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ABSTRACT 

Amid the challenges of climate change, aging infrastructure, and urbanization environmental 

engineers must develop resource efficient water and wastewater treatment. As the population in 

coastal communities continues to increase and effluent nitrogen regulations become more 

stringent, innovation in our wastewater treatment infrastructure can help promote resource 

efficient nitrogen removal. Sea level rise due to global climate change causes seawater intrusion 

to wastewater collection systems and increases sulfate concentrations in wastewater. When the 

wastewater collection system is anaerobic, sulfate is biologically converted to sulfide. Sulfide is 

an electron donor for denitrification, reducing the need for supplemental carbon addition for 

nitrogen removal. This dissertation presents advancements in our understanding of how sulfur can 

affect nitrogen cycling during wastewater treatment.  

The effects of hydrogen sulfide on nitrogen cycling were evaluated in three wastewater treatment 

systems: two full-scale treatment processes that employ different redox environments, thereby 

supporting distinct microbial communities, and one lab-scale bioreactor.  Studies using microbial 

communities from the full-scale treatment processes showed that nitrite oxidizing bacteria (NOB) 

were more sensitive to sulfide than ammonia oxidizing bacteria (AOB). Inhibiting nitrite oxidizing 

bacteria promotes resource efficient treatment because it can reduce the aeration demands of 

treatment and support nitrite-based denitrifying metabolisms. However, the extent of inhibition 

was distinct in the two treatment plants, demonstrating that the effect of sulfide is community 

specific.  

Given the potential benefits of sulfide for both denitrification and for inhibiting NOB, the effect 

of sulfide was tested in a mixed-redox membrane aerated biofilm reactor (MABR). A MABR 

biofilm is counter-diffusional, meaning the electron donor and electron acceptor diffuse into the 

biofilm in opposite directions. Accordingly, sulfide is amended in the anoxic bulk liquid, which 

curtails aerobic oxidation and allows for sulfide oxidation using nitrite or nitrate that was formed 

in the inner regions of the biofilm as an electron acceptor.   Incubation experiments with heavy 

nitrogen revealed that, consistent with the full-scale systems, sulfide could inhibit NOB but had 
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no impact on the rates of ammonia oxidation. During routine reactor monitoring, inhibition of 

NOB was not apparent, most likely due to the rapid conversion of nitrite to ammonia. Higher 

effluent ammonia concentrations observed during operation were attributed to inhibition of AOB 

instead of nitrite reduction to ammonia. Biofilm modeling was used to elucidate dissimilatory 

nitrite or nitrate reduction to ammonia (DNRA). Simulation results show that DNRA with sulfide 

as the electron donor could increase effluent ammonium. The genetic potential for nitrite reduction 

to ammonia was found in a unique population of denitrifying anaerobic methane oxidizers. These 

organisms are beneficial in the treatment of effluents from mainstream anaerobic processes as they 

curtail an important greenhouse gas emission while denitrifying.  On the other hand, results show 

that sulfide inhibits nitrous oxide reduction, leading to higher emissions of nitrous oxide, a 

greenhouse gas with a global warming potential 300 times higher than carbon dioxide. Overall, 

studies in the mixed-redox counter-diffusional biofilm enhanced our understanding of how sulfide 

affects microbial community interactions.  

The results of this dissertation show that hydrogen sulfide could have beneficial impacts on 

nitrogen cycling in engineered systems. The effect of hydrogen sulfide is complex because 

microbial communities are adaptable and sulfide induces feedback effects which change overall 

microbial community interactions. Ultimately, this knowledge can spur the development of 

technologies that use hydrogen sulfide to develop resource efficient wastewater treatment 

technologies. 
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CHAPTER 1.  

INTRODUCTION 

Water and wastewater treatment plants are traditionally slow to adopt new technologies (Kiparsky 

et al., 2016; Parker, 2011), but current trends in the industry are moving towards the rapid 

development and adoption of resource efficient technologies. Aside from managing the energy and 

chemical resources needed to treat water, the practice of resource efficiency evaluates the resources 

available in wastewater and reduces the environmental and societal demands for treatment (Larsen, 

2011). The global stressors of water scarcity, rapid urbanization, and global climate change are 

spurring utilities to rethink resource management, and advances in research accelerate technology 

adoption. For example, water scarcity in Big Spring, Texas led to the rapid adoption of direct 

potable water reuse (Weissmann, 2014). Understanding how technologies function can reveal 

opportunities to develop resource efficient water and wastewater treatment processes. 

Furthermore, close collaborations between utilities and universities (Water Environment 

Federation, 2018) and connections between utilities (e.g. Water Research Foundation’s LIFT Test 

Bed Network (Mihelcic et al., 2017)) can enhance technology development and adoption. 

Stimulated by needs identified through a utility (Hampton Roads Sanitation District in Virginia) 

and university (University of Michigan) partnership, this dissertation presents advancements in 

our understanding of how sulfur can affect nitrogen cycling during wastewater treatment. 

Ultimately, this knowledge can spur the development of technologies that use sulfur to improve 

the resource efficiency of wastewater treatment.  

Since the implementation of the Clean Water Act in 1972, the goals of wastewater management 

have shifted from being primarily focused on carbon removal to meeting increasingly stringent 

nutrient (nitrogen and phosphorus) criteria. While dual nutrient management in both freshwater 

and coastal ecosystems is important (Paerl et al., 2016), nitrogen is the limiting nutrient in ocean 

and estuary ecosystems where more than 40% of the global population currently lives (Martínez 

et al., 2007). In the U.S., coastal populations are four times more densely urbanized than the rest 

of the country and population density is projected to increase (National Oceanic and Atmospheric 
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Administration, 2013). Therefore, there is a need to develop efficient nitrogen management 

strategies in these urbanizing coastal communities. Projected sea level rise caused by global 

climate change presents additional challenges for wastewater infrastructure due to seawater 

intrusion into collection systems. Consequently, new nitrogen removal technologies in coastal 

regions need to address the challenges of urbanization and climate change.  

The densely populated coastal regions of the country have unique opportunities for adopting new 

technologies for wastewater treatment that reduce the energy, greenhouse gas, and space 

requirements for treatment. For example, coastal communities that are freshwater limited may 

consider adopting seawater for toilet flushing. Since 1958, Hong Kong has used seawater for toilet 

flushing and has reduced freshwater demands by almost a quarter (Chen et al., 2012). Life cycle 

analysis revealed that communities should be within 30 km of a coast and have an effective 

population density exceeding 3,000 persons/km2 for seawater for toilet flushing to be 

environmentally sustainable (Liu et al., 2016).  Thus, seawater for toilet flushing is beneficial in 

coastal megacities worldwide and examples from the U.S. include New York City (11,000 

persons/km2), San Francisco (6,700 persons/km2), and Los Angeles (3,100 persons/km2) (U.S. 

Census Bureau, 2010). As was the case with direct potable water reuse in Big Spring, Texas, water 

scarcity in Southern California may accelerate adoption of seawater for toilet flushing. In addition 

to the advantages of adopting seawater for toilet flushing for reducing freshwater demands, it is 

important to consider the ensuing wastewater salinity and its effect on the biological nitrogen 

removal process. 

Another example of a technology that could be adopted for the treatment of wastewater in densely 

urbanized coastal communities is mainstream anaerobic treatment. There have been recent 

advances in anaerobic treatment that favor its adoption even at low temperatures (Smith et al., 

2013). Though mainstream anaerobic treatment is still evolving, it is an attractive option compared 

with conventional treatment technologies due to its space efficiency, low solids production, and 

potential for energy recovery (McCarty et al., 2011). Life-cycle analysis showed that mainstream 

anaerobic treatment (in the form of anaerobic membrane bioreactors) is more sustainable when 

high strength wastewaters are treated (Smith et al., 2014). Therefore, mainstream anaerobic 

treatment is particularly attractive in the densely populated regions of the country such as cities 

along coasts.  Both mainstream anaerobic treatment and seawater for toilet flushing are promising 
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technologies for reducing the resources required for the urban water cycle because these 

technologies reduce freshwater demands and lower the energy requirements of treatment, however 

neither of these strategies address nitrogen emissions.  

A consequence of seawater intrusion into sewers, seawater for toilet flushing, and mainstream 

anaerobic treatment is that sulfur will play a more prominent role in the treatment plant. Several 

considerations indicate that sulfur is likely to influence individual steps in the nitrogen cycle, but 

the specific impacts of sulfur on overall nitrogen cycling during wastewater treatment are poorly 

understood and require further research. One such consideration is during the first step of nitrogen 

removal where oxic environments are used to support nitrifying organisms. Ammonia oxidizing 

bacteria (AOB) convert the ammonia present in wastewater to nitrite, and nitrite oxidizing bacteria 

(NOB) oxidize nitrite to nitrate. Nitrifying organisms are inhibited by hydrogen sulfide (Bejarano 

Ortiz et al., 2013; Sears et al., 2004) and NOB are inhibited at lower concentrations of sulfide than 

AOB (Bejarano-Ortiz et al., 2015; Erguder et al., 2008; Kouba et al., 2017). Inhibiting NOB is 

advantageous in the wastewater treatment as it can result in lower energy demands from aeration, 

lower electron donor requirements for denitrification, and can provide substrate for anammox 

bacteria, which are beneficial due to their low growth yield.  

Sulfide can also affect denitrification, which occurs when electron donors are used in anoxic 

environments to reduce the nitrite or nitrate to dinitrogen gas. Combined, nitrification and 

denitrification convert the ammonia from the liquid stream to an inert gas, eliminating the harmful 

impact of nitrogen on the receiving water stream. Hydrogen sulfide inhibits the nitrous oxide 

reductase within denitrifying organisms which leads to the emissions of nitrous oxide (Fajardo et 

al., 2014; Manconi et al., 2006; Pan et al., 2013; Senga et al., 2006; Sorensen et al., 1980). This 

has implications for the overall environmental impacts of treatment because nitrous oxide is a 

powerful greenhouse gas. In contrast, hydrogen sulfide can have positive effects on denitrification 

as it can serve as an electron donor that supports nitrogen removal. This can reduce resource 

requirements for treatment because external electron donors such as methanol are often used to 

meet stringent effluent nitrogen regulations, which increases the life cycle costs associated with 

wastewater treatment (Foley et al., 2010). A better understanding of how sulfur impacts nitrogen 

cycling in existing and emerging wastewater treatment systems can inform operational strategies 

to reduce the resource demands required for treatment.  
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1.1 Overview of Dissertation 

The objective of this dissertation is to understand how sulfur affects nitrogen cycling during 

wastewater treatment. Chapter 2 provides background on the sources and speciation of sulfur in 

wastewater treatment plants and the known effects sulfur has on nitrogen transformations that are 

relevant to wastewater treatment.  An advantage of hydrogen sulfide is that it may differentially 

inhibit AOB and NOB. In Chapter 3, batch experiments were used to investigate nitrification 

inhibition using biomass from two different full-scale systems with distinct nitrifying 

communities. By linking microbial community characteristics to process rates, this research 

showed that different taxa of NOB have distinct propensities for sulfide inhibition. The results 

highlight that links between treatment process data and microbial community characteristics are 

needed to generalize results and improve process models.   

To explore the effect of sulfur when multiple redox environments are available, a membrane 

aerated biofilm reactor (MABR) is studied in Chapters 4 and 5. In this reactor configuration 

membranes are used to aerate a biofilm that provides oxic and anoxic zones, which allows for 

studying interactions and cross-feeding relationships between aerobic and anaerobic microbial 

populations. Furthermore, a MABR biofilm is counter-diffusional, meaning the electron donor and 

electron acceptor diffuse into the biofilm in opposite directions. Accordingly, sulfide is amended 

in the anoxic bulk liquid, which curtails aerobic oxidation and allows for sulfide oxidation using 

nitrite or nitrate as an electron acceptor. Additionally, a counter-diffusional biofilm supports 

distinct metabolic interactions compared with co-diffusional biofilms and allows for independent 

control of electron donor and acceptor. Chapter 4 presents how sulfide impacted the functional 

potential within the microbial community using both whole community shotgun DNA sequencing 

and incubation experiments with heavy nitrogen (15N). Consistent with Chapter 3, NOB were 

inhibited during short-term incubation experiments and were more easily inhibited by sulfide than 

ammonia oxidizing bacteria (AOB). However, inhibition of NOB was not detected during the long-

term stepwise increases of influent sulfide; the evidence suggests this is because nitrite was rapidly 

consumed, in part by dissimilatory nitrite reduction to ammonia (DNRA). In addition, Chapter 4 

showed that the MABR hosted a unique species of denitrifying anaerobic methane oxidizing 

bacteria, which may have been enriched by a combination of nitrite accumulation and a shift in 

redox. 
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The knowledge of the functional potential that was developed in Chapter 4 is then applied in 

Chapter 5, which explores the impact of long-term stepwise increases in sulfide on nitrogen 

cycling. The results from Chapter 5 show that in the lab-scale MABR, sulfide induced higher 

effluent ammonia concentrations. Since Chapter 4 showed that the potential rate of reduction of 

nitrite to ammonia exceeded potential ammonia oxidation rates, Chapter 5 presents a stochiometric 

analysis showing that, in combination with inhibition of nitrification, DNRA likely contributed to 

the higher effluent ammonia concentrations. Lastly, biofilm modeling was used to evaluate the 

conditions that support sulfide-based denitrification over nitrite reduction to ammonia. The 

simulated increases in effluent ammonium was only up to 1%, indicating that sulfide may not have 

been the electron donor for DNRA.  This analysis is valuable to understanding how sulfur can be 

used to support efficient nitrogen removal in the MABR, an emerging and rapidly developing 

technology with reduced energy demands for aeration. In Chapter 6, the impact of these findings 

and areas of future research are presented.  
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CHAPTER 2.  

BACKGROUND 

2.1 Introduction 

Our ability to predict the relationship between the sulfur and nitrogen cycles in a wastewater 

treatment plant is limited because sulfur is not regularly monitored in wastewater treatment plants. 

Existing research and knowledge suggests that sulfur can be present in different forms in 

wastewater treatment plants and can affect nitrogen removal. For example, when sulfur is present 

as hydrogen sulfide it can inhibit nitrifying (Bejarano Ortiz et al., 2013; Erguder et al., 2008; 

Vojtech Kouba et al., 2017) and denitrifying (Sorensen et al., 1980) bacteria, and can serve as an 

electron donor for denitrification. Unraveling the ways that sulfur can benefit wastewater treatment 

is complex because of the many competing microbial populations and interactions involved in both 

sulfur and nitrogen cycling. While the potential interactions are complex, investigating these 

interactions will help us understand how to harness sulfur to improve treatment.  

2.2 Sulfur in Domestic Wastewater Treatment Plants 

The speciation of sulfur depends on the redox environment and the activity of microorganisms. 

Sulfur can be in soluble, precipitated, and intracellular forms and is present as sulfide, sulfite, 

thiosulfate, elemental sulfur, and sulfate (in order of increasing oxidation state). Elemental sulfur 

is solid and is often an intermediary of other sulfur oxidation processes (B. S. Moraes et al., 2012; 

Sahinkaya et al., 2011). Sulfite and thiosulfate on the other hand are rarely detected in conventional 

treatment processes and have instead been proposed as external electron donors for denitrification 

(Chung et al., 2014; Sabba et al., 2016). Sulfur can also precipitate with other compounds; for 

instance, iron-sulfur precipitates are common in wastewater treatment processes (Nielsen et al., 

2005). Intracellularly, sulfur can be stored as sulfur globules and be used by microorganisms 

experiencing starvation conditions (Dahl and Prange, 2006). Although sulfur can take various 

forms during wastewater treatment, sulfur mass balances across treatment plants and information 

on sulfur speciation are scarce in the peer-reviewed literature. Nevertheless, we can develop 
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hypotheses for the locations of sulfur-rich streams within a treatment plant by drawing upon 

existing literature and our knowledge of biological and abiotic sulfur reactions.  

The concentrations and forms of sulfur in wastewater treatment plants vary and are shown in 

Figure 2-1. The most dominant forms of sulfur in conventional treatment processes are hydrogen 

sulfide and sulfate, though some sulfur intermediates have been reported (Fisher et al., 2017). 

Under anaerobic conditions in the presence of an electron donor, sulfate reducing bacteria convert 

sulfate to hydrogen sulfide. Since both biotic and abiotic processes can rapidly oxidize sulfide in 

the presence of air, sulfide is typically not measurable in aerobic regions of a biological treatment 

process. The form of hydrogen sulfide present at treatment plants is dictated by pH since sulfide 

is a weak acid (pKa=7.0); therefore, while the ionized (HS-) form is dominant, both ionized and 

unionized (H2S) forms are present. Equilibrium reactions with the gas phase are also important to 

consider because H2S is only slightly soluble in water (Henry’s constant of 1x10-3 mol H2S/m3-Pa 

at 25°C (Sander, 2015)). Since the form of sulfur depends on the redox environment, different 

regions of the wastewater treatment plant will have different forms of sulfur present.  
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A) 

 

C) 

          

B) 

                    

D) 

 
                           

Figure 2-1. Potential locations and concentrations of sulfur in A) conventional activated sludge; B) fermentation reactor (VFA: volatile fatty acid); C) ,ainstream 

anaerobic treatment; D) seawater for toilet flushing with a SANI Process. Stars indicate sulfur sources: 1) baseline is 10-20 mg SO4
2-/L as S (Tchobanoglous et 

al., 2003) but can be as high as 200 mg SO4
2-/L as S (Lens et al., 1998); 2) 10-20 mg SO4

2-/L as S (Düppenbecker and Cornel, 2016);  3) 0.1-500 ppmv H2S 

(Noyola et al., 2006); 4) estimates of 10-20 mg sulfide/L as S and 4-5 mg SO4
2-/L as S, based on thickened WAS and primary sludge (Fisher et al., 2017); 5) 1-95 

mg sulfide/L as S (Delgado Vela et al., 2015); 6) 200 mg SO4
2-/L as S (Wang et al., 2009); 7) 100 mg sulfide/L as S (Lu et al., 2012). 
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The concentration of sulfur in a wastewater treatment plant is variable and depends on the influent 

characteristics. Processes that influence influent sulfur include industrial inputs, seawater 

intrusion, and drinking water treatment process (e.g. if coagulation uses aluminum or ferric 

sulfate). In conventional treatment processes (Figure 2-1A), baseline influent concentrations of 

sulfate are between 10-20 mg/L as S (Tchobanoglous et al., 2003), but concentrations as high as 

200 mg/L as S have been reported (Lens et al., 1998). Depending on the characteristics of the 

collection system, some portion of the sulfate present in the sewer system can be converted to 

hydrogen sulfide by sulfate reducing bacteria. This process can lead to corrosion in sewer pipes or 

in the headworks of the treatment plant. In addition, sulfate reducing bacteria in anaerobic 

digestion processes are considered nuisance organisms because they compete with methanogenic 

bacteria for carbon, and at pH’s relevant for anaerobic processes (6.8-7.4), H2S will diminish the 

quality of the biogas.  

With the advent of new types of treatment processes, there is the potential for the adoption of 

technologies that will increase the concentrations of sulfur in a wastewater treatment plant. For 

example, when anaerobic digestion is used for wastewater treatment, researchers have proposed 

using the H2S present in the biogas as an electron donor for denitrification by recycling it into the 

anoxic regions of treatment plants (Bayrakdar et al., 2015). Besides anaerobic digestion as a 

sidestream treatment technology, anaerobic digestion in the mainstream, which generates sulfide-

rich streams, is increasingly being considered (Figure 2-1C) (McCarty et al., 2011). In addition, 

sidestream fermentation processes used to generate carbon for nitrogen removal (Canziani et al., 

1995) represent an additional potential source of hydrogen sulfide (Figure 2-1B), though typical 

concentrations of sulfur in this stream could not be found in the peer-reviewed literature. Lastly, 

the use of seawater for toilet flushing has been proposed to reduce freshwater demands in coastal 

environments (Chen et al., 2012). This will increase sulfur concentrations in the wastewater 

treatment plant significantly (Figure 2-1D) and it is particularly attractive in coastal, urbanized, 

and water stressed regions of the world (X. Liu et al., 2016). The use of seawater for toilet flushing 

in Hong Kong has spurred the development of a new process that harnesses sulfur for wastewater 

treatment, called the SANI® process (Wang et al., 2009). Sea level rise due to global climate 

change will also continue to be an important consideration and increases the potential for seawater 
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infiltration into the wastewater collection system. Given these emerging sources of sulfur in 

wastewater treatment systems, additional research on sulfur cycling during wastewater treatment 

is needed. 

2.2.1 Abiotic and biotic sulfur reactions 

Sulfide can be oxidized through both biotic and abiotic processes. In clean water without any 

impurities, abiotic sulfide oxidation is slow and depends on pH and temperature (Chen and Morris, 

1972; Luther et al., 2011). However, in the presence of metals or organic matter abiotic oxidation 

of hydrogen sulfide is rapidly accelerated (Nielsen et al., 2003; Vazquez et al., 1989). This makes 

it difficult to quantify the abiotic and biotic contribution of sulfide oxidation in wastewater 

systems. While studies of pure cultures have suggested that biotic sulfur oxidation is significantly 

faster than abiotic sulfide oxidation (Luther et al., 2011), attempts to quantify the relative 

importance of abiotic and biotic factors in real wastewater environments have found both factors 

are important (Nielsen et al., 2006; Wilmot et al., 1988). 

The process of reducing sulfate to sulfide is catalyzed by sulfate reducing bacteria, a diverse and 

metabolically flexible bacterial group (Hao et al., 2014; Muyzer and Stams, 2008). For instance, 

anaerobic methane oxidizers can use sulfate as an electron acceptor and produce disulfide (Milucka 

et al., 2012). In the context of wastewater treatment, the activity of sulfate reducing bacteria has 

largely been studied in the anaerobic digestion process (e.g. (Harada, 1994; Oude Elferink et al., 

1994)) and wastewater collection systems (e.g. (Zhang et al., 2009, 2008)). Sulfate reducers can 

also be active in the mainstream of domestic wastewater treatment systems (Lens et al., 1995), 

especially biofilm systems that support multiple redox environments (Santegoeds et al., 1998). 

One hypothesis is that sulfate reducers in these multi-redox environments survive by having a 

cross-feeding relationship with sulfide oxidizing bacteria; when carbon and dissolved oxygen are 

available, sulfur can cycle between sulfate and hydrogen sulfide and support these metabolisms 

(Lens et al., 1995). The role that sulfate reducers play in carbon removal during conventional 

wastewater treatment is not well understood but may be significant even in the presence of 

relatively low amounts of sulfate due to potential cross-feeding with sulfide oxidizing bacteria.  
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2.3 Nitrogen in Domestic Wastewater Treatment Plants 

Compared with sulfur, nitrogen cycling in wastewater is better understood because the release of 

excessive nitrogen into water bodies can cause oxygen depletion and algal blooms that can be 

harmful to aquatic life and human health. In U.S. freshwaters, excessive nutrients are estimated to 

result in economic loses of 2.2 billion dollars annually (Dodds et al., 2008). In recent years, toxins 

released by these algal blooms have impaired freshwater drinking water sources and caused 

temporary shut downs of drinking water treatment plants (Tanber, 2014). Increasingly, the 

combined effect of both nitrogen and phosphorus is important for toxin production (Paerl et al., 

2016), and in some instances, the form of nitrogen is important for toxin production (Chaffin et 

al., 2018). In considering these detrimental human health and environmental effects, wastewater 

treatment plants are central to nitrogen management strategies because they represent point-

sources of nitrogen to the environment.  

Nitrogen comes into the wastewater treatment plant as ammonium and organic nitrogen. Organic 

nitrogen is degraded into ammonium via ammonification, but a portion is soluble and inert 

(approximately 1.5 mg/L as N (Grady et al., 2011)) and contributes to effluent total nitrogen 

concentrations. The typical influent ammonium concentrations are between 20 and 75 mg/L as N 

(Tchobanoglous et al., 2003). Nitrogen concentrations are less variable than sulfur concentrations 

and depend on the strength of the influent wastewater. Ammonium can be oxidized biologically to 

nitrite or nitrate. If nitrogen removal is required, nitrite or nitrate are then reduced to dinitrogen 

gas. The form of nitrogen present in wastewater treatment plant schemes is more carefully 

monitored since it is an important pollutant; however, improving nitrogen removal during 

wastewater treatment continues to be an active area of research.  

Conventionally, removing nitrogen from wastewater is an energy intensive and costly process. 

With our growing understanding of the negative impacts of nutrients onto water bodies and a 

general trend towards urbanizing populations, we can expect effluent nitrogen in wastewater 

treatment plants to be more strictly regulated in the future. Therefore, we need to better understand 

how to manage nitrogen in wastewater without greatly increasing energy demands or the 

environmental footprint of the process. A better understanding of how to control the microbial 
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processes that are underpinning the removal of nitrogen from wastewater may lead to 

improvements in the sustainability of nitrogen removal.  

2.3.1 Microbiological processes for nitrogen removal 

Environmental engineers seek ways to control microbial communities to improve the sustainability 

of wastewater treatment; however, this is difficult because our understanding of which microbes 

are involved in nitrogen cycling and how they are functioning is rapidly changing (reviewed by 

Kuypers et al. (2018)). For example, there is interest in controlling the first step of nitrogen 

removal, nitrification, in which ammonia is oxidized to nitrite or nitrate. Ammonia oxidizing 

bacteria and archaea oxidize ammonia to nitrite, and nitrite oxidizing bacteria oxidize nitrite to 

nitrate. A nitritation process, in which the oxidation of nitrite to nitrate is prevented, reduces the 

need for the energy-intensive aeration process (Rosso et al., 2008). Furthermore, nitritation is 

especially advantageous when the wastewater is electron donor limited because compared with 

nitrate reduction, reducing nitrite to nitrogen gas requires lower quantities of electron donor, so 

inducing a nitritation process can reduce the need for external electron donor (Daigger, 2014). 

However, maintaining a nitritation process in low strength wastewater is challenging and although 

various methods have been proposed (Blackburne et al., 2008; Ganigué et al., 2007; Gilbert et al., 

2014; Regmi et al., 2014; Shannon et al., 2015; Vadivelu et al., 2006; Van Kempen et al., 2001; 

Villaverde et al., 1997), there is still not a consensus on the most effective strategy.  

Maintaining a nitritation process was further complicated in 2015 when it was discovered that one 

organism can oxidize completely ammonia to nitrate, termed comammox bacteria (Daims et al., 

2015; van Kessel et al., 2015). Annavajhala et al. (2018) recently showed that  comammox bacteria 

are prevalent in wastewater treatment environments, but our understanding of whether comammox 

bacteria are detrimental to nitritation processes is unknown. There is some evidence that 

comammox can reduce nitrate to nitrite, therefore they may be advantageous to have in systems 

that depend on denitrification via nitrite (Daims et al., 2016). The conditions that select for 

comammox-mediated nitritation, nitrate reduction, or full nitrification are unknown, therefore we 

do not yet know how to control comammox bacteria to perform processes that improve treatment.  
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Nitrite or nitrate can be reduced to dinitrogen gas, a process termed denitrification. Conventionally 

the organic carbon that is present in wastewater is used as an electron donor for denitrification but 

often when stringent nitrogen requirements must be met an external electron donor such as 

methanol is used, which represents a high life cycle cost (Foley et al., 2010). However, there are a 

variety of additional potential electron donors that are present in wastewater and can be used for 

denitrification (Delgado Vela et al., 2015). For example, if nitrite is present, ammonia can be used 

as an electron donor by anammox bacteria (Mulder et al., 1995). Both nitrite and nitrate can be 

used as electron acceptors when methane is used as an electron donor (Ettwig et al., 2010; Haroon 

et al., 2013; Luesken et al., 2011). Lastly, reduced sulfur compounds can be used as electron donors 

for denitrification (reviewed by (Shao et al., 2010)). Understanding how to harness these 

alternative electron donors may reduce the need for external carbon addition and improve the 

sustainability of nitrogen removal.  

In addition to denitrification processes, nitrite and nitrate can be reduced to ammonia, a process 

termed dissimilatory nitrate or nitrite reduction to ammonia (DNRA). A variety of electron donors 

can be used but typically simple organics are used as electron donors. This process is widespread 

among bacteria (Rütting et al., 2011) and has been identified in sulfate reducers (Dalsgaard and 

Bah, 1994; Keith and Herbert, 1983) and anammox bacteria (Kartal et al., 2007; Winkler et al., 

2012). It is thought that DNRA occurs when the concentration of electron donor is high relative to 

nitrate and denitrification will occur when nitrate or nitrite concentrations are high relative to 

electron donor. However, DNRA and denitrification can co-occur (van den Berg et al., 2016) and 

under these conditions it is difficult to unravel which community members are engaging in DNRA 

or denitrification. Given the complexity of nitrogen cycling bacteria, controlling the communities 

that form in wastewater treatment is challenging to achieve.  

2.3.2 Nitrous oxide emissions during wastewater treatment 

An important consideration in evaluating the nitrogen removal processes is the emission of nitrous 

oxide (N2O), a gas with a global warming potential approximately 300 times more potent than 

carbon dioxide (Kampschreur et al., 2009; U.S. Environmental Protection Agency, 2010); nitrous 

oxide emissions are heavily influenced by the microbial community structure and function 

(Bakken and Frostegård, 2017). N2O is emitted during heterotrophic denitrification (Lu and 
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Chandran, 2010; Rassamee et al., 2011; Tallec et al., 2008) and autotrophic nitrification processes 

(Tallec et al., 2006; Zheng et al., 1994). Ammonia oxidizing bacteria (AOB) typically emit N2O 

in a process termed nitrifier denitrification in which AOB reduce nitrite to nitric oxide and then to 

N2O (Kim et al., 2010; Yu et al., 2010). In addition, hydroxylamine, an intermediate of ammonia 

oxidation by nitrifying organisms, can be chemically reduced to nitric oxide, which is then 

biologically reduced to N2O (Wunderlin et al., 2012). In a wastewater treatment communities, it 

appears that both heterotrophic and autotrophic processes contribute to nitrous oxide emissions 

(Ishii et al., 2014; Ma et al., 2017; Mampaey et al., 2015). 

N2O emissions from wastewater treatment processes are also influenced by the reactor 

configuration and operation, but there is uncertainty on how to operate reactors to reduce the 

emission of N2O. For instance, rapid cycling between oxic and anoxic conditions (i.e. intermittent 

aeration) has been shown to both increase (Rassamee et al., 2011) and decrease (Domingo-Félez 

et al., 2014; Su et al., 2017) N2O emissions. In addition, dissolved oxygen levels also affect N2O 

emissions (Rassamee et al., 2011; Tallec et al., 2008). In a biofilm reactor, there are distinct sources 

and sinks of N2O compared to suspended cultures. N2O emissions from biofilms depend on biofilm 

thickness, diffusional characteristics, and substrate concentrations (Kinh et al., 2017b, 2017a; 

Sabba et al., 2017).   Given the uncertainty surrounding N2O emissions from wastewater we are 

still far from understanding how to design and operate wastewater treatment plants to reduce 

emissions. In emerging treatment processes we need an improved understanding of biological 

sources and sinks.  

2.4 Links Between Sulfur and Nitrogen Cycles During Wastewater Treatment 

As emerging technologies such as mainstream anaerobic treatment or seawater for toilet flushing 

are adopted, there is a growing need to understand how the sulfur and nitrogen cycles are linked 

in wastewater treatment plants. In marine oxygen minimum zones, a cryptic sulfur cycle was 

described in which tight coupling of sulfate reducers and sulfide-based denitrifiers conduct 

nitrogen removal without measurable changes in sulfate and sulfide concentrations (Canfield et 

al., 2010). Wastewater treatment plants also support analogous microaerobic environments in 

which a cryptic sulfur cycle is possible.   
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Despite the promise of harnessing sulfur for nitrogen removal, sulfide inhibition of important 

microorganisms represents an additional challenge.  Sulfide can inhibit nitrifying bacteria (Joye 

and Hollibaugh, 1995). Interestingly, there is evidence that sulfide inhibits ammonia oxidizing and 

nitrite oxidizing bacteria to different extents and may help induce nitritation processes (Erguder et 

al., 2008; V. Kouba et al., 2017). Although sulfide is inhibitory for anammox bacteria (Jin et al., 

2013), studies have found active anammox bacteria in the presence of sulfide (Arshad et al., 2017; 

Guo et al., 2016; Jones et al., 2017; Rios-Del Toro and Cervantes, 2016; Russ et al., 2014). The 

growth of anammox in the presence of sulfide may be because sulfide-based denitrifiers reduce 

the concentrations of sulfide to below inhibitory levels. An additional advantage is that sulfide-

based denitrifiers will also reduce the nitrate that is produced anabolically by anammox. In addition 

to sulfide inhibition of anammox, some studies have found sulfide inhibits N2O reduction to N2 

(Fajardo et al., 2014; Manconi et al., 2006; Pan et al., 2013; Senga et al., 2006; Sorensen et al., 

1980), which leads to higher nitrous oxide emissions. However this isn’t a consistent finding (Yang 

et al., 2016b) and modeling results show that this depends on reactor operation (Y. Liu et al., 2016). 

In summary, sulfide has complex effects on microbial communities due to inhibition that could be 

both detrimental, such as higher N2O emissions, or beneficial, such as NOB inhibition to support 

a nitritation process.  

Sulfide is not only an electron donor for denitrification, sulfide can also induce nitrate reduction 

to ammonia (DNRA)(Brunet and Garcia-Gil, 1996).  At higher sulfide/N ratios, nitrate gets 

reduced to ammonia, while at lower sulfide/N ratios denitrification occurs (Dolejs et al., 2014; Yin 

et al., 2015).  DNRA has been shown to be beneficial to anammox in wetland communities(Wang 

et al., 2018), and DNRA induced by sulfide has also been shown (Jones et al., 2017). In wastewater 

environments, we do not know if sulfide-induced DNRA that would improve the anammox process 

would occur.  

There has been growing interest in using sulfur as an alternative electron donor for denitrification. 

Of note is the SANI® process that harnesses the high sulfate concentrations of wastewater in Hong 

Kong due to seawater toilet flushing (Wang et al., 2009). In this system the activity of sulfate 

reducers and sulfide based denitrifiers are separated into two unit processes: an anaerobic zone 

where sulfate reduction occurs, and an anoxic process that denitrifies the recycled nitrate from the 
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aerobic zone. A pilot-scale demonstration exhibited low sludge production using this process (Wu 

et al., 2016).  Other applications of sulfide-based denitrification include anoxic granular processes 

(Yang et al., 2016a) that exhibited low nitrous oxide emissions (Yang et al., 2016b) and 

simultaneous nitrification/denitrification reactors (B.S. Moraes et al., 2012). Elemental sulfur has 

also been used as a consumable biofilm carrier for denitrification reactors (Wang et al., 2016). The 

interest in sulfur-based denitrification is growing and given the complex metabolisms that are 

associated with both sulfur and nitrogen cycling, there is a need to understand the reactor 

configurations where the use of sulfur is realistic.   

2.5 The Membrane Aerated Biofilm Reactor  

One reactor configuration that 

could be advantageous for 

harnessing the sulfur and nitrogen 

cycles is a membrane aerated 

biofilm reactor (MABR). In a 

MABR, membranes are used to 

aerate a biofilm and support 

multiple redox environments 

thereby providing an environment 

for the growth of both aerobic and 

anaerobic metabolisms (Downing 

and Nerenberg, 2008; Gilmore et al., 2013; Martin and Nerenberg, 2012).  Membrane aeration 

prevents bubbles from forming and the stripping of hydrogen sulfide. Furthermore, sulfide is added 

into the anoxic bulk liquid so rapid aerobic oxidation is prevented. MABRs also uniquely maintain 

a counter-diffusional biofilm in which the electron donor and electron acceptor diffuse into the 

biofilm in opposite directions and can be independently controlled (Figure 2-2). This counter-

diffusional biofilm allows for sulfide to be maximum in the anoxic bulk liquid, preserving its 

availability as a potential electron donor for denitrification.  Conversely, the aerobic nitrifying 

bacteria are in the innermost regions of the biofilm and can be protected from sulfide inhibition. 

Figure 2-2. Conceptual schematic of a counter-diffusional biofilm. 

LDL= Liquid diffusion layer 
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These unique characteristics of an MABR biofilm make it suitable for evaluating interactions of 

sulfur and nitrogen cycling microorganisms.  

Interest in the MABR is growing (Heffernan et al., 2017; Houweling et al., 2017) because it 

achieves energy efficient aeration. MABRs can be operated with the membranes either closed or 

opened at one end. Typically open-ended configurations are used and one study showed oxygen 

transfer efficiencies of 20-35% (Gilmore et al., 2009) compared with 5-15% for the fine bubble 

diffusers typically used in aeration basins (Tchobanoglous et al., 2003). When operated with a 

closed end, oxygen transfer efficiencies can be close to 100%, however gas back diffusion is 

possible. The adoption of MABRs is due to its potential aeration energy efficiency, however, 

operational strategies to select for desirable populations such as nitritation processes in an MABR 

can further improve the process and have not been developed.  

Most previous studies of MABRs have been lab-scale demonstrations of high strength wastewater 

(Gilmore et al., 2013; Pellicer-Nàcher et al., 2010; Terada et al., 2003) and few have  evaluated 

nitrogen removal of low strength wastewater (Downing and Nerenberg, 2008). An additional 

advantage of MABRs is that they have low N2O emissions relative to co-diffusional biofilms (Kinh 

et al., 2017b, 2017a). Researchers have shown some degree of nitritation using both sequential 

(i.e. periods of no air being fed through lumen of membrane) (Pellicer-Nàcher et al., 2014, 2010) 

or continuous (Gilmore et al., 2013; Terada et al., 2003) aeration. Although nitrogen removal, 

sulfur oxidation (Sahinkaya et al., 2011), and methane oxidation (Casey et al., 2004) have been 

studied separately in an MABR, no laboratory based studies have looked at both of these aspects 

at once (Chen et al., 2016).  Overall, the unique configuration of the MABR provides a platform 

for discovery, especially when considering the complex metabolisms involved in microbial cycling 

of nitrogen and sulfur.   
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CHAPTER 3.  

SULFIDE INHIBITION OF NITRITE OXIDATION IN ACTIVATED SLUDGE DEPENDS ON 

MICROBIAL COMMUNITY COMPOSITION  

Reprinted with permission from: Jeseth Delgado Vela, Gregory J. Dick, Nancy G. Love, Sulfide 

inhibition of nitrite oxidation in activated sludge depends on microbial community composition, 

Water Research, 2018, https://doi.org/10.1016/j.watres.2018.03.047. Copyright (2018) Elsevier 

Ltd. 

3.1 Abstract 

Increasingly, technologies that use sulfide as an electron donor are being considered for nitrogen 

removal; however, our understanding of how sulfide affects microbial communities in nitrifying 

treatment processes is limited. In this study, we used batch experiments to quantify sulfide 

inhibition of both ammonium oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) using 

activated sludge from two full-scale treatment plants with distinct treatment processes. The batch 

experiments showed that NOB were more vulnerable to sulfide inhibition than AOB, and that 

inhibition constants (KI) for NOB were distinct between the two treatment plants, which also had 

distinct nitrite oxidizing microbial communities. A Nitrospira-rich, less diverse NOB community 

was inhibited more by sulfide than a more diverse community rich in Nitrotoga and Nitrobacter. 

Therefore, sulfide-induced nitritation may be more successful in less diverse, Nitrospira-rich 

communities. Additionally, sulfide significantly influenced the activity of non-nitrifying microbial 

community members, as measured by 16S rRNA cDNA sequencing. Overall, these results indicate 

that sulfide has a strong impact on both nitrification and the activity of the underlying microbial 

communities, and that the response is community-specific.   

3.2 Introduction 

As our understanding of the environmental and human health impacts of eutrophication grows, 

increasingly stringent effluent nitrogen regulations are being implemented worldwide. 
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Conventional biological nitrogen removal consists of first converting the ammonium in wastewater 

to nitrate using nitrifying microorganisms, then converting the nitrate to nitrogen gas using 

denitrifying microorganisms. Amidst a move within the water industry toward resource efficiency, 

there is a growing interest in technologies that promote and maintain nitritation, the oxidation of 

ammonium to nitrite by ammonia oxidizing bacteria (AOB) while preventing further oxidation of 

nitrite to nitrate by nitrite oxidizing bacteria (NOB).  Nitritation reduces aeration costs by 25% 

based on stoichiometry, offers an alternative to nitrate as an electron acceptor for denitrification, 

which reduces electron donor requirements, and can significantly reduce the overall energy cost 

of operating a treatment plant (Rosso et al., 2008). However, sustaining nitritation processes in 

low-strength wastewater systems is challenging, and while various methods have been proposed 

(Blackburne et al., 2008; Gilbert et al., 2014; Regmi et al., 2014; Shannon et al., 2015; Vadivelu 

et al., 2006; Villaverde et al., 1997), to date there is no consensus on the most effective strategy.  

In addition to nitritation processes, there is growing interest in harnessing hydrogen sulfide as an 

alternative electron donor for nitrogen removal. Although toxic and corrosive, hydrogen sulfide 

can be used as an electron donor for denitrification in natural environments (e.g. Canfield et al., 

2010) and during wastewater treatment (Lu et al., 2012; Sabba et al., 2016). Hydrogen sulfide is 

frequently produced biologically from sulfate in sewers (e.g., Zhang et al., 2008) and by anaerobic 

processes within treatment plants (e.g. Isa et al., 1986). The amount of hydrogen sulfide produced 

is a function of the sulfate content in wastewater, which is variable and depends on factors such as 

industrial wastewater discharges, drinking water source water, and the coagulant used for drinking 

water treatment. In coastal regions, sulfate concentrations in wastewater increase due to seawater 

infiltration into both groundwater reservoirs used as drinking water sources and wastewater 

collection systems, a phenomenon that will be magnified by global climate change, sea level rise, 

and projected population growth along coasts. These increases all lead to increased sulfide loads 

to wastewater treatment plants. The Sulfate Reduction, Autotrophic Denitrification and 

Nitrification Integrated (SANI®) process incorporates sulfur-driven denitrification to achieve 

nitrogen removal and is now deployed at the demonstration scale (Wang et al., 2009; Wu et al., 

2016). The SANI® process takes advantage of increased wastewater sulfide concentrations that are 

present due to the practice of using seawater for toilet flushing. It has lower space requirements 



 
 

47 

 

 

(Wu et al., 2016), lower sludge production (Wu et al., 2016), and reduced nitrous oxide emissions 

(Yang et al., 2016) compared to conventional nitrification and heterotrophic denitrification. 

However, despite the progress with sulfur-driven denitrification, more research is needed to 

understand how sulfide impacts nitrification and, more specifically, nitritation.   

Sulfide is a known inhibitor of nitrification and has specifically been shown to differentially inhibit 

ammonium oxidizing and nitrite oxidizing bacteria (Bejarano-Ortiz et al., 2015; Erguder et al., 

2008; Kouba et al., 2017). However, estimates of inhibition constants vary significantly. In this 

study we associate the variability in experimentally determined sulfide inhibition with microbial 

community dynamics. Specifically, we evaluated the impact of sulfide on the kinetics of nitrite 

oxidation and ammonium oxidation independently using biomass from two full-scale treatment 

plants that use different treatment processes, and compared our kinetic observations with the 

differences we found in the underlying microbial community ecology.  Our results suggest that 

sulfide may be a useful selective inhibitor of nitrite oxidizing bacteria (NOB) for treatment systems 

but this depends on the composition and diversity of the NOB communities.  

3.3 Materials and Methods 

3.3.1 Batch experimental design 

Eight-hour batch experiments were performed on freshly collected activated sludge April-June 

2016 from two local wastewater treatment plants (WWTPs), an extended aeration process (Novi, 

Michigan, USA) and an A2O (Anaerobic-Anoxic-Aerobic, Ann Arbor, Michigan, USA) process, 

with process and performance characteristics shown in Table 3-1.  Both treatment plants have 

experienced sulfide-induced corrosion in either the collection system, lift station or grit chamber. 

Activated sludge was collected from the aerobic tank in the same location at approximately the 

same time of day (± 1 hour) for each experiment.  Batch experiments were conducted at five target 

sulfide concentrations for each WWTP; 2, 4, 8, 15, and 35 mg/L as S for the A2O process and 2, 

5, 10, 15, and 35 mg/L as S for the extended aeration process. These concentrations are consistent 

with baseline sulfur levels typically found in domestic wastewater (6-17 mg/L as S (Burton et al., 

2014)).  Each batch experiment had ten flasks duplicate sulfide-free controls with ammonium, 

duplicate sulfide-free controls with nitrite, triplicate sulfide and ammonium-amended cultures, and 
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triplicate sulfide and nitrite-amended cultures. Flasks were covered with aluminium foil and 

maintained in the dark in a shaking water bath set to 25°C at a shaking speed which had been 

determined to maintain dissolved oxygen concentrations above 2 mg/L.  

Table 3-1. Characteristics of wastewater treatment plants from which biomass was collected. *for aeration zone 

(oxic) phase of treatment. † average for April 2017 

Process type 

Anaerobic-

Anoxic-

Oxic (A2O) 

Extended 

Aeration 

Wastewater type 
Mostly 

municipal 

Mostly 

municipal 

Solids Residence Time 

(days) 

6.5 16 

Dissolved Oxygen 

Concentration (mg/L) 

2-4* 4.75 

Total Suspended Solids 

(mg/L) 

2,000 2,500-

3,600 

Average daily flow (MGD) 18 3.5 

Nitrification (% ammonia 

oxidized)† 

100 

 

100 

BOD5 removal (%)† 98 99 

 

To initiate batch experiments, 1.2 L of activated sludge was washed using three centrifugation 

(7500 x g) and resuspension steps in a 0.12 M phosphate buffer (3.2 g/L KH2PO4, 13.7 g/L 

Na2HPO4, pH=7.5).  Batch media was prepared ahead of time and left in an anaerobic chamber 

overnight. It was prepared using 1000x dilutions of four separate stock solutions in the following 

order: acidic trace metal, basic trace metal, chelating, and divalent cation. The acidic trace metal 

stock solution consisted of (per liter): CoCl2·6H2O, 280 mg; ZnSO4·7H2O, 340 mg; H3BO3, 37 

mg; MnCl2·4H2O, 110 mg; AlCl3·6H2O, 28 mg; NiCl2·6H2O, 140 mg; CuCl2·2H2O, 100 mg. The 

basic trace metal stock solution consisted of (per liter): (NH4)2MoO4·4H2O, 160 mg; Na2SeO4, 22 

mg; Na2WO4·2H2O, 40 mg. The chelating stock solution consisted of 10 g/L NaEDTA, and the 
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divalent cation stock solution consisted of (per liter): CaCl2·2H2O, 5.0 g; MgCl2·6H2O, 33 g.  

Sufficient ammonium bicarbonate was added to the ammonium amended batches to achieve an 

initial concentration of 50 mg N/L, and sodium nitrite was added to the nitrite amended batches to 

achieve an initial concentration of 20 mg N/L. Nitrite-N concentrations and ammonium-N 

concentrations were chosen to be representative of mainstream wastewater treatment plants using 

nitritation processes. At the pH measured across all samples and experiments (average 7.71 ± 

0.10), free nitrous acid concentrations were calculated to be 5 x 10-7 mg HNO2-N/L at most, well 

below inhibitory free nitrous acid concentrations for nitrite oxidizers (0.023 mg HNO2-N/L) 

(Vadivelu et al., 2006).  Similarly, the maximum free ammonia concentration was calculated to be 

1.3 mg NH3-N/L, which is below the inhibitory free ammonia concentration for ammonia oxidizers 

(10-100 mg NH3-N/L) (Anthonisen et al., 1976). Sulfide was added to each flask individually 

using a 5 g S/L stock. The sulfide stock was made in the glove box using a sodium sulfide 

nonahydrate salt. Following sulfide addition, flasks were quickly moved from the anaerobic 

chamber to a fume hood. To reduce the available reaction time between sulfide and iron which can 

cause sulfide precipitation, iron was added separately from the other trace metals. Just prior (<2 

minutes) to initiating batch experiments, iron (III) (stock concentration 6.5 g/L FeCl3·6H2O) was 

added (100 µL) to each flask and followed immediately by sampling to determine the initial sulfide 

concentration. We found that between adding the sulfide in the glove box and the initial sulfide 

measurement, we lost an average of 14±19% of the sulfide added (Appendix A, Tables A2 and 

A3), possibly due to abiotic losses such as precipitation (Alvarez et al., 2007) and/or stripping 

(Suleimenov and Krupp, 1994). Experiments were initiated by adding thirty mL of the washed 

biomass to each flask to make a final batch volume of 100 mL.  

3.3.2 Sample collection and analysis 

All samples were collected by first moving the flask from the water bath to the stir plate to ensure 

samples were taken from a completely mixed system. Ten milliliter samples were collected for 

nitrogen analysis at 2 min, 30 min, 2 h, 4 h and 8 h into the experiment. Samples were pelleted at 

7500 x g for 5 min at 4°C and the supernatant was filtered using a washed 0.45 µm nitrocellulose 

filter (Fisher Scientific). An aliquot of each filtered sample was acidified to a pH of 3 using 1 N 

HCl for ammonium analysis via the phenate method 4500-NH3 F (APHA et al., 2005).)  Nitrite 
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was determined using the colorimetric method 4200-NO2
- B, and nitrate and sulfate were measured 

using the ion chromatography method 4110-B (APHA et al., 2005).   

Samples for sulfide analysis were collected separate from the samples taken for nitrogen analyses 

at the following time points: immediately after iron addition, at 2 min, 30 min, 2 h, and 4 h into 

the experiment. All samples were collected, stored, and analysed according to method 4500-S2- G 

(APHA et al., 2005). Samples were collected into a syringe containing 2 mL of sulfide antioxidant 

buffer (2x, final sample dilution), immediately transferred to the anaerobic chamber, filtered using 

a washed 0.45 µm nitrocellulose filter (Fisher Scientific), and preserved in the dark until analysis 

within 24 hours. The sulfide antioxidant buffer was stored in the anaerobic chamber in an amber 

bottle and prepared as described in Standard Methods by combining 67 g of disodium EDTA, 35 

g of ascorbic acid, and 200 mL of 1 N sodium hydroxide into deoxygenated Milli-Q water to 1 L 

final volume (APHA et al., 2005).  Sulfide was analysed using a silver sulfide electrode (Thermo 

Scientific, Orion) that was calibrated with a 3% (w/v) sodium sulfide stock solution (Ricca 

Chemical Company) method 4500-S2- G (APHA et al., 2005).  

Two biomass samples (one for DNA analysis, one for cDNA analysis, 1 mL each) were collected 

for microbial community analysis from each flask between 2.5 hours and 3.75 hours into the 

experiment to represent a time point when nitrogenous substrates had not been depleted. Samples 

were collected by moving the flask to a stir plate and pipetting the samples into nuclease free 

microcentrifuge tubes.  Samples were immediately pelleted at 7500 x g for 5 minutes at 4°C, the 

supernatant was discarded, and one sample was resuspended in RNALater (Qiagen, Valencia, CA). 

All samples were stored at -80°C until nucleic acids were extracted.  

Volatile suspended solids (VSS) were analysed at the end of the experiment (Appendix A, Table 

A4) and used to normalize rates of oxidation.  Rates of nitrification (µ) were determined by taking 

the slope of the linear range of nitrate concentrations for nitrite amended cultures, or the sum of 

nitrite and nitrate concentrations for ammonium amended cultures. Data used to take rates of 

nitrification are shown in Appendix A (Figures A2 and A3). The linear range was between the 

34±18 min and 7.0±1.0 h sample points, R2=0.97±0.04.   
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3.3.3 Estimation of inhibition parameters 

We modeled inhibition of AOB and NOB using a noncompetitive inhibition model. Previous 

studies on nitrification inhibition showed that volatile sulfur compounds inhibit ammonia 

monooxygenase noncompetitively (Hyman et al., 1990) and this model was used for sulfide 

inhibition of both AOB and NOB (Kouba et al., 2017); consequently, there is prior evidence that 

this model form with sulfide inhibition is reasonable. Under the noncompetitive inhibition model, 

the rate of growth under inhibited conditions (µinh) is:  

(1) µ𝑖𝑛ℎ =
𝜇𝑚𝑎𝑥[𝑆]

(1+
[𝐼]

𝐾𝑖
)(𝐾𝑆+[𝑆])

 

Where: µmax is the uninhibited maximum specific growth rate; [S] is the concentration of electron 

donor, which in this case is ammonium or nitrite; [I] is the concentration of inhibitor, which for 

this study was the measured sulfide concentration just prior to biomass addition; Ki is the inhibition 

constant; and KS is the half saturation constant.  In the absence of an inhibitor, the rate of growth 

in the controls (µcont) simplifies to conventional Monod kinetics:  

(2) µ𝑐𝑜𝑛𝑡 =
µ𝑚𝑎𝑥[𝑆]

(𝐾𝑆+[𝑆])
 

Therefore, the rate in the sulfide amended cultures normalized to the controls reduces to:  

(3) 
µ𝑖𝑛ℎ

µ𝑐𝑜𝑛𝑡
=

1

1+
[𝐼]

𝐾𝑖

 

Sulfide is a reactive inhibitor therefore the nitrifying populations were exposed to lower 

concentrations of sulfide on average than the concentrations used in our model (Appendix A, 

Tables A2 and A3). Thus, by using measured sulfide concentration at the beginning of the 

experiment for I, our KI estimates represent conservative estimates of nitrification inhibition. 

Equation 3 was fit to our data using the nonlinear squares function in the R environment (R Core 

Team, 2016) and the line of best fit was used for the estimate.  
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3.3.4 Estimation of biological and abiotic rates of sulfide oxidation 

To estimate the relative contribution of abiotic and biotic sulfide oxidation in the batch 

experiments we applied a model developed by Nielson et al. (2006, 2004) for sewer networks. The 

model accounts for the effect of pH and temperature on chemical and biological sulfide oxidation. 

Biological oxidation was best described using a power equation. The authors developed calibration 

constants from two separate sewer systems. We applied this model along with the parameters they 

estimated for the dissolved oxygen, temperature, and pH used for our batch experiments. 

3.3.5 Nucleic acid extractions and qPCR 

DNA and RNA were extracted from biomass collected during batch experiments exposed 

to three different levels of sulfide: below the inhibition constant for NOB inhibition, between the 

NOB and AOB inhibition constants, and above the AOB inhibition constant.  Nucleic acid 

extractions were performed using three bead-beading steps followed by extraction with a Maxwell 

16 LEV automated nucleic acid extractor (Promega, Madison WI) with the DNA blood and simply 

RNA tissue kits, respectively. Extractions were performed following manufacturer’s instructions 

with a few modifications. The manufacturer’s lysis buffer was replaced with Qiagen lysis buffer 

(RLT) to increase the buffer volume (600 µL total volume). For the RNA extraction, the DNAse 

1 solution volume was doubled to 10 µL to remove contaminating DNA. Total DNA and RNA 

concentrations in all samples were quantified by Nanodrop (ThermoScientific, Waltham, MA) and 

verified by Qubit (Invitrogen, Waltham, MA). RNA extracts were treated with a second DNAse 

step using a DNA-free™
 DNA removal kit (Ambion, Foster City, CA) to further remove 

contaminating DNA. Two approaches were used to confirm no DNA contamination of RNA 

extracts: (i) the absence of amplifiable DNA was confirmed using quantitative polymerase chain 

reaction (qPCR) of the 16S rRNA gene (methods described in Appendix A) and (ii) Qubit was 

used to confirm that DNA was below detection limits. Lastly, RNA was reverse transcribed to 

produce complimentary DNA (cDNA) using the SuperScript™
 VILO™

 cDNA Synthesis Kit 

according to the manufacturer’s instructions (Life Technologies,  Grand Island, NY).  
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3.3.6 qPCR, sequencing, and microbial community analysis 

Bacterial ammonia monooxygenase (amoA), 16S rRNA, and Nitrospira nitrite oxidoreductase 

(nxrB) genes were quantified from cDNA and DNA using qPCR. Standards for the qPCR reaction 

were obtained using purified products from PCR reactions for each wastewater treatment plant. 

Samples and standards were analyzed in triplicate and each qPCR plate had a positive control 

(DNA extracts from a nitrifying enrichment culture for amoA and nxrB (Stadler and Love, 2016) 

or genomic DNA from Pseudomonas aeruginosa culture for 16S), and duplicate no-template 

controls.  Details on qPCR standard preparation and qPCR conditions are given in Appendix A-4.  

Amplicon sequencing of the V4 region of the 16S rRNA gene was performed with DNA and 

cDNA using the Illumina MiSeq (MiSeq Reagent Kit V2 500 cycles, Illumina Inc., San Diego, 

CA) platform and the previously developed Dual-indexing sequencing strategy (Kozich et al., 

2013). Twenty µL PCR reactions were performed using the following conditions: 1 µL template, 

5 µL primers at a concentration of 4 µM, 0.15 µL AccuPrime HiFi Polymerase, 2 µL AccuPrime 

PCR Buffer II, 11.85 µL molecular grade water. Illumina sequencing results were analyzed using 

Mothur (version 1.38.1) following the MiSeq SOP (Kozich et al., 2013; Schloss et al., 2009) with 

two exceptions: data were rarefied only for ordination analysis and archaea were included in the 

analysis. In addition to aligning sequences to the SILVA database (release 123), sequences were 

aligned to a custom 16S rRNA sequence database of known nitrifiers created from the NCBI 

database using BLAST. The database was created March 14th, 2016. This additional step was used 

to identify nitrifier OTUs that are unclassified or unknown based on the SILVA database. All hits 

had over 230 base pair alignment lengths, e-values below 4E-115 and bit scores above 405. In 

addition, hits were compared with the entire non-redundant NCBI database using BLAST to ensure 

that the nitrifying taxonomic assignment was the best available assignment. From this analysis, no 

ammonia oxidizing archaea (AOA) were identified in either treatment plant, therefore only AOB 

are considered.  

3.3.7 Prediction of precipitates formed 

Precipitation reactions were predicted using the sweep function in Visual Minteq version 3.1 

(Gustafsson, 2012). A tableau was created for the media used for the batch cultures and possible 
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chemical precipitates were identified and include: iron sulfide, molybdenum disulfide, wurtzite, 

covellite, manganese (II) sulfide, cobalt sulfide, nickel sulfide, acanthite, chalcocite, galena, pyrite, 

spharelite, chalcopyrite. The species tableau is available in Appendix A, Table A1. Equilibrium 

was determined across 100 concentrations of HS- between 0 and 32 mg/L as S.  

3.3.8 Statistical analysis 

Data analysis was conducted in the R environment (R Core Team, 2016). Statistical comparisons 

between inhibition model coefficients were done using a two-sided t-test. Differences between 

copy numbers from qPCR data were tested using Spearman’s rank coefficient. To evaluate 

differences in microbial community structure due to the presence of sulfide, relative abundances 

of samples were standardized to median sequencing depth across all the samples. Sparse data were 

removed by pruning OTUs with fewer than 5 reads across all the samples. Following this, sulfide 

amended cDNA relative abundances were normalized to the average cDNA relative abundance in 

the sulfide-free controls for each batch experiment. Principal coordinate analysis on the Bray-

Curtis similarity matrix was plotted using the phyloseq package in R (McMurdie and Holmes, 

2013). Overall changes in the microbial community structure under different sulfide 

concentrations were tested using permutational MANOVA (999 permutations) based on the Bray-

Curtis similarity index using the vegan package in R (Oksanen et al., 2007). Following this 

exploratory data analysis, a subsequent analysis was conducted using the DESeq2 package (Love 

et al., 2014; McMurdie and Holmes, 2014). For this analysis, instead of normalizing to the sulfide-

free controls or median sequencing depth, 16S rRNA cDNA abundances were normalized using 

the negative binomial model which accounts for differences in library sizes(McMurdie and 

Holmes, 2014). The Wald parametric test was used to find significant associations between taxa 

cDNA abundances and sulfide (Love et al., 2014; McMurdie and Holmes, 2014). The OTUs that 

were determined to be statistically significant and were unclassified OTUs were compared against 

the NCBI database; however, more resolution on the taxonomic assignment could not be obtained. 

All p-values given were adjusted for multiple comparisons using the Benjamani Hochberg 

correction.  
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3.4 Results and Discussion 

3.4.1 NOB from full-scale treatment systems showed different levels of sulfide inhibition 

Sulfide undergoes many abiotic and biological transformations that can occur very rapidly and the 

loss of sulfide influences how inhibition is modeled.  When applying the model developed by 

Nielson et al. at minimum and maximum sulfide concentrations (2006, 2004), we found that abiotic 

(1.2 and 16 mg S/L-hr) and biotic (2.1 and 37 mg S/L-hr) rates of sulfide oxidation are within the 

same order of magnitude and can thus simultaneously drive sulfide oxidation.  Inhibition of 

nitrification was maintained throughout the experiment even after sulfide was lost (i.e. the slopes 

of lines were constant, Appendix A, Figures A2 and A3 and Tables A2 and A3). Experimentally 

determining kinetic rates for reactive inhibitors such as sulfide can be tricky, as inhibition constants 

are impacted by the startup procedure and how sulfide is defined in the inhibition model. Due to 

the rapid reactivity and subsequent loss of sulfide, it is important to underscore that the sulfide 

concentrations used to fit our inhibition model were measured at the beginning of each batch 

experiment, which captures any immediate losses due to precipitation or aerobic oxidation between 

adding sulfide and the time zero measurement.  Therefore, our estimated inhibition constants are 

conservative estimates of nitrification inhibition. All previous studies of nitrifier inhibition use the 

concentrations of sulfide they applied rather than measuring sulfide at time zero, as we did, and 

therefore do not account for rapid sulfide loss (Bejarano-Ortiz et al., 2015; Bejarano Ortiz et al., 

2013; Kouba et al., 2017; Zhou et al., 2014); consequently, these studies tend to overestimate 

inhibition constants. We conclude that our estimates are reasonable and offer a realistic estimate 

of relative inhibition differences between AOB and NOB cultures. 

Nitrification in both plants was inhibited by sulfide and is characterized in Figure 3-1 based on the 

initial bulk liquid sulfide concentration present when biomass was first exposed.  The range (95% 

confidence intervals) of KI estimates across both treatment plants for AOB was between 7.8-14 

mg/L as S, while the KI for NOB was between 2.4-6.7 mg/L as S. The lower KI value for NOB 

compared to AOB in both treatment plants (pt-test<0.05) indicates that NOB were more sensitive to 

sulfide than AOB. Our results are consistent with previous studies that showed NOB to be more 

sensitive to sulfide than AOB (Erguder et al., 2008). Bejarano-Ortiz et al (2015) found lower 

inhibition constants (0.22 mg/L as S for NOB and 2.54 mg/L as S for AOB) using biomass from 
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an enrichment culture. Real wastewater microbial communities may be better adapted to sulfide, 

resulting in higher sulfide inhibition constants. Another study obtained inhibition parameters 

almost an order of magnitude higher than the parameters we estimated (10 mg/L as S for NOB and 

150 mg/L as S for AOB) (Kouba et al., 2017), perhaps reflecting either a more sulfide-resistant 

nitrifying community or overestimation due to the use of applied rather than measured sulfide 

concentrations in their inhibition model. Other studies using lab scale nitrifying cultures (Beristain-

Cardoso et al., 2010) or activated sludge (Zhou et al., 2014) have only quantified inhibition of 

complete nitrification and obtained similar inhibition parameters (10-13 mg S/L) to those we have 

obtained for AOB.  While the extent of inhibition is variable, differential inhibition of AOB and 

NOB in reactors is consistent across processes with different redox environments and microbial 

communities.  Given the variability in the parameter values, calibration and validation are needed 

before applying inhibition constants from one community to another community in modeling 

efforts. Overall, these comparisons show that the response of nitrifying communities to sulfide is 

community-specific. By pairing the analysis of inhibition with an analysis of the microbial 

community, we can infer how different nitrifying populations respond to sulfide.  
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Figure 3-1. Rates of nitrification across various sulfide concentrations, normalized to the sulfide-free controls. Each 

point represents one batch culture. Error bars are the result of normalizing to duplicate sulfide-free control batches.  

The line represents the best fit for the inhibition model. KI represents the inhibition constant; the shaded region 

represents the 95% confidence interval for KI. The rate of ammonium oxidation (as measured the production of 

nitrite and nitrate) is shown on top. The rates of nitrite oxidation (as measured by nitrate production) are shown on 

the bottom. The left figures are the results from experiments with biomass from the A2O process and the right 

figures are the results of experiments with biomass from the extended aeration process.  

Understanding the direct and indirect mechanisms of sulfide inhibition can help elucidate whether 

sulfide inhibition can be harnessed over the long-term. We first consider possible indirect 

mechanisms of nitrification inhibition such as precipitation of sulfide with trace metals and oxygen 

deficiencies due to sulfide oxidation. Using equilibrium speciation modeling, we evaluated the 

possibility that sulfide-induced precipitative loss of trace metals that are enzymatic cofactors for 

ammonia monooxygenase (copper, zinc, and iron (Gilch et al., 2009; Zahn et al., 1996)) and nitrite 

oxidoreductase (iron and molybdenum (Meincke et al., 1992)) contributed to the inhibition we 

observed.  In the media used for the batch experiments, the model predicts that ammonia 

monooxygenase cofactors copper and zinc precipitate at lower sulfide concentrations than the 

nitrite oxidoreductase cofactor molybdenum (Appendix A, Figure A1). While precipitation did 

occur and could have contributed to the inhibition patterns observed, our model predictions suggest 
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that if precipitation was controlling inhibition factor AOB would have been inhibited at lower 

sulfide concentrations than NOB. Consequently, abiotic precipitation does not appear to be the 

primary mechanism of differential inhibition between ammonium oxidizers and nitrite oxidizers.   

Next, we looked at the oxygen demand that sulfide exerts and asked if it could have limited growth 

of nitrifying bacteria by causing a deficiency in dissolved oxygen (Appendix A, Table A7).  Based 

on stoichiometric estimates, the oxygen demands of sulfide oxidation are significant. At a 

maximum, the oxygen diverted to sulfide could have oxidized 2.5 times the total amount of 

ammonium that was oxidized in the 25 mg S/L for the extended aeration process. On the other 

hand, nitrite oxidation was more affected by the loss of oxygen; at a maximum, the oxygen diverted 

to sulfide could have oxidized 8 times the total amount of nitrite that was oxidized in the 15 mg 

S/L batch for the A2O process.  However, this analysis assumes all sulfide was oxidized by oxygen 

and none precipitated or went to the gas phase. Furthermore, sulfide was oxidized very rapidly 

(Appendix A, Tables A2 and A3) and therefore, this stochiometric effect should have been short-

lived. We did not observe a change in nitrification rate once sulfide was lost, indicating this is 

probably not the primary inhibition mechanism.  

Lastly, we consider direct enzymatic inhibition by quantifying the expression of the ammonia 

monooxygenase and nitrite oxidoreductase genes using rt-qPCR.  We did not observe statistically 

significant associations between cDNA gene copy numbers and sulfide concentration (Appendix 

A, Figure A4). The relationship between transcriptional activity and protein abundances is 

complex and transcriptional activity may not correlate with enzymatic activity (Moran et al., 

2013). For example, the inhibitor may change the conformation of the enzyme (Baumann et al., 

1997), a mechanism proposed previously for the inhibition of the ammonia monooxygenase 

enzyme by carbon disulfide and thiourea (Hyman et al., 1990; Wood et al., 1981). An enzyme 

conformation change could explain why inhibition was maintained after sulfide was no longer 

detected in the batch reactors; the time to recover from a conformational change may be 

particularly slow for nitrifiers because of their slow growth rates. While we cannot decipher the 

exact mechanism of sulfide inhibition, our results support the need for more in-depth (pure culture 

and proteomic, for example) experiments to further elucidate sulfide-induced inhibition 

mechanisms between different AOB and NOB taxa.  
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3.4.2 The NOB communities from the two treatment plants had distinct structures.  

The observation that NOB inhibition by sulfide differed among the two full-scale treatment 

processes (pt-test<0.05), whereas AOB inhibition kinetics were not different (pt-test>0.9), may be 

due to differences in the composition of the nitrite oxidizing communities between the two plants. 

Figure 3-2 shows AOB and NOB activity levels in both source biomasses based on cDNA 

generated from rRNA.  It reveals that while transcriptionally active ammonium oxidizers in both 

plants are dominated by Nitrosomonas, the A2O process has more diverse transcriptionally active 

nitrite oxidizers—and was therefore more functionally redundant with respect to nitrite 

oxidation—than the extended aeration process.  Increased functional redundancy within microbial 

communities can lead to more resilient communities (Girvan et al., 2005).  Our work is consistent 

with this notion since the culture from the A2O system had greater resistance to sulfide inhibition 

than the extended aeration process (KI, NOB
A2O > KI, NOB

EA). While enhanced microbial diversity in 

wastewater treatment plants has been explored as a strategy to improve process performance 

(Johnson et al., 2014), our results suggest that increasing diversity of NOB may have undesirable 

effects on nitritation systems.  
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Figure 3-2. Relative activity of nitrifying communities based on a sequencing the cDNA from 16S rRNA. The % of 

active community was calculated relative abundance in the cDNA sequencing data. Results are presented for 

ammonium oxidizers in ammonium-amended batches (top) and nitrite oxidizers in nitrite-amended batches (bottom) 

from A2O (left) and extended aeration (right) cultures. A cross symbol indicates that averages of relative abundance 

in multiple samples at the same sulfide concentration are shown. Some Nitrospira have the ability to completely 

oxidize ammonia to nitrate (Daims et al., 2015; van Kessel et al., 2015), but we do not have evidence for whether 

comammox are present in these treatment plants, and therefore are grouped with NOB. 

The more sulfide resistant NOB community in the A2O process may be due to differences in the 

active NOB populations between the two treatment plants. While both plants reported a history of 

sulfide-related corrosion in their collection systems, the A2O process has temporal changes in 

redox conditions that create environments favorable for sustaining sulfide for extended time 

periods (Zhou et al., 2014), possibly exerting a selective pressure on the nitrite oxidizers in the 

A2O process. The extended aeration treatment plant is dominated by the NOB family Nitrospira 

that appears to be more sensitive to sulfide than the Nitrotoga that dominate the A2O plant, and 

possibly the Nitrobacter NOB also present in the A2O biomass. It is worth noting that some 

Nitrospira species uniquely possess the genetic inventory for sulfur oxidation (Lücker et al., 2013), 

though no studies have found metabolic evidence for this function. Nitrite oxidation by Nitrospira 

may be inherently more sensitive to inhibitors; Blackburne et al. (2007) found Nitrospira to be 

more sensitive to free ammonia and free nitrous acid than Nitrobacter. This difference in inhibition 
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characteristics between Nitrospira and Nitrobacter could potentially be explained by the location 

of the substrate binding unit of the nitrite oxidoreductase enzyme (Nxr) within the cell. In 

Nitrospira the Nxr is periplasmic, while in Nitrobacter the Nxr is cytoplasmic; therefore, the cell 

membrane may protect Nitrobacter since the charged HS- molecule must first enter the cell. This 

explanation does not hold for Nitrotoga, which also has a periplasmic Nxr (Nowka et al., 2015) 

and dominates the A2O nitrite oxidizer microbial community. Our results suggest that not all NOB 

are equal with respect to sulfide inhibition. The differing metabolic capacities, physiologies, and 

ecological niches of NOB leads to different sulfide inhibition characteristics and unraveling these 

differences between NOB is an important area of future research. 

3.4.3 Sulfide impacted the activity of non-nitrifying microorganisms within the community.  

Considering inhibition of nitrifying populations without considering the effect of the inhibitor on 

the overall microbial community may miss important interdependencies between nitrifiers and 

associated populations. Sulfide is both an energetically favorable electron donor and inhibits some 

microbial processes; consequently, it can have complex effects on the overall microbial 

community. While sulfide did not significantly change the composition of the microbial 

community over the course of the batch tests based on sequencing of 16S rRNA genes 

(permutational MANOVA on Bray-Curtis similarity, p>0.07, R2<0.05, Appendix A, Figure A5), 

the active microbial community based on sequencing of 16S rRNA cDNA shifted due to sulfide 

(Appendix A, Figure A6). The active microbial communities had statistically significant 

correlations with sulfide concentration based on the permutational MANOVA on the Bray Curtis 

dissimilarity matrix (p=0.001, R2=0.12, stratified by the wastewater treatment plant).  The small 

effect size (R2) indicates that only a small proportion of the OTUs in the studied communities were 

affected by the initial sulfide concentration.  

Since we found that sulfide affects microbial community activity (16S rRNA) and not composition 

(16S rRNA gene) over the time scales of these experiments, we focused on the cDNA data to 

evaluate which OTUs were associated with sulfide.  Using the DESeq2 package, we found 55 

OTUs with normalized cDNA abundances that statistically significantly correlated with initial 

sulfide concentration (Wald test, p<0.05). The changes in relative activity of these OTUs due to 
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sulfide are shown in Figure 3-3. Interestingly, despite a loss of nitrifying activity, none of the 

nitrifying OTUs had statistically significant associations between 16S rRNA relative activity and 

sulfide and are, therefore, absent from Figure 3-3 (based on both Spearmans rank and Wald test, 

p>0.05). A lack of association between 16S rRNA and activity has previously been observed in 

pure cultures of AOB under stressed conditions (Bollmann et al., 2005; Chandran and Love, 2008) 

but we know of no similar studies with NOB.  The lack of association between the expression of 

the ammonia monooxygenase and nitrite oxidoreductase genes observed in this study is an 

independent measurement that is consistent with the absence of nitrifying OTUs in Figure 3-3.  In 

contrast, many OTUs that were positively associated with sulfide have been implicated in sulfur 

cycling such as Desulfonema and Desulfovibrio. Members of the Desulfovibrio family have also 

been shown to oxidize sulfide (Fuseler et al., 1996) and have been implicated in sulfide oxidation 

using dissimilatory nitrate and nitrite reduction to ammonium (DNRA) (Thorup and Schramm, 

2017). Similarly, members of the Planctomycetacaea family are involved in sulfur cycling 

(Elshahed et al., 2007). The Rhodocyclacaea OTU with a positive association with initial sulfide 

concentration was categorized at the genus level to be Dechloromonas, which also may contain 

sulfur oxidation genes (Salinero et al., 2009). Many more statistically significantly associated 

OTUs (pWald<0.05) were negatively associated (48 OTUs) with initial sulfide concentration than 

were positively associated (7 OTUs), suggesting sulfide inhibition. The changes in activity we 

observed indicate that sulfide induced microbial community shifts; however, there is additional 

research to be done on the relationship, if any, between the community shifts and nitrification 

inhibition.  
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Figure 3-3. Sulfide sensitive OTUs (p-Wald<0.05, adjusted for multiple comparisons using Benjamani Hochberg 

correction). Y-axis indicates the log base 2 fold change in OTU normalized activity (16S rRNA gene in cDNA) for a 

1 mg/L as S increase in sulfide concentration. Symbols next to name indicates known functions that exist within the 

Family or Genera (based on best classification). 

3.5 Summary and Potential Applications 

As the population in coastal cities increases and nitrogen regulations become more stringent, 

innovations that lead to more energy efficient nitrogen management will be increasingly valuable. 

Sulfide in wastewater can be harnessed to implement nitritation processes via the differential 

inhibition of AOB and NOB.  Existing treatment processes that use varying redox environments 

including anoxic and anaerobic zones, or that maintain low DO conditions, will also support 

environments where nitrifiers could be inhibited by sulfide. Mainstream nitritation due to sulfide 

could also be supported in emerging technologies such as the SANI process, mainstream 

anammox, or mainstream anaerobic processes (McCarty et al., 2011) that are known to produce 

variable and sometimes high concentrations of sulfide (Delgado Vela et al., 2015). Additionally, 

amid water stress, more densely populated coastal communities may consider seawater toilet 

flushing and harnessing sulfide during wastewater treatment (Liu et al., 2016).  As nitrogen 

regulations become more stringent and energy conservation in wastewater treatment systems 
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becomes a priority, sulfide may help reduce energy requirements of nitrogen removal by 

suppressing NOB and supporting shortcut nitrogen removal technologies. Future research is 

needed to understand if nitritation can be maintained in a continuously fed system since long-term 

feeding of sulfide could lead to both physiological adaptation or selection for sulfide-resistant 

nitrifying populations.  

 We showed that applying sulfide for the support of NOB suppression requires knowledge of the 

underlying nitrite oxidizing community. By linking inhibition parameters to the nitrifying 

community our results show that a more diverse nitrite oxidizing community is more resistant to 

sulfide inhibition and that Nitrospira-rich communities are more sensitive to sulfide inhibition. 

Further, we found that sulfide impacts the activity of the microbial community, suggesting that 

sulfide has impacts on the wastewater treatment processes that have yet to be identified. 

3.6 Conclusions 

• Nitrite oxidizing bacteria are more sensitive to sulfide than ammonia oxidizing 

microorganisms in the two processes considered.  

• Distinct communities of nitrite-oxidizing bacteria showed different responses to sulfide, 

consistent with Nitrospira being more sensitive to sulfide than Nitrobacter and Nitrotoga.  

• Sulfide affects microbial community activity, and many OTUs had lower activities with 

increased sulfide concentration.  
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4.1 Summary 

Microbial cross-feeding leads to complex and interconnected elemental cycling but we need an 

improved understanding of how cross-feeding influences overall community function and how 

changes in substrates perturb these relationships. Here, we used a membrane aerated biofilm 

reactor that was fed methane, sulfide, and ammonium to study potential cross-feeding 

relationships.  Results from isotopic rate measurements and metagenomic sequencing showed that 

sulfide (i) could inhibit nitrite oxidizing bacteria (NOB) but did not affect ammonium oxidation 

rates and (ii) induced dissimilatory nitrite reduction to ammonium (DNRA) in the bioreactor. 

When nitrite oxidation was inhibited, more nitrite is available for DNRA, anammox, and nitrite-

dependent anaerobic methane oxidation. Recovery and analysis of a near complete genome 

sequence related to the nitrite-dependent anaerobic methane oxidizer Candidatus 

Methylomirabilis confirmed that a nitrite source was needed for this organism to grow. It appears 

that sulfide disrupted microbial cross-feeding between AOB and NOB but induced cross-feeding 

between AOB and nitrite reducing organisms. The results indicate that DNRA may occur and 

produce ammonium in engineered systems that use sulfide as an electron donor, which is generally 

not desirable and would need to be controlled.  
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4.2 Introduction 

Although essential to cellular life, nitrogen can contaminate natural water bodies and contribute to 

global warming. Microbial processes control the nitrogen cycle; hence, regulating microbial 

activity can help mitigate environmental pollution.  Understanding coupled biogeochemical 

cycling of nitrogen, sulfur, and carbon is complex due to the metabolic flexibility of the bacteria 

that cycle these substrates, but new molecular and cultivation techniques have spurred rapid 

discovery in this area (Kuypers et al., 2018). For instance, marine nitrite oxidizing bacteria have 

been shown to oxidize sulfide (Füssel et al., 2017), anammox bacteria can oxidize organic matter 

(Kartal et al., 2007), and sulfate reducing bacteria can also denitrify (Thorup and Schramm, 2017).  

This metabolic flexibility means that taxonomic markers such as the 16S rRNA gene are 

insufficient to determine the key players in the sulfur, nitrogen, and carbon cycles. Higher 

resolution methods are needed because understanding microbial interactions within these 

elemental cycles which is important in both environmental (Arshad et al., 2017) and engineered 

systems (Delgado Vela et al., 2015b).  

Few studies have evaluated the interactions between microbial cycling of methane, nitrogen, and 

sulfur in mixed redox environments. A study in an anoxic bioreactor that considered methane, 

sulfide, and nitrate in one system revealed the co-existence and beneficial cross-feeding 

relationship between anammox, sulfide oxidizers, and denitrifying anaerobic methane oxidizers 

(Arshad et al., 2017).  The presence of anammox in a system fed sulfide is somewhat surprising 

because sulfide is typically thought to inhibit anammox bacteria (Jin et al., 2013). However, this 

is consistent with previous studies and the evidence suggests that anammox can grow in the 

presence of sulfide because sulfide-based denitrifiers consume the inhibitory sulfide and reduce 

the nitrate produced by anammox to either nitrite (Rios-Del Toro and Cervantes, 2016; Russ et al., 

2014) or ammonia (Jones et al., 2017).  Once oxic environments are introduced, the growth of 

aerobic bacteria such as nitrifiers, methanotrophs, and sulfur oxidizers introduces additional 

possible cross-feeding relationships.  Coupled oxic and anoxic environments are abundant in 

natural (e.g. Bristow et al., 2016; Lüke et al., 2016; Reim et al., 2012) and engineered (e.g.  

Morgenroth et al., 1997; Pochana and Keller, 1999) environments and we need to understand how 
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the microbial interactions in these systems shape elemental cycling and how interactions change 

under different substrate conditions.   

Since it is possible to precisely create and control oxic and anoxic environments, bioreactor 

systems are advantageous for understanding microbial interactions between nitrifying and 

denitrifying organisms.  Controlled experiments that create distinct environments in lab-scale 

bioreactors can be used to develop and test hypotheses on the microbial interactions that may occur 

between different metabolic groups. For example, a membrane aerated biofilm reactor (MABR) 

uses oxygen-permeable membranes to produce a counter-current biofilm where the flux of 

dissolved oxygen (from the membrane) moves in the opposite direction to the flow of electron 

donor (from the bulk liquid) (Martin and Nerenberg, 2012; Terada et al., 2007). Consequently, an 

MABR provides a unique redox environment to study nitrogen and sulfur cycling because redox 

can dictate microbial population selection and consequently control nitrogen and sulfur speciation. 

An added benefit of using the MABR to study microbial interactions is that due to its energy 

efficiency it is a technology increasingly being considered for full-scale wastewater treatment 

(Heffernan et al., 2017; Houweling et al., 2017; Peeters et al., 2017). Therefore, understanding 

how microbes interact in this system can inform bioreactor design to improve nitrogen removal in 

an emerging technology.  

In this study we operated a lab-scale MABR and applied metagenomic and isotope labeling 

techniques to evaluate interactions between microbial populations. We evaluated how hydrogen 

sulfide changes rates of oxidation over short-term batch experiments and how sulfide shifts the 

microbial community functional potential over long-term stepwise increases in sulfide 

concentrations. During treatment of synthetic anaerobic effluents containing dissolved methane, 

sulfide, and ammonia, simultaneous oxic and anoxic cycling of nitrogen, sulfur, and carbon 

occurred. We found that differential sulfide inhibition of ammonia oxidizing bacteria (AOB) and 

nitrite oxidizing bacteria (NOB) can provide a nitrite source for other metabolisms including 

anammox, denitrifying anaerobic methane oxidizers, and denitrifying sulfur oxidizers. We also 

found that an important sink for nitrite in the presence of sulfide was the dissimilatory nitrite 

reduction to ammonia. These findings can help us understand interactions between sulfur and 
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nitrogen cycling in engineered environments to ultimately improve the efficiency of nitrogen 

removal.  

4.3 Results and Discussion 

4.3.1 Sulfide increased nitrite accumulation and nitrite reduction to ammonia. 

We conducted rate experiments to reveal the functional potential in the reactor. Experiments with 

heavy nitrogen (15N) were used to obtain rates of ammonia oxidation, nitrite oxidation, nitrate 

reduction and dissimilatory nitrite/nitrate reduction to ammonia (DNRA). Results show that with 

the exception of nitrite oxidation, all processes were faster in the presence of sulfide (Figure 4-1).  

Experiments in the reduction of nitrate and nitrite showed that DNRA was an important process. 

DNRA occurred when sulfide and nitrite were in the influent (161 ± 30 µmol/L-hr with sulfide; 

0.2±0.7 µmol/L-hr without sulfide, pt-test=0.02, Figure 4-1D). During experiments with 15NO3
- in 

the influent there was little measurable ammonium produced (Appendix B Figure B4) regardless 

of the presence of sulfide. This could be because ammonium produced was very rapidly consumed 

by AOB or because DNRA only occurred with nitrite as the electron acceptor.  In both cases 

DNRA was only measurable when sulfide was present in the influent. The rate of nitrate reduction 

to nitrite was faster in the presence of sulfide (175 ± 35 µmol/L-hr with sulfide 127±9 µmol/L-hr 

without sulfide, Figure 4-1C and Appendix B Figure B4).  However, the rate of DNRA when 

sulfide and nitrite were present was comparable to the rate of nitrate reduction. This indicates that 

DNRA has the potential to be an important and significant process in this system.   
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Figure 4-1. Rates derived from 15N experiments. Concentrations next to rates with sulfide indicate the concentration 

of sulfide in time zero sample. Average R2 from the linear estimate was 0.96 ± 0.05.  

Experiment C revealed that nitrite oxidation was generally very fast, but when sulfide was present 

in the influent nitrite oxidation rates were slower (181 ± 63 µmol/L-hr with sulfide and 223 ± 3 

µmol/L-hr Figure 4-1B). Consistent with previous studies (Bejarano-Ortiz et al., 2015; Delgado 

Vela et al., 2018; Erguder et al., 2008), NOB were inhibited by sulfide. As shown in Figure 4-1B 

at the lower initial concentration of sulfide, differences in the nitrite oxidation rate were not 

discernable. These results are consistent with the inhibition index determined in Chapter 3 for a 

Nitrospira-dominated NOB population (81 ± 8 µM) (Delgado Vela et al., 2018). It is also worth 

noting that the concentrations listed were the concentrations in the time zero sample. However 

rapid sulfide oxidation was occurring during the filling of the reactor; therefore, these 

concentrations are likely underestimates of the true-initial concentrations in the reactor.  Despite 

the uncertainty in the initial sulfide exposure, it is clear that inhibition of NOB with sulfide in this 

multi-redox bioreactor was possible.  
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In contrast to nitrite oxidation, rates of ammonia oxidation were higher in the presence of sulfide 

(111 ± 18 µmol/L-hr) compared to without sulfide (66 ± 24 µmol/L-hr). This indicates that unlike 

batch systems (Bejarano-Ortiz et al., 2015; Delgado Vela et al., 2018), ammonia oxidation was not 

affected by sulfide in a continuously fed MABR. However, these initial concentrations are 

significantly lower than those previously determined inhibition constants for AOB (298-388 µM) 

(Delgado Vela et al., 2018) therefore at higher initial concentrations of sulfide inhibition of AOB 

may still be an important process to consider. An important consideration for comparing 

previously determined inhibition constants to these experiments is that, unlike the batch 

experiments from Chapter 3, anaerobic metabolisms are present in the bioreactor and can consume 

nitrite.  Interestingly, in the presence of sulfide the rates of DNRA are faster than the rates of 

ammonia oxidation. Sulfide has been shown to increase DNRA in both natural (Brunet and Garcia-

Gil, 1996; Jones et al., 2017) and engineered systems (Dolejs et al., 2014; Yin et al., 2015). 

Hydrogen sulfide acts as a reducing agent, and electron-rich environments are more prone to 

DNRA (Van Den Berg et al., 2015). In studies published to date, it is unclear whether the 

organisms responsible for DNRA are using sulfide as an electron donor. In this study, the rate of 

DNRA was faster in the bioreactor with the lower initial sulfide concentration, however there were 

no organic compounds in the influent that are typically thought to be involved in DNRA present 

in the reactor (e.g. acetate). The only other electron donor that was present in the reactor was 

methane, which is not a known electron donor for DNRA. This suggests that sulfide may have 

been the electron donor for DNRA during these experiments.  

From a treatment standpoint, it is more desirable to reduce nitrite to nitrogen gas instead of 

ammonia.  Previous literature says that at higher sulfide/N ratios, nitrate gets reduced to ammonia, 

while at lower sulfide/N ratios denitrification occurs (Dolejs et al., 2014; Yin et al., 2015). Future 

work should assess the operating conditions that would limit DNRA and induce denitrification, 

which is preferential for meeting wastewater treatment goals. Our results underscore the 

importance of considering DNRA when describing sulfur-nitrogen interactions and their effect on 

overall community function and reactor performance.  
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4.3.2 Metabolic functions were partitioned between planktonic and biofilm communities.  

To further explore mechanisms by which sulfide affects nitrogen cycling, we evaluated the long-

term effect of stepwise increases in sulfide on the microbial community present in different reactor 

compartments using metagenomic sequencing.  The change in relative abundance of genes of key 

metabolic processes over time and space in the reactor (Figure 4-2) showed a division of labor 

between physical compartments of the reactor; sulfur oxidation and denitrification (except for 

denitrifying anaerobic methane oxidizers and anammox denitrifiers) were concentrated in the 

planktonic portion of the reactor while nitrification was concentrated in the biofilm. The planktonic 

growth was not present until sulfide was added to the influent. Since there were no electron 

acceptors other than nitrate available in the bulk liquid, the sulfide oxidizers present in the 

planktonic phase were likely associated with nitrate-linked denitrification processes. Consistent 

with this inference, the majority of the planktonic denitrifying genes had top hits to NCBI’s 

nonredundant database with taxonomy that matched that of the top hits of the sulfur oxidation 

genes (Appendix B, Figure B5).  This analysis suggests that a majority of planktonic denitrification 

and sulfur oxidation potential were from the genus Thiobacillus. Collectively, these results show 

that MABRs can provide an environment for sulfide-based denitrifiers.  
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Figure 4-2. Relative abundance of genes for key metabolic functions in the reactor. The day and influent sulfide are 

indicated in the figure on top. The physical location of the samples are indicated with the letters on top of the 

heatmap, (A) biofilm samples, (B) samples are planktonic, suspended, and (C) samples are sloughed and settled 

biomass. Coverage scale is based on the coverage of each gene normalized to total coverage of all bacterial rpoB 

genes. Nitrifying gene marker are ammonia monooxygenase gene (amoA), comammox amoA, and nitrite 

oxidoreductase gene (nxrB). Denitrifyng gene markers are nitrate reductase (napA), nitrite reductase (nirK/nirS), 

nitric oxide reductase (nor), nitrous oxide reductase (nosD), and hydrazine synthase for the anammox process 

(hzsB). Sulfur oxidation genes are the sulfide-quionone reductase (sqr), the sulfide dehydrogenase (flavocytochrome 

c) (fccB) and dissimilatory sulfite reductase (dsrA), the adenylylsulfate reductase (aprB) and the Sox enzyme 

complex (soxA). nirB, narG, and narH are not shown because they were at low abundances. † ammonia 

monooxygenase converts ammonia to hydroxylamine, but full AOB reaction is shown here.  

The concentrated sulfur oxidation and denitrification in the planktonic phase has implications for 

using sulfide-based denitrification in an MABR. A previous study of nitrogen removal in an 

MABR achieved almost 100% nitrogen removal and described a “hybrid” system where the 

biofilm was nitrifying while denitrification occurred in the suspended portion of the reactor 

(Downing and Nerenberg, 2008). These results highlight that biofilm reactor studies need to 

account for planktonic growth and potential division of labor between planktonic cells and biofilm 

communities. Nitrogen removal in these bioreactor systems can be improved by harnessing the 

denitrification potential present in the planktonic growth.  
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4.3.3 Sulfide addition decreased the relative abundance of nitrifier genes and increased those 

for DNRA, anammox, and denitrifying anaerobic methane oxidation.   

As sulfide increased, the abundance of both nxr and amo genes significantly decreased 

(pANOVA<0.05), suggesting sulfide inhibition of organisms carrying these genes (Figure 4-2 and 

Appendix B Figure B6). The abundances of nitrifying bacteria as indicated by these gene markers 

did not recover over the 90 days in which sulfide was removed from the influent. The only nitrite 

oxidizing bacteria detected in the reactor were in the family Nitrospira. Some Nitrospira can 

oxidize ammonia to nitrate (termed comammox) (Daims et al., 2015; van Kessel et al., 2015) and 

the relative abundance of the Nitrospira nxr compared to amo genes suggest that the bioreactor is 

a candidate for comammox metabolism. However, we detected comammox ammonia 

monooxygenase genes in the biofilm only at low abundances. On day 117, when nitrifying genes 

were most abundant, coverage of the comammox ammonia monooxygenase in the biofilm only 

accounted for about 0.5% of the total coverage of ammonia monooxygenase genes. This finding 

was confirmed using qPCR; gene copies of comammox amoA were two orders of magnitude lower 

than copies of canonical AOB and Nitrospira (Appendix B, Figure B6). Canonical Nitrospira that 

do not oxidize ammonia have a high affinity for nitrite (Nowka et al., 2015) relative to other NOB, 

and can grow in low DO environments (Keene et al., 2017; Regmi et al., 2014). High affinity for 

oxygen could be advantageous in an MABR where microbes are competing for oxygen in the 

biofilm, resulting in enrichment for such microorganisms in an MABR biofilm. The oxygen 

affinity of comammox bacteria is unknown and although comammox bacteria have one of the 

highest ammonia affinities of all terrestrial ammonia oxidizing bacteria, they do not have a similar 

affinity for nitrite. In this reactor, ammonia was not limiting but nitrite was, so the high ammonia 

affinity did not give comammox a competitive advantage over other AOB and canonical Nitrospira 

outcompeted comammox bacteria for nitrite. Both relative and absolute abundances of AOB and 

NOB decreased with increasing sulfide, providing molecular evidence of sulfide inhibition of 

nitrification. 

The abundance of nitrite reductase genes responsible for DNRA (nrfA) increased with increasing 

sulfide (Figure 4-3 and Appendix B, Figure B7), which corresponds with the measured increase in 

the potential DNRA rate observed in the heavy nitrogen experiments. This provides two 
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independent indications that sulfide-induced DNRA was a substantial process occurring in the 

MABR.  Interestingly, nrfA genes are more abundant in the biofilm than the suspended growth. In 

the reactor as a whole on day 368, over 40% of the nrfA genes had top hits to NCBI’s nonredundant 

database with taxonomy assigned to anammox bacteria (Appendix B, Figure B6). DNRA by 

anammox is known to occur (Kartal et al., 2007), but so far has been limited to the use of volatile 

fatty acids as electron donors, which were not present in the reactor.   Interestingly, unlike 

conventional DNRA, low COD/N ratios have been shown to induce DNRA by anammox (Castro-

Barros et al., 2017). It is unlikely that volatile fatty acids that are typically used by anammox were 

formed in sufficient quantities from decay to support anammox growth via DNRA. Thus, we infer 

that the increased abundances of anammox-associated DNRA genes was likely a byproduct of 

anammox growth. Although over a quarter of the DNRA potential did not have clear top taxonomic 

hits compared to NCBI’s nonredundant database, 23% of the overall DNRA present in the 

bioreactor had top hits to a denitrifying anaerobic methane oxidizer, Candidatus Methylomirabilis. 

Similar to the DNRA associated with anammox, this could be a byproduct of the growth of 

denitrifying anaerobic methane oxidizers. However, the high potential rates at which DNRA 

occurred suggest that some of these most abundant organisms contributed to this process.  
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Figure 4-3. Relative abundances of key genes for DNRA (formate-dependent nitrite reductase, nrfA)  anammox 

(hydrazine synthase, hzsG, hzsB, hzsA,  and hydrazine oxidase, hzo) and denitrifying anaerobic methane oxidizer 

(particulate methane monooxygenase pmoA and pmoB).  The location of the samples are indicated with the letters on 

top of the heatmap, (A) biofilm samples, (B) samples are planktonic, suspended, and (C) samples are sloughed and 

settled biomass. Coverage scale is based on the coverage of each gene normalized to total coverage of all bacterial 

rpoB genes. 

The abundance of both anammox and denitrifying anaerobic methane oxidizers increased with 

increased sulfide (Figure 4-3) and methane oxidizer abundances in the biofilm were statistically 

correlated with influent sulfide (pANOVA=0.03). On day 479, coverage of nitrite reductase genes 

associated with anaerobic methane oxidizers account for 14% of biofilm nitrite reduction potential 

and 7% percent of the total reactor nitrite reduction potential. The potential inhibition of nitrite 

oxidation by sulfide that was observed in the rate experiments could have aided in providing 

substrate for anammox and denitrifying anaerobic methane oxidizers. The increased abundances 

of anammox and denitrifying anaerobic methane oxidizers could also be because sulfide served as 

a reducing agent. The oxidation reduction potential (Appendix B, Figure B8) shows a change in 

redox state with increased sulfide and this may have helped these oxygen sensitive organisms to 

grow. These results indicate that there is the potential to support anammox and denitrifying 
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anaerobic methane oxidizers in a multi-redox MABR and sulfide helps this process by inhibiting 

NOB and acting as a reducing agent.    

4.3.4 The MABR enriched for a novel denitrifying anaerobic methane oxidizer.  

Given that denitrifying anaerobic methane oxidation increased with increasing sulfide, we sought 

to evaluate the metabolic potential within this organism. From metagenomic assembly and binning 

we recovered a near-complete bin (95% complete, 3% contamination). Based on Phylosift analysis 

100% of the contigs in the bin could be classified within the NC10 phyla, and 67% were classified 

within the genus Candidatus Methylomirabilis, Furthermore, the bin contains markers similar to 

Ca. Methylomirabilis oxyfera: an RNA polymerase (91% identical), a 23S rRNA gene (96% 

identical), and a 16S rRNA gene (97% identical). Figure 4-4A shows that based on the average 

nucleotide identity (ANI) the organism in the reactor is a distinct species from the NC10 organisms 

that have previously been described, its closest relative shares an average nucleotide identity of 

85%. Collectively, this means that the genome recovered is in the genus of Ca Methylomirabilis 

(within 82% ANI of all other Ca Methylomirabilis) but is a distinct species. Based on these results, 

we compared the gene content of this genomic bin to related genomes described in the literature 

to evaluate potential differences in functional potential.  

A) 

 

B) 

 

Figure 4-4. (A) Average nucleotide identities of new bins 42 compared with public ally available genomes from the 

NC10 phyla. Accession numbers on IMG GOLD Analysis Project IDs: 1Ga0155960 (Wrighton et al., 2012), 
2Ga0156237 (Wrighton et al., 2012), 3Ga0154810 (Wrighton et al., 2012),  5Ga0011360, 6Ga0169943 (Ettwig et al., 
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2010), 7Ga0011361 and NCBI BioSample 4SAMN03462098 (Hug et al., 2016). The bin is indicated in olive, Ca. 

Methylomirabilis genomes are blue, and other genomes in the NC10 phyla are grey. Dotted line represents an ANI 

of 90%. (B) Pangenome analysis of bin (olive), oxyfera genomes (blue), and NC10 genomes (black). Purple bars 

and highlighting indicate distinct protein clusters from other NC10 genomes.  

Using a pangenome analysis, we identified 307 gene clusters in this organism that were not present 

in other genomes in the NC10 phylum (Figure 4-4B, Appendix B, Table B6). While many of these 

gene clusters encode functions that are present in other Ca. Methylomirabilis genomes, we 

identified 88 unique functions. Most of these unique functions were associated with COG category 

V, defense mechanisms, but this comparison also revealed a denitrification pathway that is distinct 

from other Ca. Methylomirabilis organisms. Nitrate reduction genes (narG and narJ) were absent, 

a finding confirmed by searching for the narG and narJ specific to Ca. Methylomirabilis in the 

unbinned scaffolds and individual sequence reads. Previous studies have shown that Ca. 

Methylomirabilis oxyfera does not contain the nitrous oxide reductase protein (Ettwig et al., 2010), 

but the Ca. Methylomirabilis organism in the MABR did have a gene encoding for the nitrous 

oxide reductase protein (nosD) that was absent from all other NC10 genomes, again indicating that 

the denitrification pathway in the Ca. Methylomirabilis present in our bioreactor was distinct.  The 

Ca. Methylomirabilis genome from our bioreactor did have a narK gene, which is used for nitrate 

assimilation. Although narK is present in other distantly related bacteria from the NC10 phyla it 

is not present in any other Ca. Methylomirabilis bacteria. Overall, these results suggest that the 

organism in the bioreactor does not have the capacity to use nitrate as an electron acceptor and is 

consistent with use of nitrite as an electron acceptor. This further supports that residual nitrite was 

needed to support Ca. Methylomirabilis, likely the result of NOB inhibition.  

One function that was uniform across all Ca. Methylomirabilis genomes was the potential to 

conduct DNRA. All Ca. Methylomirabilis genomes have a nrfA gene for reduction of nitrite to 

ammonia. Although Ca. Methylomirabilis organisms and the archaeal anaerobic methane 

oxidizers (Haroon et al., 2013) all have the genetic capacity to conduct DNRA, DNRA coupled to 

anaerobic methane oxidation has not been described, but it is worth considering in this system for 

two reasons. First, we observed the growth of Ca. Methylomirabilis without any increases in 

overall denitrification, and second, a significant portion of the overall DNRA genetic potential in 

the reactor was associated with Ca. Methylomirabilis. Understanding the conditions under which 
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DNRA is expressed in anaerobic methane oxidizers is an important gap in the literature that 

warrants further exploration.  

We have shown the potential functions and microbial interactions that result from increases in 

sulfur in a MABR (Figure 4-5). NOB were more inhibited by sulfide than AOB. Through both the 

metagenomic and experimental rate data we showed that this inhibition resulted in production of 

nitrite and led to increased dissimilatory reduction of nitrite to ammonia. Furthermore, this nitrite 

accumulation supported growth of an organism related to Ca. Methylomirabilis. We suggest that 

methane may be serving as an electron donor for DNRA, but this inference as well as the conditions 

that promote DNRA by anaerobic methane oxidizers need to be evaluated further.  In summary, 

sulfide changed microbial cross-feeding relationships. Due to these tight interactions within the 

community, it was only through the application of metagenomic data and isotopic rate data that 

we could uncover these relationships. In order to apply these results to engineered treatment 

systems pursuing nitrogen removal, it will be important to understand how to encourage 

denitrification over DNRA. 

 

Figure 4-5. Potential nitrogen metabolisms with and without sulfide. Sulfide shifts redox in the biofilm. Arrow color 

indicates metabolism responsible: Black is nitrifying bacteria, purple DNRA or denitrification linked to either 

anammox or anaerobic methane oxidation, red is anammox, dark yellow is DNRA and denitrification by sulfide 
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oxidizing bacteria (SOB). Arrow color (other than black) also indicates electron donor: purple is either methane or 

ammonia, red is ammonia, and dark yellow is sulfide.  

4.4 Experimental Procedures 

4.4.1 Reactor design and inoculation  

The MABR system (1.93 L working volume, Appendix B, Figure B1) was modeled after Gilmore 

et al. (2013), inspired by systems operated by a research team at the NASA Kennedy Space Center 

(Tansel et al., 2005).  The module consisted of an acrylic cylinder column approximately 0.3 m 

long x 0.08 m inner diameter with flanges on either end. Fibers (n=157) of SilasticTM silicone 

laboratory tubing (Dow Corning, Midland, MI) were potted in milled end caps. The tubing has an 

outer diameter of 3.18 mm and an inner diameter of 1.98 mm and was roughened with sand paper 

to improve biofilm adhesion. The specific surface area of the membrane was 248 m2/m3 of reactor 

volume. The reactor was operated with membranes in an open-ended, flow-through configuration. 

Synthetic wastewater was recirculated parallel to the membranes at flow rates greater than fifty 

times the influent flow rate. A tracer study using sodium chloride was conducted prior to 

inoculation and showed the reactor is best modeled as a continuously stirred tank reactor; thus, 

bulk concentrations are approximately uniform in the reactor (Appendix B, Figure B2).  Dissolved 

oxygen (DO), oxidation-reduction potential (ORP), pH, ammonia, and nitrate sensors 

(YSI/Xylem, Yellow Springs, Ohio, USA) were used to continuously monitor performance. Data 

were logged using a data acquisition device (NI 6008) and Labview program (National 

Instruments, Austin, Texas, USA). The program was also used to control pH (by controlling a 

pump feeding a 30 g/L sodium bicarbonate solution) and air addition (by controlling a mass flow 

controller connected to a pressurized air cylinder (GFCS17A, Aalborg, Aalborg, Denmark)).   

Prior to the experiments described here, the reactor was operated for over 500 days while being 

fed synthetic anaerobic membrane bioreactor effluent, which contained ammonium (50 mg N/L), 

methane at saturation, volatile fatty acids (30 mg chemical oxygen demand (COD)/L, equal parts 

propionate and acetate), and sulfide (5 mg/L as S). The reactor was inoculated with a blend of 

sludge from a sidestream anammox based DEMON (DEamMONification) process and a 

mainstream activated sludge process performing ammonia oxidation with NOB suppression 

(Regmi et al., 2015), both provided by the Hampton Roads Sanitation District (Virginia Beach, 

Virginia). During this phase, the reactor achieved moderate nitrogen removal (40-60%) (Delgado 
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Vela et al., 2015a). On day zero for the experiments described here, suspended growth was 

aggressively removed, which caused a significant fraction of the biofilm to detach, and volatile 

fatty acids were eliminated from the reactor feed. On days 9 and 15, the reactor was re-inoculated 

with activated sludge from an Anaerobic-Anoxic-Aerobic activated sludge process (Ann Arbor, 

MI) by adding 5 mL of concentrated and washed mixed liquor, then turning down the recirculation 

pump for 24 hours to allow for adhesion of the inoculum to the membrane.   

4.4.2 Reactor influent and operation 

The reactor was operated to simulate treatment of an effluent from a mainstream anaerobic process. 

Synthetic influent (twenty liters) was prepared by first combining 20 mL of the acidic trace metals 

and basic trace metals solution. The acidic trace metals solution consisted of (per liter): 

CoCl2·6H2O, 280 mg; ZnSO4·7H2O, 340 mg; H3BO3, 37 mg; MnCl2·4H2O, 110 mg; AlCl3·6H2O, 

28 mg; NiCl2·6H2O, 140 mg; CuCl2·2H2O, 100 mg. The basic trace metals solution consisted of 

(per liter): (NH4)2MoO4·4H2O, 160 mg; Na2SeO4, 22 mg; Na2WO4·2H2O, 39.5 mg. Twenty mL 

of a NaEDTA stock was added to the trace metals mixture, followed by 100 mL of a 56 g/L 

ammonium bicarbonate stock solution to achieve a final ammonium concentration of 50 mg N/L. 

After mixing, 20 mL of a divalent cation solution was added and contained (per liter): CaCl2·2H2O, 

5g; MgCl2·6H2O, 33 g; KCl, 16 g; KH2PO4, 11 g.  The synthetic influent was diluted with 

deionized water for a final volume 20 L to which 65 mL of 1 N HCl was added.  The solution was 

then sparged with methane for 25 minutes to both saturate with methane and purge dissolved 

oxygen. Sparging stripped the influent of carbonate; therefore, 95 mL of a 30 g/L sodium 

bicarbonate stock was added after sparging.  Additionally, 20 mL of a 6.6 g/L FeSO4·7H2O stock, 

which was stored in an anaerobic glove chamber to prevent Fe (II) oxidation, was added. The 

influent was sparged with methane for 5 more minutes after sodium bicarbonate and iron addition. 

The synthetic influent was prepared approximately every two days using glassware that was 

autoclaved prior to influent preparation.  

For the first 120 days of operation (Phase A), a nitrifying biofilm was established with steady 

increases in influent ammonium loading (Appendix B, Figure B3 and Table B1). After this initial 

period, phase B was begun with stepwise increases in the sulfide concentration over the course of 

299 days (Table B1). To minimize precipitation, sodium sulfide was added via a separate 
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peristaltic pump to achieve the desired influent concentration. The sulfide feed was made using a 

sodium sulfide nonahydrate stock (5 g/L as sulfur) stored in an anaerobic chamber.  The feed jar 

with sodium sulfide was connected to a gas bag with nitrogen gas to prevent aerobic oxidation.  

4.4.3 Bulk reactor rate experiments  

To obtain rates for nitrification, nitrate reduction, and DNRA, we conducted experiments with 15N 

labeled nitrogen (> 98% purity, Sigma Aldrich). The reactor was emptied, refilled with influent 

containing 15N labeled nitrogen, and operated in batch mode with recirculation but no new influent 

for two hours. Initial rates of reaction were obtained during the batch experiments and, 

consequently, represent potential rates of oxidation and growth, not extant rates. The benefit of 

conducting the experiments in this manner is that multiple substrate profiles could be assessed in 

replicate experiments.  

Three batch experiments were conducted in duplicate with and without sulfide in the influent (12 

batch experiments total). To obtain rates of ammonia oxidation the influent contained labeled 

ammonia and unlabeled nitrite (Experiment A). Ammonium oxidation rates were based on 15NO2
- 

production.  Experiment B was used to obtain rates of nitrate reduction with labeled nitrate, 

unlabeled nitrite, and unlabeled ammonia, and measuring 15NO2
- produced.  Experiment C 

included feeding labeled nitrite and unlabeled nitrate to obtain rates of nitrite oxidation based on 

15NO3
- production. DNRA rates were measured in Experiments B and C by measuring the rate of 

15NH4
+ production. Standard protocols were used to measure 14N-nitrite, -nitrate and -ammonium. 

Measurements of these nutrients were used to correct the isotope labeling ratio throughout the 

experiments.   

To initiate an experiment, the reactor was filled with new influent, which took between 15 and 20 

minutes.  It is likely that biologically-mediated oxidation started before mixing (via recirculation 

pump) could begin. However this potential activity is ignored in the rate calculations and time zero 

used in plots and in rate calculations was taken to the time at which mixing was turned on. In this 

way, the rates calculated are a conservative estimate of rates. The reactor was sampled immediately 

after the recirculation pump was turned on and 10, 30, 60, 90, and 120 minutes thereafter. The 

time between the experiments was at a minimum equivalent to four hydraulic residence times 
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(HRT=5.1 hours) to minimize the residual label in the bioreactor. To correct for any residual label 

from the previous experiment, the reactor was also sampled approximately 30 minutes before the 

experiment and a few hours after the experiment was over. Any labeled substrate or product 

measured in the samples taken before the experiment began, were used as initial concentrations in 

rate calculations. Since the reactor was emptied prior to adding new influent, this is a conservative 

approach and accounts for any residual label.  All the experiments with sulfide were conducted 

first, between days 547 and 552. Sulfide was removed from the influent long enough for effluent 

nitrogen to mimic previous sulfide-free operation (2 days), then experiments without sulfide were 

conducted on days 557-562.  

Collected samples were filtered (0.2 µm PES, Titan3TM, Thermo Fisher Scientific) and measured 

for pH. To avoid introducing air into the recirculation line, the liquid taken for each sample was 

replenished with either sodium bicarbonate or distilled water (depending on if any pH adjustment 

was needed). The volume replenished was tracked and used to correct the dilution in the final rate 

calculations. Samples were frozen and shipped to the University of Southern Denmark, Odense, 

Denmark for analysis. Methods for isotope analysis have been previously described (Bristow et 

al., 2016). Briefly, for analysis of 15NO3
-, residual 15NO2

- was first removed from the sample using 

sulfamic acid (Füssel et al., 2012), followed by cadmium reduction to convert 15NO3
- to 15NO2

- 

and sulfamic acid to reduce the 15NO2
- to N2 (McIlvin and Altabet, 2005).  This preparation process 

produced 14N15N and 15N15N forms of N2, and were measured using a gas chromatography-isotope 

ratio mass spectrometer (GC-IRMS) (Dalsgaard et al., 2012). 15NH4
+

 was analyzed using GC-

IRMS by converting the labeled ammonium to 14N15N and 15N15N  using hypobromite 

(Warembourg, 1993).  

For experiments with sulfide in the influent, samples for sulfide analysis were collected separately 

immediately after nitrogen samples.  Samples were collected, stored, and analyzed according to 

method 4500-S2- G in Standard Methods(APHA et al., 2005). Sulfide samples were diluted (2x) in 

sulfide antioxidant buffer. They were immediately transferred to the anaerobic chamber, filtered 

(0.45 µm, nitrocellulose filter, Fisher Scientific), and preserved in the dark. All samples were 

analyzed within 24 hours. Sulfide was analyzed using a silver sulfide electrode (Thermo Scientific, 
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Orion) that was calibrated by making standards with a 3% (w/v) sodium sulfide stock solution 

(Ricca Chemical Company), according to method 4500-S2- G (APHA et al., 2005). 

4.4.4 Biomass sampling, DNA extraction, qPCR, and metagenomic sequencing 

Biofilm samples were collected by opening the top flange of the reactor and carefully scraping the 

lumen of the membrane. When there was sufficient planktonic growth, biomass samples from the 

monitoring probe flow cells were also collected. Duplicate biomass samples collected during 

reactor operation on days 117, 249, 368, 479 were submitted for sequencing. In addition, samples 

were taken when the reactor was decommissioned (day 565). Duplicate samples taken from the 

outer membranes at a midpoint vertical height and from biomass that had settled at the bottom of 

the reactor chamber were submitted for sequencing. DNA extractions were performed by 

combining bead beating with the Maxwell automatic DNA extractor as described in Chapter 3, 

section 3.3.5.   

Gene copies of bacterial ammonia monooxygenase (amoA), 16S rRNA, Nitrospira nitrite 

oxidoreductase genes (nxrB), anammox 16S genes, and comammox clade A amoA genes were 

quantified in triplicate using qPCR. Purified products from PCR reactions on reactor samples were 

used as standards for the qPCR reaction. For all qPCR targets except the 16S rRNA gene, standards 

were confirmed using Sanger Sequencing. Positive controls (DNA extracts from a nitrifying 

enrichment culture for AOB and Nitrospira (Stadler and Love, 2016), DEMON sludge for 

anammox, drinking water biofilter for comammox (Pinto et al., 2015), or genomic DNA from 

Pseudomonas aeruginosa pure culture for 16S) and duplicate no-template controls were analyzed 

on each qPCR plate.  Details on qPCR conditions and primers are given in Appendix B.   

Samples were submitted for sequencing on the Illumina HiSeq 4000 platform with 150 base pair 

paired-end reads with a target insert size of 350 base pairs at the University of Michigan DNA 

Sequencing Core. DNA was fragmented using standard Covaris sonication (Covaris, Woburn, 

MA). Fragmented DNA was then prepared as a standard Illumina library using Wafergen reagents 

on the Apollo 324™ instrument, where the fragments are end repaired, A tailed, and adapter ligated. 

Then, the samples are PCR amplified and pooled.  Final libraries were checked for quality and 

quantity by TapeStation (Agilent, Santa Clara, CA) and qPCR using Roche’s library quantification 
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kit for Illumina Sequencing platforms (catalog # KK4835). They were clustered on the cBot 

(Illumina) and were pooled and sequenced on a 300 cycle paired end run on a HiSeq 4000 using 

software version 3.4.0.38. 

4.4.5 Whole genome assembly and annotation 

Raw sequencing reads were dereplicated (100% identity over 100% of the length for both forward 

and reverse reads), trimmed using Sickle (Joshi and Fass, 2011), and adaptors were removed using 

Scythe version 0.994-4. Trimming removed 5 ± 1 % of the data. Whole genome de novo assembly 

was performed on pooled duplicate samples using MEGAHIT v 1.1.2 (Li et al., 2015) with 

mink=27, maxk=87, and a step size of 10. Assembled data resulted in 390,000 ± 78,000 contigs 

(of which 150,000 ± 29,000 contigs were > 1,000 bp). The N50 of the assembled contigs was 3,600 

± 490 bp. Reads were mapped to assembled contigs using the Burrows-Wheeler Aligner (BWA 

version 0.7.15) and default parameters (Li and Durbin, 2009). The mapped read counts were 

extracted using SAMtools version 1.3.1 (Li et al., 2009). Each duplicate sample was mapped to 

the pooled assembly separately. Gene calling on assembled data was performed using Prodigal 

v2.6.2. The predicted amino acid sequences were then compared to a custom database of relevant 

functions (Appendix B, Table B4) using BLASTp. The database was generated using relevant 

functions from whole genomes of taxa represented in previously analyzed 16S rRNA gene 

amplicon sequencing data. The outputs were filtered based on an alignment length of at least 100 

amino acids, bitscores above 250 and percent identities greater than 50%. Gene annotation was 

confirmed by manually checking the annotations against the entire NCBI non-redundant database. 

Assembled data were submitted to the DOE JGI-IMG/MER annotation pipeline (GOLD Study ID 

Gs0134229). To determine relative abundances of genes, coverages were normalized to the 

coverage of the rpoB gene and the length of the genes.  

4.4.6 Metagenomic binning and pangenome analysis  

The annotation and blast analysis revealed that genome coverages of important organisms were 

high (greater than 200x coverage). To improve the assembly and binning on important organisms, 

trimmed reads were subsampled and reassembled as previously described (Hug et al., 2016). 

Subsampling percentages were based on the coverage of markers of important metabolisms with 

the goal of obtaining a coverage between 15x and 25x. Reads were downsampled between 10 and 
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50% to achieve this goal. Assemblies and mapping on downsampled reads were performed using 

the same methods as the complete samples. CONCOCT v0.4.1 was used to bin assembled reads 

using default parameters. Bin completeness and contamination were evaluated using CheckM 

v1.0.11 and PhyloSift was used to taxonomically classify bins. Metagenome assembled genomes 

were compared to existing draft and complete genomes from the literature based on average 

nucleotide identities using MASH clustering (Ondov et al., 2016) and dRep v2.0.5 (Olm et al., 

2017). Differences between genomes were assessed using the pangenome workflow (Delmont and 

Eren, 2018) of Anvi’o version 4 (Eren et al., 2015). NCBI’s BLASTp was used to calculate protein 

similarities. Weak matches were eliminated using the minbit heuristic (Benedict et al., 2014), and 

the MCL algorithm was used to cluster proteins (van Dongen and Abreu-Goodger, 2012).  

4.4.7 Statistical analysis 

Associations between gene coverages and sulfide concentration were tested using a repeated 

measures ANOVA and corrected for multiple comparisons using the Benjamani-Hochberg 

correction factor. Differences in rate measurements were tested using a two-sided t-test. The R 

environment was used to analyze all data (R Core Team, 2016).  
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THE IMPACT OF SULFIDE ON THE PERFORMANCE OF A MEMBRANE AERATED 

BIOFILM REACTOR  

Jeseth Delgado Vela1, Kelly J. Gordon2, Zerihun A. Bekele1, Judith Klatt3, Greg Dick4, Nancy 
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5.1 Abstract 

As the population in coastal communities continues to increase and nitrogen regulations become 

more stringent in these coastal regions, innovation can help build more resource efficient 

wastewater treatment. An emerging innovation in the wastewater treatment field is the application 

of membrane aerated biofilm reactors (MABRs) as low-energy and small-footprint technologies. 

MABRs use membranes to supply diffused oxygen to a bioreactor and to support a biofilm that 

removes nitrogen. The purpose of this study was to evaluate the impact of sulfide on nitrogen 

cycling in a MABR. Influent sulfide was increased stepwise into a nitrifying MABR over 420 

days, resulting in higher effluent ammonium concentrations. In addition, nitrous oxide emissions 

were higher when sulfide was in the influent. We show that apparent inhibition of nitrification was 

likely magnified by the presence of dissimilatory nitrate/nitrite reduction to ammonia (DNRA).  

Lastly, modeling was used to evaluate the potential importance of DNRA using nitrite or nitrate 

as an electron acceptor. Results show that future experimental work is needed to determine the 

sulfide to nitrogen ratios that select for denitrification or DNRA, because this affects model 

outcomes. In general, the results described here are an initial step for implementing coupled sulfur 

and nitrogen cycling in a membrane aerated biofilm reactor for wastewater treatment.   
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5.2 Introduction 

There is growing interest in linking the carbon, nitrogen, and sulfur cycles for biological 

wastewater treatment. This could be advantageous in parts of the country that are facing stringent 

effluent nitrogen requirements and must add external carbon to meet regulations.  Using hydrogen 

sulfide as an electron donor for denitrification can reduce the need for external carbon. Using 

sulfide for denitrification is appropriate for wastewaters that have relatively high concentrations 

of sulfur such as systems under the influence of seawater intrusion into sewers or systems that use 

seawater for toilet flushing as a water conservation strategy. Sulfide-rich wastewater would also 

result from anaerobic treatment processes because sulfate reducing bacteria convert the sulfate to 

hydrogen sulfide. For these reasons, there is ongoing research on harnessing sulfide as an electron 

donor for denitrification (Guo et al., 2016; Kalyuzhnyi et al., 2006; Sahinkaya et al., 2014; 

Sánchez-Ramírez et al., 2014; Souza and Foresti, 2013; Wang et al., 2009; Yang et al., 2016a). 

Many published studies have focused on two stage nitrogen removal but there have been relatively 

few studies evaluating the impact of hydrogen sulfide on nitrogen removal in single-stage nitrogen 

removal reactors that support oxic and anoxic environments (Moraes et al., 2012; Xue et al., 2017).   

One challenge with using hydrogen sulfide as an electron donor for denitrification is that sulfide 

is known to inhibit both anammox and heterotrophic denitrifiers (Russ et al., 2014; Sorensen et 

al., 1980). Inhibition constants for anammox bacteria are as low as 0.32 mg/L as S (Russ et al., 

2014). However inhibition is not always observed and active anammox bacteria can be found in 

the presence of sulfide (Jones et al., 2017; Russ et al., 2014). In these studies, sulfide oxidizing 

bacteria reduce the concentrations of sulfide to below inhibitory levels and reduce nitrate to 

ammonium (Jones et al., 2017) or nitrite (Russ et al., 2014), providing necessary substrates for 

anammox growth.  In heterotrophic denitrification, sulfide can inhibit the nitrous oxide reductase 

enzyme (Schonharting et al., 1998; Sorensen et al., 1980), which would increase nitrous oxide 

(N2O) emissions (Liu et al., 2016; Zhang et al., 2015). Similar to annamox inhibition, increased 

N2O due to sulfide is not always observed (Yang et al., 2016b). Understanding what is driving 

sulfide-induced N2O emissions is critical because N2O is almost 300 times more potent a 

greenhouse gas than CO2 over a 100 year timescale (Solomon et al., 2007). Furthermore, in the 

U.S., emissions of N2O during wastewater treatment have been increasing over the past 10 years 
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(U.S. Environmental Protection Agency, 2017), and N2O can represent more than half of the total 

greenhouse gas emissions from wastewater treatment processes (Foley et al., 2010). The use of 

sulfide as an electron donor for denitrification necessitates an improved understanding of how to 

minimize sulfide inhibition to avoid higher N2O emissions and diminishes anammox activity.   

Sulfide also inhibits nitrification processes (Erguder et al., 2008; Zhou et al., 2014). However, one 

aspect that complicates our understanding of sulfide inhibition of nitrification in mixed redox 

environments is that sulfide can induce dissimilatory nitrate reduction to ammonium (DNRA) 

(Brunet and Garcia-Gil, 1996).  At higher sulfide/N ratios, nitrate gets reduced to ammonium, 

while at lower sulfide/N ratios denitrification occurs (Dolejs et al., 2014; Yin et al., 2015). 

Importantly, it is difficult to differentiate between increases in effluent ammonium due to its by 

DNRA and its accumulation due to nitrification inhibition. Multiple redox environments in close 

proximity can further obfuscate differentiating between these processes. In Chapter 4 we 

demonstrated rapid sulfide-induced DNRA in a mixed-redox biofilm system—rates of DNRA 

could be higher than rates of ammonia oxidation. Therefore, in mixed redox environments, it is 

important to consider that DNRA may appear to be sulfide inhibition of nitrification.  

In this study, we tested the impact of stepwise sulfur increases on nitrogen cycling in a membrane 

aerated biofilm reactor (MABR) over 420 days. In an MABR reactor configuration, air is supplied 

to a biofilm by oxygen permeable membranes. This system provides multiple redox environments 

that support the growth of both aerobic and anaerobic metabolisms (Downing and Nerenberg, 

2008; Gilmore et al., 2013). The electron donor and acceptor flow into the biofilm in opposite 

directions, so unlike conventional biofilms used in wastewater bioprocesses, MABRs uniquely 

maintain a counter-diffusional biofilm. In this counter-diffusional biofilm, sulfide is amended into 

an anoxic bulk liquid, preventing rapid sulfide oxidation with oxygen. Furthermore, membrane 

aeration eliminates gas stripping, preserving hydrogen sulfide in the liquid phase. Together, these 

features of an MABR enable the use of sulfide as an electron donor for denitrification. Here, we 

show that nitrification was inhibited by sulfide in the MABR but we suggest that the extent of 

nitrification inhibition appeared higher due to the activity of DNRA. We used one-dimensional 

biofilm modeling to evaluate the potential impact of DNRA in the MABR. From this, we found 

that nitrate based DNRA is more likely to be important, but more work is needed to understand 
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the metabolic switch between denitrification and DNRA and to evaluate electron donors for DNRA 

beyond sulfide.  In addition, we observed increased nitrous oxide emissions in the presence of 

sulfide, indicating inhibition during the last step of denitrification. We show that metal 

precipitation occurred and may also be an indirect mechanism of inhibition. Overall, we present 

advantages and impediments that need to be addressed for the implementation of coupled sulfur 

and nitrogen cycling in a membrane aerated biofilm reactor for wastewater treatment.   

5.3 Materials and Methods 

5.3.1 Sample analysis 

The MABR was inoculated and operated as described in Chapter 4. Approximately three times per 

week, samples were collected in the recirculation line of the reactor. All samples were filtered 

using a washed 0.45 µm nitrocellulose filter (Fisher Scientific), and analyzed for multiple soluble 

inorganic species based on Standard Methods (APHA et al., 2005). The phenate method (method 

4500-NH3 F) was used to determine ammonium concentrations.  Nitrite was determined 

colorimetrically (method 4200-NO2
- B), and ion chromatography was used to determine nitrate 

and sulfate concentrations (method 4110-B). Iron, molybdenum, and copper were monitored 

because these metals readily precipitate with sulfide and are in the active site of nitrifying enzymes 

(Gilch et al., 2009; Meincke et al., 1992; Zahn et al., 1996). For analysis of these metals, samples 

were acidified (1% nitric acid) and analyzed via ICP/MS according to methods 3010, 3125B, 

3111B, and 3111D (APHA et al., 2005).  Approximately every two weeks, samples were collected, 

stored, and analyzed for sulfide according to method 4500-S2- G. Sulfide samples were diluted 

(2x) in sulfide antioxidant buffer, were immediately transferred to the anaerobic chamber, filtered 

(0.45 µm) and preserved in the dark. All samples were analyzed within 2 hours. Sulfide was 

analyzed using a silver sulfide electrode (Thermo Scientific, Orion) that was calibrated by making 

standards with a 3% (w/v) sodium sulfide stock solution (Ricca Chemical Company), according 

to method 4500-S2- G (APHA et al., 2005). In addition to analyzing inorganic species influent and 

effluent dissolved methane were sampled and analyzed approximately weekly using established 

methods (Rudd et al., 1974). Briefly, 30 mL of sample was collected into a vial with 30 mL of N2 

gas. The syringe was shaken by hand for 1 min to strip dissolved methane into the gas phase. The 

gas phase was analyzed immediately using gas chromatography with a flame ionization detector. 
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From days 509-519 was cycled on and off twice at 24-hour intervals to test the impact of a short-

term pulsing condition. Samples for nitrogen, sulfide, metals, and sulfate were collected 30 

minutes, 5 hours, 10 hours, and 23.5 hours after each change in sulfide concentration and analyzed 

according to the methods identified previously.  

5.3.2 Microsensor measurements 

Microsensors were used to evaluate the profiles of sulfide, nitrous oxide, and oxygen in the reactor. 

Microsensor data were collected on days 505 and 545 at sulfide concentrations of 0 and 10 mg/L 

as S. For hydrogen sulfide and oxygen profiles, custom-made microsensors were built and 

calibrated as previously described (Jeroschewski et al., 1996; Revsbecht and Ward, 1983) with tip 

diameters of 50 and 15 µm, respectively. Microsensor signals of the O2 and H2S sensors were 

processed by a custom-made picoampermeter and recorded with the Profix software (PyroScience, 

Aachen, Germany).  For pH and nitrous oxide measurements, commercially available 

microsensors with 25 µm diameter tips were used (Unisense, Aarhus, Denmark). The N2O and pH 

microsensors were calibrated according to manufacturer’s instructions.   Signals were processed 

with a Unisense multimeter and the Unisense SensorTrace Logger software. Calculation of total 

sulfide from the local H2S concentrations and pH was carried out according to Millero (1986), 

using the pKa value of 7.04 (Jeroschewski et al., 1996; Wieland and Kühl, 2000).  

Oxygen profiles were measured in intervals as low as 25 µm. The datum was taken to be the point 

of membrane deflection and profiles (at least 5) were made after the datum was established 

(Gilmore et al., 2009). The measured oxygen concentration at the point of membrane deflection 

(datum) was used to calculate the mass transfer of oxygen into the biofilm (oxygen flux). Oxygen 

flux was calculated by assuming the oxygen in the lumen was at saturation. This is justified 

because our flow-through MABR design allowed for constant air flow through the lumen (35 

mL/minute); the gas residence time through the lumen was 3.7 seconds. This is significantly lower 

than a similarly designed system where a gas residence time of 3 minutes was sufficient to ensure 

oxic regions across the length of the reactor (Gilmore et al., 2009). While operating with this rapid 

gas flow did not maximize oxygen transfer efficiencies, the intent was to maintain a uniform 

oxygen gradient across the length of the biofilm and maximize the extent of oxygen mass transfer. 

The tradeoffs between oxygen mass transfer (i.e. flux) and oxygen transfer efficiencies (i.e. flux 
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relative to air supplied) have previously been described (Martin and Nerenberg, 2012; Perez-

Calleja et al., 2017).  

The flux through the lumen was calculated using the following equation:  

𝐽𝑂2 =
(𝑆𝑙 − 𝑆𝑚) ∗ 𝐷

𝑡
 

Where Sl is the oxygen concentration in the lumen (assumed to be at saturation at room 

temperature, 8.3 mg/L), and Sm is the measured oxygen concentration at the datum. D is the 

diffusion coefficient of oxygen for the membrane material  which has previously been determined 

to be 2.22 X 10-5 cm2/s (Gilmore et al., 2009), and t is the thickness of the membrane, 0.06 cm.  

5.3.3 Statistical analysis 

Associations between effluent parameters and sulfide were assessed using a repeated measures 

ANOVA. Differences in oxygen fluxes and nitrous oxide emissions were tested using the 

Wilcoxon rank sum test. All p values were corrected for multiple comparisons using the 

Benjamani-Hochberg correction factor.  

5.3.4 One-dimensional biofilm model 

A one-dimensional biofilm model was developed using the well-established AQUASIM software 

(Reichert, 1994). The details of the kinetic equations and the parameters used are provided in 

Appendix C, Tables C1, C2, C3, and C4. The model simulation included relevant metabolisms: 

AOB, NOB, aerobic methanotrophs, denitrifying anaerobic methane oxidizers (nitrite and nitrate 

utilizing), anammox, aerobic heterotrophs, sulfide oxidizing bacteria, sulfate reducers, and sulfide-

based denitrifiers (nitrite and nitrate utilizing).  To calibrate the model, the parameters targeted for 

calibration were identified first using the normalized absolute-relative sensitivity function within 

AQUASIM. This function identifies how much each kinetic parameter impacts the simulated 

steady-state effluent total nitrogen concentrations (sensitivity and uncertainty). The sensitivity of 

the kinetic  parameters were ranked to determine which parameters would be used for model 

calibration (Appendix C, Table C7). The three parameters that had the largest impact on the 

effluent ammonium, nitrite, and nitrate concentrations (top sensitivity ranking) were selected for 

parameter estimations. To test the potential importance of DNRA a switching function was added 
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between denitrification and DNRA with sulfide as an electron donor. The details of this function 

are outlined in Appendix C, Tables C5 and C6.   

To conduct parameter estimation, effluent ammonia, nitrite, nitrate, and methane concentrations 

were randomly generated based on the distribution of effluent from the lab-scale bioreactor when 

the influent sulfide was 2 mg/L. This influent sulfide concentration was selected the 2 mg/L 

feeding regime had the highest number of effluent data points and allowed for model calibration. 

The simplex technique within AQUASIM’s parameter estimation tool was used to estimate 

parameters based a randomly generated effluent. From this, we obtained a distribution of expected 

values for each parameter based on estimations from 200 distinct randomly generated effluent 

concentrations. Using this procedure, we calibrated the model while accounting for the variation 

and random effects in the lab-scale bioreactor (Appendix C, Figure C2). The parameter estimates 

were constrained by the upper and lower limits of values found in the literature (Delgado Vela et 

al., 2015). Following parameter estimation, the model calibration was validated by testing 

simulations across the range of influent sulfide concentrations utilized during the physical MABR 

experiments and evaluating whether model outputs were within the range of experimental results.  

The validation results are given in Appendix C, Figure C3. 

5.4 Results and Discussion 

5.4.1 Higher levels of effluent ammonium were observed as a result of sulfide addition.  

Over the stepwise increases in sulfide that lasted 420 days, we observed a decrease in the extent 

of ammonium oxidation, as measured by both increased ammonium and decreased nitrate in the 

effluent (Figure 5-1A). For example, 70±20% of the influent ammonium was oxidized prior to 

sulfide addition, but at the end of stepwise sulfide increases only 40±10% of influent ammonium 

was oxidized (ANOVA p<0.001). Sulfide was significantly associated with the concentrations of 

both effluent ammonium and nitrate (ANOVA p<0.001) specifically; increases in sulfide led to 

increased effluent ammonium and decreased effluent nitrate concentrations. Initially, a loss of 

ammonium oxidation could be observed with an increase in sulfide to just 0.1 mg S/L. Ammonium 

oxidation subsequently recovered, and it took higher concentrations of sulfide (between 2 and 3 

mg/L as S) to reach the same effluent ammonium concentrations that were observed when influent 

sulfide was 0.1 mg S/L.  This implies that there was an initial inhibition shock, but the nitrifiers 
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subsequently adapted to sulfide. Furthermore, we found that when ammonium concentrations  

were elevated due to the presence of sulfide, the higher ammonium levels were maintained even 

after the sulfide concentration was reduced; therefore the extent of nitrification did not return to 

pre-sulfide levels over reactor operation (Figure 5-1, shaded region). The sustained increases in 

effluent ammonium after sulfide addition is similar to a previous study (Erguder et al., 2008). In 

both this study and previous studies, sulfide inhibition of ammonia oxidation was sustained even 

after sulfide was removed from the influent, but we do not know the mechanism for this 

phenomenon.   

One potential explanation for the loss of nitrification is that sulfide is rapidly oxidized aerobically 

through both biotic and abiotic processes and exerts an oxygen demand that competes with 

nitrification. Assuming that sulfide was fully oxidized to sulfate (Appendix C, Figure C4, average 

recoveries are 99 ± 27 %), and that ammonium was oxidized completely to nitrate (no nitrite 

accumulation, Figure 5-1) stoichiometric calculations predict that the additional oxygen demand 

due to sulfide would only account for a 9% loss of nitrification (calculations summarized in 

Appendix C). This is less than the loss of nitrification we observed (30% of the influent nitrogen). 

Furthermore, the molecular evidence from Chapter 4 suggest that the sulfide was oxidized 

biologically in anoxic regions of the bioreactor by denitrifying organisms, so sulfide would not 

exert an oxygen demand. In fact, measured oxygen fluxes significantly decreased with the addition 

of sulfide from an average oxygen flux of 2.1±0.4 g O2/m
2-day in the absence of sulfide to 1.4±0.2g 

O2/m
2-day when sulfide was present (Appendix C Figure C5, Wilcoxon p<0.05). For these reasons, 

oxygen limitation due to the addition of sulfide is not a likely mechanism of nitrification inhibition.  
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Figure 5-1. Effluent nitrogen quality. Top left is sulfide feeding regime during stepwise increases and subsequent 

experiments (shaded). Bottom left is sulfide during stepwise increases in sulfide. Bottom right is after stepwise 

experiments were complete (shaded timeframe in top left).   

In contrast to Chapter 3 and other studies of nitrification in the presence of sulfide (Bejarano-Ortiz 

et al., 2015; Erguder et al., 2008), nitrite accumulation was not observed. Most previous studies of 

sulfide inhibition of nitrification were conducted under batch conditions. We therefore chose to 

test whether nitrite accumulation would occur in the MABR under short term pulses. We found 

that even under 24-hour sulfide pulses, there was no nitrite accumulation in the reactor (Figure 5-

2). However, ammonium increased and nitrate decreased during the 24-hour period. It is worth 

noting that the pulse experiment occurred after the long-term experiment (days 509-512). 

Therefore, the response from nitrifying populations was likely affected by the history of sulfide 

exposure. The findings may have been different if the pulse experiment was done before the long-

term step increases in sulfide.  In any case, the results from these short-term pulse experiments 
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confirm that even under short-term exposures, sulfide increased effluent ammonia concentrations 

and reduced effluent nitrate, but did not result in nitrite accumulation.  

 

Figure 5-2. Effluent concentrations under short-term pulses of sulfide (Phase D-1). Ammonium, nitrite, nitrate, and 

sulfate are on the left plot; Trace metals (molybdenum, copper, and iron) are on the right plot. The solid black line 

represents the influent concentration of sulfide during the experiment.  

DNRA would make bulk liquid profiles appear as a loss of nitrification, and a previous study of 

this MABR system (Chapter 4) indicated that DNRA with nitrite as the electron acceptor was very 

favorable in the presence of sulfide.  To further evaluate if DNRA was possible, we conducted a 

stoichiometric analysis comparing oxygen fluxes and measured effluent data. Since sulfide was 

consumed in the anoxic regions and there was no change in methane oxidation, the decreases in 

oxygen fluxes are assumed to be associated with reduced oxygen consumption due to sulfide-

inhibition of nitrifying organisms because nitrifying organisms. Measured changes in oxygen 

fluxes result in a 33% reduction in oxygen consumption. However, for the extent of inhibition 

observed, oxygen fluxes should be reduced by 43% percent, assuming complete nitrification to 

nitrate (calculations detailed in Appendix C). Therefore, the stoichiometrically-determined 

decrease in oxygen consumption for nitrification in the presence of sulfide inhibition was larger 

than the measured decrease in oxygen flux. Stoichiometry predicts that DNRA with sulfide as the 

electron donor and nitrite as the electron acceptor would result in an increase of ammonium 

concentrations to 5.8 mg N/L, which is less than the observed increases of 12 mg N/L. Figure 5-

3A shows the combination of these calculations. The results show that there was likely some 
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combination of DNRA and nitrification inhibition due to sulfide that contributed to the observed 

effluent ammonium concentration.  Furthermore, we previously showed that DNRA rates were 

almost 50% faster than ammonia oxidation rates when sulfide was present, thus DNRA is an 

important process to consider in this system. An important distinction between these two studies 

is that in Chapter 4 the DNRA rates were determined when the reactor was operated in batch mode, 

so the initial sulfide exposure was higher (10 mg/L at the beginning of the experiment) than what 

was observed throughout this study. In addition, operating in batch mode will create a different 

physiological state by the bacteria and, possibly, different metabolic outcomes. However, in 

combination with the rates and genetic markers discussed in Chapter 4, this analysis indicates that 

DNRA was likely contributing to the observed accumulation of ammonium.  

A)  

 

B)  

 

 

Figure 5-3. A) Comparison of observed differences in effluent ammonium (0 vs 10 mg S/L in influent) compared 

with theoretical contributions of inhibition (based on change of oxygen flux) and DNRA (assuming all sulfide is 

used to reduce nitrite to ammonia) B)Comparison of observed differences in effluent ammonium for sulfide-pulse 

experiments (first data point versus last data point for each pulse) and potential DNRA calculated from the sulfate 

produced over that time period assuming nitrite is electron acceptor. All calculations summarized in Appendix C. 

An additional line of evidence supporting the presence of DNRA in this system is the close 

association between effluent sulfate and effluent ammonium during the pulse experiment (Figure 

5-2), especially evident the initial pulse.  As shown in Figure 5-3B, based on the increase in sulfate, 

0

5

10

15

20

Experimental
difference in

effluent ammonium

Theoretical
Calculations

m
g 

N
/L

Expected Inhibition based on differences in
oxygen flux
Observed Inhibition

0

5

10

15

20

Pulse 1 Pulse 2

m
g 

N
/L

Experimental difference in effluent ammonium

Potential Ammonium from DNRA



 
 

107 

 

 

effluent ammonium exceeds the potential ammonium produced from DNRA. During these 

experiments, the rates of ammonium production (1 ±0.4 mg N/L-hr, average between first and 

second pulse) exceed the rates of sulfate production (0.3 ± 0.2 mg S/L-hr). For a DNRA process 

using nitrite as an electron acceptor, the molar ratio of sulfate to ammonium is 3:4. Therefore, this 

rate of sulfate production would produce ammonium at a rate of 0.2 ± 0.1 mg N/L-hr. These results 

indicate that sulfide-based DNRA is not the only reason for ammonium accumulation during the 

pulse experiments. However, these predicted rates are plausible as they are well below the 

predicted rates based on experiments from Chapter 4 (2 ± 0.4 mg N/L-hr). In these calculations 

(Figure 5-3) from both the long-term operation and the pulse experiments, DNRA had the potential 

to account for up to 50% of the effluent ammonium observed in the reactor. The DNRA potentials 

we have presented assume sulfide is being used as the electron donor. As indicated in Chapter 4, 

methane-based reduction of nitrite to ammonium would contribute to additional effluent ammonia 

and warrants further study. Overall, the results show that the effect of DNRA can be significant 

and needs to be accounted for in processes that aim to use sulfide for denitrification. 

An additional point that supports the potential for DNRA masking observed inhibition is the spatial 

distribution of bacteria in the MABR. The nitrifying populations were in the aerobic region, which 

is the innermost portion of the biofilm. Our bulk liquid sulfide measurements and microsensor 

profiles showed that the bulk liquid concentration of sulfide in the reactor was low. The bulk liquid 

sulfide measurements were below the detection limit of the silver/sulfide electrode(<0.6 mg S/L) 

over the course of reactor operation, and the microsensor measurements in the bulk liquid were 

0.5 ±0.4 mg S/L. Using the most conservative inhibition parameters that were previously 

determined (7.4 mg S/L for AOB (Delgado Vela et al., 2018)), we predict that AOB inhibition 

would be 6 percent at most (calculations detailed in Appendix C), whereas our observed increases 

in ammonium concentration were 30 percent.  Inhibition constants were generated in batch 

cultures, so long-term inhibition may be different. Furthermore, there was a loss of nitrifying 

populations as sulfide increased (Chapter 4), so some degree of inhibition did contribute to the loss 

of ammonium oxidation. Nevertheless, the observed inhibition is higher than what one would 

predict given the inhibition constants that are available in the literature.  
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To effectively utilize sulfide as an electron donor during wastewater treatment we need to 

understand the conditions where sulfide-induced DNRA exceeds denitrification. Previous studies 

of wastewater treatment systems have shown that DNRA occurs when sulfide to NO3
--N ratios are 

above 1.6-3 g S/g N (Dolejs et al., 2014; Yin et al., 2015). In this study, sulfide was rapidly 

consumed, so sulfide to nitrate ratios were low. However, we did not find sulfide to NO2
- -N ratios 

in the literature that encourage DNRA. Although both effluent sulfide and nitrite were very low, 

the concentration of sulfide exceeded nitrite substantially (4.1±2.02 g S/g N). Overall, these 

findings show that there is an opportunity to use the existing literature to test a dynamic process 

of how to induce denitrification over DNRA in engineered systems. 

5.4.1 Modeling reveals the potential importance of DNRA.  

Biofilm modeling was used to expand our understanding of MABR operation and test operational 

conditions to promote denitrification over DNRA. After calibration, NOB were predicted to two 

times faster µmax values (Appendix C, Table C3) than AOB. Although these values were 

constrained by what is present in the literature (previously reviewed (Delgado Vela et al., 2015)), 

the calibrated NOB was in the upper range of what the literature suggests is possible. This is 

consistent with Chapter 4 where the rates of NOB were an order of magnitude faster than rates of 

AOB. Substrate affinity affects rates of oxidation, so the µmax value is not directly comparable to 

the rates presented in Chapter 4. Nevertheless, the rates still function as an independent validation 

of the model calibration procedure. Despite this independent check of the calibration procedure, 

the outcomes of the model are not representative of the effluent chemistry observed in the lab-

scale bioreactor (Appendix C, Figure C3). The model consistently predicts higher effluent 

ammonia and lower effluent nitrate than what was observed experimentally. This indicates that 

there are some processes occurring that are not captured in our current model.  

We chose to test whether incorporating sulfide-based DNRA would generate results that are more 

consistent with our experimental results. We developed a version of the model that incorporated 

DNRA from nitrite or nitrate using sulfide as the electron donor. To achieve this goal we  

incorporated a switching function based on two studies that determined the ratio of sulfide to 

nitrate needed to go from denitrification to DNRA processes (Dolejs et al., 2014; Yin et al., 2015). 

In this modeling framework, sulfide-based denitrifies will produce ammonium or nitrate, 
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depending on the ratio of sulfide to nitrate. We applied this ratio to both nitrite and nitrate based 

denitrifiers. Results show that the approach used to incorporate DNRA had a minimal impact on 

modeling results (Figure 5-4). DNRA increased ammonium concentrations by at most 1% over 

baseline concentrations and this only occurred when nitrate was the electron acceptor and when 

the denitrification to DNRA switching function was minimized (Figure 5-4, Nitrate Low Switch). 

These results indicated that sulfide-based DNRA is possible in the MABR, but is not sufficient to 

account for observed increases in ammonium. However, future work should focus on a more 

thorough evaluation of the switching function since the value selected can have a significant 

impact on simulated results.  Furthermore, modeling frameworks for alternative electron donors 

for DNRA need to be developed to fully understand the potential impact of DNRA.  

 

Figure 5-4. Results from modeling. Left panel is baseline results. Right panes indicate electron acceptor used for 

DNRA (nitrite or nitrate) and value of critical S to N ratio where DNRA occurs. “Low switch” indicates S to N ratio 

was 1.5; “high switch” indicates S to N ratio was 3.  

5.4.2 The MABR mitigated methane emissions, but sulfide inhibited nitrous oxide reduction.   

To assess the environmental sustainability of using an MABR for anaerobic effluents we tested 

the effect of sulfide on greenhouse gas emissions. Over the course of the experiment on average 

81±15 % of the influent methane was oxidized, and this did not change with increasing sulfide 

concentration. Therefore, the MABR is suitable for mitigating the global warming potential 

associated with methane emissions from mainstream anaerobic effluents. Previous studies have 
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shown that MABRs have low nitrous oxide (N2O) emissions (Gilmore et al., 2013; Peng et al., 

2016) because the counter diffusional nature of the MABR biofilm provides N2O sinks (Kinh et 

al., 2017). However, sulfide inhibition of nitrous oxide reduction causes increased N2O emissions 

(Liu et al., 2016; Zhang et al., 2015) and N2O represents an important contributor to greenhouse 

gas emissions from wastewater treatment plants. Therefore, it is important to understand how 

increased N2O emissions due to sulfide compare with the overall low N2O emissions we expect 

from an MABR system.   

Nitrous oxide emissions were higher when sulfide was in the influent compared to measurements 

done without sulfide (Wilcoxon p< 2.2E-16). According to nitrous oxide microsensor profiles, we 

found that the bulk liquid nitrous oxide concentrations were 0.13 ± 0.02 mg N/L with sulfide (day 

544) and 0.001 ± 0.007 mg N/L without sulfide (day 467). Without sulfide these emissions 

(0.002% of influent ammonium, Appendix C) are well below what has been previously reported 

for other simultaneous nitrification and denitrification systems (Kampschreur et al., 2009) and are 

consistent with previous MABR studies (Gilmore et al., 2013; Kinh et al., 2017). When sulfide 

was in the influent the emissions factor (0.25%) was higher than what was previously reported for 

MABR systems. However, these emissions factors are still lower than what has been reported for 

many other simultaneous nitrification and denitrification systems (Kampschreur et al., 2009). Our 

finding that increased sulfide led to increased emissions of N2O is consistent with previous studies 

in a variety of environments (Brunet and Garcia-Gil, 1996; Senga et al., 2006), including activated 

sludge (Manconi et al., 2006; Tugstas and Pavlostathis, 2007). The most likely explanation is that 

sulfide inhibits the nitrous oxide reductase (Sorensen et al., 1980). Understanding the mechanisms 

of inhibition of the nitrous oxide reductase can help identify strategies to mitigate this inhibition 

effect and reduce the greenhouse gas emissions of the process.  

5.4.3 Sulfide precipitation with trace metals is a potential mechanism of inhibition for both 

nitrifying and denitrifying bacteria.  

One potential mechanism of sulfide inhibition is the loss of enzyme cofactors and trace nutrients 

due to precipitation with sulfide. We evaluated this inhibition mechanism by monitoring dissolved 

iron, copper, and molybdenum in the influent and effluent of the reactor. To mimic anaerobic 

effluents, we added a reduced form of iron (II) that has a favorable precipitation reaction with 
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sulfide. Over the course of the reactor operation, both influent and effluent iron decreased with 

increased sulfide concentrations (Appendix C, Figure C6, ANOVA p<0.01). Black precipitates 

were observed in the tubing at the mixing point between the sulfide feed and the influent line, 

consistent with formation of iron sulfides. Iron is found in the catalytic core of both the ammonia 

monooxygenase (Zahn et al., 1996) and the nitrite oxidoreductase enzymes (Meincke et al., 1992), 

and is known to stimulate the activity of enzymes involved in both nitrification and denitrification 

(Chen et al., 2018). However, when we compared both influent and effluent iron with 

concentrations of nitrogen species we found no statistically significant associations (ANOVA 

p>0.2). Consequently, although iron precipitation occurred, there is no evidence that it was a 

primary mechanism of inhibition.  

Effluent molybdenum and influent copper were also significantly associated with the influent 

sulfide (Appendix B Figure C7, ANOVA p<0.01). The rapid precipitation of copper and 

molybdenum was also evident in our pulse exposure experiments (Figure 5-2B). Copper is found 

in the catalytic core of the ammonia monooxygenase enzyme (Gilch et al., 2009) and molybdenum 

is found in the catalytic core of the nitrite oxidoreductase enzyme (Meincke et al., 1992). When 

we compared effluent copper and molybdenum to the effluent nitrogen data we found that both 

species had significant associations with ammonium removal (ANOVA p<0.05). While this test 

of statistical significance could be an artifact of sulfide precipitation, copper has been known to 

have a strong effect on ammonia loss in nitrifying activated sludge (Braam and Klapwijk, 1981).  

Interestingly, one study showed that copper limitations due to sulfide precipitation caused 

inhibition of the nitrous oxide reductase enzyme (Manconi et al., 2006). The media concentrations 

used in that study (0.2 µM) are similar to the influent concentrations we measured during reactor 

operation (0.38 µM ± 0.07 µM). When Manconi and co-authors supplemented their cultures with 

60 µM of copper, effluent N2O decreased. This mechanism could explain why increased N2O due 

to sulfide is not consistently shown in the literature (Yang et al., 2016b). Accordingly, studies 

showing no effect of sulfide on N2O emissions could have higher soluble copper levels so the 

nitrous oxide reductase is unaffected by sulfide. In contrast to copper, fewer studies have evaluated 

the importance of molybdenum (Finstein and Delwiche, 1965). Although precipitation of copper 

and molybdenum was not as clear of an effect compared to iron precipitation (Appendix C, Figures 
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C6 and C7), the limitation of copper and molybdenum is an important possible mechanism of 

sulfide inhibition that warrants future study. 

In conclusion we found evidence of inhibition of nitrification and denitrification. Importantly, the 

apparent extent of nitrification inhibition observed in the reactor was likely magnified due to the 

presence of DNRA. Simulation results suggest that DNRA with sulfide can increase effluent 

ammonium concentrations.  Denitrification inhibition manifested with increased nitrous oxide 

emissions. An important candidate mechanism of inhibition that warrants further study is sulfide 

precipitation with copper.  Indeed, if copper limitation is a primary mechanism of inhibition, it 

could serve as a means for mitigating the higher nitrous oxide emissions observed with sulfide-

based denitrification systems.  
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CHAPTER 6.  

CONCLUSIONS, SIGNIFICANCE, AND FUTURE RESEARCH DIRECTIONS 

6.1 Overview 

Developing an equitable, resource efficient, and cost efficient urban water cycle for the 21st century 

requires an interdisciplinary approach that integrates novel tools in research and technology. For 

centuries, the activated sludge process has been a black box; however, we can advance our 

understanding of the microbial communities within wastewater treatment systems with the help of 

new research tools and develop new treatment technologies that improve environmental health. 

The goal of this dissertation research was to understand how sulfur can affect nitrogen cycling in 

ways that are relevant to wastewater treatment and to identify beneficial uses of sulfur that may 

improve the resource efficiency of wastewater treatment. As highlighted in Chapter 2, our current 

understanding of how nitrogen and sulfur interact in wastewater treatment demonstrates both 

potential benefits and pitfalls associated with using sulfur to improve treatment. Ultimately, 

understanding how to maximize the benefits while minimizing the pitfalls will improve the 

resource efficiency of treatment in the rapidly growing and increasingly urbanized coastal regions 

of the world.     

This dissertation tested the impact of hydrogen sulfide in three distinct systems: two full-scale 

treatment plants with different redox environments that had distinct microbial communities and 

one lab-scale membrane-aerated biofilm reactor (MABR). The MABR employs a counter-

diffusional biofilm with a redox gradient and consequently supports mixed microbial metabolisms. 

Overall, the results show that hydrogen sulfide could have beneficial impacts on nitrogen removal 

in engineered systems, but the effect of hydrogen sulfide is complex because microbial 

communities are interconnected and adaptable and the microbial community response depends on 

reactor configuration. This dissertation research gives new insights into the beneficial and 

detrimental effects of using hydrogen sulfide for nitrogen removal and highlights future areas of 
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research needed to minimize the potential pitfalls associated with applying sulfide for nitrogen 

removal in wastewater treatment systems.  

6.2 Using Hydrogen Sulfide to Inhibit Nitrite Oxidizing Bacteria  

Sulfide could help induce nitritation processes in activated sludge, thus reducing the resource 

requirements wastewater treatment (Chapter 3). By linking microbial community characteristics 

to process rates, this research showed that different communities of nitrite oxidizing bacteria 

(NOB) have distinct propensities for sulfide inhibition. The results highlight that links between 

treatment process data and microbial community characteristics are needed to generalize results 

and improve process models.   

When the application of sulfide for nitritation was tested in an MABR, the results show that active 

NOB could be inhibited by sulfide (Chapter 4). Consistent with Chapter 3, the NOB were more 

sensitive to sulfide than the ammonia oxidizing bacteria (AOB). Unlike the fully aerobic batches 

discussed in Chapter 3, the MABR supports multiple redox environments, so rapid consumption 

of nitrite may mask NOB inhibition due to sulfide. The results from Chapter 5 showed that nitrite 

did not accumulate over the course of stepwise increases in sulfide. In isolation, the data from 

Chapter 5 show that sulfide inhibited complete nitrification; it is only with the knowledge of 

potential rates from Chapter 4 that we know nitrite accumulation due to sulfide occurred in the 

MABR. The distinction between the batch experiments and the MABR is important because it 

highlights that responses to hydrogen sulfide can be both community and reactor specific. 

Furthermore, in complex biofilms where microbial cross-feeding can occur, multiple methods are 

needed to understand the system.   

6.3 Community-Wide Effects from Hydrogen Sulfide  

An important theme of this dissertation is that hydrogen sulfide had community-wide effects. In 

Chapter 3, these community-wide effects were demonstrable even in the short-term batch 

experiments with 16S rRNA cDNA sequencing showing a decreased activity of many taxa at 

higher sulfide concentrations. Community-wide effects were also demonstrable over the long-term 

experiments in the MABR whereby addition of sulfide resulted in a division of labor between 

physical compartments of the reactor; sulfur oxidation and denitrification (except for denitrifying 
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anaerobic methane oxidizers and anammox denitrifiers) were concentrated in the planktonic 

portion of the reactor while nitrification was concentrated in the biofilm. Understanding the 

distinct niches that can form in engineered systems is important and can inform the design of 

treatment systems. Microbial communities do not necessarily mold themselves to environmental 

engineers; we may be better served to design our systems with the microbial community in mind. 

In this case, in an effort to maximize biomass concentrations the lab-scale MABR was designed 

to maximize biofilm surface area. A design which could have allowed for more nitrogen removal 

may have been to have more space for bulk liquid growth in order to support a “hybrid” system 

(Downing and Nerenberg, 2008) with heterotrophic and sulfide-based denitrifiers growing in the 

bulk liquid. Regardless of this potential opportunity to improve nitrogen removal, we showed that 

sulfide addition to the MABR promoted the formation of new ecological niches.  

Sulfide also induced dissimilatory nitrite reduction to ammonia (DNRA). While this phenomenon 

was previously shown in wetland (Jones et al., 2017) and freshwater sediments (Brunet and Garcia-

Gil, 1996),  few studies have shown sulfide-induced DNRA in an engineered community (Dolejs 

et al., 2014; Yin et al., 2015). As with the results from NOB inhibition, in isolation, the data from 

Chapter 5 show that sulfide inhibited complete nitrification; it is only by using molecular and 

isotopic labeling methods in Chapter 4 that we discovered the rapid conversion of nitrite to 

ammonia that was occurring. Sulfide-induced DNRA in wastewater treatment systems can be 

beneficial, especially in anammox systems where the reduction of nitrate to ammonia can provide 

additional substrate for anammox (Castro-Barros et al., 2017; Wang et al., 2018). However, 

Chapter 5 shows that these benefits have limits because nitrite reduction to ammonia can reduce 

the overall nitrogen removal from the system.  

6.4 Implications for the Use of Sulfide for Nitrogen Removal  

Denitrifying communities such as anammox and denitrifying anaerobic methane oxidizers 

developed from increased sulfide concentrations and both of these metabolic microbial groups can 

reduce the resource requirements for nitrogen removal. Anammox directly consumes ammonium 

therefore only half of it needs to be oxidized, which reduces the energy needed for aeration. 

Denitrifying anaerobic methane oxidizers require the oxidation of ammonia, but these organisms 

consume dissolved methane which is a potent greenhouse gas. This is particularly advantageous 
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for the treatment of anaerobic effluents which contain dissolved methane that constitutes an 

important life cycle cost (Smith et al., 2014). Since mainstream anaerobic effluents are also sulfide-

rich and require nitrogen treatment (Delgado Vela et al., 2015), they are ideally suited for the 

application of denitrifying anaerobic methane oxidizers. The potential benefit of hydrogen sulfide 

for creating a more reduced environment and a nitrite source for denitrifying anaerobic methane 

oxidizers and anammox is an outcome from this dissertation research that has substantial 

engineering significance.  

An additional result of significance is that hydrogen sulfide addition led to increases in nitrous 

oxide emissions.  This is likely due to partial inhibition of denitrification. A benefit of the MABR 

system is that it exhibits overall lower nitrous oxide emissions compared with conventional 

biological nitrogen removal systems (Kinh et al., 2017). Even with sulfide inhibition of nitrous 

oxide reduction, nitrous oxide emissions were lower in the lab-scale MABR than in conventional 

systems. Nevertheless, these emissions need to be remedied because the global warming potential 

of nitrous oxide is approximately 300 times higher than that of carbon dioxide. Therefore, nitrous 

oxide emissions due to sulfide addition need to be understood and mitigated if the benefits of 

sulfide-based nitrogen removal to be realized. 

6.5 Future Research Needs 

There are numerous benefits of applying sulfur cycling to nitrogen removal in wastewater. Sulfide 

can inhibit nitrite oxidizing bacteria, thereby providing a nitrite source for denitrifying anaerobic 

methane oxidizers and anammox. Sulfide is also a reducing agent that establishes environments 

favorable for these oxygen sensitive microorganisms. A critical challenge in applying sulfide to 

nitrogen removal is that denitrification needs to be encouraged in lieu of DNRA. This is an 

important area of future research if sulfide is to be used for nitrogen removal from wastewater.  

The mechanisms of nitrification and denitrification inhibition are still unknown. An important 

hypothesis to test is if inhibition is indirect via precipitation of trace metals that are used as 

micronutrients. In Chapters 3 and 5, precipitation was examined as a potential mechanism of 

inhibition. In particular, copper limitations can affect ammonia oxidation, nitrite oxidation, and 

nitrous oxide reduction to nitric oxide. If micronutrient limitations are found to be the mechanism 
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of inhibition, controlling sulfide inhibition may be as simple as supplementing these nutrients. 

Understanding the mechanism of inhibition is especially important to eliminate the harmful effect 

of N2O emission.   

Lastly, much of the data presented in Chapter 4 where the importance of DNRA is established was 

based on functional potential. A better understanding of the transcriptome and proteome would 

improve the links between functional potential and microbial community activity. This could help 

us understand which organisms are responsible for the DNRA process and help elucidate strategies 

for controlling DNRA and supporting denitrification.  

This dissertation shows that engineered systems can serve as a platform for understanding 

microbial community interactions. Different microbial communities can respond to stressors in 

different ways, so characterizing the microbial community can guide biotechnology development. 

Understanding microbial community interactions such as cross-feeding relationships and how they 

differ in current and emerging treatment systems is important.  This dissertation shows that by 

enhancing our understanding of microbial community interactions, we can guide technology 

development and improve the resource efficiency of treatment.  
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Appendix A. 

Supplementary Information for Chapter 3.  

A-1. Visual MINTEQ Methods  

The species tableau used for the precipitation characterization is given in Table A1. The sulfide 

concentration was varied using the sweep function from 0-35 mg/L as S. 
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Table A1. Species tableau for influent characteristics 

Species Conc 

(mM) 

Ca Cl Mg K H PO4 NH4 CO3 Na Fe (III) SO4 Co (II) Zn B Mn Mo Al Ni Se W Cu EDTA 

CaCl2*2H2O 0.03 0.0 0.1 
                    

MgCl2*6H2O 0.2 
 

0.3 0.2 
                   

KH2PO4 7.1 
   

7.1 14.1 7.1 
                

Na2HPO4 29.0 
    

29.0 29.0 
  

57.9 
             

NH4HCO3 3.6 
    

3.6 
 

3.6 3.6 
              

NaHCO3 6.0 
    

6.0 
  

6.0 6.0 
             

Fe (FeCl3·6H2O) 0.0240 
 

0.0720 
       

0.0240 
            

Co (CoCl2*6H2O) 0.0012 
 

0.0024 
         

0.0012 
          

Zn (ZnSO4*7H2O) 0.0012 
          

0.0012 
 

0.0012 
         

B (H3BO3) 0.0006 
             

0.0006 
        

Mn (MnSO4*H2O) 0.0006 
          

0.0006 
   

0.0006 
       

Mo 

((NH4)6Mo7O24*4H2O) 

0.0001 
      

0.0005 
        

0.0006 
      

Al (AlCl3*6H2O) 0.0001 
 

0.0004 
              

0.0001 
     

Ni (NiCl2*6H2O) 0.0006 
 

0.0012 
               

0.0006 
    

Se (Na2SeO4) 0.0001 
        

0.0002 
         

0.0001 
   

W (Na2WO4*2H2O) 0.0001 
        

0.0002 
          

0.0001 
  

Cu (CuCl2*2H2O) 0.0006 
 

0.0012 
                  

0.0006 
 

EDTA (NaEDTA) 0.0300 
        

0.0300 
            

0.0300 

HCl 1.0 
 

1.0 
  

1.0 
                 

 
Totals 0.0 1.5 0.2 7.1 53.6 36.0 3.6 9.6 63.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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A-2. Visual Minteq Results 

 

Figure A1. Total dissolved copper, iron, zinc, and molybdenum at varying sulfide concentrations. 

A-3. Raw Batch Experiment Data 

A-3.1. Sulfide Data 

Concentrations of sulfide for the A2O process are given in Table A2. Concentrations of sulfide for 

the extended aeration process are given in Table A3.   
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Table A2. Sulfide measurements in batch experiments for A2O plant. All concentrations are in mg/L as S. The limit 

of detection for the silver sulfide electrode is 0.64 mg/L as S. 

Target 

sample time 

(hr) 

Ammonia fed Nitrite Fed 

Target Influent Sulfide- 2 mg/L as S. 

Initial 

 [% recovered] 

1.9 

[95] 

1.9 

[95] 

1.7 

[87] 

2.1 

[103] 

3.5 

[175] 

2.3 

[113] 

0:02:00 0.9 0.8 0.9 0.7 0.8 1 

0:30:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

2:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

4:00:00 1 <0.6 <0.6 <0.6 <0.6 <0.6 

Target Initial Sulfide- 4 mg/L as S 

Initial 

 [% recovered] 

2.6 

[66] 

3.1 

[78] 

3.1 

[78] 

3.4 

[84] 

3.4 

[84] 

3.1 

[78] 

0:02:00 1.5 1.7 1.7 1.7 1.6 1.9 

0:30:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

2:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

4:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

Target Initial Sulfide- 7.7 mg/L as S 

Initial 

 [% recovered] 

7.6 

[98] 

7.6 

[98] 

7.6 

[98] 

7.1 

[92] 

7.6 

[98] 

8.1 

[105] 

0:02:00 6.2 5.8 5.4 3.4 4.1 8.3 

0:30:00 1.5 0.7 1.3 1.4 1.1 2.2 

2:00:00 0.9 0.8 1.0 1.0 1.2 2.4 

4:00:00 0.9 0.7 0.8 1.0 0.9 1.7 

Target Initial Sulfide- 15 mg/L as S 

Initial 

 [% recovered] 

13.4 

[90] 

14.8 

[99] 

17.9 

[119] 

19.6 

[130] 

19.6 

[130] 

19.6 

[130] 

0:02:00 7.5 7.5 7.5 8.2 9.9 9.9 

0:30:00 1.4 1.7 2.9 3.5 3.5 3.5 

2:00:00 <0.6 <0.6 <0.6 0.9 <0.6 <0.6 

4:00:00 <0.6 <0.6 <0.6 0.7 0.7 0.7 

Target Initial Sulfide- 35 mg/L as S 

Initial 

 [% recovered] 

22.6 

[65] 

25.8 

[74] 

25.8 

[74] 

27.6 

[79] 

25.8 

[74] 

27.6 

[79] 

0:02:00 15.7 17.9 13.7 12.9 12.9 12.0 

0:30:00 13.7 4.2 9.3 4.2 4.2 4.8 

2:00:00 17.9 <0.6 0.9 1.9 1.5 1.7 

4:00:00 0.8 0.7 <0.6 0.8 <0.6 0.92 
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Table A3. Sulfide measurements in batch experiments for extended aeration plant. All concentrations are in mg/L as 

S. The limit of detection for the silver sulfide electrode is 0.64 mg/L as S. 

Target 

sample time 

(hr) 

Ammonia fed Nitrite Fed 

Target Influent Sulfide- 2 mg/L as S. 

Initial 

 [% recovered] 

1.2 

[59] 

1.2 

[59] 

1.4 

[70] 

1.5 

[76] 

1.7 

[83] 

1.7 

[83] 

0:02:00 <0.6 0.9 <0.6 <0.6 <0.6 <0.6 

0:30:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

2:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

4:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

Target Initial Sulfide- 5 mg/L as S 

Initial 

 [% recovered] 

3.5 

[69] 

3.2 

[64] 

2.9 

[59] 

3.5 

[69] 

3.5 

[69] 

3.5 

[69] 

0:02:00 0.8 0.7 0.8 0.8 <0.6 <0.6 

0:30:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

2:00:00 0.7 0.8 <0.6 <0.6 <0.6 <0.6 

4:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

Target Initial Sulfide- 10mg/L as S 

Initial 

 [% recovered] 

6.4 

[64] 

9.1 

[91] 

9.1 

[91] 

11.8 

[118] 

10.8 

[108] 

10.8 

[108] 

0:02:00 3.5 2.9 2.5 2.2 2.3 2.9 

0:30:00 1.6 1.2 1.3 1.6 1.7 1.5 

2:00:00 <0.6 <0.6 <0.6 1.3 0.9 1.0 

4:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

Target Initial Sulfide- 15 mg/L as S 

Initial 

 [% recovered] 

7.6 

[51] 

10.6 

[71] 

12.6 

[84] 

12.6 

[84] 

12.6 

[84] 

13.6 

[91] 

0:02:00 2.9 4.0 4.5 5.2 2.5 2.5 

0:30:00 1.5 1.8 1.3 1.5 1.5 1.6 

2:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

4:00:00 <0.6 <0.6 <0.6 <0.6 <0.6 <0.6 

Target Initial Sulfide- 35 mg/L as S 

Initial 

 [% recovered] 

18.0 

[52] 

21.0 

[60] 

24.3 

[70] 

24.3 

[70] 

24.3 

[70] 

26.3 

[75] 

0:02:00 7.7 8.3 11.3 8.3 6.7 6.7 

0:30:00 4.9 3.6 3.6 3.6 3.6 3.9 

2:00:00 1.4 1.6 1.5 2.9 3.1 3.1 

4:00:00 1.3 <0.6 0.8 1.3 1.5 1.6 
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A-3.2. Volatile suspended solids concentrations 

Final volatile suspended solids concentrations are given in Table A4. Generally, solids in the 

extended aeration plant experiments were higher than solids in A2O process, which was expected 

since the mixed liquor suspended solids from this process were higher. All rates were normalized 

to solids to eliminate this effect. 

Table A4. Volatile suspended solids concentrations from the end of the experiment, standard deviations 

are the result of duplicate analysis. A indicates Ammonia and sulfide amended flask; B indicates 

ammonia amended controls; N indicates nitrite and sulfide amended flask; C indicates nitrite amended 

controls. Numeric indicate replicate numbers.  

 A2O Process Extended Aeration Process 

Average ±Standard Deviation (mg/L) 

Target Sulfide 2 mg/L as S 

A1 1510±190 2475±25 

A2 1390±90 2475±25 

A3 1417±17 2325±75 

B1 1383±17 2125±25 

B2 1417±50 2175±75 

N1 950±17 2150±200 

N2 1700±100 2125±25 

N3 1400±67 2275±75 

C1 1367±33 2075±125 

C2 1317±17 2350±250 

Target Sulfide 4 mg/L as S 5 mg/L as S 

A1 1470±30 2310±190 

A2 1560±40 2500±50 

A3 1280±40 2575±25 

B1 1400±120 2500±150 

B2 1240±40 2225±75 

N1 1400±120 2100±250 

N2 1420±60 2225±125 

N3 1460±100 2925±175 

C1 1540±60 2850±0 

C2 1420±60 2400±100 

Target Sulfide 7.7 mg/L as S 10 mg/L as S 

A1 1500±50 2275±25 

A2 1375±125 2450±200 

A3 1325±75 2200±150 

B1 1450±0 2425±75 

B2 1375±75 2525±125 
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N1 1275±75 2225±25 

N2 1250±50 2000±200 

N3 1275±25 2325±75 

C1 1325±25 2050±0 

C2 1375±125 2150±50 

Target Sulfide 15 mg/L as S 

A1 1350±83 2175±125 

A2 1367±67 2143±108 

A3 1317±50 1900±250 

B1 1350±83 2075±125 

B2 1283±50 3025±525 

N1 1233±33 2150±350 

N2 1217±17 2400±150 

N3 1333±33 2350±0 

C1 1383±150 2175±75 

C2 1400±67 2100±0 

Target Sulfide 35 mg/L as S 

A1 1120±40 2250±50 

A2 1220±220 2175±25 

A3 1160±80 2375±75 

B1 1220±60 2075±25 

B2 1160±0 2200±100 

N1 1260±60 2150±0 

N2 1380±100 2375±25 

N3 840±40 2175±75 

C1 530±10 2225±25 

C3 1320±0 2350±50 

 

A-3.3. Nitrogen Data 

Raw nitrogen data is given in Figure A2 and Figure A3. All rates were taken using the initial slopes 

and normalized to biomass concentration. It is noteworthy that despite loss of sulfide (below 

detection typically within 2 hours, Table A3), we don’t have clear or consistent change in rates 

between two and eight hour, for example.  

  



 
 

131 

 

 

Ammonia Amended 

 

A2O Process Extended Aeration Process 

Target: 2 mg S/L 

 

Target: 2 mg S/L 

 

Target: 4 mg S/L 

 

Target 5 mg S/L 

 

Target: 7.7 mg S/L Target: 10 mg S/L 
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Target: 15 mg S/L 

 

Target: 15 mg S/L 

 

Target 35 mg S/L 

 

Target 35 mg S/L 

 

Figure A2. Raw data used for rates, ammonia fed batches from A2O process (right) and extended aeration process 

(left). 
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Nitrite Amended 

 

Anaerobic-Anoxic-Aerobic Extended Aeration 

Target: 2 mg S/L 

 

Target: 2 mg S/L 

 

Target: 4 mg S/L 

 

Target 5 mg S/L 

 

Target: 7.7 mg S/L 

 

Target: 10 mg S/L 
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Target: 15 mg S/L 

 

Target: 15 mg S/L 

 

Target: 35 mg S/L 

 

Target: 35 mg S/L 

 

Figure A3. Raw data used for rates, nitrite fed batches from A2O process (right) and extended aeration process (left).



 
 

135 

 

 

A-4. Quantitative PCR  

A-4.1. Methods 

qPCR primers used for bacterial ammonia monooxygenase, Nitrospira nxrB, and the V4 region of 

the 16S rRNA gene are given in Table A5. qPCR standards were prepared using DNA extracts 

from ammonia oxidizing controls from each wastewater treatment plant. PCR was used to amplify 

the amoA, nxrB, and 16S gene in the extracts. For PCR, each 10 µL reaction volume consisted of: 

5 µL Phusion Flash High Fidelity PCR Master Mix (Thermo Fisher Scientific), 0.1 µL of a 50 µM 

forward and reverse primer (final concentration of 0.5 µM), 0.125 µL of 50 mg/mL ultrapure 

bovine serum albumin (Ambion, final concentration 0.625 mg/mL), 1 µL of template, and 3.675µL 

ultrapure water. Thermocycling conditions are given in Table A6. The PCR products were 

visualized using a 1.5% agarose gel electrophoresis. The resultant band was excised from the gel 

using a sterile scalpel and the PCR products were purified using the QIAquick Gel Extraction Kit 

(Qiagen, Valencia, CA). The DNA concentration of the purified amplicon was determined using 

Qubit Flourometric Quantitation and the two wastewater treatment plants were pooled. The pooled 

purified amplicon was verified using Sanger sequencing (for the nxrB and amoA gene). Serial 

dilutions of the purified PCR products were used as qPCR standards. Standards consisted of serial 

dilutions ranging from 107-101 for ammonia monooxygenase genes, 107-102 for nitrite 

oxidoreductase genes, and 108-103 for 16S genes. 

Table A5. Primers utilized for qPCR 

Target Forward (5’→3’) Reverse (5’→3’) Citation 

amoA GGG GTT TCT ACT GGT GGT CCC CTC KGS AAA GCC TTC 

TTC 

(Rotthauwe 

et al., 1997) 

nxrB TAC ATG TGG TGG AAC A CGG TTC TGG TCR ATC A (Pester et 

al., 2014) 

16S GCG CCA GCM GCC GCG 

GTA A 

GGA CTA CHV GGG TWT CTA 

AT 
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Table A6. PCR conditions used to make standards 

Step Initial 

Denaturation 

Denaturation Annealing Extension Final 

Extension 

Temperature 98°C 98°C 52°C (nxrB) 72°C 72°C 

55°C (amoA) 

55°C (16S) 

Duration 10 sec 1 sec 5 sec 5 sec 1 min 

Number of 

cycles 

1 35 (nxrB) 1 

35 (amoA) 

30 (16S) 

The Mastercycler Realplex Ep (Eppendorf, Hamburg, Germany) was used for all qPCR 

reactions. 10 µL reaction volumes were used consisting of 5 µL Fast Plus EvaGreen Master Mix 

(Biotium, Hayward, CA), 0.3 mg/mL bovine serum albumin (BSA, Life Technologies, Grand 

Island, NY), 0.5 µM primer and 1 µL template. For ammonia monooxygenase cycles consisted of 

an initial denaturation of 2 minutes at 95°C, followed by 40 cycles of 20 seconds at 95°C, 15 

seconds at 59°C, and 30 seconds at 72°C. For nitrite oxidoreductase cycles consisted of an initial 

denaturation of 2 minutes at 95°C, followed by 40 cycles of 5 seconds at 95°C, 5 seconds at 56.2°C, 

and 25 seconds at 72°C. For the 16S gene, cycles consisted of an initial denaturation of 2 minutes 

at 95°C, followed by 35 cycles of 20 seconds at 95°C, 15 seconds at 55°C, and 30 seconds at 72°C. 

Efficiencies averaged 0.90±0.06 for ammonia monooxygenase, 0.64±0.05 for nitrite 

oxidoreductase, and 0.88±0.07 for 16S reactions; R2 averaged 0.996±0.002 for all reactions.   

A-4.2. Results 

Results for the A2O and extended aeration nitrite oxidoreductase, ammonia monooxygenase and 

16S transcripts are given in Figure A4. For both genes the amoA and the nxrB, many samples did 

not have any ammonia monooxygenase or nitrite oxidoreductase transcripts detected in the 

samples. Only samples with results detected are shown in Figure A4. Other studies of nitrifier 

inhibition have shown patterns between oxidation rates and amoA transcript abundances 

(Chandran and Love, 2008; Ouyang et al., 2016). However, our data did not clearly follow trends 

of rate of oxidation. It is important to note that the primers used may not be encapsulating the full 
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diversity of the ammonia and nitrite oxidizers in the sample. In fact, the primers used for the nitrite 

oxidoreductase gene only encapsulate Nitrospira nitrite oxidizers. Nitrotoga and Nitrobacter are 

not incorporated in the qPCR analysis. In addition, in a batch culture over such short time scales, 

transcript activity may be rapidly responding to environmental conditions, while protein activity 

may not be responding at the same rate. Although sulfide is a favorable electron donor that could 

enhance overall activity, we observed no associations between total 16S rRNA transcript copy 

numbers and sulfide concentration (pspearmans>0.06). 

A2O Process 

 

Extended Aeration process 
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Figure A4. Ammonia monooxygenase (top), Nitrospira nitrite oxidoreductase (middle), and 16S (bottom) transcript 

abundances normalized to VSS at varying sulfide concentrations for the A2O process (left) and the extended 

aeration process (right) 

A-5. Impact of potential oxygen loses due to sulfide oxidation nitrification 

We calculated the potential impact of oxygen loses due to sulfide oxidation on nitrification (Table 

A7). These calculations were done based on stochiometric demands, given the oxygen 

requirements of sulfide oxidation to sulfate (2 moles of oxygen/mole of sulfide), ammonium 

oxidation to nitrite (1.5 moles of oxygen/mole of sulfide), and nitrite oxidation to nitrate (0.5 moles 

of oxygen/mole of sulfide). The purpose of the calculation was to determine the impact of oxygen 

diversion to sulfide oxidation on nitrification. For example, for batch experiments at 35 mg sulfide-

S/L, 0.1 mg NH4-N/L could not be oxidized due to loses of oxygen diverted for sulfide oxidation 

(ammonia-N diverted): 

35 
𝑚𝑔 𝑆

𝐿
∙  

1 𝑚𝑚𝑜𝑙 𝑆

 32 𝑚𝑔 𝑆
∙

2 𝑚𝑚𝑜𝑙𝑒 𝑂2

𝑚𝑚𝑜𝑙 𝑆
∙

1 𝑚𝑚𝑜𝑙𝑒 𝑁𝐻4
+

1.5 𝑚𝑚𝑜𝑙 𝑂2

14 𝑚𝑔 𝑁

𝑚𝑚𝑜𝑙 𝑁
= 20 𝑚𝑔 𝑁/𝐿   
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Table A7. Potential nitrification loss due to aerobic sulfide oxidation and the actual nitrogen oxidized during 

batches. *Sulfide concentrations in A2O batches were slightly lower.  

Sulfide  

(mg/L 

as S) 

Ammonia-N 

Diverted 

(mg/L) 

A2O ammonia-N 

oxidized (mg/L) 

[diverted/oxidized] 

% 

Extended Aeration 

ammonia-N 

oxidized (mg/L) 

[diverted/oxidized] 

% 

Nitrite-N 

Diverted 

(mg/L) 

A2O nitrite-N 

oxidized (mg/L) 

[diverted/oxidized] 

% 

Extended Aeration 

nitrite-N oxidized 

(mg/L) 

[diverted/oxidized] 

% 

2 1.2 46±2.3 [2.6] 27±3.1 [4.4] 3.5 20±5.9 [18] 16±0.8 [22] 

5 2.9 *43±1.9 [6.7] 23±1.9 [13] 8.8 *17±1.8 [52] 6.2±0.5 [140] 

10 5.8 *36±0.9 [16] 14±5.8 [41] 18 *8.9±2.7 [200] 3.9±0.9 [450] 

15 8.8 28±1.9 [31] 13±1.5 [68] 26 3.3±0.9 [800] 1.7±0.2 [150] 

25 15 9.6±1.3 [150] 5.7±1.6 [260] 44 1.5±0.2 [290] 1.5±0.5 [290] 

 

A-6. 16S rRNA sequencing data 

The microbial community structure based on DNA is shown in Figure A5. There were no 

associations between sulfide concentration and microbial community structure using DNA data.  
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Figure A5. Relative abundance of top 30 most abundant OTUs based on DNA data. An asterisk above the bar 

indicates multiple samples at the same sulfide concentration were averaged for the plot.  
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Figure A6. Principle Coordinate Analysis on Bray Curtis dissimilarity of cDNA relative abundances of OTUs. High 

represents sulfide levels above the AOB inhibition index, medium represents sulfide levels between the AOB and 

NOB inhibition indices, and low represents sulfide levels below the NOB inhibition index.  
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Appendix B.  

Supplementary Information for Chapter 4. 

Reactor Operation and Startup 

 

Figure B1. MABR reactor schematic. Letters indicate biomass sampling location. 
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Figure B2. F curve from tracer test. 

 

Table B1. Reactor Loading Characteristics 

Experiment Phase Days 

Ammonium 

load 

(g N/m2-day) 

Sulfide 

concentration (mg 

S/L)  

[load (mg S/m2-

day)] 

A. Reactor startup 

A-1 0-1 0.33 

0 [0] 

A-2 1-11 0.45 

A-3 11-15 0.53 

A-4 15-20 0.60 

A-5 20-62 0.68 

A-6 62-70 0.75 

A-7 70-81 0.78 

A-8 81-83 0.83 

A-9 83-85 0.86 

A-10 85-92 0.89 

A-11 
92-

110 
0.92 
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A-12 
110-

120 
0.95 

B. Long term increase in sulfide  
B-1 

120-

141 

0.95 

0 [0] 

B-2 
141-

151 
0.1 [0.04] 

B-3 
151-

194 
0.5 [0.20] 

B-4 
194-

215 
1 [0.39] 

B-5 
215-

294 
2 [0.78] 

B-6 
294-

333 
3 [1.17] 

B-7 
333-

364 
4 [1.56] 

B-8 
364-

398 
6 [2.35] 

B-9 
398-

419 
10 [3.91] 

C. Stabilize Operation Between 

Experiments  
C-1 

419-

509 
0.95 0 [0] 

D. Pulse experiments (not 

described here) 
D-1 

509-

512 
0.95 

Daily pulses: 0 & 10 

[0 & 3.91] 

C. Stabilize Operation Between 

Experiments 
C-2 

512-

514 
0.95 0 [0] 

D. Pulse experiments (not 

described here) 
D-2 

514-

519 
0.95 

Daily pulses: 0 & 10 

[0 & 3.91] 

C. Stabilize Operation Between 

Experiments C-3 
519-

546 
0.95 

10 [3.91] 

 

E. 15N experiments with sulfide 
E-1 

547-

551 
0.95 10 [3.91] 

C. Stabilize Operation Between 

Experiments 

C-4 552 
0.95 

6 [2.35] 

C-5 553 0.1 [0.04] 
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C-6 
554-

556 
0 [0] 

E. 15N experiments with sulfide 
E-2 

557-

562 
0.95 0 [0] 

 

 

Figure B3. Effluent quality during phase A, reactor startup 

 

qPCR methods 

qPCR primers used for bacterial ammonia monooxygenase, anammox 16S gene, Nitrospira nxrB, 

and the V4 region of the 16S rRNA gene, and comammox amoA gene are given in Table B2. Clade 

B of comammox could not be detected in our samples. qPCR standards were prepared using DNA 

extracts from the reactor. PCR was used to amplify the amoA, nxrB, comammox amoA, anammox 

16S, and 16S gene in the extracts. For PCR, each 10 µL reaction volume consisted of: 5 µL Phusion 

Flash High Fidelity PCR Master Mix (Thermo Fisher Scientific), 0.1 µL of a 50 µM forward and 

reverse primer (final concentration of 0.5 µM), 0.125 µL of 50 mg/mL ultrapure bovine serum 
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albumin (Ambion, final concentration 0.625 mg/mL), 1 µL of template, and 3.675µL ultrapure 

water. Thermocycling conditions are given in Table B3. The PCR products were visualized using 

a 1.5% agarose gel electrophoresis. The resultant band was excised from the gel using a sterile 

scalpel and the PCR products were purified using the QIAquick Gel Extraction Kit (Qiagen, 

Valencia, CA). The DNA concentration of the purified amplicon was determined using Qubit 

Flourometric Quantitation. The purified amplicon was verified using Sanger sequencing. Serial 

dilutions of the purified PCR products were used as qPCR standards. Standards consisted of serial 

dilutions ranging from 106-101 for ammonia monooxygenase genes, 107-102 for nitrite 

oxidoreductase genes, anammox 16S genes, and comammox amoA genes, and 108-103 for 16S 

genes. 

Table B2. Primers utilized for qPCR 

Target Forward (5’→3’) Reverse (5’→3’) Citation 

amoA GGG GTT TCT ACT GGT GGT CCC CTC KGS AAA GCC TTC TTC (Rotthauwe 

et al., 1997) 

nxrB TAC ATG TGG TGG AAC A CGG TTC TGG TCR ATC A (Pester et al., 

2014) 

16S GCG CCA GCM GCC GCG GTA A GGA CTA CHV GGG TWT CTA AT (Caporaso et 

al., 2011) 

Anammox 

16S 

ATGGGCACTMRGTAGAGGGGTTT AACGTCTCACGACACGAGCTG (Tsushima et 

al., 2007) 

Comammox 

amoA- 

clade A 

Equimolar mixture of:  

TACAACTGGGTGAACTA 

TATAACTGGGTGAACTA 

TACAATTGGGTGAACTA 

TACAACTGGGTCAACTA 

TACAACTGGGTCAATTA 

TATAACTGGGTCAATTA 

Equimolar mixture of:  

AGATCATGGTGCTATG 

AAATCATGGTGCTATG 

AGATCATGGTGCTGTG 

AAATCATGGTGCTGTG 

AGATCATCGTGCTGTG 

AAATCATCGTGCTGTG 

(Pjevac et 

al., 2016) 
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Table B3. PCR conditions used to make standards 

Step Initial 

Denaturation 

Denaturation Annealing Extension Final 

Extension 

Temperature 98°C 98°C 65°C 

anammox 

72°C 72°C 

47°C (coma) 

52°C (nxrB) 

55°C (amoA) 

55°C (16S) 

Duration 10 sec 1 sec 5 sec 5 sec 1 min 

Number of 

cycles 

1 35 anammox 1 

30 (coma) 

35 (nxrB) 

35 (amoA) 

30 (16S) 

The Mastercycler Realplex Ep (Eppendorf, Hamburg, Germany) was used for all qPCR 

reactions. 10 µL reaction volumes were used consisting of 5 µL Fast Plus EvaGreen Master Mix 

(Biotium, Hayward, CA), 0.3 mg/mL bovine serum albumin (BSA, Life Technologies, Grand 

Island, NY), 0.5 µM primer and 1 µL template. For ammonia monooxygenase cycles consisted of 

an initial denaturation of 2 minutes at 95°C, followed by 40 cycles of 20 seconds at 95°C, 15 

seconds at 59°C, and 30 seconds at 72°C. For nitrite oxidoreductase cycles consisted of an initial 

denaturation of 2 minutes at 95°C, followed by 40 cycles of 5 seconds at 95°C, 5 seconds at 56.2°C, 

and 25 seconds at 72°C. For the 16S gene, cycles consisted of an initial denaturation of 2 minutes 

at 95°C, followed by 30 cycles of 20 seconds at 95°C, 15 seconds at 55°C, and 30 seconds at 72°C. 

For comammox amoA cycles consisted of initial denaturation of 2 minutes at 95°C, followed by 



 
 

148 

 

 

45 cycles of 5 seconds at 95°C, 10 seconds at 52°C, and 25 seconds at 72°C. For anammox 

reactions cycles consisted of initial denaturation of 2 minutes at 95°C, followed by 40 cycles of 5 

seconds at 95°C, 5 seconds at 61°C, and 25 seconds at 72°C. All qPCR programs had a melt curve 

analysis at the end of the program to evaluate nonspecific binding. Efficiencies averaged 0.88±0.04 

for ammonia monooxygenase, 0.56±0.02 for nitrite oxidoreductase, 0.84±0.06 for comammox 

reactions, 0.91±0.02 for anammox reactions, and 0.85±0.11 for 16S reactions; R2 averaged 

0.997±0.002 for all reactions.   

Table B4. Accession numbers for custom database 

NCBI Accession Number Gene Organism 

BAJ14738.1 soxB 

Sulfuritalea hydrogenivorans 

BAJ14737.1 aprA 

WP_041098216.1 dsrB 

WP_041098218.1 dsrB 

WP_041100037.1 aprA 

WP_041100039.1 aprB 

WP_084207406.1 soxB 

WP_084207482.1 soxA 

WP_041096647.1 napA 

WP_041101723.1 nirK/nirS 

WP_041099757.1 nirK/nirS 

WP_041100219.1 nirK/nirS 

WP_041099729.1 nosD 

WP_084207398.1 nosD 

WP_009205081.1 dsrB 

Sulfuritalea denitrificans 

WP_009207523.1 dsrB 

WP_041673408.1 aprA 

WP_009205410.1 soxB 

WP_009205411.1 soxA 

WP_009206827.1 napA 

WP_009206840.1 nirK/nirS 
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WP_009205117.1 nirK/nirS 

WP_009205268.1 nirB 

WP_009206853.1 nosD 

WP_009206232.1 nosD 

WP_011311919.1 sqr 

Thiobacillus denitrificans 

WP_011312546.1 fccA 

WP_011312547.1 fccB 

WP_011311821.1 dsrA 

WP_011311881.1 dsrA 

WP_011312996.1 dsrB 

WP_011312997.1 dsrA 

WP_011311384.1 aprA 

WP_011311385.1 aprB 

WP_011312794.1 aprA 

WP_011312795.1 aprB 

WP_041432283.1 soxB 

WP_011311076.1 soxA 

WP_041432283.1 soxB 

WP_011312822.1 napA 

WP_011312991.1 narI/narV 

WP_011310590.1 nirK/nirS 

WP_041432744.1 nirB 

WP_011311073.1 nor 

WP_009206748.1 nor 

WP_011311335.1 nor 

WP_011311903.1 nosD 

AKX33668.1 pmoA Methylococcaceae bacterium Sn10-6 

CAD84854.1 amoB 

Nitrosomonas europaea ATCC 19718 CAD84855.1 amoA 

AL954747.1 amoC 
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CAD84856.1 amoC 

CAD85973.1 amoB 

CAD85974.1 amoA 

CAD85975.1 amoC 

CAD84873.1 hao 

CAD85955.1 hao 

CAD86251.1 hao 

ALA56693.1 nxrB 
Nitrospira moscoviensis 

ALA56694.1 nxrA 

CUS35558.1 amoC 

Candidatus Nitrospira nitrificans 

CUS34405.1 amoC 

CUS38776.1 nxrA 

CUS36764.1 nxrA 

CUS34648.1 nxrA 

CUS34649.1 nxrA 

CUS34650.1 nxrB 

CUS36762.1 nxrB 

WP_062484767.1 amoA 

Candidatus Nitrospira inopinata 
WP_062484768.1 amoB 

WP_062484140.1 amoC 

WP_062483313.1 amoC 

OYT21943.1 amoA 

Nitrospira sp. UW-LDO-01 OYT21942.1 amoB 

OYT19804.1 nxrG 

GAN35163.1 nrfA 

Candidatus Brocadia sinica JPN1 
GAN33811.1 hzo 

GAN32119.1 hzsA 

GAN32120.1 hzsB 

KKO18415.1 nirK Candidatus Brocadia sinica fulgida 

CBE69519.1 pmoA Candidatus Methylomirabilis oxyfera 
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CBE69517.1 pmoB 

CBE69387.1 pmoC 

CBE69521.1 pmoC 

2713528256  (IMG, Gene ID) narH 

2713528258 (IMG, GeneID) narG 

2713528254  (IMG, Gene ID) narG 

2713528255(IMG, Gene ID) narJ 

2713529904 (IMG, Gene ID) napA 

2517502826 (IMG, Gene ID) nirB 

2517302091 (IMG, Gene ID) nirB 

2713528341 (IMG, Gene ID) nirB 

WP_050343474.1 nrfA Selenomonas sp. oral taxon 478 

PJF26186.1 nrfA Chloroflexi bacterium 

WP_011342651.1 nrfA Pelobacter carbinolicus 

WP_062418934.1 nrfA Levilinea saccharolytica 

gi|266618717 rpoB 

Conserved 

gi|239938700 rpoB 

gi|6831647 rpoB 

gi|6094125 rpoB 

gi|2507343 rpoB 

WP_000037868.1 rpoB 

WP_005873809.1 rpoB 

WP_010931849.1 rpoB 

WP_011015993.1 rpoB 

WP_011056489.1 rpoB 

WP_011029792.1 rpoB 

WP_010918390.1 rpoB 
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15N rate experiments 

 

Figure B4. Results from 15N experiments. Left rates of ammonia loss, right, rates of nitrite production. Non-filled 

points and dashed lines indicate sulfide amended experiments. 

Table B5. Sulfur Concentrations during batch experiments. Numbers in parenthesis are the rates of sulfide loss.  

Experiment A 
A1 (-97 µmol S/L-hr) 

Time 
(min) 

Time 
(hr) 

Sulfide 
(mg S/L) 

Sulfate  
(mg S/L) 

Sulfate 
(stdev) 

Sulfate 
produced 

Sulfate 
produced 
(stdev) 

14 0.2 1.7 4.6 0.1 4.0 0.1 

22 0.4 0.9 1.5 0.0 0.9 0.0 

41 0.7 0.2 4.7 0.0 4.1 0.0 

81 1.3 0.1 3.9 0.1 3.2 0.1 

107 1.8 0.1 6.5 0.0 5.8 0.0 

132 2.2 0.1 5.1 0.0 4.5 0.0 

A2 (-140 µmol/L-hr) 

13 0.2 0.9 5.0 0.0 3.7 0.1 

21 0.3 0.3 5.5 0.0 4.2 0.1 

42 0.7 0.4 8.2 0.0 6.9 0.0 

71 1.2 0.1 9.5 0.0 8.2 0.0 

106 1.8 0.1 11.5 0.1 10.3 0.1 

130 2.2 0.1 6.0 0.0 4.8 0.0 

Experiment B 

B1 (-72 µmol/L-hr) 

12 0.2 1.6 3.4 0.1 1.0 0.1 

22 0.4 0.5 3.1 0.0 0.7 0.1 

42 0.7 0.3 4.1 0.0 1.7 0.0 

71 1.2 0.2 5.4 0.0 3.0 0.1 
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102 1.7 0.2 4.9 0.0 2.5 0.0 

135 2.3 0.1 8.1 0.0 5.7 0.1 

B2 (-78 µmol/L-hr) 

12 0.2 1.5 3.8 0.0 2.4 0.0 

22 0.4 0.5 6.3 0.0 5.0 0.0 

42 0.7 0.1 7.2 0.1 5.8 0.1 

71 1.2 0.1 6.2 0.0 4.8 0.0 

101 1.7 0.1 8.6 0.0 7.2 0.0 

131 2.2 0.0 6.9 0.0 5.5 0.0 

Experiment C 

C1 (-120 µmol/L-hr) 

12 0.2 2.3 5.2 0.0 4.0 0.0 

20 0.3 1.0 3.9 0.0 2.7 0.0 

40 0.7 0.2 6.5 0.1 5.3 0.1 

70 1.2 0.1 11.7 0.0 10.5 0.0 

100 1.7 0.2 12.2 0.1 11.0 0.1 

131 2.2 0.2 15.2 0.1 14.0 0.2 

C2 (-45 µmol/L-hr) 

12 0.2 1.2 6.8 0.0 5.5 0.0 

22 0.4 0.3 5.6 0.0 4.2 0.0 

49 0.8 0.2 7.2 0.1 5.8 0.1 

73 1.2 0.1 12.6 0.2 11.2 0.2 

101 1.7 0.1 11.7 0.0 10.4 0.0 

133 2.2 0.1 16.9 0.0 15.5 0.0 
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Supplementary Coverage figures 

 

 

Figure B5. Best hit of denitrification genes in Biofilm (top) and (suspended) samples. Numbers in parenthesis 

represent total coverage of that gene. Unknown samples were either hits to unknown organisms or had multiple hits 

to distinct organisms with cutoffs.  
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Figure B6. Nitrifying organisms measured by qPCR. A) Absolute abundances of Nitrospira and AOB expressed as 

abundnaces of gene copies of nxrB and amoA, respectively. B) Nitrospira nxrB abundances relative to amoA. C) 

Absolute abundances of comammox expressed as abundances of gene copies of comammox amoA. 

 

Figure B7. Coverage of nrfA in biofilm during sulfide increases 
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Supplementary Reactor Data figure 

 

Figure B8. Relationship between sulfide and redox (as measured by ORP) 

 

Unique COG Categories 

Table B6. Unique protein clusters in DAMO bin. Shaded lines refer to unique functions in the bin. 

COG Identifier Number of 
clusters 

COG 
Category 

Description 

COG0282 1 C Acetate kinase 

COG0546 1 C Phosphoglycolate phosphatase, HAD superfamily 

COG1012 1 C Acyl-CoA reductase or other NAD-dependent aldehyde 
dehydrogenase 

COG4659 1 C Na+-translocating ferredoxin:NAD+ oxidoreductase RNF, RnfG subunit 

COG0849 1 D Cell division ATPase FtsA 

COG4641 1 D Spore maturation protein CgeB 

COG0334 1 E Glutamate dehydrogenase/leucine dehydrogenase 

COG0421 1 E Spermidine synthase 

COG2095 1 E Small neutral amino acid transporter SnatA, MarC family 
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COG2309 1 E Leucyl aminopeptidase (aminopeptidase T) 

COG0175 1 E|H 3'-phosphoadenosine 5'-phosphosulfate sulfotransferase (PAPS 
reductase)/FAD synthetase or related enzyme 

COG0241|COG0859 1 E|M Histidinol phosphatase or a related phosphatase|ADP-heptose:LPS 
heptosyltransferase 

COG1864 1 F DNA/RNA endonuclease G, NUC1 

COG1109 1 G Phosphomannomutase 

COG1216 7 G Glycosyltransferase, GT2 family 

COG1449 1 G Alpha-amylase/alpha-mannosidase, GH57 family 

COG1523 1 G Pullulanase/glycogen debranching enzyme 

COG2814 1 G Predicted arabinose efflux permease, MFS family 

COG0726 2 G|M Peptidoglycan/xylan/chitin deacetylase, PgdA/CDA1 family 

COG1011 1 H FMN phosphatase YigB, HAD superfamily 

COG1477 1 H Thiamine biosynthesis lipoprotein ApbE 

COG2226 4 H Ubiquinone/menaquinone biosynthesis C-methylase UbiE 

COG2227 1 H 2-polyprenyl-3-methyl-5-hydroxy-6-metoxy-1,4-benzoquinol 
methylase 

COG0558 1 I Phosphatidylglycerophosphate synthase 

COG0764 1 I 3-hydroxymyristoyl/3-hydroxydecanoyl-(acyl carrier protein) 
dehydratase 

COG1213 1 I Choline kinase 

COG1960 1 I Acyl-CoA dehydrogenase related to the alkylation response protein 
AidB 

COG0304 3 I|Q 3-oxoacyl-(acyl-carrier-protein) synthase 

COG0013 1 J Alanyl-tRNA synthetase 

COG0223 1 J Methionyl-tRNA formyltransferase 

COG0349 1 J Ribonuclease D 

COG0590 1 J tRNA(Arg) A34 adenosine deaminase TadA 

COG1234 1 J Ribonuclease BN, tRNA processing enzyme 

COG3481 1 J 3'-5' exoribonuclease YhaM, can participate in 23S rRNA maturation,  
HD superfamily 

COG1208 1 J|M NDP-sugar pyrophosphorylase, includes eIF-2Bgamma, eIF-2Bepsilon, 
and LPS biosynthesis proteins 

COG1309 1 K DNA-binding transcriptional regulator, AcrR family 

COG1595 1 K DNA-directed RNA polymerase specialized sigma subunit, sigma24 
family 

COG1846 1 K DNA-binding transcriptional regulator, MarR family 

COG2214 1 K Curved DNA-binding protein CbpA, contains a DnaJ-like domain 
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COG2865 1 K Predicted transcriptional regulator, contains HTH domain 

COG3177 1 K Fic family protein 

COG4190 1 K Predicted transcriptional regulator 

COG1349 1 K|G DNA-binding transcriptional regulator of sugar metabolism, 
DeoR/GlpR family 

COG0553|COG1502 2 K|I|L Superfamily II DNA or RNA helicase, SNF2 
family|Phosphatidylserine/phosphatidylglycerophosphate/cardiolipin 
synthase or related enzyme 

COG0553 2 K|L Superfamily II DNA or RNA helicase, SNF2 family 

COG1061 1 K|L Superfamily II DNA or RNA helicase 

COG2197 2 K|T DNA-binding response regulator, NarL/FixJ family, contains REC and 
HTH domains 

COG2203|COG2203|COG3604 1 K|T GAF domain|GAF domain|Transcriptional regulator containing GAF, 
AAA-type ATPase, and DNA-binding Fis domains 

COG3604 1 K|T Transcriptional regulator containing GAF, AAA-type ATPase, and DNA-
binding Fis domains 

COG2002 2 K|V Bifunctional DNA-binding transcriptional regulator of 
stationary/sporulation/toxin gene expression and antitoxin 
component of the YhaV-PrlF toxin-antitoxin module 

COG0270 1 L Site-specific DNA-cytosine methylase 

COG0433 1 L Archaeal DNA helicase HerA or a related bacterial ATPase, contains 
HAS-barrel and ATPase domains 

COG0507|COG1112|COG2852 1 L ATP-dependent exoDNAse (exonuclease V), alpha subunit, helicase 
superfamily I|Superfamily I DNA and/or RNA helicase|Very-short-
patch-repair endonuclease 

COG0513|COG1205|COG2852 1 L Superfamily II DNA and RNA helicase|ATP-dependent helicase YprA,  
contains C-terminal metal-binding DUF1998 domain|Very-short-
patch-repair endonuclease 

COG0863 1 L DNA modification methylase 

COG0863|COG2189 1 L DNA modification methylase|Adenine specific DNA methylase Mod 

COG1074 1 L ATP-dependent exoDNAse (exonuclease V) beta subunit (contains 
helicase and exonuclease domains) 

COG1484 3 L DNA replication protein DnaC 

COG1743 2 L Adenine-specific DNA methylase, contains a Zn-ribbon domain 

COG2003 1 L DNA repair protein RadC, contains a helix-hairpin-helix DNA-binding 
motif 

COG2189 3 L Adenine specific DNA methylase Mod 

COG2887 2 L RecB family exonuclease 

COG3727 1 L G:T-mismatch repair DNA endonuclease, very short patch repair 
protein 

COG4974 2 L Site-specific recombinase XerD 
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COG0399 1 M dTDP-4-amino-4,6-dideoxygalactose transaminase 

COG0438 5 M Glycosyltransferase involved in cell wall bisynthesis 

COG0451 3 M Nucleoside-diphosphate-sugar epimerase 

COG0463 1 M Glycosyltransferase involved in cell wall bisynthesis 

COG0744 1 M Membrane carboxypeptidase (penicillin-binding protein) 

COG0769 2 M UDP-N-acetylmuramyl tripeptide synthase 

COG1136 1 M ABC-type lipoprotein export system, ATPase component 

COG1368 1 M Phosphoglycerol transferase MdoB or a related enzyme of AlkP 
superfamily 

COG1538 2 M Outer membrane protein TolC 

COG1835 1 M Peptidoglycan/LPS O-acetylase OafA/YrhL, contains acyltransferase 
and SGNH-hydrolase domains 

COG1898 1 M dTDP-4-dehydrorhamnose 3,5-epimerase or related enzyme 

COG2244 1 M Membrane protein involved in the export of O-antigen and teichoic 
acid 

COG3064 1 M Membrane protein involved in colicin uptake 

COG3203 1 M Outer membrane protein (porin) 

COG3307 2 M O-antigen ligase 

COG3409 1 M Peptidoglycan-binding (PGRP) domain of peptidoglycan hydrolases 

COG3637|COG3659 1 M Opacity protein and related surface antigens|Carbohydrate-selective 
porin OprB 

COG3267|COG3409 1 M|U Type II secretory pathway, component ExeA (predicted 
ATPase)|Peptidoglycan-binding (PGRP) domain of peptidoglycan 
hydrolases 

COG1192 1 N Cellulose biosynthesis protein BcsQ 

COG1215 1 N Glycosyltransferase, catalytic subunit of cellulose synthase and poly-
beta-1,6-N-acetylglucosamine synthase 

COG3144 1 N Flagellar hook-length control protein FliK 

COG4786 1 N Flagellar basal body rod protein FlgG 

COG5653 1 N Acetyltransferase involved in cellulose biosynthesis, CelD/BcsL family 

COG0071 1 O Molecular chaperone IbpA, HSP20 family 

COG0526 1 O Thiol-disulfide isomerase or thioredoxin 

COG1404 1 O Serine protease, subtilisin family 

COG1572 1 O Serine protease, subtilase family 

COG1651 1 O Protein-disulfide isomerase 

COG4930 1 O Predicted ATP-dependent Lon-type protease 

COG4934 1 O Serine protease, subtilase family 
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COG1086 2 O|M NDP-sugar epimerase, includes UDP-GlcNAc-inverting 4,6-
dehydratase FlaA1 and capsular polysaccharide biosynthesis protein 
EpsC 

COG0004 1 P Ammonia channel protein AmtB 

COG0288 1 P Carbonic anhydrase 

COG0475 1 P Kef-type K+ transport system, membrane component KefB 

COG0475|COG0490|COG1226 1 P Kef-type K+ transport system, membrane component KefB|K+/H+ 
antiporter YhaU, regulatory subunit KhtT|Voltage-gated potassium 
channel Kch 

COG0672 1 P High-affinity Fe2+/Pb2+ permease 

COG0715 1 P ABC-type nitrate/sulfonate/bicarbonate transport system, periplasmic 
component 

COG0803 1 P ABC-type Zn uptake system ZnuABC, Zn-binding component ZnuA 

COG1108 1 P ABC-type Mn2+/Zn2+ transport system, permease component 

COG1116 1 P ABC-type nitrate/sulfonate/bicarbonate transport system, ATPase 
component 

COG1121 1 P ABC-type Mn2+/Zn2+ transport system, ATPase component 

COG2223 1 P Nitrate/nitrite transporter NarK 

COG3221 1 P ABC-type phosphate/phosphonate transport system, periplasmic 
component 

COG3420 1 P Nitrous oxidase accessory protein NosD, contains tandem CASH 
domains 

COG3696 1 P Cu/Ag efflux pump CusA 

COG4773 1 P Outer membrane receptor for ferric coprogen and ferric-rhodotorulic 
acid 

COG4986 1 P ABC-type anion transport system, duplicated permease component 

COG2041|COG4117 1 P|C Periplasmic DMSO/TMAO reductase YedYZ, molybdopterin-
dependent catalytic subunit|Thiosulfate reductase cytochrome b 
subunit 

COG0425|COG1416 1 P|O TusA-related sulfurtransferase|Intracellular sulfur oxidation protein, 
DsrE/DsrF family 

COG1116|COG4754 1 P|S ABC-type nitrate/sulfonate/bicarbonate transport system, ATPase 
component|Uncharacterized protein 

COG0038|COG0517 1 P|T H+/Cl- antiporter ClcA|CBS domain 

COG1233 1 Q Phytoene dehydrogenase-related protein 

COG1647 1 Q Esterase/lipase 

COG2162 1 Q Arylamine N-acetyltransferase 

COG0385 1 R Predicted Na+-dependent transporter 

COG0535 2 R Radical SAM superfamily enzyme, MoaA/NifB/PqqE/SkfB family 

COG0667 1 R Predicted oxidoreductase (related to aryl-alcohol dehydrogenase) 
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COG0693 1 R Putative intracellular protease/amidase 

COG1032 1 R Radical SAM superfamily enzyme YgiQ, UPF0313 family 

COG1373 4 R Predicted ATPase, AAA+ superfamily 

COG1483 1 R Predicted ATPase, AAA+ superfamily 

COG1487 2 R Predicted nucleic acid-binding protein, contains PIN domain 

COG1569 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG1569 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG1708 2 R Predicted nucleotidyltransferase 

COG1724 1 R Predicted RNA binding protein YcfA, dsRBD-like fold, HicA-like mRNA 
interferase family 

COG1741 2 R Redox-sensitive bicupin YhaK, pirin superfamily 

COG1848 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG1988 1 R Membrane-bound metal-dependent hydrolase YbcI, DUF457 family 

COG2081 1 R Predicted flavoprotein YhiN 

COG2374 2 R Predicted extracellular nuclease 

COG2391 1 R Uncharacterized membrane protein YedE/YeeE, contains two sulfur 
transport domains 

COG2402 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG2405 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG2522 1 R Predicted transcriptional regulator 

COG3146 1 R Predicted N-acyltransferase 

COG3153 1 R Predicted N-acetyltransferase YhbS 

COG3173 1 R Predicted  kinase, aminoglycoside phosphotransferase (APT) family 

COG3179 1 R Predicted chitinase 

COG3391 1 R DNA-binding beta-propeller fold protein YncE 

COG3919 1 R Predicted ATP-dependent carboligase, ATP-grasp superfamily 

COG4113 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG4113 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG4634 2 R Predicted nuclease, contains PIN domain, potential toxin-antitoxin 
system component 

COG4782 1 R Esterase/lipase superfamily enzyme 

COG4804 1 R Predicted nuclease of restriction endonuclease-like (RecB) 
superfamily,  DUF1016 family 

COG5573 1 R Predicted nucleic acid-binding protein, contains PIN domain 

COG5610 1 R Predicted hydrolase, HAD superfamily 

COG1063 1 R|E Threonine dehydrogenase or related Zn-dependent dehydrogenase 
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COG1028 2 R|I|Q NAD(P)-dependent dehydrogenase, short-chain alcohol 
dehydrogenase family 

COG1361 1 S Uncharacterized conserved protein 

COG1479|COG3472 1 S Uncharacterized conserved protein, contains ParB-like and HNH 
nuclease domains|Uncharacterized protein 

COG1512 1 S Uncharacterized membrane protein YgcG, contains a TPM-fold 
domain 

COG1704 1 S Uncharacterized conserved protein 

COG1808 1 S Uncharacterized membrane protein 

COG2340 1 S Uncharacterized conserved protein YkwD, contains CAP (CSP/antigen 
5/PR1) domain 

COG2442 3 S Uncharacterized conserved protein, DUF433 family 

COG2445 3 S Uncharacterized conserved protein YutE, UPF0331/DUF86 family 

COG2929 3 S Uncharacterized conserved protein, DUF497 family 

COG3174 1 S Uncharacterized membrane protein, DUF4010 family 

COG3514 1 S Uncharacterized conserved protein, DUF4415 family 

COG3584 1 S 3D (Asp-Asp-Asp) domain 

COG3762 1 S Uncharacterized membrane protein 

COG4089 1 S Uncharacterized membrane protein 

COG4372 1 S Uncharacterized conserved protein, contains DUF3084 domain 

COG4487 1 S Uncharacterized protein 

COG4737 1 S Uncharacterized protein 

COG5428 2 S Uncharacterized protein YuzE 

COG5483 1 S Uncharacterized conserved protein, DUF488 family 

COG0515 1 T Serine/threonine protein kinase 

COG2203|COG2770|COG5002 1 T GAF domain|HAMP domain|Signal transduction histidine kinase 

COG2204 2 T DNA-binding transcriptional response regulator, NtrC family, contains 
REC, AAA-type ATPase, and a Fis-type DNA-binding domains 

COG2205 1 T K+-sensing histidine kinase KdpD 

COG2336 1 T Antitoxin component of the MazEF toxin-antitoxin module 

COG5635 1 T Predicted NTPase, NACHT family domain 

COG0464 1 T|D|M AAA+-type ATPase, SpoVK/Ycf46/Vps4 family 

COG0286 2 V Type I restriction-modification system, DNA methylase subunit 

COG0577 1 V ABC-type antimicrobial peptide transport system, permease 
component 

COG0732|COG0732 3 V Restriction endonuclease S subunit|Restriction endonuclease S 
subunit 

COG0841 2 V Multidrug efflux pump subunit AcrB 
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COG0842 1 V ABC-type multidrug transport system, permease component 

COG1002 1 V Type II restriction/modification system, DNA methylase subunit YeeA 

COG1131 1 V ABC-type multidrug transport system, ATPase component 

COG1203 1 V CRISPR/Cas system-associated endonuclease/helicase Cas3 

COG1337 1 V CRISPR/Cas system CSM-associated protein Csm3, group 7 of RAMP 
superfamily 

COG1343 1 V CRISPR/Cas system-associated endoribonuclease Cas2 

COG1353 1 V CRISPR/Cas system-associated protein Cas10, large subunit of type III 
CRISPR-Cas systems, contains HD superfamily nuclease domain 

COG1403 1 V 5-methylcytosine-specific restriction endonuclease McrA 

COG1421 1 V CRISPR/Cas system CSM-associated protein Csm2, small subunit 

COG1468 1 V CRISPR/Cas system-associated exonuclease Cas4, RecB family 

COG1518 1 V CRISPR/Cas system-associated endonuclease Cas1 

COG1567 1 V CRISPR/Cas system CSM-associated protein Csm4, group 5 of RAMP 
superfamily 

COG1598 4 V Predicted nuclease of the RNAse H fold, HicB family 

COG1680 1 V CubicO group peptidase, beta-lactamase class C family 

COG1715 2 V Restriction endonuclease Mrr 

COG2076 2 V Multidrug transporter EmrE and related cation transporters 

COG2161 1 V Antitoxin component YafN of the YafNO toxin-antitoxin module, 
PHD/YefM family 

COG2253 2 V Predicted nucleotidyltransferase component of viral defense system 

COG2337 1 V mRNA-degrading endonuclease, toxin component of the MazEF toxin-
antitoxin module 

COG3093 1 V Plasmid maintenance system antidote protein VapI, contains XRE-type 
HTH domain 

COG3440 1 V Predicted restriction endonuclease 

COG3649 1 V CRISPR/Cas system type I-B associated protein Csh2, Cas7 group, 
RAMP superfamily 

COG3657 1 V Putative component of the toxin-antitoxin plasmid stabilization 
module 

COG3744 3 V PIN domain nuclease, a component of toxin-antitoxin system (PIN 
domain) 

COG4006 1 V CRISPR/Cas system-associated protein Csm6, COG1517 family 

COG4118 1 V Antitoxin component of toxin-antitoxin stability system, DNA-binding 
transcriptional repressor 

COG4257 2 V Streptogramin lyase 

COG5340 2 V Transcriptional regulator, predicted component of viral defense 
system 
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COG0551|COG1787 1 V|L ssDNA-binding Zn-finger and Zn-ribbon domains of topoisomerase 
1|Endonuclease, HJR/Mrr/RecB family 

COG0845 4 V|M Multidrug efflux pump subunit AcrA (membrane-fusion protein) 

COG1332|COG3064 1 V|M CRISPR/Cas system CSM-associated protein Csm5, group 7 of RAMP 
superfamily|Membrane protein involved in colicin uptake 

COG2442|COG3587 1 V|S Uncharacterized conserved protein, DUF433 family|Restriction 
endonuclease 

COG2801 1 X Transposase InsO and inactivated derivatives 

COG2963 1 X Transposase and inactivated derivatives 

COG3039 2 X Transposase and inactivated derivatives, IS5 family 

COG3328 3 X Transposase (or an inactivated derivative) 

COG3335 1 X Transposase 

COG3385 2 X IS4 transposase 

COG3415 1 X Transposase 

COG3636 1 X DNA-binding prophage protein 

COG3668 2 X Plasmid stabilization system protein ParE 

COG4584 4 X Transposase 

COG4644 1 X Transposase and inactivated derivatives, TnpA family 

COG4679 3 X Phage-related protein 
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Appendix C. 

Supplementary information for Chapter 5.  

Supplemental information on modeling 

The rate of change in biomass in the model is equivalent to the rate of growth minus the rate of 

decay. For example, the anammox biomass concentration is given by the differential equation:  

𝑑𝑋𝐴𝑁𝐴

𝑑𝑡
= 𝜇̂𝐴𝑁𝐴 (

𝑆𝑁𝑂2

𝐾𝑁𝑂2,𝐴𝑁𝐴 + 𝑆𝑁𝑂2

) (
𝑆𝑁𝐻4

𝐾𝑁𝐻4,𝑁𝑂2 + 𝑆𝑁𝐻4

) 𝑋𝐴𝑁𝐴 − 𝑏𝐴𝑁𝐴𝑋𝐴𝑁𝐴 

For electron donors the substrate utilization rate is related to the rate of growth by the yield of the 

organism. The yield is the ratio of mass of biomass produced to mass of electron donor consumed. 

For electron acceptors, the relation is more complex and requires some stoichiometric calculations 

of electrons going to biomass production versus electrons going to the electron acceptor. Other 

considerations in this model are the consumption of ammonium-nitrogen used for biomass growth 

and the production of ammonium-nitrogen from biomass decay. Decay products get converted 

either to inert or soluble particulates. Soluble particulates are then converted to soluble substrates 

via hydrolysis. These calculations are outlined in most environmental biotechnology 

textbooks(Grady et al., 2011; Rittmann and Mccarty, 2001).  The Peterson matrix below is used to 

give the differential equations used in the model. For each soluble species (i), the differential 

equation describing the concentration is equal to the sum of the rate equation (j) times the matrix 

coefficient. For example, the rate of methane consumption is equal to:  

𝑑𝐶𝐻4

𝑑𝑡
= −

1

𝑌𝑀𝑂𝐵
𝜇̂

𝑀𝑂𝐵
(

𝑆𝑂

𝐾𝑂,𝑀𝑂𝐵+𝑆𝑂

) (
𝑆𝐶𝐻4

𝐾𝐶𝐻4,𝑀𝑂𝐵+𝑆𝐶𝐻4

) 𝑋𝑀𝑂𝐵 −
1

𝑌𝑛−𝑑𝑎𝑚𝑜
𝜇̂

𝑁𝑂2−𝑑𝑎𝑚𝑜
(

𝐾𝑂,𝑁𝑂2−𝑑𝑎𝑚𝑜

𝐾𝑂,𝑁𝑂2−𝑑𝑎𝑚𝑜+𝑆𝑂

) (
𝑆𝑁𝑂2

𝐾𝑁𝑂2,𝑛−𝑑𝑎𝑚𝑜+𝑆𝑁𝑂2

) (
𝑆𝐶𝐻4

𝐾𝐶𝐻4,𝑁𝑂2−𝑑𝑎𝑚𝑜+𝑆𝐶𝐻4

) 𝑋𝑁𝑂2−𝑑𝑎𝑚𝑜 −

1

𝑌𝑛−𝑑𝑎𝑚𝑜
𝜇̂

𝑁𝑂3−𝑑𝑎𝑚𝑜
(

𝐾𝑂,𝑁𝑂3−𝑑𝑎𝑚𝑜

𝐾𝑂,𝑁𝑂3−𝑑𝑎𝑚𝑜+𝑆𝑂

) (
𝑆𝑁𝑂3

𝐾𝑁𝑂3,𝑛−𝑑𝑎𝑚𝑜+𝑆𝑁𝑂3

) (
𝑆𝐶𝐻4

𝐾𝐶𝐻4,𝑁𝑂3−𝑑𝑎𝑚𝑜+𝑆𝐶𝐻4

) 𝑋𝑁𝑂3−𝑑𝑎𝑚𝑜
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Table C1. Process rates in model 

 

 

# Process(j): Process Rate 

1 Growth of Aerobic ammonia oxidizers 
𝜇̂𝐴𝑂𝐵 (

𝑆𝑂

𝐾𝑂,𝐴𝑂𝐵 + 𝑆𝑂
) (

𝑆𝑁𝐻4

𝐾𝑁𝐻4,𝐴𝑂𝐵 + 𝑆𝑁𝐻4
) (

𝐾𝑆,𝐴𝑂𝐵

𝐾𝑆,𝐴𝑂𝐵 + 𝑆𝑆
) 𝑋𝐴𝑂𝐵 

2 Growth of Aerobic nitrite Oxidizers 
𝜇̂𝑁𝑂𝐵 (

𝑆𝑂

𝐾𝑂,𝑁𝑂𝐵 + 𝑆𝑂
) (

𝑆𝑁𝑂2

𝐾𝑁𝑂2,𝑁𝑂𝐵 + 𝑆𝑁𝑂2
) (

𝐾𝑆,𝑁𝑂𝐵

𝐾𝑆,𝑁𝑂𝐵 + 𝑆𝑆
) 𝑋𝑁𝑂𝐵 

3 Growth of Anaerobic ammonia 

oxidizers 𝜇̂𝐴𝑁𝐴 (
𝐾𝑂,𝐴𝑁𝐴

𝐾𝑂,𝐴𝑁𝐴 + 𝑆𝑂
) (

𝑆𝑁𝑂2

𝐾𝑁𝑂2,𝐴𝑁𝐴 + 𝑆𝑁𝑂2
) (

𝑆𝑁𝐻4

𝐾𝑁𝐻4,𝑁𝑂2 + 𝑆𝑁𝐻4
) (

𝐾𝑆,𝐴𝑁𝐴

𝐾𝑆,𝐴𝑁𝐴 + 𝑆𝑆
) 𝑋𝐴𝑁𝐴 

4 Growth of Aerobic methane oxidizers 
𝜇̂𝑀𝑂𝐵 (

𝑆𝑂

𝐾𝑂,𝑀𝑂𝐵 + 𝑆𝑂
) (

𝑆𝐶𝐻4

𝐾𝐶𝐻4,𝑀𝑂𝐵 + 𝑆𝐶𝐻4
) 𝑋𝑀𝑂𝐵 

5 Growth of DAMO  

(Nitrite dependent) 𝜇̂𝑁𝑂2−𝑑𝑎𝑚𝑜 (
𝐾𝑂,𝑁𝑂2−𝑑𝑎𝑚𝑜

𝐾𝑂,𝑁𝑂2−𝑑𝑎𝑚𝑜 + 𝑆𝑂
) (

𝑆𝑁𝑂2

𝐾𝑁𝑂2,𝑛−𝑑𝑎𝑚𝑜 + 𝑆𝑁𝑂2
) (

𝑆𝐶𝐻4

𝐾𝐶𝐻4,𝑁𝑂2−𝑑𝑎𝑚𝑜 + 𝑆𝐶𝐻4
) 𝑋𝑁𝑂2−𝑑𝑎𝑚𝑜 

6 Growth of DAMO  

(Nitrate dependent) 𝜇̂𝑁𝑂3−𝑑𝑎𝑚𝑜 (
𝐾𝑂,𝑁𝑂3−𝑑𝑎𝑚𝑜

𝐾𝑂,𝑁𝑂3−𝑑𝑎𝑚𝑜 + 𝑆𝑂
) (

𝑆𝑁𝑂3

𝐾𝑁𝑂3,𝑛−𝑑𝑎𝑚𝑜 + 𝑆𝑁𝑂3
) (

𝑆𝐶𝐻4

𝐾𝐶𝐻4,𝑁𝑂3−𝑑𝑎𝑚𝑜 + 𝑆𝐶𝐻4
) 𝑋𝑁𝑂3−𝑑𝑎𝑚𝑜 

7 Growth of heterotrophs 
𝜇̂ℎ (

𝑆𝐶𝑂𝐷

𝐾𝐶𝑂𝐷,ℎ + 𝑆𝐶𝑂𝐷
) (

𝑆𝑂

𝐾𝑂,ℎ + 𝑆𝑂
) 𝑋ℎ 

8 Growth of sulfide based denitrifiers 

(nitrite) 𝜇̂𝑠𝑢𝑙𝑓,𝑁𝑂2− (
𝑆𝑁𝑂2−

𝐾𝑁𝑂2−,𝑠𝑢𝑙𝑓 + 𝑆𝑁𝑂2−
) (

𝑆𝐻𝑆−

𝐾𝐻𝑆−,𝑠𝑢𝑙𝑓 + 𝑆𝐻𝑆−
) (

𝐾𝑂,𝐴𝑁𝐴

𝐾𝑂,𝐴𝑁𝐴 + 𝑆𝑂
) 𝑋𝑁𝑂2,𝑠𝑢𝑙𝑓 

9 Growth of sulfide based denitrifiers 

(nitrate) 𝜇̂𝑠𝑢𝑙𝑓,𝑁𝑂3− (
𝑆𝑁𝑂3−

𝐾𝑁𝑂3−,𝑠𝑢𝑙𝑓 + 𝑆𝑁𝑂3−
) (

𝑆𝐻𝑆−

𝐾𝐻𝑆−,𝑠𝑢𝑙𝑓 + 𝑆𝐻𝑆−
) (

𝐾𝑂,𝐴𝑁𝐴

𝐾𝑂,𝐴𝑁𝐴 + 𝑆𝑂
) 𝑋𝑁𝑂3,𝑠𝑢𝑙𝑓 

10 Growth of Sulfide Oxidizing bacteria 
𝜇̂𝑆𝑂𝐵 (

𝑆𝐻𝑆−

𝐾𝐻𝑆−,𝑆𝑂𝐵 + 𝑆𝐻𝑆−
) (

𝑆𝑂

𝐾𝑂,𝑆𝑂𝐵 + 𝑆𝑂
) 𝑋𝑆𝑂𝐵 

11 Growth of sulfate reducing bacteria 
𝜇̂𝑆𝑅𝐵 (

𝑆𝐶𝑂𝐷

𝐾𝐶𝑂𝐷,𝑆𝑅𝐵 + 𝑆𝐶𝑂𝐷
) (

𝑆𝑆𝑂4

𝐾𝑆𝑂4,𝑆𝑅𝐵 + 𝑆𝑆𝑂4
) 𝑋𝑆𝑅𝐵 

12 Decay of Aerobic ammonia oxidizers 𝑏𝐴𝑂𝐵𝑋𝐴𝑂𝐵 

13 Decay of Aerobic nitrite Oxidizers 𝑏𝑁𝑂𝐵𝑋𝑁𝑂𝐵 

14 Decay of Anaerobic ammonia oxidizers 𝑏𝐴𝑁𝐴𝑋𝐴𝑁𝐴 

15 Decay of Aerobic methane oxidizers 𝑏𝑀𝑂𝐵𝑋𝑀𝑂𝐵 

16 Decay of DAMO (Nitrite) 𝑏𝑁𝑂2−𝑑𝑎𝑚𝑜𝑋𝑁𝑂2−𝑑𝑎𝑚𝑜 

17 Decay of DAMO (Nitrate) 𝑏𝑁𝑂3−𝑑𝑎𝑚𝑜𝑋𝑁𝑂3−𝑑𝑎𝑚𝑜 

18 Decay of heterotrophs 𝑏𝐻𝐸𝑇𝑋𝐻𝐸𝑇 
19 Decay of denitrifying heterotrophs 

(nitrite) 
𝑏𝑑𝑒𝑛𝑖𝑡,𝑁𝑂2𝑋𝑑𝑒𝑛𝑖𝑡𝑒,𝑁𝑂2 

20 Decay of denitrifying heterotrophs 

(nitrate) 
𝑏𝑑𝑒𝑛𝑖𝑡,𝑁𝑂3𝑋𝑑𝑒𝑛𝑖𝑡𝑒,𝑁𝑂3 

21 Decay of sulfide based denitrifiers 

(nitrite) 
𝑏𝑠𝑢𝑙𝑓,𝑁𝑂2𝑋𝑠𝑢𝑙𝑓,𝑁𝑂2 

22 Decay of sulfide based denitrifiers 

(nitrate) 
𝑏𝑠𝑢𝑙𝑓,𝑁𝑂3𝑋𝑠𝑢𝑙𝑓,𝑁𝑂2 

23 Decay of SOB 𝑏𝑆𝑂𝐵𝑋𝑆𝑂𝐵 
24 Decay of SRB 𝑏𝑆𝑅𝐵𝑋𝑆𝑅𝐵  
25 Hydrolysis 

𝑘𝐻 (
𝑋𝑆

𝐾𝑋
) 

26 Hydrolysis of nitrogen compounds 
𝑘𝐻 (

𝑋𝑁

𝐾𝑋
) 
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Table C2. Peterson Matrix for Model. Each row has a distinct yield (Y) for that metabolism 

(i): 
XAOB XNOB XANA XMOB 

XNO2-

damo 

XNO3-

damo 
Xhet 

XNO2,

sulf 
XNO3, 

sulf 
Xs XN XI XSOB XSRB SO SCOD SCH4 SNH4 SNO2 SNO3 SSO4 SHS- 

mg/L as COD mg/L as N mg/L as S 
(j) 

1 1              −
3.43 − 𝑌

𝑌
   −

1

𝑌
− 𝑖𝑁,𝑋 

1

𝑌
    

2  1             −
1.14 − 𝑌

𝑌
   −𝑖𝑁,𝑋 −

1

𝑌
 

1

𝑌
   

3   1               
−

1

𝑌
− 𝑖𝑁,𝑋 

−
1 − 0.87𝑌

𝑌
 0.87   

4    1           −
1 − 𝑌

𝑌
  −

1

𝑌
 −𝑖𝑁,𝑋     

5     1            −
1

𝑌
 −𝑖𝑁,𝑋 −

0.58 − 0.58 ∗ 𝑌

𝑌
    

6      1           −
1

𝑌
 −𝑖𝑁,𝑋 −

0.35 − 0.35𝑌

𝑌
    

7       1        −
1 − 𝑌

𝑌
 −

1

𝑌
  −𝑖𝑁,𝑋     

8        1          −𝑖𝑁,𝑋 −
1.17 − .585𝑌

𝑌
  

1

𝑌
 −

1

𝑌
 

9 
        1         −𝑖𝑁,𝑋  −

0.7 − .35𝑌

𝑌
 

1

𝑌
 −

1

𝑌
 

10 
            1  −

2 − 𝑌

𝑌
   −𝑖𝑁,𝑋   

1

𝑌
 −

1

𝑌
 

11              1  −
1

𝑌
  −𝑖𝑁,𝑋   −

1 − 0.5𝑌

𝑌
 

1 − 0.5𝑌

𝑌
 

12 
-1         

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

13 
 -1        

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           
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14 
  -1       

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

15 
   -1      

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 

fI           

16 
    -1     

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

17 
     -1    

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

18 
      -1   

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

19 
         

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

20 
         

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

21 
       -1  

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

22 
        -1 

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI           

23 
         

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
fI -1          

24 
         

(1-
fI) 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 

fI  -1         

25 
         -1 

𝑖𝑁,𝑋

− 𝑖𝑁𝑋𝐼

∗ 𝑓𝑖 
    1       

26           -1       1     
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Table C3. Kinetic Parameters. All methane values are presented as COD; sulfate and sulfide are as S; ammonia, nitrite, and nitrate are as N.  References are: [1] (Delgado Vela et 

al., 2015), [2] (Munz et al., 2009). [3] (Chen et al., 2014), [4] (Ni et al., 2014), [5] (Mora et al., 2015), [6] (Xu et al., 2013) [7] (Trapani et al., 2010), [8] (Grady et al., 2011), [9] 

(Chang and Alvarez-Cohen, 1997), [10] (Cema et al., 2012), [11] (Doǧan et al., 2012), [12] (Plattes et al., 2007), [13] (Moussa et al., 2005) [14] (van Bodegom et al., 2001) [15] 

(He et al., 2014), [16] (Dale et al., 2006). [17](Oshiki et al., 2013), [18] (Kappler and Gujer, 1992). [19] (Chang and Criddle, 1997), [20] (Zeng and Zhang, 2005) [21] (Weismann, 

1994) [22] (Delgado Vela et al., 2018), [23] (Jetten et al., 1999), [24] (Russ et al., 2014) *reliable parameters not found, assumed same as anammox 

Metabolism 

 

e- donor 

 

e- acceptor 

 

μmax Y Kdonor Kacceptor b Kinhib 

day-1 Ref.  Units Ref. mg/L Ref. mg/L Ref. day-1 Ref. mg/L Inhibitor Ref. 

Aerobic Ammonia Oxidation Ammonia Oxygen 2.2 Calibrated 0.07 
𝑔𝐶𝑂𝐷

𝑔 𝑁
 [8] 0.26 [12] 0.39 Calibrated 0.072 [8] 12.15 sulfide [22] 

Aerobic Nitrite Oxidation nitrite oxygen 5.39 Calibrated 0.08 
𝑔𝐶𝑂𝐷

𝑔 𝑁
 [8] 2.00 [13] 0.25 Calibrated 0.072 [8] 2.6 sulfide [22] 

Aerobic Methane Oxidation methane oxygen 3.66 
Median 
from [1] 

0.12 
𝑔𝐶𝑂𝐷

𝑔 𝐶𝑂𝐷
 [9] 1.79 [14] 0.21 [14] 0.549 [19]    

Aerobic Sulfide Oxidation sulfide oxygen 7.40 [2] 0.12 
𝑔𝐶𝑂𝐷

𝑔 𝑆
 [2] 0.32 [5] 0.15 [5] 0.130 [2] 0.06 oxygen * 

Anaerobic Methane Oxidation  methane nitrite 0.04 [3] 0.06 
𝑔𝐶𝑂𝐷

𝑔 𝐶𝑂𝐷
 [3] 5.50 [15] 0.01 [3] 0.002 [15] 0.06 oxygen * 

Anaerobic Methane Oxidation  methane nitrate 0.04 [3] 0.07 
𝑔𝐶𝑂𝐷

𝑔 𝐶𝑂𝐷
 [3] 5.50 [15] 0.11 [3] 0.002 [15]    

Anammox ammonia nitrite 
0.22 [4] 0.16 

𝑔𝐶𝑂𝐷

𝑔 𝑁
 [10] 0.08 [10] 0.47 [17] 0.006 [17] 

0.06 oxygen [23] 

0.32 sulfide [23] 

Sulfide based denitrification sulfide nitrite 4.49 [5] 0.80 
𝑔𝐶𝑂𝐷

𝑔 𝑆
 [11] 0.32 [5] 7.15 [5] 0.090 [20] 0.06 oxygen * 

Sulfide based denitrification sulfide nitrate 4.49 [5] 0.80 
𝑔𝐶𝑂𝐷

𝑔 𝑆
 [11] 0.32 [5] 1.30 [5] 0.090 [20] 0.06 oxygen * 

Sulfate reducing bacteria org matter  sulfate 1.46 [6] 1.24 
𝑔𝐶𝑂𝐷

𝑔 𝑆
 [6] 82 [16] 96 [16] 0.002 * 0.06 oxygen * 

Heterotrophic Denitrifiers org matter nitrite 2.06 [7] 0.39 
𝑔𝐶𝑂𝐷

𝑔𝐶𝑂𝐷
 [8] 8.82 [7] 0.10 [8] 0.100 [21] 0.25 oxygen [18] 

Heterotrophic Denitrifiers org matter  nitrate 2.06 [7] 0.39 
𝑔𝐶𝑂𝐷

𝑔𝐶𝑂𝐷
 [8] 8.82 [7] 0.10 [8] 0.100 [21] 0.25 oxygen [18] 

Heterotrophs org matter  oxygen 2.06 [7] 0.88 
𝑔𝐶𝑂𝐷

𝑔𝐶𝑂𝐷
 [7] 8.82 [7] 0.25 [18] 0.549 [18]    
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Table C4. Additional physical and chemical constants in the model. 

Constants Value Units Reference 

Diffusivity of methane 1.62 ∙10-4 m2/day (Witherspoon and Saraf, 1965) 

Diffusivity of ammonium 1.60∙10-4 m2/day (Tijhuis, 1994) 

Diffusivity of oxygen 1.73∙10-4 m2/day (Tijhuis, 1994) 

Diffusivity of nitrate & nitrite 1.46∙10-4 m2/day (Tijhuis, 1994) 

Diffusivity of volatile fatty acids 6.41∙10-5 m2/day (Yu and Pinder, 1994) 

Diffusivity of particulate matter 8.64 m2/day  

Diffusivity of hydrogen sulfide 1.66∙10-4 m2/day (Lindh et al., 1994) 

Diffusivity of sulfate 4.32∙10-5 m2/day (Krom and Berner, 1980) 

Diffusivity of membrane 1.92∙10-4 m2/day (Gilmore et al., 2009) 

Volume of lumen 1.30∙10-4 m3 Calculated from reactor 

Maximum biofilm thickness 600 µm Measured during reactor breakdown 

Volume of reactor 2.12∙10-3 m3 - 

Length of reactor 0.31 m - 

Thickness of membrane 6.4∙10-4 m - 

Radius of membrane 1.59∙10-3 m - 

Flow of influent 9.07∙10-3 m3/day - 

Decay constant (fi) 0.08 - (Grady et al., 2011) 

N content of biomass (iN,X) 0.087 g N/g COD Calculated (Grady et al., 2011) 

N content of inerts (iN,X) 0.02 g N/g COD (Grady et al., 2011) 

Hydrolysis rate constant (kH) 2.21 day-1 (Grady et al., 2011) 

Half saturation, hydrolysis (KX) 0.03 g COD/ m3 (Grady et al., 2011) 

Biofilm porosity 0.8 m3 liquid/m3 biofilm assumed 

Liquid diffusion layer 0.0001 m assumed 

Density of bacteria in biofilm 150000 g COD/ m3 assumed 
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Table C5. Changes to model Peterson Matrix with DNRA. 

 

 

 

 Table C6. DNRA stoichiometry 

Nitrite as acceptor 

Process  Rate 

Growth of 

sulfide based 

denitrifiers 

(nitrite) 

𝜇̂𝑠𝑢𝑙𝑓,𝑁𝑂2− ∗ 𝐷𝑁𝑅𝐴𝑠𝑤𝑖𝑡𝑐ℎ,𝑖𝑛𝑣 (
𝑆𝑁𝑂2−

𝐾𝑁𝑂2−,𝑠𝑢𝑙𝑓 + 𝑆𝑁𝑂2−
) (

𝑆𝐻𝑆−

𝐾𝐻𝑆−,𝑠𝑢𝑙𝑓 + 𝑆𝐻𝑆−
) (

𝐾𝑂,𝐴𝑁𝐴

𝐾𝑂,𝐴𝑁𝐴 + 𝑆𝑂
) 𝑋𝑁𝑂2,𝑠𝑢𝑙𝑓 

Growth of 

sulfide based 

DNRA 

(nitrite) 

𝜇̂𝑠𝑢𝑙𝑓,𝑁𝑂2− ∗ 𝐷𝑁𝑅𝐴𝑠𝑤𝑖𝑡𝑐ℎ (
𝑆𝑁𝑂2−

𝐾𝑁𝑂2−,𝑠𝑢𝑙𝑓 + 𝑆𝑁𝑂2−
) (

𝑆𝐻𝑆−

𝐾𝐻𝑆−,𝑠𝑢𝑙𝑓 + 𝑆𝐻𝑆−
) (

𝐾𝑂,𝐴𝑁𝐴

𝐾𝑂,𝐴𝑁𝐴 + 𝑆𝑂
) 𝑋𝑁𝑂2,𝑠𝑢𝑙𝑓 

Nitrate as acceptor 
Process  Rate 

Growth of 

sulfide based 

denitrifiers 

(nitrate) 

𝜇̂𝑠𝑢𝑙𝑓,𝑁𝑂3− ∗ 𝐷𝑁𝑅𝐴𝑠𝑤𝑖𝑡𝑐ℎ,𝑖𝑛𝑣 (
𝑆𝑁𝑂3−

𝐾𝑁𝑂3−,𝑠𝑢𝑙𝑓 + 𝑆𝑁𝑂3−
) (

𝑆𝐻𝑆−

𝐾𝐻𝑆−,𝑠𝑢𝑙𝑓 + 𝑆𝐻𝑆−
) (

𝐾𝑂,𝐴𝑁𝐴

𝐾𝑂,𝐴𝑁𝐴 + 𝑆𝑂
) 𝑋𝑁𝑂3,𝑠𝑢𝑙𝑓 

Growth of 

sulfide based 

DNRA 

(nitrate) 

𝜇̂𝑠𝑢𝑙𝑓,𝑁𝑂3− ∗ 𝐷𝑁𝑅𝐴𝑠𝑤𝑖𝑡𝑐ℎ (
𝑆𝑁𝑂3−

𝐾𝑁𝑂3−,𝑠𝑢𝑙𝑓 + 𝑆𝑁𝑂3−
) (

𝑆𝐻𝑆−

𝐾𝐻𝑆−,𝑠𝑢𝑙𝑓 + 𝑆𝐻𝑆−
) (

𝐾𝑂,𝐴𝑁𝐴

𝐾𝑂,𝐴𝑁𝐴 + 𝑆𝑂
) 𝑋𝑁𝑂3,𝑠𝑢𝑙𝑓 

Process  XNO2,sulf XNO3, sulf SNH4 SNO2 SNO3 SSO4 SHS- 

Growth of 

sulfide based 

denitrifiers 

(nitrite) 

1  −𝑖𝑁,𝑋 +
0.59 − 0.295𝑌

𝑌
 −

0.59 − 0.295𝑌

𝑌
  1

𝑌
 −

1

𝑌
 

Growth of 

sulfide based 

DNRA 

(nitrate) 

 1 −𝑖𝑁,𝑋 +
0.48 − 0.24𝑌

𝑌
  −

0.48 − 0.24𝑌

𝑌
 

1

𝑌
 −

1

𝑌
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Figure C1. DNRA switch and DNRA switch, inverse values as a function of S to N ratio 

Table C7. Ranked list of sensitivity and uncertainty of parameter vales on effluent nitrogen. Only parameters ranked 

in top 10 for at least one nitrogenous compound are shown.  

Sensitivity rankings 
 Ammonium Nitrite Nitrate Average 

µAOB 2 3 2 2.3 

µNOB 7 1 1 3.0 

KO,AOB 4 4 3 3.7 

YANA 1 8 4 4.3 

µANA 3 2 10 5.0 

bAOB 5 9 6 6.7 

KO,NOB 15 5 5 8.3 

YMOB 6 12 9 9.0 

YNOB 17 6 7 10.0 

bNOB 20 7 8 11.7 

bMOB 8 13 15 12.0 

KNO2,NOB 24 10 12 15.3 

KNO2,ANA 10 19 19 16.0 

µMOB 9 22 22 17.7 

Uncertainty rankings 

µNOB 3 2 2 2.3 

KO,NOB 5 1 1 2.3 
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KO,AOB 2 4 3 3 

bAOB 1 5 5 3.7 

µAOB 4 6 6 5.3 

bNOB 12 3 4 6.3 

KO,SOB 6 9 9 8 

KHS,SOB 7 8 10 8.3 

µANA 8 7 17 10.7 

YANA 9 15 8 10.7 

KCOD,denit 14 14 7 11.7 

KNO2,ANA 10 12 15 12.3 

KNO2,NOB 28 10 12 16.7 

A) 

 

B) 
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C) 

 

Figure C2. Results of parameter estimation 

 

 

Figure C3. Model resulting from calibration procedure. Dashed lines represent model outputs. Dots with error bars 

represent reactor average effluent and standard deviation.  
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Supplemental information calculations 

Aeration demand from sulfide oxidation calculations  

The balanced equation for sulfide oxidation is:  

HS-+ 2O2 ↔ SO4
2-+ H+ 

Therefore, two moles of oxygen are consumed for each mole of hydrogen sulfide, given the 

molecular weights of S and O2 (both 32 g/mol), this is equivalent to 2 grams of oxygen consumed 

per gram of sulfide. So, 20 mg O2/L are needed to oxidize 10 mg sulfide/L. The balanced equation 

for complete nitrification is: 

NH4
+ +2 O2↔ NO3

- +H2O +2 H+ 

Therefore, two moles of oxygen are consumed for each mole of ammonium, given the molecular 

weights of N and O2 (14 and 32 g/mol, respectively), this is equivalent to 4.57 grams of oxygen 

consumed per gram of nitrogen. Therefore, the 20 mg O2/L can oxidize 4.4 mg NH4
+-N/L. This is 

equivalent to 8.75% of the influent (50 mg NH4
+-N/L). 

Calculations used on Figure 5-3 

At the beginning of the experiment when nitrification efficiency was 70%, 0.67 g NH4
+-N/m2-day 

were oxidized (influent loading is 0.95 g NH4
+-N/m2-day). Given the ratio of oxygen demand to 

nitrification indicated previously (4.57 g O2/g N), this is equivalent to 3.06 g O2/m
2-day. The 

inhibition observed (30%) is based on the nitrification efficiency before (70%) and at end of 

stepwise increases (40%).  30% of the influent ammonium load is 0.29 g NH4
+-N/m2-day. Given 

the ratio of oxygen demand to nitrification indicated previously (4.57 g O2/g N), this is equivalent 

to 1.31 g O2/m
2-day. So, the relative change in oxygen flux (100*1.31 g O2/m

2-day/3.06 g O2/m
2-

day) is equal to 43%.  

The analogous calculation is to calculate the change in concentration given the differences in flux 

(which is shown in Figure 5-3A). The difference between the before and after fluxes is 0.7 g O2/m
2-

day. Given the ratio of oxygen demand to nitrification indicated previously (4.57 g O2/g N), this 
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is equivalent to 0.15 NH4
+-N /m

2-day, which given the flow rate, volume, and membrane surface 

area of the reactor translates to 8.1 mg NH4
+-N/L.  

The balanced equation for sulfide- based DNRA with nitrite as the electron acceptor is:  

3HS-+ 4NO2
- +5H++4H2O↔ 3SO4

2-+ 4NH4
+ 

Therefore, 4 moles of ammonium are produced for each mole of hydrogen sulfide consumed, given 

the molecular weights of N and S (14 and 32 g/mol, respectively), this is equivalent to 0.58 grams 

of ammonium produced per gram of sulfide consumed. So, 10 mg HS--S/L have to potential to 

produce 5.8 mg N/L.  

For the pulse experiments, a similar calculation is done, but only taking the difference in sulfate 

concentrations over points where concentrations of ammonium were increasing. For the first pulse 

this is the difference in concentratin at the beginning and end of each pulse. For the second pulse, 

this is the difference between the first and third points in the pulse. For the first pulse this was 3.6 

mg SO4
2- -S/L, and for the second pulse this was 4.1 mg SO4

2- -S/L. So, with the stochiometric 

ratio, this is equivalent to 2.1 and 2.4 mg NH4
+/L, respectively.  

Potential inhibition calculations 

As described in Chapter 3, the comparison of rates in a noncompetitive inhibiton model results in 

the following equation:  

µ𝑖𝑛ℎ

µ𝑐𝑜𝑛𝑡
=

1

1 +
[𝐼]
𝐾𝑖

 

So given the inhibiton constant (KI) from Chapter 3 of 7.4 mg/L as S, and the concentration 

measured of sulfide 0.5 mg/L as S this simplifies to:  

1

1 +
0.5
7.4

= 0.94 

 

 



 
 

177 

 

 

Nitrous oxide emissions factor calculations  

No sulfide:  

100 ∗
0.001 𝑚𝑔

𝑁2𝑂 − 𝑁
𝐿

50 𝑚𝑔
𝑁𝐻4

+ − 𝑁
𝐿 𝑖𝑛 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

= 0.002% 

With sulfide:  

100 ∗
0.13𝑚𝑔

𝑁2𝑂 − 𝑁
𝐿

50 𝑚𝑔
𝑁𝐻4

+ − 𝑁
𝐿 𝑖𝑛 𝑖𝑛𝑓𝑙𝑢𝑒𝑛𝑡

= 0.25% 

Supplemental information on reactor effluent 

 

Figure C4. Percentage of Sulfide Recovered as Sulfate. Points below 1 mg/L are not shown because differences are 

below LOD on IC method 
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Figure C5. Dissolved oxygen microsensor profiles 

 

 

 

 

 
Figure C6. Influent and effluent iron concentrations during stepwise increases in sulfide 
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Figure C7. Influent and effluent copper and molybdenum concentrations during stepwise increases in sulfide 
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