)


∈ R(r+1)p, Ur

4
=



u(0)

u(1)

...

u(r)


∈ R(r+1)m, Γr

4
=



C

CA

...

CAr


∈ R(r+1)p×n, (3.4)

Mr
4
=



H0 0 0 · · · 0

H1 H0 0 · · · 0

H2 H1 H0 · · · 0

...
...

. . . . . .
...

Hr Hr−1 · · · H1 H0


∈ R(r+1)p×(r+1)m. (3.5)

It follows from (3.1), (3.2) that

Yr = Γrx(0) +MrUr = Ψr

x(0)

Ur

 , (3.6)

where

Ψr
4
=

[
Γr Mr

]
∈ R(r+1)p×[n+(r+1)m]. (3.7)
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Note that, since (A,C) is observable, it follows that

x(0) = Γ+
n (Yn −MnUn), (3.8)

where the generalized inverse Γ+
n of Γn is a left inverse of Γn. For r ≥ s ≥ 0, it is

convenient to partition Mr as

Mr =



H0 0 · · · · · · 0

...
. . . . . .

...
...

Hs
. . . . . . . . .

...

...
. . . . . . . . . 0

︸ ︷︷ ︸
Nr,s

Hr · · · Hs ︸ ︷︷ ︸
Qr,s

· · · H0


=

[
︸ ︷︷ ︸

Nr,s

Cr · · · Cs ︸ ︷︷ ︸
Qr,s

· · · C0

]
, (3.9)

where Nr,s ∈ R(r+1)p×(r−s+1)m, Qr,s ∈ R(r+1)p×sm, and, for all i ∈ {0, . . . , r}, Ci denotes

the (i+1)th block column of Mr labeled right to left. Furthermore, since, for all r ≥ 0,

Mr =



H0 0

H1

... Mr−1

Hr


=

 Mr−1 0

Hr · · · H1 H0

 , (3.10)

it follows that, for all r ≥ 0,

rankMr−1 ≤ rankMr (3.11)

≤ min{rankCr, rankRr}

+ rankMr−1 (3.12)

≤ m+ rankMr−1, (3.13)

where Rr
4
= [Hr · · · H0] is the last block row of Mr and M−1 is an empty matrix
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whose rank is 0 and range is {0}. Finally, note that, if r > s ≥ 0 and Nr,s has full

column rank, then, for all s′ ∈ {s+ 1, . . . , r}, Nr,s′ has full column rank.

3.3 Preliminaries on d-Delay Invertibility

Let G ∈ R(z)p×m be the p×m proper rational transfer function corresponding to

(3.1) and (3.2).

Definition 4. Let d be a nonnegative integer. Then G is d-delay invertible if there

exists Ĝ ∈ R(z)m×p such that Ĝ(z)G(z) = z−dIm. Ĝ is a d-delay left inverse of G.

Note that, if G is d-delay invertible, then G must have full normal column rank,

and thus m ≤ p, that is, G must be square or tall. Furthermore, if G is d-delay

invertible, then, for all r > d, G is r-delay invertible.

It follows from (3.11) and (3.13) that rankMr ≤ m + rankMr−1. The following

result shows that equality in either the case r = d or r = n is necessary and sufficient

for invertibility.

Proposition 5. The following conditions are equivalent:

i) There exists d ≥ 0 such that G is d-delay invertible.

ii) G has full column normal rank.

iii) rankN2n,n = (n+ 1)m.

iv) There exists d ≥ 0 such that rankMd − rankMd−1 = m.

v) rankMn − rankMn−1 = m.

If these conditions hold, then there exists d ≥ 0 such that (1/zd)[G(z)TG(z)]−1G(z)T

is a d-delay inverse of G.
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Proof. The equivalence of i) and ii) is immediate. The equivalence of i) and iii)

is given by Theorem 3 of [9]. The equivalence of i) and iv) is given by Theorem 2 of

[9] and Theorem 4 of [10]. The equivalence of i) and v) is given by Corollary 1 of [9].

�

It is desirable to achieve the smallest possible delay d such that G is d-delay

invertible. We thus define

η
4
= min{l ≥ 0 : rankMl = m+ rankMl−1}. (3.14)

Note that G is d-delay invertible if and only if η is finite. Furthermore, the equivalence

of i) and iv) of Proposition 5 implies that, if G is d-delay invertible, then η is the

smallest delay d such that G is d-delay invertible. Finally, v) of Proposition 5 implies

that η ≤ n. A sharper bound is given in the next section.

3.4 Input Reconstruction with Known Initial State

The existence of a d-delay left inverse of G implies that, if x(0) = 0, then the out-

put of the cascaded system ĜG is exactly the input sequence u(0), u(1), . . . delayed by

d steps. However, for several reasons, the d-delay inverse Ĝ(z) = (1/zd)[G(z)TG(z)]−1G(z)T

given by Proposition 5 may be deficient. In particular, Ĝ may be unstable; the cas-

cade ĜG may entail nonminimum-phase pole-zero cancellation; and the McMillan

degree of Ĝ may not be the smallest possible value. In this section, we construct a

deadbeat (finite-impulse response (FIR)) inverse with minimal delay η.

We first focus on sufficient or necessary conditions under which η is finite. In the

following result, the first three statements are immediate, and the last statement is

given by Corollary 1 of [11].
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Proposition 6. The following statements hold:

i) Let q ≥ 0 be the smallest nonnegative integer such that Hq is nonzero, and

assume that Hq has full column rank. Then η = q.

ii) If p < m, then η is infinite.

iii) Assume that, for all r ≥ 0, either rankRr < p or rankCr < m. Then η is

infinite.

iv) If η is finite, then η ≤ min{n, n+ 1−m+ rankD}.

i) implies that, if m = 1, then η is the index of the first nonzero Markov parameter.

Therefore, in the SISO case m = p = 1, η is the relative degree of G. ii) shows that

η is finite only if G is either square or tall. iii) implies that, if η is finite, then there

exists a nonnegative integer r such that either Rr has full row rank or Cr has full

column rank. However, Example 1 below shows that the converse of this statement

is not true. The second bound in iv) is given in [11].

The following example illustrates the range of possible values of η in the case p = 3

and m = 2.

Example 3.4.1. Let p = 3 and m = 2, and consider G(z) = C(zI − A)−1B +D

given by

G(z) =
1

z4
(H4 +H3z +H2z

2 +H1z
3). (3.15)
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Note that D = H0 = 03×2, and thus rankM0 = 0 < m. If

H1 =


0 1

1 2

0 1

 , H2 =


0 0

0 1

0 0

 , H3 =


1 0

1 0

1 0

 , H4 =


0 1

0 1

0 2

 , (3.16)

then rankM1 = 2 = m, and thus η = 1. Alternatively, if

H1 =


1 0

1 0

1 0

 , H2 =


1 0

0 1

1 0

 , H3 =


0 0

0 1

0 0

 , H4 =


0 1

0 1

0 2

 , (3.17)

then rankM1 = 1 < m, and, for all l ≥ 2, rankMl − rankMl−1 = 2 = m, and thus

η = 2. Next, if

H1 =


0 0

1 0

0 0

 , H2 =


0 0

0 1

0 0

 , H3 =


1 0

1 0

1 0

 , H4 =


0 1

0 1

0 2

 , (3.18)

then, for all l ≤ 3, rankMl − rankMl−1 = 1 < m, and, for all l ≥ 4, rankMl −

rankMl−1 = 2 = m, and thus η = 4. Finally, if

H1 =


0 0

1 0

0 0

 , H2 =


0 0

0 1

0 0

 , H3 =


1 0

1 0

1 0

 , H4 =


0 1

0 1

0 1

 , (3.19)

then, for all l ≥ 1, rankMl − rankMl−1 = 1 6= m, and thus η is infinite. 3

The cases (3.16)–(3.18) show that η may be finite whether or not at least one

Markov parameter has full column rank. Furthermore, the cases (3.18) and (3.19)

show that, if no Markov parameter has full column rank, then η may be finite or
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infinite.

The following result, which assumes that η is finite, is used in the proof of Theorem

2. The proof depends on Lemma 2. Note that, since, by iv) of Proposition 6, η ≤ n,

it follows that the first result of Proposition 7 generalizes i) =⇒ iii) of Proposition 5.

Proposition 7. Assume that η is finite, and let r ≥ η. Then, Nr,η has full col-

umn rank, and

R(Nr,η) ∩ R(Qr,η) = {0}. (3.20)

Proof. First, consider the case η = 0. Then M0 = N0 = H0 and rankM0 = rankN0 =

rankH0 = m. Since H0 has full column rank, it follows that Nr,η has full column rank,

and, since Qr,η is an empty matrix, (3.20) holds.

Next, let r = η = 1 so that

rankM1 = m+ rankM0. (3.21)

Since

M1 =

 C1

0

M0

 =

[
C1 C0

]
=

[
N1,1 Q1,1

]
, (3.22)

it follows that

rankM1 = rankC1 + rankC0 − dim (R(C1) ∩ R(C0))

= rankN1,1 + rankM0 − dim (R(N1,1) ∩ R(Q1,1)) . (3.23)
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Combining (3.21) with (3.23) yields

0 ≤ dim (R(N1,1) ∩ R(Q1,1)) = rankN1,1 −m ≤ 0,

which implies that N1,1 has full column rank and R(N1,1) ∩ R(Q1,1) = {0}.

Next, let r ≥ 2 and η ∈ {1, . . . , r} so that

rankMη = m+ rankMη−1. (3.24)

Noting

Mη =

 Cη
0

Mη−1

 =

[
Cη Cη−1 · · · C0

]
, (3.25)

it follows that

rankMη = rankCη + rank [Cη−1 · · · C0]− dim (R(Cη) ∩ R([Cη−1 · · · C0]))

= rankCη + rankMη−1 − dim (R(Cη) ∩ R([Cη−1 · · · C0])) . (3.26)

Combining (3.24) with (3.26) yields

0 ≤ dim (R(Cη) ∩ R([Cη−1 · · · C0])) = rankCη −m ≤ 0,

which implies that Cη has full column rank and

R(Cη) ∩ R([Cη−1 · · · C0]) = {0}. (3.27)
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It thus follows from Lemma 2 that Nr,η = [Cr · · · Cη] has full column rank and

R(Nr,η) ∩ R(Qr,η) = R([Cr · · · Cη]) ∩ R([Cη−1 · · · C0]) = {0}. �

The following result shows that, if x(0) is known and η is finite, then deadbeat

input reconstruction is possible with a delay of η steps whether or not (A,B,C,D)

has any invariant zeros. The proof depends on Proposition 7 and Lemma 3.

Theorem 2. Assume that the initial state x(0) is known and η is finite. Then,

for all r ≥ η,

Ur−η =

[
I(r−η+1)m 0[(r−η+1)m]×ηm

]
M+

r (Yr − Γr x(0)) . (3.28)

Proof. Let r ≥ η. Multiplying (3.6) by M+
r and rearranging terms yields

M+
r MrUr = M+

r (Yr − Γr x(0)) . (3.29)

Proposition 7 implies that Nr,η has full column rank and R(Nr,η)∩R(Qr,η) = {0}. It

thus follows from Lemma 3 that

M+
r Mr = [Nr,η Qr,η]

+[Nr,η Qr,η]

=

I(r−η+1)m 0

0 Q+
r,ηQr,η

 ∈ R(r+1)m×(r+1)m. (3.30)
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Substituting (3.30) into (3.29) yields

I(r−η+1)m 0

0 Q+
r,ηQr,η

Ur = M+
r (Yr − Γr x(0)) . (3.31)

Multiplying (3.31) by [I(r−η+1)m 0[(r−η+1)m]×ηm] implies that (3.28) holds. �

Note that (3.28) shows that the unknown input u is reconstructed with a delay

of η steps. Furthermore, note that the condition that η is finite is a necessary and

sufficient condition for the application of (3.28).

The following example illustrates Theorem 2 for a system with an invariant zero

and column-rank-deficient Markov parameter.

Example 3.4.2. Consider G(z) = C(zI − A)−1B +D given by

G(z) =
z− 1.2

(z− 0.9)2(z− 0.6)2

 1

z− 0.85

 . (3.32)

Note that (A,B,C,D) has an invariant zero at 1.2, H0 = H1 = 02×1, and η = 2.

Assume that the initial state x(0) = [5 6 2 1]T is known, and for all k ≥ 0, let

the unknown input u(k) be sampled Gaussian white noise with variance 1. To apply

Theorem 2, we choose r = 40 and compute M+
r using the Matlab function “pinv” with

the default machine constant. Figure 3.1 shows that, for all 0 ≤ k ≤ r − η = 38, the

reconstructed input using Theorem 2 is equal to the actual input u, which confirms

(3.28). 3
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Figure 3.1: Application of Theorem 2 to Example 3.4.2. For all 0 ≤ k ≤ r − η = 38,
the reconstructed input is equal to the actual input, which confirms (3.28).

3.5 Deadbeat State Estimation for Systems without Invari-

ant Zeros

Define

µ
4
= min{l ≥ 0 : rankΨl = n+ rankMl}. (3.33)

The index µ is the smallest integer such that Γµ has full column rank and the dis-

jointness condition (3.34) is valid.

The following result is used in the proof of Theorem 3.
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Proposition 8. Assume that (A,B,C,D) has no invariant zeros. Then µ is finite,

and, for all r ≥ µ, Γr has full column rank and

R(Γr) ∩ R(Mr) = {0}. (3.34)

Proof. Since (A,B,C,D) has no invariant zeros, Theorem A.1 of [24] implies that

there exists l ≥ n such that

R(Γl) ∩ R(Ml) = {0}. (3.35)

Since (A,C) is observable, it follows that

rankΓl = n. (3.36)

Noting Ψl = [Γl Ml] and using (3.35), (3.36), and Fact 2.11.9 in [79, p. 131], it follows

that

rankΨl = rankΓl + rankMl − dim(R(Γl) ∩ R(Ml))

= n+ rankMl. (3.37)

It thus follows from (3.37) that µ is finite and satisfies 0 ≤ µ ≤ l. Next, note that

rankΨµ = n+ rankMµ. (3.38)

Furthermore, noting Ψµ = [Γµ Mµ] and using Fact 2.11.9 in [79, p. 131] yields

rankΨµ = rankΓµ + rankMµ − dim(R(Γµ) ∩ R(Mµ)). (3.39)

38



Combining (3.38) with (3.39) yields

0 ≤ dim (R(Γµ) ∩ R(Mµ)) = rank Γµ − n ≤ 0,

which implies that Γµ has full column rank and

R(Γµ) ∩ R(Mµ) = {0}. (3.40)

Since Γµ has full column rank, it thus follows from (3.5) that, for all r ≥ µ, Γr has

full column rank. Finally, note that

R(Γµ+1) ∩ R(Mµ+1) = R


 Γµ

CAµ+1


 ∩


 Mµ 0

Hµ+1 · · · H1 H0


 . (3.41)

Since Γµ has full column rank and R(Γµ) ∩ R(Mµ) = {0}, it follows from (3.41) and

Lemma 1 that

R(Γµ+1) ∩ R(Mµ+1) = {0}.

By similar arguments, it follows that, for all r ≥ µ, R(Γr) ∩ R(Mr) = {0}. �

The following example compares µ and η for a system that has no invariant zeros.

Example 3.5.1. Since (3.15) has no invariant zeros for (3.16)–(3.18), Proposition

8 implies that µ is finite for each of these cases. For (3.16), numerical computation

shows that n = 7, rankΨ0 − rankM0 = 3 < n, rankΨ1 − rankM1 = 4 < n, rankΨ2 −

rankM2 = 5 < n, rankΨ3 − rankM3 = 6 < n, and, for all l ≥ 4, rankΨl − rankMl =

7 = n. Hence, µ = 4 > η = 1.

For (3.17), numerical computation shows that n = 6, rankΨ0 − rankM0 = 3 < n,

rankΨ1 − rankM1 = 5 < n, and, for all l ≥ 2, rankΨl − rankMl = 6 = n. Hence,

µ = η = 2.
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For (3.18), numerical computation shows that n = 7, rankΨ0 − rankM0 = 3 <

n, rankΨ1 − rankM1 = 5 < n, rankΨ2 − rankM2 = 6 < n, and, for all l ≥ 3,

rankΨl − rankMl = 7 = n. Hence, µ = 3 < η = 4.

Finally, for (3.19), (A,B,C,D) has an invariant zero at 0, and thus Proposition 8

is not applicable. 3

The following result shows that, if (A,B,C,D) has no invariant zeros, then dead-

beat state estimation is possible with a delay of µ steps without knowledge of u.

Unlike Theorem 2, the initial condition is unknown, but the system is assumed to

have no invariant zeros. The proof depends on Proposition 8 and Lemma 3.

Theorem 3. Assume that (A,B,C,D) has no invariant zeros. Then, for all k ≥ 0

and r ≥ µ,

x(k) =

[
In 0n×(r+1)m

]
Ψ+
r



y(k)

y(k + 1)

...

y(k + r)


. (3.42)

Proof. Let k ≥ 0. Since (A,B,C,D) has no invariant zeros, it follows from Propo-

sition 8 that, for all r ≥ µ, Γr has full column rank, and

R(Γr) ∩ R(Mr) = {0}. (3.43)

Using (3.43), it follows from Lemma 3 that, for all r ≥ µ,

Ψ+
r Ψr =

Γ+
r Γr 0

0 M+
r Mr

 =

In 0

0 M+
r Mr

 . (3.44)
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Next, multiplying (3.44) by [xT(k) uT(k) · · · uT(k+r)]T implies that, for all r ≥ µ,

In 0

0 M+
r Mr




x(k)

u(k)

...

u(k+r)


= Ψ+

r



y(k)

y(k+1)

...

y(k+r)


. (3.45)

Finally, multiplying (3.45) by [In 0n×(r+1)m] implies that, for all r ≥ µ, (3.42) holds.

�

3.5.1 Deadbeat State Estimator Based on Theorem 3

We now construct a deadbeat state estimator based on Theorem 3. Defining

Gyu(z)
4
= G(z) = C(zIn − A)B +D, (3.46)

Gxu(z)
4
= (zIn − A)B, (3.47)

and taking the Z-transform of (3.42) with r = µ yields

z−µX(z) =

[
In 0n×(µ+1)m

]
Ψ+
µ



z−µIp

z−µ+1Ip
...

Ip


︸ ︷︷ ︸

Ĝxy,µ(z)

Y (z). (3.48)

Note that Ĝxy,µ ∈ R(z)n×p is an FIR filter. Substituting Y (z) = Gyu(z)U(z) and

X(z) = Gxu(z)U(z) into (3.48) yields

z−µGxu(z)U(z) = Ĝxy,µ(z)Gyu(z)U(z). (3.49)
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It follows from (3.49) that

Ĝxy,µ(z)Gyu(z) = z−µGxu(z), (3.50)

which shows that Ĝxy,µ is a deadbeat µ-delay FIR state estimator. It should be noted

that the deadbeat estimator does not invoke the assumption that H1 has full column

rank as assumed in [5].

3.5.2 Numerical Example

Example 3.5.2. Consider the mass-spring-damper system with masses m1, m2

and unknown input force u applied to m1, as shown in Figure 3.2. The dynamics are

given by

ẋ = Acx+Bcu, (3.51)

where

Ac
4
=

02×2 I2×2

Ω1 Ω2

 , Bc
4
=

02×1

Ω3

 , Ω1
4
=

−k1+k2
m1

k2
m1

k2
m2

− k2
m2

 ,
Ω2

4
=

− c1+c2
m1

c2
m1

c2
m2

− c2
m2

 , Ω3
4
=

 1
m1

0

 ,
x1 and x2 are the displacements and x3 and x4 are the velocities of m1 and m2,

respectively. Letting m1 = m2 = 1 kg, k1 = k2 = 10 N/m, and c1 = c2 = 5 kg/sec, we

discretize (3.51) as

A = eAcTs , B = A−1
c (Ac − I)Bc, (3.52)
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where Ts = 1 sec is the sampling time. Letting

C =

1 0 0 0

0 0 1 0

 , D =

0

0

 ,
the measurements are the position x1 and velocity x3 of m1. The system (A,B,C,D)

has no invariant zeros, and thus we use Theorem 3 to estimate the position and

velocity of m2. Furthermore, µ = 2. Let the unknown initial condition be x(0) =

[−6 1 4 4]T, and let the unknown input be u(k) = 1 + w(k) + sin(kTs), where w is

zero-mean Gaussian white noise with variance 0.1. Furthermore, let the available

measurement be [yT(0) · · · yT(40)]T.

Figure 3.2: Mass-spring-damper system, where the disturbance u is the unknown in-
put force.

We estimate x2 and x4 in two different ways, namely, 1) by using (3.42), and 2)

by using the filter Ĝxy,2 given by (3.48). To apply (3.42), we choose r = µ = 2. The
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computed Ĝxy,2 is given by

Ĝxy,2(z) =



1
z2

0

−18.96z2+19.86z+0.098
z2

23.3z2+8.05z+0.067
z2

0 1
z2

28.6z2−25.5z−3.05
z2

−35.14z2−17.55z−0.9
z2


. (3.53)

Figure 3.3 shows that, for all 0 ≤ k ≤ 40 − µ = 38, the estimated state is equal to

the actual state, which confirms (3.42) and (3.48). 3

3.6 Deadbeat Input Reconstruction for Systems without In-

variant Zeros

The following result shows that, if (A,B,C,D) has no invariant zeros and η is

finite, then deadbeat input reconstruction is possible with a delay of η steps, whether

or not x(0) is known. The proof depends on Proposition 7, Proposition 8, and Lemma

3.

Theorem 4. Assume that (A,B,C,D) has no invariant zeros and η is finite. Then,

for all k ≥ 0 and r ≥ max{µ, η},



x(k)

u(k)

...

u(k+r−η)


=

[
In+(r−η+1)m 0[n+(r−η+1)m]×ηm

]
Ψ+
r



y(k)

y(k + 1)

...

y(k + r)


. (3.54)
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Figure 3.3: Application of Theorem 3 to Example 3.5.2. For all 0 ≤ k ≤ 40−µ = 38,
the estimated state is equal to the actual state, which confirms (3.42) and
(3.48).

Proof. Let k ≥ 0. Since, η exists, it follows from Proposition 7 that, for all r ≥ η,

R(Nr,η) ∩ R(Qr,η) = {0}. (3.55)
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Noting Mr = [Nr,η Qr,η] and using (3.55) and Fact 2.11.9 in [79, p. 131], it follows

that, for all r ≥ η,

rankMr = rankNr,η + rankQr,η. (3.56)

Since (A,B,C,D) has no invariant zeros, it follows from Proposition 8 that, for all

r ≥ µ,

R(Γr) ∩ R(Mr) = {0}. (3.57)

Noting Ψr = [Γr Mr] and using (3.57) and Fact 2.11.9 in [79, p. 131], it follows that,

for all r ≥ µ,

rankΨr = rankΓr + rankMr. (3.58)

Substituting (3.56) into (3.58) yields, for all r ≥ max{µ, η},

rankΨr = rankΓr + rankNr,η + rankQr,η. (3.59)

Next, noting Ψr = [Γr Nr,η Qr,η] and using Fact 2.11.9 in [79, p. 131], it follows that,

for all r ≥ 0,

rankΨr = rank [Γr Nr,η] + rankQr,η − dim[R([Γr Nr,η]) ∩ R(Qr,η)]

= rankΓr + rankNr,η + rankQr,η − dim[R(Γr) ∩ R(Nr,η)]

− dim[R([Γr Nr,η]) ∩ R(Qr,η)]. (3.60)
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Subtracting (3.60) from (3.59) yields, for all r ≥ max{µ, η},

dim[R(Γr) ∩ R(Nr,η)] + dim[R([Γr Nr,η]) ∩ R(Qr,η)] = 0. (3.61)

Since both terms in (3.61) are nonnegative, it follows that, for all r ≥ max{µ, η},

R(Γr) ∩ R(Nr,η) = {0}, (3.62)

R([Γr Nr,η]) ∩ R(Qr,η) = {0}. (3.63)

Using (3.63), it follows from Lemma 3 that, for all r ≥ max{µ, η},

Ψ+
r Ψr =

[Γr Nr,η]
+[Γr Nr,η] 0

0 Q+
r,ηQr,η

 . (3.64)

Next, Proposition 8 implies that, for all r ≥ µ, Γr has full column rank. Furthermore,

Proposition 7 implies that, for all r ≥ η, Nr,η has full column rank. Therefore, using

(3.62) it follows that

rank [Γr Nr,η] = rankΓr + rankNr,η − dim[R(Γr) ∩ R(Nr,η)]

= rankΓr + rankNr,η. (3.65)

Therefore, for all r ≥ max{µ, η}, [Γr Nr,η] has full column rank, and thus [Γr Nr,η]
+

is a left inverse of [Γr Nr,η]. Hence, for all r ≥ max{µ, η},

Ψ+
r Ψr =

In+(r−η+1)m 0

0 Q+
r,ηQr,η

 . (3.66)
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Next, multiplying (3.66) by [xT(k) uT(k) · · · uT(k+r)]T implies that, for all r ≥

max{µ, η},

In+(r−η+1)m 0

0 Q+
r,ηQr,η




x(k)

u(k)

...

u(k+r)


= Ψ+

r



y(k)

y(k+1)

...

y(k+r)


. (3.67)

Finally, multiplying (3.67) by [In+(r−η+1)m 0[n+(r−η+1)m]×ηm] implies that, for all r ≥

max{µ, η}, (3.54) holds. �

In order to minimize the size of Ψr, we specialize Theorem 4 with r = max{µ, η}.

In the case µ ≤ η, it follows that r = η and (3.54) specializes to

x(k)

u(k)

 =

[
In+m 0(n+m)×ηm

]
Ψ+
η



y(k)

y(k + 1)

...

y(k + η)


. (3.68)

Similarly, in the case µ > η, it follows that r = µ and (3.54) specializes to



x(k)

u(k)

...

u(k+µ−η)


=

[
In+(µ−η+1)m 0[n+(µ−η+1)m]×ηm

]
Ψ+
µ



y(k)

y(k + 1)

...

y(k + µ)


. (3.69)

Note that (3.68) and (3.69), starting at time step k, require η+1 and µ+1 measure-

ments, respectively.
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3.6.1 Deadbeat Left Inverse Based on Theorem 4

We now derive a transfer matrix corresponding to Theorem 4, and show that it

provides an η-delay left inverse of Gyu. Define γ
4
= max{µ, η} and the matrix

Pr,η,m,n
4
=

[
In+(r−η+1)m 0[n+(r−η+1)m]×ηm

]
. (3.70)

Then, with r = γ, (3.54) implies



x(k)

u(k)

...

u(k+γ−η)


= Pγ,η,m,n Ψ+

γ



y(k)

y(k + 1)

...

y(k + γ)


. (3.71)

Taking the Z-transform of (3.71) yields



z−γX(z)

z−γU(z)

z−γ+1U(z)

...

z−ηU(z)


= Pγ,η,m,n Ψ+

γ



z−γIp

z−γ+1Ip
...

Ip


︸ ︷︷ ︸

Ĝ(z)

Y (z). (3.72)

Note that Ĝ ∈ R(z)[n+(γ−η+1)m]×p is an FIR filter. Partition Ĝ as

Ĝ =



Ĝxy,γ

Ĝuy,γ

Ĝuy,γ−1

...

Ĝuy,η


, (3.73)
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such that

z−γX(z) = Ĝxy,γ(z)Y (z), (3.74)

z−γU(z) = Ĝuy,γ(z)Y (z), (3.75)

z−γ+1U(z) = Ĝuy,γ−1(z)Y (z), (3.76)

...

z−ηU(z) = Ĝuy,η(z)Y (z). (3.77)

Substituting Y (z) = Gyu(z)U(z) in (3.77) yields

z−ηU(z) = Ĝuy,η(z)Gyu(z)U(z). (3.78)

It follows from (3.78) that

Ĝuy,η(z)Gyu(z) = z−ηIm, (3.79)

which shows that Ĝuy,η is a deadbeat η-delay left inverse of Gyu.

3.6.2 Numerical Examples

The following example illustrates Theorem 4 for a system with rank-deficient

Markov parameters and with no invariant zeros.

Example 3.6.1. Consider Gyu(z) = C(zI − A)−1B +D given by

Gyu(z) =
1

z5
(H5 +H4z +H3z

2 +H2z
3 +H1z

4), (3.80)
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where

H1 = H2 = H3 =


1 1

0 0

0 0

 , H4 =


1 2

0 0

1 1

 , H5 =


1 2

1 0

1 1

 . (3.81)

Note that H0 is zero, (A,B,C,D) has no invariant zeros, µ = 4, and η = 5. To apply

Theorem 4 using (3.54), we choose k = 0 and r = 20 ≥ max{µ, η} = 5. Let the

unknown initial state x(0) = [4 2 1 3 6 8 7 3 1 2]T and, for all k ≥ 0, let the unknown

input u(k) = [u(1)(k) u(2)(k)]T, where u(1)(k) and u(2)(k) are sampled Gaussian white

noise with variance 1. Figure 3.4 shows that, for all 0 ≤ k ≤ r − η = 15, the

reconstructed input is equal to the actual input, which confirms (3.54). Furthermore,

the reconstructed initial state (not shown in Fig. 3.4) is equal to x(0). 3

Example 3.6.2. Reconsider Example 3.5.2 but now with the objective of recon-

structing the unknown input u. Note that η = 1. To reconstruct u, we apply Theorem

4 in two different ways, namely, 1) by using (3.54), and 2) by using the filter Ĝuy,1

given by (3.77). To apply (3.54), we choose k = 0 and r = 40 ≥ max{µ, η} = 2.

Using (3.77), the computed Ĝuy,1 is given by

Ĝuy,1(z) =

 6.344z2+4.089z−0.4335
z2

6.623z2−0.2729z−0.04078
z2

 . (3.82)

Figure 3.5 shows that, for all 0 ≤ k ≤ 40 − η = 39, the reconstructed input is equal

to the actual input, which confirms (3.54). It also shows that, for all max(µ− η, 0) =

1 ≤ k ≤ 40 − η = 39, the reconstructed input is equal to the actual input, which

confirms (3.77). 3
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Figure 3.4: Application of Theorem 4 to Example 3.6.1. For all 0 ≤ k ≤ r − η = 15,
the reconstructed input is equal to the actual input, which confirms (3.54).

3.7 Effect of Disturbance and Sensor Noise

The following example illustrates Theorem 4 in the presence of an unknown dis-

turbance that is not reconstructed.
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Figure 3.5: Application of Theorem 4 to Example 3.6.2. For all 0 ≤ k ≤ 40− η = 39,
the reconstructed input is equal to the actual input, which confirms (3.54).
For all max(µ − η, 0) = 1 ≤ k ≤ 40 − η = 39, the reconstructed input is
equal to the actual input, which confirms (3.77).

Example 3.7.1. Let G(z) = C(zI − A)−1B +D be given by

Gyu(z) =
1

(z− 0.4)(z− 0.6)3

−4 1 z−0.5

1 −3 z−0.1

 . (3.83)

Note that p = 2 < m = 3, and thus ii) of Proposition 6 implies that η is infinite. Con-

sequently, Theorem 4 is not applicable for reconstructing the unknown input u. Now,

partition B = [B1B2B3], where Bi is the ith column of B. Note that (A, [B1B2], C,D)

has no invariant zeros, η = 4, and µ = 3. Let u(k) = [u1(k)u2(k)u3(k)]T. Thus, if

u3 ≡ 0, then Theorem 4 can be used to exactly reconstruct u1 and u2 in η = 4
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steps. Now suppose that u3 is not zero. Since it is impossible to reconstruct all of

the components of u, u3 can be viewed as an unknown disturbance. In this case, we

apply Theorem 4 to estimate u1 and u2 in the presence of u3 and assess the resulting

accuracy.

Let u1(k) = 1, let u2(k) = sin(k), and let u3(k) be sampled zero-mean Gaus-

sian white noise with variance 0.1. Furthermore, let the available measurement be

[yT(0) · · · yT(40)]T. To reconstruct [u1(k)u2(k)]T, we apply Theorem 4 in two differ-

ent ways, namely, 1) by using (3.54), and 2) by using Ĝuy,4 given by (3.77). To apply

(3.54), we choose k = 0 and r = 40 ≥ max{µ, η} = 4. Furthermore, we use (3.77)

to compute Ĝuy,4. Figure 3.6 shows the estimates of u1 and u2 in the presence of the

unknown disturbance u3. Note that, for this example, the estimates obtained using

Ĝuy,4 and (3.54) are identical. 3

In the presence of measurement noise, the following example compares Theorem

4 with ULISE [29] for a system with full-column-rank H1.

Example 3.7.2. Reconsider Example 3.5.2 but now with the objective of re-

constructing the unknown input u in the presence of additive zero-mean Gaussian

white sensor noise. The standard deviation of the additive noise in both measure-

ments is 0.01. Figure 3.7 shows the input estimates for Ĝuy,1, (3.54), and ULISE. For

5 ≤ k ≤ 39, the error for Ĝuy,1 has mean 0.027 N and standard deviation 0.11 N; the

error for (3.77) has mean 0.026 N and standard deviation 0.094 N; and the error for

ULISE has mean 0.027 N and standard deviation 0.10 N. 3
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Figure 3.6: Application of Theorem 4 to Example 3.7.1 in the presence of white dis-
turbance.

3.8 Theorem 4 as an Unbiased Input Estimator

Consider the additive sensor and disturbance noise as

x(k+1) = Ax(k) +Bu(k) + w(k), (3.84)

y(k) = Cx(k) +Du(k) + v(k), (3.85)
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Figure 3.7: Comparison of Theorem 4 with ULISE for Example 3.7.2 in the presence
of measurement noise.

where, w(k) ∈ Rn, and v(k) ∈ Rp are zero mean, uncorrelated, white-noise sequences.

It follows from (3.84), (3.85) that

Yr = Ψr

x(0)

Ur

+ NrWr + Vr, (3.86)
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where

Wr
4
=



w(0)

w(1)

...

w(r)


, ∈ R(r+1)n, Vr

4
=



v(0)

v(1)

...

v(r)


,∈ R(r+1)p, (3.87)

Nr
4
=



D 0 0 · · · 0

C D 0 · · · 0

CA C D · · · 0

...
...

. . . . . .
...

CAr−1 CAr−2 · · · C D


∈ R(r+1)p×(r+1)n. (3.88)

Let the estimates of x(0) and Ur−η given by

 x̂(0)

Ûr−η

 4= Pr,η,m,nΨ+
r Yr. (3.89)

Using (3.86) and (3.89), it follows from (54) of Theorem 4 with k = 0 that

 x̂(0)

Ûr−η

 =

x(0)

Ur−η

+ Pr,η,m,nΨ+
r NrWr + Pr,η,m,nΨ+

r Vr. (3.90)

Since, by assumption, w(k) and v(k) are zero-mean white noise, (3.90) implies that

E

 x̂(0)

Ûr−η

 =

x(0)

Ur−η

 , (3.91)
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and thus (3.89) is an unbiased estimate of

x(0)

Ur−η

. The variance of (3.89) is given

by

var

 x̂(0)

Ûr−η

 = Pr,η,m,nΨ+
r [NrRwN

T
r +Rv](Pr,η,m,nΨ+

r )T, (3.92)

where Rw
4
= E [WrW

T
r ], and Rv

4
= E [VrV

T
r ].

3.9 Linear Time-Varying Systems

Consider the linear time-varying system

x(k+1) = Akx(k) +Bku(k), (3.93)

y(k) = Ckx(k) +Dku(k), (3.94)

where, for all k ≥ 0, x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rp. The goal is to use

knowledge of y(k) to estimate the unknown state x(k) and the unknown input u(k).

Define

Yk : k+r
4
=



y(k)

y(k+1)

...

y(k+r)


∈ R(r+1)p, Uk : k+r

4
=



u(k)

u(k+1)

...

u(k+r)


∈ R(r+1)m, (3.95)
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Γk : k+r
4
=



Ck

Ck+1Ak

Ck+2Ak+1Ak

Ck+3Ak+2Ak+1Ak
...

Ck+rAk+r−1Ak+r−2 · · ·Ak


∈ R(r+1)p×n, (3.96)

Mk : k+r
4
=



Dk 0 0 0 · · · 0

Ck+1Bk Dk+1 0 0 · · · 0

Ck+2Ak+1Bk Ck+2Bk+1 Dk+2 0 · · · 0

Ck+3Ak+2Ak+1Bk Ck+3Ak+2Bk+1 Ck+3Bk+2 Dk+3 · · · 0

...
...

...
... ...

...

Ck+rAk+r−1 · · ·Ak+1Bk Ck+rAk+r−1 · · ·Ak+2Bk+1 Ck+rAk+r−1 · · ·Ak+3Bk+2 · · · Ck+rBk+r−1 Dk+r



.

(3.97)

It follows from (3.93), (3.94) that

Yk : k+r = Γk : k+r x(k) +Mk : k+r Uk : k+r = Ψk : k+r

 x(k)

Uk : k+r

 , (3.98)

where

Ψk : k+r
4
=

[
Γk : k+r Mk : k+r

]
∈ R(r+1)p×[n+(r+1)m]. (3.99)

Let η̄ ≥ 0 be the smallest integer, such that, for all k ≥ 0

rankMk+η̄ = m+ rankMk+η̄−1. (3.100)
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Furthermore, let µ̄ ≥ 0 be the smallest integer, such that, for all k ≥ 0

rankΨk+µ̄ = n+ rankMk+µ̄. (3.101)

The following theorem provides deadbeat input and state estimates for linear

time-varying systems. The proof of the following theorem is similar to Theorem 4.

Theorem 5. Assume that η̄ and µ̄ are finite. Then, for all k ≥ 0 and r ≥ max{η̄, µ̄},

 x(k)

Uk : k+r−η̄

 =

[
In+(r−η̄+1)m 0[n+(r−η̄+1)m]×η̄m

]
Ψ+
k : k+rYk : k+r. (3.102)

Example 3.9.1. Consider the following linear time-varying system

Ak =




0 0.5 0

0 0 1

1.5 0 0

 , k = 0, 2, 4, . . .


0 0.5 0

0 0 1

0.5 0 0

 , k = 1, 3, 5, . . .

(3.103)

and, for all k ≥ 0

Bk =

[
0 0 1

]T

, Ck =

 1 0 0

0 0 1

 , Dk =

[
0 0

]T

. (3.104)

Note that η̄ = µ̄ = 1. To apply Theorem 5 using (3.102), we choose k = 0 and
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r = 5 ≥ max{η̄, µ̄} = 1. Let the unknown initial state x(0) = [4 6 10]T and, for all

k ≥ 0, let the unknown input u(k) be sampled Gaussian white noise with variance 1.

Figure 3.8 shows that, for all 0 ≤ k ≤ r − η = 4, the reconstructed input is equal to

the actual input, which confirms (3.102). Furthermore, the reconstructed initial state

(not shown in Fig. 3.8) is equal to x(0). 3
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Figure 3.8: Application of Theorem 5 to Example 3.9.1. For all 0 ≤ k ≤ r−η = 4, the
reconstructed input is equal to the actual input, which confirms (3.102).

3.10 Conclusions

Using the generalized inverse of a block-Toeplitz matrix, this chapter presented

simplified and unified algorithms for deadbeat input reconstruction and state estima-

tion for MIMO systems that are d-delay invertible, that is, invertible with a delay of
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d steps. These algorithms do not assume the existence of a full-column-rank Markov

parameter.

The assumption that the system is d-delay invertible is equivalent to the finiteness

of the index η, which is the smallest delay d such that the system is d-delay invertible.

Various questions concerning η remain open. Although the finiteness of η can be

verified by checking n rank conditions, an easily verifiable necessary and sufficient

condition for the finiteness of η is lacking. Numerical examples suggest that the

existence of at least one Markov parameter with full column rank implies that η is

finite; however, (3.18) shows that this condition is not necessary. Since the finiteness

of η is a necessary and sufficient condition for the existence of a d-delay inverse with

smallest delay, it seems reasonable to view η as the relative degree of square or tall

systems. This notion may have relevance to other areas such as adaptive control.

In the next chapter, we consider asymptotic input estimation for systems with

invariant zeros and rank deficient Markov parameters.
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CHAPTER 4

Asymptotic Input and State Estimation Based on

the Projection onto the Complement of

Unobservable Input Subspace

4.1 Introduction

Deadbeat input reconstruction for systems with at least one invariant zero and

unknown initial condition is impossible. This can easily be seen by noting that if the

system has an invariant zero, then it has a nontrivial unobservable input subspace

[24]. In this case, asymptotic input reconstruction must be considered, with careful

attention paid to the presence of nonmimimum-phase zeros.

This chapter first numerically investigates the effect of invariant zeros either inside

or outside the unit circle on the projected input sequence onto the orthogonal comple-

ment of unobservable input subspace. Then, using the projection, we give Property

4.1 for asymptotic input estimation, and demonstrate it numerically in Example 4.4.1.

Proof of this property is outside the scope of this dissertation.
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4.2 Projection Onto the Orthogonal Complement of Unob-

servable Input Subspace

We now consider systems of the form [(2.1),(2.2)] that are not IISO due to the

presence of invariant zeros. Theorem 1 implies that N(Ψr) is nonzero, where Ψr

is given by (2.6). Thus, the initial state and input sequence cannot be determined

uniquely. Consequently, we use the projector Pr,⊥
4
= Ψ+

r Ψr, where Ψ+
r is the genear-

lized inverse of Ψr, to estimate the projection of the state and input sequence onto

N(Ψr)
⊥. For an input sequence of length r starting at step k ≥ 0, this projection is

given by



x⊥,k,r(k)

d⊥,k,r(k)

...

d⊥,k,r(k+r−1)


4
= Pr,⊥



x(k)

d(k)

...

d(k+r−1)


= Ψ+

r



y(k)

y(k + 1)

...

y(k+r)


. (4.1)

The dimension of the nullspace of Ψr is given by the following proposition.

Proposition 9. Assume that η exists. Then, for all r ≥ η,

dim(N(Ψr)) = η + number of invariant zeros. (4.2)

The following example illustrates Proposition 9.

Example 4.2.1. Consider G(z) = C(zI − A)−1G given by

G(z) =
z− 1.2

(z− 0.9)2(z− 0.6)2

 1

z− 0.85

 . (4.3)

Note that (A,G,C) has one invariant zero at 1.2, H0 = H1 = 02×1, and η = 2. It

thus follows from Proposition 9 that, for all r ≥ η = 2, dim(N(Ψr)) = 2 + 1 = 3,
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which can be confirmed numerically. 3

4.3 Effect of an Invariant Zero on the Unobservable Input

Depending on the location of the invariant zero ξ, the unobservable input (2.13)

has the following properties:

1. If ξ is inside the open unit disk, then d(r) converges to zero.

2. If ξ is on the unit circle, then d(r) is persistent.

3. If ξ is outside the closed unit disk, then d(r) diverges.

The following example illustrates properties of the projection (4.1) for various loca-

tions of the invariant zero for a system with full-column-rank CG.

Example 4.3.1. Consider the 2×1 transfer function G(z) = C(zI−A)−1G given

by

G(z) =
(z− ξ)(z− conj(ξ))

(z− 0.9)(z− 0.8)(z− 0.7)(z− 0.6)

 1

z− 0.85

 , (4.4)

where ξ ∈ C is an invariant zero of (A,G,C) and conj(ξ) is the conjugate of ξ. Note

that, since the relative degree of the (2, 1) entry of G is 1, it follows that CG is

nonzero and thus has full column rank, and thus, for all r ≥ 1, Mr has full column

rank. However, since (A,G,C) has two invariant zeros, Proposition 3 implies that

[(2.1),(2.2)] is not IISO.

Now, let

x̄
d̄

 ∈ N(Z(ξ)) be nonzero with nonzero real part, and define d(k) =

dob(k) + duo(k), where, for all k ≥ 0, dob(k) = 1 and duo(k) = Re(ξkd̄). Furthermore,

let x(0) = Re(x̄), and let d̂ULISE denote the input estimate given by the ULISE filter
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[29]. Therefore,

x(0)

Dr−1

 =

 0

Dob,r−1

+

 x(0)

Duo,r−1

 , (4.5)

where

Dob,r−1
4
=



dob(0)

dob(1)

...

dob(r)


, Duo,r−1

4
=



duo(0)

duo(1)

...

duo(r)


. (4.6)

It thus follows from Proposition 3 that

Pr,⊥

 x(0)

Duo,r−1

 = 0, (4.7)

which, along with (4.1) and (4.5), yields

Pr,⊥

x(0)

Dr−1

 = Pr,⊥

 0

Dob,r−1

 = Ψ+
r Yr. (4.8)

We choose r = 200 and k = 0 to compute Ψ+
r and d⊥,k,r in (4.1).

First, let ξ = 0.6 + 0.6, which lies in the open unit disk. In this case, Figure

4.1a shows that d⊥,0,41 and d̂ULISE converge to dob. Furthermore, Figure 4.1a shows

that d − dob converges to zero, which is consistent with the fact that duo = d − dob

converges to zero. Thus, d− d⊥,0,41 and d− d̂ULISE also converge to zero. Figure 4.1b

shows that, for k ≥ 30, the input estimates obtained using (4.8) and the method of

[29] closely follow dob and are essentially identical.

Next, let ξ = 0.6 + 0.8, which lies on the unit circle. In this case, Figure 4.1c
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shows that, as r increases, d⊥,0,r converges to d for all k, whereas, d̂ULISE 6= dob.

Furthermore, Figure 4.1c shows that d − dob does not converge to zero, which is

consistent with the fact that duo is harmonic. Figure 4.1d shows that the magnitude

of the error dob−d̂ULISE does not decrease, whereas, as r increases, the error dob−d⊥,0,r
converges to zero for all k.

Finally, let ξ = 0.8 + 0.7, which lies outside the closed unit disk. Figure 4.1e

shows that d̂ULISE diverges from both dob and d. This divergence is consistent with

the fact that Theorem 6 in [29] is confined to minimum-phase systems. On the other

hand, Figure 4.1e shows that, d⊥,0,61(0) converges to dob(0). Figure 4.1f shows that

the error d⊥,0,61 − dob converges to zero backward in time. 3

4.4 Input Estimation for Systems with Invariant Zeros

For a system with an invariant zero ξ, Example 4.3.1 illustrates that, as the length

r of the data window increases, the projected input d⊥,k,r given by (4.1) converges to

d. However, the convergence “direction” depends on the location of ξ relative to the

unit circle. These observations are captured by the following property of the input

sequence projected onto N(Ψr)
⊥, which is demonstrated numerically in Example 4.4.1

below. Proof of this property is outside the scope of this dissertation.

Property 4.1. Assume that (A,G,C) has no zeros on the unit circle, d is bounded,

and η is finite. Furthermore, for all r > η, let δ(r) ∈ [0, r − η], and assume that δ(r)

satisfies the following conditions:

i) If (A,G,C) has all invariant zeros inside the open unit disk, then limr→∞ δ(r) =

∞.

ii) If (A,G,C) has all invariant zeros outside the closed unit disk, then limr→∞[r−

δ(r)] =∞.
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Figure 4.1: Comparison of the ULISE filter and the projection (4.8) in Example 4.3.1
for various locations of the invariant zero ξ. (a) d⊥,0,41 and d̂ULISE converge
to dob. (b) For k ≥ 30, the input estimates obtained using (4.8) and ULISE
closely follow dob and are essentially identical. (c) As r increases, d⊥,0,r
converges to dob for all k, whereas, d̂ULISE 6= dob. (d) The magnitude of
the error dob−d̂ULISE does not decrease, whereas, as r increases, the error
dob−d⊥,0,r converges to zero for all k. (e) d̂ULISE diverges from both dob

and d. (f) The error d⊥,0,61 − dob converges to zero backward in time.

iii) If (A,G,C) has at least one invariant zero inside the open unit disk and at least

one invariant zero outside the closed unit disk, then limr→∞ δ(r) = limr→∞[r−
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δ(r)] =∞.

Then, for all k ≥ 0,

lim
r→∞
{
[

0ld×(lx+δ(r)ld) Ild 0ld×(r−δ(r)−1)ld

]
Ψ+
r



y(k)

y(k+1)

...

y(k+r)


− d(k + δ(r))} = 0. (4.9)

Using the notation (4.1), it follows that (4.9) can be written as

lim
r→∞

[d⊥,k,r(k + δ(r))− d(k + δ(r))] = 0. (4.10)

The following example illustrates Property 4.1 for a system with invariant zeros

and rank-deficient Markov parameters.

Example 4.4.1. Consider G(z) = C(zI − A)−1G given by

G(z) =
(z− 0.8)(z− 1.2)

(z− 0.9)2(z− 0.6)3

 1

z− 0.85

 . (4.11)

The invariant zeros of (A,G,C) are 0.8 and 1.2, which corresponds to iii) of Property

1. Furthermore, H1 = 0 and η = 2. Let the unknown initial state x(0) = [1 1 2 4 5]T

and, for all k ≥ 0, let the unknown input d(k) be sampled Gaussian white noise with

variance 1. To apply Property 4.1, we choose δ(r) = r−1
2

, and hence δ(r) satisfies

limr→∞ δ(r) = limr→∞[r − δ(r)] =∞. For the case k=0, Figure 4.2 shows that, as r

increases, |d⊥,0,r(δ(r))− d(δ(r))| converges to zero, which illustrates (4.10).

Next, for l ≥ 1 and data [yT(0) yT(1) . . . yT(l)]T, we use (4.9) to estimate

the unknown input d. Let r ≤ l and, for all k ∈ [0, l − r], let d⊥,k,r(k + δ(r)) be the

estimate of d(k + δ(r)). To illustrate (4.10), choose r = 61 < l = 200, and hence

δ(r) = 30. Figure 4.3(a) shows that, for all k ∈ [0, 139], d⊥,k,61(k+30) follows d(k+30)
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Figure 4.2: Illustration of Property 4.1 for Example 4.4.1. Note that, |d⊥,0,r(δ(r)) −
d(δ(r))| decreases as r increases, which illustrates (4.10) and thus also
(4.9).

with root-mean-squared-error (RMSE) 0.71. Next, we choose r = 121 < l = 200, and

hence δ(r) = 60. Figure 4.3(b) shows that, for all k ∈ [0, 79], d⊥,k,61(k+30) follows

d(k+60) with RMSE 0.0027. Figures 4.3(a) and 4.3(b) show that, as r increases, the

estimates improve; however, the length of the estimation window l−r+1 decreases as

r increases. 3

4.5 Conclusions

This chapter presented Property 4.1 for system with zeros either inside or out-

side the unit disk. The property is based on a batch algorithm which requires the
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Figure 4.3: Estimation of the unknown input d for the system (4.11) in Example
4.4.1 using (4.9). (a) For all k ∈ [0, 139], d⊥,k,61(k+30) follows d(k+30)
with RMSE of 0.71. (b) For all k ∈ [0, 79], d⊥,k,61(k+30) closely follows
d(k+60) with RMSE of 0.0027. Note that, as r increases, the estimates
improve; however, the length of the estimation window l−r+1 decreases
as r increases.

computation of the generalized inverse Ψ+
r . Thus, techniques that would avoid the

need to compute Ψ+
r for large r is desirable. The next chapter presents an input and

state estimation algorithm based on the retrospective cost and Kalman filter, which

is recursive and effective for systems with zeros anywhere in the complex plane.
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CHAPTER 5

Asymptotic Input and State Estimation Based on

the Retrospective Cost and Kalman Filter

5.1 Introduction

The Kalman filter and its variants provide well-established techniques for estimat-

ing states that are not directly measured [1–3, 80, 81]. The goal of these techniques is

to obtain optimal state estimates in the presence of process and sensor noise. These

techniques typically assume that the sensor and process noise are stationary with

zero mean. If, however, the process noise includes a known deterministic component,

then estimator bias can be avoided by injecting this component into the estimator;

this technique underlies the separation principle of linear-quadratic-Gaussian control.

If, however, the process noise is biased, that is, has unknown, nonzero mean, or,

more generally, it includes an unknown deterministic component, then it is of interest

to obtain estimates that are unbiased, that is, unaffected by the deterministic-but-

unknown input. This problem is addressed in [4–7, 82].

The advantages of injecting the known deterministic input signal into the estima-

tor motivate the development of techniques for estimating not only the unmeasured

states but also the unknown deterministic input. The value of this objective in prac-

tice resides in the fact that knowledge of the deterministic input and its injection
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into the estimator can greatly increase the accuracy of the state estimates relative

to the ad hoc technique of choosing the disturbance covariance matrix to overbound

the deterministic input. The potential value of this approach is evident from the

increasing literature on input estimation [12, 14–31, 35–39].

An alternative approach to input estimation is to assume that the unknown input

is the output of an auxiliary linear/nonlinear system with known dynamics driven by

white noise. The dynamics of the auxiliary system are appended to the dynamics of

the physical system, and the augmented model is used to as the basis of the state

estimator [83–85]. This approach may not be accurate, however, if the unknown input

cannot be approximated by the output of a linear system driven by white noise. The

approach of the present chapter can be viewed as an adaptive technique for learning

suitable dynamics that capture the unknown input.

The motivation for the present chapter resides in the fact that most of the tech-

niques for state and input estimation cited above are confined to minimum-phase

systems, that is, systems with invariant zeros contained in the open unit disk. In

particular, the approach of [29], which extends the method of [17], explicitly invokes

a minimum-phase assumption.

The case of nonminimum-phase (NMP) zeros, that is, zeros that are either on

the unit circle or outside the closed unit disk, is much more challenging. As shown

in [24], a naive attempt to estimate the input for a NMP system with zeros outside

the closed unit disk yields a reconstruction error that is unbounded; in the case

of zeros on the unit circle, the input-reconstruction error is bounded but nonzero.

In contrast, in the case of minimum-phase systems, the input-reconstruction error

vanishes asymptotically. Unlike most of the references cited above, [39] considers the

case of NMP zeros, but the method is not applicable to the case of zeros on the unit

circle.

More generally, it is important to stress that exact input reconstruction for a
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system with any zeros is impossible. This can easily be seen by noting that the

presence of an invariant zero implies the existence of an initial condition and input

for which the output is identically zero. These details are related to the unobservable

input subspace [24]. Hence, in the case where the system has one or more invariant

zeros, the goal is to achieve asymptotic input reconstruction of the component of the

input that resides in the orthogonal complement of the unobservable input subspace.

The present chapter is aimed at the case where the system is NMP. In particular,

the present chapter considers state and input estimation based on retrospective cost

optimization [38, 40–45]. Based on this technique, the contribution of the present

chapter is the development of retrospective cost input estimation (RCIE), which is

a technique for state and input estimation that is effective for NMP systems. This

approach uses an estimator whose coefficients are recursively updated at each time

step so as to minimize a retrospective cost function. Motivation for this approach is

discussed within the context of adaptive control in [47, 48].

The contents of this chapter are as follows. Section 5.2 introduces the state and

input estimation problem along with the RCIE algorithm and details of the input-

estimation subsystem. Section 5.3 shows how RCIE can asymptotically reconstruct

the input to a NMP system by embedding an internal model of the unknown input in

the input-estimation subsystem. Section 5.4 illustrates the effect of the unobservable

input subspace. Finally, in Section 5.5, we compare RCIE with the filter presented

in [29].
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5.2 Input and State Estimation

Consider the linear discrete-time system

x(k) = A(k−1)x(k−1) +B(k−1)u(k−1) +G(k−1)d(k−1)

+D1(k−1)w(k−1), (5.1)

y(k) = C(k)x(k) +D2(k)v(k), (5.2)

where x(k) ∈ Rlx is the unknown state, u(k) ∈ Rlu is the known input, d(k) ∈ Rld is

the unknown input, w(k) ∈ Rlw is unknown white process noise with zero mean and

unit variance, y(k) ∈ Rly is the measured output, and v(k) ∈ Rlv is unknown white

measurement noise with zero mean and unit variance. This model may represent a

sampled-data version of a continuous-time plant with sample time Ts, in which case

x(k) denotes the state at time t = kTs. The matrices A(k) ∈ Rlx×lx , B(k) ∈ Rlx×lu ,

G(k) ∈ Rlx×ld , D1(k) ∈ Rlx×lw , C(k) ∈ Rly×lx , and D2(k) ∈ Rly×lv are assumed

to be known. The process noise covariance is V1(k)
4
= D1(k)D1(k)T ∈ Rlx×lx , and

the measurement noise covariance is V2(k)
4
= D2(k)D2(k)T ∈ Rly×ly . The goal is to

estimate the unknown input d(k) and the unknown state x(k).

5.2.1 Retrospective Cost Input Estimation (RCIE)

In order to estimate the unknown input d(k), we consider the Kalman filter fore-

cast step

xfc(k) = A(k−1)xda(k−1) +B(k−1)u(k−1) +G(k−1)d̂(k − 1), (5.3)

yfc(k) = C(k)xfc(k), (5.4)

z(k) = yfc(k)− y(k), (5.5)
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where d̂(k) ∈ Rld is the input estimate, xda(k) ∈ Rlx is the data-assimilation state,

xfc(k) ∈ Rlx is the forecast state, and z(k) ∈ Rly is the innovations. The goal is to

develop an input estimator that minimizes z(k) by estimating d(k).

We obtain the input estimate d̂(k) as the output of the input-estimation subsystem

of order nc given by

d̂(k) =
nc∑
i=1

Pi(k)d̂(k − i) +
nc∑
i=0

Qi(k)z(k − i), (5.6)

where Pi(k) ∈ Rld×ld and Qi(k) ∈ Rld×ly . Note that (5.6) represents an exactly proper

transfer function with direct feedthrough from the innovations z(k) to the estimate

d̂(k) of d(k). RCIE minimizes z(k) by updating Pi(k) and Qi(k). The subsystem (5.6)

can be reformulated as

d̂(k) = Φ(k)θ(k), (5.7)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
=



d̂(k − 1)

...

d̂(k − nc)

z(k)

...

z(k − nc)



T

⊗ Ild ∈ Rld×lθ

and

θ(k)
4
= vec

[
P1(k) · · ·Pnc(k) Q0(k) · · ·Qnc(k)

]
∈ Rlθ ,

where lθ
4
= l2dnc + ldly(nc+1), “⊗” is the Kronecker product, and “vec” is the column-
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stacking operator. The order nc of the input-estimation subsystem must be chosen

large enough to accommodate an internal model of the unknown input. The action

of the internal model is described in Section 5.3.

Define the ly × ld filter Gf,k(q)
4
= D−1

f,k (q)Nf,k(q), where q is the forward shift

operator, nf ≥ 1 is the order of Gf ,

Nf,k(q)
4
= K1(k)qnf−1 +K2(k)qnf−2 + · · ·+Knf

(k), (5.8)

Df,k(q)
4
= Ilyq

nf + A1(k)qnf−1 + A2(k)qnf−2

+ · · ·+ Anf
(k), (5.9)

and, for all 1 ≤ i ≤ nf and k ≥ 0, Ki(k) ∈ Rly×ld and Ai(k) ∈ Rly×ly .

Next, for all k ≥ 0, we define the retrospective input

drc(θ̂, k)
4
= Φ(k)θ̂ (5.10)

and the corresponding retrospective performance variable

zrc(θ̂, k)
4
= z(k) +Gf,k(q)[drc(θ̂, k)− d̂(k)], (5.11)

where the filter Gf,k(q) is derived in Section 5.2.3 and the coefficient vector θ̂ ∈ Rlθ

is determined by optimization below. Defining

Φf(k)
4
= Gf,k(q)Φ(k) ∈ Rly×lθ , (5.12)

d̂f(k)
4
= Gf,k(q)d̂(k) ∈ Rly , (5.13)

it follows that zrc(θ̂, k) can be written as

zrc(θ̂, k) = z(k) + Φf(k)θ̂ − d̂f(k). (5.14)
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For k ≥ 1, we define the retrospective cost function

J(θ̂, k)
4
=

k∑
i=0

λk−i
(
zrc(θ̂, i)

TRzzrc(θ̂, i) + [Φ(i)θ̂]TRdΦ(i)θ̂
)

+ λk[θ̂ − θ(0)]TRθ[θ̂ − θ(0)], (5.15)

where Rz ∈ Rly×ly , Rd ∈ Rld×ld , and Rθ ∈ Rlθ×lθ are positive definite, and λ ∈ (0, 1]

is the forgetting factor. Let P (0) = R−1
θ and θ(0) = θ0. Then, for all k ≥ 1, the

cumulative cost function (5.15) has the unique global minimizer θ(k) given by the

RLS update

θ(k) = θ(k−1)− P (k−1)Φ̃(k)TΓ(k)[Φ̃(k)θ(k−1) + z̃(k)], (5.16)

P (k) =
1

λ
[P (k−1)− P (k−1)Φ̃(k)TΓ(k)Φ̃(k)P (k−1)], (5.17)

where

Φ̃(k)
4
=

 Φf(k)

Φ(k)

 ∈ R(ly+ld)×lθ , (5.18)

R̃(k)
4
=

 Rz(k) 0

0 Rd(k)

 ∈ R(ly+ld)×(ly+ld), (5.19)

z̃(k)
4
=

 z(k)− d̂f(k)

0

 ∈ Rly+ld , (5.20)

Γ(k)
4
= [λR̃(k)−1 + Φ̃(k)P (k−1)Φ̃(k)T]−1. (5.21)

Note that RCIE uses RLS to estimate the coefficients θ of the input-estimation sub-

system. Since the RLS equation is a quadratic matrix equation, its computational

complexity is O(n2
c).
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5.2.2 State Estimation

In order to estimate the state x(k), we use xfc(k) given by (5.3) to obtain the

estimate xda(k) of x(k) given by the Kalman filter data-assimilation step

xda(k) = xfc(k) +Kda(k)z(k), (5.22)

where the state estimator gain Kda(k) ∈ Rlx×ly is given by

Kda(k) = −Pf(k)C(k)T[C(k)Pf(k)C(k)T + V2(k)]−1, (5.23)

and the forecast error covariance Pf(k) ∈ Rlx×lx and the data-assimilation error co-

variance Pda(k) ∈ Rlx×lx are given by

Pf(k) = A(k−1)Pda(k − 1)A(k−1)T + V1(k−1) + Vd̂(k−1), (5.24)

Pda(k) = [I +Kda(k)C(k)]Pf(k), (5.25)

where Vd̂(k) is the covariance of d̂(k). Note that, if d̂(k) = d(k) for all k ≥ 0, then,

for all k ≥ 0, Vd̂(k) = 0 and the state estimate xda given by (5.22) is the standard

Kalman filter estimate.

5.2.3 Filter Construction

For simplicity of presentation, the known input u and the process noise w are

omitted in this subsection. By substituting (5.3) into (5.22), the forecast step is

given as

xfc(k) = Ā(k − 1)xfc(k − 1) +G(k − 1)d̂(k − 1) + B̄(k − 1)y(k − 1), (5.26)
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where

Ā(k)
4
= A(k)[I+Kda(k)C(k)], B̄(k)

4
= −A(k)Kda(k). (5.27)

The forecast state estimate xfc(k) given by (5.26) can be expanded as

xfc(k) =

(
n∏
i=1

Ā(k−i)
)
xfc(k−n)

+
n∑
i=2

(
i−1∏
j=1

Ā(k−j)
)
G(k−i)d̂(k−i) +G(k−1)d̂(k−1)

+
n∑
i=2

(
i−1∏
j=1

Ā(k−j)
)
B̄(k−i)y(k−i) + B̄(k−1)y(k−1), (5.28)

where
∏2

i=1 Mi
4
= M2M1. Using (5.4) and (5.28) yields

z(k) = C(k)

(
n∏
i=1

Ā(k−i)
)
xfc(k−n) +

n∑
i=1

Hi(k)d̂(k−i) +
n∑
i=1

H ′i(k)y(k−i)− y(k),

(5.29)

where, for all i ≥ 1,

Hi(k)
4
=

 C(k)G(k−1), i = 1,

C(k)
(∏i−1

j=1 Ā(k−j)
)
G(k−i), i ≥ 2,

(5.30)

H ′i(k)
4
=

 C(k)B̄(k−1), i = 1,

C(k)
(∏i−1

j=1 Ā(k−j)
)
B̄(k−i), i ≥ 2.

(5.31)

Furthermore, (5.10) and (5.29) imply

zrc(θ̂, k) = C(k)

(
n∏
i=1

Ā(k−i)
)
xfc(k−n) +

n∑
i=1

Hi(k)drc(θ̂, k−i)

+
n∑
i=1

H ′i(k)y(k−i)− y(k). (5.32)
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Subtracting (5.29) from (5.32) yields

zrc(θ̂, k) = z(k) +
n∑
i=1

Hi(k)
1

qi
[drc(θ̂, k)− d̂(k)]. (5.33)

Hence, Gf,k(q) in (5.11) is the FIR filter

Gf,k(q) =

nf∑
i=1

Hi(k)
1

qi
, (5.34)

and, thus, for all k ≥ 0 and all i = 1, . . . , nf , Ai(k) = 0 and Ki(k) = Hi(k) in (5.9)

and (5.8), respectively. Furthermore, Φf and d̂f defined by (5.12) and (5.13) are given

by

Φf(k) =

nf∑
i=1

Hi(k)Φ(k − i), d̂f(k) =

nf∑
i=1

Hi(k)d̂(k−i). (5.35)

A pseudo algorithm for RCIE is given in Appendix C.

5.2.4 Transfer Function Representation of RCIE

The physical system Gyd,k, forecast subsystem Gfc,k, input-estimation subsystem

Gd̂z,k, and data-assimilation subsystem Gda,k in Figure 5.1 represent [(5.1),(5.2)],

(5.3), (5.6), and (5.22), respectively. For simplicity of presentation, the known in-

put u and the process noise w are not shown in Figure 5.1 and are omitted for the

remainder of this subsection.

By substituting (5.26) into (5.4), yfc is given by

yfc(k) = Gyfcy,k(q)y(k) +Gyfcd̂,k
(q)d̂(k), (5.36)
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Figure 5.1: Block diagram of retrospective cost input estimation. The two-step
Kalman filter consists of the forecast subsystem Gfc and the data-
assimilation subsystem Gda. The innovations z and the output d̂ of the
input-estimation subsystem Gd̂z are the inputs of the two-step Kalman
filter.

where

Gyfcy,k(q) = C(k)[qI − Ā(k)]−1B̄(k), (5.37)

Gyfcd̂,k
(q) = C(k)[qI − Ā(k)]−1G(k). (5.38)

Next, it follows from (5.6) that d̂ is given by

d̂(k) = Gd̂z,k(q)z(k), (5.39)

where

Gd̂z,k(q) =
(
Ild − P1(k)q−1 − · · · − Pnc(k)q−nc

)−1 (
Q0(k) +Q1(k)q−1 + · · ·+Qncq

−nc
)
.

(5.40)
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Next, it follows from (5.1), (5.2) that y is given by

y(k) = Gyd,k(q)d(k) +D2(k)v(k), (5.41)

where

Gyd,k(q) = C(k)[qI − A(k)]−1G(k). (5.42)

Using (5.36), (5.39), and (5.41), the innovations z defined by (5.5) is given by

z(k) = Gzd,k(q)d(k) +Gzy,k(q)D2(k)v(k), (5.43)

where

Gzy,k = [Ily −Gyfcd̂,k
Gd̂z,k]

−1[Gyfcy,k − Ily ], (5.44)

Gzd,k = Gzy,kGyd,k. (5.45)

Using (5.39) and (5.43), d̂ is given by

d̂(k) = Gd̂d,k(q)d(k) +Gd̂v,k(q)v(k), (5.46)

where

Gd̂d,k = Gd̂z,kGzd,k, (5.47)

Gd̂v,k = Gd̂z,kGzy,kD2(k). (5.48)

83



Now, define the notation

Gyd,k
4
= D−1

yd,kNyd,k ∈ Rly×ld(q), (5.49)

Gyfcy,k
4
= D−1

yfcy,k
Nyfcy,k ∈ Rly×ly(q), (5.50)

Gyfcd̂,k

4
= D−1

yfcd̂,k
Nyfcd̂,k

∈ Rly×ld(q), (5.51)

Gd̂z,k

4
= D−1

d̂z,k
Nd̂z,k ∈ Rld×ly(q), (5.52)

and note from (5.37) and (5.38) that Dyfcd̂,k
= Dyfcy,k. Using (5.50), (5.52), it follows

that (5.45) and (5.47) are given by

Gzd,k = (Ily −D−1

yfcd̂,k
Nyfcd̂,k

D−1

d̂z,k
Nd̂z,k)

−1(D−1
yfcy,k

Nyfcy,k − Ily)D−1
yd,kNyd,k, (5.53)

Gd̂d,k = D−1

d̂z,k
Nd̂z,k(Ily −D−1

yfcd̂,k
Nyfcd̂,k

D−1

d̂z,k
Nd̂z,k)

−1(D−1
yfcy,k

Nyfcy,k − Ily)D−1
yd,kNyd,k.

(5.54)

5.3 Analysis of the Input Estimation Subsystem

We now analyze the input-estimation subsystem Gd̂z,k in order to determine con-

ditions on Gd̂z,k under which z(k) and d̂(k)−d(k) converge to zero. We then show

that RCIE adapts Gd̂z,k so as to satisfy these conditions.

In the following analysis, we assume for simplicity that A, C, G, Kda, and Gd̂z

are time invariant. Furthermore, as a special case, assume that ld = ly = 1 and

u = w = v = 0. Then, using (5.53) and (5.54), it follows that (5.43) and (5.46) are

given by

z(k) = Gzd(q) d(k) =
Nyd(q)(Nyfcy(q)−Dyfcy(q))Dyfcd̂

(q)Dd̂z(q)

Dyd(q)Dyfcy(q)(Dyfcd̂
(q)Dd̂z(q)−Nyfcd̂

(q)Nd̂z(q))
d(k),

(5.55)
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d̂(k) = Gd̂d(q) d(k) =
Nd̂z(q)Nyd(q)(Nyfcy(q)−Dyfcy(q))Dyfcd̂

(q)

Dyd(q)Dyfcy(q)(Dyfcd̂
(q)Dd̂z(q)−Nyfcd̂

(q)Nd̂z)(q)
d(k).

(5.56)

In the following analysis, we replace the forward shift operator q with the Z-

transform variable ‘z’ in order to use the final value theorem. The identity

det(zI − A−BC) = det(zI − A)− Cadj(zI − A−BKC)B (5.57)

implies that

Dyfcy(z)−Nyfcy(z) = det(zI − Ā)− Cadj(zI − Ā)B̄

= det(zI − A− AKdaC) + Cadj(zI − A− AKdaC)AKda

= det(zI − A)− Cadj(zI − A− AKdaC)AKda + Cadj(zI − A− AKdaC)AKda

= det(zI − A) = Dyd(z). (5.58)

Since Ā = A + AKdaC, it follows from (5.37) and (5.42) that Nyfcd̂
= Nyd. Using

(5.58), Dyfcd̂
= Dyfcy, and Nyfcd̂

= Nyd, it follows from (5.55) and (5.56) that

Z{z}(z) = Gzd(z)Z{d}(z) =
Nyd(z)Dd̂z(z)

Nyfcd̂
(z)Nd̂z(z)−Dyfcd̂

(z)Dd̂z(z)
Z{d}(z), (5.59)

Z{d̂}(z) = Gd̂d(z)Z{d}(z) =
Nd̂z(z)Nyd(z)

Nyfcd̂
(z)Nd̂z(z)−Dyfcd̂

(z)Dd̂z(z)
Z{d}(z). (5.60)

As an example, assume that d(k) ≡ d̄ is constant and Gd̂z has an internal model of

d, that is, Dd̂z(z) = (z− 1)D̄d̂z(z). Then,

Z{d}(z) =
d̄

z− 1
, Gd̂z(z) =

Nd̂z(z)

(z− 1)D̄d̂z(z)
. (5.61)

Using (5.59) and assuming that Nyfcd̂
(z)Nd̂z(z)−(z−1)Dyfcd̂

(z)D̄d̂z(z) is asymptotically
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stable, it follows from the final value theorem that

lim
k→∞

z(k) = lim
z→1

(z−1)
(z− 1)Nyd(z)D̄d̂z(z)

Nyfcd̂
(z)Nd̂z(z)− (z−1)Dyfcd̂

(z)D̄d̂z(z)
· d̄

(z− 1)
= 0. (5.62)

Similarly, using (5.60) and Nyfcd̂
= Nyd, it follows that

lim
k→∞

d̂(k) =
Nd̂z(z)Nyd(z)

Nyfcd̂
(z)Nd̂z(z)− (z−1)Dyfcd̂

(z)D̄d̂z(z)

∣∣∣∣∣
z=1

d̄ = d̄. (5.63)

To apply the above analysis, we assume that the unknown input d(k) is generated

by the discrete-time, linear time-invariant exogenous subsystem

xd(k) = Adxd(k−1), (5.64)

d(k) = Cdxd(k), (5.65)

where Ad ∈ Rn×n, Cd ∈ Rld×n, and the eigenvalues of Ad are simple and lie on the

unit circle. Now, assume that the following conditions are satisfied:

P1. Gd̂z contains an internal model of d, that is, for all λ ∈ spec(Ad), |Gd̂z(λ)| =∞.

P2. Nyfcd̂
Nd̂z −Dyfcd̂

Dd̂z is asymptotically stable.

P3. For all λ ∈ spec(Ad), Gd̂d(λ) = 1.

Then it follows from the internal model principle [86] that, as k → ∞, z(k) → 0

and d̂(k)−d(k)→ 0. The following examples show that RCIE adapts Gd̂z,k such that

P1–P3 are asymptotically satisfied.

Example 5.3.1. Consider the minimum-phase (MP) system

Gyd(z) =
z− 0.9

(z− 0.7)(z− 0.8)
(5.66)
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with the minimal realization

A =

1.5 −0.56

1 0

 , G =

1

0

 , C =

[
1 −0.9

]
. (5.67)

Let nc = 3, nf = 24, λ = 1, Rθ = 10−4Ilθ , Rd = 10−6, Rz = 1, and Vd̂ = 10−2Ilx , and

let B, V1, and V2 be zero. The unknown input is d(k)=1+ sin(0.3k), which consists

of a step and a harmonic. Its Z-transform is given by

Z{d}(z) =
z

z− 1
+ 0.29

z

z2 − 1.91z + 1
. (5.68)

Note that, since the input d is unknown, the frequency of its harmonic component

is unknown to RCIE. It thus is not possible to construct an auxiliary system that

captures the spectrum of d.

After an initial transient of 10 time steps, d̂ follows d, as shown in Fig. 5.2(a).

The estimator coefficients θ(k) shown in Fig. 5.2(b) converge in 50 steps to

Gd̂z,50(z) = −2.91
(z + 0.006)(z2 − 0.99z + 0.34)

(z− 1.004)(z2 − 1.909z + 0.999)
. (5.69)

The poles of Gd̂z,50 at 1.004 and 0.95 ± 0.29 in (5.69) show that RCIE builds an

internal model of d in Gd̂z,50. Thus, P1 is satisfied. Furthermore, Kda (not shown in

Fig. 5.2) also converges, and the poles of Gd̂d,50 are shown in Fig. 5.2(c). Since the

poles of Gd̂d,50 are inside the open unit disk, P2 is satisfied. The magnitude and phase

plots of Gd̂d,50 in Fig. 5.2(d) show that, at both DC and the unknown input frequency

0.3 rad/sec, the magnitude is 1 and the phase is 0 deg. Hence, P3 is satisfied.

To test the robustness of RCIE to model error, we vary the (1,2) entry of A matrix

while keeping G,C constant. The RCIE parameters are kept the same for all cases.

Fig. 5.3 shows the mean and standard deviation of the error |d − d̂|, after 50 time-

steps, for a range of values of the (1,2) entry of A. Note that the mean and standard
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Figure 5.2: RCIE for the minimum-phase system (5.66). (a) After the initial tran-
sient, d̂ follows d. (b) The estimator coefficients θ converge in about 50
steps. (c) The poles of Gd̂z,50 at 1.004 and 0.95 ± 0.29 show that RCIE
builds an internal model of d in Gd̂z,50. The poles of Gd̂d,50 are inside the
open unit disk. (d) Gd̂d,50 has magnitude 1 and phase 0 deg at both DC
and the unknown input frequency 0.3 rad/sec.

deviation of the error increase linearly as the (1,2) entry of A varies from its true

value 0.56. 3
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Figure 5.3: Robustness of RCIE to model error for the system (5.66). The (1,2)
entry of A is varied while keeping the matrices G,C and RCIE parameters
constant. Note that the mean and standard deviation of the error increase
linearly as the (1,2) entry of A varies from its true value 0.56.

Example 5.3.2. Consider the nonminimum-phase (NMP) system

Gyd(z) =
z− 1.2

(z− 0.7)(z− 0.8)
. (5.70)

with the minimal realization

A =

1.5 −0.56

1 0

 , G =

2

0

 , C =

[
0.5 −0.6

]
. (5.71)

The tuning parameters are same as in Example 5.3.1. The unknown input is d(k)= sin(0.3k).
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After an initial transient of about 90 steps, d̂ follows d, as shown in Fig. 5.4(a).

The estimator coefficients θ(k) shown in Fig. 5.4(b) converge in about 450 steps to

Gd̂z,450(z) = 8.52
(z + 0.01)(z2 − 1.908z + 0.91)

(z + 10.46)(z2 − 1.903z + 0.99)
. (5.72)

The poles of Gd̂z,450 at 0.95±0.29 in (5.72) show that RCIE builds an internal model

of d in Gd̂z,450. Thus, P1 is satisfied. Furthermore, Kda (not shown in Fig. 5.2)

also converges, and the poles of Gd̂d,450 are shown in Fig. 5.4(c). Since the poles of

Gd̂d,450 are inside the open unit disk, P2 is satisfied. The magnitude and phase plots

of Gd̂d,450 in Fig. 5.4(d) show that, at the unknown input frequency 0.3 rad/sec, the

magnitude is 1 and the phase is 0 deg. Hence, P3 is satisfied. 3

Example 5.3.3. Consider the linear, time-varying system

Gyd,k(q) =
q− ξ(k)

(q− 0.8)(q− 0.9)
, (5.73)

where

ξ(k) =


0.95, k < 100,

0.95 + 0.001(k − 100), 100 ≤ k ≤ 300,

1.15, k > 300.

(5.74)

Note that, during the transition, Gyd is MP for k < 150, and NMP for k ≥ 150. Let

nc = 8, nf = 48, λ = 0.998, Rθ = 10−2Ilθ , Rd = 10−6, Rz = 1, and Vd̂ = 10−2Ilx .

First, we consider the case where the unknown input d(k) is constant. Fig. 5.5(a)

shows that RCIE estimates d for both MP and NMP Gyd with an intervening tran-

sient. Fig. 5.5(b) shows that the estimator coefficients θ(k) readapt due to the

transition of Gyd from MP to NMP dynamics in order to estimate d. Note that, at

k = 100 and 600 steps, Gd̂z,k has a pole at 1, Gd̂d,k is asymptotically stable, and

Gd̂d,k(1) ≈ 1. Hence, before and after the transition, P1-P3 are satisfied.
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Figure 5.4: RCIE for the NMP system (5.70). (a) After the initial transient, d̂ follows
d. (b) The estimator coefficients θ converge in about 450 steps. (c) The
poles of Gd̂z,450 at 0.95± 0.29 show that RCIE builds an internal model
of d in Gd̂z. The poles of Gd̂d,450 are inside the open unit disk. (d) Gd̂d has
magnitude 1 and phase 0 deg at the unknown input frequency 0.3 rad/sec.

Next, we consider the case where d(k) = sin(0.1k). Fig. 5.5(c) shows that RCIE

estimates d for both MP and NMP Gyd with an intervening transient. Fig. 5.5(d)

shows that the estimator coefficients θ(k) readapt due to the transition of Gyd from
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estimator coefficients readpat due to the transition of Gyd from MP to
NMP dynamics in order to estimate d. (c) RCIE estimates harmonic d
for both MP and NMP Gyd with an intervening transient response. (d)
The estimator coefficients readpat due to the transition of Gyd from MP
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MP to NMP dynamics in order to estimate d. Note that, at k = 100 and 600 steps,

Gd̂z,k has poles at 0.995 ± 0.099, Gd̂d,k is asymptotically stable, and Gd̂d(e
0.1) ≈ 1.

Hence, before and after the transition, P1-P3 are satisfied. 3

5.4 Effect of the Unobservable Input Subspace

As shown in [24], if (A,G,C) has an invariant zero, then it has a nontrivial unob-

servable input subspace. In particular, an input of the form d(k) = Re(ξkd̄), where
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ξ ∈ C is an invariant zero of (A,G,C) and d̄ ∈ Cld is specified in Example 5.4.1

below, is unobservable since there exists an initial condition x(0) = Re(x̄) such that

the output is identically zero. Note that, for each example in Section 5.3, the input

d was chosen so that its spectral content is disjoint from the zeros of (A,G,C). For

instance, in Example 5.3.1, d is the sum of step and harmonic signals, but the zero

of Gyd is 0.9. This section illustrates the effect of the unobservable input subspace in

the case where the unknown input has spectral content that coincides with a zero of

(A,G,C).

Example 5.4.1. Consider the system

Gyd(z) = C(zI − A)−1G =
z− ξ

(z− 0.7)(z− 0.8)
, (5.75)

where ξ ∈ C is an invariant zero of (A,G,C). Let

x̄
d̄

 ∈ N


ξI − A −G

C 0


 be

nonzero with nonzero real part, and define d(k) = dob(k)+duo(k), where, for all k ≥ 0,

dob(k) = sin(0.3k) and duo(k) = Re(ξkd̄). Furthermore, let x(0) = Re(x̄). Note that

duo is unobservable. Next, let nc = 8, nf = 48, λ = 0.998, Rθ = 10−2Ilθ , Rd = 10−6,

Rz = 1, and Vd̂ = 10−2Ilx .

First, let ξ = 0.96, which lies in the open unit disk. In this case, Fig. 5.6a shows

that d̂ converges to dob. Furthermore, Fig. 5.6a shows that d− dob converges to zero,

which is consistent with the fact that duo = d − dob converges to zero. Thus, d − d̂

also converges to zero.

Next, let ξ = 1, which lies on the unit circle. In this case, Fig. 5.6b shows that

d̂ converges to dob. Furthermore, Fig. 5.6b shows that d − dob does not converge to

zero, which is consistent with the fact that duo is constant. Thus, d− d̂ converges to

duo.

Finally, let ξ = 1.08, which lies outside the closed unit disk. In this case, Fig. 5.6c
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shows that d̂ converges to dob. Furthermore, Fig. 5.6c shows that d − dob diverges,

which is consistent with the fact that duo diverges. Thus, d− d̂ also diverges, however,

dob − d̂ converges to zero.

Note that, in all three cases, d̂ converges to dob and z (not shown in Fig. 5.6)

converges to zero after an initial transient. 3

5.5 Comparison of RCIE with ULISE

We now compare RCIE with the ULISE filter [29] in the presence of process and

measurement noise. To assess the accuracy of the input estimate, we plot the error

metrics

eRCIE(k)
4
=

1

Ntrial

√√√√Ntrial∑
i=1

[
d̂i(k)− d(k)

]2

, (5.76)

eULISE(k)
4
=

1

Ntrial

√√√√Ntrial∑
i=1

[
d̂ULISE,i(k)− d(k)

]2

, (5.77)

where i denotes the ith trial, d̂i is the ith RCIE estimate of d, d̂ULISE,i is the ith ULISE

estimate of d, and Ntrial is the number of trials. Each trial is based on a randomly

generated realization of v and w.

Example 5.5.1. Consider the mass-spring-damper system with masses m1, m2,

and input force d applied to m1. The dynamics are given by

ẋ = Acx+Gcd, (5.78)
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is a nonzero constant. (c) d̂ converges to dob, and duo = d− dob diverges.

where

Ac
4
=

02×2 I2×2

Ω1 Ω2

 , Gc
4
=

02×1

Ω3

 , Ω1
4
=

−k1+k2
m1

k2
m1

k2
m2

− k2
m2

 ,
Ω2

4
=

− c1+c2
m1

c2
m1

c2
m2

− c2
m2

 , Ω3
4
=

 1
m1

0

 ,
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x1 and x2 are the displacements and x3 and x4 are the velocities of masses m1 and m2,

respectively. We choose m1 = m2 = 1 kg, k1 = k2 = 1 N/m, and c1 = c2 = 1 kg/sec.

We discretize (5.78) as

A = eAcTs , G = A−1
c (Ac − I)Gc, (5.79)

where Ts = 0.1 sec is the sampling time. The discretized system has poles at 0.87 ±

0.08 and 0.97± 0.05. Letting

C =

1 0 0 0

0 1 0 0

 ,
we measure the positions and estimate the velocities and the unknown input force

d on m1. The system (A,G,C) has no invariant zeros. Let Ntrial = 100, nc = 4,

nf = 24, λ = 1, Rθ = 10−2Ilθ , Rd = 10−8, Rz = Ily , Vd̂ = 0, D1 = 10−2diag(1, 1, 2, 2),

and D2 = 10−2diag(1, 1).

First, we consider the case where the unknown input force d is a multi-step. Fig.

5.7 shows that the error for RCIE has mean 0.2 N and standard deviation 0.3 N,

whereas the error for ULISE has mean 23.5 N and standard deviation 3.3 N. Next,

we consider the case where the unknown input force is a random walk. At each time

step k, the random walk is modeled as an increase or decrease in the magnitude by

0.1N with equal probability. Fig. 5.8 shows that the RCIE error has mean 0.3 N and

standard deviation 0.2 N, whereas the ULISE error has mean 22.6 N and standard

deviation 2.1 N. 3

Example 5.5.2. Reconsider the system (5.78) but with zero damping, that is,

c1 = c2 = 0. Hence (5.78) is Lyapunov stable but not asymptotically stable. The

continuous-time system has no transmission zeros, but the discretized system (A,G,C)

has one transmission zero at −1 due to the sampling.
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Figure 5.7: Estimation of a multi-step input for the lightly damped mass-spring-
damper system (5.78). (a) UILSE estimate. (b) RCIE estimate. (c)
Error in the input estimate. The error for RCIE has mean 0.2 N and
standard deviation 0.3 N, whereas the error for ULISE has mean 23.5 N
and standard deviation 3.3 N.

We consider the case where the unknown input force d is a multi-step. Fig. 5.9

shows that the RCIE error is 0.1 N at t = 100 sec, whereas the ULISE error diverges

and is 282.7 N at t = 100 sec. The behavior of the error shown in Fig. 5.9c with

ULISE for the NMP system is consistent with the fact that Theorem 6 in [29] is

confined to minimum-phase systems. 3
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Figure 5.8: Estimation of an unknown random-walk input for the lightly damped,
mass-spring-damper system (5.78). (a) ULISE estimate. (b) RCIE esti-
mate. (c) Error in the input estimate. The RCIE error has mean 0.3 N
and standard deviation 0.2 N, whereas the ULISE error has mean 22.6 N
and standard deviation 2.1 N.

5.6 Conclusions

This chapter presented retrospective cost input estimation (RCIE) and showed

that this algorithm is effective for asymptotically estimating the unknown input of

a nonminimum-phase system. The mechanism underlying RCIE was explained in

terms of an internal model of the unknown input. In particular, RCIE was shown

to automatically construct an internal model of the unknown input d despite lack of

knowledge of the spectrum of d and in the presence of arbitrary invariant zeros.
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Figure 5.9: Estimation of an unknown multi-step input for the mass-spring system
(5.78) with c1 = c2 = 0. (a) ULISE estimate. (b) RCIE estimate. (c)
Error in the input estimate. The RCIE error is close to zero, whereas the
ULISE error diverges.

In the subsequent chapters, we apply RCIE to the problems of target tracking,

satellite drag estimation, and sensor fault detection.
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CHAPTER 6

Target Tracking: Acceleration Estimation for a

Maneuvering Vehicle

6.1 Introduction

The method developed in this chapter provides a novel approach to a longstanding

problem in target tracking, namely, estimation of the inertial acceleration of a body

using only position measurements. This problem is motivated by the need to estimate

acceleration in order to predict future motion and distinguish ballistic vehicles from

maneuvering vehicles. The extensive literature and diverse methods developed for

this problem attests to its importance [20, 41, 55–60]. It turns out that, for this

problem, the discretized kinematics have invariant zeros on the unit circle, and thus

the approach of [39] is not applicable. A more restricted version of RCIE confined

to LTI systems is applied to this problem for planar target tracking in [43]. The

approach of [43], however, is not applicable to LTV systems, such as the kinematics

of a 3D maneuvering vehicle resolved in the body frame. In addition, [43] does not

recognize or address the NMP features of the problem.

The contents of the chapters are as follows. Section 6.2, based on kinematics,

formulates the state space models for acceleration estimation. Section 6.3 describes

the experimental setup, whereas, Sections 6.4 and 6.5 presents the application of
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RCIE to estimation of inertial acceleration. Using optical position data for a UAV,

RCIE estimates the inertial acceleration, which is modeled as an unknown input. The

acceleration estimates are compared to IMU data from onboard sensors.

6.2 Problem Description

6.2.1 Kinematics

The Earth frame and body-fixed frame are denoted by FE and FB, respectively.

We assume that FE is an inertial frame and the Earth is flat. The origin OE of FE

is any convenient point fixed on the Earth. The axes ı̂E and ̂E are horizontal, while

the axis k̂E points downward. FB is defined with ı̂B, ̂B and k̂B fixed relative to the

body. FB and FE are related by

FB =
→
RB/E FE, (6.1)

where
→
RB/E is a physical rotation matrix represented by a 3-2-1 Euler rotation se-

quence, involving two intermediate frames FE′ and FE′′ . In particular,

→
RB/E =

→
Rı̂E′′

(Φ)
→
R̂E′

(Θ)
→
Rk̂E

(Ψ), (6.2)

where FE′ =
→
RE′/E FE, FE′′ =

→
RE′′/E′ FE′ , and

→
Rn̂(κ) is the Rodrigues rotation about

the eigenaxis n̂ through the eigenangle κ according to the right-hand rule.

Let p denote a point that is fixed on the body. The location of p relative to OE is

denoted by
⇀
r p/OE

and is resolved in FE as


X

Y

Z

 4= ⇀
r p/OE

∣∣∣∣
E

. (6.3)
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The velocity of p relative to OE with respect to FE is given by

⇀
v p/OE/E =

E•
⇀
r p/OE

, (6.4)

where E• denotes the derivative with respect to the time taken in Earth frame. The

acceleration of p relative to OE with respect to FE is given by

⇀
ap/OE/E =

E•
⇀
v p/OE/E =

E••
⇀
r p/OE

. (6.5)

We resolve
⇀
ap/OE/E in FE and FB using the notation


Ax

Ay

Az

 4= ⇀
ap/OE/E

∣∣∣∣
E

,


ax

ay

az

 4= ⇀
ap/OE/E

∣∣∣∣
B

. (6.6)

Using (6.2) and (6.6),
⇀
ap/OE/E in FE is given by

⇀
ap/OE/E

∣∣∣∣
E

= OE/B
⇀
ap/OE/E

∣∣∣∣
B

, (6.7)

and thus,


Ax

Ay

Az

 = OE/B


ax

ay

az

 , (6.8)

where

OE/B =
→
RE/B

∣∣∣∣
E

.
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Note that (6.1)–(6.8) are kinematic relations that are applicable to an arbitrary point

p on a body and are independent of all modeling information.

6.2.2 State Space Models for Acceleration Estimation

For estimating the inertial acceleration of p relative to OE with respect to FE,

(6.4)–(6.8) are written in state space form

ẋ = Acx+Gcd, (6.9)

where

Ac =

03×3 I3×3

03×3 03×3

 , Gc =

03×3

I3×3

 , (6.10)

x =

[
X Y Z Ẋ Ẏ Ż

]T

, d =

[
Ax Ay Az

]T

. (6.11)

Note that (6.9) is an exact kinematic equations, and thus it does not include process

noise. For estimating the inertial acceleration of p relative to OE with respect to FB,

(6.4)–(6.8) are written in state space form

ẋ = Acx+Gcd+D1w, (6.12)

where

Ac =

03×3 I3×3

03×3 03×3

 , Gc =

 03×3

OE/B

 , (6.13)

x =

[
X Y Z Ẋ Ẏ Ż

]T

, d =

[
ax ay az

]T

. (6.14)
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Likewise, (6.12) is an exact kinematic equation; however, process noise is now included

to account for errors in the measurements of the matrix OE/B appearing in (6.13).

Finally, notice that, due to OE/B, (6.12) is a continuous-time linear, time-varying

system, and therefore its discretization is linear, time-varying.

6.3 Experimental Setup

In the laboratory setup, we estimate the inertial acceleration of a quadrotor in

FE and FB using (6.9) and (6.12), respectively, with C =

[
I3×3 03×3

]
. The position

⇀
r p/OE

∣∣∣∣
E

and attitude (Φ,Θ,Ψ) of the vehicle are obtained using the Vicon system and

recorded for post-flight data analysis. To compare the estimated acceleration with

the measured acceleration, data from the vehicle’s inertial measurement unit (IMU)

is recorded and time-stamped. Using knowledge of the vehicle attitude, IMU accel-

eration measurements are corrected to compensate for gravity offset for comparison

with RCIE acceleration estimates.

6.4 Estimating inertial acceleration in the Earth frame

We discretize (6.9) with Ts = 0.01 sec, which is the sample-rate of the recorded

data. The system (A,G,C) is NMP with six poles at 1 and three invariant zeros at

−1. Note that D1 is zero. Let nc = 2, nf = 6, λ = 1, Rθ = 10−10Ilθ , Rd = 10−2Ild ,

Rz = Ily , Vd̂ = 10−4I6×6, and V2 = 10−2I3×3.

Fig. 6.1 shows the accuracy of the RCIE estimate of the inertial acceleration of

the quadrotor in FE using position measurements obtained from the Vicon system.

For this setup, the estimates of d using filters [17] and [29] diverge in less than 2.5 sec

(not shown).
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Figure 6.1: Estimation of the inertial acceleration of the quadrotor relative to OE

with respect to FE using position measurements. RCIE estimates are
compared with the IMU acceleration measurements transformed to FE

and corrected to compensate for gravity offset.

6.5 Estimating inertial acceleration in the body frame

Noting that Gc is time varying in (6.12), we discretize (6.12) at each time step k

with Ts = 0.01 sec, which is the sample-rate of the recorded data. Let nc = 2, nf = 6,

λ = 1, Rθ = 10−10Ilθ , Rd = 10−4Ild , Rz = Ily , Vd̂ + V1 = 10−4I6×6, and V2 = 10−2I3×3.

Fig. 6.2 shows the accuracy of the RCIE estimate of the inertial acceleration of
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Figure 6.2: Estimation of the inertial acceleration of the quadrotor relative to OE

with respect to FB using position and attitude measurements. RCIE
estimates are compared with the IMU acceleration measurements with
gravity correction.

the quadrotor in the body frame using position and attitude measurements obtained

from the Vicon system. For this setup, the estimates of d using filters [17] and [29]

diverge in less than 2.5 sec (not shown).
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6.6 Conclusions

As an experimental application, RCIE was used to estimate the inertial accel-

eration of a UAV; these estimates were shown to be close to independent, onboard

measurements provided by an IMU. In contrast, the techniques of [17] and [29] pro-

duced divergent estimates. In fact, the techniques in [17, 29, 39] are not applicable

to this problem due to the presence of invariant zeros on the unit circle. In the next

chapter, RCIE is applied to the problem of estimating drag acceleration of a satellite.
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CHAPTER 7

Satellite Drag Estimation

7.1 Introduction

Orbit estimation is of increasing interest due to the need to avoid collisions between

operational satellites and space debris. The number of derelict objects that can

threaten satellites numbers in the tens of thousands, and measurements that can be

used to track these objects are sparse. There is thus a pressing need for estimation

algorithms that can use position and velocity measurements to obtain orbit estimates

of the highest possible accuracy.

To address this problem, research has focused on nonlinear estimation techniques.

Various classical techniques are applied to this problem in [87]. In [88], the extended

Kalman filter (EKF) and the unscented Kalman filter (UKF) were applied to orbit

estimation using range data. Optimal transport methods were applied to this problem

in [89]. An alternative approach was taken in [90], where optimal control techniques

were used to detect the motion of possibly maneuvering objects.

The present chapter focuses on the problem of drag estimation, where the goal

is to estimate the drag acceleration of the body without assuming knowledge of the

nominal orbit of the body. The estimation of satellite drag coefficients has been

widely studied [91–94]. In the present chapter, drag acceleration is estimated by

using input estimation. As an extension of state estimation, which uses knowledge
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of the dynamics along with statistical information concerning the process and sensor

noise to estimate states, input estimation uses the same information to estimate both

states and inputs.

The contribution of the present chapter is the novel application of input estimation

to the problem of estimating drag acceleration. The approach used in the present

chapter is based on retrospective cost optimization. This technique is a variation of

retrospective cost input estimation used in [44, 72, 95]. Related techniques have been

applied to adaptive control [48].

7.2 Kinematics of a Satellite Orbiting the Earth

The Earth-Centered Inertial (ECI) frame is denoted by FE. The origin OE of FE

is fixed at the center of the Earth. The axes ı̂E points toward the vernal equinox, k̂E

points North, and the axis ̂E = k̂E × ı̂E. Note that, ı̂E and ̂E lie in the equatorial

plane.

Let p denote a point that is fixed on a satellite orbiting the Earth. The location

of p relative to OE is denoted by
⇀
r p/OE

and is resolved in FE as


X

Y

Z

 4= ⇀
r p/OE

∣∣∣∣
E

. (7.1)

The velocity of p relative to OE with respect to FE is given by

⇀
v p/OE/E =

E•
⇀
r p/OE

, (7.2)

where E• denotes the derivative with respect to the time taken in ECI frame. The
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acceleration of p relative to OE with respect to FE is given by

⇀
ap/OE/E =

E•
⇀
v p/OE/E =

E••
⇀
r p/OE

. (7.3)

Define

r̂
4
=

⇀
r p/OE

|⇀r p/OE
|
, v̂

4
=

⇀
v p/OE/E

|⇀v p/OE/E|
, ĥ

4
=

⇀
r p/OE

× ⇀
v p/OE

|⇀r p/OE
× ⇀
v p/OE

|
, (7.4)

and FP
4
=

[
ı̂P ̂P k̂P

]
=

[
v̂ × ĥ v̂ ĥ

]
. The frames FP and FE are related by

FE =
→
RE/P FP, (7.5)

where
→
RE/P is a physical rotation matrix. We resolve

→
RE/P in FE as

OE/P
4
=
→
RE/P

∣∣∣∣
E

=


ı̂E · ı̂P ı̂E · ̂P ı̂E · k̂P

̂E · ı̂P ̂E · ̂P ̂E · k̂P

k̂E · ı̂P k̂E · ̂P k̂E · k̂P

 . (7.6)

Note that OP/E = OT
E/P.

We resolve
⇀
v p/OE/E and

⇀
ap/OE/E in FE and FP using the notation


Vx

Vy

Vz

 4= ⇀
v p/OE/E

∣∣∣∣
E

,


vx

vv

vh

 4= ⇀
v p/OE/E

∣∣∣∣
P

. (7.7)


Ax

Ay

Az

 4= ⇀
ap/OE/E

∣∣∣∣
E

,


ax

av

ah

 4= ⇀
ap/OE/E

∣∣∣∣
P

. (7.8)
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Using (7.6) and (7.8),
⇀
ap/OE/E in FE is given by

⇀
ap/OE/E

∣∣∣∣
E

= OE/P
⇀
ap/OE/E

∣∣∣∣
P

, (7.9)

and thus,


Ax

Ay

Az

 = OE/P


ax

av

ah

 . (7.10)

Note that (7.5)–(7.10) are exact kinematic relations that are applicable to an arbitrary

point p on the satellite.

7.3 Dynamics of a Satellite Orbiting the Earth

The dynamics of a satellite moving in the Earth’s gravity field is given by

⇀

F gravity +
⇀

F pert = msat
⇀
ap/OE/E, (7.11)

where Fgravity is the gravitational force acting on the satellite, Fpert is the perturbing

force acting on the satellite, and msat is the mass of the satellite.

Gravity Model

We assume that the Earth is homogeneous and spherical. It thus follows from

Newton’s law of gravitation that

⇀

F gravity

msat︸ ︷︷ ︸
⇀
a gravity

= −µ
⇀
r p/OE

|⇀r p/OE
|3
, (7.12)
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where µ = 398600.4405 km3/sec2. Substituting (7.3) and (7.12) into (7.11) yields

E••
⇀
r p/OE

= −µ
⇀
r p/OE

|⇀r p/OE
|3

+
Fpert

msat

. (7.13)

7.3.1 No Perturbing Force

If
⇀

F pert = 0, then using (7.1), (7.13) is given by

Ẍ = −µ X

(X2 + Y 2 + Z2)3/2
, (7.14)

Ÿ = −µ Y

(X2 + Y 2 + Z2)3/2
, (7.15)

Z̈ = −µ Z

(X2 + Y 2 + Z2)3/2
. (7.16)

Using (7.7), (7.14)–(7.16) can be written as the following first-order nonlinear ordinary

differential equations

Ẋ = Vx, (7.17)

Ẏ = Vy, (7.18)

Ż = Vz, (7.19)

V̇x = −µ X

(X2 + Y 2 + Z2)3/2
, (7.20)

V̇y = −µ Y

(X2 + Y 2 + Z2)3/2
, (7.21)

V̇z = −µ Z

(X2 + Y 2 + Z2)3/2
. (7.22)

7.3.2 Drag as a Perturbing Force

Let the drag acting on the satellite be given by

⇀

F pert

msat︸ ︷︷ ︸
⇀
a drag

= −α
⇀
v p/OE/E

|⇀v p/OE/E|
, (7.23)
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where α ∈ R (kN/kg) is the magnitude of the acceleration due to drag. Using (7.1),

(7.7), (7.13), and (7.23), the satellite dynamics are given by

Ẋ = Vx, (7.24)

Ẏ = Vy, (7.25)

Ż = Vz, (7.26)

V̇x = −µ X

(X2 + Y 2 + Z2)3/2︸ ︷︷ ︸
Ax,gravity

−α Vx
(V 2

x + V 2
y + V 2

z )1/2︸ ︷︷ ︸
Ax,drag

, (7.27)

V̇y = −µ Y

(X2 + Y 2 + Z2)3/2︸ ︷︷ ︸
Ay,gravity

−α Vy
(V 2

x + V 2
y + V 2

z )1/2︸ ︷︷ ︸
Ay,drag

, (7.28)

V̇z = −µ Z

(X2 + Y 2 + Z2)3/2︸ ︷︷ ︸
Az,gravity

−α Vz
(V 2

x + V 2
y + V 2

z )1/2︸ ︷︷ ︸
Az,drag

. (7.29)

Note from (7.11), (7.12), and (7.23) that

⇀
adrag =

⇀
ap/OE/E −

⇀
agravity. (7.30)

Furthermore note that
⇀
adrag|P =

[
0 −α 0

]T

.

7.4 Model for Input Estimation

A continuous-time state-space model for input estimation can be formulated as

ẋ(t) = Ac(t)x(t) +Bc(t)u(t) +Gc(t)d(t) + D̄1(t)w(t), (7.31)

y(t) = C(t)x(t) +D2(t)v(t), (7.32)

where x ∈ Rlx is the unknown state, u ∈ Rlu is the known input, d ∈ Rld is the

unknown input, D̄1w ∈ Rlx is the process noise with known covariance V̄1
4
= D̄1D̄

T
1 ∈
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Rlx×lx , y ∈ Rly is the measured output, and D2 ∈ Rlv is the measurement noise

with known covariance V2
4
= D2D

T
2 ∈ Rly×ly . It is shown below that estimating

acceleration is equivalent to estimating the unknown input d. We consider three

scenarios for estimating the drag acceleration
⇀
adrag by estimating the unknown input

d using RCIE.

7.4.1 Indirect Estimation of Drag Acceleration in FE

For indirect estimation of the drag acceleration, we first estimate
⇀
ap/OE/E resolved

in FE. In doing so, we use (7.2), (7.7), (7.8), and write (7.3) in state space form

ẋ = Acx+Gcd, (7.33)

where

Ac =

03×3 I3

03×3 03×3

 , Gc =

03×3

I3

 , (7.34)

x =

[
X Y Z Vx Vy Vz

]T

, d =

[
Ax Ay Az

]T

. (7.35)

Note that (7.33) is an exact kinematic equation, and thus it does not include process

noise. Next, using (7.30) and the knowledge of gravity (7.12), the acceleration due

to drag
⇀
adrag resolved in FE is given by

⇀
adrag

∣∣∣∣
E

=
⇀
ap/OE/E

∣∣∣∣
E

− ⇀
agravity

∣∣∣∣
E

, (7.36)
Ax,drag

Ay,drag

Az,drag

 =


Ax

Ay

Az

+
µ

(X2 + Y 2 + Z2)3/2


X

Y

Z

 . (7.37)
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Note that (7.37) gives an indirect estimate of the drag acceleration. A direct estimate

of drag acceleration is presented in the subsection below.

7.4.2 Direct Estimation of the Drag Acceleration in FE

For a direct estimation of drag acceleration
⇀
adrag resolved in FE, we use (7.2),

(7.7), (7.8), (7.36), and write (7.3) in state space form

ẋ = Acx+Bcu+Gcd+ D̄1w, (7.38)

where

Ac =

03×3 I3

03×3 03×3

 , Bc = Gc =

03×3

I3

 , (7.39)

x =

[
X Y Z Vx Vy Vz

]T

, (7.40)

u =

[
Ax,gravity Ay,gravity Az,gravity

]T

, (7.41)

d =

[
Ax,drag Ay,drag Az,drag

]T

. (7.42)

Likewise (7.33), (7.38) is an exact kinematic equation, but process noise is included

to account for errors due to uncertainty in u.

7.4.3 Estimation of Drag Acceleration in FP

For estimating the drag acceleration
⇀
adrag resolved in FP, we use (7.2), (7.6), (7.7),

(7.8), (7.36), (7.10), and write (7.3) in state space form

ẋ = Acx+Bcu+Gcd+ D̄1w, (7.43)
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where

Ac =

03×3 I3

03×3 03×3

 , Bc =

03×3

I3

 , Gc =

03×1

v̂|E

 , (7.44)

x =

[
X Y Z Vx Vy Vz

]T

, (7.45)

u =

[
Ax,gravity Ay,gravity Az,gravity

]T

, (7.46)

d = −α. (7.47)

Note that (7.43) is an exact kinematic equation, but process noise is now included

to account for errors in the measurements of v̂|E appearing in (7.44). Finally, notice

that, due to v̂|E, (7.43) is a continuous-time linear, time-varying system, and therefore

its discretization is linear, time-varying.

7.5 Numerical Results

7.5.1 Simulation Setup

Using retrospective cost input estimation (RCIE), we estimate the drag acceler-

ation
⇀
adrag of a satellite in FE and FP using [(7.33),(7.38)] and (7.43), respectively,

and with C = I6. We choose α = 10−5 kN/kg in (7.23), which is unknown to RCIE.

The position
⇀
r p/OE

∣∣∣∣
E

and velocity
⇀
v p/OE

∣∣∣∣
E

of the satellite are obtained by integrating

(7.17)–(7.22) using the Matlab function ode45 with a numerical tolerance of 10−12.

The initial position and velocity are chosen such that the satellite orbit is circular with

inclination 51.6 deg and radius 6731 km. The length of the simulation is set for 1 hr,

and the noise-free position and velocity data are recorded using the sampling-time

Ts = 0.1 sec. Since RCIE is a discrete-time algorithm, we discretize (7.33), (7.38),
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and (7.43) using the Matlab function c2d, which uses zero-order hold on the input for

discretization. To assess the accuracy of the RCIE estimate, we define the relative

error ed = |d−d̂
d
|, where d is the actual input and d̂ is the RCIE estimated input.

7.5.2 Indirect Estimation of the Drag Acceleration in FE

Let the RCIE parameters be nc = 2, nf = 24, λ = 1, Rθ = 10−12Ilθ , Rd = 10−12I3,

Rz = I6, Vd̂ + V1 = 10−8I6, and V2 = 10−8I6.

For indirect estimation of drag acceleration, we first use (7.33) to estimate the

total inertial acceleration (Ax, Ay, Az) of the satellite. Figure 7.1 shows that the

RCIE estimates follow the actual acceleration (Ax, Ay, Az). After the initial tran-

sient, the maximum relative errors in the directions x, y, z of FE are 1.07, 3.52, 3.52,

respectively, whereas the minimum relative errors in the directions x, y, z of FE are

1.05× 10−9, 3.11× 10−9, 3.11× 10−9, respectively.

Next, we use (7.37) to estimate the drag acceleration (Ax,drag, Ay,drag, Az,drag)

acting on the satellite. Figure 7.2 shows that the drag acceleration estimates fol-

low the actual acceleration (Ax,drag, Ay,drag, Az,drag). After the initial transient,

the maximum relative errors in the directions x, y, z of FE are 38.4, 81.2, 81.2, re-

spectively, whereas the minimum relative errors in the directions x, y, z of FE are

2.6× 10−5, 3.8× 10−5, 3.8× 10−5, respectively.

7.5.3 Direct Estimation of Drag Acceleration in FE

Using the same RCIE parameters as in Section 7.5.2, we use (7.38) to obtain a

direct estimation of the drag acceleration (Ax,drag, Ay,drag, Az,drag). Figure 7.3 shows

that the drag acceleration estimates follow the actual acceleration (Ax,drag, Ay,drag,

Az,drag). After the initial transient, the maximum relative errors in the directions

x, y, z of FE are 88.1, 6.5, 6.5, respectively, whereas the minimum relative errors in

the directions x, y, z of FE are 6.1× 10−6, 2.6× 10−4, 2.6× 10−4, respectively.
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Figure 7.1: Estimation of the inertial acceleration (Ax, Ay, Az) of the satellite using
position and velocity measurements with Ts = 0.1 sec. The RCIE esti-
mates (dashed line) follow the actual acceleration (Ax, Ay, Az) (solid line).
After the initial transient, the maximum relative errors in the directions
x, y, z of FE are 1.07, 3.52, 3.52, respectively, whereas the minimum rela-
tive errors in the directions x, y, z of FE are 1.05×10−9, 3.11×10−9, 3.11×
10−9, respectively.

7.5.4 Estimation of Drag Acceleration in FP

Let nc = 4, nf = 4, λ = 1, Rθ = 10−12Ilθ , Rd = 10−8, Rz = I6, Vd̂ + V1 = 10−12I6,

and V2 = 10−8I6. To estimate the magnitude of drag acceleration α, we use (7.43).
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Figure 7.2: Indirect estimation of drag acceleration (Ax,drag, Ay,drag, Az,drag) of the
satellite using the RCIE estimates of (Ax, Ay, Az) shown in Figure 7.1.
The drag acceleration estimates (dashed line) follow the actual accelera-
tion (Ax,drag, Ay,drag, Az,drag) (solid line). After the initial transient, the
maximum relative errors in the directions x, y, z of FE are 38.4, 81.2, 81.2,
respectively, whereas the minimum relative errors in the directions x, y, z
of FE are 2.6× 10−5, 3.8× 10−5, 3.8× 10−5, respectively.

Figure 7.4 shows that the drag acceleration estimate follows the actual acceleration α.

After the initial transient, the maximum relative error is 0.1, whereas the minimum

119



0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1
x 10

−5

(a)

A
x
,d
ra
g
(k
N
/
k
g)

 

 

Actual

Estimated

0 0.2 0.4 0.6 0.8 1
10

−6

10
−4

10
−2

10
0

10
2

(b)

e A
x
,d

r
a
g

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1
x 10

−5

(c)

A
y
,d
ra
g
(k
N
/
k
g
)

 

 

Actual
Estimated

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

(d)

e A
y
,d

r
a
g

0 0.2 0.4 0.6 0.8 1
−1.5

−1

−0.5

0

0.5

1
x 10

−5

Time (hr)
(e)

A
z
,d
ra
g
(k
N
/k

g)

 

 

Actual

Estimated

0 0.2 0.4 0.6 0.8 1
10

−4

10
−3

10
−2

10
−1

10
0

10
1

Time (hr)
(f)

e A
z
,d

r
a
g

Figure 7.3: Direct estimation of drag acceleration (Ax,drag, Ay,drag, Az,drag) of the satel-
lite using gravity, position and velocity measurements with Ts = 0.1 sec.
The drag acceleration estimates (dashed line) follow the actual accelera-
tion (Ax,drag, Ay,drag, Az,drag) (solid line). After the initial transient, the
maximum relative errors in the directions x, y, z of FE are 88.1, 6.5, 6.5,
respectively, whereas the minimum relative errors in the directions x, y, z
of FE are 6.1× 10−6, 2.6× 10−4, 2.6× 10−4, respectively.

relative error is 6.3× 10−6.
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Figure 7.4: Estimation of the drag acceleration of the satellite in FP using position and
velocity measurements with Ts = 0.1 sec. The drag acceleration estimate
(dashed line) follows the actual acceleration α (solid line). After the
initial transient, the maximum relative error is 0.1, whereas the minimum
relative error is 6.3× 10−6.

7.6 Conclusion

Retrospective cost input estimation was used to estimate satellite drag. Three

problem formulations were considered, namely, indirect estimation of the drag accel-

eration by estimating the total acceleration; direct estimation of the drag acceleration;
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and estimation of the drag magnitude. These results, along with [72], show that input

estimation can provide a viable approach to estimating acceleration modeled as an

unknown input. In the next chapter, RCIE is applied to the problem of detecting

sensor faults.
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CHAPTER 8

Aircraft Sensor Fault Detection

8.1 Introduction

Sensor health is crucial to the operation of every feedback control system. Conse-

quently, extensive research has been devoted to developing techniques for detecting

and diagnosing sensor faults [61–70]. One approach is to search for anomalies in the

sensor signal [67], while another approach is to compute sensor residuals based on

the assumed model and measured input signals [61]. Yet another approach is to em-

pirically identify transmissibilities between pairs of sensors under healthy conditions

and then use these relations during subsequent operation to compute sensor residuals

[71].

In the present chapter, we formulate the problem of diagnosing sensor faults for

a flight vehicle as a problem of input and state estimation. In particular, we con-

sider an exact model of the kinematics of the vehicle, which circumvents the need

to measure forces and moments on the vehicle as well as the need to know the ve-

hicle inertia and stability derivatives. Instead, the kinematics model views suspect

sensor-measurement as the input or state. A related formulation is considered in

[44, 45, 70].

Input estimation is an extension of state estimation where the goal is to estimate

not only the states but also the inputs driving the system. In [72], we present an adap-
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tive input estimation technique for nonminimum-phase-discrete-time linear systems

based on the Kalman filter and retrospective-cost optimization. In the present chap-

ter, we extend the approach in [72] to nonlinear systems by combining the unscented

Kalman filter [73, 74] and retrospective cost input estimation [38, 44, 72].

To detect sensor faults using state and input estimation techniques, we use com-

binations of inertial and aerodynamic sensors. This work is motivated by [68, 70],

which uses rate-gyro, accelerometer, GPS, angle-of-attack, and sideslip measurements

to estimate forward velocity relative to the air in order to assess the health of the pitot

tube. The present chapter extends the approach of [68, 70] in several ways. First,

for pitot-tube fault detection, we apply the unscented Kalman filter with augmented

bias states in order to deal with biased accelerometer measurements. Unlike [68, 70],

we do not use GPS to assess the health of the pitot tube. Next, we consider four

scenarios that are not considered in [68, 70], two of which depends on state estimation

and the other two on input estimation.

In the first scenario, we use the pitot tube, rate gyros, accelerometers, α-sensor,

and β-sensor to assess the health of the vertical gyros. In the second scenario, we

use the pitot tube, vertical gyro, rate gyros, accelerometers, and β-sensor to assess

the health of the α-sensor. In the third scenario, we use the pitot tube, rate gyros,

vertical gyro, α-sensor, and β-sensor to assess the health of the accelerometers. In

the fourth scenario, we use vertical gyro to assess the health of the rate gyros. For

input estimation in the third and fourth scenarios, we use a variation of retrospective

cost input estimation as described in [45, 72].
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8.2 Aircraft Kinematics

8.2.1 Frames

The Earth frame and aircraft body-fixed frame are denoted by FE =

[
ı̂E ̂E k̂E

]
and FAC =

[
ı̂AC ̂AC k̂AC

]
, respectively. We assume that FE is an inertial frame

and the Earth is flat. The origin OE of FE is any convenient point fixed on the Earth.

The axes ı̂E and ̂E are horizontal, while the axis k̂E points downward. FAC is defined

with ı̂AC pointing out the nose of the aircraft, ̂AC pointing out the right wing, and

k̂AC downward, that is, k̂AC = ı̂AC × ̂AC. FAC and FE are related by

FAC =
→
RAC/E FE, (8.1)

where
→
RAC/E is a physical rotation matrix represented by a 3-2-1 Euler rotation

sequence involving two intermediate frames FE′ and FE′′ . In particular,

→
RAC/E =

→
Rı̂E′′

(Φ)
→
R̂E′

(Θ)
→
Rk̂E

(Ψ), (8.2)

where FE′ =
→
RE′/E FE, FE′′ =

→
RE′′/E′ FE′ , and

→
Rn̂ (κ)

4
= (cosκ)

→
U +(1− cosκ)n̂n̂′ + (sinκ)n̂×, (8.3)

where
→
U is the physical identity matrix. Note that (8.3) is the Rodrigues rotation

about the eigenaxis n̂ through the eigenangle κ according to the right-hand rule.

Resolving (8.2) in FAC, we obtain

OAC/E = O1(Φ)O2(Θ)O3(Ψ), (8.4)
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where

O1(Φ) =


1 0 0

0 cos Φ sin Φ

0 − sin Φ cos Φ

 ,O2(Θ) =


cos Θ 0 − sin Θ

0 1 0

sin Θ 0 cos Θ

 ,O3(Ψ) =


cos Ψ sin Ψ 0

− sin Ψ cos Ψ 0

0 0 1

 ,

(8.5)

and thus

OAC/E =


(cos Θ) cos Ψ (cos Θ) sin Ψ − sin Θ

(sin Φ)(sin Θ) cos Ψ− (cos Φ) sin Ψ (sin Φ)(sin Θ) sin Ψ + (cos Φ) cos Ψ (sin Φ) cos Θ

(cos Φ)(sin Θ) cos Ψ + (sin Φ) sin Ψ (cos Φ)(sin Θ) sin Ψ− (sin Φ) cos Ψ (cos Φ) cos Θ

 .

(8.6)

8.2.2 Rotational Kinematics

8.2.2.1 Poisson’s Equation

The physical angular velocity
⇀
ωAC/E of FAC relative to FE is related to

→
RAC/E

by Poisson’s equation

AC•
→
R AC/E =

→
RAC/E

⇀
ω
×
AC/E. (8.7)

We resolve
⇀
ωAC/E and

→
RAC/E in FAC using the notation


P

Q

R

 4= ⇀
ωAC/E

∣∣∣∣
AC

, Ω
4
=

⇀
ω
×
AC/E

∣∣∣∣
AC

=


P

Q

R


×

, OE/AC
4
=
→
RAC/E

∣∣∣∣
AC

, (8.8)
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where OE/AC is the orientation matrix of FE relative to FAC. Using (8.8), (8.7) implies

ȮE/AC = OE/AC Ω, (8.9)

and thus, since ΩT = −Ω,

ȮAC/E = −Ω OAC/E. (8.10)

Using Kronecker algebra, (8.10) can be written as

vec(ȮAC/E) = (I ⊗−Ω) vec(OAC/E), (8.11)

where “⊗” is the Kronecker product and “vec” is the column-stacking operator. Note

that (8.11) is a linear differential equation of the form Ẋ(t) = A(t)X(t), where

A(t) = (I ⊗−Ω(t)) ∈ R9×9 and X(t) = vec(OAC/E(t)) ∈ R9.

8.2.2.2 Euler-Angle Rate Equations

For the 3-2-1 (yaw-pitch-roll) Euler rotation sequence, we have

⇀
ωAC/E

∣∣∣∣
AC

= Φ̇ı̂AC + Θ̇̂E′′ + Ψ̇k̂E′ . (8.12)

Resolving (8.12) in FAC using (8.8) yields


P

Q

R

 =


1 0 − sin Θ

0 cos Φ (cos Θ) sin Φ

0 − sin Φ (cos Θ) cos Φ




Φ̇

Θ̇

Ψ̇

 . (8.13)
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Assuming cos Θ 6= 0, the inverse transformation of (8.13) is given by


Φ̇

Θ̇

Ψ̇

 = N(Φ,Θ)


P

Q

R

 , (8.14)

where

N(Φ,Θ)
4
=


1 (sin Φ) tan Θ (cos Φ) tan Θ

0 cos Φ − sin Φ

0 (sin Φ) sec Θ (cos Φ) sec Θ

 . (8.15)

8.2.2.3 Quaternion Rate Equations

Let FE is rotated about the eigenaxis n̂ by the angle φ according to the right-

hand rule yielding FAC. Define

n
4
= n̂

∣∣∣∣
E

= n̂

∣∣∣∣
AC

. (8.16)

Using Rodrigues rotation (8.3), the relationship between n̂, φ and
→
RAC/E is given by

→
RAC/E = (cosφ)

→
U +(1− cosφ)n̂n̂′ + (sinφ)n̂×. (8.17)

Resolving (8.17) in FAC yields

OAC/E = (cosφ)I + (1− cosφ)nnT − (sinφ)n×. (8.18)
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The quaternion vector of FAC relative to FE is defined by

q
4
=

ε
η

 =

n sin φ
2

cos φ
2

 ∈ R4. (8.19)

Note that and
√
qTq = 1. Using (8.19) and trigonometric identities, (8.18) can be

written as

OAC/E = (2η2 − 1)I − 2ηε× + 2εεT. (8.20)

The relationship between ε, η, ε̇, η̇ and
⇀
ωAC/E

∣∣∣∣
AC

is


P

Q

R

 =

[
2(ηI − ε×) −2ε

]ε̇
η̇

 . (8.21)

The inverse transformation of (8.21) is given by

ε̇
η̇

 =
1

2

ηI + ε×

−εT



P

Q

R

 . (8.22)

Note that (8.11), (8.14), and (8.22) are three different ways of computing attitude

using angular velocity, given the initial attitude OAC/E(0), [Φ(0),Θ(0),Ψ(0)], and

[ε(0), η(0)], respectively.

8.2.3 Translational Kinematics

At each time instant, let a denote the air particle located at a point that is

fixed relative to the aircraft and upstream of the pitot tube. The location of the
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aircraft center of mass c relative to the origin OE of FE at each time instant is given

by

⇀
r c/OE

=
⇀
r c/a +

⇀
r a/OE

. (8.23)

Differentiating (8.23) with respect to FE yields

⇀

V c =
⇀

V AC +
⇀

V a, (8.24)

where

⇀

V c
4
=

E•
⇀
r c/OE

,
⇀

V AC
4
=

E•
⇀
r c/a,

⇀

V a
4
=

E•
⇀
r a/OE

. (8.25)

The acceleration of the aircraft center of mass relative to OE is given by

⇀
a c/OE/E =

E•
⇀
v c/OE/E =

E•
⇀
v c/a/E +

E•
⇀
v a/OE/E . (8.26)

We assume that the ambient wind is spatially uniform and constant with respect to

FE, i.e.,
E•
⇀
v a/OE/E = 0. Hence

⇀
a c/OE/E =

E•
⇀
v c/a/E =

E•
⇀

V AC . (8.27)

Using the transport theorem with (8.27) yields

⇀
a c/OE/E =

AC•
⇀

V AC +
⇀
ωAC/E ×

⇀

V AC, (8.28)

which can be written as

AC•
⇀

V AC = −⇀
ωAC/E ×

⇀

V AC +
⇀
a c/OE/E. (8.29)
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The accelerometer measurement
⇀
ameas with gravity offset is given by

⇀
ameas =

⇀
a c/OE/E −

⇀
g , (8.30)

where the accelerometers are assumed to be located at the center of mass of the

aircraft. Substituting (8.30) into (8.29) yields

AC•
⇀

V AC = −⇀ωAC/E ×
⇀

V AC +
⇀
g +

⇀
ameas. (8.31)

We resolve
⇀

V AC using the notation


U

V

W

 4=
⇀

V AC

∣∣∣∣
AC

. (8.32)

We resolve
⇀
ameas in FAC using the notation


ax

ay

az

 4= ⇀
ameas

∣∣∣∣
AC

. (8.33)

We resolve the gravity vector
⇀
g in FAC using (8.6)

⇀
g

∣∣∣∣
AC

= OAC/E
⇀
g

∣∣∣∣
E

= OAC/E


0

0

g

 , (8.34)

where g = 32.17 ft/s2. Note that, by using the angular-velocity vector

[
P Q R

]
,

OAC/E in (8.34) can be obtained by integrating either (8.11), (8.14), or (8.22). Alter-
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natively, using (8.6), (8.34) is given by

⇀
g

∣∣∣∣
AC

=


−(sin Θ)g

(sin Φ)(cos Θ)g

(cos Φ)(cos Θ)g

 . (8.35)

Resolving (8.31) in FAC using (8.32), (8.33), and (8.34) yields


U̇

V̇

Ẇ

 =


0 R −Q

−R 0 P

Q −P 0



U

V

W

+ OAC/E


0

0

g

+


ax

ay

az

 . (8.36)

Resolving (8.31) in FAC using (8.32), (8.33), and (8.35) yields

U̇ = RV −QW − (sin Θ)g + ax, (8.37)

V̇ = −RU + PW + (sin Φ)(cos Θ)g + ay, (8.38)

Ẇ = QU − PV + (cos Φ)(cos Θ)g + az. (8.39)

Using the components of
⇀

V AC resolved in FAC, the angle of attack α and sideslip

β are given by

α = atan2(W,U), (8.40)

β = atan2(V,
√
U2 +W 2). (8.41)

Note that (8.1)–(8.41) are exact kinematic equations, and thus are applicable to all

rigid aircraft.
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8.3 Fault-Detection Scenarios

A continuous-time state-space model for input and state estimation can be for-

mulated as

ẋ = fc (x, u, d) + D̄1w, (8.42)

y = h (x) +D2v, (8.43)

where x ∈ Rlx is the unknown state, u ∈ Rlu is the known input, d ∈ Rld is the

unknown input, D̄1w ∈ Rlx is the process noise with known covariance V̄1
4
= D̄1D̄

T
1 ∈

Rlx×lx , y ∈ Rly is the measured output, and D2v ∈ Rlv is the measurement noise

with known covariance V2
4
= D2D

T
2 ∈ Rly×ly . Table 8.1 lists the available on-board

sensors for fault detection. In the following subsections, we show that a suspect sensor

measurement can either be modeled as an unknown state x or an unknown input d.

Comparing the estimates of x or d with the suspect sensor measurement provides the

means for diagnosing sensor faults.

Sensor Measurements Noise Standard Deviation
Pitot Tube U σU
Rate Gyro P, Q, R σP , σQ, σR

Vertical Gyro Θ, Φ σΘ, σΦ

Magnetometer Ψ σΨ

Accelerometers ax, ay, az σax , σay , σaz
α-sensor α σα
β-sensor β σβ

Table 8.1: On-board sensors for fault detection. The additive noise for each sensor is
assumed to be white Gaussian.

8.3.1 Faulty Pitot Tube

For estimating the forward velocity U , the dynamics map fc is given by (8.37)–

(8.39), the output map h is given by (8.40)–(8.41), and x, u, and y in (8.42)–(8.43)
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are given by

x =


U

V

W

 , u =

[
P Q R Φ Θ ax ay az

]T

, y =

α
β

 . (8.44)

Note that d is zero, D2 = diag(σα, σβ), and D̄1 is given by

D̄1 =

[
DPQR DΦΘ Daxayaz

]
, (8.45)

where

DPQR
4
=


0 −W V

W 0 −U

−V U 0



σP 0 0

0 σQ 0

0 0 σR

 ,

DΦΘ
4
=


0 − cos Φ

−(sin Φ) sin Θ (cos Φ) cos Θ

−(cos Φ) sin Θ −(sin Φ) cos Θ


σΦ 0

0 σΘ

 ,

Daxayaz

4
=


σax 0 0

0 σay 0

0 0 σaz

 .

DΦΘ is determined assuming σΦ, σΘ are small and using the approximations

sinwΦ ≈ wΦ, sinwΘ ≈ wΘ,

coswΦ ≈ 1, coswΘ ≈ 1, wΦwΘ = wΘwΦ ≈ 0,

where wΦ and wΘ are noise on the measurements of Φ and Θ, respectively.

In the absence of vertical gyro measurements (Φ, Θ), (8.36) can be used as the
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dynamics fc, where OAC/E can be estimated by either incorporating (8.11), (8.14), or

(8.22) into the dynamics fc.

8.3.2 Faulty Vertical Gyro

For estimating Euler angles (Φ,Θ,Ψ), the dynamics map fc is given by (8.37)–

(8.39) and (8.14), the output map h is given by (8.40)–(8.41), and x, u, and y in

(8.42)–(8.43) are given by

x =

[
U V W Φ Θ

]T

, u =

[
P Q R ax ay az

]T

, y =

[
U α β

]T

.

(8.46)

Note that d is zero, D2 = diag(σU , σα, σβ), and D̄1 is given by

D̄1 =

DPQR Daxayaz 03×3

02×3 02×3 −N̄(Φ,Θ)diag(σP , σQ, σR)

 , (8.47)

where

N̄(Φ,Θ)
4
=

1 (sin Φ) tan Θ (cos Φ) tan Θ

0 cos Φ − sin Φ

 .
8.3.3 Faulty α-sensor

For estimating angle of attack α, the dynamics map fc is given by (8.37)–(8.39),

the output map h is given by (8.41), and x, u, and y in (8.42)–(8.43) are given by

x =


U

V

W

 , u =

[
P Q R Φ Θ ax ay az

]T

, y =

U
β

 . (8.48)
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Note that d is zero, D̄1 is given by (8.45) and D2 = diag (σU, σβ) . Using the estimates

Û , Ŵ , the estimate of angle of attack α̂ is given by

α̂ = atan2(Ŵ , Û). (8.49)

8.3.4 Faulty Accelerometer

For estimating accelerometer measurements (ax, ay, az), the dynamics map fc is

given by (8.37)–(8.39), the output map h is given by (8.40)–(8.41), and x, u, d, and

y in (8.42)–(8.43) are given by

x =


U

V

W

 , u =

[
P Q R Φ Θ

]T

, d =


ax

ay

az

 , y =


U

α

β

 . (8.50)

Note that D̄1 =

[
DPQR DΦΘ

]
, and D2 = diag(σU , σα, σβ).

8.3.5 Faulty Rate Gyro

Estimation of Angular Velocity

For estimating angular velocity, the dynamics map fc is given by (8.14), and x, d,

and y in (8.42)–(8.43) are given by

x =


Φ

Θ

Ψ

 , d =


P

Q

R

 , y =


Φ

Θ

Ψ

 . (8.51)

Note that u, w and D̄1 are zero in (8.14), and D2 = diag(σΦ, σΘ, σΨ). Comparing

the estimates of angular velocity to the actual rate-gyro measurements provides the

means for assessing the health of the rate gyro.

136



Estimation of Rate-Gyro Noise

Consider additive noise in the angular velocity measurements Pm, Qm, Rm of the

form

Pm = P + nP + wP , (8.52)

Qm = Q+ nQ + wQ, (8.53)

Rm = R + nR + wR, (8.54)

where nP , nQ, nR denote deterministic or non-white stochastic signals, and wP , wQ, wR

denote zero-mean white noise with known covariance D̄1w. Candidate deterministic

signals include bias, drift, and harmonics. Substituting (8.52)–(8.54) into (8.14) yields


Φ̇

Θ̇

Ψ̇

= N(Φ,Θ)


Pm

Qm

Rm

−N(Φ,Θ)


nP

nQ

nR

−N(Φ,Θ)


wP

wQ

wR

 . (8.55)

In the case of (8.55), for estimating rate-gyro noise, x, u, d, w, y and D̄1 in (8.42)–

(8.43) are given by

x =


Φ

Θ

Ψ

 , u =


Pm

Qm

Rm

 , d =


nP

nQ

nR

 , y =


Φ

Θ

Ψ

 , D̄1 = −N(Φ,Θ)diag(σP , σQ, σR),

(8.56)

and D2 = diag(σΦ, σΘ, σΨ). Analysis of the noise estimate provides an alternative

means for assessing the health of the rate gyro.
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8.4 Input and State Estimation for Nonlinear Systems

The state-space model (8.42)–(8.43) can be discretized to first order as

x(k) = f (x(k−1), u(k−1), d(k−1)) +D1(k − 1)w(k−1), (8.57)

y(k) = h (x(k)) +D2v(k), (8.58)

where k is the time step, D1(k)
4
= TsD̄1(kTs),

f (x(k), u(k), d(k)) = x(k) + Tsfc (x(k), u(k), d(k)) ,

and Ts is the sampling time. D1(k)w(k) is the process noise with known covariance

V1(k)
4
= D1(k)D1(k)T, and D2(k)v(k) is the measurement noise with known covari-

ance V2(k)
4
= D2(k)D2(k)T. The goal is to estimate the unknown input d(k) and

the unknown state x(k). To do so, we first estimate the unknown input using ex-

tended retrospective cost input estimation (ERCIE), and then estimate the unknown

state using the unscented Kalman filter. Note that ERCIE is an extension of RCIE

algorithm given by [72].

8.4.1 Extended Retrospective Cost Input Estimation (ERCIE)

In order to estimate the unknown input d(k), we consider the forecast step

xfc(k) = f(xda(k − 1), u(k − 1), d̂(k − 1)), (8.59)

yfc(k) = h(xfc(k)), (8.60)

z(k) = yfc(k)− y(k), (8.61)

where xfc(k) ∈ Rlx is the forecast state, d̂(k) ∈ Rld is the input estimate, xda(k) ∈ Rlx

is the data assimilation state, and z(k) ∈ Rly is the innovations. The goal is to
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Figure 8.1: Input and state estimation architecture. ERCIE uses the innovations z to
update the adaptive input estimation subsystem in order to generate the
estimated input d̂. The unscented Kalman filter uses the estimated input
d̂ in place of d to estimate the unknown state x of the physical system.

develop an adaptive input estimator that minimizes z(k) by estimating d(k).

We obtain the input estimate d̂(k) as the output of the adaptive input-estimation

subsystem of order nc given by

d̂(k) =
nc∑
i=1

Pi(k)d̂(k − i) +
nc∑
i=0

Qi(k)z(k − i), (8.62)

where Pi(k) ∈ Rld×ld , Qi(k) ∈ Rld×ly . ERCIE minimizes z(k) by updating Pi(k) and

Qi(k). Fig. 8.1 shows the structure of (8.57)–(5.6). The subsystem in (8.62) can be
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reformulated as

d̂(k) = Φ(k)θ(k), (8.63)

where the regressor matrix Φ(k) is defined by

Φ(k)
4
=



d̂(k − 1)

...

d̂(k − nc)

z(k)

...

z(k − nc)



T

⊗ Ild ∈ Rld×lθ ,

and

θ(k)
4
= vec

[
P1(k) · · ·Pnc(k) Q0(k) · · ·Qnc(k)

]
∈ Rlθ ,

where lθ
4
= l2dnc + ldly(nc +1), “⊗” is the Kronecker product, and “vec” is the column-

stacking operator.

Define the ly × ld filter Gf,k(q)
4
= D−1

f,k (q)Nf,k(q), where q is the forward shift

operator, nf ≥ 1 is the order of Gf ,

Nf,k(q)
4
= K1(k)qnf−1 +K2(k)qnf−2 + · · ·+Knf

(k), (8.64)

Df,k(q)
4
= Ilyq

nf + A1(k)qnf−1 + A2(k)qnf−2 + · · ·+ Anf
(k), (8.65)

and, for all 1 ≤ i ≤ nf and k ≥ 0, Ki(k) ∈ Rly×ld and Ai(k) ∈ Rly×ly .
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Next, for all k ≥ 0, we define the retrospective input

drc(θ̂, k)
4
= Φ(k)θ̂ (8.66)

and the corresponding retrospective performance variable

zrc(θ̂, k) = z(k) + Φf(k)θ̂ − d̂f(k), (8.67)

where

Φf(k)
4
= Gf,k(q)Φ(k), d̂f(k)

4
= Gf,k(q)d̂(k), (8.68)

and θ̂ ∈ Rlθ is determined by optimization below.

To construct Gf , we define the following matrices

A(k)
4
=
∂f

∂x

∣∣∣∣
xda(k),u(k),d̂(k)

, (8.69)

G(k)
4
=
∂f

∂d

∣∣∣∣
xda(k),u(k),d̂(k)

, (8.70)

C(k + 1)
4
=
∂h

∂x

∣∣∣∣
xfc(k)

, (8.71)

Ā(k)
4
= A(k)[I +Kda(k)C(k)], (8.72)

where Kda is defined by (8.98) in Section 8.4.2. Gf,k in (8.67) is the FIR filter

Gf,k(q) =

nf∑
i=1

Hi(k)
1

qi
, (8.73)
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where, for all i ≥ 1,

Hi(k)
4
=

 C(k)G(k−1), i = 1,

C(k)
(∏i−1

j=1 Ā(k−j)
)
G(k−i), i ≥ 2.

(8.74)

For k ≥ 1, we define the retrospective cost function

J(θ̂, k)
4
=

k∑
i=0

λk−i
(
zrc(θ̂, i)

TRzzrc(θ̂, i) + [Φ(i)θ̂]TRdΦ(i)θ̂
)

+ λk[θ̂ − θ(0)]TRθ[θ̂ − θ(0)],

(8.75)

where Rz ∈ Rly×ly , Rd ∈ Rld×ld , and Rθ ∈ Rlθ×lθ are positive definite, and λ ∈ (0, 1]

is the forgetting factor. Let P (0) = R−1
θ and θ(0) = θ0. Then, for all k ≥ 1, the

cumulative cost function (8.75) has the unique global minimizer θ(k) given by the

RLS update

θ(k) = θ(k−1)− P (k−1)Φ̃(k)TΓ(k)[Φ̃(k)θ(k−1) + z̃(k)], (8.76)

P (k) =
1

λ
[P (k−1)− P (k−1)Φ̃(k)TΓ(k)Φ̃(k)P (k−1)], (8.77)

where

Φ̃(k)
4
=

 Φf(k)

Φ(k)

 ∈ R(ly+ld)×lθ , (8.78)

R̃(k)
4
=

 Rz(k) 0

0 Rd(k)

 ∈ R(ly+ld)×(ly+ld), (8.79)

z̃(k)
4
=

 z(k)− d̂f(k)

0

 ∈ Rly+ld , (8.80)

Γ(k)
4
= [λR̃(k)−1 + Φ̃(k)P (k−1)Φ̃(k)T]−1. (8.81)
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8.4.2 Unscented Kalman Filter for State Estimation (UKF)

Let S be a set of sigma points consisting of 2lx + 1 vectors and their associated

weights

S = {(xi,Wi) : i = 0, . . . , 2lx}. (8.82)

To provide an unbiased state estimate, the weights Wi satisfy

2lx∑
i=0

Wi = 1. (8.83)

Define

λ
4
= α2(lx + µ)− lx, (8.84)

c
4
= lx + λ, (8.85)

where α ∈ R and µ ∈ R are tunable. The sigma points and their associated weights

are chosen as

x0(k − 1) = xda(k − 1), (8.86)

xi(k − 1) = xda(k − 1) + (
√
cPda(k − 1))i,

i = 1, . . . , lx, (8.87)

xi+lx(k − 1) = xda(k − 1)− (
√
cPda(k − 1))i,

i = 1, . . . , lx, (8.88)

W0 =
λ

c
, (8.89)

Wi =
1

2c
, i = 1, . . . , 2lx. (8.90)
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where xda(k) ∈ Rlx is the data assimilation state. Pda(k) ∈ Rlx×lx is the data as-

similation error covariance, and (
√
cPda(k − 1))i is the ith column of the positive

semi-definite square root of cPda(k − 1).

Each sigma point is transformed through (8.59) as

xfc,i(k) = f(xi(k − 1), u(k − 1), d̂(k − 1)). (8.91)

We use the transformed points obtained from (8.91) to compute their mean and

covariance as

x̄fc(k) =
2lx∑
i=0

Wixfc,i(k), (8.92)

Pfc(k) =
2lx∑
i=0

Wix̃fc,i(k)(x̃fc,i(k))T + (1+β−α2)x̃fc,0(k)(x̃fc,0(k))T + V1(k − 1) + Vd̂(k − 1),

(8.93)

where x̃fc,i(k)
4
= xfc,i(k)− x̄fc(k), Vd̂(k) is the covariance of d̂(k), and β ∈ R is tunable.

We then transform sigma points through the observation model

yfc,i(k) = h(xi(k − 1)). (8.94)

and calculate their mean and covariance as

ȳfc(k) =
2lx∑
i=0

Wiyfc,i(k), (8.95)

Pyfc(k) =
2lx∑
i=0

Wiỹfc,i(k)(ỹfc,i(k))T + (1 + β − α2)ỹfc,0(k)(ỹfc,0(k))T + V2(k), (8.96)

where ỹfc,i(k)
4
= yfc,i(k)− ȳfc(k). The cross covariance between the two errors x̃fc,i(k)
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and ỹfc,i(k) is

Px̃fcỹfc(k) =
2lx∑
i=0

Wix̃fc,i(k)(ỹfc,i(k))T + (1 + β − α2)x̃fc,0(k)(ỹfc,0(k))T. (8.97)

The data assimilation step is given by

Kda(k) = Px̃fcỹfc(k)P−1
yfc

(k), (8.98)

Pda(k) = Pfc(k)−Kda(k)PT
x̃fcỹfc

(k), (8.99)

xda(k) = xfc(k) +Kda(k) [y(k)− ȳfc(k)] , (8.100)

where Kda(k) ∈ Rlx×ly is the state estimator gain.

8.5 Fault Detection Setup

The formulation in Section 8.3 is applicable to all rigid aircraft. In this chap-

ter, we use the NASA Generic Transport Model (GTM) to illustrate sensor fault

detection. GTM is a high-fidelity six-degree-of-freedom nonlinear aircraft model with

aerodynamic lookup tables [96–99].

8.5.1 Types of Sensor Faults

We consider the following types of sensor faults:

• Bias. The sensor measurement has a constant offset from the true measurement.

• Drift. The sensor measurement has a constant-slope deviation from the true

measurement.

• Deadzone. The sensor reads zero within a specific range.

• Stuck. The sensor reading is fixed.
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8.5.2 Procedure for Sensor Fault Detection

For sensor fault detection using input and state estimation, rich sensor signals are

needed. This can be achieved either by exciting the dynamics of the aircraft using

its control surfaces or it can arise naturally from the atmosphere, e.g., wind gusts.

For this chapter, the dynamics of the aircraft are excited using a saturated harmonic

elevator input.

For detecting a fault in one of the sensors listed in Table 8.1, we assume that the

remaining sensors are functional. We then define the true residual

etrue(k)
4
=

√√√√k+kw∑
i=k

[s(i)− ŝ(i)]2 (8.101)

and the sensor residual

esens(k)
4
=

√√√√k+kw∑
i=k

[ssens(i)− ŝ(i)]2, (8.102)

where s is the true value of the signal that the sensor measures, ŝ is the estimate

of s, ssens is the sensor measurement of s, and kw is the data-window size. Note

that, depending on the formulation in Section 8.3, ŝ is either a state estimate or

an input estimate given by the algorithm in Section 8.4. As shown in Section 8.6,

by examining the sensor residual, sensor faults can be detected. For each numerical

example, kw = 1000 data points, and xda(0) = 0.9x(0).

8.6 GTM Examples

We set the sampling time Ts = 0.01 sec and consider a scenario where GTM is

initially trimmed for level flight at an altitude of 8000 ft. We excite the aircraft

dynamics using the elevator deflection δe(k) = sat2 [4 sin(60kTs + 45)] deg, which is
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a saturated sinusoid with amplitude 4 deg, maximum deflection of ±2 deg, and a

period of 6 sec. The ambient wind is constant with magnitude of 16.88 ft/sec.

To emulate sensor noise, we add zero-mean white noise to all of the sensor mea-

surements with standard deviations σax = σay = σaz = 0.01g, σP = σQ = σR =

0.01 rad/sec, σΦ = σΘ = σΨ = 0.01 rad, σα = σβ = 0.01 rad, and σU = 0.1 ft/sec.

Unless stated otherwise, the noise level is fixed for all the examples in this section.

To show the fault and noise level, we plot the true measurement and sensor mea-

surement together. We also present the true residual to show the accuracy of the

estimates. Note that in practical application, the true measurement and thus the

true residual are not available. However, the sensor residual can be used in practice

for fault detection.

8.6.1 Fault Detection for Pitot-Tube Failure

In the following cases, the pitot tube fails by becoming stuck at the constant value

of 160 ft/s, beginning at 100 sec. Fig. 8.2 shows that the true residual decreases to

1 ft/sec, indicating that UKF is operating correctly. However, the sensor residual

jumps after the sensor fails.

Next, to see the effect of accelerometer bias, we consider the case with accelerom-

eter bias bax = bay = baz = 0.01g. Fig. 8.3 shows that the estimated pitot-tube

measurement drifts due to the biased accelerometers. In order to deal with these

biases, the dynamics in (8.42) are augmented as

ẋ = fc (x, u, d) + b̂+ D̄1w,
˙̂
b = 0, (8.103)

where b̂ ∈ R3 is the estimated bias in the accelerometers. Fig. 8.4 shows that, with

the augmented states, the true residual is less than 2 ft/s, thus indicating no drift in

the estimate of U . Consequently, b̂ converges to the accelerometer bias as shown in

Fig. 8.5.
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Figure 8.2: Stuck pitot tube. (a) At 100 sec, the sensor measurement is stuck at
160 ft/sec. (b) The sensor residual jumps to a mean value of 9.5 ft/sec
indicating pitot-tube failure.

8.6.2 Fault Detection for Vertical-Gyro Failure

We consider cases where the vertical gyro has either a bias, deadzone, or drift

beginning at 100 sec. Fig. 8.6 shows the estimate of Φ and Θ. Figs. 8.7a and 8.8a

show cases where Φ and Θ have biases of 2 deg. Note that the sensor residuals have

offsets due to these biases. Next, we consider the deadzone case where the Φ-sensor

reads zero within ±2 deg. Fig. 8.7b shows that the sensor residual has an offset due

to the deadzone. Finally, Fig. 8.8b shows a case where the measurement of Θ drifts

with a slope of 0.01 deg/sec. Note that the sensor residual also drifts from the true

residual.
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Figure 8.3: Estimation of U with biased accelerometers. (a) The estimate of U drifts
from the true measurement. Beginning at 100 sec, the sensor measure-
ment is stuck at 160 ft/sec. (b) The true and sensor residuals are both
increasing, and therefore it is not possible to detect the sensor fault. This
shortcoming is overcome in Fig. 8.4.

8.6.3 Fault Detection for α-sensor Failure

We now present cases where the α-sensor has either a bias or deadzone beginning

at t = 100 sec. First, we consider the case where the α-sensor has a bias of 4 deg. Fig.

8.9 shows that the true residual is less than 0.6 deg, and the sensor residual jumps

to 3.5 deg due to the bias. Next, we consider the deadzone case where the α-sensor

reads zero within ±2 deg. Fig. 8.10 shows that the sensor residual has an offset due

to the deadzone.

8.6.4 Fault Detection for Accelerometer Failure

For accelerometer fault detection, we use ERCIE to estimate acceleration. Specif-

ically, we estimate ax and az separately, that is, when ax is estimated, (ay, az) are
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Figure 8.4: Estimation of U with augmented bias states. (a) The estimate of U
indicates no drift. Beginning at 100 sec, the sensor measurement is stuck
at 160 ft/sec. (b) The true residual is less than 2 ft/sec, whereas the
sensor residual has an offset due to the stuck fault.

assumed to be functional, whereas, when az is estimated, (ax, ay) are assumed to be

functional. For ERCIE, we choose Vd̂ = 10−4I3×3, nc = 2, nf = 6, λ = 1, Rθ = 10−8Ilθ ,

and Rz = Ily . For estimating ax, Rd = 10−2, and for estimating az, Rd = 10−4.

Next, we consider cases where the accelerometer has either a bias or drift beginning

at 100 sec. Fig. 8.11 shows that ERCIE is able to estimate ax and az. Figs. 8.12a

and 8.13a show cases where ax and az have biases of 0.05g and 0.1g, respectively.

Note that the sensor residuals have offsets due to these biases. Figs. 8.12b and 8.13b

show cases where the measurements of ax and az drift with a slope of 0.001 g/sec.

Note that the sensor residuals also drift from the respective true residuals.
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Figure 8.5: Estimate of accelerometer bias. (a) bax estimate. (b) bay estimate. (c) baz
estimate.

8.6.5 Fault Detection for Rate-Gyro Failure

An alternative method to examining the sensor-residual for detecting a sensor

fault, is to directly estimate the noise in the sensor measurement. In this subsection,

we estimate the noise in rate-gyros measurements.

For all of the examples in this subsection, we choose the standard deviation of

wP , wQ, wR in (8.52)–(8.54) to be 1 deg/sec. For ERCIE, we choose Vd̂ = 10−6I3×3,

nc = 6, nf = 36, λ = 1, Rθ = 10−2Ilθ , Rd = 0, and Rz = Ily . We first consider

cases where the Euler-angle measurements (Φ,Θ,Ψ) have no noise, and choose V2 =

10−4I3×3.

Fig. 8.14 shows the case where the rate-gyro measurements have bias. The magni-

tudes of the bias are 2,−4 and 4 deg/sec in P, Q, and R measurements, respectively.

The Root-Mean-Squared-Error (RMSE) of the bias estimates after t = 5 sec in P, Q,

and R measurements are 0.11, 0.21 and 0.19 deg/sec, respectively.
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Figure 8.6: Estimation of Euler angles Φ and Θ. (a) Estimate of Φ. (b) Estimate of
Θ.

Fig. 8.15 shows the case where the rate-gyro measurements have both bias and

drift. The bias magnitudes are the same as in Fig. 8.14. The drift begins at t = 20 sec

with a slope of 0.1 and −0.1 deg/sec2 in Q and R measurements, respectively. The

RMSE of the rate-gyro noise estimates after t = 5 sec in P, Q, and R measurements

are 0.61, 0.26 and 0.26 deg/sec, respectively.

Fig. 8.16 shows the case where the noise in rate-gyro measurements is a random

walk. At each time step k, the random walk is modeled as an increase or decrease

in the noise magnitude by 0.1 deg/sec with equal probabilities. The RMSE of the

random walk noise estimates after t = 5 sec in P, Q, and R measurements are 1.0, 1.2

and 0.8 deg/sec, respectively.

We now consider the case where the Euler angle-measurements (Φ,Θ,Ψ) are cor-

rupted by white noise with standard deviation 0.5 deg/sec and hence V2 = 0.0045I3×3.

Fig. 8.17 shows the case where the rate-gyro measurements have bias. The magni-
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Figure 8.7: Φ-sensor. (a) The measurement of Φ is subject to a bias. Note that the
sensor residual jumps at 100 sec when the bias begins. (b) Beginning at
100 sec, the Φ-sensor reads zero within ±2 deg. Note that the sensor
residual indicates an offset due to the deadzone.

tudes of the bias are the same as in Fig. 8.14. The RMSE of the bias estimates after

t = 5 sec in P, Q, and R measurements are 0.24, 0.40 and 0.40 deg/sec, respectively.

8.7 Experimental Result: Estimation of Angular Velocity of

a Maneuvering Vehicle

In the laboratory setup, we estimate the angular velocity of a quadrotor resolved

in FAC using the formulation in Section 8.3.8.3.5.8.3.5. The attitude (Φ,Θ,Ψ) of the

vehicle is obtained using a Vicon system and recorded for post-flight data analysis.

To compare the estimated angular velocity with the measured angular velocity, data

from the vehicle’s rate-gyro is recorded and time-stamped.

We discretize (8.42) using (8.57) with Ts = 0.01 s, which is the sample rate of the
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Figure 8.8: Θ-sensor. (a) The measurement of Θ is subject to a bias. Note that the
sensor residual jumps at 100 sec when the bias begins. (b) The measure-
ment of Θ is subject to a drift. Note that the sensor residual begins to
increase at 100 sec when the drift begins.

recorded data. We choose Vd̂ = 10−4I3×3, V2 = 10−2I3×3, nc = 6, nf = 36, λ = 1,

Rθ = 10−2Ilθ , Rd = 10−4Ild , and Rz = Ily .

Fig. 8.18 shows the accuracy of the ERCIE estimate of the angular velocity of the

quadrotor using the attitude measurement obtained from the Vicon system.

8.8 Conclusion

This chapter showed that sensor fault diagnosis for aircraft is feasible using either

state estimation alone or state estimation in conjunction with input estimation. Since

the aircraft kinematics are nonlinear, the unscented Kalman filter (UKF) was used

for sensor fault diagnosis in cases where the sensor measurement is modeled as an

unknown state variable. In cases where the sensor measurement is modeled as an

unknown input, extended retrospective cost input estimation (ERCIE) was used in
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Figure 8.9: α-sensor with a bias. (a) Beginning at 100 sec, the α-sensor has a bias of
4 deg. (b) The sensor residual indicates an offset due to the bias.

conjunction with UKF to provide a combined input and state estimation technique

for sensor fault diagnosis for nonlinear systems.

Five fault-detection scenarios, in particular, faulty pitot tube, vertical gyros,

angle-of-attack sensor, accelerometers, and rate gyros were investigated. We used

UKF for pitot tube, vertical gyro, and angle-of-attack sensor fault detection, and

UKF/ERCIE for rate gyros and accelerometer fault detection. In order to illustrate

sensor fault detection, we used the NASA Generic Transport Model and presented

cases for detecting stuck, bias, drift, and deadzone sensor faults. For all cases, we

showed that the sensor residual can be used to detect sensor faults. Furthermore,

for diagnosing rate gyros, we demonstrated the method on laboratory data, where

camera measurements were used to estimate the angular velocity of a quadrotor with

validation based on onboard rate-gyros.
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Figure 8.10: α-sensor with a deadzone. (a) Beginning at 100 sec, the α-sensor reads
zero within ±2 deg. (b) The sensor residual indicates an offset due to
the deadzone.
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Figure 8.11: Acceleration estimation using ERCIE. Note that, ERCIE is able to es-
timate ax and az. (a) Estimate of ax. (b) Estimate of az.
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Figure 8.12: ax-sensor. (a) The measurement of ax is subject to a bias. Note that
the sensor residual jumps at 100 sec when the bias begins. (b) The
measurement of ax is subject to a drift. Note that the sensor residual
begins to increase at 100 sec when the drift begins.
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Figure 8.13: az-sensor. (a) The measurement of az is subject to a bias. Note that
the sensor residual jumps at 100 sec when the bias begins. (b) The
measurement of az is subject to a drift. Note that the sensor residual
begins to increase at 100 sec when the drift begins.
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Figure 8.14: Estimation of bias. The RMSE of the bias estimates after t = 5 sec in
P, Q, and R measurements are 0.11, 0.21 and 0.19 deg/sec, respectively.
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Figure 8.15: Estimation of bias and drift. The drift begins at t = 20 sec with a slope
of 0.1 and −0.1 deg/sec2 in Q and R measurements, respectively. The
RMSE of the rate-gyro noise estimates after t = 5 sec in P, Q, and R
measurements are 0.61, 0.26 and 0.26 deg/sec, respectively.
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Figure 8.16: Estimation of random walk in rate-gyro measurements. The RMSE of
the noise estimates after t = 5 sec in P, Q, and R measurements are
1.0, 1.2 and 0.81 deg/sec, respectively.
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Figure 8.17: Estimation of bias in rate-gyro measurements using noisy Euler-angle
measurements. The magnitudes of the bias are the same as in Fig.
8.14. The RMSE of the bias estimates after t = 5 sec in P, Q, and R
measurements are 0.24, 0.40 and 0.40 deg/sec, respectively.
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Figure 8.18: Estimation of the angular velocity of the quadrotor resolved in FAC us-
ing attitude measurements. ERCIE estimates are compared with the
vehicle’s rate-gyro measurements.
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CHAPTER 9

Conclusions and Future Work

9.1 Conclusions

Using the generalized inverse of a block-Toeplitz matrix, this dissertation pre-

sented simplified and unified algorithms for deadbeat input reconstruction and state

estimation for MIMO systems that are d-delay invertible, that is, invertible with a

delay of d steps. These algorithms do not assume the existence of a full-column-rank

Markov parameter.

The assumption that the system is d-delay invertible is equivalent to the finiteness

of the index η, which is the smallest delay d such that the system is d-delay invertible.

Various questions concerning η remain open. Although the finiteness of η can be

verified by checking n rank conditions, an easily verifiable necessary and sufficient

condition for the finiteness of η is lacking. Numerical examples suggest that the

existence of at least one Markov parameter with full column rank implies that η is

finite; however, (3.18) shows that this condition is not necessary. Since the finiteness

of η is a necessary and sufficient condition for the existence of a d-delay inverse with

smallest delay, it seems reasonable to view η as the relative degree of square or tall

systems. This notion may have relevance to other areas such as adaptive control.

Next, this dissertation presented retrospective cost input estimation (RCIE) and

showed that this algorithm is effective for asymptotically estimating the unknown in-
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put of a nonminimum-phase system. The mechanism underlying RCIE was explained

in terms of an internal model of the unknown input. In particular, RCIE was shown

to automatically construct an internal model of the unknown input d despite lack of

knowledge of the spectrum of d and in the presence of arbitrary invariant zeros.

As an experimental application, RCIE was used to estimate the inertial accel-

eration of a UAV; these estimates were shown to be close to independent, onboard

measurements provided by an IMU. In contrast, the techniques of [17] and [29] pro-

duced divergent estimates. In fact, the techniques in [17, 29, 39] are not applicable

to this problem due to the presence of invariant zeros on the unit circle.

Finally, this dissertation showed that sensor fault diagnosis for aircraft is feasible

using either state estimation alone or state estimation in conjunction with input

estimation. Since the aircraft kinematics are nonlinear, the unscented Kalman filter

(UKF) was used for sensor fault diagnosis in cases where the sensor measurement

is modeled as an unknown state variable. In cases where the sensor measurement is

modeled as an unknown input, extended retrospective cost input estimation (ERCIE)

was used in conjunction with UKF to provide a combined input and state estimation

technique for sensor fault diagnosis for nonlinear systems.

Five fault-detection scenarios, in particular, faulty pitot tube, vertical gyros,

angle-of-attack sensor, accelerometers, and rate gyros were investigated. UKF was

used for diagnosing pitot tube, vertical gyros, and angle-of-attack sensor fault detec-

tion, whereas, UKF/ERCIE was used for diagnosing rate gyros and accelerometers.

In order to illustrate sensor fault detection, this dissertation used the NASA Generic

Transport Model and presented cases for detecting stuck, bias, drift, and deadzone

sensor faults. For all cases, it was shown that the sensor residual can be used to detect

sensor faults. Furthermore, for diagnosing rate gyros, the method was demonstrated

on laboratory data, where camera measurements were used to estimate the angular

velocity of a quadrotor with validation based on onboard rate-gyros.
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9.2 Future Work

9.2.1 Deadbeat Input Reconstruction and State Estimation

Extensions for future research include i) numerical techniques that avoid the need

to compute Ψ+
r for large r; and the ii) development of a fully stochastic treatment

of input estimation that accounts for sensor noise as well as disturbances whose re-

construction would violate the requirement m ≤ p, as demonstrated in Example

3.6.1. Finally, extensions to nonlinear systems present a future challenge and fruitful

research direction.

9.2.2 Retrospective Cost Input Estimation

Extensions for future research include the following questions. First, the covari-

ance Vd̂(k) of d̂(k) is required to update the forecast error covariance Pf given by

(5.24). An online technique for setting this covariance is desirable. Second, analysis

of properties P1–P3 can provide guidelines for choosing a minimum value of nc, which

can reduce the RCIE computations. Next, alternative techniques for constructing Gf

that are simpler than the method given in Section 5.2.3 could simplify the implemen-

tation of RCIE. Finally, stochastic analysis of RCIE remains a future objective.

9.2.3 Sensor Fault Detection

Extensions for future research include the following. Methods for detecting faults

in pitot tube, vertical gyros, rate gyros, accelerometers, and angle-of-attack sensor

were presented. Formulating methods for diagnosing faults for magnetometer and

sideslip sensors remain open. Finally, the analysis in this dissertation did not include,

however, statistical tests to determine the presence of a sensor fault in cases where the

level of noise is sufficiently high that the sensor fault is not apparent. The development

of such statistical measures is a candidate for future research.
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APPENDIX A

Rank of a Block-Toeplitz Matrix

The following result is used in the proofs of Lemma 2 and Proposition 8.

Lemma 1. Let A ∈ Rn×m, B ∈ Rl×m, C ∈ Rn×p, D ∈ Rl×p, and E ∈ Rl×q.

Assume that A has full column rank, and R(A) ∩ R(C) = {0}. Then

R


A
B


 ∩


C 0

D E


 = {0}. (A.1)

Proof. Let  x

y

 ∈ R


A
B


 ∩


C 0

D E


 .

Therefore, x ∈ R(A)∩R(C) = {0}, and thus x = 0. Furthermore, there exists z ∈ Rm

such that
[

0
y

]
= [ AB ] z, and thus Az = 0 and y = Bz. Since A has full column rank,

it follows that z = 0, and thus y = 0. �

The following result is used in the proof of Proposition 7.
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Lemma 2. Let r ≥ 2, for all i ∈ {0, 1, . . . , r}, let Hi ∈ Rn×m, and define the

block-Toeplitz matrix

Tr =



H0 0 · · · 0 0

H1 H0
. . . 0 0

...
. . . . . . . . .

...

Hr−1 Hr−2
. . . H0 0

Hr Hr−1 · · · H1 H0


=

[
Cr Cr−1 · · · C1 C0

]
, (A.2)

where, for all i ∈ {0, . . . , r}, Ci denotes the (i+1)th block column of Tr labeled from

right to left. Furthermore, let l ∈ {1, . . . , r}, and assume that Cl has full column rank

and

R(Cl) ∩ R([Cl−1 · · · C0]) = {0}. (A.3)

Then, [Cr · · · Cl] has full column rank, and

R([Cr · · · Cl]) ∩ R([Cl−1 · · · C0]) = {0}. (A.4)

Proof. Noting

Tl =

 Cl
0

Tl−1

 =

 Tl−1 0

Hl · · · H1 H0

 (A.5)
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and using rankCl = m, (A.3), and Fact 2.11.9 in [79, p. 131], it follows that

rankTl = rankCl + rank
[

0
Tl−1

]
− dim(R(Cl) ∩ R(

[
0

Tl−1

]
)

= m+ rankTl−1 − dim(R(Cl) ∩ R([Cl−1 · · · C0])

= m+ rankTl−1. (A.6)

Similarly, since

Tl+1 =

 Cl+1

0

Tl

 =

 Cl
0

0
Tl−1

Hl+1 Hl · · · H1 H0

 , (A.7)

it follows from rankCl+1 = m, (A.6), and (A.7) that

rankTl+1 = rankCl+1 + rankTl − dim

R(Cl+1) ∩ R


 0

Tl





= 2m+ rankTl−1 − dim

R


 Cl

Hl+1


 ∩ R




0 0

Tl−1 0

Hl · · · H1 H0



 .

(A.8)

Since R(Cl)∩R(
[

0
Tl−1

]
) = {0} and Cl has full column rank, it follows from Lemma 1

that

R


 Cl

Hl+1


 ∩ R




0 0

Tl−1 0

Hl · · · H1 H0


 = {0}. (A.9)
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Combining (A.9) with (A.8) yields

rankTl+1 = 2m+ rankTl−1. (A.10)

Similarly, since

Tl+2 =

 Cl+2

0

Tl+1

 =

 Cl+1

0
0

Tl

Hl+2 Hl+1 · · · H1 H0

 , (A.11)

it follows from rankCl+2 = m and (A.10) that

rankTl+2 = rankCl+2 + rankTl+1 − dim

R(Cl+2) ∩ R


 0

Tl+1





= 3m+ rankTl−1 − dim

R


Cl+1

Hl+2


 ∩ R




0 0

Tl 0

Hl+1 · · · H1 H0



 .

(A.12)

It follows from (A.7) and (A.9) that R(Cl+1) ∩ R(
[

0
Tl

]
) = {0}, and, since Cl+1 has

full column rank, it follows from Lemma 1 that

R


Cl+1

Hl


 ∩ R




0 0

Tl 0

Hl+1 · · · H1 H0


 = {0}. (A.13)

Combining (A.13) with (A.12) yields

rankTl+2 = 3m+ rankTl−1. (A.14)
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By similar arguments, it follows that, for all k ≥ 1,

rankTl+k = (k + 1)m+ rankTl−1, (A.15)

which, with k = r − l, yields

rankTr = (r − l + 1)m+ rankTl−1. (A.16)

Noting

Tr =

 Cr · · · Cl
0

Tl−1

 =

[
Cr · · · Cl Cl−1 · · · C0

]
, (A.17)

it follows that

rankTr = rank [Cr · · · Cl] + rankTl−1 − dim (R([Cr · · · Cl]) ∩ R([Cl−1 · · · C0])) .

(A.18)

Combining (A.18) with (A.16) yields

0 ≤ dim (R([Cr · · · Cl]) ∩ R([Cl−1 · · · C0])) = rank [Cr · · · Cl]− (r − l + 1)m ≤ 0,

which implies that [Cr · · · Cl] has full column rank and (A.4) holds. �
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APPENDIX B

Generalized Inverse of a Partitioned Matrix

The following result is used in the proofs of Theorem 2, Theorem 3, and Theorem

4.

Lemma 3. Let A ∈ Rn×m and B ∈ Rn×l, define C
4
= (I − AA+)B and D

4
=

(I − BB+)A, and assume that R(A) ∩ R(B) = {0}. Then, C+A = 0, D+B = 0,

C+B = B+B, D+A = A+A,

[A B]+ =

 D+

C+

 , [A B]+[A B] =

 A+A 0

0 B+B

 . (B.1)

Proof. The result follows from Theorem 1, line 6 on page 21, and line 7 on page

22 of [100]. �
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APPENDIX C

Pseudo Algorithm for Retrospective Cost Input

Estimation
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1: Choose nc ≥ 1, nf ≥ 1, 0 < λ ≤ 1, Rz, Rd, Rθ, and Vd̂.
2: kn = max(nc, nf);
3: Initialize: d̂(0) = 0; xda(0) = E[x(0)]; Pda(0) = E[(x(0)−xda(0))T(x(0)−xda(0))];
θ(kn) = 0lθ ; P (kn−1) = R−1

θ ;
4: for k = 1 to N do
. Forecast Step

5: xfc(k) = A(k−1)xda(k−1) +B(k−1)u(k−1) +G(k−1)d̂(k−1);
6: z(k) = C(k)xfc(k)− y(k);
. Input Estimation

7: if k ≥ kn do

8: Φ(k) =
[
d̂(k−1)T · · · d̂(k−nc)

T z(k)T · · · z(k−nc)
T
]
⊗ Ild ;

9: Ā(k−1) = A(k−1)[Ilx +Kda(k−1)C(k−1)];
10: H̃(k) =

[
C(k)G(k−1) H2(k) · · · Hnf

(k)
]
, where Hi(k) =

C(k)
(∏i−1

j=1 Ā(k−j)
)
G(k−i);

11: Φf(k) = H̃(k)
[
Φ(k−1)T · · · Φ(k−nf)

T
]T

;

12: d̂f(k) = H̃(k)
[
d̂(k−1)T · · · d̂(k−nf)

T
]T

;

13: Φ̃(k) =
[
Φf(k)T Φ(k)T

]T
;

14: R̃(k) = blockdiag(Rz, Rd);

15: z̃(k) =
[
[z(k)− d̂f(k)]T 01×ld

]T
;

16: Γ(k) = [λR̃(k)−1 + Φ̃(k)P (k−1)Φ̃(k)T]−1;
17: P (k) = λ−1[P (k−1)− P (k−1)Φ̃(k)TΓ(k)Φ̃(k)P (k−1)];
18: θ(k) = θ(k−1)− P (k−1)Φ̃(k)TΓ(k)[Φ̃(k)θ(k−1) + z̃(k)];
19: d̂(k) = Φ(k)θ(k); . Input estimate.
20: else do
21: d̂(k) = d̂(0);
22: end if
. Data-Assimilation Step
23: Pf(k) = A(k−1)Pda(k−1)A(k−1)T + V1(k−1) + Vd̂(k−1);
24: Kda(k) = −Pf(k)C(k)T[C(k)Pf(k)C(k)T + V2(k)]−1;
25: Pda(k) = [Ilx +Kda(k)C(k)]Pf(k);
26: xda(k) = xfc(k) +Kda(k)z(k); . State estimate.
27: end for
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