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ABSTRACT

A few decades ago, Waldspurger proved a groundbreaking identity between the

central value of an L-function and the norm of a torus period. Combining this

with the Jacquet–Langlands correspondence gives a relationship between the norm

of torus periods arising from different quaternion algebras for automorphic forms

attached to Hecke characters. In this setting, the torus and the quaternion algebras

can be realized as dual reductive pairs that are compatible in a so-called seesaw.

We exploit the theta correspondence to give a direct proof of the identity of the

torus periods themselves.
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CHAPTER 1

Introduction

One of the central objects of modern number theory is L-functions, which date back to

the influential work of Euler, Riemann, Dirichlet, and many others in the 1700s and 1800s.

Dirichlet L-functions look deceptively simple: determining the zeroes of the Riemann zeta

function

L(s, 1) =
∞∑
n=1

1

ns

is still one of the greatest mysteries in mathematics (the Riemann Hypothesis!). Over the

last several hundred years, L-functions have established themselves at the center of a rich

web spanning ideas from number theory, representation theory, and algebraic geometry.

In the 1980s, Waldspurger established a formula relating L-values to torus periods, and

this has since inspired an entire industry relating L-functions to periods of automorphic forms,

shaped by the Gan–Gross–Prasad conjecture and the Ichino–Ikeda conjecture. These torus

periods are weighted averages of automorphic forms: for example, if f is an automorphic form

on GL2 = {invertible 2× 2 matrices}, the torus period associated to f and a multiplicative

function χ on T = {diagonal matrices in GL2} is

P(f, χ) :=

∫
T

f(g) · χ(g) dg.

The diagonal T here is associated to the split quadratic extension E = F ⊕ F , though in

general, the torus T can come from any quadratic extension E/F . Waldspurger’s formula

tells us that the behavior of torus periods for quaternion algebras—a family of algebraic

objects similar to GL2—is governed by two independent inputs:

(loc) Branching rules of local representation theory

(glob) Special values of global L-functions

Moreover, these local and global conditions uniquely determine a quaternion algebra B.
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The global condition implies that the sign associated to the L-function is ε = +1. The

local condition at infinity is described by the following dichotomy: if f has weight k and χ

has infinity-type (l, 0), then Waldspurger’s formula has two behaviors:

k > l k ≤ l

ε∞ = −1 ε∞ = +1

B definite (i.e. B×∞ 6∼= GL2(R)) B indefinite (i.e. B×∞
∼= GL2(R))

The purpose of this thesis is to explain how the two sides of this dichotomy can be related in

the special case that the form f comes from automorphic induction.

To this end, we fix a nonsplit torus T = E×, select two characters χ1 and χ2 of T ,

and consider forms f1 and f2 in their automorphic induction. By Waldspurger, considering

P(f1, χ2) and P(f2, χ1) determines two unique quaternion algebras B1 and B2, and in the

chart above, if B1 lies on the left-hand side then B2 must lie on the right-hand side, and vice

versa. Our main theorem is an identity between the these two periods.

We remark that already for GL2, the study of torus periods P(f, χ) has had deep

applications in arithmetic geometry: the geometry of modular curves, Iwasawa theory,

progress towards the Birch and Swinnerton-Dyer conjecture. Although we do not consider

arithmetic applications here, we plan to explore this in future work.

We now state a vague version of our main theorem.

Theorem (Vague version). Given Hecke characters χ1 and χ2, one can explicitly construct

a pair of automorphic forms (f1, f2) on B×1 and B×2 such that

P(f1, χ2) = P(f2, χ1).

In this statement, we have hidden many details. For example, if χ and χ′ are not

“sufficiently compatible,” then both sides of the equation will always be zero. We now explain

the arc of the thesis in more detail and address the nuances to the Theorem.

We first give an idea of what Waldspurger’s formula looks like. For an irreducible

automorphic representation π of GL2(AF ), one has an associated automorphic representation

πB called the Jacquet–Langlands transfer. Denoting by fB an automorphic form in πB, the

torus period associated to a Hecke character Ω of a quadratic extension E× satisfies an

identity of the form

|P(fB,Ω)|2 = ∗ · L(BC(π)⊗ Ω, 1
2
). (1.1)

The asterisk ∗ is comprised of local factors dictated by the local representation theory, and

the global L-function satisfies a functional equation centered at s = 1
2
. It is in this sense that
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Waldspurger’s formula is governed by a local input and a global input. If ∗ is nonzero, the

following central character condition must hold:

ωπ · Ω|A×F = 1,

where ωπ denotes the central character of π. In this setting, by work of Tunnell and Saito, there

is a unique quaternion algebra B such that the corresponding local factors in Waldspurger’s

formula are nonzero. We will consider the torus periods arising from two symmetric special

cases of this: fixing two Hecke characters χ1, χ2 of E×, consider

(1) π = πχ1 and Ω = χ2

(2) π = πχ2 and Ω = χ1

As such, the only automorphic representations of GL2 we will consider are those that arise

as the automorphic induction πχ of a Hecke character χ. As the central character of πχ is

χ|A×F · εE/F , the analogue of the central character condition for both (1) and (2) is:

χ1|A×F · χ2|A×F · εE/F = 1. (1.2)

Formally, the Rankin–Selberg L-function for the (GL2×GL2)-representation πχ1 ⊗ πχ2

satisfies

L(BC(πχ1)⊗ χ2, s) = L(πχ1 ⊗ πχ2 , s) = L(BC(πχ2)⊗ χ1, s).

On the other hand, as we see in Equation (1.1), Waldspurger’s formula relates (1) to the

left-hand side and (2) to the right-hand side, and therefore one obtains a relationship between

(the norms of) the torus periods arising from our two symmetric cases.

We will invoke the theta correspondence to construct automorphic forms. To this end,

the first key point of our approach to relating these torus periods is that we will construct

a seesaw of dual reductive pairs that precisely realizes the two quaternion algebras B1 and

B2 arising from (1) and (2). We then carefully examine the compatibility between the

theta correspondences for B×1 and B×2 . After calculating the global theta correspondences

representation theoretically, we are able to exploit the seesaw construction to directly establish

an identity between the torus periods (1) and (2) themselves (not just between their norms!):

Main Theorem (6.19). There exist explicitly constructed pairs of automorphic forms fB1
1 ∈

JLB
×
1 (πχ1) and fB2

2 ∈ JLB
×
2 (πχ2) such that

P(fB1
1 , χ2) = P(fB2

2 , χ1).

3



We point out an important special case of the Main Theorem. If F is totally real and

E is an imaginary quadratic extension of F , then the quaternion algebras B1 and B2 have

complementary ramification at infinity. For example, if B1 = M2(F ) is the split quaternion

algebra, then B2 is a totally definite quaternion algebra and the main theorem produces a

pair (f1, f2) of automorphic forms on GL2(AF ) and B×2,A. In this setting we have the following

theorem:

Theorem (9.1, 9.3). If F is totally real and B×1 = GL2(F ), one can arrange for f1 to be any

nonzero Hecke eigenform of positive weight and its Petersson inner product can be described

explicitly in terms of a special value of an L-function. Furthermore, the corresponding form

f2 on B×2 is an explicitly constructed automorphic form on a definite quaternion algebra.

We now give an outline of the present thesis. We begin by establishing some background.

In Chapter 2, we recall the construction of the Tamagawa measure, the basic definitions

of automorphic forms and representations, and explicitly describe automorphic induction

and the Jacquet–Langlands correspondence. These results will be used in Chapter 6 to

characterize the global theta lifts representation theoretically.

As our main tool is the theta correspondence, we need to understand the Weil representa-

tion, and we spend Chapter 3 recalling these constructions.

In Chapter 4, we give a brief summary of Waldspurger’s formula and the ε-dichotomy of

Tunnell–Saito. In Section 4.3, we give a simple description of the relationship between B1

and B2. We then construct dual reductive pairs (UB(V ),UB(W ∗)) and (UE(ResV ),UE(W ))

in Section 4.4 that both capture the behavior of E× ⊂ B×1 , B
×
2 and also map into a shared

symplectic group. The goal of the rest of the paper is to study the following seesaw of

similitude unitary groups with respect to the theta correspondence:

GUE(ResV ) GUB(W ∗)

GUB(V ) GUE(W )

“ = ”

B×2 B×1

E× E×

In Chapter 5, we use Kudla’s splittings for unitary groups and explicitly study their

compatibility on E××E×. Many of the calculations are similar to the calculations in [IP16b].

From the compatibility statements about the splittings, we can deduce precise information

about how the Weil representations on GUB(V )×GUB(W ∗) and GUE(ResV )×GUE(W )

are related.

In Chapter 6, we give a representation theoretic description of the global theta lifts. This

requires a careful study of Kudla’s splittings at the places v where everything is unramified

4



(Section 5.6). We prove (Theorem 6.1) that the global theta lifts can be described in terms

of automorphic induction and Jacquet–Langlands and that the global theta lift vanishes if

and only if the Jacquet–Langlands transfer does not exist. Combining these results with the

compatibility results of Chapter 5, we obtain our Main Theorem (Theorem 6.19).

In Chapter 8, we explicitly construct local Schwartz functions which are well behaved

under the Weil representation. These Schwartz functions have been considered in various

places before. At the finite places, they have appeared for example in [P06, Proposition 2.5.1],

[X07, N1]. At the infinite places, our choice is constructed from a confluent hypergeometric

function 1F1(a, b, t) of the first type. This is related to the role of hypergeometric functions

in matrix coefficients of representations of SL2(R) (see for example [X07, Appendix], [VK91,

Chapters 6, 7]).

We see in Chapter 9 that in the special case that F is totally real, E is a CM extension

of F , and B1 is split, the theta lifts of these Schwartz functions exactly produce all of

the Hecke eigenfunctions of positive weight. We remark that by construction (see Section

6.1), negative-weight Hecke eigenforms are not theta lifts since they are not supported on

GL2(F ) GL2(AF )+. The first step towards showing that the theta lifts give all the Hecke

eigenfunctions is seeing that they are nonzero. This is done by analyzing a doubled seesaw of

the form
GUE(1)×GUE(1) GUE(4)

GUE(1) GUE(2)×GUE(2)

to obtain a Rallis inner product (Section 6.2), which has the shape

〈θ1,ϕ(χ1), θ1,ϕ(χ1)〉 = 〈1,Eis〉.

Note that to establish such a formula, one first needs to establish compatibility between

the various splittings. Following similar computations in [IP16b], this is done in Section 5.3.

Another point of subtlety in the doubling method is due to convergence problems. In the case

that B is division, there are no issues, and in the case that B is split, this can be handled

by regularizing the theta integral and using the regularized Siegel–Weil formula [GQT] in

the second-term range. This gives us a Rallis inner product formula relating Petersson inner

product of θ1,ϕ(χ1) to the L-value L(χ̃1, 1). We calculate the associated doubling zeta integral

so that we can completely explicate the formula (Theorem 9.1). We then use Casselman’s

theorem to show that our theta lifts give all the Hecke eigenforms of positive weight (Theorem

9.3), and we prove an algebraicity result in the case F = Q using Shimura’s algebraicity

theorems (Theorem 9.4).

5



In the final chapter, Chapter 10, we discuss the above construction for the canonical

Hecke character χcan of Q(
√
−7). This is the simplest example of the theorems, and in this

setting one can calculate the theta lift directly as well. We do this and compare the theta

lift to GL2(AQ) to a classical theta series. Furthermore, we show that the torus period for

the Hecke eigenform on GL2(AQ) of appropriate weight is nonzero. By the Main Theorem

(Theorem 6.19), we have an explicitly constructed automorphic form on a definite quaternion

algebra whose corresponding torus period is nonvanishing.
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CHAPTER 2

Automorphic representations

In this chapter, we recall several constructions in the theory of automorphic forms. For a

number field F , let O be the ring of integers of F and D the different of F over Q. Let r1 be

the number of real embeddings of F and 2r2 be the number of complex embeddings of F .

For each finite place v of F , let Ov be the ring of integers of Fv, πv a uniformizer of Ov, and

qv the cardinality of the residue field Ov/πv. Let D = DF be the discriminant of F and for

each finite place v of F , let dv be the non-negative integer such that D ⊗O Ov = πdvv Ov. Set

δv = π−dvv . Then |D| =
∏

v-∞ q
dv
v .

The main groups in this thesis are A×E and A1
E where E/F is a quadratic extension, and

B×A , where B is a quaternion algebra over F . For shorthand, we write

[E×] := A×FE
×\A×E, [E1] := E1\A1

E, [B×] := A×FB
×\B×A ,

where in the last definition, we view A×F as the center of B×A .

2.1 The Tamagawa measure

To begin, one must establish what it means to integrate over an adelic group. There is a

canonical Haar measure on an adelic group known as the Tamagawa measure. We recall this

construction here and explicate the Tamagawa measure for a few special cases we will need

in Chapters 9 and 10.

Fix an additive character ψ of F . Let dx =
∏
v

dxv be the measure on AF that is self-dual

with respect to ψ. For a connected reductive group G defined over F that splits over E, let

X(G) be the lattice of rational characters on G. Then X(G)⊗Q is a Gal(E/F )-module of

dimension n which we will denote by ρG and we let Lv(s,G) be the v-component of the Artin

L-function corresponding to ρG. That is,

Lv(s,G) = det(In − q−sv ρG(σv))
−1,

7



where σv is the Frobenius conjugacy class in Gal(E/F ). Following [L80, 1.7], let ω be an

F -rational left-invariant nowhere vanishing differential form of highest degree on G. The

Tamagawa measure on G(AF ) is

dg = lim
s→1

1

(s− 1)rL(s,G)

∏
v

dgv, where dgv =

Lv(1, G)|ω|v for finite v,

|ω|v for infinite v,

where r is the rank of X(G)F . This measure is independent of the choice of additive character

ψ (which determined the measure on AF ) and the choice of F -rational differential form ω

(by the product formula).

Our calculations in Chapters 9 and 10 will require some more explicit information about

certain measures in some special cases. We explicate this here now.

2.1.0.1

The standard additive character of F\AF is ψ := ψ0 ◦ TrF/Q, where ψ0 = ⊗vψ0,v is the

non-trivial additive character of Q\AQ given by

ψ0,v(x) =

e2π
√
−1x if v =∞,

e−2π
√
−1x if v -∞.

Observe that if v is a finite place of F , then ψv is trivial on π−dvv OFv but nontrivial on

π−dv−1
v OFv . The measure dx on AF that is self-dual with respect to ψ has the property that:

· If v is finite, then vol(OFv , dxv) = q
−dv/2
v .

· If v is infinite, then dxv is the Lebesgue measure.

More generally, if ψ′ is any additive character of AF , then for any finite place v, we have

vol(Ov, dxv) = q
c(ψv)/2
v , where c(ψv) is the smallest integer such that ψv is trivial on π

c(ψv)
v OFv .

2.1.0.2

For any number field k, put

ρk := Ress=1 ζF (x) =
2r1(2π)r2hR

|D|1/2w
,

where r1 is the number of real places of k, r2 is the number of complex places of k, h = hk is

the class number of k, R = Rk is the regulator of k, D = Dk is the discriminant of k, and

8



w = wk is the number of roots of unity in k. Then the Tamagawa measure of A×k is

d×xTam = ρ−1
k ·

∏
v

d×xTam
v ,

where

d×xTam
v :=

(1− q−1
v )−1dxv/|x|v if v is finite,

dxv/|x|v if v is infinite.

Observe that if v is finite, then vol(O×v , d×xTam
v ) = q

−dv/2
v . The Tamagawa number of Gm is

1, i.e. vol(k×\A×k , d×xTam) = 1.

2.1.0.3

The previous example explicitly describes the Tamagawa measure of A×F and A×E. For each

place v of F , one has a short exact sequence

1→ F×v → E×v → E1
v → 1,

and hence we may define a local measure d1gTam
v on E1

v as the quotient measure. Then the

Tamagawa measure of E1
A is

d1gTam :=
ρF
ρE
·
∏
v

d1xTam
v .

Observe that if v is a finite place of F , then

vol(E1
v ∩ O×Ev , d

1xTam
v ) =

q
−1/2
Fv

if v ramifies in E,

q
−dFv/2
Fv

if v is inert or split in E.

Observe that vol(E1
v ∩O×Ev , d

1xTam
v ) = 1 for all but finitely many places v. If F is totally real

and E/F is totally imaginary, then one can show (for example by calculating the measure of

an annulus in C containing the unit circle) that

vol(C1, d1xTam
∞ ) = 2π.

We also have
ρF
ρE
∼ π−1,

where we write ∼ to denote equality up to an algebraic integer; i.e. a ∼ b if a/b ∈ Q.
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2.2 Automorphic representations

We briefly recall the definition of an automorphic representation of G(AF ), where G is an

arbitrary reductive group over F .

Definition 2.1. Define L2(G(F )\G(AF ), ψ) to be the space of measurable functions φ : G(AF )→
C satisfying the following conditions:

(i) For all γ ∈ G(F ),

φ(γg) = φ(g);

(ii) For all z ∈ ZA = Z(G(AF )) and g ∈ G(AF ),

φ(gz) = φ(zg) = ψ(z)φ(g);

(iii)

∫
Z(AF )G(F )\G(AF )

|φ(g)|2 dg <∞.

Define L2
cusp(G(F )\G(AF ), ψ) to be the space of φ ∈ L2(G(F )\G(AF ), ψ) such that φ satisfies

the cuspidal condition:∫
N(F )\N(AF )

φ(ng) dx = 0 for almost every g ∈ GA,

where N is the unipotent radical of any proper parabolic F -subgroup of G.

Example 2.2. In this thesis, we will only be concerned with automorphic forms and repre-

sentations of GA = B×A , where B is a quaternion algebra over F . The cuspidality condition

has two distinctive cases: If B = M2(F ) (i.e. B is split), we say φ ∈ L2(GL2(F )\GL2(AF ), ψ)

if ∫
F\AF

φ (( 1 x
0 1 ) g) dx = 0 for almost every g ∈ GL2(AF ).

If B 6= M2(F ), then B is a division quaternion algebra and has no proper parabolics. Hence

the cuspidality condition is empty and L2
cusp(B×\B×A , ψ) = L2(B×\B×A , ψ).

Definition 2.3 (Automorphic representations and automorphic forms).

· An automorphic representation with central character ψ is an irreducible admissible

representation of G(AF ) which is contained in L2(G(F )\G(AF ), ψ). A cuspidal automor-

phic representation with central character ψ is an irreducible admissible representation

of G(AF ) which is contained in L2
cusp(G(F )\G(AF ), ψ).

· An automorphic form is an element of an automorphic representation and a cusp form

is an element of a cuspidal automorphic representation.
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2.3 Hilbert modular forms

In this section we review the relationship between automorphic forms for GL2(AF ), where F

is a totally real field, and classical Hilbert modular forms.

Let h = hF be the narrow class number of F and let {ti}hi=1 be elements of AF whose

infinity part is 1 and that form a complete set of representatives of the narrow class group.

Then

GL2(AF ) =
h⊔
i=1

GL2(F )

(
t−1
i

1

)
GL2(F∞)+K(n), (2.1)

where

K(n) :=
∏
v-∞

Kv(n),

Kv(n) := d(π−dvv )−1

{(
a b

c d

)
∈ GL2(OFv) : c ∈ nvOFv

}
d(π−dvv ).

Define

Γi(n) :=

{(
a t−1

i b

tic d

)
: a ∈ O, b ∈ D−1, c ∈ nD, d ∈ O

}
.

Let γ = (γ1, . . . , γr1) ∈ GL2(R)r1 and write γi =
(
ai bi
ci di

)
for each i = 1, . . . , r1. There is a

natural action of γ on hr1 by

γ ∗ (z1, . . . , zr1) =

(
a1z1 + b1

c1z1 + d1

, . . . ,
ar1zr1 + br1
cr1zr1 + dr1

)
.

For a function f on hr1 , an element γ ∈ GL2(R)n, and k = (k1, . . . , kn) ∈ Zr1 , define the slash

operator

f |[γ]k(z) := det(γ)k/2(cz + d)−kf(γ ∗ z).

A Hilbert modular form of weight k = (k1, . . . , kr1) ∈ Zr1 is a function f on hr1 such that for

some character ω of (O/n)×,

f |[γ]k(z) = ω(a)f(z), for all γ =

(
a b

c d

)
∈ Γi(n).

We define the Petersson inner product of two Hilbert modular forms f, g of weight k to be

〈f, g〉 :=
h∑
i=1

µ(Γi\hr1)−1

∫
Γi\hr1

fν(z)gν(z)ykdµ(z), (2.2)

11



where dµ(z) =
∏r1

j=1 y
−2
j dxjdyj.

Writing f = (f1, . . . , fr1) and using (2.1), one can define the associated function f on

GL2(AF ) by

f(γxig∞k0) = (fi|[g∞]k)(i)ωf (d), (2.3)

where γ ∈ GL2(F ), g∞ ∈ GL+
2 (F∞), k0 = ( a bc d ) ∈ K(n), i = (i, . . . , i), and ωf is the finite

part of ω.

2.3.1 The Shimura–Maass operator

The Shimura–Maass differential operator

δk :=
1

2πi

(
∂

∂z
+

k

z − z

)
maps real analytic modular forms of weight k to real analytic modular forms of weight k + 2.

Define the composite operator

δlk := δk+2l ◦ · · · ◦ δk+2 ◦ δk

mapping real analytic modular forms of weight k to real analytic modular forms of weight

k + 2l. Applying this to each coordinate zi ∈ h for a Hilbert modular form on hr1 , we see

that we have an operator mapping{
real analytic Hilbert modular forms

of weight k = (k1, . . . , kr1)

}
→

{
real analytic Hilbert modular forms

of weight k + 2l = (k1 + 2ln, . . . , kr1 + 2lr1)

}
.

2.4 The Jacquet–Langlands correspondence

See [B01], [JL] for more details. Let k be a local field and let D be the unique nonsplit

quaternion algebra over k, if it exists. Note here that if k = C, then the only quaternion

algebra over k is the split quaternion algebra M2(C), so the Jacquet–Langlands correspondence

is trivial.

We say that g ∈ GL2(k) or g′ ∈ D× is regular semisimple if its characteristic polynomial

has distinct roots over k̄. If g ∈ GL2(k) and g′ ∈ D× are regular semisimple elements with

the same characteristic polynomial, we write g ∼ g′.
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Theorem 2.4 (Local Jacquet–Langlands). There exists a unique bijection{
irreducible

representations of D×

}
JL←→

{
irreducible discrete series

representations of GL2(k)

}

such that for any irreducible representation π′ of D×, the central characters of π′ and JL(π′)

coincide and

χπ′(g) = χJL(π′)(g
′) for all g ∼ g′.

The behavior of the representation theory of GL2(k) can be categorized into two cases:

when k = R and when k is a non-Archimedean local field.

· Let k = R. It is well known that the irreducible representations of D× are of the form

π′(h) = Nm(h)rρk(h),

for some r ∈ C and k ∈ Z≥0. Here, Nm: D× → k× is the reduced norm map and

ρn ∼= Symn(C2) for the standard representation C2. Then

JL(π′) = σ(µ1, µ2),

where µ1(t) = |t|r+k+1/2 and µ2(t) = |t|r−1/2 sgn(t)k. Here, σ(µ1, µ2) is isomorphic to

the representation of GL2(R) generated by {. . . , φ−k−3, φ−k−2, φk+2, φk+4, . . .}, where

for n ∈ Z,

φn

((
t1 ∗
0 t2

)(
cos(θ) − sin(θ)

sin(θ) cos(θ)

))
= µ1(t1)µ2(t2)

∣∣∣∣t1t2
∣∣∣∣1/2 e−inθ. (2.4)

Note that this defines φn : GL2(R)→ C since GL2(R) =

(
∗ ∗
0 ∗

){(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)}
by the Iwasawa decomposition. In summary,

JL(twist of Symk(C2)) = weight-(k + 2) representation of GL2(R).

· Let k be a non-Archimedean local field. The representation theory of D× and GL2(k)

here is more complicated, and hence the Jacquet–Langlands correspondence cannot

be described as explicitly as in the real case. In this case, the set of square-integrable

representations of GL2(k) consists of twists of Steinberg representations and supercusp-

idal representations. The Steinberg representation St is the representation Fun(P1)/C,
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where we view C as the subspace of Fun(P1) consisting of the constant functions—it is

the unique nontrivial quotient of the representation obtained by parabolically induc-

ing from the trivial representation. Supercuspidal representations of GL2(k) are the

representations that do not arise via parabolic induction.

There is also a global version of the Jacquet–Langlands correspondence. Let B be a

quaternion algebra over F and let S be the set of ramified places of B:

S := {v : v is a place of F and Bv is nonsplit}.

Note that S is a finite set of even cardinality.

Theorem 2.5 (Global Jacquet–Langlands). There is a unique injection

JL:

{
irreducible dim > 1 automorphic

representations of D×A

}
−→

{
irreducible cuspidal automorphic

representations of GL2(AF )

}

such that for any π′ = ⊗vπ′v, we have JL(π′)v ∼= JLv(π
′
v), where JLv is the local Jacquet–

Langlands correspondence as in Theorem 2.4. The image of JL consists of the cuspidal

automorphic representations π = ⊗vπv of GL2(AF ) such that πv is discrete series for all

v ∈ S.

2.5 Automorphic induction

In [JL], Jacquet and Langlands construct a special class of automorphic representations of

GL2(AF ) arising from automorphic representations of A×E:{
automorphic representations

of A×E

}
−→

{
certain automorphic representations

of GL2(AF )

}

Let πχ denote the automorphic representation of GL2(AF ) corresponding to the character

χ : E×\A×E → C×. The representation πχ enjoys the following property: at almost all places

v of F ,

L(πχ,v, s) =
∏
w|v

L(χw, s),

where the product runs through all places of E dividing v.

There is a (conjectural) notion of automorphic induction as well wherein if E/F is

a degree-d extension, each automorphic representation of GLm(AE) can be assigned an
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automorphic representation of GLmd(AF ) satisfying the natural analogue of the above local

L-factor condition. Many people have worked on this problem: Jacquet–Langlands [JL]

(m = 1, d = 2), Clozel [C86], Henniart [H12] (m, d general, E/F cyclic).

We return our focus to automorphic induction to GL2(AF ). The automorphic induction

of a Hecke character χ of E× can be described at, and is determined by, all but finitely many

places.

· Let v be such that Ev/Fv = C/R. Suppose

χv(z) = (zz)rzmzn,

where r ∈ C and m,n are two integers, one zero and the other positive. Then define

πv := σ(µ1, µ2), where µ1(t) = |t|rtm+n, µ2(t) = |t|r.

Here, σ(µ1, µ2) is the representation defined in (2.4) of weight m+ n+ 1.

· Let v be a place of F which splits completely in E with divisors w and w. Since

Ew ∼= Ew ∼= Fv, the characters χw, χw can be viewed as characters of F×v . Define

πv := Ind
GL2(Fv)
B (χw, χw).

· Let v a place of F which lies under a single prime w of E. Then Ew is a quadratic

extension of Fv and χw is a character of E×w . If χw factors through Nm: E×w → F×v ,

write χw = χw,0(Nm) and define

πv := Ind
GL2(Fv)
B (χw,0, χw,0εEv/Fv).

Note that if χw is unramified (i.e. trivial on O×Ew), then χw factors through Nm.

Theorem 2.6 (Jacquet–Langlands). There exists a unique irreducible automorphic represen-

tation πχ = ⊗vπχ,v of GL2(AF ) such that

πχ,v ∼= πv

for all v such that either v splits completely, or v lies under a single prime w of E and χw

factors through Nm: E×w → F×v . If v lies under a single prime w and χw does not factor

through Nm, then πχ,v is a supercuspidal representation of GL2(Fv). Furthermore, if χ does

not factor through Nm: A×E → A×F , then πχ is cuspidal.
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We may now combine automorphic induction with the global Jacquet–Langlands corre-

spondence to obtain a mapping{
certain automorphic representations

of A×E

}
−→

{
certain automorphic representations

of B×A

}

Note the insertion of the word “certain” in the source: while one could construct an auto-

morphic representation for GL2(AF ) corresponding to each Hecke character of E, not every

automorphic representation of GL2(AF ) transfers to a representation of B×A !

Let B be a quaternion algebra over F containing E and let SB be the set of places of F

where B is ramified. For any Hecke character χ of E, let Sχ denote the set of places of F

such that χw does not factor through Nmw. Then composing Theorem 2.6 with Theorem 2.5

gives:

Theorem 2.7. There exists a correspondence{
characters χ of A×E

with Sχ ⊃ SB

}
−→

{
certain automorphic representations

of B×A

}

given by

χ 7→ πBχ := JLB(πχ).

Moreover, πBχ is the unique automorphic representation of B×A such that: at every place v

satisfying either

a) v splits completely (in which case B×v
∼= GL2(Fv)), or

b) v lies under a single prime w of E and χw factors through Nm (in which case B×v
∼=

GL2(Fv) by the assumption Sχ ⊃ SB),

we must have

(πBχ )v ∼= πχ,v ∼= πv.

Remark 2.8. It is interesting to ask what automorphic induction looks like locally. That is,

given a non-archimedean local field k and a degree-n extension L of k, one would like to

construct a map

{
characters χ of L×

}
−→

{
irreducible representation of GLm(D)

where D is a dimension (n/m)2 division algebra over k

}
.
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This has been done algebraically by work of many people, including Corwin, Howe, Henniart,

Herb. As Langlands correspondences typically arise in cohomology (as this is often how one

constructs Galois representations), it is interesting to ask whether the above correspondence

can be realized geometrically. In the setting that k is a finite field, this is answered by (a special

case of) Deligne–Lusztig theory, whose story began in 1976 [DL76]. A few years later, Lusztig

[L79] proposed a p-adic analogue of a Deligne–Lusztig variety, though now, 40 years past, still

not much is known. It is expected that (a special case of) Lusztig’s geometric construction

should realize the above correspondence for L/k unramified. Following an approach initiated

by Boyarchenko [B12] in 2012, I studied the m = 1 case of this correspondence in a series

of papers [C16ad] [C15] [C17si]. In forthcoming joint work with A. Ivanov [CI18], we study

Lusztig’s construction for GLm(D) and prove an isomorphism between the varieties from [L79]

and certain affine Deligne–Lusztig varieties, which are closely related to Shimura varieties. ♦

2.6 Conductors

In this section we briefly review the notion of the conductor of an admissible representation.

First let k be a non-Archimedean local field with ring of integers Ok and a fixed uniformizer

π. For any integer N ∈ Z≥0, let

K ′0(N) :=

{(
a b

c d

)
∈ GL2(Ok) : c ∈ πNOk

}
.

Theorem 2.9 (Casselman). Let ρ be an irreducible admissible infinite-dimensional repre-

sentation of GL2(k) with central character ω. Let c(ρ) ∈ Z≥0 be the smallest integer such

that {
v ∈ ρ : ρ(g)v = ω(a)v for all g =

(
a b

c d

)
∈ K ′0(c(ρ))

}
6= {0}.

Then this space has dimension one.

We call c(ρ) the conductor of ρ. For a smooth character χ : k× → C×, define its conductor

c(χ) ∈ Z≥0 to be the smallest number such that

χ|
U
c(χ)
k

= 1, where Un
k =

O×k if n = 0,

1 + πnOk if n > 0.
.

It will be useful for us to have an explicit description of c(πχ) in terms of c(χ). The

next proposition follows from facts about Artin conductors of Galois representations and
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the fact that conductors of admissible representations of GL2(k) are compatible with Artin

conductors of Galois representations under the local Langlands correspondence.

Proposition 2.10. Let L be a degree-2 extension of k. Let χ be a smooth character of L×.

(a) If L/k is split, then χ = χ1 ⊗ χ2 and

c(πχ) = c(χ1) + c(χ2).

(b) If L/k is unramified, then

c(πχ) = valk(4) + 2c(χ).

(c) If L/k is ramified, then

c(πχ) = 1 + valk(4) + c(χ).
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CHAPTER 3

Weil representations

Let k be any field. Let V be a symplectic vector space over k. The Weil representation of

Sp(V) is a representation of a cover of Sp(V). It arises in a very natural way, which we briefly

recall. The symplectic space V gives rise to a Heisenberg group H(V) which sits inside the

short exact sequence

0→ k → H(V)→ V→ 0.

The natural action of Sp(V) on V extends to an action on H(V) fixing the center Z(H(V)) = k.

The Stone–von Neumann theorem says that for every nontrivial character ψ of k, there exists

a unique irreducible (complex) representation of H(V) with central character ψ. Moreover,

given a complete polarization V = X + Y, each such irreducible representation of H(V) can

be realized on the vector space S(X) of Schwartz functions. In particular, by Schur’s lemma,

this means that the action of g ∈ Sp(V) on H(V) induces an automorphism φg of S(X) that

is unique up to scalars. We therefore have a group homomorphism

[ωψ] : Sp(V)→ PGL(S(X)), g 7→ [φg],

where [φg] denotes the image of φg under the quotient map GL(S(X))→ PGL(S(X)). This

is the projective Weil representation of Sp(V).

It is natural to try to understand when [ωψ] lifts to a genuine representation of Sp(V).

When k = Fq, there exists a lift, but this isn’t the case in general. The assignment g 7→ φg

satisfies

φgφh = zY(g, h)φgh, for g, h ∈ Sp(V).

It is a straightforward check that (g, h) 7→ zY(g, h) defines a 2-cocycle in H2(Sp(V),C×). The

2-cocycle zY corresponds to a central extension Mp(V) of Sp(V) and certainly the projective

Weil representation of Sp(V) lifts to a genuine representation of Mp(V). But we can realize

the Weil representation on Sp(V) itself if and only if zY is in fact a 2-coboundary.

In this thesis, we will be interested in the adelic Weil representation, which is comprised
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of Weil representations of local fields. For the rest of this chapter, let k be a local field of

characteristic zero, fix an additive character ψ : k → C×, and fix a complete polarization

V = X + Y.

3.1 Metaplectic groups over local fields

Following [R93, Lemma 3.2], there is an explicit unitary lift r : Sp(V)→ GL(S(X)) (a map

of sets) of the projective Weil representation given by

(r(σ)ϕ) (x) =

∫
Y/ ker γ

fσ(x+ y)ϕ(xα + yγ)µσ(dȳ)

for any ϕ ∈ S(X) and any σ =
(
α β
γ δ

)
, where:

• µσ is a Haar measure on Y/ ker γ,

• ȳ is the coset y + ker γ ∈ Y/ ker γ,

• fσ(x+ y) = ψ(qσ(x+ y)), where qσ(x+ y) = 1
2
〈〈xα, xβ〉〉+ 1

2
〈〈yγ, yδ〉〉+ 〈〈yγ, xβ〉〉.

Moreover, this lift is the unique lift satisfying the properties in [R93, Theorem 3.5]. We then

define the 2-cocycle zY : Sp(V)× Sp(V)→ C1 by

r(gh) = zY(g, h)−1 · r(g) · r(h).

This represents a class in H2(Sp(V),C1) and therefore gives rise to a C1-extension Mp(V)

of Sp(V) which we call the metaplectic group. Explicitly, this group is the set Sp(V) × C1

together with the multiplication rule

(g, x) · (h, y) = (gh, xy · zY(g, h)).

We define the Weil representation ωψ on the metaplectic group Mp(V) to be

ωψ : Mp(V)→ GL(S(X)), (g, z) 7→ z · r(g).
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Oftentimes, it is easier to work with the following description of ωψ:

ωψ

((
a

(aᵀ)−1

)
, z

)
ϕ(x) = z · | det a|1/2 · ϕ(xa) (3.1)

ωψ

((
1n b

1n

)
, z

)
ϕ(x) = z · ψ

(
1

2
xbᵀx

)
· ϕ(x) (3.2)

ωψ

((
1n

−1n

)
, z

)
ϕ(x) = z ·

∫
kn
ϕ(y)ψ(xᵀy) dy (3.3)

for ϕ ∈ S(X), x ∈ X ∼= kn, a ∈ GL(X) ∼= GLn(k), b ∈ Hom(X,Y) ∼= Mn(k) with bᵀ = b, and

z ∈ C1. In (3.3), we take dy = dy1 · · · dyn, where dyi is the self-dual Haar measure on k with

respect to ψ.

It will later (for example, in Chapter 8) be convenient to understand how changing the

additive character ψ affects the Weil representation ωψ. Define

d(ν) :=

(
1 0

0 ν

)
, for ν ∈ k.

We have

d(ν)−1

(
a b

c d

)
d(ν) =

(
a bν

cν−1 d

)
.

By Equations (3.1)-(3.3), we see that

ωψ
(
d(ν)−1

( a
(aᵀ)−1

)
d(ν), z

)
ϕ(x) = z · | det a|1/2 · ϕ(xa),

ωψ
(
d(ν)−1

(
1n b

1n

)
, z
)
ϕ(x) = z · ψ

(
ν · 1

2
xbᵀx

)
· ϕ(x),

ωψ
(
d(ν)−1

(
1n

−1n

)
d(ν), z

)
ϕ(x) = ωψ ( ν ν−1 )ωψ

((
1n

−1n

)
, z
)
ϕ(x)

= z · |ν|n/2 ·
∫
kn
ϕ(y)ψ(νxᵀy) dy.

Let dyν denote the Haar measure on kn that is self-dual with respect to ψν(x) := ψ(νx).

Then dyν = |ν|−n/2dy, and it follows from the above equations that

ωψ(d(ν)−1gd(ν), z) = ωψν (g, z). (3.4)

If for a subgroup ι : G ↪→ Sp(V), the restriction of zY represents the trivial class in

H2(G,C1), then via an explicit trivialization s of zY|G×G, we can define the Weil representation
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ωψ on G as

ωψ : G→ GL(S(X)), g 7→ ωψ(g, s(g)).

3.2 Weil indices and Leray invariants

One feature that makes the Weil representation computable is the fact that the 2-cocycle zY

can be expressed in terms of the Weil index of the Leray invariant. We review these concepts

and their basic properties. We follow the exposition in [IP16a, Sections 3.1.1, 3.1.2]. We will

use these properties extensively in Chapter 5.

Roughly speaking, the Weil index measures the behavior of characters of second degree

under Fourier transform (see [R93, Theorem A.1]). Let ψ be a nontrivial additive character

of k and let q be a non-degenerate symmetric k-bilinear form. For our purposes, we will

only need a list of properties of the Weil index γk(ψ ◦ q) ∈ µ8 attached to the character of

second degree x 7→ ψ(q(x, x)). In the special case q(x, y) = xy, we write γk(ψ) := γk(ψ ◦ q)
and define γk(a, ψ) := γk(aψ)/γk(ψ), where aψ(x) := ψ(ax). Then for a, b ∈ k×, one has the

following list of properties (see [R93, p.367], [IP16a, Section 3.1.1]):

γk(ab
2, ψ) = γk(a, ψ),

γk(ab, ψ) = γk(a, ψ) · γF (b, ψ) · (a, b)F ,

γk(a, bψ) = γk(a, ψ) · (a, b)k,

γk(a, ψ)2 = (−1, a)k,

γk(a, ψ)4 = 1,

γk(ψ)2 = γk(−1, ψ)−1,

γk(ψ)8 = 1.

Here, (·, ·)k is the quadratic Hilbert symbol of k (see Section 4.1). Now consider the symmetric

k-bilinear form

q(x, y) = a1x1y1 + · · ·+ amxmym.

Then

γk(ψ ◦ q) = γk(ψ)m · γk(det q, ψ) · hF (q),

where

det q =
∏

1≤i≤m

ai, hF (q) =
∏

1≤i<j≤m

(ai, aj)k.

The Leray invariant attaches a non-degenerate symmetric k-bilinear form q(Y,Y′,Y′′)
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to an ordered triple (Y,Y′,Y′′) of maximal isotropic (i.e. Lagrangian) subspaces of V (see

[R93, Definitions 2.4, 2.10]). One first defines the Leray invariant when Y,Y′,Y′′ are pairwise

transverse. Let PY be the maximal parabolic subgroup of Sp(V) stabilizing Y and let NY

be its unipotent radical. Since Y,Y′ are transverse, any element of NY is of the form n(b),

where b ∈ Hom(Y′,Y). There is a unique n(b) ∈ NY such that Y′n(b) = Y′′, and the Leray

invariant is the non-degenerate symmetric k-bilinear form on Y′ given by

q(Y,Y′,Y′′)(x′, y′) := 〈〈x′, y′b〉〉.

In general, the vector spaces

YR := (Y ∩ R⊥)/R, Y′R := (Y′ ∩ R⊥)/R, Y′′R := (Y′′ ∩ R⊥)/R

are pairwise transverse maximal isotropic subspaces of V/R, where

R = (Y ∩ Y′) + (Y′ ∩ Y′′) ∩ (Y ∩ Y′′).

We define

q(Y,Y′,Y′′) := q(YR,Y′R,Y′′R).

It will also be useful to recall from [R93, Theorem 2.11] that

q(Yg,Y′g,Y′′g) = q(Y,Y′,Y′′) for all g ∈ Sp(V).

3.3 The doubled Weil representation

Now consider the doubled symplectic space V� := V + V−, where V− has the negated

form. Let X� = X + X− and Y� = Y + Y−. Let ω�ψ denote the Weil representation on the

metaplectic group Mp(V�) with respect to the complete polarization V� = X� + Y�. We

will also make use of the polarization V� = V4 + V5, where V4 = {(v, v) : v ∈ V} and

V5 = {(v,−v) : v ∈ V}. (Note that this polarization is intrinsic to V and that if V comes

from a unitary space, then V� = V4 + V5 comes from a natural splitting of the doubled

underlying unitary space.) Identifying Sp(V−) with Sp(V)op, we can consider the natural

map (a priori of sets)

ι̃ : Mp(V)×Mp(V)op → Mp(V�), ((g, z), (h,w)) 7→ (diag(g, h−1), zw−1).

Lemma 3.1. ι̃ is a group homomorphism.
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Proof. We have

ι̃((g1, z1), (h1, w1)) · ι̃((g2, z2), (h2, w2))

= (diag(g1, h
−1
1 ), z1w

−1
1 ) · (diag(g2, h

−1
2 ), z2w

−1
2 )

=
(
diag(g1g2, h

−1
1 h−1

2 ), z1z2w
−1
1 w−1

2 zY�(diag(g1, h
−1
1 ), diag(g2, h

−1
2 ))

)
.

On the other hand,

(g1, z1) · (g2, z2) = (g1g2, z1z2zY(g1, g2)),

(h1, w1) · (h2, w2) = (h2h1, w1w2zY(h2, h1)),

and

ι̃
(
((g1, z1) · (g2, z2), (h1, w1) · (h2, w2))

)
= (diag(g1g2, (h2h1)−1), z1z2w

−1
1 w−1

2 zY(g1, g2)zY(h2, h1)−1).

I now claim that

zY�(diag(g1, h
−1
1 ), diag(g2, h

−1
2 )) = zY(g1, g2)zY(h2, h1)−1.

By Theorem 4.1(3) of [R93], we have

zY�(diag(g1, h
−1
1 ), diag(g2, h

−1
2 )) = zY(g1, g2) · zY(h−1

1 , h−1
2 ).

By Proposition 3.7 of [R93], r(1) = 1, and using this, it is a straightforward chase of definitions

to see that

zY(h−1
1 , h−1

2 ) = zY(h2, h1)−1.

Corollary 3.2. We have

(ι̃)∗ωψ = ωψ ⊗ ωψ.

Proof. By Proposition 3.7 and Theorem 4.1(3) of [R93], Lemma 3.1 implies

ω�ψ (ι̃(σ1, σ2)) = ωψ(σ1)⊗ ωψ(σ−1
2 ).
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3.4 Dual reductive pairs and the Howe correspondence

Definition 3.3. A dual reductive pair (G,G′) in Sp(V) is a pair of reductive subgroups of

Sp(V) which are mutual centralizers of each other:

ZSp(V)(G) = G′ and ZSp(V)(G
′) = G.

In this paper, we will only work with unitary and quaternionic unitary dual pairs, which

are two of the three common classes of dual reductive pairs:

1. Let V,W be vector spaces over k endowed with a nondegenerate alternating bilinear

form 〈·, ·〉 and a nondegenerate symmetric bilinear form (·, ·), respectively. Defining the

isometry groups

Sp(V ) := {g ∈ GLk(V ) : 〈v1g, v2g〉 = 〈v1, v2〉 for all v1, v2 ∈ V } ,

O(W ) := {g ∈ GLk(W ) : (gw1, gw2) = (w1, w2) for all w1, w2 ∈ W} ,

the groups (Sp(V ),O(W )) form a dual reductive pair in Sp(V ⊗W ), where V ⊗W is

the vector space endowed with the alternating bilinear form 〈〈·, ·〉〉 := (·, ·)⊗ 〈·, ·〉.

2. Let D be the quaternion algebra of invariant 1
2

over k. Let V be a right D-space endowed

with a nondegenerate Hermitian form 〈·, ·〉 and let W be a left D-space endowed with

a nondegenerate skew-Hermitian form (·, ·). Defining the quaternionic unitary groups

UD(V ) := {g ∈ GLD(V ) : 〈v1g, v2g〉 = 〈v1, v2〉 for all v1, v2 ∈ V } ,

UD(W ) := {g ∈ GLD(W ) : (gw1, gw2) = (w1, w2) for all w1, w2 ∈ W} ,

the groups (UD(V ),UD(W )) form a dual reductive pair in Sp(ResD/k(V ⊗DW )), where

ResD/k(V ⊗DW ) is endowed with the alternating bilinear form 〈〈·, ·〉〉 = 1
2

TrD/k(〈·, ·〉 ⊗
(·, ·)). Here, we denote the involution on D by a 7→ a.

3. Let k′ be a quadratic extension of k. Let V,W be vector spaces over k′ with a

nondegenerate skew-Hermitian form 〈·, ·〉 and a nondegenerate Hermitian form (·, ·),
respectively. Defining the unitary groups

UE(V ) := {g ∈ GLk′(V ) : 〈v1g, v2g〉 = 〈v1, v2〉 for all v1, v2 ∈ V } ,

UE(W ) := {g ∈ GLk′(W ) : (gw1, gw2) = (w1, w2) for all w1, w2 ∈ W} ,

the groups (Uk′(V ),Uk′(W )) form a dual reductive pair in Sp(Resk′/k(V ⊗k′W )), where

25



Resk′/k(V ⊗k′ W ) is endowed with the alternating bilinear form 〈〈·, ·〉〉 = 1
2

Trk′/k(〈·, ·〉 ⊗
(·, ·)). Here, we denote the nontrivial element of Gal(k′/k) by a 7→ a.

Given a dual reductive pair (G,G′) of Sp(V), there is a natural map

i : G×G′ → Sp(V), (g, g′) 7→ (v 7→ g−1vg′).

If the cocycle zY can be trivialized on i(G×G′) ⊂ Sp(V), we can define the Weil representation

on i(G×G′) and pull back to a Weil representation of G×G′. In Kudla’s remarkable paper

[K94], he writes down explicit splittings of zY in each of the above three classes of dual

reductive pairs (except in Case 1 with dimW odd). We will make use of this work heavily

(especially the formulas for unitary groups) in the present paper.

It is very interesting to study the Weil representation ωψ of G×G′. If π is an irreducible

representation of G, we may consider

S(π) := S(X)/
⋂

λ∈HomG(S(X),π)

ker(λ),

the largest quotient of S(X) such that G acts by π. Then by [MVW, Chapter 2, Lemma

III.4], there exists a unique irreducible G′-representation Θ(π) such that

S(π) ∼= π ⊗Θ(π).

We call Θ(π) the local theta lift of π. In 1979, Howe [H79] conjectured that the assignment

π 7→ Θ(π) defines a bijection{
irreducible representations π of G

such that HomG(S(X), π) 6= 0

}
←→

{
irreducible representations π′ of G′

such that HomG′(S(X), π′) 6= 0

}
.

Howe’s conjecture has since been solved by the work of many people: Howe [H89], Kudla

[K86], Waldspurger [W90], Gan–Takeda [GT].
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CHAPTER 4

Waldspurger, Tunnell–Saito, and a pair of

quaternion algebras

For any Hecke character χ : E×\A×E → C×, let πχ denote the automorphic induction of χ

to an automorphic representation of GL2(AF ). Now let χ′ be another Hecke character of

E×. Recall from Chapter 2 that the central character of πBχ is χ|A×F · εE/F so that if χ′ is a

constituent of πBχ viewed as a A×E-representation, then χ′ must satisfy

χ|A×F · χ
′|A×F · εE/F = 1, (4.1)

where εE/F is the quadratic character of A×F associated to the quadratic extension E/F .

Explicitly, if we write E = F (
√
u),

εE/F : A×F → {±1}, (av)v 7→ (u, av)v,

where (u, av)v is the Hilbert symbol. For a quaternion algebra B over F , let πBχ denote the

Jacquet–Langlands transfer of πχ to B×A . (If πχ does not transfer to B×A , we take πBχ = 0.)

In this section, we discuss how the work of Tunnell–Saito implies that for any χ′ satisfying

(4.1), there exists at most one quaternion algebra B such that χ′ is a constituent of πBχ viewed

as a representation of A×E. Combining this with Waldspurger’s formula, we see that such a B

exists if and only if

L(BC(πχ)⊗ χ′, 1
2
) 6= 0. (4.2)

Since

L(BC(πχ′)⊗ χ, 1
2
) = L(BC(πχ)⊗ χ′, 1

2
) 6= 0,

we also see that there exists a unique quaternion algebra B′ such that χ is a constituent of

πB
′

χ′ . The goal of this chapter is to give a simple description relating B and B′.
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4.1 The Hilbert symbol

We collect some basic facts about the Hilbert symbol. Given a place v of F , define the Hilbert

symbol of a, b ∈ Fv to be

(a, b)v =

1 if there exists a nonzero solution (x, y, z) ∈ F⊕3
v to ax2 + by2 = z2,

−1 otherwise.

One of the most important properties of the Hilbert symbol is that it is bimultiplicative:

(a, b1)v · (a, b2)v = (a, b1b2)v, for all a, b1, b2 ∈ Fv,

(a1, b)v · (a2, b)v = (a1a2, b)v, for all a1, a2, b ∈ Fv.

Lemma 4.1. For any a ∈ F×v , we have (u, a)v = εEv/Fv(a), where Ev = Fv(
√
u).

Proof. First observe that if v splits completely in E, then u is a square in F×v . Therefore

(u, a)v = 1 for all a ∈ F×v , and the conclusion follows.

It remains to prove the lemma in the case when Ev is a field. Since the Hilbert symbol is

bimultiplicative, the map a 7→ (u, a)v is a homomorphism F×v → {±1}. It is straightforward

to check that (u, a)v = 1 if and only if a ∈ NmEv/Fv(E
×
v ). Indeed, if ux2 + ay2 = z2, then

ay2 = z2 − ux2 = Nm(z + x
√
u).

By local class field theory, NmEv/Fv(E
×
v ) is an index-2 subgroup of F×v , and therefore

there exists a ∈ F×v such that (u, a)v = −1. This implies that a 7→ (u, a)v is nontrivial. Again

by local class field theory, there is a unique nontrivial homomorphism F×v → {±1} that is

trivial on NmEv/Fv(E
×
v ), and the lemma follows.

4.2 Waldspurger’s formula

Let π be an irreducible automorphic representation of GL2(AF ) with central character ωπ

that has a nonzero Jacquet–Langlands transfer πB to B×A . Recall that this means that πv is

discrete series at all places v of F such that Bv is ramified. Let Ω be any Hecke character of

E× such that Ω|A×F = ω−1
π .

Theorem 4.2 (Waldspurger [W85a]). For any f ∈ πB,∣∣∣∣∫
[E×]

f(t)Ω(t) dt

∣∣∣∣2 = 〈f, f〉 · ζ(2)

2L2(π, 1)
·
∏
v

αv · L
(
BC(π)⊗ Ω, 1

2

)
,
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where αv := α(fv, Ev,Ωv) are local factors that are equal to 1 for almost all v. Precisely,

α(fv, Ev,Ωv) = ζv(2)−1 · L(BC(π)v ⊗ Ωv,
1
2
)−1 · L(εE/F,v, 1) · L2(πv, 1)·∫

F×v \E×v

〈πBv (t)f, πBv (g)f〉
〈f, f〉

· Ωv(t) dt.

Furthermore, Waldspurger proved that the functional

P(πB,Ω): πB → C, f 7→
∫

[E×]

f(t) Ω(t) dt

is nonvanishing if and only if the two obvious local and global obstructions do not occur:

Theorem 4.3 (Waldspurger [W85a]). There exists a f ∈ πB such that P(πB,Ω)(f) 6= 0 if

and only if:

(i) (local) For each place v of F , HomE×v
(πv,Ω

−1
v ) 6= 0.

(ii) (global) L(BC(π)⊗ Ω, 1
2
) 6= 0.

Observe that for any vector fvB ∈ πBv , the E×v -representation πBv (E×)fv := {πBv (α)fv :

α ∈ E×v } is a smooth representation and therefore factors through some compact open

subgroup U ⊂ E×v . Since π′v is irreducible by assumption, F×v acts by a scalar, and we

therefore see that πBv (E×)fv is finite-dimensional. It follows that πBv (E×)fv is completely

decomposable and so HomE×v
(πBv ,Ω

−1
v ) 6= 0 if and only if HomE×v

(Ω−1
v , πBv ) 6= 0.

By appealing to a theorem of Tunnell and Saito, the above rephrasing allows us to give a

formulation of the local obstruction in terms of local epsilon factors εv(BC(π)⊗ Ω).

Theorem 4.4 (Tunnell [T83], Saito [S93]). HomE×v
(Ω−1

v , πBv ) 6= 0 if and only if

εv(BC(π)⊗ Ω) · ωv(−1) =

+1 if B×v
∼= GL2(Fv),

−1 if B×v is nonsplit.

Combining the above theorems, we obtain:

Theorem 4.5. Let π be an automorphic representation of GL2(AF ) with central character

ωπ. If

L(BC(π)⊗ Ω, 1
2
) 6= 0, and Ω|A×F = ω−1

π ,

then there exists a unique quaternion algebra B = Bπ,Ω over F such that

P(πB,Ω) 6= 0.
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Moreover, B is the unique quaternion algebra with ramification set

Σπ,Ω := {v : εv(BC(π)⊗ Ω) · ωv(−1) = −1}.

Proof. If L(BC(π) ⊗ Ω, 1
2
) 6= 0, then ε(BC(π) ⊗ Ω) = +1. Since ω is a Hecke character of

A×, we must have ω(−1) = +1. Therefore, there must be an even number of places v of F

such that εv(BC(π)⊗ Ω) · ωv(−1) = −1, and hence there exists a unique quaternion algebra

Bπ,Ω over F with ramification set Σπ,Ω, and the conclusion now follows from Waldspurger’s

formula and the local branching criterion of Tunnell and Saito.

4.3 A pair of quaternion algebras

We now specialize to the setting where π comes from automorphic induction. Let χ, χ′ be

Hecke characters of A×E satisfying Equation (1.2). One has

L(BC(πχ)⊗ χ′, s) = L(πχ ⊗ πχ′ , s) = L(BC(πχ′)⊗ χ, s),

and let us assume that

L(BC(πχ)⊗ χ′, 1
2
) = L(BC(πχ′)⊗ χ, 1

2
), (4.3)

By Theorem 4.5, B = Bπχ,χ′ and B′ = Bπχ′ ,χ
are the unique quaternion algebras such that

P(πBχ , χ
′) 6= 0 and P(πB

′

χ′ , χ) 6= 0.

Proposition 4.6. Let χ, χ′ be Hecke characters of A×E satisfying Equations (1.2) and (4.3),

and let E = F (i) with i2 = u. If B = Bπχ,χ′ is the quaternion algebra that corresponds to the

Hilbert symbol (u, J), then B′ = Bπχ′ ,χ
corresponds to the Hilbert symbol (u,−J).

Proof. It is a standard computation to show that:

εv(BC(πχ)⊗ χ′) = εv(BC(πχ′)⊗ χ).

By Equation (1.2), we have

ωπχ · ωπχ′ · εE/F = 1.
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Using Theorem 4.5, we see that Σπχ′ ,χ
can be described in terms of Σπχ,χ′ :

Σπχ′ ,χ
=

{
v :

v ∈ Σπχ,χ′ and εEv/Fv(−1) = 1, or

v /∈ Σπχ,χ′ and εEv/Fv(−1) = −1.

}

An equivalent way to state this relationship is the following. The quaternion algebra B can

be given an F basis 1, i, j, ij such that E = F [i]. Write i2 = u and j2 = J so that B is the

quaternion algebra associated to the Hilbert symbol (u, J). That is,

(u, J)v = −1 ⇐⇒ v ∈ Σπχ,χ′ .

Then, using the bimultiplicativity of the Hilbert symbol, B′ is the quaternion algebra

associated to the Hilbert symbol

(u, J) · εE/F (−1) = (u, J) · (u,−1) = (u,−J).

4.4 A seesaw of unitary groups

In this section, we introduce the main dual reductive pairs of interest in this paper. We will

define a pair of quaternionic unitary similitude groups and a pair of unitary similitude groups

such that, roughly speaking, captures the following picture:

B× (B′)×

E× E×

This allows us to specialize the framework of Chapter 3 to study the torus periods described

in earlier sections of the present chapter.

Fix i ∈ E with trE/F i = i + i = 0. Note that E = F [i]. Let B be a (possibly split)

quaternion algebra over F and let 1, i, j,k be a standard basis for B over F .

We consider the following spaces:

• V = B = 1-dimensional right B-space with skew-Hermitian form 〈x, y〉 = x∗iy

• W ∗ = B ⊗E E = 1-dimensional left B-space with Hermitian form (x, y) = xy∗

• ResV = 2-dimensional right E-space with skew-Hermitian form 〈x, y〉 = pr(x∗iy)

• W = E = 1-dimensional left E-space with Hermitian form (a, b) = ab
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• V0 = 1-dimensional right E-space with Hermitian form 〈a, b〉0 = ab

• W0 = B = 2-dimensional left E-space with skew-Hermitian form (x, y)0 = −i pr(xy∗)

• V = V ⊗W ∗ = ResV ⊗W = V0 ⊗W0 = 4-dimensional F -space with symplectic form
1
2

TrE/F (〈·, ·〉 ⊗ (·, ·))

Then both pairs (UB(V ), UB(W ∗)) and (UE(ResV ), UE(W )) are irreducible dual reductive

pairs (of type 1) in Sp(V). (See, for example, [P93].) For either of these pairs (G,G′), we

have a natural map

G×G′ → Sp(V), (g, h) 7→ gh−1.

It is clear that UB(V ) ⊂ UE(ResV ) and that UE(W ) ⊂ UB(W ∗). Therefore we have the

following seesaw of dual reductive pairs

UE(ResV ) UB(W ∗)

UB(V ) UE(W )

=

(E1 × (B′)1)/F 1 B1

E1 ∪ E 1
J j E1

Here, B′ =
(

i2,−j2
F

)
and the superscript r ∈ Q picks out the norm-r elements.

We now explicate the above identifications of classical groups.

1. UB(V ) = E1 ∪ E 1
J j

We have

UB(V ) = {ϕ ∈ GL(V ) : ϕ is right B-linear, 〈x, y〉 = 〈ϕ(x), ϕ(y)〉}.

Since V is a one-dimensional right B-space, then all such maps are of the form

ϕα : v 7→ α · v for some α ∈ B. Write α = A + Bj. Then ϕα ∈ UB(V ) if and

only if for all x, y ∈ B,

x∗α∗iαy = x∗iy.

Equivalently,

α∗iα = i.

We have

α∗iα = (A−Bj)i(A+Bj) = (AA+BBJ)i + 2ABij,

so we obtain

AA+BBJ = 1, AB = 0.
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The second condition implies that either A = 0 or B = 0, so the first condition implies

AA = 1 or BB = 1
J
. Thus we have an isomorphism E1 ∪ E 1

J j → UB(V ) given by

α 7→ ϕα, where ϕα(v) = v · α.

2. UB(W ∗) = B1

We have

UB(W ∗) = {ϕ ∈ GL(W ∗) : ϕ is left B-linear, (x, y) = (ϕ(x), ϕ(y))}.

All such maps ϕ are of the form ϕα : v 7→ v · α for some α ∈ B×. Then ϕα ∈ UB(W ∗) if

and only if for all x, y ∈ W ∗,

xαα∗y∗ = xy∗.

This implies αα∗ = 1 and so α ∈ B1. We therefore have an isomorphism B1 → UB(W ∗)

given by α 7→ ϕα, where ϕα(w) = w · α.

3. UE(ResV ) = (E1 × (B′)1)/F 1

The right E-space ResV has a natural left-multiplication action by E1 and a natural

right (B′)× action such whose stabilizer in the product group is an antidiagonal

embedding of F 1. These actions preserve the skew-Hermitian form on ResV and

we therefore obtain a map (E1 × (B′)1)/F 1 ↪→ UE(ResV ) that turns out to be an

isomorphism. For more details, see Remark 4.7.

4. UE(W ) = E1

This identification is easy to see. W is a 1-dimensional E-space and so UE(W ) ⊂
GL1(E) = E×. It is then easy to see that the Hermitian form on W is preserved by

multiplication by α ∈ E× if and only if α ∈ E1. We therefore obtain the isomorphism

E1 → UE(W ) via α 7→ ϕα, where ϕα(w) = w · α.

The analogous seesaw with similitudes is

GUE(ResV ) GUB(W ∗)

GUB(V ) GUE(W )

=

(E× × (B′)×)/F× B×

E× ∪ E×j E×

where the identifications are determined by similar arguments as in the unitary group setting.

The point of introducing the E-spaces V0 and W0 is that we have natural maps

UB(V )0 ∼= UE(V0), UB(W ∗) ↪→ UE(W0).
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This will allow us to compute splittings on the quaternionic unitary groups UB(V ) and

UB(W ∗) by pulling back splittings on UE(V0) and UE(W0).

For any of the pairs (V,W ) given by (V,W ∗), (ResV,W ), or (V0,W0), we take as our

convention

GL(V )×GL(W )→ GL(V ⊗W ), (g, h) 7→ (v ⊗ w 7→ g−1v ⊗ wh).

This fixes the map from the corresponding dual reductive pairs to Sp(V).

Remark 4.7. The isomorphism GUE(ResV ) ∼= (E× × (B′)×)/F× can be realized as follows.

Write B′ = E ⊕ Ej′. Then there is a natural right action of (B′)× on ResV = B defined by

1 · j′ = j, j · j′ = −J

so that explicitly,

(α + βj) · (x+ yj′) = (αx− βyJ) + (αy + βx)j.

This is an action:

(α + βj) · (x1 + y1j
′)(x2 + y2j

′) = (α + βj) · ((x1x2 − y1y2J) + (x1y2 + y1x2)j′)

= (α(x1x2 − y1y2J)− β(x1y2 + y1x2)J)

+ (α(x1y2 + y1x2) + β(x1x2 − y1y2J)j)

(α + βj) · (x1 + y1j
′) · (x2 + y2j

′) = ((αx1 − βy1J) + (αy1 + βx1)j) · (x2 + y2j
′)

= ((αx1 − βy1J)x2 − (αy1 + βx1)y2J)

+ ((αx1 − βy1J)y2 + (αy1 + βx1)x2)j

Moreover, this action is E-linear and preserves the skew-Hermitian form on ResV up to a

similitude character given by the reduced norm map for B′. Indeed, for αi + βij ∈ B, i = 1, 2,

and x+ yj′ ∈ B′, we have

〈α1 + β1j, α2 + β2j〉E = ϕ((α1 + β1j)(i)(α2 − β2j))

= i(α1α2 + β1β2J),
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and

〈(α1 + β1j) · (x+ yj′), (α2 + β2j) · (x+ yj′)〉E
= i((α1x− β1yJ)(α2x− β2yJ) + (α1y + β1x)(α2y + β2x)J)

= (xx+ yyJ)(i(α1α2 + β1β2J))

= NB′/F (x+ yj′)〈α1 + β1j, α2 + β2j〉E.

The left-multiplication action of E× clearly commutes with the above right action of (B′)×

and therefore we have a natural map

E× × (B′)× → GUE(ResV ), (x, b′) 7→ (v 7→ x−1 · v · b′).

It is clear that the kernel of this map is exactly the diagonal embedding of F×. We now prove

that this map is surjective. Note that GUE(ResV ) is a connected Lie group, and therefore

the surjectivity of the above map follows from the surjectivity of the induced map on Lie

algebras. (A connected Lie group has no nontrivial open subgroups: If H ⊆ G is open, then

∪16=g∈G/Hg · H is open, so H is also closed.) The surjectivity of the induced map on Lie

algebras

E ⊕B′ → guE(ResV ), (X, Y ) 7→ (v 7→ −X · v + v · Y )

is easy to see. With respect to the basis e1 = 1, e2 = j,

〈( a bc d ) · v, w〉E =
〈
v,
(

a c
b/J d

)
w
〉
E
,

and therefore

guE(ResV ) =
{(

ai+α b
−b/J di+α

)
: α, b ∈ E; a, d ∈ F

}
.

On the other hand, for α ∈ E and a+ bj′ ∈ B′, the map v 7→ −α · v + v · (a+ bj′) is given by

v 7→
(( −α 0

0 −α
)

+
(
a −bJ
b a

))
v,

where v ∈ ResV is viewed as a column vector. It is now clear that the map on Lie algebras

is surjective, finishing the proof that (E× × (B′)×)/F× ∼= GUE(ResV ). ♦
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CHAPTER 5

Splittings for unitary similitude groups

In this section, we define the Weil representation on the dual reductive pairs introduced in

Section 4.4 using the explicit splittings of zY defined by Kudla [K94]. Throughout this section,

we will freely use the properties of the Weil index and the Leray invariant summarized in

Section 3.2 without explicitly referring to the exact property in play. We prove that the

splittings are compatible with the seesaws constructed in Section 4.4. In Sections 5.1, 5.2,

5.3, and 5.4, we fix a place v of F and suppress v from the notation. In Section 5.5, we

combine the local considerations from these sections into the global picture. Many of these

calculations (especially in Sections 5.3 and 5.4) are motivated by [IP16a], [IP16b].

In order to describe the global automorphic theta lift from a Hecke character to a

quaternion algebra, which we will do later in Chapter 6, we will need to give an explicit

description of the local splittings in Section 5.3 in the special case that the quaternion algebra

is unramified (i.e. split) at the place in question. We do this in Section 5.6.

5.1 Kudla’s splitting for split unitary groups

We first recall Kudla’s splitting [K94] of Rao’s cocycle [R93] for split unitary groups over E.

Let W ∼= E2n (row vectors) be an E-vector space of dimension 2n with ε-skew Hermitian

form

〈(x1, y1), (x2, y2)〉 = x1y
ᵀ
2 − εy1x

ᵀ
2,

and let e1, . . . , en, e
′
1, . . . , e

′
n be the E-basis of W giving the isomorphism W ∼= E2n. Let V

be an E-vector space of dimension m with a non-degenerate ε-Hermitian form (·, ·). (Here,

x denotes the image of x under the nontrivial involution of E over F and the superscript ᵀ

denotes transposition.) Then (UE(V),UE(W)) is a dual reductive pair and there is a natural

map

ι : UE(V)× UE(W)→ Sp(V ⊗E W), (h, g) 7→ (w ⊗ v 7→ h−1w ⊗ vg).
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We denote by ιW : UE(V)→ Sp(V⊗E W) and ιV : UE(W)→ Sp(V⊗E W) the restrictions

of ι to UE(V)× {1} and {1} × UE(W), respectively.

For 0 ≤ j ≤ n, let τj ∈ UE(W) be the element defined by

eiτj =

−εe′i if 1 ≤ i ≤ j,

ei if i > j,
and e′iτj =

ei if 1 ≤ i ≤ j,

e′i if i > j.

Then

UE(W) =

j⊔
i=0

PτjP,

where P = PY ⊂ UE(W) is the parabolic subgroup stabilizing the maximal isotropic subspace

Y := spanE{e′1, . . . , e′n}. If g = p1τjp2 ∈ PτjP , then we define

j(g) := j, and x(g) := det(p1p2|Y ) ∈ E×.

For any E-vector space V0 endowed with a non-degenerate Hermitian form, define

γF (1
2
ψ ◦RV0) := (u, det(V0))FγF (−u, 1

2
ψ)mγF (−1, 1

2
ψ)−m.

Definition 5.1. Define

βV,ξ : UE(W)→ C1, g 7→

ξ(x(g))γF (1
2
ψ ◦RV)−j(g) if ε = +1,

ξ(x(g))ξ(i)jγF (1
2
ψ ◦RV′)−j(g) if ε = −1,

where V′ is the Hermitian form obtained by scaling the skew-Hermitian form on V by i.

Theorem 5.2 (Kudla, [K94, Thm 3.1]). Let ξ be a unitary character of E× whose restriction

to F× is εmE/F , where εE/F (x) = (x, u)F is the quadratic character corresponding to the

extension E/F . Then for the maximal isotropic subspace Y := V ⊗E Y of V ⊗E W,

zY(ιV(g1), ιV(g2)) = βV,ξ(g1g2)βV,ξ(g1)−1βV,ξ(g2)−1.

In other words, with respect to the isomorphism Mp(V⊗EW) ∼= Sp(V⊗EW)×C1 determined

by zY, the following diagram commutes:

Mp(V ⊗E W)Y

UE(W) Sp(V ⊗E W)

(ιV,βV,ξ)

ιV
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5.2 Changing polarizations

Lemma 5.3 (Kudla, [K94, Lemma 4.2]). Let X + Y and X′ + Y′ be two polarizations of a

symplectic space V. Then

zY′(g1, g2) = λ(g1g2)λ(g1)−1λ(g2)−1 · zY(g1, g2),

where λ : Sp(V)→ C1 is given by

λ(g) := λY Y′(g) := γF (1
2
ψ ◦ q(Y,Y′g−1,Y′)) · γF (1

2
ψ ◦ q(Y,Y′,Yg)).

In particular, the bijection

Mp(V)Y → Mp(V)Y′ , (g, z) 7→ (g, z · λ(g))

is an isomorphism.

5.3 Three seesaws of unitary groups

For any two unitary similitude groups GUE(V) and GUE(W), we write

G(UE(V)× UE(W)) := {(g, h) ∈ GUE(V)×GUE(W) : ν(g) = ν(h)}.

Fix a complete polarization V = X + Y. In this section, we define splittings (of zY or zY� ,

depending on context) for the following groups:

(i) G(UE(V �0 )× UE(W0))

(ii) G(UE(V0)× UE(W0))

(iii) G(UE(ResV )× UE(W�))

(iv) G(UE(ResV )× UE(W ))

These unitary groups fit into seesaw

UE(ResV ) UE(W0)

UE(V0) UE(W )

(5.1)
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and the two corresponding doubling seesaws:

UE(V �0 ) UE(W0)× UE(W0)

UE(V0)× UE(V0) UE(W0)4

UE(ResV ) UE(W�)

UE(ResV )4 UE(W )× UE(W )

(5.2)

5.3.1 Splittings for G(UE(V �0 )× UE(W0)) and G(UE(V0)× UE(W0))

Consider the 2-dimensional E-space V0⊗EW0 with skew-Hermitian form given by (·, ·)⊗〈·, ·〉.
By a straightforward computation, we see that this allows us to identify V0 ⊗E W0 = W0 as

E-spaces endowed with skew-Hermitian forms. Define

i : G(UE(V0)× UE(W0))→ UE((V0 ⊗W0)�),

(g, h) 7→ ((v ⊗ w, v− ⊗ w−) 7→ (g−1v ⊗ wh, v− ⊗ w−)),

i− : G(UE(V0)× UE(W0))→ UE((V0 ⊗W0)�),

(g, h) 7→ ((v ⊗ w, v− ⊗ w−) 7→ (v ⊗ w, g−1v− ⊗ w−h)),

i� : G(UE(V �0 )× UE(W0))→ UE(V �0 ⊗W0),

(g, h) 7→ (v ⊗ w 7→ g−1v ⊗ wh).

We may identify V �0 ⊗W0 = (V0 ⊗W0)� = W�
0 . We have natural embeddings

G(UE(V0)× UE(V0)× UE(W0)) ↪→ G(UE(V0)× UE(W0))×G(UE(V0)× UE(W0))

G(UE(V0)× UE(V0)× UE(W0)) ↪→ G(UE(V �0 )× UE(W0)).

Observe that for (g1, g2, h) ∈ G(UE(V0)× UE(V0)× UE(W0)),

i(g1, h)i−(g2, h) = i�(g1, g2, h) ∈ UE(W�
0 ).

We identify ResE/F (W�
0 ) = V� and let

ι : UE(W�
0 )→ Sp(ResE/F (W�

0 )) = Sp(V�)

be the natural embedding. We will often identify UE(W�
0 ) with ι(UE(W�

0 )).

Definition 5.4. Pick a character ξ : E× → C1 such that ξ|F× = εE/F . Define

β : UE(W�
0 )→ C1, g 7→ ξ(x(g)) · ((u,−1)FγF (u, 1

2
ψ))−j(g).
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Define

λ := λV0⊗W40  Y� : Sp(V�)→ C1.

Define

ŝ := i∗β, ŝ− := (i−)∗β, ŝ� := (i�)∗β,

s := i∗(βλ), s− := (i−)∗(βλ), s� := (i�)∗(βλ).

Lemma 5.5.

(a) ŝ, ŝ−, and ŝ� are splittings of zV0⊗W40
on the images of i, i−, and i�, respectively.

(b) s is a splitting of zY on the image of i, s− is a splitting of z−1
Y on the image of i−, and

s� is a splitting of zY� on the image of i�.

Proof. Observe that det(V0) = 1 and dim(V0) = 1 so that

γF (1
2
ψ ◦RV0) = (u, 1)FγF (−u, 1

2
ψ)γF (−1, 1

2
ψ)−1 = (u,−1)FγF (u, 1

2
ψ).

This implies that β = βUE(V0),ξ (see Definition 5.1) and hence is a splitting of zV0⊗EW40
. Since

ŝ, ŝ−, and ŝ� are pullbacks of β, they must also be splittings of the same cocycle.

Lemma 5.6. For any (g, h) ∈ G(UE(V0)× UE(W0)),

ŝ−(g, h) = ŝ(g, h) · ξ(det(g, h)).

Proof. Let dW40
(−1) = ( 1 0

0 −1 ) and set

jW40
: UE(W�

0 )→ UE(W�
0 ), g 7→ dW40

(−1)gdW40
(−1).

Let g ∈ G(UE(V0)× UE(W0)). By a straightforward computation, we have

x(i−(g)) = (−1)j(g)x(i(g)), and j(i−(g)) = j(i(g)).

40



Therefore,

ŝ−(g) = ξ(x(i−(g)))((u,−1)FγF (u, 1
2
ψ))−j(i

−(g))

= ξ(−1)j(g)ξ(x(i(g)))((u,−1)FγF (u, 1
2
ψ))−j(i

−(g))

= ξ(x(i(g)))((u,−1)FγF (u, 1
2
ψ))j(i

+(g))

= ξ(x(i(g)))2ŝ(g)

= ξ(det(g))ŝ(g).

Lemma 5.7. For (g1, g2, h) ∈ G(UE(V0)× UE(V0)× UE(W0)),

s�(g1, g2, h) = s(g1, h) · s(g2, h) · ξ(det(i(g2, h))).

Proof. This is [HKS96, Lemma 1.1]. See also [Lemma D.4, periods2].

5.3.2 Splittings for G(UE(ResV )×UE(W�)) and G(UE(ResV )×UE(W ))

This section is completely analogous to Section 5.3.1. The 2-dimensional E-space ResV ⊗EW
with skew-Hermitian form (·, ·)⊗ 〈·, ·〉 can be identified with ResV . Define

i′ : G(UE(ResV )× UE(W ))→ UE(ResV �),

(g, h) 7→ ((v, v−) 7→ (g−1vh, v−))

i−′ : G(UE(ResV )× UE(W ))→ UE(ResV �),

(g, h) 7→ ((v, v−) 7→ (v, g−1v−h)

i�′ : G(UE(ResV )× UE(W�))→ UE(ResV �),

(g, h) 7→ (v 7→ g−1vh).

We have natural embeddings

G(UE(ResV )× UE(W )× UE(W )) ↪→ G(UE(ResV )× UE(W ))×G(UE(ResV )× UE(W )),

G(UE(ResV )× UE(W )× UE(W )) ↪→ G(UE(ResV )× UE(W�)).

Observe that for (g, h1, h2) ∈ G(UE(ResV )× UE(W )× UE(W )),

i′(g, h1) · i−′(g, h2) = i�′(g, h1, h2) ∈ UE(ResV �).
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We identify ResB/F (V �) = V� and let

ι′ : UE(ResV �)→ Sp(V�)

be the natural embedding. We will often identify UE(ResV �) with ι(UE(ResV �)).

Definition 5.8. Pick a character ξ′ : E× → C1 such that ξ|F× = εE/F . Define

β′ : UE(ResV �)→ C1, g 7→ ξ′(x(g)) · ((u,−1)FγF (u, 1
2
ψ))−j(g).

Define

λ′ := λResV4⊗W Y� : Sp(V�)→ C1.

Define

ŝ′ := (i′)∗β′, ŝ−′ := (i−′)∗β′, ŝ�′ := (i�′)∗β′,

s′ := (i′)∗(β′λ′), s−′ := (i−′)∗(β′λ′), s�′ := (i�′)∗(β′λ′).

Lemma 5.9.

(a) ŝ′, ŝ−′, and ŝ�′ are splittings of zResV4⊗W on the images of i′, i−′, and i�′, respectively.

(b) s′ is a splitting of zY on the image of i′, s−′ is a splitting of z−1
Y on the image of i−′,

and s�′ is a splitting of zY� on the image of i�′.

Lemma 5.10. For (g, h1, h2) ∈ G(UE(ResV )× UE(W )× UE(W )),

s�′(g, h1, h2) = s′(g, h1) · s′(g, h2) · ξ′(det(i′(g, h2))).

5.4 Compatibility between the splittings for the three

seesaws

In this section, we investigate the compatibility of the splittings of the four pairs of unitary

groups relative to the three seesaws presented in (5.1) and (5.2). Compatibility of the

splittings in the two doubling seesaws of (5.2) is explicated in Lemmas 5.7 and 5.10. Hence

it remains to investigate the compatibility of the splittings

s : G(UE(V0)× UE(W0))→ C1 and s′ : G(UE(ResV )× UE(W ))→ C1.
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Precisely, we would compare s and s′ on the subgroup

G(UE(V0)× UE(W )) ∼= {(α, β) ∈ E× × E× : Nm(α) = Nm(β)}.

We prove a sequence of lemmas that to break up the long computation that will end in

Proposition 5.14.

Let α, β ∈ E× with Nm(α) = Nm(β) so that (α, β) ∈ G(UE(V0) × UE(W )). Let

g ∈ UE(W�
0 ) denote the map (w,w−) 7→ (α−1wβ,w−) and let g′ ∈ UE(ResV �) denote the

map (v, v−) 7→ (α−1vβ, v−). Define:

v1 :=

(
− i

2u
,

i

2u

)
v′1 := (1, 1)

v2 :=

(
ij

2uJ
,− ij

2uJ

)
v′2 := (j, j)

This defines an E-basis of W�
0 and of ResV � with the following property:

(vi, v
′
j)0 = δij, (vi, vj)0 = (v′i, v

′
j)0 = 0,

〈vi, v′j〉 = δij, 〈vi, vj〉 = 〈v′i, v′j〉 = 0.

With respect to the basis {v1, v2, v
′
1, v
′
2},

g =


1+α−1β

2
0 1−α−1β

4u
i 0

0 1+α−1β
2

0 −1−α−1β
4uJ

i

(1− α−1β)i 0 1+α−1β
2

0

0 −(1− α−1β)iJ 0 1+α−1β
2

 (5.3)

g′ =


1+α−1β

2
0 1−α−1β

4u
i 0

0 1+α−1β
2

0 1−α−1β
4uJ

i

(1− α−1β)i 0 1+α−1β
2

0

0 (1− α−1β)iJ 0 1+α−1β
2

 (5.4)

Here, we view each unitary group as a subgroup of GL4(E) with GL4(E) acting formally by

right-multiplication. Note however that W�
0 is a left E-space, and so we interpret the formal

multiplication v · a for v ∈ W�
0 and a ∈ E as av. Throughout this section, we write g when

we want to refer to one of g or g′ simultaneously.

Lemma 5.11. We have
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Conditions x(g) x(g′) j(g)

α−1β = 1, α−1β = 1 1 1 0

α−1β = 1, α−1β 6= 1 −(1− α−1β)iJ (1− α−1β)iJ 1

α−1β 6= 1, α−1β = 1 (1− α−1β)i (1− α−1β)i 1

α−1β 6= 1, α−1β 6= 1 −(1− α−1β)(1− α−1β)uJ (1− α−1β)(1− α−1β)uJ 2

Proof. The proof amounts to giving explicit decompositions

g = p1wp2, where pi ∈ PV4 and w = τj =

(
12−j

−1j
12−j

1j

)
.

There are four cases:

(a) If α−1β = 1 and α−1β = 1, then

g = 1, g′ = 1.

(b) If α−1β = 1 and α−1β 6= 1, then g = p1τ1p2 and g′ = p′1τ1p
′
2 for

p1 =


1 0 0 0

0 1 0 1+α−1β

2(−1+α−1β)iJ

0 0 1 0

0 0 0 1



p2 =


1 0 0 0

0 (−1 + α−1β)iJ 0 1+α−1β
2

0 0 1 0

0 0 0 α−1β

(−1+α−1β)iJ



p′1 =


1 0 0 0

0 1 0 − 1+α−1β
2(−1+α−1β)iJ

0 0 1 0

0 0 0 1



p′2 =


1 0 0 0

0 −(−1 + α−1β)iJ 0 1+α−1β
2

0 0 1 0

0 0 0 − α−1β
(−1+α−1β)iJ



44



(c) If α−1β 6= 1 and α−1β = 1, then

g = g′ =


0 1 0 1+α−1β

2i(1−α−1β)

1 0 0 0

0 0 0 1

0 0 1 0

 · τ1 ·


0 1 0 0

(1− α−1β)i 0 1+α−1β
2

0

0 0 0 1

0 0 α−1β
(1−α−1β)i

0

 .

(d) If α−1β 6= 1 and α−1β 6= 1, then g = p1τ2p2 and g′ = p′1τ2p
′
2 for

p1 =


1 0 1+α−1β

2(1−α−1β)i
0

0 1 0 − 1+α−1β

2(1−α−1β)iJ

0 0 1 0

0 0 0 1



p2 =


(1− α−1β)i 0 1+α−1β

2
0

0 −(1− α−1β)iJ 0 1+α−1β
2

0 0 α−1β
(1−α−1β)i

0

0 0 0 − α−1β

(1−α−1β)iJ



p′1 =


1 0 1+α−1β

2(1−α−1β)i
0

0 1 0 1+α−1β
2(1−α−1β)iJ

0 0 1 0

0 0 0 1



p′2 =


(1− α−1β)i 0 1+α−1β

2
0

0 (1− α−1β)iJ 0 1+α−1β
2

0 0 α−1β
(1−α−1β)i

0

0 0 0 α−1β
(1−α−1β)iJ


From the above decompositions, we can easily read off the desired information.

Lemma 5.12. Let α = a1 + b1i. Then

ŝ(α, α) =

ξ(α−1) · (a1, u)F if b1 = 0,

ξ(α−1) · (−2b1uJ, u)F · γF (u, 1
2
ψ) · (−1,−u)F otherwise.

ŝ′(α, α) =

ξ′(α−1) · (a1, u)F if b1 = 0,

ξ′(α−1) · (−2b1uJ, u)F · γF (u, 1
2
ψ) · (−1,−u)F otherwise.
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Proof. We use Lemma 5.11 in the two cases where α−1β = 1. If α−1α = 1, then α = α and

so b1 = 0. By Lemma 5.11, we have

ŝ(α, α) = ŝ′(α, α) = 1 = ξ(α−1) · (a1, u)F = ξ′(α−1) · (a1, u)F .

If α−1α 6= 1, then b1 6= 0. Note that

1− α−1α = α−1(α− α) = α−1 · 2b1i,

1− α−1α = 1− α−1α = −α−1 · 2b1i.

Thus by Lemma 5.11,

ŝ(α, α) = ξ(α−1) · (−2b1uJ, u)F · γF (u,
1

2
ψ) · (−1,−u)F ,

ŝ′(α, α) = ξ′(α−1) · (−2b1uJ, u)F · γF (u,
1

2
ψ) · (−1,−u)F .

Lemma 5.13. Let ζ = a+ bi ∈ E1. Then

ŝ(1, ζ) =

1 if a = 1,

((2− 2a)uJ, u)F if a 6= 1.

ŝ′(1, ζ) =

1 if a = 1,

ξ′(ζ) · ((2− 2a)uJ, u)F if a 6= 1.

Proof. We use Lemma 5.11. If ζ = 1, this corresponds to the case α−1β = 1, α−1β = 1, and

ŝ(1, ζ) = ŝ′(1, ζ) = 1.

If ζ 6= 1, this corresponds to the case α−1β 6= 1, α−1β 6= 1, and

ŝ(1, ζ) = ξ(−(1− ζ)(1− ζ)uJ) · (−1, u)F ,

ŝ′(1, ζ) = ξ′((1− ζ)2uJ) · (−1, u)F .

Now,

(1− ζ)(1− ζ) = 2− 2a

(1− ζ)2 = −ζ(1− ζ)(1− ζ) = −ζ(2− 2a).
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Thus

ŝ(1, ζ) = ((2− 2a)uJ, u)F ,

ŝ′(1, ζ) = ξ′(ζ) · ((2− 2a)uJ, u)F .

Proposition 5.14. Let g ∈ G(UE(V0)×UE(W )) ⊂ G(UE(V0)×UE(W0)) and g′ ∈ G(UE(V0)×
UE(W )) ⊂ G(UE(ResV )× UE(W )) correspond to (α, β) ∈ E× × E× with Nm(α) = Nm(β).

Then

s′(g′) = ξ(α)ξ′(β)s(g).

Proof. We use the formulas given in Lemma 5.12 and Lemma 5.13 together with Lemma 5.3.

Recall that

g = g1 · g2, g′ = g′1 · g′2,

where g1 corresponds to (α, α) and g2 corresponds to (1, β/α).

First notice that under the natural maps

i : UE(V0 ⊗W0)→ Sp(V) i� : UE(V0 ⊗W0)→ Sp(V�),

i′ : UE(ResV ⊗W )→ Sp(V) i�′ : UE(ResV ⊗W )→ Sp(V�),

we have

i(g•) = i′(g′•) ∈ Sp(V), i�(g•) = i�′(g′•) ∈ Sp(V�),

where g• denotes any of g, g1, g2. This implies that for λ := λV4 Y� ,

λ(i�(g•)) = λ(i�′(g′•)), and zY(i(g1), i(g2)) = zY(i′(g′1), i′(g′2)).

By definition,

s(g) = ŝ(g1) · µ(g1) · ŝ(g2) · µ(g2) · zY(i(g1), i(g2)),

s′(g) = ŝ′(g1) · µ(g1) · ŝ′(g2) · µ(g2) · zY(i′(g1), i′(g2)),

Thus we have

χ(α, β) = s(g) · s′(g′)−1 = ŝ(g1) · ŝ(g2) · ŝ′(g′1)−1 · ŝ′(g′2)−1.

Now we combine the results of Lemmas 5.12 and 5.13 to compute χ(α, β). Using the fact

α−1 · β · α−1 = β
−1
,

47



in the calculation of ŝ′(g′1)ŝ′(g′2) when α 6= β, we have:

ŝ(g1) · ŝ(g2) =



ξ(α−1) · (a1, u)F α ∈ F×, α = β

ξ(α−1) · (a1, u)F · ((2− 2a)uJ, u)F α ∈ F×, α 6= β

ξ(α−1) · (−2b1uJ, u)F · γF (u, 1
2
ψ) · (−1,−u)F α 6∈ F×, α = β

ξ(α−1) · (−2b1uJ, u)F · γF (u, 1
2
ψ) · (−1,−u)F

·((2− 2a)uJ, u)F α 6∈ F×, α 6= β

ŝ′(g′1) · ŝ′(g′2) =



ξ′(α−1) · (a1, u)F α ∈ F×, α = β

ξ′(β
−1

) · (a1, u)F · ((2− 2a)uJ, u)F α ∈ F×, α 6= β

ξ′(α−1) · (−2b1uJ, u)F · γF (u, 1
2
ψ) · (−1,−u)F α 6∈ F, α = β

ξ′(β
−1

) · (−2b1uJ, u)F · γF (u, 1
2
ψ) · (−1,−u)F

·((2− 2a)uJ, u)F α 6∈ F×, α 6= β

Therefore

χ(α, β) =



ξ(α−1) · ξ′(α) α ∈ F×, α = β

ξ(α−1) · ξ′(β) α ∈ F×, α 6= β

ξ(α−1) · ξ′(α) α 6∈ F×, α = β

ξ(α−1) · ξ′(β) α 6∈ F×, α 6= β

= ξ(α−1) · ξ′(β) = ξ(α−1) · ξ′(β−1) · ξ′(ββ) = ξ(α−1)ξ′(β−1).

5.5 Product formula

In this section, we put the local considerations of the Sections 5.1, 5.2, 5.3, and 5.4 into the

global picture. Once and for all, pick Hecke characters

ξ, ξ′ : E×\A×E → C1

such that

ξ|A×F = ξ′|A×F = εE/F .
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Note that UE(V0) ∼= E× ∼= UB(V )0 and hence we have a natural embeddings

G(UB(V )0 × UB(W )) ↪→ G(UE(V0)× UE(W0))

G(UB(V �)0 × UB(W )) ↪→ G(UE(V �0 )× UE(W0)).

Thus functions defined on the unitary spaces pull back to functions on the quaternionic

unitary spaces. For each place v of F , by Definition 5.4 and 5.8, we have functions

sv : G(UB(Vv)× UB(W ∗
v ))→ C1, s�v : G(UB(V �v )0 × UB(W ∗

v ))→ C1,

s′v : G(UE(ResVv)× UE(Wv))→ C1, s�v
′ : G(UE(ResVv)× UE(W�

v ))→ C1.

Lemma 5.15.

(a) Let γ ∈ G(UB(V )(F )× UB(W )(F )). Then

sv(γ) = 1 for almost all v and
∏
v

sv(γ) = 1.

(b) Let γ ∈ G(UB(V �)0(F )× UB(W )(F )). Then

s�v (γ) = 1 for almost all v and
∏
v

s�v (γ) = 1.

(c) Let γ ∈ G(UE(ResV )(F )× UE(W )(F )). Then

s′v(γ) = 1 for almost all v and
∏
v

s′v(γ) = 1.

(d) Let γ ∈ G(UE(ResV )(F )× UE(W�)(F )). Then

s�v
′(γ) = 1 for almost all v and

∏
v

s�v
′(γ) = 1.
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Define

s =
∏
v

sv : G(UB(V )(A)× UB(W ∗)(A))→ C1,

s� =
∏
v

s�v : G(UB(V �)(A)× UB(W ∗�)(A))→ C1,

s′ =
∏
v

s′v : G(UE(ResV )(A)× UE(W )(A))→ C1,

s�′ =
∏
v

s�v
′ : G(UE(ResV )(A)× UE(W�)(A))→ C1.

Proposition 5.16.

(a) [Lemma 5.7] For (g1, g2, h) ∈ G(UB(V )0(A)× UB(V )0(A)× UB(W )(A)),

s�(g1, g2, h) = s(g1, h) · s(g2, h) · ξ(det(i(g2, h))).

(b) [Lemma 5.10] For (h, g1, g2) ∈ G(UE(ResV )(A)× UE(W )(A)× UE(W )(A)),

s�′(h, g1, g2) = s′(h, g1) · s′(h, g2) · ξ′(det(i′(h, g2))).

(c) [Proposition 5.14] For α, β ∈ A×E such that Nm(α) = Nm(β),

s′(α, β) = ξ(α)ξ′(β)s(α, β).

5.6 Two splittings on E×v × GL2(Fv)

To calculate the theta lift at all the unramified places, we will have to understand the Weil

representation more concretely. In particular, we will need to explicate the local splittings

defined in Chapter 5 in the case when v /∈ SB and v /∈ SB′ . These exactly correspond,

respectively, to the cases when W0,v and ResVv are split Hermitian spaces. For notational

convenience, we drop the subscript v in this section.

Consider the group

R := G(E× ×GL2(F )) =
{

(α, g) ∈ E× ×GL2(F ) : Nm(α) = det(g)
}
.

Assume that the 2-dimensional E-spaces W0 and ResV are hyperbolic planes (i.e. they are
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split Hermitian spaces). Then we have embeddings

R ↪→ G(UE(V0)× UE(W0)), (α, g) 7→ (α, g)

R ↪→ G(UE(ResV )× UE(W )), (α, g) 7→ (g, α).

Furthermore, any decomposition of W0 or ResV into maximal isotropic subspaces induces a

complete polarization

V = X′ + Y′.

Recall that in Chapter 5, we defined functions

ŝ : G(UE(V0)× UE(W0))→ C1 such that zV0⊗W40
= ∂ŝ,

ŝ′ : G(UE(ResV )× UE(W ))→ C1 such that zResV4⊗W = ∂ŝ′.

Recall that these were defined by pulling back Kudla’s splitting on split unitary groups along

the maps

i : G(UE(V0)× UE(W0))→ UE(W�
0 ), i′ : G(UE(ResV )× UE(W ))→ UE(ResV �)

defined in Sections 5.3.1 and 5.3.2. If we let λ : Sp(V�)→ C1 be given by

λ(g) := γF (1
2
ψ ◦ q(V4,Y′�g−1,Y′�)) · γF (1

2
◦ q(V4,Y′�,V4g)),

then we may define functions

s := ŝ · λ : G(UE(V0)× UE(W0))→ C1 such that zY′ = ∂s,

s′ := ŝ′ · λ : G(UE(ResV )× UE(W ))→ C1 such that zY′ = ∂s′.

In this section, we explicate the values of s and s′ on R.

We work with s first. Let W1 and W2 be isotropic subspaces such that W0 = W1 +W2.

Fix wi ∈ Wi so that 〈w1, w2〉 = 1. Make the analogous definitions for s′: let V1 and V2 be

isotropic subspaces such that ResV = V1 + V2 and fix wi ∈ Vi such that 〈w1, w2〉 = 1. Define

w1 = (1
2
w1,−1

2
w1), w2 = (−1

2
w2,

1
2
w2), w∗1 = (w2, w2), w∗2 = (w1, w1)

so that we have

〈wi,wj〉 = 〈w∗i ,w∗j 〉, 〈wi,w
∗
j 〉 = δij, 〈w∗i ,wj〉 = −δij,
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and

W�
0 = W5

0 +W4
0 , where W5

0 = span{w1,w2} and W4
0 = span{w∗1,w∗2},

ResV � = ResV 5 + ResV 4, where ResV 5 = span{w1,w2} and ResV 4 = span{w∗1,w∗2}.

Then a symplectic basis preserving the complete polarization

V� = V5 + V4

is given by

w1,
−1
u

iw1, w2,
−1
u

iw2, w∗1, iw∗1, w∗2, iw∗2. (5.5)

5.6.1 A splitting s of zY′

For a, d ∈ F×, write D(a, d) := diag(a, d).

Lemma 5.17. Let (α,D(a, d)) ∈ R. Then

s(α,D(a, d)) = ξ(−(α−1a− 1)(α−1d− 1)).

In particular, for a ∈ F× and α ∈ E×,

s(1, D(a, a−1)) = (u, a)F ,

s(α,D(1,Nm(α))) = ξ(α−1).

Proof. We have (1, D(1, 1)) = (1, U(0)), and this is proved in Lemma 5.18, so we assume

that (α,D(a, d)) 6= (1, D(1, 1)). This assumption will be necessary when we calculate ŝ.

Recall that (α,D(a, d)) sends w1 7→ α−1aw1 and w2 7→ α−1dw2. Recalling that i : UE(W0)→
UE(W0 +W−

0 ) is defined by UE(W0) acting linearly on W0 and trivially on W−
0 , it is a straight-

forward computation to see that the image of (α,D(a, d)) in UE(W0 +W−
0 ) with respect to

the basis w1,w2,w
∗
1,w

∗
2 is

α−1a+1
2

0 0
α−1a−1

4

0
α−1d+1

2
−α
−1d−1

4
0

0 −(α−1d−1)
α−1d+1

2
0

−(α−1a−1) 0 0
α−1a+1

2

 .

We have

i(α,D(a, d)) = p1

(
1

1
−1
−1

)
p2,
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where

p1 =


0 −

(α−1a+1)2

4(α−1a−1)
+
α−1a−1

4
−α
−1a+1

2
0

(α−1d+1)2

4(α−1d−1)
−α
−1d−1

4
0 0 −α

−1d+1
2

0 0 0 (α−1d−1)

0 0 −(α−1a−1) 0

 ,

p2 =

 1 0 0
α−1a+1

2(α−1a−1)

0 1 − α−1d+1
4(α−1d−1)

0

0 0 1 0
0 0 0 1

 .

This implies that

x(i(α,D(a, d))) = (α−1a− 1)(α−1d− 1), j(i(α,D(a, d))) = 2,

and therefore by Definition 5.4,

ŝ(i(α,D(a, d))) = ξ((α−1a− 1)(α−1d− 1)) · γF (u, 1
2
ψ)−2 = ξ(−(α−1a− 1)(α−1d− 1)).

With respect to the symplectic basis given in (5.5), the image of i(α,D(a, d)) in Sp(V�) is

g =



xa+1
2

−yau
2

xa−1
4

ya
4

−ya
2

xa+1
2

ya
4u

xa−1
4

xd+1
2

−ydu
2

−xd−1
4

−yd
4

−yd
2

xd+1
2

− yd
4u

−xd−1
4

−(xd− 1) ydu xd+1
2

yd
2

yd −(xd− 1) yd
2u

xd+1
2

xa− 1 −yau xa+1
2

ya
2

ya xa− 1 ya
2u

xa+1
2


∈ Sp(V�).

By definition,

λ(α,D(a, d)) = γF (1
2
ψ ◦ q(V4,Y′�g−1,Y′�)) · γF (1

2
ψ ◦ q(V4,Y′�,V4g)).

Since g stabilizes Y′�,

γF (1
2
ψ ◦ q(V4,Y′�g−1,Y′�)) = 1.
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To calculate the second factor, notice that

V4 = {(0, 0, 0, 0, z1, z2, z3, z4)}

Y′� = {(0, 0, z1, z2, z3, z4, 0, 0)}

V4g = {((xa− 1)z2 + yaz4,−yauz3 + (xa− 1)z4,−(xd− 1)z1 + ydz2, yduz1 − (xd− 1)z2,

− xd+1
2
z1 − yd

2u
z2,−yd

2
z1 − xd+1

2
z2,

xa+1
2
z3 + ya

2u
z4,

ya
2
z3 + xa+1

2
z4)}

and one can see that this implies that R = {(0, 0, ∗, ∗, ∗, ∗, 0, 0)} and hence

γF (1
2
ψ ◦ q(V4,Y′�,V4g)) = 1.

We therefore have

s(α,D(a, d)) = ŝ(α,D(a, d)) = ξ(−(α−1a− 1)(α−1d− 1)).

This proves the main assertion and the remaining formulas can be deduced as follows:

Assuming a 6= 1 and α 6= 1 (observe that if α ∈ E1, then x = 1 if and only if α = 1),

s(1, D(a, a−1)) = ξ(−(a− 1)(a−1 − 1)) = ξ(a− 2 + a−1)

= ξ(a−1(a2 − 2a+ 1)) = ξ(a−1(a− 1)2) = ξ(a−1)

= ξ(a) = (u, a)F .

If α ∈ E×, then

s(α,D(1,Nm(α))) = ξ(−(α−1 − 1)(α−1αᾱ− 1))

= ξ(−(α−1 − 1)(ᾱ− 1)) = ξ(α−1(α− 1)(ᾱ− 1))

= ξ(α−1)εE/F (Nm(α− 1)) = ξ(α−1).

Lemma 5.18. Let a ∈ F . Then

s(1, U(a)) = 1.

Proof. The matrix U(a) sends w1 7→ w1 + aw2 and w2 7→ w2. Recalling that i : UE(W0)→
UE(W0 + W−

0 ) is defined by UE(W0) acting linearly on W0 and trivially on W−
0 , it is a

straightforward computation to see that

i(1, U(a)) =

(
1 −a

2
a
4

0

0 1 0 0
0 0 1 0
0 −a a

2
1

)
.
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We have (
1
a
2
a
4

0

0 1 0 0
0 0 1 0
0 a

a
2

1

)(
1 0 0 0
0 a−1 0 1
0 0 1 0
0 0 0 a

)
=

 1
a
2

a
4
−1

2
0 −1 0 a−1

0 0 1 0
0 0

a
2
−1

( 1
−1

1
1

)
,

and therefore

x(i(1, U(a))) = −a−1, j(i(1, U(a))) = 1.

By Definition 5.4, we have

ŝ(1, U(a)) =

1 if a = 0,

ξ(−a−1) · (u,−1)F · γF (u, 1
2
ψ)−1 = (u, a)F · γF (u, 1

2
ψ)−1, if a ∈ F×.

We next calculate λ(1, U(a)). Since g = (1, U(a)) stabilizes Y′�,

λ(g) = γF (1
2
ψ ◦ q), q := q(V4,Y′�,V4g).

Working in the F -basis given in (5.5)

V4 = {(0, 0, 0, 0, y1, y2, y3, y4)},

Y′� = {(0, 0, y1, y2, y3, y4, 0, 0)},

V4g = {(0, 0,−ay3,
a
u
y4, y1 + a

2
y3, y2 − au

2
y4, y3, y4)}.

If a = 0, then

R = {(0, 0, 0, 0, ∗, ∗, ∗, ∗)}, R⊥ = {(0, 0, 0, 0, ∗, ∗, ∗, ∗)},

and therefore we must have

λ(1, U(0)) = 1,

and the lemma holds. It remains to prove the assertion for when a ∈ F×. Then we have

R = {(0, 0, 0, 0, ∗, ∗, 0, 0)}, R⊥ = {(0, 0, ∗, ∗, ∗, ∗, ∗, ∗)}.

So:

(V4)R = {(0, 0, 0, 0, 0, 0, y1, y2)},

(Y′�)R = {(0, 0, y1, y2, 0, 0, 0, 0)},

(V4g)R = {(0, 0,−ay1,
a
u
y2, 0, 0, y1, y2)}.

55



It is clear from the above equations that

(Y′�)R ( 1 b
0 1 ) = (V4g)R,

where

( 1 b
0 1 ) ∈ P(V4)R ⊂ Sp(R⊥/R), for b =

(
− 1
a

0

0
u
a

)
.

By definition, q = (Y′�)R with the symmetric bilinear form given by

q((x1, x2), (y1, y2)) = − 1
a
x1y1 + u

a
x2y2.

Therefore we have

dim q = 2, det q = − u
a2
, hF (q) = (− 1

a
, u
a
)F .

Observe that (− 1
a
, u
a
)F = (−a, au)F (−a, a)F = (−a, u)F , and so

λ(1, U(a)) = γF (1
2
ψ)2 · γF (− u

a2
, 1

2
ψ) · (− 1

a
, u
a
)F

= γF (−1, 1
2
ψ)−1 · γF (−u, 1

2
ψ) · (−a, u)F .

Finally, we have

s(1, U(a)) = (u, a)F · γF (u, 1
2
ψ)−1 · γF (−1, 1

2
ψ)−1 · γF (−u, 1

2
ψ) · (−a, u)F

= (u, a)F · (−1, u)F · (−a, u)F = 1.

Lemma 5.19. We have

s(1,W ) = (u,−1)F · γF (u, 1
2
ψ).

In particular, if ord(u) is even, then

s(1,W ) = 1.

Proof. The matrix W sends w1 7→ −w1 and w2 7→ −w2. Recalling that i(W ) acts linearly on

W0 and trivially on W−
0 , it is a straightforward computation to see that

i(1,W ) =


1
2
−1

2
1
4
−1

4
1
2

1
2

1
4

1
4

−1 1
1
2
−1

2

−1 −1
1
2

1
2

 =


1 −1 −1

4
1
4

1 1 −1
4
−1

4

0 0
1
2
−1

2

0 0
1
2

1
2

( 1
1

−1
−1

) 2 0 −1 0
0 2 0 −1

0 0
1
2

0

0 0 0
1
2

 .
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Therefore we have

x(i(1,W )) = 1
8
, j(i(1,W )) = 2,

and by Definition 5.4,

ŝ(1,W ) = ξ(1
8
) · ((u,−1)F · γF (u, 1

2
ψ))−2 = (u,−2)F . (5.6)

We next calculate λ(1,W ). With respect to the symplectic basis given in (5.5), the image of

i(1,W ) in Sp(V�) is

g =



1
2

−1
2

1
4

−1
4

1
2

1
2

−u
4

u
4

1
2

1
2

1
4

1
4

1
2

1
2

−u
4

−u
4

−1 1
1
2

−1
2

u −u 1
2

−1
2

−1 −1
1
2

1
2

u u
1
2

1
2


∈ Sp(V�).

By definition,

λ(g) = γF (1
2
ψ ◦ q(V4,Y′�g−1,Y′�)) · γF (1

2
ψ ◦ q(V4,Y′�,V4g)).

We have

V4 = {(0, 0, 0, 0, y1, y2, y3, y4)}

Y′�g−1 = {(y1, y2, y3, y4,
1
2
y3,− 1

2u
y4,

1
2
y1,− 1

2u
y2)}

Y′� = {(0, 0, y1, y2, y3, y4, 0, 0)}

which implies that R = {(0, 0, ∗, ∗, ∗, ∗, 0, 0)} and hence

γF (1
2
ψ ◦ q(V4,Y′�g−1,Y′�)) = 1. (5.7)

Now we calculate the second factor of λ(1,W ). We have

V4 = {(0, 0, 0, 0, y1, y2, y3, y4)},

Y′� = {(0, 0, y1, y2, y3, y4, 0, 0)},

V4g = {(y1, y2, y3, y4,−1
2
y1,

1
2u
y2,−1

2
y3,

1
2u
y4)},
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and hence

R = {(0, 0, 0, 0, ∗, ∗, 0, 0)}, R⊥ = {(0, 0, ∗, ∗, ∗, ∗, ∗, ∗)}.

This implies that

(V4)R = {(0, 0, 0, 0, 0, 0, y1, y2)}

(Y′�)R = {(0, 0, y1, y2, 0, 0, 0, 0)}

(V4g)R = {(0, 0, y1, y2, 0, 0,−1
2
y1,

1
2u
y2)}

and we have

(Y′�)R ( 1 b
0 1 ) = (V4g)R, for b =

(
−1

2
1

2u

)
.

It follows that

γF (1
2
ψ ◦ q(V4,Y′�,V4g)) = γF (1

2
ψ)2 · γF (− 1

4u
, 1

2
ψ) · (−1

2
, 1

2u
)F

= γF (−1, 1
2
ψ)−1γF (−u, 1

2
ψ) · (−2, u)F

= γF (u, 1
2
ψ) · (2, u)F . (5.8)

Putting together Equations (5.6), (5.7), and (5.8), we have

s(1,W ) = ŝ(1,W ) · λ(1,W )

= (u,−2)F · γF (u, 1
2
ψ) · (u, 2)F

= (u,−1)F · γF (u, 1
2
ψ).

To see the final assertion, first observe that if ord(u) is even, then either E is split or

unramified over F . In either case, (u,−1)F = 1. By [R93, Proposition A.11], ord(u) even

implies that γF (u, 1
2
ψ) = 1.

Lemma 5.20. Let a ∈ F . Then

s(1, D(−1))s(1,W )s(1, U(a))s(1,W ) = 1.

Proof. We have s(1, U(a)) = 1 and

s(1, D(−1))s(1,W )2 = (u,−1)F · ((u,−1)F · γF (u, 1
2
ψ))2

= (u,−1)F · γF (u, 1
2
ψ)2 = (u,−1)F · (u,−1)F = 1.
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Lemma 5.21. If F = R and E = C, then

s(α, g) = ξ(α−1)

for any (α, g) ∈ R.

Proof. Since (α,D(1,Nm(α))) stabilizes Y′,

s(α, g) = s(α,D(1,Nm(α))) · s(1, D(1,Nm(α)−1)g).

By Lemma 5.17, to prove the desired assertion, it remains to show that s(1, g) = 1 for

g ∈ SL2(R). But this follows from [R93, Proposition A.10(1)].

For convenience, we state the explicated values of s in the following table:

(α, g) ∈ R s(α, g)

(α,D(a, d)) ξ(−(α−1a− 1)(α−1d− 1))

(1, D(a, a−1)) (u, a)F

(α,D(1,Nm(α))) ξ(α)−1

(1, U(a)) 1

(1,W ) (u,−1)F · γF (u, 1
2
ψ)

5.6.2 A splitting s′ of zY′

The computations in this subsection are very similar to the computations of the preceding

subsection. As in the previous subsection, for a, d ∈ F×, write D(a, d) := diag(a, d).

Lemma 5.22. Let (D(a, d), α) ∈ G(GL2(F )× E×). Then

s′(D(a, d), α) = ξ′(−(a−1α− 1)(d−1α− 1)).

In particular, for a ∈ F× and α ∈ E×,

s′(D(a, a−1), 1) = (u, a)F ,

s′(D(1,Nm(α)), α) = ξ′(α).

Proof. The proof is similar to Lemma 5.17 except that (D(a, d), α) sends w1 7→ a−1αw1 and

w2 7→ d−1αw2. Thus the image of (D(a, d), α) in UE(ResV + ResV −) with respect to the
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basis w1,w2,w
∗
1,w

∗
2 is

a−1α+1
2

0 0 a−1α−1
4

0 d−1α+1
2

−d−1α−1
4

0

0 −(d−1α− 1) d−1α+1
2

0

−(a−1α− 1) 0 0 a−1α+1
2

 .

To be more precise, this proof is the proof of Lemma 5.17 except with a replaced by a−1, b

replaced by b−1, and α−1 replaced by α.
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CHAPTER 6

Global theta lifts

In this chapter, we examine the global theta lifts in the similitude seesaw

GUE(ResV ) GUB(W ∗)

GUB(V ) GUE(W )

=

((B′)× × E×)/F× B×

E× ∪ E×j E×

and their relationship to automorphic induction (see Chapter 2).

Let χ : E×\A×E → C× be a Hecke character and let πχ denote its automorphic induction

to a representation of GL2(AF ). Recall that πχ has a Jacquet–Langlands transfer to B× if

and only if the following condition holds:

(JL) If Bv is ramified, then χv does not factor through Nm: E×v → F×v .

We write πBχ to denote the Jacquet–Langlands transfer to B× if the pair (B,χ) satisfies (JL),

and we set πBχ = 0 otherwise.

The main theorem of this chapter is:

Theorem 6.1. The theta lifts Θ(χ · ξ) from GUB(V ) to GUB(W ∗) and Θ′(χ′ · ξ′−1) from

GUE(W ) to GUE(ResV ) can be described in terms of automorphic induction and the Jacquet–

Langlands correspondence:

Θ(χ · ξ) ∼= πBχ , and Θ′(χ′ · ξ′−1)∨ ∼= πB
′

χ′ ⊗ (χ′−1 · ξ′),

where the right-hand side is viewed as a representation of GUE(ResV ) descended from

(B′A)× × A×E.

To prove Theorem 6.1, we will need two arguments.

(1) If Θ(χ · ξ) = 0, then πBχ = 0.

(2) If Θ(χ · ξ) 6= 0, then Θ(χ · ξ) ∼= πBχ .
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To prove (1), we will need to make use of the theory of doubling zeta integrals. As we will

see from Section 6.2, the nonvanishing of the global theta lift Θ(χ · ξ) is determined by the

nonvanishing of local doubling zeta integrals. Hence the crux of (1) is to establish that the

functional determined by a local zeta integral is zero if and only if the corresponding local

theta lift is zero. To prove (2), we will need to explicitly calculate the local theta lift from

GU(1)v to GU(2)v at all places where GU(2)v ∼= GU(1, 1)v. Then, after showing that Θ(χ · ξ)
must be cuspidal if it is nonzero, we can use Jacquet–Langlands (Theorems 2.5 and 2.6).

6.1 Theta lifts with similitudes

We first recall some general properties of Weil representations. Denote by ωψ and ω�ψ the

Weil representations of Mp(V) on S(X) and of Mp(V�) on S(X�) = S(X)⊗ S(X). We have

a natural map

ι̃ : Mp(V)×Mp(V)→ Mp(V�)

inducing (z1, z2) 7→ z1z2 on C1, and the Weil representations ωψ, ω�ψ enjoy the following

compatibility:

ω�ψ ◦ ι̃ ∼= ωψ ⊗ (ωψ ◦ j̃Y),

where j̃Y is the automorphism of Mp(V)Y = Sp(V)× C1 defined by

j̃Y(g, z) = (jY(g), z−1), jY(g) = dY(−1) · g · dY(−1).

We make the following definitions:

G := GUB(V )◦ ∼= E× ∼= GUE(V0)

H := GUB(W ∗) ∼= B× ⊂ GUE(W0)

G′ := GUE(W )

H ′ := GUE(ResV ) ∼= ((B′)× × E×)/F×

G� := GUB(V �)

G�′ := GUE(W�)

Recall that these groups fit into the following seesaws:

H ′ H

G G′

G� H ×H

G×G H

H ′ ×H ′ G�′

H ′ G′ ×G′
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Adding a subscript 1 to any of the above groups indicates that we take the kernel of the

similitude character. If G1, . . . , Gn is a collection of unitary similitude groups, we define

GG1×···×Gn := {(g1, . . . , gn) ∈ G1 × · · · ×Gn : ν(g1) = · · · = ν(gn)}.

We also define

Z := F×.

We will also need to consider:

(A×)+ := ν(G(A)) ∩ ν(H(A)) = ν(G′(A)) ∩ ν(H ′(A)) = NmE/F (A×E)

(F×)+ := F× ∩ (A×)+

C := (A×)2(F×)+\(A×)+

Then adding a superscript + to any of the groups G,H,G′, H ′ means we take the preimage

of (A×)+ (or (F×)+, etc.) under the similitude map.

Lemma 6.2. The similitude character induces isomorphisms

Z(A)G1(A)G(F )+\G(A)+ ∼= C, Z(A)H1(A)H(F )+\H(A)+ ∼= C,

Z(A)G′1(A)G′(F )+\G′(A)+ ∼= C, Z(A)H ′1(A)H ′(F )+\H ′(A)+ ∼= C.

Proof. The similitude character induces surjections

G(A)+ → C, H(A)+ → C, G′(A)+ → C, H ′(A)+ → C.

It remains to compute the corresponding kernels. We will do this for G; the computations

are completely analogous in the other situations. Recall that G(A) ∼= A×E. Since the norm

maps on B and B′ restrict to the norm map on E, we have G(A)+ = G(A). Pick x ∈ A×E
such that ν(x) ∈ (A×)2(F×)+. By multiplying x by an element of AF , we may assume that

ν(x) ∈ (F×)+. This condition implies that each place xv of x = (xv)v is a local norm, and

thus there exists z ∈ E× such that ν(z) = ν(x). Then x · z−1 ∈ A1
E = G1(A), and so we’ve

shown that

ker(G(A)+ → C) = A×FA
1
EE
× = Z(A)G1(A)G(F )+.

Fix sections

C → G(A)+, C → H(A)+, C → G′(A)+, C → H ′(A)+.
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We write gc, hc, g
′
c, h
′
c for the images of c ∈ C under these sections.

Lemma 6.3. The similitude character induces isomorphisms

H(A)/(H(F )H(A)+) ∼= H ′(A)/(H ′(F )H ′(A)+) ∼= Gal(E/F ),

G�(A)/(G�(F )G�(A)+) ∼= G�′(A)/(G�′(F )G�′(A)+) ∼= Gal(E/F ).

Proof. The proof is very similar to that of Lemma 6.2. We first argue that

ν−1(F×Nm(A×E)) = H(F )H(A)+

for ν : H(A) → A×F . Indeed, suppose that h ∈ ν−1(F×Nm(A×E)). By multiplying h by an

element of A×E, we may assume that ν(h) ∈ F×. Since ν : H(F ) → F× is surjective this

implies that there exists an h′ ∈ H(F ) such that ν(h′) = ν(h). Hence h = h′h1 for some

h1 ∈ H1(A). We have hence shown that ν−1(F×Nm(A×E)) = H(F )H(AF )+.

Now, by class field theory, A×F/(F×Nm(A×E)) ∼= Gal(E/F ), so that F×Nm(A×E) is an

index-2 subgroup of A×F . Since ν : H(A)→ A×F is surjective, then the desired isomorphism

follows from the preceding paragraph. This proves the assertion for H, and the proofs for H ′,

G�, and G�′ are completely analogous.

Recall that in Chapter 5 (see Definitions 5.4 and 5.8), for each place v of F , we defined

splittings of zYv and zY�v on certain unitary groups. Recall also that the discussion in Section

5.5 allowed us to multiply the local splittings to obtain global splittings of zY

s : GG×H(A)→ C1, s′ : GH′×G′(A)→ C1,

and global splittings of zY�

s� : GG�×H(A)→ C1, s�′ : GH′×G�′(A)→ C1.

These allow us to define corresponding Weil representations ωψ, ω
′
ψ, ω

�
ψ , ω

�
ψ
′. By Proposition

5.16,

ω�ψ (g1, g2, h) = ωψ(g1, h)⊗ ξ(det(g2, h))ωψ(g2, h), (g1, g2, h) ∈ GG×G×H(A), (6.1)

ω�ψ
′(h, g1, g2) = ω′ψ(h, g1)⊗ ξ′(det(h, g2))ω′ψ(h, g2), (h, g1, g2) ∈ GH′×G′×G′(A), (6.2)

ωψ(g, g′) = ξ(g)ξ′(g′)ω′ψ(g, g′), (g, g′) ∈ GG×G′(A). (6.3)
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Define a theta distribution

Θ: S(X(A))→ C, ϕ 7→
∑

x∈X(F )

ϕ(x).

Let ϕ ∈ S(X(A)) and let χ be a Hecke character. For h = h1hc ∈ H(A)+ where h1 ∈ H1(A),

define

θϕ(χ)(h) :=

∫
G1(F )\G1(A)

Θ(ωψ(g1gc, h)ϕ)χ(g1gc) dg1.

Here, dg =
∏

v dg1,v is the Tamagawa measure on G1(A). Note that θϕ(χ)(γh) = θϕ(f)(γh)

for γ ∈ H(F ) ∩H(A)+ and h ∈ H(A)+. By declaring

θϕ(χ)(γh) = θϕ(χ)(h), for all γ ∈ H(F ) and h ∈ H(A)+,

we obtain an automorphic form on the subgroup H(F )H(A)+ of H(A). Let ϕ ∈ S(X(A))

and let χ′ be a Hecke character. For h′ = h′1h
′
c ∈ H ′(A)+ where h′1 ∈ H ′1(A), define

θ′ϕ(χ′)(h′) :=

∫
G′1(F )\G′1(A)

Θ(ω′ψ(h′, g′1g
′
c)ϕ)χ′(g′1g

′
c) dg

′
1.

Here, dg′1 =
∏

v dg
′
1,v is the Tamagawa measure on G′1(A).

Let Θ+(χ) be the automorphic representation of H(F )H(A)+ generated by θϕ(χ) for

ϕ ∈ S(X(A)) and let Θ′+(χ′) be the automorphic representation of H ′(F )H ′(A)+ generated

by θ′ϕ(χ′) for all ϕ ∈ S(X(A)). Define

Θ(χ) := Ind
H(A)

H(F )H(A)+ (Θ+(χ)) , Θ′(χ′) := Ind
H′(A)

H′(F )H′(A)+

(
Θ′+(χ′)

)
.

By Lemma 6.3, [H(A) : H(F )H(A)+] = 2, and hence θϕ(χ) extends to an automorphic form

on H(A) via

θϕ(χ)(h) :=

θϕ(χ)(h) if h ∈ H(F )H(A)+,

0 otherwise.

Similarly, θ′ϕ(χ′) extends to an automorphic form on H ′(A) by setting

θ′ϕ(χ′)(h′) :=

θ′ϕ(χ′)(h′+) if h′ = γh′+ for γ ∈ H ′(F ) and h′+ ∈ H ′(A)+,

0 otherwise.

Observe that θϕ(χ) ∈ Θ(χ) and θϕ′(χ
′) ∈ Θ′(χ′).
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Analogously, define a theta distribution

Θ: S(X�(A))→ C, ϕ 7→
∑

x∈X�(F )

ϕ(x).

The corresponding theta lifts for similitude unitary groups are defined completely analogously

to above.

6.2 The Rallis inner product formula

In this section, we will write down an equation relating the Petersson inner product of a

theta lift to a theta lift to a doubled unitary similitude group. To this end, we will use the

doubled seesaw

G� H ×H

G×G H

=

GUB(V �) GUB(W ∗)×GUB(W ∗)

GUB(V )◦ ×GUB(V )◦ GUB(W ∗)

to write down such a formula for the theta lift θϕ(χ · ξ) to B× ∼= GUB(W ∗) ⊂ GUE(W0), and

use the doubled seesaw

H ′ ×H ′ G�′

H ′ G′ ×G′
=

GUE(ResV )×GUE(ResV ) GUE(W�)

GUE(ResV ) GUE(W )×GUE(W )

to write down such a formula for the theta lift θ′ϕ(χ′ξ′−1) to B′× ⊂ (B′× × E×)/F× ∼=
GUE(ResV ).

For automorphic forms f1, f2 on H(A) ∼= B×A and automorphic forms f ′1, f
′
2 on H ′(A) ∼=

(B′A
× × A×E)/A×F , define

〈f1, f2〉H :=

∫
[H]

f1(h) · f2(h) dh,

〈f ′1, f ′2〉H′ :=

∫
[H′]

f ′1(h′) · f ′2(h′) dh,

where dh =
∏

v dhv and dh′ =
∏

v dh
′
v are the Tamagawa measures of H(A) and H ′(A),

respectively.
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Recall from Proposition 5.16 that the splittings

s : GG×H(A)→ C1, s� : GG�×H(A)→ C1

enjoys the property that for (g1, g2, h) ∈ GG×G×H ,

s�(g1, g2, h) = s(g1, h) · s(g2, h) · ξ(det(i(g2, h))).

This compatibility implies that for any h1 ∈ H1, g1, g
′
1 ∈ G1, and (gc, hc) ∈ GG×H(A),

Θ(ωψ(g1gc,h1hc)ϕ1) ·Θ(ωψ(g′1gc, h1hc)ϕ2)

= Θ(ω�ψ ((g1gc, g
′
1gc), h1hc)ϕ1 ⊗ ϕ2) · ξ(det(h1hc))

−1 · ξ(g′1gc)2.

Hence for ϕ1, ϕ2 ∈ S(X(A)) and Hecke characters χ1, χ2 of E×, by formally switching the

integrals at the equality, we have

〈θϕ1(χ1 · ξ), θϕ2(χ2 · ξ)〉H

=

∫
[H]

θϕ1(χ1 · ξ)(h) · θϕ2(χ2 · ξ)(h) dh

=

∫
C

∫
[H1]

θϕ1(χ1 · ξ)(h1hc) · θϕ2(χ2 · ξ)(h1hc) dh1 dc

=

∫
C

∫
[H1]

∫
[G1]

∫
[G1]

Θ(ωψ(g1gc, h1hc)ϕ1)(χ1ξ)(g1gc)·

Θ(ωψ(g′1gc, h1hc)ϕ2)(χ2ξ)(g′1gc) dg1 dg
′
1 dh dc

=

∫
C

∫
[G1]

∫
[G1]

(χ1ξ)(gcgc) · (χ2ξ)(g
′
1gc)· (6.4)∫

[H1]

Θ(ω�ψ ((g1gc, g
′
1gc), h1hc)(ϕ1 ⊗ ϕ2)) · ξ(det(h1hc))

−1 dh1 dg1 dg
′
1 dc.

(6.5)

The inner integral in Equation (6.5) is the theta lift of ξ(det)−1 to GUB(V �), but to make

actual sense of the above, one must be careful about convergence issues. In the case that B

is division, the quotient B×\B×A is compact, and therefore the integral in (6.5) is absolutely

convergent. Hence the formal manipulation above is completely justified. In the case that B

is split (i.e. B ∼= M2(F )), (6.5) does not converge absolutely in general.

The idea of the Siegel–Weil formula is to interpret the integral 6.5 as an Eisenstein series.

When (6.5) is absolutely convergent, this dates back to classical work of Siegel that was later

extended by Weil in 1965 [W65]. An important idea of Kudla and Rallis in the late 1980s
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was that one can regularize 6.5 and interpret the resulting absolutely convergent integral as

an Eisenstein series, thereby obtaining a regularized Siegel–Weil formula. After the work of

many people (Ikeda, Ichino, Yamana, Gan–Qiu–Takeda), the regularized Siegel–Weil formula

has now been established for all dual reductive pairs.

The Siegel–Weil formula supplies half the distance between the Petersson inner product of

theta lifts and special values of L-functions. The missing ingredient is the theory of doubling

zeta integrals, which was initiated by Piatetski-Shapiro and Rallis [PSR87]. They studied the

integral (6.4), with the automorphic theta distribution Θ(ψ�(g, h)Φ) in (6.5) replaced by an

Eisenstein series, and proved that it gives rise to standard L-functions. The relation between

the Petersson inner product of a theta lift and special values of L-functions is known as the

Rallis inner product formula.

6.2.1 The Siegel–Weil formula for division quaternion algebras

In this section, we explain how to obtain a Rallis inner product formula in the case that B is

division. For ϕ ∈ S(X5(A)), define

Fϕ(g) := (ω�ψ (d(ν(g)−1)g)ϕ)(0)

and form

E(g,Fϕ) =
∑

γ∈P (F )\U(1,1)

Fϕ(γg).

This is the value of an Eisenstein series at s = 1
2
. In this case, the Siegel–Weil formula states

that for g, g′ ∈ GU(1) such that ν(g) = ν(g′),

E(i(g, g′),Fϕ) =

∫
[H1]

Θ(ω�ψ ((g, g′), h)(ϕ1 ⊗ ϕ2)) · ξ(det(h))−1 dh

where i : G(U(1)× U(1)) → U(1, 1) and ϕ ∈ S(V5(A)) is the partial Fourier transform of

ϕ1 ⊗ ϕ2 ∈ S(X�(A)). We now see that, continuing from (6.4), (6.5), we have

〈θϕ1(χ1 ·ξ), θϕ2(χ2 ·ξ)〉H =

∫
C

∫
[G1]

∫
[G1]

(χ1ξ)(g1gc)·(χ2ξ)(g
′
1gc)·E(i(g1gc, g

′
1gc),Fϕ) dg1 dg

′
1 dc.

We have Fϕ(i(g1gc, g
′
1gc)) = F(i(g′1

−1g1, 1))ξ2(g′1), and hence unfolding the above integral

and making the substitution g = g1gc, g
′ = g′1

−1g1 gives

=

∫
G1(A)

∫
[G]

(χ1ξ)(gg
′) · (χ2ξ)(g) · Fϕ(i(g, 1)) dg dg′.
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The Tamagawa measure on G1(A) can be written as a product of local measures dg1,v on G1,v

times a global factor ρF/ρE (see Section 2.1). Hence if χ1 = χ2 = χ and ϕ1 = ϕ2 = φ = ⊗vφv,
we have

〈θϕ(χ · ξ), θφ(χ · ξ)〉H =

∫
G1(A)

Fϕ(i(g, 1))〈(χξ)(g′)(χξ), (χξ)〉[G] dg
′

=
ρF
ρE
·
∏
v

Z(1
2
,Fϕv , χv),

where

Z(1
2
,Fϕv , χv) :=

∫
G1,v

〈ωψ(g1,v)φ, φ〉 · (χvξv)(g1,v) dg1,v. (6.6)

6.2.2 The regularized Siegel–Weil formula for (E×,GL(2))

In this section, we follow [GQT] and describe how to make sense of (6.5) and obtain a Rallis

inner product formula in the case that B is split. We will need to translate between the

quaternionic unitary groups (GUB(V )◦,GUB(W ∗)) ∼= (E×,GL2(F )) and the dual reductive

pair (GO(2),GSp(2)) ∼= (E×,GL2(F )). In the notation of [GQT], we have n = m = 2, r = 1,

ε = 1, which puts us in the second term range since 1 < 2 ≤ 2 · 1.

Recall that we have an embedding

G(UB(V )◦,UB(W ∗)) ↪→ G(UE(V0)× UE(W0)).

When B is split, then there is a decomposition W0 = W1 + W2 of the E-space W0 into

isotropic subspaces of dimension 1. Set

X′ = ResE/F (V0 ⊗W1), Y′ = ResE/F (V0 ⊗W2)

so that V = X′ + Y′ forms a complete polarization. In Section 5.6, we explicated a splitting s

of zY′ . Comparing s to the splitting

s(O(2),Sp(2)) : G(O(2)× Sp(2))A → C1
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defined in [K94], we see that for α ∈ E×, a ∈ F×, and a′ ∈ F ,

s(α, d(Nm(α))) = ξ(α)−1 · s(O(2),Sp(2))(α, d(Nm(α))),

s
(
1, diag(a, a−1)

)
= ξ(a)−1 · s(O(2),Sp(2))

(
1, diag(a, a−1)

)
,

s (1, ( 1 a′
0 1 )) = s(O(2),Sp(2)) (1, ( 1 a′

0 1 )) ,

s (1, ( 0 1
−1 0 )) = s(O(2),Sp(2)) (1, ( 0 1

−1 0 )) .

Now set V 50 := {(v,−v) : v ∈ V0} and V 40 := {(v, v) : v ∈ V0} so that

V5 = ResE/F (V 50 ⊗W0), V4 = ResE/F (V 40 ⊗W0)

gives a complete polarization V� = V5+V4 of the doubled symplectic space. Let ŝ(O(2,2),Sp(2))

denote the splitting of zV4 defined in [K94] and define

s(O(2,2),Sp(2))(h, g) := ŝ(O(2,2),Sp(2))(h, g) · λ−1
Y′� V4(g, h) for (g, h) ∈ G(O(2, 2), Sp(2)),

where λ := λY′� V4 is the change-of-polarization function defined in Lemma 5.3. Then using

Proposition 5.16(a),

ŝ(g1, g2, h)

= s�(g1, g2, 1) · λ(g1, g2, h)

= s(g1, h) · s(g2, h) · ξ(det(i(g2, h))) · λ(g1, g2, h)

= s(O(2),Sp(2))(g1, h)ξ(g1)−1 · s(O(2),Sp(2))(g2, h)ξ(g2)−1 · ξ(g2)−2ξ(det(h)) · λ(g1, g2, h)

= s(O(2),Sp(2))(g1, h) · s(O(2),Sp(2))(g2, h) · ξ(g1)−1ξ(g2)−1ξ(det(h)) · λ(g1, g2, h)

= s(O(2,2),Sp(2))(g1, g2, h) · ξ(g1)−1ξ(g2)−1 · λ(g1, g2, h)

= ŝ(O(2,2),Sp(2))(g1, g2, h) · ξ(g1)−1ξ(g2)−1. (6.7)

Define PO ⊂ GO(ResE/F V
�

0 ) ∼= GO(2, 2) to be the stabilizer of the totally isotropic

subspace ResE/F V
4

0 of ResE/F V
�

0 . For φ ∈ S(V5(A)), define the Siegel–Weil sections

Φ(φ)(g) := (ω�ψ (g)φ)(0), for g ∈ GO(2, 2)A ⊂ GUE(V �0 )A

ΦO,Sp(φ)(g) := (ω
O(2,2),Sp(2)
ψ (g)φ)(0) for g ∈ GO(2, 2)A.

Observe that Φ(φ)(g) = ŝ(g) · ŝ(O(2,2),Sp(2))(g)
−1 · ΦO,Sp(φ)(g). We make the analogous

definitions for the local objects Φv(φv) and ΦO,Sp
v (φv). The Siegel–Weil section ΦO,Sp(φ) ∈

Ind
GO(2,2)
PO

(det) · | det |1/2 determines a standard section ΦO,Sp
s (φ) ∈ Ind

GO(2,2)
PO

(det) · | det |s and
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we may form the associated Eisenstein series

E(s,ΦO,Sp(φ))(g) :=
∑

γ∈PO(F )\GO(2,2)

ΦO,Sp
s (γg), for g ∈ GO(2, 2)A.

Define

Z(s,Φ, χ) :=

∫
[G(O(2)×O(2))]

E(s,Φ)(g1, g2) · χ(g1) · χ(g2) dg1 dg2.

If Φ = ⊗vΦv, define

Zv(s,Φv, χv) =

∫
E1
v

Φv(gv, 1) · χv(gv) dgv.

By construction of the Tamagawa measure of A1
E (see Section 2.1), one has

Z(s,Φ, χ) :=
ρF
ρE
·
∏
v

Zv(s,Φv, χv).

Define the partial Fourier transform

δ : S(X′�(A))→ S(V5(A))

by

δ(ϕ)(u) =

∫
((V4∩Y′�)\V4)(A)

ϕ(x)ψ
(

1
2
(〈〈x, y〉〉 − 〈〈u, v〉〉)

)
dv,

where we write u+ v = x+ y with u ∈ V5(A), v ∈ V4(A), x ∈ X′�(A), y ∈ Y′�(A), and dv

is the Tamagawa measure.

Observe that if φ ∈ S(V5(A)) is the partial Fourier transform of ϕ1 ⊗ ϕ2 for ϕ1, ϕ2 ∈
S(X′(A)), then for the Siegel–Weil section Φ = ΦO,Sp(δ(ϕ1 ⊗ ϕ2)), we have

Zv(
1
2
,Φv, χv) = vol(E1

v)

∫
E1
v

ΦO,Sp(δ(ϕ1 ⊗ ϕ2))(i(g1,v, 1)) · χv(gv) dgv

= vol(E1
v)

∫
E1
v

(ω
O(2,2),Sp(2)
ψ (gv, 1)δ(ϕ1 ⊗ ϕ2))(0) · χv(gv) dgv

= vol(E1
v)

∫
E1
v

(ω�ψ (gv, 1)δ(ϕ1 ⊗ ϕ2))(0) · χv(gv) · ξv(gv) dgv

= vol(E1
v)

∫
E1
v

〈ωψ(gv)ϕ1, ϕ2〉 · (χvξv)(gv) dgv (6.8)

Proposition 6.4. For ϕ1, ϕ2 ∈ S(X′(A)), we have

〈θϕ1(χξ), θϕ2(χξ)〉 =
ρF
ρE
·
∏
v

Zv(
1
2
,ΦO,Sp

v (δ(ϕ1 ⊗ ϕ2)), χv).
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Proof. We use (6.7) to translate between our setting and that of [GQT, Proposition 11.1].

We have

〈θϕ1(χ · ξ), θϕ2(χ · ξ)〉H

=

∫
C

∫
[H1]

θϕ1(χ · ξ)(h1hc) · θϕ2(χ · ξ)(h1hc) dh1 dc

=

∫
C

∫
[H1]

∫
[G1]

∫
[G1]

Θ(ωψ(g1gc, h1hc)ϕ1)(χξ)(g1gc)·

Θ(ωψ(g′1gc, h1hc)ϕ2)(χξ)(g′1gc) dg1 dg
′
1 dh dc

=

∫
C

∫
[Sp(2)]

∫
[O(2)]

∫
[O(2)]

Θ(ωO,Sp
ψ (g1gc, h1hc)ϕ1)(χξ)(g1gc)·

Θ(ωO,Sp
ψ (g′1gc, h1hc)ϕ2)(χξ)(g′1gc) · ξ−1(g1)ξ

−1
(g′1) dg1 dg

′
1 dh dc

= Vals=1/2

∫
C

∫
[O(2)]

∫
[O(2)]

E(s,ΦO(2,2, Sp(2))(δ(ϕ1 ⊗ ϕ2)))(g1gc, g
′
1gc)·

χ(g1gc) · χ(g′1gc) dg1 dg
′
1 dc

= Vals=1/2 Z(s,Φ(δ(ϕ1 ⊗ ϕ2)), χ).

6.3 Local doubling zeta integrals

Let v be a nonsplit place of F . For notational convenience, we drop all subscripts v in this

section. We preemptively note that the notation we use to describe the zeta integrals in this

section differ from the notation used to describe the same (local) zeta integrals in the rest of

the thesis. In this section, we temporarily assume that ξ is unitary.

Consider the Siegel parabolic subgroup

P =

{(
a ∗
0 (a∗)−1

)
∈ GL2(E)

}
⊂ U(1, 1),

and for any unitary character η : U(1)→ C1, consider the functional

Z(s, η, ξ2) : I(s, ξ2)→ C, F 7→
∫
E1

F(i(g, 1))η(g) dg,
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where ι : U(1)× U(1)→ U(1, 1) is the natural map and

I(s, ξ2) := Ind
U(1,1)
P (ξ2 · | · |s)

:=

{
F : U(1, 1)→ C

∣∣∣∣∣ F(pg) = ξ2(a)|a|s+1/2
E F(g)

for all g ∈ U(1, 1) and p = ( a ∗
0 a−1 ) ∈ P

}

is the normalized principal series representation. One has an intertwining operator

M(s, ξ2) : I(s, ξ2)→ I(−s, ξ−2) ∼= I(−s, ξ2)

given by

M(s, ξ2)F(g) =

∫
NP

F(wng) dn,

where w = diag(1,−1) and NP is the unipotent radical of the parabolic P .

Following Lapid–Rallis (see also Gan–Ichino, Section 10), after normalizing the intertwining

operator by some rational function cψ(s, ξ2),

MLR
ψ (s, ξ2) := cψ(s, ξ2)M(s, ξ)

has a functional equation of the shape

Z(−s, η, ξ2)(MLR
ψ (s, ξ2)F) = ∗ · γ

(
s+ 1

2
, η, ξ, ψ

)
· Z(s, η, ξ2)(F), (6.9)

where ∗ denotes some nonzero factors. In particular, if we understand the behavior of the

intertwining operator M(s, η) and if γ(s0 + 1
2
, η) 6= 0, the functional equation gives a relation

between the nonvanishing of Z(−s0, η, ξ
2) and the nonvanishing of Z(s0, η, ξ

2).

We take a short detour to examine when the local theta lift to the nonsplit unitary group

U(2) vanishes. Define

V +
n := Hn, V −n := D ⊕Hn−1,

where Hn is the 2n-dimensional split Hermitian E-space and D is the nonsplit quaternion

algebra over F viewed as a 2-dimensional Hermitian E-space via 〈x, y〉 = prE(x∗y). For a

character η : U(1) ∼= E1 → C1, denote its theta lift to U(V ±n ) by ΘV ±n
(η). To make tower

“compatible” one takes the Weil representation for U(1)×U(V +
n ) to be such that the splitting

on U(1) is given by ξ. In particular, the Weil representation on U(1)× U(V +
0 ) = U(1)× {1}

is given by the one-dimensional representation ξ. The first occurrence of the theta lift in the
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towers {U(V +
n ) : n ≥ 0}, {U(V −n ) : n ≥ 0} is defined to be

n+ = min{n : ΘV +
n

(η) 6= 0}, n− = min{n : ΘV −n
(η) 6= 0}.

The following result is a special case of a theorem of Sun–Zhu [SZ15]:

Theorem 6.5 (Sun–Zhu). n+(η) + n−(η) = 2.

We can describe the first occurrence in this setting more explicitly. By the compatible

choice of splittings in the tower of unitary groups U(V +
n ), we have that ΘV +

0
(χξ) 6= 0

if and only if χ is the trivial character. Hence we must necessarily be in the setting

n+(χξ) + n−(χξ) = 0 + 2, and in particular, ΘV −1
(χξ) = 0.

Now suppose that χ is nontrivial. Then by the previous paragraph, ΘV +
0

(χξ) = 0. We

now argue that ΘV +
1

(χξ) 6= 0. One explicit way to see this is as follows. Let V +
1 = V 51 + V 41

be a decomposition of V +
1 into totally isotropic E-subspaces. For the Schwartz function

ϕ(x) = χ(x)1O×E
(x) ∈ S(ResE/F V

5
1 ), we have∫

E1

(ωψ(g)ϕ)(0) · (χξ)(g) dg 6= 0,

which proves that there is a nontrivial E1-equivariant map

(S(ResE/F V
5

1 ), ωψ)→ (C, χξ).

Hence ΘV +
1

(χξ) 6= 0 by definition of the local theta lift. This now implies that we must

necessarily be in the setting n+(χξ) + n−(χξ) = 1 + 1, and ΘV −1
(χξ) 6= 0.

In summary, the above arguments prove:

Lemma 6.6. (a) ΘV −1
(χξ) 6= 0 if and only if χ : E1 → C1 is nontrivial.

(b) If χ : E1 → C1 is nontrivial, ΘV +
1

(χξ) 6= 0.

We now discuss the relationship between the theory of the doubling zeta integral and the

local theta correspondence. Consider the two doubling seesaws for V +
1 and V −1 :

U(1, 1) U(V ±1 )× U(V ±1 )

U(1)× U(1) U(V ±1 )

If we have U(1, 1) = U(W ), then one has a decomposition W = W1 + W2 of W into 1-

dimensional isotropic E-spaces, and hence by viewing V ±1 as the F -space ResE/F (W1⊗EV ±1 ) =
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ResE/F (V ±1 ), the Weil representation ω�ψ for U(1, 1) × U(V ±1 ) can then be modeled on the

space of Schwartz functions S(V ±1 ). Define

S(V ±1 )→ I(1
2
, ξ2), ϕ 7→ (g 7→ (ω�ψ (i(g, 1))ϕ)(0)),

where i : U(1)×U(1)→ U(1, 1) is the natural map. Let R(V ±1 ) denote the image of this map.

Since ξ2|F× = 1, there is a unique one-dimensional representation ξ̃2 of U(1, 1) extending the

representation defined by ( a ∗
0 a−1 ) 7→ ξ2(a). For the 0-dimensional Hermitian space V +

0 , we

define a map

S(V +
0 ) = C→ I(−1

2
, ξ2), z 7→ (g 7→ ξ̃2(g)).

Let R(V +
0 ) denote the image of this map. We say that ΘV +

0
(χξ) 6= 0 if and only if

HomU(1)(ξ̃
2, χξ) 6= 0. Since ξ̃2 is one-dimensional, we have HomU(1)(ξ̃

2, χξ) 6= 0 if and

only if Z(−1
2
, χξ, ξ2)|R(V +

0 ) 6= 0. Observe also that ΘV +
0

(χξ) 6= 0 if and only if χ = 1.

The goal of the remainder of this section is to prove the following:

Proposition 6.7. Let ξ : A×E → C1 be a character such that ξ|A×F = εE/F . If ΘV −1
(χξ) 6= 0,

then Z(1
2
, χξ, ξ2)|R(V −1 ) 6= 0.

We first remark that the converse of Proposition 6.7 is true and straightforward to see: If

Z(1
2
, χξ, ξ2)|R(V −1 ) 6= 0, then this immediately implies that HomU(1)(ω

�
ψ |i(U(1)×{1}), (χξ)

−1) 6= 0.

But since ω�ψ
∼= ωψ ⊗ ωψξ2 (see Lemma 5.7) as a representation of U(1) × U(1), we have

HomU(1)(ωψ, (χξ)
−1) 6= 0, and so ΘV −1

(χξ) 6= 0 by definition.

The statement of Proposition 6.7 is actually quite surprising. The nonvanishing of the

theta lift ΘV −1
(χξ) is equivalent to the existence of a nontrivial element of HomU(1)(ω

�
ψ , (χξ)

−1).

But ω�ψ is an infinite-dimensional representation! What we see from Proposition 6.7 is that

the functional Z(1
2
, χξ, ξ2) on the image of the Siegel–Weil section can detect the vanishing

of the theta lift.

Before we prove Proposition 6.7, we recall a special case of a theorem of Kudla–Sweet:.

Theorem 6.8 (Kudla–Sweet, [KS97, Theorem 1.2(1),(4)]).

(i) R(V +
0 ) is the unique irreducible submodule of I(−1

2
, ξ2).

(ii) I(−1
2
, ξ2)/R(0, ξ2) is an irreducible representation of U(1, 1).

(iii) R(V +
1 ) = I(1

2
, ξ2).

(iv) R(V −1 ) is the unique maximal submodule of I(1
2
, ξ2) and is irreducible of codimension 1.

We are now ready to prove the proposition.
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Proof of Proposition 6.7. By Lemma 6.6(a), we may assume that χv : E1
v → C× is nontrivial.

Since χξξ = χ and χξξ = χ, by the “Ten Commandments” for γ-factors [LR05, Theorem 4],

we have

LS(s, χ) =
∏
v∈S

γv(s, (χξ)v, ξv, ψv) · LS(1− s, χ),

where S is a finite set of places containing all the archimedean places and all places where χv

is ramified. Now, since χ is nontrivial, we must have LS(0, χ) 6= 0 and LS(1, χ) 6= 0 , and

therefore

γv(0, (χξ)v, ξv, ψv) 6= 0.

This implies that Equation (6.9) gives

Z
(

1
2
, χξ, ξ2

) (
MLR

ψ (−1
2
, ξ2)(F)

)
= ∗ · Z

(
−1

2
, χξ, ξ2

)
(F) , (6.10)

where ∗ is nonzero. We now investigate the intertwining operator

MLR
ψ (−1

2
, ξ) : I(−1

2
, ξ2)→ I(1

2
, ξ2).

We refer to Theorem 6.8 for the decomposition of the U(1, 1)-representations I(±1
2
, ξ2). By

[KS97, Proposition 6.4],

ker(MLR
ψ (−1

2
, ξ2)) = R(0, ξ2), im(MLR

ψ (−1
2
, ξ2)) = R(V −1 ).

Since χ is nontrivial, ΘV +
0

(χξ) = 0, and therefore Z(−1
2
, χξ, ξ2)|R(V +

0 ) = 0. On the other

hand, Z(−1
2
, χξ, ξ2) is a nonzero functional, and therefore one can find F ∈ I(−1

2
, ξ2) such

that MLR
ψ (−1

2
, ξ2)(F) 6= 0. By Theorem 6.8(iv), it follows that Z(1

2
, ξχ, ξ2)|R(V −1 ) 6= 0.

6.4 Unramified local theta lifts from GU(1) to GU(1, 1)

For convenience of notation, in this subsection we drop the subscript v. We denote by x the

image of x ∈ E under the nontrivial involution of E/F .

Consider the 2-dimensional E-space V ′ = V ′1 + V ′2 with skew-Hermitian form

〈(x1, x2), (y1, y2)〉 = x1y2 + x2y1

for (x1, x2), (y1, y2) ∈ V ′1 + V ′2 . Then

GU(V ′) = GU(1, 1) =
{
g ∈ GL2(E) : gᵀ ( 0 1

−1 0 ) g = ν(g) ( 0 1
−1 0 ) for some ν(g) ∈ F×

}
.

76



The upper-triangular matrices in GU(V ′) form a parabolic subgroup

P :=
{

( a ν
′a

0 νa ) ∈ GL2(E) : a ∈ E×, ν ∈ F×, ν ′ ∈ F
}
.

Let PF denote the Borel subgroup of GL2(F ) consisting of upper-triangular matrices in

GL2(F ). Observe that there are natural inclusions GL2(F ) ↪→ GU(V ′) and E× ↪→ GU(V ′)

given by

GL2(F ) = {( a bc d ) ∈ GU(V ′) : a, b, c, d ∈ F} , E× =
{

( a a ) ∈ GU(V ′) : a ∈ E×
}
.

We have GU(V ′) ∼= (GL2(F )× E×)/F× (see Remark 4.7) and P ∼= (PF × E×)/F× (an easy

direct computation).

Endow E with the Hermitian form

(x, y) = xy

so that

GU(E) = GU(1) = E×.

Note that the similitude character on GU(E), which we also denote by ν, is given by

ν : E× → F×, x 7→ xx = Nm(x).

Now consider the group

R := {(h, g) ∈ E× ×GU(V ′) : ν(g) = ν(h)}.

Endow the 4-dimensional F -space V′ = ResE/F (V ′) with the symplectic form

〈〈v, w〉〉 =
1

2
TrE/F (〈v, w〉).

There is a natural map

ι : R→ Sp(V), (h, g) 7→ (v 7→ h−1vg).

The decomposition V ′1 + V ′2 of V ′ into isotropic subspaces induces a polarization of V′ given

by

V′ = X′ + Y′, where X′ = ResE/F (V ′1) and Y′ = ResE/F (V ′2).
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Choose a basis e1, e2, e∗1, e∗2 of V′ such that

X′ = Fe1 + Fe2, Y′ = Fe∗1 + Fe∗2, 〈〈ei, e∗j〉〉 = δij.

The function

zY′ : Sp(V′)× Sp(V′)→ C1, (g1, g2) 7→ γF (
1

2
◦ q(Y′,Y′g−1

2 ,Y′g1))

defines a 2-cocycle and therefore uniquely determines a C1-extension of Sp(V′), which we

denote by Mp(V′)Y′ . Explicitly,

Mp(V′)Y′ = Sp(V′)× C×

with the group law

(g1, z1) · (g2, z2) = (g1g2, z1z2 · zY′(g1, g2)).

Now assume that we have a function β : R→ C1 satisfying

zY′(ι(g1), ι(g2)) = β(g1g2)β(g1)−1β(g2)−1.

Then the map

R→ Mp(V′)Y′ , g 7→ (ι(g), β(g))

is a group homomorphism and the Weil representation ωψ on Mp(V′)Y′ pulls back to a

representation of R, which we also denote by ωψ.

Abusing notation, define

β : E× → C1, h 7→ β(h, d(ν(h))).

Observe that this defines a character since ι(h, d(ν(h))) stabilizes Y′ and therefore

zY′(ι(h, d(ν(h))), ι(h′, d(ν(h′)))) = 1

for any h, h′ ∈ E×. Define

L(h)φ(x) := ωψ(h, d(ν(h)))φ(x) = β(h)|h|−1/2φ(xh−1)

for h ∈ E× and φ ∈ S(X′). Then for any (h, g) ∈ R,

ωψ(h, g)φ(x) = L(h)ωψ(d(ν(g)−1)g)φ(x) = β(h)|h|−1/2(ωψ(d(ν(g)−1)g)φ)(xh−1). (6.11)
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Lemma 6.9. For any h ∈ E× and g ∈ U(V ′),

L(h−1)ωψ(g)L(h) = ωψ(d(ν(h))gd(ν(h)−1)).

Proof. For convenience of notation, set ν := ν(h). Observe that for g = ( a bc d ) ,

diag(h−1, h)g diag(h, h
−1

) =
(

a bν
cν−1 d

)
= d(ν)gd(ν−1).

Now, diag(h, h
−1

) and its inverse are elements of U(1, 1) and

ωψ(diag(h−1, h))φ(x) = L(h)φ(x).

It now follows that

L(h−1)ωψ(g)L(h) = ωψ(diag(h−1, h)g diag(h, h
−1

)) = ωψ(d(ν)gd(ν−1)).

Consider the semidirect product E× n U(V ′) with multiplication

(h1, g1) ∗ (h2, g2) = (h1h2, d(ν(h2))g1d(ν(h2)−1)g2), where h ∈ E× and g ∈ U(V ′).

This defines a group multiplication since the map d is multiplicative and ν is a group

homomorphism to F×, an abelian group. Lemma 6.9 implies:

Lemma 6.10. The Weil representation ωψ on R extends to a representation of E× n U(V ′)

defined by

ωψ(h, g) = L(h)ωψ(g), h ∈ E×, g ∈ U(V ′).

In particular, the Weil representation on the quotient

Θ(1)(triv) := S(X′)/
⋂

α∈HomE1 (S(X′),triv)

ker(α)

extends to a representation of GU(V ′)+ ∼= {d(ν) : ν ∈ Nm(E×)}n U(V ′) satisfying

ωψ(d(ν)) = L(h),

where h ∈ E× is any element such that ν(h) = ν.

Proof. By Lemma 6.9,

L(h1)ωψ(g1)L(h2)ωψ(g2) = L(h1)L(h2)ωψ(d(ν(h2))g1d(ν(h2)−1))ωψ(g2).
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The assertion about Θ(1)(triv) holds since the Weil representation of E× n U(V ′) factors

through the norm map E× → F×.

Definition 6.11. For any character η0 : F× → C and any φ ∈ S(X′), define

Fφ,η0 : GU(V ′)→ C×, g 7→ |ν(g)|−1/2η0(ν(g))−1(ωψ(d(ν(g)−1)g)φ)(0).

Lemma 6.12. For any p = ( a b0 d ) ∈ GU(V ′),

Fφ,η0(pg) = |a|1/2|d|−1/2η0(ad)−1β(a)−1Fφ,η0(g)

for all g ∈ GU(V ′) so that

Fφ,η0 ∈ Ind
GU(V ′)
P (η̃0),

where

η̃0 ( a b0 d ) := η0(ad)−1β(a)−1.

In particular, Fφ,η0 |GSp(2) is an element of the (normalized) principal series representation

Ind
GSp(2)
B (η−1

0 β−1 ⊗ η−1
0 ).

Proof. First note that ν(p) = ad ∈ F×. We have

Fφ,η0(pg) = |ν(pg)|−1/2η0(ν(pg))−1(ωψ(d(ν(pg)−1)pg)φ)(0)

= |ν(p)|−1/2η0(ν(p))−1β(a)−1|ν(a)|1/2Fφ,η0(g)

= |d|−1/2|a|1/2η0(ad)−1β(a)−1Fφ,η0 .

Lemma 6.13. The assignment

φ 7→ Fφ,η0

defines a nonzero R-equivariant map

(ωψ,S(X′))→ Ind
GU(V ′)
P (η̃0)⊗ (η0(Nm) · β).

The right-hand side is irreducible and we have an isomorphism

Ind
GU(V ′)
P (η̃0) ∼= Ind

GL2(F )
PF

(η−1
0 ⊗ (η0 · β)−1)⊗ (η0(Nm) · β)−1,

where the right-hand side is a representation of GL2(F )× E× that descends to the quotient

(GL2(F )× E×)/F× ∼= GU(V ′).
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Proof. It is clear by definition that the map is nonzero. To prove R-equivariance of the map

φ 7→ Fφ,η0 , we use Lemma 6.9 to obtain the second equality in:

Fωψ(h′,g′)φ,η0(g) = |ν(g)|−1/2η0(ν(g))−1(ωψ(d(ν(g)−1)g)L(h′)ωψ(d(ν(g′)−1)g′)φ)(0)

= |ν(g)|−1/2η0(ν(g))−1(L(h′)ωψ(d(ν(gg′)−1)gg′)φ)(0)

= |ν(g)|−1/2η0(ν(g))−1|ν(h′)|−1/2β(h′)(ωψ(d(ν(gg′)−1)gg′)φ)(0)

= β(h′)η0(ν(h′))|ν(gg′)|−1/2η0(ν(gg′))−1(ωψ(d(ν(gg′)−1)gg′)φ)(0)

= β(h′)η0(ν(h′))Fφ,η0(gg′).

The last assertion in the lemma holds since P ∼= (PF × E×)/F× and GU(V ′) ∼= (GL2(F )×
E×)/F×. The representation Ind

GL2(F )
PF

(η̃0) is irreducible since the character η−1
0 β−1η0 = β−1

is not | · | or | · |−1. It follows that Ind
GU(V ′)
P (η̃0) is irreducible.

The map defined in Lemma 6.13 factors through

Θ(1)(β) := S(X′)/
⋂

α∈HomE1 (S(X′),β)

kerα,

the largest quotient of S(X′) such that E1 acts by β. Note that by construction, Θ(1)(β), as

a representation of U(V ′), is the local theta lift of β to U(V ′).

There are many extensions of Θ(1)(β) to a representation of E××GU(V ′)+, but specifying

an action of E× determines such an extension. Explicitly, define Θur,β(β · η0(Nm)) to be the

unique representation of GU(V ′)+ such that for g = ( 1 0
0 ν ) ∈ GU(V ′)+,

Θur,β(β · η0(Nm))(g) := η0(Nm(h))−1 ·Θ(1)(β)(h, g),

where h ∈ E× is any element such that ν(h) = ν(g) = ν.

Theorem 6.14 (Rallis). The R-equivariant map in Lemma 6.13 factors through Θur,β(β ·
η0(Nm)) and induces an injective map:

(ωψ,S(X′)) Ind
GU(V ′)
P (η̃0)

Θur,β(β · η0(Nm))

Moreover,

Θur,β(β · η0(Nm)) ∼= Ind
GL2(F )
PF

(η−1
0 εE/F ⊗ η−1

0 )⊗ (η0(Nm)−1 · β−1),
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where the right-hand side is viewed as a representation of GL2(F )× E× that descends to the

quotient (GL2(F )× E×)/F× ∼= GU(V ′).

Proof. This is due to Rallis [R84, Theorem II.1.1]. By the injectivity of

Θur,β(β · η0(Nm)) ↪→ Ind
GU(V ′)
P (η̃0)

and the irreducibility of Ind
GU(V ′)
P (η̃0), by Lemma 6.13, we have an isomorphism

Θur,β(β · η0(Nm)) ∼= Ind
GL2(F )
PF

(η−1
0 β−1 ⊗ η−1

0 )⊗ (η0(Nm)−1 · β−1).

Finally, by Lemma 5.17, the restriction of β to F× is exactly the quadratic character εE/F ,

and this completes the proof.

6.5 Proof of Theorem 6.1

In this section, we use the calculations in the preceding sections to prove Theorem 6.1, the

main theorem of this chapter.

Let χ and χ′ be Hecke characters of E×. Recall from Section 6.1 that for every Schwartz

function ϕ ∈ S(X(A)) we have automorphic forms θϕ(χ) and θ′ϕ(χ′) on the adelic groups

H(A) ∼= B×A and H ′(A) ∼= ((B′A)× ×A×E)/A×F , respectively. Let Θ(χ) denote the automorphic

representation of H(A) generated by θϕ(χ) for all ϕ ∈ S(X(A)) and let Θ′(χ′) denote the

automorphic representation of H ′(A) generated by θ′ϕ(χ′) for all ϕ ∈ S(X(A)).

Define

ξ̃ : A×E → C×, α 7→ s(α, d(ν(α))),

ξ̃′ : A×E → C×, α 7→ s′(d(ν(α)), α).

Proposition 6.15. If πBχ 6= 0, then Θ(χ · ξ) 6= 0. Analogously, if πB
′

χ′ 6= 0, then Θ′(χ′ · ξ′) 6= 0.

Proof. Recall from Theorem 2.7 that πBχ 6= 0 if and only if χv|E1
v
6= 1 for every place v where

Bv is nonsplit. Let v such a place, i.e. Bv is nonsplit and χv|E1
v
6= 1. By Lemma 6.6(a), we

have Θv(χvξv) 6= 0, and by Proposition 6.7, we have Zv(
1
2
,−, χvξv) 6= 0. Now let v be a place

such that Bv is split. By Lemma 6.6(b), we have Θv(χvξv) 6= 0, and by Theorem 6.8(c), we

have Zv(
1
2
,−, χvξv) 6= 0. By Rallis inner product formula (Proposition 6.4), Θ(χ · ξ) 6= 0

if and only if all the local zeta integrals Zv(
1
2
,−, χvξv) 6= 0, and hence we have shown that

Θ(χ · ξ) 6= 0.
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Lemma 6.16. If χ, χ′ are Hecke characters of A×E whose restriction to A1
E is nontrivial,

then Θ(χ · ξ) is a cuspidal automorphic representation of B×A and Θ′(χ′ · ξ′) is a cuspidal

automorphic representation of B′A
×.

Proof. If B 6= M2(F ), then the statement holds trivially (see Example 2.2). Now assume

B = M2(F ). We would like to prove that for any Schwartz function φ ∈ S(X(A)),

∫
F\AF

θφ(χ)(n(b)g) db = 0, where n(b) :=

(
1 b

0 1

)
. (6.12)

Observe that if g /∈ GL+
2 (AF ), then n(b)g /∈ GL+

2 (AF ), and hence the integrand in (6.12) is

identically zero. Now assume g ∈ GL+
2 (AF ) and pick α ∈ A×E with Nm(α) = det(g). Then by

definition

θφ(χ)(n(b)g) = θωψ(α,g)φ(χ)(n(b)),

and therefore it remains only to show∫
F\AF

θφ(χ)(n(b)) db = 0.

Recall that if B is split, then the 2-dimensional E-space W0 is a split Hermitian space and

one has a decomposition W0 = W1 +W2 into isotropic subspaces of dimension 1. This induces

a complete polarization V = X′+Y′ given by X′ = ResE/F (V0⊗W1) and Y′ = ResE/F (V0⊗W2).

Then A1
E ⊂ U(V0) stabilizes X′ and Y′, and so for α ∈ A1

E, b ∈ AF , and φ′ ∈ S(X′(A)),

ωψ(α,n(b))φ′(x) = ξ−1(α) · ψ
(

1
2
bxxᵀ

)
· φ′(xα).

We have∫
F\AF

θφ(χ)(n(b)) db =

∫
F\AF

∫
E1\A1

E

∑
x∈X′(F )

(ωψ(α,n(b)))φ′(x) · (χξ)(α) dα db

=

∫
E1\A1

E

∑
x∈X′(F )

∫
F\AF

ξ−1(α) · ψ
(

1
2
bxxᵀ

)
· φ′(xα) · (χξ)(α) db dα

=

∫
E1\A1

E

ξ−1(α) · φ′(0) · (χξ)(α) dα

= φ′(0)

∫
E1\A1

E

χ(α) dα = 0.

This implies that for any φ′ ∈ S(X′(A)), the global theta lift θφ′(χ) is cuspidal and the desired

conclusion follows.
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Theorem 6.17. Assume that χ and χ′ are Hecke characters of A×E whose restriction to A1
E

is nontrivial.

(a) If Θ(χ · ξ) is nonzero, then

Θ(χ · ξ) ∼= πBχ .

(b) If Θ′(χ′ · ξ′−1) is nonzero, then

Θ′(χ′ · ξ′−1)∨ ∼= πB
′

χ′ ⊗ (χ′ · ξ′−1),

where the right-hand side is viewed as a representation of H ′(A) ∼= ((B′A)× × A×E)/A×F
descended from the (B′A)× × A×E representation written above.

Proof. We prove (a) first. By our normalization (compare the local definition in Section 3.4

to the global definition in Section 6.1), at a place v, the local representation corresponding to

the global theta lift of χ · ξ is the local theta lift of (χv · ξv)−1. That is,

Θ(χ · ξ)v ∼= Θv((χv · ξv)−1) ∼= Θv(χ
−1
v · ξ−1

v ).

Theorem 6.14 gives a description of the right-hand side for every place v such that

· v splits completely in E, or

· v lies under a single place w of E and χw : E×w → C× factors through Nm: E×w → F×v .

For each such place v, by Lemma 5.17, we have

s(α, d(ν(α))) = ξ(α)−1, for all α ∈ E×v .

Writing χv = χv,0(Nm), we have

Θv(χ
−1
v · ξ−1

v ) ∼= Θur,ξ−1
v

(χ−1
v ξ−1

v ) ∼= Ind
GL2(Fv)
PFv

(χv,0εEv/Fv ⊗ χv,0),

and therefore by Theorem 2.7, we have that

Θ(χ · β) ∼= πBχ .

The proof of (b) is very similar. In this case, because we conjugate the theta kernel in

the definition of the global theta lift Θ′ (see Section 6.1), we have

Θ′(χ′ · ξ′−1)∨v
∼= Θv((χ

′
v · ξ′v−1)−1) = Θv(χ

′
v
−1 · ξ′v).
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At every place v of F where everything is unramified, by Lemma 5.22,

s′(d(ν(α)), α) = ξ′(α), for all α ∈ E×v .

Writing χ′v = χ′v,0(Nm) at each such place, Theorem 6.14 implies

Θv(χ
′
v
−1 · ξ′v) ∼= Θur,ξ′v(χ′v

−1 · ξ′v) ∼= Ind
GL2(Fv)
PFv

(χ′v,0ξ
′
v ⊗ χ′v,0)⊗ (χ′v,0 · ξ′v−1).

By definition, ξ′v|F×v = εEv/Fv , and therefore by Theorem 2.7, we have that

Θ′(χ′ · ξ′−1)∨ ∼= πB
′

χ′ ⊗ (χ′−1 · ξ′).

Theorem 6.1 now follows from Proposition 6.15 and Theorem 6.17.

Proof of Theorem 6.1. If Θ(χ · ξ) = 0, then by Proposition 6.15 we must have πBχ = 0 and

therefore Θ(χ · ξ) = πBχ . If Θ(χ · ξ) 6= 0, then by Theorem 6.17 we must have Θ(χ · ξ) ∼= πBχ .

The same argument holds to conclude the desired isomorphism for Θ′(χ′ · ξ′−1).

6.6 Period identities of CM forms

We are now ready to prove an identity of toric integrals of automorphic forms in πBχ and πB
′

χ′ .

We use the seesaw

H ′ H

G G′

=

GUE(ResV ) GUB(W ∗)

GUB(V )◦ GUE(W )

∼=
((B′)× × E×)/F× B×

E× E×

Recall from Proposition 5.14 that our choice of splittings

s : GG×H(A)→ C1, s′ : GG′×H′(A)→ C1

enjoys the property that for (α, β) ∈ GG×G′(A),

s′(α, β) = ξ(α) · ξ′(β) · s(α, β).

Theorem 6.18. For any Hecke characters χ and χ′ of E,

〈θϕ(χ · ξ), χ′〉G′ = 〈χ, θ′ϕ(χ′ · ξ′−1)〉G.
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Proof. Unwinding definitions and using Proposition 5.14, we have

〈θϕ(χ · ξ), χ′〉G′ =

∫
[G′]

θϕ(χ · ξ)(g′) · χ′(g′) dg′

=

∫
C

∫
[G′1]

θϕ(χ · ξ)(g′1g′c) · χ′(g′1g′c) dg′1 dc

=

∫
C

∫
[G′1]

∫
[G1]

Θ(ωψ(g1gc, g
′
1g
′
c)ϕ) · χ(g1gc) · ξ(g1gc) · χ′(g′1g′c) dg1 dg

′
1 dc

=

∫
C

∫
[G1]

∫
[G′1]

χ(g1gc)Θ(ω′ψ(g1gc, g
′
1g
′
c)ϕ) · ξ′(g′1g′c)−1 · χ′(g′1g′c) dg′1 dg1 dc

=

∫
C

∫
[G1]

χ(g1gc)θ′ϕ(χ′ · ξ′−1)(g1gc) dg1 dc

= 〈χ, θ′ϕ(χ′ · ξ′−1)〉G.

Combining Theorems 6.17 and 6.18, we obtain the following result:

Theorem 6.19. Let χ, χ′ be Hecke characters of E and let ϕ ∈ S(X(A)). Then

fBχ := θϕ(χ · ξ) ∈ πBχ , fB
′

χ′ := θ′ϕ(χ′ · ξ′−1) ∈ πB′χ′ ,

and we have ∫
A×FE×\A

×
E

fχ(g) · χ′(g) dg =

∫
A×FE×\A

×
E

χ(g) · fχ′(g) dg.
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CHAPTER 7

Interlude

It may be the case that the choices of B, χ, χ′, and ϕ ∈ S(X(A)) make it so that the two

sides of the identity in Theorem 6.19 are zero. This is possible at many points: πBχ could be

zero (see Theorem 2.7), the theta lifts θϕ(χ · ξ) or θ′ϕ(χ′ · ξ′−1), θ′ϕ(χ′ · ξ′−1) could themselves

be zero, or just the periods could be zero (see Theorem 4.3).

Now start with a totally real number field F and let E be a CM extension of F . Let χ

and χ′ be two Hecke characters of E and assume that

L(πχ ⊗ πχ′ , 1
2
) 6= 0.

Then there exists a unique quaternion algebra B over F such that the linear functional

πBχ → C, fBχ 7→
∫

[E×]

fBχ (g) · χ′(g) dg

is nontrivial. Moreover, B′ is the unique quaternion algebra over F such that the linear

functional

πB
′

χ′ → C, fB
′

χ′ 7→
∫

[E×]

χ(g) · fB′χ′ (g) dg

is nontrivial. In the coming chapters, we will choose a Schwartz function ϕ for the special

case when B is the split quaternion algebra over F . We will see that for our chosen family

of Schwartz functions ϕl, the theta lift θϕl(χ · ξ) is a nonzero Hecke eigenform of weight

k + 1 + 2l occuring in πχ (here k is related to the infinity type of χ in a specified way). In

certain cases, for example in Chapter 10, where we consider the special setting with χ, χ′

being powers of the canonical character of Q(
√
−7), one can show by hand that the torus

period is nonvanishing. The significance of arranging for ϕl to give rise to a Hecke eigenform

is that these automorphic forms are exactly the ones in p-adic-limiting families for example

in [BDP13]. Examining the theta lift of ϕl on the definite quaternion algebra is the subject

of future investigation.
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CHAPTER 8

Special vectors in the Weil representation

Recall that F is a totally real field and E = F (i) is a CM extension of F . We choose the

trace-free element i ∈ E so that u = i2 ∈ F has the property that for any finite place v of F ,

valv(u) =

0 if Ev/Fv is unramified

1 if Ev/Fv is ramified.

For the rest of the paper, we take ψ to be the standard additive character of F\AF (see

Section 2.1). Recall that if v is a finite place of F , then ψv is trivial on π−dvv Ov but nontrivial

on π−dv−1
v Ov. Furthermore, recall that we let dx be the additive Haar measure on AF self-dual

with respect to ψ and that

vol(OFv , dxv) = q−dv/2v .

In this chapter, we will specify Schwartz functions φ′l for l ∈ Z≥0 such that if χ∞(z) = z−k

on C1, then the theta lift θφ′l(χξ) is a Hecke eigenform of weight |k|+ 1 + 2l. Note that by

construction (Section 6.1), negative-weight Hecke eigenforms are not theta lifts since they are

not supported on GL2(F ) GL2(AF )+.

Fix a place v of F . In this section, we work place by place, and drop the subscript v

throughout. Let W be a 2-dimensional E-vector space endowed with the skew-Hermitian

form

〈(x1, x2), (y1, y2)〉 = x1y2 − x2y1

with respect to a fixed basis w1, w2 of W. Let V be a 1-dimensional E-vector space endowed

with the Hermitian form

(α, β) = αβ.

Setting Wi = spanC(wi) for i = 1, 2, we have a decomposition W = W1 + W2 of W into

maximal isotropic subspaces, and this induces a complete polarization of V given by

V = X′ + Y′, X′ = V ⊗W1, Y′ = V ⊗W2.
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Fix a splitting

s : G(U(V)× U(W))→ C1

of the cocycle zY′ with respect to the map

ι : G(U(V)× U(W))→ Sp(V), (h, g) 7→ (v ⊗ w 7→ h−1v ⊗ wg).

This determines a homomorphism

ι̃ : G(U(V)× U(W))→ Mp(V)Y′ , (h, g) 7→ (ι(h, g), s(h, g)).

Recall from Equation (6.11) and Lemma 5.17 that for φ ∈ S(X′) and (h, g) ∈ G(U(V) ×
U(W)),

ωψ(h, g)φ(x) = ξ−1(h)|h|−1/2(ωψ(d(ν(g)−1)g)φ)(xh−1). (8.1)

One can choose a basis of X′ and Y′ so that

ι(D(a)) =


a

a

a−1

a−1

 , ι(U(a′)) =


1 a′

1 a′

1

1

 , ι(W ) =


1

1

−1

−1

 .

By the computations of Section 5.6 and Equations (3.1), (3.2), and (3.3),

ωψ(1, D(a))ϕ(x) = ξ(a)−1 · | det a| · ϕ(xa) (8.2)

ωψ(1, U(a′))ϕ(x) = ψ
(

1
4

TrE/F (a′xx)
)
· ϕ(x) (8.3)

ωψ(1,W )ϕ(x) = (u,−1)F · γF (u, 1
2
ψ) ·

∫
F 2

ϕ(y)ψ
(

1
2

TrE/F (xy)
)
dy (8.4)

If v is a finite place, then recall from Section 2.6 that the conductor of πχ is given by a

simple formula in terms of the conductor of χ:

c(πχ) =


valF (4) + 2c(χ) if E/F is unramified,

1 + valF (4) + c(χ) if E/F is ramified,

c(χ1) + c(χ2) if E = F ⊕ F and χ = χ1 ⊗ χ2.
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Recall also that we have the subgroup

K ′0(N) :=

{(
a b

c d

)
∈ GL2(OF ) : c ∈ πNOF

}
,

and writing d(ν) = ( 1 0
0 ν ) ∈ GL2(F ) for ν ∈ F×, define

K0(N) :=

K ′0(N) if F has odd residue characteristic,

d(2)K ′0(N)d(1/2) if F has even residue characteristic.

8.1 Schwartz functions

8.1.1 Infinite places

In this section, let v be an infinite place of F .

Definition 8.1. For k ∈ Z and l ∈ Z≥0, define

φ′k,l(z) :=

1F1(−l, k + 1, 4πzz)zke−2πzz if k ≥ 0,

1F1(−l,−k + 1, 4πzz)z−ke−2πzz if k < 0,

where 1F1(a, b, t) is the Kummer confluent hypergeometric function for constants a, b

1F1(a, b, t) :=
∞∑
j=0

(a)j
(b)j

1

j!
tj,

where

(a)0 := 1, (a)j := a(a+ 1)(a+ 2) · · · (a+ j − 1),

denotes the rising factorial. Observe that 1F1(a, b, t) is entire in t so long as b /∈ Z≤0, so that

in particular, φ′k,l is entire for all k ∈ Z and l ∈ Z≥0.

Example 8.2. We give some explicit examples of 1F1(−l, |k|+ 1, t):

1F1(0, 2, t) = 1

1F1(−1, 2, t) = 1− 1
2
t

1F1(−2, 2, t) = 1− t+ 1
6
t2

1F1(−3, 2, t) = 1− 3
2
t+ 1

2
t2 − 1

24
t3
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Also note that the Laguerre polynomial

pl(t) :=
l∑

j=0

(
l

j

)
(−t)j

j!

is the function 1F1(−l, 1, t). ♦

The following lemma is well known.

Lemma 8.3. (a) The function 1F1(a, b, t) is a solution to the differential equation

tf ′′(t) + (b− t)f ′(t)− af(t) = 0.

(b) If Re(α) > 0 and Re(c) > 0, then∫ ∞
0

tα−1e−ct1F1(a, b,−t) dt = c−αΓ(α)2F1

(
a, α, b,−1

c

)
,

where

2F1(a, α, b,−1
c
) =

∞∑
j=0

(a)j(α)j
(b)j

1

j!

(
−1

c

)j
.

Lemma 8.4. For α ∈ C1 and r(θ) =
(

cos(θ) sin(θ)
− sin(θ) cos(θ)

)
∈ SO(2),

ωψ(α, r(θ))φ′k,l = ξ(α−1)α−kei(|k|+1+2l)θφ′k,l.

Proof. We follow a similar proof strategy to [X07, Proposition 2.2.5]. We compute on the

Lie algebra sl2(R). It is well known that

ωψ(X+)φ = 2πizzφ, X+ =

(
0 1

0 0

)
,

ωψ(X−)φ = − 1

2πi

∂

∂z

(
∂

∂z
φ

)
X− =

(
0 0

1 0

)
.

We first handle the case k ≥ 0. For any doubly differentiable function f satisfying the

differential equation

tf ′′(t) + (k + 1− t)f ′(t) = −lf(t),
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we have, following from a long calculus computation,

ωψ(X+ −X−)(f(4πzz)zke−2πzz)

= i [(k + 1)f(4πzz)− 2((k + 1− 4πzz)f ′(4πzz) + 4πzzf ′′(4πzz))] zke−2πzz

= i(k + 1 + 2l)f(4πzz)zke−2πzz.

By Lemma 8.3(a), 1F1(−l, k + 1, t) is such an f(t) and hence the desired conclusion follows.

Now assume k < 0. For any doubly differentiable function f satisfying the differential

equation

tf ′′(t) + (−k + 1− t)f ′(t) = −lf(t),

we have

ωψ(X+ −X−)(f(4πzz)z−ke−2πzz)

= i [(−k + 1)f(4πzz)− 2((−k + 1− 4πzz)f ′(4πzz) + 4πzzf ′′(4πzz))] z−ke−2πzz

= i(−k + 1 + 2l)f(4πzz)z−ke−2πzz.

By Lemma 8.3(a), 1F1(−l,−k + 1, t) is such an f(t), and so the desired conclusion follows.

Finally, it is easy to see that

ωψ(α, 1)φ′k,l = ξ(α−1)α−kφ′k,l,

and it follows that

ωψ(α, r(θ))φ′k,l = ξ(α−1)α−ke−(|k|+1+2l)θφ′k,l.

8.1.2 Finite nonsplit places

In this section, let v be a finite nonsplit place of F lying under a single prime w of E. Then

Ew is a field and Ew/Fv is either unramified or ramified. Assume that Ew, Fv have odd

residue characteristic. We drop the subscripts w and v throughout this section.

Definition 8.5. Define

φ′(x) :=

1OE(x) if χ is unramified,

χ(x)1O×E
(x) otherwise.

Lemma 8.6. Let ψ′ be an unramified nontrivial additive character of F . For h ∈ O×E and
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g = ( a bc d ) ∈ K0 := K0(c(ρχ)) such that Nm(h) = det(g), we have

ωψ′(h, g)φ′ = (χξ)−1(h) · (χεE/F )(a) · φ′.

Proof. By Equation (8.1),

ωψ′(h, d(Nm(h)))φ′(x) = ξ−1(h) · |h|1/2 · φ′(xh−1) = (ξχ)−1(h)φ′(x).

It remains to show that for any g ∈ K0 ∩ SL2(OF ),

ωψ′(1, g)φ′(x) = (χεE/F )(a) · φ′(x). (8.5)

We divide the calculation into two cases. Note that the Fourier transform ωψ′(1,W ) is given

by integrating against the additive Haar measure dx′ on AF that is self-dual with respect to

ψ′ and that in this case, vol(OF , dx′) = 1.

Case: χ unramified

Assume that E/F is unramified with odd residue characteristic so that K0 = GL2(OF ). It is

well known that SL2(OF ) is generated by the matrices

D(a) :=

(
a 0

0 a−1

)
, U(a′) :=

(
1 a′

0 1

)
, W :=

(
0 1

−1 0

)
,

for a ∈ O×F and a′ ∈ OF . Hence it is sufficient to verify Equation (8.5) for these elements.

By equation (8.2), we have

ωψ′(1, D(a))φ′(x) = ξ(a)−1 · φ′(xa) = (χ · εE/F )(a) · φ′(x),

where in the last equality we use the fact that χ is unramified by assumption and ξ|F× = εE/F .

By Equation (8.3), we have

ωψ′(1, U(a′))φ′(x) = ψ′
(

1
2
aNm(x)

)
· φ′(x) = φ′(x),

since by assumption ψ′ is trivial on OF and F has odd residue characteristic. By Lemma

5.19 and Equation (8.4), we have

ωψ′(1,W )φ′(x) =

∫
F 2

φ′(y)ψ′(xyᵀ) dy′ =

∫
OE

ψ′(xyᵀ) dy′ = 1OE(x) = φ′(x),
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where we use the assumption that ψ′ is trivial on OF and nontrivial on π−1
F OF . This verifies

Equation (8.5) in the case that K0 = GL2(OF ).

Assume that E/F is ramified with odd residue characteristic. Now K0 ∩ SL2(OF ) is

generated by the matrices

D(a), U(a′), and V (b) :=

(
1 0

b 1

)
= D(−1)WU(−b)W,

for a ∈ O×F , a′ ∈ OF , and b ∈ πOF . By Equations (8.2) and (8.3), it is easy to see that

ωψ′(1, D(a))φ′(x) = (χεE/F )(a) · φ′(x), (8.6)

ωψ′(1, U(a′))φ′(x) = ψ
(

1
4

TrE/F (a′xx)
)
· 1OE(x) = φ′(x). (8.7)

We now show that

ωψ′(1, V (b))φ′(x) = φ′(x).

We have

ωψ′(1,W )φ′(x) = (u,−1)F · γF (u, 1
2
ψ′) ·

∫
OE

ψ′
(

1
2

TrE/F (xy)
)
dy′

= (u,−1)F · γF (u, 1
2
ψ′) ·

∫
OE

ψ′ (x1y1 − ux2y2) dy′

= (u,−1)F · γF (u, 1
2
ψ′) · 1OF (x1) · 1π−1OF (x2).

Therefore for any b ∈ πOF ,

ωψ′(1, U(−b)W )φ′(x) = ψ′
(

1
4

TrE/F bxx
)
· ωψ′(1,W )φ′(x)

= ψ′
(

1
2
b(x2

1 − ux2
2)
)
· (u,−1)F · γF (u, 1

2
ψ′) · 1OF (x1) · 1π−1OF (x2)

= ωψ′(1,W )φ′(x).

Hence we have

ωψ′(1, V (b))φ′(x) = ωψ′(1, D(−1)WU(−b)W )φ′(x) = ωψ′(1, D(−1)W 2)φ′(x) = φ′(x).

Now assume that F has even residue characteristic. Now K0 ∩ SL2(OF ) is generated by

the matrices

D(a), U(a′), and V (b) = D(−1)WU(−b)W,
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for a ∈ O×F , a′ ∈ 2OF , and b ∈

2OF if E/F is unramified

2πOF if E/F is ramified
. Again, by Equations (8.2)

and (8.3),

ωψ′(1, D(a))φ′(x) = (χεE/F )(a) · φ′(x), (8.8)

ωψ′(1, U(a′))φ′(x) = ψ
(

1
4

TrE/F (a′xx)
)
· 1OE(x) = φ′(x). (8.9)

We now show that

ωψ′(1, V (b))φ′(x) = φ′(x).

We have

ωψ′(1,W )φ′(x) = (u,−1)F · γF (u, 1
2
ψ′) ·

∫
OE

ψ′
(

1
2

TrE/F (xy)
)
dy′

= (u,−1)F · γF (u, 1
2
ψ′) ·

∫
OE

ψ′ (x1y1 − ux2y2) dy′

=

(u,−1)F · γF (u, 1
2
ψ′) · 1OF (x1) · 1OF (x2) E/F unram

(u,−1)F · γF (u, 1
2
ψ′) · 1OF (x1) · 1π−1OF (x2) E/F ram.

If E/F is unramified, then for b ∈ 2OF ,

ψ′
(

1
2
b(x2

1 − ux2
2)
)
· 1OF (x1) · 1OF (x2) = 1OF (x1) · 1OF (x2),

and if E/F is ramified, then for b ∈ 2πOF ,

ψ′
(

1
2
b(x2

1 − ux2
2)
)
· 1π−1OF (x1) · 1OF (x2) = 1OF (x1) · 1π−1OF (x2).

Therefore for any b ∈ 2OF ,

ωψ′(1, U(−b)W )φ′(x) = ψ′
(

1
4

TrE/F bxx
)
ωψ′(1,W )φ′(x) = ωψ′(1,W )φ′(x).

Hence we have

ωψ′(1, V (b))φ′(x) = ωψ′(1, D(−1)WU(−b)W )φ′(x) = ωψ′(1, D(−1)W 2)φ′(x) = φ′(x).

Case: χ ramified

We now assume that c(χ) > 0. The calculation will depend on which of the following cases

we are handling:
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(i) E/F is unramified and n = c(χ) > 0

(ii) E/F is ramified and n = c(χ) > 0

We first treat the case when F has odd residue characteristic. The group K0 ∩ SL2(OF )

is generated by

D(a), U(a′), and V (b) :=

(
1 0

b 1

)
= D(−1)WU(−b)W,

for a ∈ O×F , a′ ∈ OF , and b ∈ πc(πχ)OF . As before, Equations (8.2) and (8.3) reduce to

ωψ′(1, D(a))φ′(x) = (χεE/F )(a) · φ′(x), (8.10)

ωψ′(1, U(a′))φ′(x) = ψ′
(

1
4

TrE/F bxx
)
φ′(x) = φ′(x). (8.11)

It remains to show that

ωψ′(1, V (b))φ′(x) = φ′(x)

for b ∈ πc(πχ)OF . We have

ωψ′(1,W )φ′(x)

= (u,−1)F · γF (u, 1
2
ψ′) ·

∫
O×E

χ(y)ψ′
(

1
2

TrE/F (xy)
)
dy′

=
(u,−1)F · γF (u, 1

2
ψ′)

q2n
E

·
∑

a∈O×E/U
n
E

χ(a)

∫
OE

ψ′
(

1
2

TrE/F (x(a+ πnEy))
)
dy′

=
(u,−1)F · γF (u, 1

2
ψ′)

q2n
E

·
∑

a∈O×E/U
n
E

χ(a)ψ′
(

1
2

TrE/F (xa)
) ∫
OE

ψ′
(

1
2

TrE/F (xπnEy)
)
dy′.

Write x = x1 + ix2 and y = y1 + iy2 for x1, x2, y1, y2 ∈ OF so that

xy = (x1y1 − ux2y2)− i(x1y2 − x2y1).

Then

1
2

TrE/F (xπnEy) =


πnF (x1y1 − ux2y2) in Case (i),

πk+1
F (x1y2 − x2y1) in Case (ii) with n = 2k + 1,

πkF (x1y1 − πFx2y2) in Case (ii) with n = 2k.
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This implies that

∫
OE

ψ′
(

1
2

TrE/F (xπnEy)
)
dy =


1π−nF OF⊕π

−n
F OF

(x1, x2) in Case (i),

1
π
−(k+1)
F OF⊕π

−(k+1)
F OF

(x1, x2) in Case (ii) with n = 2k + 1,

1
π−kF OF⊕π

−(k+1)
F OF

(x1, x2) in Case (ii) with n = 2k.

Using this explicit calculation together with the fact that

1
4

TrE/F (bxx) = 1
2
b(x2

1 − ux2
2),

we see that for b ∈ πc(πχ)
F OF ,

ωψ′(1, U(−b)W )φ′(x) = ψ′
(

1
4

TrE/F (bxx)
)
ωψ′(1,W )φ′(x) = ωψ′(1,W )φ′(x).

(Observe at this point that c(πχ) is the smallest integer such that ωψ′(1, U(−b)W )φ′ =

ωψ′(1,W )φ′!) We can in fact now conclude that

ωψ′(1, V (b))φ′(x) = ωψ′(1, D(−1)WU(−b)W )φ′(x) = ωψ′(1, D(−1)W 2)φ′(x) = φ′(x).

It may be useful to see that one can in fact verify this by calculating directly as well. We do

this now: we would like to calculate

ωψ′(1,WU(−b)W )φ′(x) = (u,−1)F · γF (u, 1
2
ψ′) ·

∫
F 2

ωψ′(1,W )φ′(y)ψ′
(

1
2

TrE/F (xy)
)
dy′

in the three cases Case (i), Case (ii) with n = 2k + 1, and Case (ii) with n = 2k. We record

the following easy calculation for reference: for a = a1 + a2i,

1
2

TrE/F (ya+ xy) = (a1 + x1)y1 − (a2 + x2)y2u.

In Case (i), we have qnE = q2n
F and so

ωψ′(1,WU(−b)W )φ′(x)

=
(u,−1)F

qnE
·
∫
π−nF OF⊕π

−n
F OF

∑
a∈O×E/U

n
E

χ(a)ψ′
(

1
2

TrE/F (ya)
)
ψ′
(

1
2

TrE/F (xy)
)
dy′

= (u,−1)F ·
∑

a∈O×E/U
n
E

χ(a) · 1−a1+πnFOF (x1) · 1−a2+πnFOF (x2)

= (u,−1)F · χ(−x) · 1O×E (x) = (u,−1)F · φ′(−x).
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In Case (ii) with n = 2k + 1, we have qnE = qk+1
F · qkF and so

ωψ′(1,WU(−b)W )φ′(x)

=
(u,−1)F

qnE
·
∫
π
−(k+1)
F OF⊕π

−(k+1)
F OF

∑
a∈O×E/U

n
E

χ(a)ψ′
(

1
2

TrE/F (ya)
)
ψ′
(

1
2

TrE/F (xy)
)
dy′

= (u,−1)F ·
∑

a∈O×E/U
n
E

χ(a) · 1−a1+πk+1
F OF (x1) · 1−a2+πkFOF

(x2)

= (u,−1)F · χ(−x) · 1O×E (x) = (u,−1)F · φ′(−x).

In Case (ii) with n = 2k, we have qnE = q2k
F and so

ωψ′(1,WU(−b)W )φ′(x)

=
(u,−1)F

qnE
·
∫
π−kF OF⊕π

−(k+1)
F OF

∑
a∈O×E/U

n
E

χ(a)ψ′
(

1
2

TrE/F (ya)
)
ψ′
(

1
2

TrE/F (xy)
)
dy′

= (u,−1)F ·
∑

a∈O×E/U
n
E

χ(a) · 1−a1+πkFOF
(x1) · 1−a2+πkFOF

(x2)

= (u,−1)F · χ(−x) · 1O×E (x) = (u,−1)F · φ′(−x).

Thus we see that in all these cases, for b ∈ πc(πχ)
F OF ,

ωψ′(1,WU(−b)W )φ′(x) = (u,−1)F · φ′(−x).

It finally follows that

ωψ′(1, V (a))φ′(x) = ωψ′(1, D(−1))ωψ′(1,WU(−a)W )φ′(x)

= (u,−1)F · ωψ′(1, D(−1))φ′(−x) = (u,−1)2
F · φ′(x) = φ′(x),

and this completes the proof of Equation (8.5) in the odd residue characteristic case.

It remains to show Equation (8.5) when F has even residue characteristic and χ is ramified.

Again, this is very similar to the previous calculations, but we include it here in full detail

for the sake of completion. The group K0 ∩ SL2(OF ) is generated by

D(a), U(a′), and V (b) :=

(
1 0

b 1

)
= D(−1)WU(−b)W,
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for a ∈ O×F , a′ ∈ 2OF , and b ∈ 2πc(πχ)OF . As before, Equations (8.2) and (8.3) reduce to

ωψ′(1, D(a))φ′(x) = (χεE/F )(a) · φ′(x), (8.12)

ωψ′(1, U(a′))φ′(x) = ψ′
(

1
4

TrE/F bxx
)
φ′(x) = φ′(x). (8.13)

It remains to show that

ωψ′(1, V (b))φ′(x) = φ′(x)

for b ∈ 2πc(πχ)OF . We have

ωψ′(1,W )φ′(x)

= (u,−1)F · γF (u, 1
2
ψ′) ·

∫
O×E

χ(y)ψ′
(

1
2

TrE/F (xy)
)
dy′

=
(u,−1)F · γF (u, 1

2
ψ′)

q2n
E

·
∑

a∈O×E/U
n
E

χ(a)

∫
OE

ψ′
(

1
2

TrE/F (x(a+ πnEy))
)
dy′

=
(u,−1)F · γF (u, 1

2
ψ′)

q2n
E

·
∑

a∈O×E/U
n
E

χ(a)ψ′
(

1
2

TrE/F (xa)
) ∫
OE

ψ′
(

1
2

TrE/F (xπnEy)
)
dy′.

Write x = x1 + ix2 and y = y1 + iy2 for x1, x2, y1, y2 ∈ OF so that

xy = (x1y1 − ux2y2)− i(x1y2 − x2y1).

Then

1
2

TrE/F (xπnEy) =


πnF (x1y1 − ux2y2) in Case (i),

πk+1
F (x1y2 − x2y1) in Case (ii) with n = 2k + 1,

πkF (x1y1 − πFx2y2) in Case (ii) with n = 2k.

This implies that

∫
OE

ψ′
(

1
2

TrE/F (xπnEy)
)
dy =


1π−nF OF⊕π

−n
F OF

(x1, x2) in Case (i),

1
π
−(k+1)
F OF⊕π

−(k+1)
F OF

(x1, x2) in Case (ii) with n = 2k + 1,

1
π−kF OF⊕π

−(k+1)
F OF

(x1, x2) in Case (ii) with n = 2k.

Using this explicit calculation together with the fact that

1
4

TrE/F (bxx) = 1
2
b(x2

1 − ux2
2),
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we see that for b ∈ 2π
c(πχ)
F OF ,

ωψ′(1, U(−b)W )φ′(x) = ψ′
(

1
4

TrE/F (bxx)
)
ωψ′(1,W )φ′(x) = ωψ′(1,W )φ′(x).

Hence we have

ωψ′(1, V (b))φ′(x) = ωψ′(1, D(−1)WU(−b)W )φ′(x) = ωψ′(1, D(−1)W 2)φ′(x) = φ′(x).

We have now finally completed the proof of Equation (8.5), and the proof of the lemma is

done.

Lemma 8.7. For h ∈ O×E and g = ( a bc d ) such that Nm(h) = det(g), we have

ωψ(h, d(δ)−1gd(δ))φ′ = (χξ)−1(h) · (χεE/F )(a) · φ′.

Proof. By construction, the additive character ψ has conductor δ. Therefore the additive

character ψ′(x) := ψ(δx) is an unramified nontrivial additive character of F . By Equation

(3.4) and Lemma 8.6,

ωψ(h, d(δ)−1gd(δ))φ′ = ωψ′(h, g)φ′ = (χξ)−1(h) · (χεE/F )(a) · φ′.

8.1.3 Finite split places

In this section we let v be a finite split place of F . Then Ev ∼= Fv⊕Fv. We drop the subscript

v throughout this section.

Definition 8.8. For a character χ = χ1 ⊗ χ2 : F× × F× → C×, define

φ′(x1, x2) :=

1OF (x1)1OF (x2) if χ is unramified,

χ(x1, x2)1O×F
(x1)1O×F

(x2) otherwise.

Lemma 8.9. Let ψ′ be an unramified nontrivial additive character of F . For h ∈ O×F ×O
×
F

and g = ( a bc d ) ∈ K0 with Nm(h) = det(g), we have

ωψ′(h, g)φ′ = (χξ)−1(h) · χ1(a)χ2(a) · φ′.

Proof. The proof is very similar to the proof of Lemma 8.7. By Equation (8.1),

ωψ′(h, d(Nm(h)))φ′(x) = ξ−1(h) · |h|1/2 · φ′(xh−1) = (χξ)−1(h)φ′(x).
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It remains to show that for any g ∈ K0 ∩ SL2(OF ),

ωψ′(1, g)φ′(x) = (χεE/F )(a) · φ′(x).

We give the proof in the case that F has odd residue characteristic. The case when F has

residue characteristic 2 is nearly identical (compare the proof of Lemma 8.7 in the odd and

even residue characteristic cases).

First assume that c(χ) = 0 so that K0 = GL2(OF ). Since SL2(OF ) is generated by D(a),

U(a), and W , it is sufficient to verify the assertion for these elements. We have

ωψ′(1, D(a))φ′(x) = ξ(a)−1 · φ′(xa) = φ′(xa) = φ′(x),

ωψ′(1, U(a))φ′(x) = ψ′
(

1
4

TrE/F (axx)
)
· φ′(x) = φ′(x),

ωψ′(1,W )φ′(x) =

∫
F 2

φ′(y)ψ′
(

1
2

TrE/F (xy)
)
dy

=

∫
OF⊕OF

ψ′
(

1
2

TrE/F (xy)
)
dy = 1OF (x1)1OF (x2) = φ′(x).

Now assume that c(χ) = n > 0 and set n1 = c(χ1), n2 = c(χ2). Then K0 ∩ SL2(OF )

is generated by D(a), U(a′), and V (b) = D(−1)WU(−b)W , where a ∈ O×, a′ ∈ O, and

b ∈ πnFOF . We have

ωψ′(1, D(a))φ′(x) = ξ(a)−1 · φ′(xa) = χ(x1a, x2a)1OF (x1a)1OF (x2a) = χ1(a)χ2(a)φ′(x),

ωψ′(1, U(a′))φ′(x) = ψ′
(

1
4

TrE/F (a′xx)
)
· φ′(x) = ψ′

(
1
2
a′x1x2

)
φ′(x).

We have

ωψ′(1,W )φ′(x) =

∫
O×F⊕O

×
F

χ(y1, y2)ψ′
(

1
2
(xy)

)
dy

=

∫
O×F⊕O

×
F

χ1(y1)χ2(y2)ψ′(x1y2 + x2y1) dy

=
1

qnF
·

∑
ai∈O×F /U

ni
F

χ1(a1)χ2(a2)

∫
OF⊕OF

ψ′(x1(a2 + πn2y2) + x2(a1 + πn1y1)) dy

=
1

qnF
·

∑
ai∈O×F /U

ni
F

χ1(a1)χ2(a2)ψ′(x1a2 + x2a1)1π−n2OF (x1)1π−n1OF (x2).

If b ∈ πnFOF , then ψ′(1
4

TrE/F (bxx)) = ψ′(1
2
bx1x2) = 1 for x1 ∈ π−n2

F OF and x2 ∈ π−n1
F OF , so

ωψ′(1, U(−b)W )φ′(x) = ωψ′(1,W )φ′(x).
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Now,

ωψ′(1,WU(−b)W )φ′(x)

=
1

qnF
·
∫
π−n1OF⊕π−n2OF

∑
ai∈O×F /U

ni
F

χ1(a1)χ2(a2)ψ′(y1a1 + y2a2)ψ′(x1y1 + x2y2) dy

=
1

qnF
·

∑
ai∈O×F /U

ni
F

χ1(a1)χ2(a2)

∫
yi∈π−niOF

ψ′(y1(a1 + x1))ψ′(y2(a2 + x2)) dy

=
∑

ai∈O×F /U
ni
F

χ1(a1)χ2(a2)1−a1+πn1OF (x1)1−a2+πn2OF (x2)

= χ(x1, x2)1O×F
(−x1)1O×F

(−x2) = φ′(−x),

and

ωψ′(1, D(−1)WU(−b)W )φ′(x) = φ′(x).

Lemma 8.10. For h ∈ O×F ×O
×
F and g = ( a bc d ) ∈ K0 with Nm(h) = det(g), we have

ωψ(h, d(δ)−1gd(δ))φ′ = (χξ)−1(h) · χ1(a)χ2(a) · φ′.

Proof. By construction, the additive character ψ has conductor δ. Therefore the additive

character ψ′(x) := ψ(δx) is an unramified nontrivial additive character of F . By Equation

(3.4) and Lemma 8.6,

ωψ(h, d(δ)−1gd(δ))φ′ = ωψ′(h, g)φ′ = (χξ)−1(h) · χ1(a)χ2(a) · φ′.

8.2 Local zeta integrals

In this section, we calculate the local zeta integrals Z(1
2
,Φv, χv) for the Siegel–Weil section

Φv = ΦO,Sp
v (δ(φ′v ⊗ φ′v)), where φ′v is the Schwartz function chosen in Section 8.1.

8.2.1 Infinite nonsplit places

Let v be an infinite nonsplit place. We say that χv has infinity type (k1, k2) if

χv : C× → C×, z 7→ z−k1z−k2 .

Assume that

χv(z) = zk for z ∈ C1,
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so that either χv is of type (−k + j, j) or (−j, k − j) for some integer j. Pick an integer

l ∈ Z≥0 and take

φ′v(z) := φ′k,l(z) =

1F1(−l, k + 1, 4πzz)zke−2πzz if k ≥ 0,

1F1(−l,−k + 1, 4πzz)z−ke−2πzz if k < 0,

Lemma 8.11. Let v be an infinite nonsplit place. Then

Zv(
1
2
,Φv, χv) = vol(C1)〈φ′, φ′〉 =

(2π)2

4|k|+1π|k|+1
· l!(|k|)!

2

(l + |k|)!
.

Proof. By Lemma 8.4,

ωψ(α, 1)φ′v = ξ(α−1)α−kφ′v.

Thus

Zv(
1
2
,Φv, χv) =

∫
C1

〈ωψ(g, 1)φ′v, φ
′
v〉(χvξv)(g) dg = vol(C1)〈φ′v, φ′v〉 = π−1〈φ′v, φ′v〉.

We have

〈φ′v, φ′v〉 =

∫
C

1F1(−l, |k|+ 1, 4πzz)2 · (zz)|k| · e−4πzz dz dz

=

∫ 2π

0

∫ ∞
−∞

1F1(−l, |k|+ 1, 4πr2)2 · r2|k| · e−4πr2 rdr dθ

= 2π

∫ ∞
−∞

1F1(−l, |k|+ 1, 4πr2)2 · r2|k| · e−4πr2 rdr

= 2π

∫ ∞
0

1F1(−l, |k|+ 1, 4πs)2 · s|k| · e−4πs ds

=
2π

(4π)(4π)|k|

∫ ∞
0

1F1(−l, |k|+ 1, t)2 · t|k| · e−t dt

=
2π

(4π)|k|+1

l!(|k|)!2

(l + |k|)!
=

2π

(4π)|k|+1

(|k|)!(
l+|k|
|k|

) .
8.2.2 Finite nonsplit places

Recall from Chapter 8 that we set

φ′v(x) =

1OEv (x) if χv is unramified,

χv(x)1O×Ev
(x) if χv is ramified.
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Lemma 8.12. Let v be a finite nonsplit place. If Ev/Fv is unramified, then

Zv(
1
2
,Φv, χv) =

q
−dv/2
v if χv is unramified,

q
−dv/2
v (1− q−2

v ) otherwise.

If Ev/Fv is ramified, then

Zv(
1
2
,Φv, χv) =

q−1
v q

−dv/2
v if χv is unramified,

q−1
v q

−dv/2
v (1− q−1

v ) otherwise.

Proof. By Lemma 8.7, for g ∈ E1
v ,

ωψ(g, 1)φ′ = (χvξv)
−1(g) · φ′.

This implies that

Zv(
1
2
,Φv, χv) = vol(E1

v , d
1xTam

v )

∫
E1
v

〈ωψ(g, 1)φ′, φ′〉(χξY′)v(g) dg

= vol(E1
v , d

1xTam
v )2〈φ′, φ′〉

=

vol(E1
v , d

1xTam
v )2 vol(OEv , dxv) if χv is unramified,

vol(E1
v , d

1xTam
v )2 vol(O×Ev , dxv) otherwise.

Since

vol(E1
v , d

1xTam
v ) =

1 if Ev/Fv is unramified

q
−1/2
v if Ev/Fv is ramified

, vol(OEv , dxv) = q−dv/2v ,

the desired conclusion follows.

8.2.3 Finite split places

Let v be a finite split place and write χv = χ1,v ⊗ χ2,v : F×v × F×v → C×. Recall that

φ′(x1, x2) :=

1OFv (x1)1OFv (x2) if χv is unramified,

χv(x1, x2)1O×Fv
(x1)1O×Fv

(x2) otherwise.
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Lemma 8.13. Let v be a finite split place and assume that χv is unramified. Then

Zv(
1
2
,Φv, χv) = q−3dv/2

v ·
Lv(1, χ1,v ⊗ χ−1

2,v)Lv(1, χ
−1
1,v ⊗ χ2,v)

Lv(2, εE/F )
.

Proof. In this setting, E1
v = {(a, a−1) ∈ F×v × F×v }. By Lemma 5.17,

ωψ((a, a−1), 1)φ′(x1, x2) = ξv(a, a
−1)−1φ′(x1a

−1, x2a)

= ξv(a, a
−1)−1

1OFv (x1a
−1)1OFv (x2a)

= ξv(a, a
−1)−1

1aOFv (x1)1a−1OFv (x2).

Hence

〈ωψ((a, a−1), 1)φ′, φ′〉 =

∫
X′v
ξv(a, a

−1)−1
1aOFv (x1)1a−1OFv (x2)1OFv (x1)1OFv (x2) dx1 dx2

= ξv(a, a
−1)−1 vol(aOFv ∩ OFv , dxv) vol(a−1OFv ∩ OFv , dxv)

= ξv(a, a
−1)−1 1

q
| val(a)|
v

vol(OFv , dxv)2 = ξv(a, a
−1)−1 1

q
| val(a)|
v

q−dvv .

We therefore have, writing π = πv for a uniformizer of Fv,

Zv(
1
2
,Φv, χv) =

∫
F×v

〈ωψ(a, a−1)φ′v, φ
′
v〉ξv(a, a−1)χv(a, a

−1) da

=
∑
n∈Z

∫
O×Fv

〈ωψ(πna, π−na−1)φ′v, φ
′
v〉ξv(πna, π−na−1)χv(π

na, π−na−1) da

= q−3dv/2
v

∑
n∈Z

1

χv(π−n, πn)q
|n|
v

= q−3dv/2
v

(
∞∑
n=0

1

(qvχv(π−1, π))n
+
∞∑
n=1

1

(qvχv(π, π−1))n

)

= q−3dv/2
v

(
1

1− q−1
v χv(π, π−1)

+
q−1
v χv(π

−1, π)

1− q−1
v χv(π−1, π)

)
= q−3dv/2

v · 1− q−2
v

(1− q−1
v χv(π−1, π))(1− q−1

v χv(π, π−1))

= q−3dv/2
v ·

Lv(1, χ1,v ⊗ χ−1
2,v)Lv(1, χ

−1
1,v ⊗ χ2,v)

Lv(2, εE/F )
.

Lemma 8.14. Let v be a finite split place and assume that χv is ramified. Then

Zv(
1
2
,Φv, χv) = q−3dv/2

v (1− q−1
v )2.
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Proof. We have

ωψ((a, a−1), 1)φ′(x1, x2) = ξv(a, a
−1)−1χv(a, a

−1)−1
1aO×Fv

(x1)1a−1O×Fv
(x2).

Then

〈ωψ((a, a−1), 1)φ′, φ′〉 = ξv(a, a
−1)−1χv(a, a

−1)−1 vol(O×Fv , dxv)
2
1O×Fv

(a),

and so

Zv(
1
2
,Φv, χv) =

∫
F×v

〈ωψ(a, a−1)φ′, φ′〉ξv(a, a−1)χv(a, a
−1) da

= vol(O×Fv , dxv)
2 vol(O×Fv , d

1xTam
v )

= q−3dv/2
v (1− q−1

v )2.
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CHAPTER 9

An explicit Rallis inner product formula

In this chapter, we calculate the Rallis inner product formula explicitly for the Schwartz

functions chosen in Chapter 8.

Let F be a totally real number field and let E/F be a CM extension. Let η1, . . . , ηn

be the real embeddings of F . Let χ : E×\A×E → C× be a Hecke character of infinity type

(k + j, j) where k = (k1, . . . , kn), j = (j1, . . . , jn) ∈ Zn. Assume that B = M2(F ) and let

W0 = ResB/E B = W1 + W2 be a decomposition of the E-space W0 into totally isotropic

subspaces. Set X′ = ResE/F (E ⊗W1),Y′ = ResE/F (E ⊗W2), and define a Schwartz function

φ′ = ⊗vφ′v ∈ S(X′(A)) as in Chapter 8:

φ′l,v(z) :=



1F1(−li, ki + 1, 4πzz)zke−2πzz if v = ηi | ∞ and k ≥ 0,

1F1(−li,−ki + 1, 4πzz)z−ke−2πzz if v = ηi | ∞ and k < 0,

1OEv (z) if v is nonsplit and χv is unramified,

χv(z)1O×Ev
(z) if v is nonsplit and χv is ramified,

1OFv (z1)1OFv (z2) if v splits and χv is unramified,

χv(z1, z2)−1
1O×Fv

(z1)1O×Fv
(z2) if v splits and χv is ramified.

Define

Σχ := {v : χv is unramified},

Σχ̃ := {v : χ̃v is unramified}.
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For each place v of F , define

Cv :=



(2π)2

4|ki|+1π|ki|+1 · li!(|ki|)!
2

(li+|ki|)! if v = ηi | ∞

q
−dv/2
v if v /∈ Σχ, v /∈ Σχ̃, v unram

q
−dv/2
v (1− q−2

v ) if v ∈ Σχ, v /∈ Σχ̃, v unram

q
−dv/2
v if v ∈ Σχ, v ∈ Σχ̃, v unram

q
−dv/2
v q−1

v (1− q−2
v )−1(1− χ̃w(πw)q−1

v ) if v /∈ Σχ, v /∈ Σχ̃, v ram

q
−dv/2
v q−1

v (1− q−1
v )(1− q−2

v )−1(1− χ̃v(πv)q−1
v ) if v ∈ Σχ, v /∈ Σχ̃, v ram

q
−dv/2
v q−1

v (1− q−1
v )(1− q−2

v )−1 if v ∈ Σχ, v ∈ Σχ̃, v ram

q
−3dv/2
v if v /∈ Σχ, v /∈ Σχ̃, v split

q
−3dv/2
v

(1−(χ1,vχ
−1
2,v)(πv)q−1

v )(1−(χ−1
1,vχ2,v)(πv)q−1

v )

(1+q−1
v )

if v ∈ Σχ, v /∈ Σχ̃, v split

q
−3dv/2
v (1− q−1

v )(1 + q−1
v )−1 if v ∈ Σχ, v ∈ Σχ̃, v split

Theorem 9.1. The Petersson inner product of the theta lift θφ′(χξ) is

〈θφ′(χξ), θφ′(χξ)〉 =
ρE
ρF
· L(1, χ̃)

ζ(2)
·
∏
v

Cv,

where Cv = 1 at all but finitely many places. In particular, if χ is nontrivial on A1
E, then

θφ′(ξχ) 6= 0.

Proof. We first recall that the local L-factor for a character η on a non-Archimedean local

field k with fixed uniformizer π and residue field of size q is

L(s, η) =

(1− η(π)q−s)−1 if η is unramified,

1 if η is ramified.

Now let η be a Hecke character of E×. For each place v of F , define

L(s, η) =
∏
v

Lv(s, ηv), where Lv(s, ηv) =

L(s, ηv) if v is nonsplit in E,

L(s, ηw)L(s, ηw) if v = ww splits in E.

Let qv be the size of the residue field of Fv, let πv be a uniformizer of Fv. If a place v of F
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lies under a single place w of E, let πw be a uniformizer of Ew. We therefore have

Lv(1, χ̃) =



1 if v | ∞

(1− q−2
v )−1 if χ̃ is unram and Ev is unram

1 if χ̃ is ram and Ev is unram

(1− χ̃v(πw)q−1
v )−1 if χ̃ is unram and Ev is ram

1 if χ̃ is ram and Ev is ram

(1− (χ1,vχ
−1
2,v)(πv)q

−1
v )−1(1− (χ−1

1,vχ2,v)(πv)q
−1
v )−1 if χ̃ is unram and Ev is split

1 if χ̃ is ram and Ev is split

ζv(2) =

1 if v | ∞

(1− q−2
v )−1 if v -∞

and

Lv(1, χ̃)

ζv(2)
=



1 if v | ∞

1 if χ̃ is unram and Ev is unram

(1− q−2
v ) if χ̃ is ram and Ev is unram

(1− q−2
v )(1− (χ̃w)(πv)q

−1
v )−1 if χ̃ is unram and Ev is ram

(1− q−2
v ) if χ̃ is ram and Ev is ram

(1−q−2
v )

(1−(χ1,vχ
−1
2,v)(πv)q−1

v )(1−(χ−1
1,vχ2,v)(πv)q−1

v )
if χ̃ is unram and Ev is split

(1− q−2
v ) if χ̃ is ram and Ev is split

Recall from the computations of Section 8.2 that

Z(1
2
,Φv, χv) =



(2π)2

4|ki|+1π|ki|+1 · li!(|ki|)!
2

(l+|ki|)! if v = ηi | ∞

q
−dv/2
v if χ is unram and Ev is unram

q
−dv/2
v (1− q−2

v ) if χ is ram and Ev is unram

q−1
v q

−dv/2
v if χ is unram and Ev is ram

q−1
v q

−dv/2
v (1− q−1

v ) if χ is ram and Ev is ram

q
−3dv/2
v · (1−q−2

v )

(1−(χ1,vχ
−1
2,v)(πv)q−1

v )(1−(χ−1
1,vχ2,v)(πv)q−1

v )
if χ is unram and Ev is split

q
−3dv/2
v (1− q−1

v )2 if χ is ram and Ev is split
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Then for all places v of F ,

Z(1
2
,Φv, χv) = Cv ·

Lv(1, χ̃)

ζv(2)
,

where Cv is as in the theorem statement. Since all but finitely many places simultaneously

satisfy the conditions dv = 0, v /∈ Σχ, v /∈ Σχ̃, and v is split or unramified, we see that Cv = 1

for all but finitely many places, and the desired equation follows from the doubling method.

Observe that the factor ρF/ρE comes from the fact definition of the Tamagawa measure on

A1
E and the local measures on E1

v (Section 2.1).

Finally, since Cv 6= 0 for all v, it follows that θφ′(χξ) 6= 0 if and only if L(1, χ̃) 6= 0. But

L(1, χ̃) 6= 0 if and only if χ is trivial on A1
E, so the final assertion holds.

Let fχ be the normalized newform of weight |k|+ 1 = (|k1|+ 1, . . . , |kn|+ 1) corresponding

πχ. For l = (l1, . . . , ln), let F l
χ denote the automorphic form on GL2(AF ) corresponding to

the Hilbert modular form δl|k|+1fχ.

Proposition 9.2. Let ξ and ξ′ be two Hecke characters of E× whose restriction to A×E is the

quadratic character εE/F . Then for any φ′ ∈ S(X′(A)),

θξφ′(χξ)(g) = θξ
′

φ′(χξ
′)(g) for all g ∈ GL2(AF ),

where θξφ′ and θξ
′

φ′ denote the theta lifts correspond to the splitting characters ξ and ξ′.

Proof. Let ωξψ and ωξ
′

ψ denote the Weil representations corresponding to the splitting characters

ξ and ξ′. Then by Equations (8.2)-(8.4), we have

ωξψ(1, g) = ωξ
′

ψ (1, g) for all g ∈ SL2(AF ),

and by Lemma 5.17,

ωξψ(h, d(ν(h))) = ξ′(h)ξ−1(h)ωξ
′

ψ (h, d(ν(h))).

The desired equality now follows by construction of the similitude theta lift (Chapter 6).

Theorem 9.3. If L(1, χ̃) 6= 0, we have

θφ′l(χξ) = Dl · F l
χ, for some Dl 6= 0.

Proof. First recall that by Theorem 6.17(a), the theta lift θφ′(χξ) is an automorphic form in

the automorphic induction πχ to GL2(AF ). If f is a Hecke eigenform of weight |k|+ 1 + 2l
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in πχ, then it must satisfy that for all r(θ) := r(θ1) · · · r(θn) with r(θj) ∈ SO(2) and

k0 = ( a bc d ) ∈ K0 :=
∏

v-∞K0,v with det(k0) = 1, we have

f(gr(θ)d(d)−1k0d(d)) =
n∏
j=1

ei(|kj |+1+2lj)θj(χεE/F )(a)f(g) for all g ∈ GL2(AF ). (9.1)

By Casselman’s theorem [C73, Theorem 1], the dimension of automorphic forms satisfying

(9.1) must have dimension 1. Therefore to see that θφ′(χξ) is a (possibly zero!) multiple of

F l
χ, we need only see that it satisfies (9.1).

We first recall the definition of the theta lift θφ′(χξ) on GL2(AF ). If g ∈ GL2(AF )+ :=

{g ∈ GL2(AF ) : det(g) ∈ Nm(A×E)}, then for any h ∈ A×E such that det(g) = Nm(h),

θφ′(χξ)(g) =

∫
[E1]

Θ(ωψ(hh1, g)φ′) · (χξ)(hh1) dh1.

We define θφ′(χξ) on GL2(F ) GL2(AF )+ by

θφ′(χξ)(γg) = θφ′(χξ)(g), for γ ∈ GL2(F ), g ∈ GL2(AF )+.

Note that

GL2(F ) GL2(AF )+ =
{
g ∈ GL2(AF ) : det(g) ∈ F×Nm(A×E)

}
is an index-2 subgroup of GL2(AF ). We define θφ′(χξ) on GL2(AF ) by extending by 0 outside

GL2(F ) GL2(AF ). Define K0 :=
∏

vK0,v, where K0,v ⊂ GL2(OFv) as defined in Chapter 8.

Note that K0 ⊂ GL2(F ) GL2(AF )+. By Lemmas 8.4, 8.7, and 8.10, for r(θ) = r(θ1) · · · r(θn)

with r(θj) ∈ SO(2) and k0 = ( a bc d ) ∈ K0 ∩GL2(AF )+,

ωψ(h0, r(θ)d(d)−1k0d(d))φ′l =
n∏
j=1

ei(|kj |+1+2lj)θj(χξ)−1(hh0)(χεE/F )(a)φ′l,

where h0 ∈ A×E is such that Nm(h0) = det(k0). This implies that for any g ∈ GL2(AF )+ and
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any h ∈ A×E with Nm(h) = det(g),

θφ′l(χξ)(gr(θ)d(d)−1k0d(d))

=

∫
[E1]

Θ(ωψ(hh1h0, gr(θ)d(d)−1k0d(d))φ′l) · (χξ)(hh1h0) dh1

=

∫
[E1]

Θ(ωψ(hh1, g)ωψ(h0, r(θ)d(d)−1k0d(d))φ′l) · (χξ)(hh1h0) dh1

=
n∏
j=1

∫
[E1]

Θ(ωψ(hh1, g)φ′l) · ei(|kj |+1+2lj)θj · (χξ)−1(h0) · (χεE/F )(a) · (χξ)(hh1h0) dh1

=
n∏
j=1

ei(|kj |+1+2lj)θj(χεE/F )(a) ·
∫

[E1]

Θ(ωψ(hh1, g)φ′l) · (χξ)(hh1) dh1

=
n∏
j=1

ei(|kj |+1+2lj)θj(χεE/F )(a) · θφ′l(χξ)(g).

This shows that the theta lift θφ′(χξ) satisfies (9.1) for g ∈ SL2(AF ). Therefore

θφ′l(χξ) = Dl · F l
χ.

Theorem 9.4. If F = Q and k ≥ 0, then θφ′0(χξ) is an algebraic holomorphic Hecke

eigenform of weight k + 1 and level c(χ), and

|Dl| ∼ πl.

Proof. We retain the notation as in Theorem 9.3. First observe that θφ′0(χξ) is an algebraic

holomorphic Hecke eigenform of weight k+1 and level c(χ) by Theorem 9.3. We now examine

the algebraicity of Dl. Observe that if χ has infinity type (k + j, j), then χ̃ has infinity type

(k,−k). Hence the character η := χ̃ · || · ||k has the property that as a character on ideals,

η((a)) = a2k for a ≡ 1 (mod c),

where the ideal c is the conductor of χ. By definition, L(s, χ̃) = L(s + k, η) and hence by

Shimura’s algebraicity theorem [S76, Proposition 5], we then have

L(1, χ̃) = L(k + 1, η) ∼ πk+1Ω2k.

To apply Shimura’s algebraicity theorem [S76, Proposition 5] to the Petersson inner product

〈F l
χ, F

l
χ〉, one must first translate between the inner product of the automorphic form and
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the inner product of the classical form. Following [IP16a, Lemmas 6.1, 6.2], we have

〈F l
χ, F

l
χ〉 ∼ π−1

∫
Γ1(c(χ))\h

δlk+1fχ(z)δlk+1fχ(z)yk
dx dy

y2
∼ 〈δlk+1fχ, δ

l
k+1fχ〉,

where the Petersson inner product 〈f, g〉 is normalized as in Equation (2.2). (This is the

same normalization as in [S76].) By Theorem 9.1 and again applying Shimura’s algebraicity

theorem [S76, Proposition 5],

〈θφ′l(χξ), θφ′l(χξ)〉 ∼ π−1π−k+1L(1, χ̃)ζ(2)−1 ∼ π−1π−k−1πk+1Ω2k ∼ π−1Ω2k,

〈F l
χ, F

l
χ〉 ∼ 〈δlk+1fχ, δ

l
k+1fχ〉 ∼ π−2l〈fχ, fχ〉 ∼ π−2l−1Ω2k,

and therefore

|Dl|2 ∼ π2l.
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CHAPTER 10

An example: the canonical

Hecke character for Q(
√
−7)

Let F = Q and let E = Q(
√
−7). Then E has class number 1 and there is a unique canonical

character χcan in the sense of Rohrlich [Ro80]. (See page 52 of Tonghai Yang’s thesis [Ya] for

an exposition.) Explicitly, χcan can be described as follows. First consider the character

ε : OE/(
√
−7) ∼= Z/7Z

( ·7)
−→ {±1}.

Then ε(−1) = −1 and hence the map on principal ideals

P (
√
−7) = {αOE : α ∈ E× is relatively prime to 7} → E×, αOE 7→ ε(α)α

is a well-defined homomorphism. Since E has class number 1, then P (
√
−7) = I(

√
−7), and

the above defines a Hecke character of E×. It’s easy to see that for any positive integer n,

the character χncan has the following properties:

(a) It has ∞-type (n, 0).

(b) It has conductor
√
−7OE if n is odd and conductor OE if n is even.

Idelically, we have χcan =
∏

v χcan,v, where

• χcan,∞(z) = z−1.

• If l - 7 is inert, then χcan,l is the unramified character determined by χcan,l(l) = −l.

• If l - 7 splits, write l = vv̄, and χcan,v is the unramified character of Q×l determined by

χcan,v(l) = v.

• χcan,7 is a character of level 1 on E×7 , the multiplicative group of a ramified extension

of Q7. We have χcan,7(
√
−7) =

√
−7 and χcan,7(−1) = −1.
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One can normalize χcan to a unitary character by multiplying by an appropriate power of the

norm character || · ||AK . We explicate the norm character:

• If v is a finite place, define |πv|v := 1/#kv.

• If v is a real place, define | · |v to be the norm such that |2| = 2.

• If v is a complex place, define | · |v to be the norm such that |2| = 4.

Now the character χ′can := χcan · || · ||1/2AK is unitary.

• Since K is an imaginary quadratic field, the infinite place is complex, and χ′∞(z) =

|z|1/2/z.

• If l - 7 is inert, then χ′l(l) = −l/
√
l2 = −1.

• If l - 7 is split and v is a place above l, then χ′v(l) = v/
√
l and χ′l(l) = χ′v(l)χ

′
v̄(l) =

vv̄/l = 1.

• We have χ′7(
√
−7) =

√
−7/
√

7 =
√
−1 and χ′7(−1) = −1.

10.1 Two quaternion algebras

We’ll now consider the automorphic induction πχncan of χncan to GL2 and compute the local

epsilon factors εv(BC(πχncan)⊗ χmcan). At v =∞, this calculation depends on whether n < m

or n ≥ m. At the local places, this can be calculated by specializing [T83, Section 1] to our

setting. The interesting place finite place is v = 7.

(a) Momentarily let v be a real place of a number field F , take f to be any automorphic form

of GL2 of weight k at v and let Ω be a Hecke character of E such that Ωv(z) = zl1zl2 .

Then

εv(f,Ω) · ωv(−1) =

+1 if k ≤ l1 − l2,

−1 if k > l1 − l2.

Since πχncan has weight n+ 1, this implies that

ε∞(BC(πχncan)⊗ χmcan) · ω∞(−1) =

+1 if n+ 1 ≤ m,

−1 if n+ 1 > m.
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(b) Since χcan,v factors through Nm for all v - 7, the representation Ind
WFv
WEv

(χcan,v) is

decomposable. By [T83, Proposition 1.6], for any Hecke character Ω, we have

εv(BC(πχcan)⊗ Ω) · ωv(−1) = +1 for all v - 7.

(c) First observe that ResWE
IndWF

WE
(χ) = χ ⊕ χτ for any character χ of WE. Since base

change on the GL2 side corresponds to restriction on the Galois side, we have

ε7(BC(πχcan)⊗ Ω) = ε7(ResWE
IndWF

WE
(χ)⊗ Ω) = ε7(χcanΩ)ε7(χτcanΩ),

where the last equality holds because local ε-factors change direct sums to products.

By [Ya, Lemma 3.2], we have

ε7(χcanΩ) = −
(

2
7

)√
−1 = ε7(χτcanΩ).

Since χcan|F× = εE/F , the automorphic representation πcan has trivial central character

and hence the above calculation shows ε7(BC(πχcan)⊗ Ω)ω7(−1) = −1. By the above

argument,

ε7(BC(πχncan)⊗ χmcan) · ω7(−1) =

+1 if n is even,

−1 if n is odd.

We can now discuss the possibilities for the quaternion algebra determined by the

pair of Hecke characters χncan and χmcan. First observe that the central character condition

χncanχ
m
canεE/F = 1 on A× implies that n and m must have different parity. We now have two

cases:

(i) If n is odd, then εv(BC(πχncan)⊗ χmcan) = −1 if and only if v = 7. This implies that if

L(BC(πχncan)⊗χmcan,
1
2
) 6= 0, then necessarily n+1 > m so that ε∞(BC(πχncan)⊗χmcan) = −1

and hence

Sπχncan ,χmcan = {7,∞}.

(ii) If n is even, then εv(BC(πχncan) ⊗ χmcan) = +1 for all finite v. This implies that if

L(BC(πχncan)⊗χmcan,
1
2
) 6= 0, then necessarily n+1 ≤ m so that ε∞(BC(πχncan)⊗χmcan) = +1

and hence

Sπχncan ,χmcan = ∅.
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Summarizing, take n,m to have opposite parity, we have the chart

m < n+ 1

ε∞ = −1

m ≥ n+ 1

ε∞ = +1

ε = +1

n odd

ε7 = −1

(definite)

n even

ε7 = +1

(indefinite—in fact, split!)

ε = −1
n even

ε7 = +1

n odd

ε7 = −1

The main theorem (Theorem 6.19) gives an identity between the first two boxes. As we see

above, if we start with the top right box, then we are in the setting that B = M2(F ) and

B′ = B{7,∞}. In Sections 8 and 9, we constructed a family of Schwartz functions such that

their theta lifts realize all the Hecke eigenforms of positive weight. In the next section, we

recall this construction.

10.2 Torus periods of a weight-(3 + 2l) CM form

Take the special case n = 2. First let m = 3. In this case, we take φ′0 := ⊗vφ′0,v where

φ′0,v(z) =

1F1(0, 3, 4πzz)z2e−2πzz = z2e−2πzz if v | ∞,

1OFv (z1) · 1OFv (z2) if v -∞.

Then

Cv =


(2π)2

43π4 = 1
16π2 if v | ∞,

1 if v 6= 7,

1
7
(1− 1

49
)−1(1− 1

7
) = 1

8
if v = 7,

so that by Theorem 6.17(b) and Theorem 9.3, the theta lift θφ′0(χξ) a Hecke eigenform on

GL2(AQ) in πχ. Furthermore, by Theorem 9.1,

〈θφ′0(χξ), θφ′0(χξ)〉 = ρQ · ρ−1
E ·

1

8 · 16 · π2
· L(1, χ̃)

ζ(2)
=

(
2π√
7 · 2

)−1

· 1

128π2
· L(1, χ̃)

ζ(2)
.

By Theorem 6.18,∫
[E×]

θφ′0(χ · ξ)(g) · χ3
can(g) dg =

∫
[E×]

χ(g) · θ′φ′0(χ
3
can · ξ′−1)(g) dg,
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where by Theorem 6.17(b) the theta lift θ′φ′0
(χ3

can · ξ′−1) is an automorphic form in πB
′

χ3
can

,

where B′ is the quaternion algebra ramified at 7 and ∞.

Now let m = 3 + 2l, where l ≥ 0. We take φ′l := ⊗vφ′l,v where

φ′l,v(z) =

1F1(−l, 3, 4πzz)z2e−2πzz if v | ∞,

1OFv (z1) · 1OFv (z2) if v -∞.

If we set ξ = χcan,

Cv =


(2π)2

43π4 · l!·4
(l+2)!

= 1
2(l+2)(l+1)π2 if v | ∞,

1 if v 6= 7,

1
7
(1− 49−1)−1(1− 7−1) = 1

8
if v = 7,

so that by Theorem 6.17(b) and Theorem 9.3, the theta lift θφ′l(χξ) is a Hecke eigenform on

GL2(AQ) in πχ. Furthermore, again by Theorem 9.1,

〈θφ′l(χξ), θφ′l(χξ)〉 =

(
2π√
7 · 2

)−1

· 1

16 · (l + 2) · (l + 1) · π2
· L(1, χ̃)

ζ(2)
.

And as before, by Theorem 6.18,∫
[E×]

θφ′l(χ · ξ)(g) · χ3+2l
can (g) dg =

∫
[E×]

χ(g) · θ′φ′l(χ
3+2l
can · ξ′−1)(g) dg,

where by Theorem 6.17(b) the theta lift θ′φ′l
(χ3+2l

can · ξ′−1) is an automorphic form in πB
′

χ3+2l
can

,

where B′ is the quaternion algebra ramified at 7 and ∞.

Let fχ denote the normalized newform of weight 3 in πχ. Then by the definition of the

Shimura–Maass operator δl3 (see Section 2.3.1) and by Shimura’s algebraicity theorem [S76,

Proposition 5(ii)],

〈δl3fχ, δl3fχ〉 ∼ π2l−1Ω4,

where ∼ denotes equality up to an algebraic number. Combining Theorem 9.1 with Shimura’s

algebraicity theorem [S76, Proposition 5(i)] and Euler’s algebraicity theorem [Z],

〈θφ′l(χξ), θφ′l(χξ)〉 ∼ π−3ζ(2)−1L(1, χ̃) ∼ π−3π−2π4Ω4 ∼ π−1Ω4.

By Theorem 9.3 and Casselman’s theorem [C73, Theorem 1],

θφ′l(χξ) = Dl · F l
χ, where |Dl| ∼ πl.
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10.3 Relation to classical theta series

Consider the theta lift θφ′l(χ
2
canξ) on SL2(AQ). In this section we will give a direct proof of

Theorem 9.4 in this setting by unfolding the integral defining the theta lift and relating this

form to a classical modular form. See [H11, Chapter 4] for a detailed exposition on unfolding

the theta lift from an orthogonal group to SL2(AQ).

By definition, for any g ∈ SL2(AQ),

θφ′0(χ
2
canξ)(g) =

∫
[E1]

Θ(ωψ(h, g)φ′0) · (χ2
canξ)(h) dh.

Now, since E = Q(
√
−7) has class number 1, we have the decomposition

A1
E = E1KA, where KA =

∏
v

Kv, Kv =

E1
v if v is nonsplit,

O×Fv if v is split.

Therefore

θφ′0(χ
2
canξ)(g) =

∫
KA

Θ(ωψ(h, g)φ′0) · (χ2
canξ)(h) dh.

By strong approximation for SL2, we know that

SL2(AQ) = SL2(Q) SL2(R)
∏
p<∞

Kp,

where Kp = SL2(Zp) for all but finitely many p. In this setting, since the conductor of πχ2
can

is 7, we take

Kp =

SL2(Zp) if p 6= 7,

{g ∈ SL2(Z7) : g ≡ ( ∗ ∗0 ∗ ) (mod 7)} if p = 7.

Write g = γ · g∞ · k for γ ∈ SL2(Q), g∞ ∈ SL2(R), and k ∈
∏

p<∞Kp. By the calculations of

Chapter 8, the action of kp =
(
ap bp
cp dp

)
∈ SL2(Zp) on φ′0,p(x1, x2) = 1Zp(x1)1Zp(x2) is

ωψ(kp)φ
′
0,p(x) = χ2

can(ap)εE/F (ap)φ
′
0,p(x) =

φ′0,p(x) if p 6= 7,

εE/F (a7)φ′0,7(x) if p = 7.

Therefore

ωψ(h, g)φ′0 = εE/F (a7) · (χ2
canξ)

−1(h) · ωψ(1, g∞)φ′0,
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and the integral simplifies to

εE/F (a7)

∫
KA

∑
v∈X′(F )

(ωψ(1, g∞)φ′0)(v) dh = εE/F (a7) vol(KA)
∑
v∈OE

(ωψ(1, g∞)φ′0,∞)(v).

Observe that if

g∞ =

(
1 x

0 1

)(√
y 0

0
√
y−1

)
for y > 0, then

g∞ · i = x+ iy ∈ h := {z ∈ C : =(z) > 0} .

For this g∞, we have

ωψ(1, g∞)φ′0,∞(v) = ωψ (1, ( 1 x
0 1 ))ωψ

(
1,
(√

y 0

0
√
y−1

))
φ′0,∞(v)

=
√
yωψ (1, ( 1 x

0 1 ))φ′0,∞(v
√
y)

=
√
yψ(xvv)φ′0,∞(v

√
y)

=
√
ye2πixvv(v

√
y)2e−2πyvv

= y3/2v2e2πi(x+iy)vv.

Therefore

θφ′0(χ
2
canξ)(g) = εE/F (a7) vol(KA)

∑
v∈OE

y3/2v2e2πizvv,

where z = x+ iy ∈ h. Recall that the classical modular form associated to this automorphic

form of GL2(AF ) is the weight-3 form

fχ2
can

(z) = vol(KA) ·
∑
v∈OE

v2e2πzvv.

Now,

vol(KA) = ρF · ρ−1
E · 7

−1/2 · (2π) =

(
2π

71/2 · 2

)−1

· 7−1/2 · (2π) = 2.

The space of holomorphic modular forms of level 7, weight 3, with nebentypus
( ·

7

)
has

dimension 1 and (by SAGE!) is generated by the modular form with q-expansion

f(z) = q − 3q2 + 5q4 − 7q7 − 3q8 + 9q9 − 6q11 + 21q14 − 11q16 − 27q18 +O(q20). (10.1)
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Using the fact that OE = Z[1+
√
−7

2
], it is an straightforward calculation to show that∑
v∈OE , vv=n

v2 = 2an,

where an is the nth Fourier coefficient of the normalized newform. Therefore

fχ2
can

(z) = 4
(

normalized newform of level 7, weight 3, with nebentypus
( ·

7

))
,

and this shows that

D0 = 4.

We also have the following table. Write∑
v∈OE

1F1(−l, 3, 2πvv(z − z))(v
√
y)2e2πizvv = dlδ

l(f),

where

δl = δk+2l−2 ◦ · · · ◦ δk+2 ◦ δk, δk :=
1

2πi

(
∂

∂z
+

k

z − z

)
,

is the Maass–Shimura operator which raises the weight of the newform f in (10.1) by 2l.

Then calculating directly,

l 0 1 2 3 4 5 6

Dl 4 8π/3 4π2/3 8π3/15 8π4/45 16π5/315 4π6/315

That is,

Dl ∼ πl.

We have hence given a direct proof of (a more precise algebracity statement than) Theorem

9.4 in this setting.

Remark 10.1. By performing the unfolding of the theta lift as in this section, one can explicitly

calculate the q-expansion of the classical modular form associated to θφ′0(χ
m
canξ).

(i) If m is even, then θφ′0(χ
m
canξ) has weight m + 1 and level 7, and is a multiple of the

automorphic form associated to the newform

1

2

∑
v∈OE

vme2πzvv.

In this case, this is a classical theta series arising from the lattice OE, which has rank 2

over Z.
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(ii) If m is odd, then θφ′0(χ
m
canξ) has weight m + 1 and level 49, and is a multiple of the

automorphic form associated to the newform

1

2

∑
v∈OEr

√
−7OE

ε(v)vme2πzvv,

where ε : OE/(
√
−7) ∼= Z/7Z→ {±1} is the character given by

( ·
7

)
. (See the beginning

of this section.) ♦

10.4 Nonvanishing torus periods

Using the same unfolding argument as in the preceding section, we can show explicitly that∫
[E1]

θφ′l(χ
2
canξ)(g) · χ3+2l

can (g) dg 6= 0.

As before, setting

Kv =

E1
v if v is nonsplit,

O×Fv if v is split,

we have ∫
[E1]

θφ′l(χ
2
canξ)(g) · χ3+2l

can (g) dg =
ρF
ρE

∏
v

∫
Kv

θφ′l(χ
2
canξ)(gv) · χ3+2l

can (gv) dgv,

where dgv is the Tamagawa measure as in Section 2.1. Recall that χ2
can is unramified at every

place v and that χcan is unramified at every place v - 7. We now proceed place-by-place:

(i) If v -∞ is unramified, then both χcan and χ2
can are unramified. Writing gv = av + bvi,

by Lemma 8.7,∫
E1
v

θφ′l(χ
2
canξ)(gv) · χ3+2l

can (gv) dgv =

∫
E1
v

χ2
can(av)εE/F (av) · θφ′l(χ

2
canξ)(1) · χ3+2l

can (gv) dgv

= vol(E1
v) · θφ′l(χ

2
canξ)(1).

(ii) If v - ∞ is ramified, then v = 7, and so χ2
can is unramified, but χcan = εEv/Fv has
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conductor 1. Writing gv = av + bvi, by Lemma 8.7, we have∫
E1
v

θφ′l(χ
2
canξ)(gv) · χ3+2l

can (gv) dgv =

∫
E1
v

χ2
can(av)εE/F (av) · θφ′l(χ

2
canξ)(1) · χ3+2l

can (gv) dgv

=

∫
E1
v

εE/F (av) · θφ′l(χ
2
canξ)(1) · εE/F (gv) dgv

= vol(E1
v) · θφ′l(χ

2
canξ)(1).

(iii) If v -∞ is split, then both χcan and χ2
can are unramified and by Lemma 8.7, we have∫

O×Fv

θφ′l(χ
2
canξ)(gv) · χ3+2l

can (gv) dgv = vol(O×Fv) · θφ′l(χ
2
canξ)(1).

(iv) If v | ∞, then∫
C1

θφ′l(χ
2
canξ)(gv) · χ3+2l

can (gv) dgv =

∫
C1

g3+2l
v · θφ′l(χ

2
canξ)(1) · g−(3+2l)

v dgv

= vol(C1) · θφ′l(χ
2
canξ)(1).

Then we see that∫
[E1]

θφ′l(χ
2
canξ)(g) · χ3+2l

can (g) dg 6= 0 ⇐⇒ θφ′l(χ
2
canξ)(1) 6= 0.

On the other hand, if θφ′l(χ
2
canξ)(1) = 0, then necessarily θφ′l(χ

2
canξ) is identically zero, which

contradicts Theorem 9.1. Combining the above with Theorems 6.19, we obtain:

Corollary 10.2. Let B′ = B7,∞ denote the definite quaternion algebra over Q ramified at

exactly 7 and ∞. Define

f
(l)

χ2
can

:= θφ′l(χ
2
canξ), fB

′

χ3+2l
can

:= θ′φ′l
(χ3+2l

can ξ′).

Then:

(a) fB
′

χ3+2l
can

is an automorphic form in the Jacquet–Langlands transfer πB
′

χ3+2l
can

,

(b) there is an identity of nonzero torus periods

0 6=
∫

[E×]

f
(l)

χ2
can

(g) · χ2
can(g) dg =

∫
[E×]

χ2
can(g) · fB′

χ3+2l
can

(g) dg.
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